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Abstract
Markets are information aggregators. But how do they incorporate new data
into their pricing? We examine the response of prediction markets to a novel
information shock in a quasi‐natural experiment: How did the absence an-
nouncements of elite soccer players influence the betting odds of affected
matches? Analyzing the first four statistical moments of 117,174 odds from 32
bookmakers, we identify initial inertia followed by a lagged reaction that we
cannot reason with learning. Our findings raise questions about how bettors
and bookmakers incorporate new information into their beliefs. It has broader
implications regarding information processing in markets.

KEYWORD S
belief updating, betting markets, betting odds, forecasting errors, information shocks,
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1 | INTRODUCTION

The superiority of pooled over individual information processing has been discussed in various settings.1 It originates
from the fundamental understanding of markets as large, decentralized aggregators of information as outlined by
Hayek (1945) and formalized for expectations by Muth (1961). Financial markets are compelling in this context as they
get close to a frictionless market environment with perfect competition and optimal information aggregation
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(Grossman, 1976, 1978; Hellwig, 1980). In such an environment, we study how prices of established future contracts
with a finite time horizon incorporate new information. We rely on the high‐stakes prediction market of sports betting
to benefit from the existence of final outcomes for betting on finite events (i.e., matches), which we can use to evaluate
prior predictions.

We exploit the global COVID‐19 pandemic as a natural experiment. It allows us to unambiguously identify the
absence of athletes due to coronavirus infections. These are exogenous information shocks to both bookmakers and
bettors. We study professional men's soccer in Europe, one of the world's most sought‐after entertainment markets. The
elite leagues implemented a rigorous testing scheme for the virus. Infections had to be made public immediately—
unlike most sicknesses or absences. It allows for precise separation of “treated” and “control” matches. Infected
players were obliged to quarantine for more than a week following a positive test. They were missing at least one match,
which constitutes our information shock.

Our setting applies to many more markets aside from betting than analyses of shocks in, for example, live betting
environments that occur over an actual match or race and usually study only one betting firm (Choi & Hui, 2014;
Croxson & Reade, 2014). By investigating arguably all firms and, hence, a whole market, our results are fairly general
and may be reflected in many instances of incorporating new information into pricing and purchase decisions.

The analysis builds upon odds from 32 bookmakers covering most of the sports betting market in Europe. The
market for sports betting generated EUR 14.6 billion in revenues in 2021, which accounts for 40% of the total online
gambling market.2 The natural quasi‐experiment in this large prediction market is a high‐stakes environment, as
bookmakers' profits crucially depend on the correct forecasting of match outcomes.

We study 1372 matches in the premier divisions of men's soccer in Germany and Italy during the seasons 2019/2020
and 2020/2021, covering a period from autumn 2019 to summer 2021. Within this comparatively short time window,
COVID‐19 equipped us with 257 positive cases, of which we can unambiguously assign 233 cases to the infected players.
With an accuracy of 90.7%, this meticulously gathered player‐level infection data enable a clear distinction between
treatment and control groups and hardly suffer from any dark figures.

The high number of bookmakers and odds enables us to analyze the heterogeneity and dispersion in an entire
market instead of studying a single bookmaker's behavior.3 It allows us to conduct a manifold analysis of market‐level
uncertainty and aggregated information incorporation in response to a reasonably general shock, as player absenteeism
is an everyday business in professional team sports but has yet to be seamlessly explored. We focus on the first four
moments of the odds distribution of each matchday. Our differences‐in‐differences framework utilizes the timing and
announcement of infections as causal identification. We propose four behavioral hypotheses and test them empirically.
The ex‐post benchmark would be a null effect, as we cannot find any effect of a player's absence on match outcomes.
Nevertheless, there seem to exist distorted beliefs, especially in the later stages of the pandemic: While we do not
identify any effect on the odds distribution among early infections, later infections show a significant increase in the
affected team's average odds and their dispersion and a jump in the absolute skewness of odds. It is a strong hint that
either bettors, bookmakers, or both react differently to our data‐driven (ex‐post) benchmark.

According to Snowberg et al. (2013), prediction markets work best if their mechanism successfully aggregates in-
formation, truthful disclosure of the information is rewarded, and long‐term incentives exist to invest in improved
information gathering. For sports betting, these criteria are mostly satisfied. Furthermore, these markets tend to process
new information quickly. This ties in with the “Hayek hypothesis” (Hayek, 1945; Smith, 1982). It states that market
participants—only equipped with limited knowledge of the overall environment—can create an efficient outcome using
the market process alone.4 The hypothesis holds under five conditions: The number of traders is small, and they can set
prices. They only have incomplete information on the market environment and can or cannot have rational expecta-
tions of the market environment. Last, no central authority coordinates the market (Al‐Ubaydli et al., 2022). We
consider these conditions mostly satisfied here, even though a small number of ‘traders’ only applies to bookmakers
while plenty of bettors are in the market.

Moreover, our work is essentially a test of the semi‐strong efficient market hypothesis (Fama, 1970). It states that
prices in financial markets reflect all publicly available information. As player absenteeism is known to the public and
the match outcomes of past matches, one would expect market participants to incorporate new absence announce-
ments, assuming semi‐strong market efficiency correctly.

The subsequently identified inertia questions how well prediction markets incorporate new information. Berg
et al. (2008) show for presidential election forecasting in the US that forecasts early in the election campaign outperform
common polls, implying that prediction markets are compelling for long‐run forecasts. Deck and Porter (2013) survey

FISCHER and SCHMAL - 237



lab experiments on the strength of markets in information aggregation and find evidence for the baseline hypothesis
suggested by Hayek.

Sports betting is widely used for a better understanding of biases and anomalies in asset pricing and financial
markets more generally (see, e.g., Avery & Chevalier, 1999; Brown & Yang, 2016; Feddersen et al., 2017; Mosko-
witz, 2021; Quandt, 1986; Ramirez et al., 2023; Thaler & Ziemba, 1988; Wolfers & Zitzewitz, 2004). An important
example for research on behavioral anomalies is the “longshot bias:” Bettors overvalue the chances of winning for an
unlikely event, usually the win of an “underdog” (see, e.g., Meyer & Hundtofte, 2023; Whelan & Hegarty, 2023;
Whelan, 2024). Choi and Hui (2014) find for sports betting that unsurprising events lead to an overly passive reaction
not fully reflecting the extent of the news. In contrast, there is overreaction after the arrival of what they call surprising
events. Their sole incident of interest, however, is a goal scored. Angelini et al. (2022), Croxson and Reade (2014), and
Ötting et al. (2023) investigate the effect of goals on odds in live betting and find biased reactions to another goal, which
constitutes new information regarding the expected final match outcome. As live betting appears limited to a narrow set
of potential applications elsewhere, we study bookmakers' odds setting along the whole distribution of odds. In contrast,
previous studies focused on one firm.

Winkelmann et al. (2024) look at betting odds in the long run and find that mispricing disappears over time and
markets become efficient. It does not contradict our work as we investigate the short run after the advent of new in-
formation. Brown et al. (2019) find the release of a new US presidential election poll to trigger more activity on a betting
platform and more noise in the valuations. We provide novel evidence of inertia in response to hardly quantifiable
information. Williams and Reade (2016) relate political betting with social media activity and find a lagged response to a
shock. It corresponds to our findings regarding late infection announcements. Brown (2014) identifies limitations in the
information processing ability as one driver of mispricing in betting markets. It should not so much apply to book-
makers who are used to analyze new information but may affect bettors in their belief formation.

The remainder of this paper is structured as follows. Section 2 explains the data we use and the sports betting
market. Section 3 describes our empirical strategy. Section 4 states the core behavioral hypotheses we investigate and
presents the benchmark case. We present our findings in Section 5. Section 6 concludes.

2 | DATA AND BACKGROUND ON SPORTS BETTING

The closing odds of 32 bookmakers, obtained from oddsportal, build the foundation of our analysis.5 The online
gambling and sports betting market is highly entangled because many betting brands only operate in selected markets
or are sub‐licensed to other companies for legal reasons. Members of the main European business association EGBA are
bet365, Betsson, Entain, Flutter, kindred, and William Hill. All firms usually run several gambling and betting brands.
We have at least one betting platform with odds for each firm in our sample. Our sample also contains odds from
Leonbet, particularly engaged in Russian‐speaking countries, and Dafabet, focused on Asian markets.

We cover the seasons 2019/2020 and 2020/2021 of the elite leagues in Germany (Bundesliga) and Italy (Serie A).6

Such a season usually lasts from late summer until spring of the next year. Hence, we have COVID‐19 infections in the
later stages of the 19/20 season and the whole 20/21 season, with a particular peak in winter 20/21. The Bundesliga
consists of 18 teams, and the Serie A of 20 teams. It leads to a total number of 1372 matches. To obtain a balanced team‐
matchday panel, we double the data set as the 1X2 odds are defined by match and not by team.7 We cluster the standard
errors at the match level to account for it. In total, we use 117,174 single odds. 8

Technically, we use “1X2 odds,” that is, odds for a win of the home team (1), a draw between both teams (X ), or a
win of the away team (2). These odds are in decimal‐style; for any odds ξ holds ξ 2 (1, ∞). For any wager ω, the payout is
ξω and profit is π = ξω − ω in case of a successful bet and π = −ω otherwise. Higher odds lead to a higher payoff in case
of success but are related to a lower probability of success. We code “1” and “2” odds as treated in the case that an
infection happens. We separate the infection data at the median player‐level infection date to distinguish between early
and later infections. We use the closing odds of each bookmaker, that is, the last odds published before a match is about
to begin.

Our analysis relies on the accurate identification of treatment and control observations. Here comes COVID‐19 into
play: Only for this virus disease a rigorous testing pattern and public announcements of new infections existed. Other
common sicknesses, such as chills or gastrointestinal diseases, are often announced on short notice before a match or
not at all. Hence, one cannot detect an information shock for them. COVID‐19 provides a sublime exception, so we
exploit it as an information shock. We use a detailed list of infections meticulously gathered by Fischer et al. (2022).
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They identified 233 players that occurred ahead of 131 matches.9 Matching players to their teams enables us to
distinguish between affected and unaffected teams.

Many players got infected simultaneously, especially in the later stages of the pandemic. We assume a constant
marginal effect of a new infection event—so, the bundle of at least one infection before a team's next match—on betting
odds. While it may be a significant difference whether, say, one or five team players are newly missing, it is reasonable
to assume that the bookmakers should have picked up the absence of players already missing for some time. For
example, betting odds for the upcoming match should capture the absence of a previously infected player who has been
missing for 3 weeks. Any changes caused by an additional infection (and, thus, absence) should be solely related to the
new announcement. Hence, only the additional absence should affect the betting odds. The whole dataset is publicly
available on openIPSCR (Fischer & Schmal, 2024).

3 | EMPIRICAL SETUP

Regression Design: We analyze the announcement of a missing player on the betting odds of the respective teams and
their opponents. This event has two effects: First, the choice set of the team manager decreases as there are fewer
players to choose from for the squad on the pitch, which weakly lowers quality. Second, due to an absence, the squad on
the pitch might need an adjustment if the absentee is a regular player. Our reduced‐form estimation for betting odds
aggregates both issues and captures the resulting uncertainty of how a team's ability might change because of this.
Empirically, we apply a difference‐in‐difference design that uses the infection date as information shock that should
affect the belief formation of bookmakers and bettors. We define

f ðξiÞtm¼ ðTtm � SmÞ0βT þ Z0ζ þ etm: ð1Þ

The dependent variable is the specific moment measure of the closing odds ξ of i bookmakers for team t in matchm—either
the mean, the standard deviation (both logarithmic), the skewness, or kurtosis (both in levels, by construction) across all
bookmakers i in the market.10 βT is the coefficient vector for the treatment effect. Sm is a binary indicator, whether it is an
early or a late infection. Ttm is the treatment indicator (a team's first match after at least one infection is reported). We
separate these two groups at the median infection date. Intuitively, a distinction between seasons might suggest itself.
However, as Figure A3 in the appendix shows, the number of infections in season 2019/2020 is comparatively low.
Therefore, we use the median as the main measure of distinction, but our results are robust to variations.11 Z is a vector of
fixed effects, namely team� season, opponent team� season and matchday� season. The vector ζ, accordingly, describes
the estimated coefficients. etm is the idiosyncratic error term. To extend our analysis, we also apply a dynamic difference‐in‐
differences design in the form of an event study, which we model as

f ðξiÞtm¼
Xk

τ¼k;τ≠−1
βτ Ttm;τ þ Z0ζ þ etm: ð2Þ

Outcome Variables: The first and last bins k and k are binned endpoints, encompassing all other observations
outside the effect window. All other terms are equivalent to those in Equation (1). The first two moments of the dis-
tribution of odds by team and matchday are

μm ¼
1
Nm

XNm

i¼1
ðξimÞ ð3Þ

for the mean and

σm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nm

XNm

i¼1
ðξim − μmÞ

2

v
u
u
t ð4Þ

the standard deviation as the square root of the variance for the second moment.12 We use the Fisher‐Pearson coef-
ficient of skewness to work with the third moment of a distribution. It describes the third moment around the mean and
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can be considered the oldest and most established measure of skewness (Doane & Seward, 2011; Singh et al., 2019).
Applied to the odds ξi per matchday m, this becomes

γm ¼
1
Nm

XNm

i¼1

�
ξim − ξm

σ̂m

�3

: ð5Þ

For all moments, Nm captures the number of bookmakers providing odds at matchday m. While the importance of
skewness for individuals in financial markets is widely recognized—see, for example, Alderfer and Bierman (1970), Golec
and Tamarkin (1998), and Hirshleifer (1965); more recently Dertwinkel‐Kalt and Köster (2019) and Ebert (2015)—the
third moment has been utilized to a lesser extent as an outcome of markets. As pointed out by Mao (1970), there are notable
differences in the perception of two gambles with the same mean and variance but different skewness values. Our paper
attempts to exploit this on a market level instead of individuals.

Lastly, we look at the fourth moment of the betting odds distributions, namely the kurtosis. Analogously to the
formula of skewness presented in Equation (5), the kurtosis κ is defined in our setting as

κm ¼
1
Nm

XNm

i¼1

�
ξim − ξm

σ̂m

�4

: ð6Þ

The kurtosis is usually interpreted relative to the normal distribution, which has κ = 3, distributions with κ < 3 are
considered platykurtic and have less extreme and fewer outliers than the normal distribution. In contrast, distributions
with κ > 3 are called leptokurtic and have more extreme outliers and a higher number of them (see, e.g., Balanda &
MacGillivray, 1988).

Identification: To disentangle the effect of the public announcement of new infections, we compare the betting
odds of infected players' teams before and after their positive test results with the evolution of outcomes of non‐infected
players and their respective teams. We apply a two‐way fixed‐effects difference‐in‐differences estimation that controls
for variation over time and across clubs.13

Several assumptions need to hold for valid results in this empirical setting. Within our difference‐in‐differences
design without dynamic effects, we need parallel trends for the treatment and control group without COVID‐19.
There is no conceivable cause for the diverging evolution of betting odds without COVID‐19. For the dynamic event
study setting in Equation (2), it corresponds to the requirement that treatment cannot predict outcomes prior
to treatment. Our event study plots show flat pre‐trends, indicating that the assumption of parallel trends is
satisfied.

Furthermore, we assume that there exists no self‐selection of players in the treatment. In contrast to other
injuries, for which clubs can strategically decide on what they want to announce at which time, the mandatory and
transparent COVID‐19 testing schemes diminish this concern. Also, we consider infections as not anticipated in the
short‐run—neither by players, teams, or bookmakers. As Table A2 in the Appendix illustrates, we can proceed on the
assumption that the assignment of new infections and, by that, absence announcements are random. No statistical
relation exists to the league, earlier announcements, previous performance measured in points gained, or lagged
moments of the odds.

Eventually, a difference‐in‐differences estimator requires that the treatment only causes partial equilibrium effects,
or else we need the stable unit treatment value assumption to hold. While Fischer et al. (2022) find spillover effects in
players' performance on the pitch, there is no reason why betting odds of unaffected matches should change. It would
be theoretically conceivable that a COVID‐19 infection raises the market value of uninfected players in the same po-
sition (e.g., striker or midfielder) because the supply of healthy players in that particular position decreases. However,
European soccer is so large that the comparatively low number of infections is unsuspicious of causing general equi-
librium effects besides some superstar players, which, on the other hand, are hardly statistically significant. Also, almost
no player trading happens throughout the run of a season. Thus, we consider the assumptions required for causal
estimates within the difference‐in‐difference design as satisfied.

To ensure that our regression setup identifies the effect of an actual infection, we need to ensure that COVID‐19
infections do not spill over within teams to a large extent. Figure 1 shows the effect of one infection in a team on
the number of reported infections in the team in the subsequent days. While there is evidence for positive spillovers in
the very short run, the effects are limited in size, with less than 0.1 additional infections in the first week after a reported
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infection. The effect is also limited to the first few days after infection, so the uncertainty about new infections mostly
disappears until the first post‐infection match. We take this as indicative evidence that our analysis later on likely does
not capture the pure uncertainty of potentially many upcoming new infections.

4 | BEHAVIORAL HYPOTHESES

To formalize the behavioral responses of betting markets to the information “shock” of a new absence, one should first
consider the basic functioning of betting markets. Figure 2 sketches this: It is reasonable to assume that betting
companies solely rely on information to form their betting odds and not on the intuitions of their employees. In
contrast, sports betting is closely related to gambling, so it can be considered an entertaining and emotional task for
many bettors. They are likely prone to incorporate “gut feelings” such as emotional attachment to a club, behavioral
biases such as the hot hand fallacy, or simply subjective evaluations of teams and players into their formation of ex-
pectations and computation of winning probabilities. However, information also affects intuition in the sense that it
might shape biases. Crucial for understanding betting markets is that bettor behavior also drives bookmaker behavior,
consequentially also betting odds and, eventually, the intuition of the group of buyers (Levitt, 2004).

The rationale behind this is that betting companies need to adjust their portfolio of closed bets since bets imply a
payment obligation in case the buyer is right with their prediction. If non‐outcome‐related drivers affect the
composition of bets, betting companies need to adjust for their expected outcomes. One way of doing that is by
changing the odds to balance their portfolio to some extent. It implies that the odds adjustment could be driven not
only by the betting firms' behavioral biases but also by the bettors' anticipated behavioral biases that lead to an
adjustment of the odds after a recently announced player's absence. Regarding new cases, the only reasonable
behavior of bettors besides remaining indifferent would be shying away from bets on a win for the affected team. In
turn, the betting companies would react by adjusting the odds for the affected team upwards and the opponent team
downwards.

However, this effect should occur predominantly in the earlier stages of the pandemic, when the emotional response
and media attention were exceptionally high. In addition to traditional bookmakers, we can exploit data from “Betfair
exchange,” which is not a standard bookmaker but—as the name suggests—an exchange. There is no central company
offering bets to a crowd of customers, but it is a genuine market with many sellers and buyers of bets. Thus, these users
do not face the same challenge of large‐scale portfolio balancing. Figure A4 in the Appendix shows the average odds of

F I GURE 1 Effect of an infection on new infections within a team. This figure plots the OLS coefficients of a regression of team‐level
infections on lags of an infection dummy. Standard errors: Heteroskedasticity‐robust and clustered on the match level. 90% (blue lines) and
95% confidence bands (black extensions) are shown.
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this exchange to react in the same way as the bookmakers' odds. Hence, we do not suspect the steering of (naive)
consumers via portfolio balancing to be a relevant driver in this domain, as the betting market as a whole appears to be
distorted. We also compute the bookmakers' profit margins as defined by Shin (1993) to check for changes in the market
characteristics. Figure A5 in the Appendix highlights the absence of margin changes due to the announcement of new
absences. We also rule out changes in the odds due to variations in competition intensity.

Players missing matches is a widespread phenomenon for clubs and the public. Athletes get injured, get ordinary
infections such as a cold or influenza, or do not play for disciplinary or private reasons. Henceforth, bookmakers should
be aware of that problem, and one would expect that they have fitted their own predictive models accordingly. Based on
these considerations, we propose four different hypotheses on the markets' reaction to the advent of new information on
player absences using the four moments of the underlying theoretical distributions of betting odds. There are three
potential effects for each moment: a significant increase, decrease, or no change. Together with four moments
considered in total, this results in 43 potential combinations. We narrow our focus to the following four hypotheses that
we consider the most reasonable:

Hypothesis 1. Null Effect

ΔEm½ξi� ¼ 0 ∧ ΔVm½ξi� ¼ 0 ∧ Δγm½ξi� ¼ 0 ∧ Δκm½ξi� ¼ 0

Hypothesis 1 states that there is no observable effect in the betting odds distribution at all. It could happen if the new
information appears worthless to the agents and no reaction is considered necessary. In that case, none of the four
moments should react.

Hypothesis 2. Educated Adjustment

�
ΔEm½ξi� ≠ 0 ∧ ΔVm½ξi� ¼ 0 ∧ Δγm½ξi� ¼ 0 ∧ Δκm½ξi� ¼ 0 valuable information

Hypothesis 1 valueless information

Second, there could be an educated adjustment as described by Hypothesis 2. The agents recognize new information
and its meaning and incorporate it properly into their expectations. If there is no change in uncertainty regarding the
size and/or direction of the effect caused, there should be only a change in the mean to reflect the changed state of the
world but no change in variance, skewness, or kurtosis as there is no change in uncertainty. This hypothesis collapses to
the null effect hypothesis (Hyp. 1) if infections do not alter match results.

Hypothesis 3. Uneducated Uncertainty

ΔEm½ξi� ¼ 0 ∧ ΔVm½ξi� ≥ 0 ∧ Δκm½ξi� ≥ 0

Third, subsequent to the arrival of new information, agents might be unsure how to incorporate it into their pre-
diction but expect the information to be meaningful. Hypothesis 3 captures this. As in Hyp. 1, there is no change in the
mean. It is now reasoned by the uncertainty about how the event affects the predicted outcomes. Contrary to Hyp. 1, the
second moment increases as a jump in uncertainty urges the agents to adjust their predictions. The same holds for
the kurtosis. Regardless of its initial value, a weakly positive change implies the distribution to become less platykurtic
or else more leptokurtic. Hence, more and more extreme outliers should occur. It is unclear whether the skewness of

F I GURE 2 Stylized relations between bettors, betting companies, and information.
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the predictions should change as increased uncertainty might reduce the skewness of a previously skewed distribution
or else increase the skewness of an unskewed distribution. Therefore, this hypothesis remains agnostic regarding po-
tential changes in the third moment.

Hypothesis 4. Rally round the flag

ΔEm½ξi� ¼ 0 ∧ ΔVm½ξi� ≤ 0 ∧ Δγm½ξi� ≠ 0 ∧ Δκm½ξi� ≤ 0;

where Δγm½ξi�

(
>0 ∀γ > 0

<0 ∀γ < 0

Hypothesis 4 proposes a potential “rally round the flag” effect under uncertainty. It is well known in conflict sit-
uations, in which citizens tend to gather around their leaders much more strongly than they might do in more peaceful
times (Waltz, 1967). As there is no natural “leader” in the betting market, we consider the skewness parameter instead
as a measure of concentration beyond the standard deviation that captures dispersion. However, this only holds
conditional on the mean and the standard deviation to remain stable. It is equivalent to Hyp. 3 in so far that the mean is
not supposed to change because there is no clear information on how the infections impact the respective outcomes
(match results and individual quality).

Contrary to Hyp. 3, the measure of dispersion either decreases or else remains unaffected. It should also be visible in
the kurtosis, which should become less lepto‐ and more platykurtic, implying fewer outliers. However, a change in
skewness implies a movement toward a higher concentration conditional on holding mean and variance fixed. As a
change in γ might also reduce skewness, we specify that Δγm[ξi] is always related to increasing skewness for Hyp. 4 to
hold. The last hypothesis is necessary because even without a change in dispersion, there might be a change in con-
centration, that is, the first two moments do not change, but the third.

In general, more combinations of changes in the four moments are conceivable. However, we consider these four
scenarios as the most reasonable behavioral reactions. As we estimate a reduced‐form model, we cannot reveal evidence
for a specific theory, but we aim to get a deeper understanding of the existing behavioral patterns. We try to understand
the path toward a new equilibrium by looking at the development of adjustment over time. We look at this process from
the advent of novel information and study how betting odds react.

Benchmark: To understand (distorted) belief formation, we first need to evaluate what would have been ex‐post
rational to expect for the market participants. Figure 3 presents the event study plots for two central match

F I GURE 3 Dynamic effect on points and goals scored for a team with a new absence. This figure plots the dynamic OLS coefficients βT
for the probability of winning (blue) and logarithmic points gained (red) by teams with new infections. Standard errors: Heteroskedasticity‐
robust and clustered at the match level. 90% (colored lines) and 95% confidence bands (black extensions) are shown. We use the inverse
hyperbolic sine transformation for both outcomes to account for zero values.
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outcomes in soccer as a benchmark. The estimates with blue confidence bands depict the probability of winning. Those
with red bands show the points gained before and after a newly announced infection (and the absence of the affected
player). While the flat pre‐trends hint at treatment and control clubs being on the same trends, entirely insignificant
estimates after a new infection are evidence of a lack of an absence effect on the team level. As the absence of players
should be familiar to bookmakers, the knowledge on how to incorporate them into odds should be dispersed across
agents in this market. Put differently, the odds should not react. However, this is ex‐post reasoning. Ex‐ante belief
formation could differ without being irrational.

To ensure that the insignificant results are not driven by a lack of statistical power due to the decomposition of the
effect into several bins, we also estimate the baseline DiD coefficients for the first post‐infection match and a separation
of that coefficient by early and late infections. This is shown in Figure 4.

The left panel displays the effect on the probability of winning a match as the dependent variable. The right panel
depicts the effect on the number of points a team gains during a match. In both cases, the information shock of a newly
missing player does not affect any of the measures. Furthermore, there is no difference between early and late in-
fections. Hence, the only reasonable ex‐post belief would be a null effect. There could be confusion at the beginning and
some learning over time. So, some moments may be affected by early infections but certainly not by later ones.

5 | RESULTS

While the COVID‐19 pandemic has caused global economic shock waves, sports betting remained surprisingly inert.
There already exists literature that finds bookmakers insufficiently adjusted their odds for the effect of spectator
lockouts on home advantage (Fischer & Haucap, 2022; Winkelmann et al., 2021). However, we take a more general
approach as we study the effect of new absence announcements on the distribution of betting odds. It is essential to
notice that we do not compute any COVID‐19 effect but the overall effect of new information on odds.

5.1 | Changes in the four moments

Effect on average odds: We start with the first moment, that is, the average odds for a win in the match following the
announcement of a new (additional) infection. The results are displayed in Figure 5. The effect crucially depends on

F I GURE 4 Match outcomes subsequent to a newly absent player. This figure plots the OLS coefficients βT of the DiD regression
following Equation (2) for the mean of the probability to win (left panel) and for the points gained (right panel). Standard errors:
Heteroskedasticity‐robust and clustered at the match level. 90% (blue lines) and 95% confidence bands (black extensions) are shown. For
both outcomes, we use the inverse hyperbolic sine transformation to account for zero values but still be able to conduct a logarithmic
transformation.

244 - FISCHER and SCHMAL



the timing of an infection. The left panel represents the coefficients for the affected team. The right one corresponds to
the coefficients of the respective opponent team. Second, we distinguish between the baseline static DiD effect and a
decomposition of the effect in early and late infections. We use the median infection as the cut‐off.

Studying the average odds for a win of the affected team, we find no effect for early infections but a sharp positive
effect for the second half of infections (significant even on the 1% significance level). However, they seem to remain
surprisingly inert to this new information, especially because early infections created much more uncertainty and
turmoil, which might also affect team performance. As higher odds imply a lower expected probability of the related
match outcome, betting markets seem to be either inert or expect no effect of a COVID‐19 infection on team per-
formance in the first half of the affected matches but adjust their expectations toward a negative effect in the second
half. Decomposing the effect on the mean odds for late infections further, we find that the effect occurs on the first
match after the new infection (as shown in Figure 6). The flat pre‐trends are indicative of the DiD setting's validity. For
robustness, we further test the efficiency of the betting market using the approach of Angelini and De Angelis (2019).
Hence, we regress the prediction error on the treatment.14 We present the results in Table A3 in the Appendix. We do
not find significant mispricing following this approach. This is insightful for the potential learning process of the
betting market over time. However, this approach does not allow us to study the second to fourth moment of the
distribution.

Effect on the standard deviation: Figure 7 shows the main findings of the regressions regarding the standard
deviation.15 Again, we distinguish between the baseline treatment effect and an additional timing decomposition. As
discussed earlier, previous research has shown that new information leads to more activity. Hence, we expect a higher
standard deviation after a new infection. This is the case—but only for the second half of the sample. Here, the standard
deviation of set odds increases, a sign that the betting market does not precisely know how to incorporate the new
information, but they make an attempt.16

However, this raises doubts about the hypothesis of learning. Suppose market participants learned something
specific about the dynamics of COVID‐19 infections on match outcomes. In that case, the variation in the odds setting
should not increase except for the possibility that different companies have drawn different conclusions. However,
Figures 3 and 4 in the “benchmark” section show hardly any outcome‐related effect of newly missing players on the
team level. Hence, betting odds on match outcomes should vary much less than we observe in the data. The dynamic
event study in Figure 8 shows the equivalent to the dynamic effect for the mean odd: The first matchday after an
infection announcement is significantly affected.

Effect on the skewness of the odds: The third pillar of our analysis is the skewness of the odds as defined in
Equation (5) beforehand. As Table 1 shows, the overall skewness is centered approximately around zero but with a

F I GURE 5 Effect on the average odds for a win after the announcement of a new absence. This figure plots the OLS coefficients βT of
the DiD regression following Equation (1) for the mean of the matchday odds for teams with new infections (LHS) and their opponents
(RHS). Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95% (black
extensions). Dependent Variable: Logarithmic Mean.
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negative mean. It implies slight right‐skewness of the betting odds. Distinguishing between early and late infections,
one clearly sees that the odds of affected matches in the second half of the sample are much more left‐skewed than in
the first half (E[γlate] = −0.426 and E[γearly] = −0.0626).

We use the third moment of the odds distributions to investigate the odds movement and test for the already
mentioned “rally round the flag” effect. As there is no natural “leader” in the betting market, we consider the skewness
parameter as a measure of concentration beyond the standard deviation that captures dispersion. A change in skewness

F I GURE 6 Dynamic effect on the mean winning odds for late infections. This figure plots the dynamic OLS coefficients βT of the DiD
regression following Equation (2) for the log mean of the matchday odds for teams with new infections within the subsample of late
infections. Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95% (black
extensions).

F I GURE 7 Effect on the odds' standard deviation after a new absence announcement. This figure plots the OLS coefficients βT of the
DiD regression following Equation (1) for the log standard deviation of the matchday odds for teams with new infections (LHS) and their
opponents (RHS). Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95%
(black extensions).
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toward a more strongly skewed underlying distribution would imply a concentration effect “around the flag” condi-
tional on the first two moments remaining the same. Furthermore, it implies that bookmakers, to some extent, copy
each other because of uncertainty about how to react and not because of new information. Otherwise, all four moments
would remain the same, or at least one of the first two would change.

Figure 9 displays the results for the effect of newly announced infection on betting odds. One can easily see that
there is no effect on the respective opponent but a significantly negative effect on γm for the second half of the sample.
In Figure 10, the dynamic event study for the effect of a new (late) infection on betting odds' skewness. One can see a
large effect for the first matchday after an infection, but only significant at the 10% level.

Effect on the kurtosis of the odds: The last moment we consider is the kurtosis. It looks at the “peakedness” of a
distribution and, likewise, at the extreme tails. By that, it corresponds to the variance to a certain extent but adds further
information. Table 2 presents summary statistics of this moment. Early infections have a kurtosis highly similar to the
normal distribution (κnorm = 3). Odds distributions for late infections as well as without infections are leptokurtic. They
have more extreme outliers in odds and a higher frequency.

Looking at the response of the kurtosis to a newly announced infection, we do not observe a measurable reaction. As
one can draw from Figure 11, the coefficients for baseline, late, and early infections are insignificant for the affected and
the opponent team. As before, we look at the dynamic event study for late infections. We observe a flat pre‐trend and a
significant negative effect for the second match after a new infection. Put differently, the tails get thinner for the second
match, and the peak around the mean gets larger.

Variation in the density functions: The previous findings are all captured in the differences of the probability
density functions (PDF) as displayed in Figure 12. The blue line plots the density function for the matches prior to a

F I GURE 8 Dynamic effect on the standard deviation for late infections. This figure plots the dynamic OLS coefficients βT of the DiD
regression following Equation (2) for the log standard deviation of the matchday odds for teams with new infections within the subsample
of late infections. Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95%
(black extensions).

TABLE 1 Summary statistics on the skewness of betting odds.

Sample Minimum 1th quartile Median Mean 3th quartile Maximum

Early inf. −1.0419 −0.5082 −0.1161 −0.0626 0.2990 1.4679

Late inf. −2.4302 −0.7844 −0.5025 −0.4260 −0.0025 0.4774

No inf. −3.5038 −0.4916 −0.1319 −0.0658 0.2733 4.3649

Total −3.5038 −0.4988 −0.1351 −0.0744 0.2664 4.3649

FISCHER and SCHMAL - 247



new absence announcement. The red and the green lines show the first match after a new announcement. For both
“post announcement” functions, one can see a higher level of dispersion and a strong shift in the mean for the PDF
of late infections. Furthermore, a shift toward a more negatively skewed odds distribution is revealed, especially for
the late infection announcements (green line). The visual changes in the actual distributions of odds back the
regression analyses and highlight the differences between the market reaction to early and late absence
announcements.

F I GURE 9 Dynamic Effect of a new absence on the skewness of betting odds. This figure plots the OLS coefficients βT of the DiD
regression following Equation (1) for the skewness (in levels) of the matchday odds for teams with new infections (LHS) and their
opponents (RHS). Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95%
(black extensions).

F I GURE 1 0 Dynamic Effect on the skewness of the odds for a win for late infections. This figure plots the OLS coefficients βT of the
DiD regression following Equation (2) for the skewness (in levels) of the matchday odds for teams with new infections (LHS) within the
subsample of late infections. Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue
lines) and 95% (black extensions).
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TABLE 2 Summary statistics on the kurtosis of betting odds.

Sample Minimum 1th quartile Median Mean 3th quartile Maximum

Early inf. 1.515 2.393 2.925 3.086 3.418 6.096

Late inf. 1.636 2.444 3.060 3.537 3.655 21.529

No inf. 1.433 2.391 2.927 3.414 3.766 22.128

Total 1.433 2.392 2.930 3.409 3.749 22.128

F I GURE 1 1 Effect of a new absence on the kurtosis of betting odds. This figure plots the OLS coefficients βT of the DiD regression
following Equation (1) for the kurtosis (in levels) of the matchday odds for teams with new infections (LHS) and their opponents (RHS).
Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95% (black extensions).

F I GURE 1 2 Probability density functions (PDF) of the odds distributions. This figure plots the probability density function of the
residualized logs of odds. We residualize odds by regressing logged odds on team‐season, opponent‐season, and matchday‐season fixed
effects. The blue line plots the distribution of the last match before the announcement of a new infection. The red and green lines show the
distribution for the first match after an absence announcement for early (red) and late infections (green), separated at the median infection
date.
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How can the movement of these statistical moments be interpreted in economic terms? Without a new absence
announcement, we observe an approximately normal distribution of the residualized logs of the betting odds. In
particular, we identify a shift in the first three moments for late infections (green line in Figure 12). The increase in the
mean odds hints at the aggregated perception that the probability of winning a match following a new absence is lower
than before. However, the changes in standard deviation and skewness emphasize that there is not just a shift to the
right of the distribution.

We see bigger swings in the guesses of the bookmakers captured by the dispersion. Furthermore, the increase in the
skewness (in absolute terms) is evidence that some bookmakers shift toward higher odds, which are gathered a bit
closer around the mode. Still, fewer guesses are at the odds distribution's upper end. The long tail on the left side of the
distribution also hints at bookmakers sticking to their odds.17

In addition, we run quantile regressions to obtain more information on which area of the odds distribution the
treatment effect exerts its most substantial influence. As Table A4 in the Appendix illustrates, the effect on the first two
moments is only significant for the first five and highest for the two lowest deciles. Thus, the change happens in
particular for low odds, which, in turn, implies that bookmakers raise the odds of the favorite teams of a match,
plausibly considering their chances to win to be lower after the announcement of a newly missing player. Therefore, the
market's mispricing mostly appears for favorites, even though these are the clubs for which arguably the most infor-
mation is available.

5.2 | Effect heterogeneity

Effect of Announcement Timing: When considering price adjustments, the temporal distance to the event is crucial.
An announcement of a new absence far ahead of the next match not only allows market participants to spend a suf-
ficient amount of time reevaluating their predictions. It also allows them to wait for and observe the reactions of other
betting companies. Hence, the effect detected in the previous regressions will most likely be the largest (if existent at all)
for announcements close to matchdays as imperfect information might be “traded away” over time. This is the case, as
Figure 13 shows. For new notices within a range of 1‐3 and 4–6 days ahead of a match, we can identify a significant
change on the 5% level in both the mean and the standard deviation of the odds. For announcements seven up to 15
days ahead of a match, we do not find any impact of a new absence on these two moments.18 Overall, only an-
nouncements that would require an urgent response (if at all) trigger a substantial market reaction.

Player and Infection Event Heterogeneity: The effect of a missing player on the strength of a team crucially
depends on the player's role within their squad. Imagine as two extreme examples the impact of either a replacement
goalkeeper, which is likely to have no effect. In contrast, absent stars may have a much stronger impact on team
performance. We use the individual share of matches played and relative market value to approximate a player's impact
and relative role in their team (using Transfermarkt data).19 The upper two panels of Figure 14 show these

F I GURE 1 3 Effect decomposition by time between announcement and matchday. This figure plots the OLS coefficients for the first
two moments decomposed by the timing of the announcement relative to the distance to the following matchday. Left panel: Mean; right
panel: Standard deviation. Standard errors: Heteroskedasticity‐robust and clustered at the match level. 90% (blue lines) and 95% confidence
bands (black extensions) are applied.
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heterogeneities. A newly announced absence of high‐impact players (i.e., a high share of matches played or high market
value) significantly affects betting odds for late infections, while we do not detect any robust reaction of the odds'
moments to the absences of low‐impact players.

Further, the lower panel of Figure 14 presents heterogeneity by the players' age. Fischer et al. (2022) show that
absent players' performance after a COVID‐19 infection is affected the most for older players. As for some infections, the
first match post‐infection is already after the mandatory quarantine period, so the health effects on players are
important to account for. Indeed, betting odds are affected the most for older infected players.

Lastly, we study whether the effect of infection events varies with the number of infections. Figure 15 shows the
effect of the treatment on the moments of the odds distribution. No difference between single‐ and multiple‐infection
events is evident.

5.3 | Hypothesis evaluation

In summary, a diffuse picture emerges from the changes in the statistical moments. Table 3 shows that none of the four
moments of the betting odds distributions change among early infections. Quite the opposite holds for late infections.

F I GURE 1 4 Effect decomposition by player relevance (top panels) and age (bottom panel). These figures plot the OLS coefficients for
late infections of the DiD regression following Equation (1) for the first four moments of the matchday odds for teams with new infections.
The panels differentiate between the number of matches played, market values, and player age. We compare the top tercile (high share
matches played or age) with the bottom and middle tercile (low share matches played or age) of all infected players for both named
dimensions of heterogeneity. For market values, “high market value” implies a player has a higher market value than the average market
value of his team in the period before his infection. Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence
bands: 90% (blue lines) and 95% (black extensions).
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Here, we observe a change in the first three moments and no variation only for the kurtosis. For the latter, there exists,
at least, a slight movement toward a more platykurtic distribution for the second post‐infection match as shown in the
event study in Figure 16.

Regarding our proposed behavioral hypotheses, Table 4 shows that the only explanatory approach we can confirm is
Hyp. 1 for the first half of the infections. The second half provides a more puzzling setting. While the change in the mean
odds argues in favor of an educated adjustment of odds (i.e., Hyp. 2), the change in the standard deviation supports Hyp. 3,
hence the continued existence or even increase of uncertainty. The change in skewness hints at some concentration, but it
is challenged by the changes in the first two moments. It is supported by a slight change in the kurtosis for later infections,
which hints, together with the skewness effect, toward “rally around the flag” behavior. Overall, the advent of new in-
formation at first leads to inertia, which could be considered prima facie as a learning process. After this initial shock,
betting odds, as it were, frolic around, captured by ΔEm[ξi] ≠ 0, ΔVm[ξi] ≠ 0, and Δ|γm[ξi]| < 0 at the same time. This stands in
contrast with more common types of uncertainty in betting markets.

Deutscher et al. (2018) find inefficiencies in sports betting during the first matchdays of a season for recently
promoted teams—a case with less information on team and player strengths than usual. It rapidly diminishes—other
than the market distortions detected in our setting of new absence announcements. As previously stated, missing
players did not affect the core outcomes of professional soccer. After some inevitable adjustment and belief updating,
betting markets should have returned to no significant change in all four moments.

F I GURE 1 5 Effect decomposition by the number of new infections. This figure plots the OLS coefficient of the DiD regression for the
first four moments of the matchday odds for teams with new infections. We estimate the interaction of the infection treatment with a
dummy for single‐infection events and a dummy for multiple‐infection events. Standard errors: Heteroskedasticity‐robust and clustered at
the match level. Confidence bands: 90% (blue lines) and 95% (black extensions).

TABLE 3 Change in statistical moments of betting odds distributions.

Moment Early infections Late infections

Change in mean − ✓

Change in standard deviation − ✓

Change in skewness − ✓

Change in kurtosis − −
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At first glance, the observed overreaction might be explainable with the well‐known representative heuristic
(Tversky & Kahneman, 1974), which states that people overweight recent and salient information while neglecting the
base rate probabilities. It occurs in financial markets (Daniel et al., 1998; De Bondt & Thaler, 1985) and empirical
investigations hint especially at verdant agents being directed by that bias (Grether, 1980). Notwithstanding, book-
makers are highly experienced firms that possess a lot of past data and knowledge. Not only being heavily influenced by
those well‐established events of absence announcements but also being affected by late announcements appears pre-
posterous. Nevertheless, we observe these movements in the data. It could hint that experienced agents also suffer from
distortions in decision‐making that overrule potentially sophisticated forecasting techniques. Likewise, it could also be
caused by distorted beliefs of the bettors to which the bookmakers adjust their odds.

Considering our findings as they are, what can we draw from them? Even rational market participants need time to
understand new information's value and implications. Looking at our dynamic results, we see evidence precisely for
that. We identify significant changes in the first three moments, at least on the 10% level, for the first matchday after an
announcement that disappears right after. While the reaction at this first post‐infection match is somewhat erratic,

F I GURE 1 6 Dynamic Effect on the kurtosis of the odds for a win for late infections. This figure plots the OLS coefficients βT of the
DiD regression following Equation (2) for the kurtosis (in levels) of the matchday odds for teams with new infections (LHS) within the
subsample of late infections. Standard errors: Heteroskedasticity‐robust and clustered at the match level. 90% (blue lines) and 95%
confidence bands (black extensions) are shown.

TABLE 4 Validation of stated behavioral hypotheses.

Hypothesis ΔEm[ξi] ΔVm[ξi] Δγm[ξi] Δκm[ξi]

Early infections

1: Null effect ✓ ✓ ✓ ✓

2: Educated adjustment − ✓ ✓ ✓

3: Uneducated uncertainty − − −

4: Rally round the flag − ✓ − −

Late infections

1: Null effect − − − ✓

2: Educated adjustment ✓ ✓ − (−)

3: Uneducated uncertainty − ✓ −

4: Rally round the flag − − ✓ (✓)
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reverting to a null effect is in line with the benchmark that cannot find an effect of an additional missing player on
match outcomes. However, this only holds for the second half of the sample. For the first half, there is neither a dy-
namic effect nor an effect on the static semi‐elasticity.

Stepping back, we can arguably confirm the Hayek hypothesis over time for each individual infection (only
shortlived reaction that returns to the benchmark suggestion), but not across infections. Why betting markets appear
incapable of extrapolating from one player to another remains puzzling. In particular, it is surprising that all three
moments change for late infections. Given that players missing for some reason is not a new phenomenon, we cannot
rationalize why odds “frolic around.” In the same sense, it is puzzling that there is no reaction for early infections since
quality deterioration should also be an issue among these infections, and uncertainty has risen. Thus, our case of betting
markets raises doubts as to the extent to which the Hayek hypothesis holds for adequate incorporation of new
information.

6 | DISCUSSION

Using the global COVID‐19 pandemic as a catalyst for absenteeism on the pitch, we can identify substantial inertia and
behavioral patterns that hardly confirm the strength of markets in fast information processing for the high‐stakes
environment of betting markets. Both bettors and bookmakers are interested in the fast processing of new informa-
tion and evaluating whether it is relevant for match outcomes on which one can bet. Confronted with infections of elite
athletes in Europe, the odds of bookmakers tend not to react at all to new infections in the beginning. Only after a long
period of inertia do we identify a puzzling mixture of a higher mean, higher dispersion, and a more left‐skewed dis-
tribution of odds (and implied probabilities of a win) that do not follow a clear rationale. It violates the hypothesis of
semi‐strong market inefficiency.

While we cannot identify a reasonable behavioral pattern across new announcements, we might see some adjust-
ment or learning for the time after a specific announcement. Among those matches in which betting odds changed in
the first place, they seem to revert to status ex‐ante after one match of “confusion.” However, this could be driven by the
return to the pitch of many absent players after one missed match. While learning would back the Hayek hypothesis of
quick information transmission within markets and rational learning, it remains an open question why we find an
effect only for a subsample later in time—and, of course, why odds react in such a way in the first place.

Exploiting COVID‐19 as a high‐frequent information shock for betting markets has demonstrated that price ad-
justments do not necessarily reflect the ex‐post benchmark. The actual response to the new (and apparently meaningless)
information seems to consist of inertia combined with lagged blind action: Even though we cannot rule out alternative
explanations for the null effect among early infections, an explanation that argues in favor of rational behavior in
response to this first half of the sample lacks a sufficient explanation, why market participants alter their behavior in the
second half of the sample. One has to remember that changes in betting odds can be either caused by the bookmakers
mispricing new information or the bettors falsely updating their individual expectations on match outcomes.

Our analysis raises concerns to which extent the strength of market environments—as captured by the Hayek
hypothesis (Smith, 1982)—still holds for the advent of new information. The data reflect the unique example of a shock
with hitherto unknown consequences and the respective external evaluation. Furthermore, the analysis provides much
more substantial evidence as we use agents with a high commitment to correct outcomes and a large variety of
bookmakers, so we are confident we can rule out random effects caused by a selective sample of data. Eventually, many
global and industry‐specific challenges require belief updating sufficiently fast. Overly long reaction times are a sig-
nificant obstacle to this. As cited earlier, Buchanan (1964, p. 218) states that “a market is not competitive by assumption
or by construction. A market becomes competitive.” At least for our European sports betting market sample, we find the
opposite. It is an important finding and a puzzle at the same time. Future research would need to disentangle the
interdependencies of bettor and bookmaker behavior in more detail and how they interact.
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ENDNOTES
1 See, for example, Arrow et al. (2008), Hanson et al. (2006), Kremer et al. (2014), Snowberg et al. (2013), and Wolfers and Zitzewitz (2004).
2 European Online Gambling Key Figures 2021 Edition, https://www.egba.eu/uploads/2021/12/European‐Online‐Gambling‐Key‐Figures‐

2021‐Edition.pdf, including EU‐27 countries þ UK.
3 Even though betting odds are correlated across bookmakers, this is not an obstacle to our analysis as we specifically study the reaction to

the new information that may be more heterogeneous.
4 The hypothesis has been proven to hold in various experimental settings (Bulte et al., 2017; Davis & Williams, 1991; Shachat &

Zhang, 2017).
5 The website https://www.oddsportal.com/ is a major archive of odds in various sports and has already provided data for research (Gomez‐

Gonzalez et al., 2019; Qasim et al., 2020; Reade et al., 2021). Table A1 in the Appendix lists all bookmakers included.
6 In theory, we could expand our analysis to further leagues. However, the causality of our econometric design relies crucially on a clean

identification of infected and non‐infected players. Fischer et al. (2022) provide that only for Italy and Germany, and no other studies have
gathered infections in such great detail.

7 Consider, for example, teams A and B playing. The odds for a win of the home team (1) is for team A the odds for its win. In contrast, for B,
it is the odds for a win of the opponent team (2). Of course, the whole set‐up, to some extent, faces the “1 − p‐problem” (Schmal, 2023) as a
change in the likelihood of, for example, winning affects the other two odds for a match most likely in the opposite direction.

8 Figure A1 in the Appendix provides an overview of the size and frequency of these odds.
9 91 matches out of the 131 matches (71%) in total are single infections. Hence, distinguishing between single and multiple infections would

be interesting, but statistical power is lacking.
10 Our main regression results use the whole panel, that is, we have a varying number of bookmakers because, for some matchdays, odds

from some bookmakers are missing. It is unclear whether this is caused by missing values on oddsportal or by some bookmakers not
offering odds for all matches. We conduct an additional analysis using a balanced panel that only includes bookmakers with a full set of
odds. Figure A2 in the appendix shows that the results are qualitatively equivalent.

11 The regression results for a split into quartiles and quintiles in Figure A9 in the Appendix generally confirm our findings.
12 Additionally, we look at the coefficient of variation (CVR) because the size of the standard deviation depends on the expected value of the

odds. In contrast, the coefficient of variation is stationary for log‐normal distributed values. Given the distribution of odds, it is reasonable

to assume log‐normality. We construct the raw coefficient of variation as ln½CVR�jm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eσ̂
2
lnjm þ 1

q

, where σ̂lnlnjm is the empirical standard
deviation of ln(ξim) ∀ i. Figure A6 in the Appendix presents the results.

13 This setup has been questioned in a recently developing literature, which identified problems with using event studies to estimate
treatment effects from a staggered roll‐out. In particular, comparing already‐treated to not‐yet‐treated observations can distort estimated
coefficients. Admittedly, several correction estimators are proposed in the literature (see, e.g., the survey paper by De Chaisemartin &
d’Haultfoeuille, 2023). However, these models are designed for absorbing treatment, that is, each individual is treated only once. In our
setting, clubs face new infections multiple times. Applying the correction only to clubs with at most one infection event or to clubs' first
infection events is inappropriate in our setting since we are particularly interested in the effect heterogeneity over time.

14 The prediction error is the difference between a team's outcome and the implied probability of this outcome elicited from the betting odds.
15 As a robustness check, we have also computed the raw coefficient of variation. The results align with those for the standard deviation and

can be found in Figure F6 in the Appendix.
16 Comparing the p90‐p10 quantile distance, we also find an increase that hints at growth in dispersion (see Figure A7 in the Appendix). This

measure is well‐established in work on labor markets and inequality (Gottschalk & Smeeding, 1997).
17 Alas, we cannot disentangle this stickiness of those bookmakers who remain inert and those who do not adjust their odds because they

correctly expect no changes in the likelihood of winning.
18 Figure A8 in the Appendix plots the decomposition by announcement timing for skewness. We do not find significant effects for the

decomposition by temporal distance to the next matchday.
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19 We compare a player's market value with the mean market value of his team before his infection.
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APPENDIX A

TABLE A1 List of bookmakers.

Bookmaker #Matches covered

10Bet 1372

10 � 10bet 214

188BET 1372

1 x Bet 1372

888sport 1372

Bet365 1372

Bet‐at‐home 1372

BetInAsia 461

BetVictor 1372

Betfair 1372

Betfair exchange 1246

Betfred 1372

Betsafe 1372

Betsson 1372

Betway 1372

BoyleSports 1372

Bwin 1372

ComeOn 1372

Coolbet 1372

Curebet 135

Dafabet 1372

GGBET 1221
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TABL E A1 (Continued)

Bookmaker #Matches covered
Interwetten 1363

Lasbet 135

Leonbets 1372

Marathonbet 1372

NordicBet 1372

Parimatch 1371

Pinnacle 1372

Unibet 1372

William hill 1372

Youwin 1356

Total 39,058

Note: Betfair exchange is an exception in that sense that here players bet against each
other instead of betting against the bookmaker. “Betfair exchange” only provides the
platform to offer and match bets. Hence, it is user generated betting. Total number of
matches in the dataset: 1372.

TABLE A2 Random assignment of infection events across
team‐match observations.

Dependent variable Ttm = 1

Team‐match specific outcomes

1[Italian League]tm 0.060

(0.047)

1[Home]tm −0.051

(0.045)

Tt,m−1 0.062

(0.039)

Pointst,m−1 0.117

(0.112)

Lagged betting market outcomes

Mean margint,m−1 0.001

(0.015)

Mean oddt,m−1 −0.138

(0.278)

SD oddt,m−1 0.018

(0.040)

Skew oddt,m−1 0.028

(0.071)

Note: This table gives regression results of the treatment variable Ttm on a variety of
match‐ or team‐specific information. The regressions are conditional on
matchday‐season fixed effects to account for, for example, changes in the likelihood of
infections over time.
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TABLE A3 Regression results efficiency test as in Angelini and De Angelis (2019).

etm = 1[Wintm] − ptm

With ptm implied probability of outcome

Constant −0.001 −0.001

(0.006) (0.006)

Treat −0.009

(0.040)

Treat � early −0.009

(0.056)

Treat � late −0.008

(0.054)

N 2744 2744

***p < 0.01; **p < 0.05; *p < 0.1.

F I GURE A 1 Histogram of mean betting odds for a win. Trimmed at mean odd of 10 (95th percentile).

F I GURE A 2 Regression estimates first three moments—balanced panel. This figure plots the OLS coefficients βT of the DiD
regression following Equation (1) for the mean of the matchday odds for teams with new infections (LHS of each panel) and their
opponents (RHS). Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95%
(black extensions). Dataset: Balanced panel only using bookmakers with odds for every match in the sample.

260 - FISCHER and SCHMAL



F I GURE A 3 Histogram of matches with previous COVID‐19 infections. Distribution of matches affected by new COVID‐19 infections
of players across time. Total number of matches with ≥1 players previously infected: 131.

F I GURE A 4 Odds comparison on “betfair exchange.” This figure plots the OLS coefficients βT of the DiD regression following
Equation (1) for the mean of the matchday odds for teams with new infections (LHS) and their opponents (RHS) only looking at “betfair
exchange” odds. Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95%
(black extensions).
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F I GURE A 6 Effect on the coefficient of variation (CVR) of a win for a team with a new absence and its opponent. This figure plots the
OLS coefficients βT of the DiD regression following Equation (1) for the mean of the matchday odds for teams with new infections (LHS)
and their opponents (RHS). Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines)
and 95% (black extensions). Dependent Variable: Raw CVR as defined in Section 3.

F I GURE A 5 Effect of new absences on bookmaker margins. This figure plots the OLS coefficients βT of the DiD regression
following Equation (1) for bookmaker margins (as defined by Shin, 1993) for teams with new infections (LHS) and their opponents
(RHS). Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95% (black
extensions).
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F I GURE A 8 Skewness effect decomposition by time between announcement and matchday. This figure plots the OLS
coefficients for the third moment decomposed by the timing of the announcement relative to the distance to the following matchday.
Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95% (black
extensions).

F I GURE A 7 Effect on the dispersion of the odds: p90‐p10 quantile distance. This figure plots the OLS coefficients of the DiD
regression following Equation (1) for the p90‐p10 quantile measure as alternative measure of dispersion. Standard errors:
Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (blue lines) and 95% (black extensions).
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F I GURE A 9 Regression estimates for separation of infections by quartiles and quintiles. This figure plots the OLS coefficients of the
DiD regression following Equation (1) but not separated at the median infection but divided into quartiles (LHS) and quntiles (RHS).
Standard errors: Heteroskedasticity‐robust and clustered at the match level. Confidence bands: 90% (colored lines) and 95% (black
extensions).

TABLE A4 Quantile regression on residualized first two moments.

Residualized ln(Mean odd) Residualized ln(St. Dev.)

Ttm � 1[Early] Ttm � 1[Late] Ttm � 1[Early] Ttm � 1[Late]

τ = 0.1 0.007 0.189*** −0.004 0.275***

(0.050) (0.048) (0.128) (0.064)

τ = 0.2 −0.003 0.115*** 0.046 0.182***

(0.039) (0.020) (0.077) (0.055)

τ = 0.3 0.019 0.102*** 0.091 0.112*

(0.055) (0.026) (0.099) (0.065)

τ = 0.4 0.039 0.061** 0.074 0.101

(0.034) (0.029) (0.087) (0.068)

τ = 0.5 0.011 0.061** 0.134 0.119**

(0.031) (0.028) (0.094) (0.058)

τ = 0.6 0.017 0.040 0.089 0.072

(0.034) (0.023) (0.055) (0.052)

τ = 0.7 0.010 0.027 0.043 0.055

(0.029) (0.025) (0.038) (0.063)

τ = 0.8 0.010 −0.023 −0.056 −0.006

(0.049) (0.039) (0.054) (0.059)

τ = 0.9 −0.021 −0.022 −0.094 −0.034

(0.060) (0.032) (0.162) (0.114)

Note: We residualize the logged outcomes in a linear regression on team‐season, opponent‐season and matchday‐season fixed effects. We then run a quantile
regression on the two independent treatment variables for all deciles. Bootstrapped standard errors in brackets.
***p < 0.01; **p < 0.05; *p < 0.1.
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