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Abstract. This paper studies qualitative properties of an optimal contract in a multi-agent setting

in which agents are subject to a common shock. We derive a necessary and sufficient condition

for the optimal reward of an agent producing an output level y to be a decreasing (increasing)

function of the outputs of the other agents, under the assumption that the agents’ outputs are

informative signals of the value of the common shock. The condition is that the likelihood ratio

p(y, e, η)/p(y, e′, η), where e is a higher effort level than e′, and η is the value of the common shock,

be a decreasing (increasing) function of η. We derive conditions on the way the common shock

affects the marginal product of effort under which the likelihood ratio is decreasing for all output

levels, or increasing for some output levels and decreasing for others.



Common Shocks and Relative Compensation Schemes

1. Introduction

It has been shown by Holsmtröm (1982) and Mookherjee (1984) that when a common shock affects

the performance of several agents, the optimal contract of one agent depends on the performance

of the others. Holsmtröm also showed that under specific assumptions on the production function

and under normality assumptions on the distribution of the shocks, the information provided by

the performance of the other agents can be summarized in an average which is a sufficient statistic

for the common shock. However little has been established on the way an optimal contract makes

use of the information provided by the realized performance of the other agents. Should the reward

of an agent decrease or increase when the performance of agents in the comparison group increases?

We derive a necessary and sufficient condition for the optimal reward of an agent producing an

output level y to be a decreasing (increasing) function of the outputs of the other agents, under

the assumption that the agents’ outputs are informative signals of the value of the common shock.

The condition is that the likelihood ratio p(y, e, η)/p(y, e′, η), where e is a higher effort level than

e′, and η is the value of the common shock, be a decreasing (increasing) function of η. If y is a

high outcome, a decreasing likelihood ratio formalizes the idea that the more favorable the common

shock, the less likely it is that the observed output y is attributable to high rather than low effort,

while if y is a low outcome, the more likely it is that y is to be attributed to low effort. According

to the principle that an incentive contract should reward an agent in circumstances which are likely

to occur when effort is high, and punish the agent in circumstances which are likely to occur when

effort is low, the compensation decreases when the performance of other agents increases. When

the likelihood ratio is increasing rather than decreasing in η, the reward of an agent increases with

the performance of the other agents.

We derive conditions under which the likelihood ratio is decreasing for all output levels, or

increasing for some output levels and decreasing for others. The conditions hinge on the way the

common shock affects the marginal product of effort. If the shock enters additively and does not

affect the marginal product of effort, as in the model of Green-Stokey (1983), then the optimal

contract is ‘tournament-like’ in that the payoff of an agent always decreases when the performance

of other agents increases. When the common shock positively affects the productivity of effort, as in
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the model of Nalebuff-Stiglitz (1983), a higher shock tends to raise the productivity of effort. Then

sufficiently high outcomes are more likely to come from high effort, while low outcomes are always

more likely to come from low effort: thus for low outcomes the reward is a decreasing function of

the performance of others, while for sufficiently high outcomes it is increasing. When the shock

adversely affects the productivity of effort, the effects are reversed. In the conclusion, we discuss

the application of these results to executive compensation.

2. Model

Consider a collection of K firms which produce a homogenous output (profit) and a collection of

K managers who run these firms. Managers are assumed to be matched to firms: manager k can

only manage firm k or take an outside option which determines his reservation utility of working

for firm k. The output yk of firm k depends on the entrepreneurial effort ek of its manager, on

a random shock η ∈ < which is common to all firms and on an idiosyncratic shock εk . Thus

yk = hk(ek, η, εk), where ek ∈ <+, k ∈ K.1 We assume that hk can only take a countable number

of values2 indexed in increasing order by sk ∈ Sk = {1, · · · , Sk}: that is sk > s′k =⇒ ysk
> ys′k

.

The idiosyncratic and common shocks {ε1, · · · , εK , η} are assumed to be unobservable indepen-

dent random variables. For given ek and η, the distribution function of εk induces a probability

distribution pk(·, ek, η) on Sk whose cumulative distribution function is denoted by Fk. That is,

Fk(α, ek, η) .=
∑

{sk |yk
sk

≤α} pk(sk, ek, η). For all k ∈ K the probabilities (pk)k∈K are assumed to

have the following properties:

(A1) pk(sk, ek, η) > 0 for all (sk, ek, η) ∈ Sk × <+ ×< and pk is a differentiable function of ek .

(A2) For all ek > 0, and η ∈ <,
∂

∂ek
pk(sk, ek, η)

pk(sk, ek, η)
is an increasing function of sk .

(A3) For all η ∈ <, and minsk
(yk

sk
) ≤ α < maxsk

(yk
sk

), 1 − Fk(α, ek, η) .=
∑

{sk |yk
sk

>α} pk(sk, ek, η)

is a concave increasing function of ek .

(A4) For any ek ∈ <+, pk(sk, ek, η) is log-supermodular in (sk, η), i.e. if η > η′ the ratio

pk(sk, ek, η)/pk(sk, ek, η
′) is increasing in sk .

1We use the same notation for a set and for the number of its elements.
2The proof of the theorem carries over without change to the case of continuous outcomes provided that we can use

the “first-order approach”. As Jewitt pointed out, Assumption A3 may not be satisfied in a model with continuous
outcomes and standard assumptions on the shocks, in which case it may be replaced by the assumptions suggested
by Jewitt (1988). To simplify the exposition we present the model and the assumptions needed for the first-order
approach to be valid only in the countable case (see Rogerson (1985)).
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Thus for a given value of the common shock η, pk(sk, ek, η) satisfies the standard assumptions:

by (A2) it satisfies the Monotone Likelihood Ratio Condition (MLRC) according to which if ek > e′k

the likelihood ratio pk(sk ,ek ,η)
pk(sk ,e′

k
,η) is increasing in sk (Milgrom (1981)), i.e pk is log-supermodular in

(sk, ek). This implies that a larger effort leads to a stochastically dominant shift in Fk , but (A3)

adds the condition of stochastic decreasing returns to effort. (A4) is the condition needed to

ensure that a high realization of firm k can be interpreted as a signal that the common shock η

has been favorable: for the same level of effort, a higher value of η implies a greater likelihood

of high outcomes, or, since the property of log-supermodularity is symmetric, observing a higher

production for a firm increases the likelihood that the shock η has been favorable. A4 implies that

if η > η′ the distribution function Fk(α, ek, η) stochastically dominates Fk(α, ek, η
′) (see Rogerson

(1985)), and, since this is true for all firms, high values of η constitute a positive shock, while low

values of η are negative shocks for the economy.

Let S = S1 × . . . × SK . A state of the economy is a realization s = (s1, . . . , sK) ∈ S,

namely a vector of realized outputs ys = (y1
s1

, . . . , yK
sK

) for the K firms. When we consider the

optimal contract for manager k it will be convenient to use the notation s = (sk, s
−k), where

s−k = (s1, . . . , sk−1, sk+1, . . . , sK), and similarly e = (ek, e
−k) for the vector of effort levels of the

managers. Since the idiosyncratic shocks are independent, for a given vector e and a given value

of the external shock η the probability of observing state s is

p(s, e, η) .=
∏

k∈K

pk(sk, ek, η)

Let G(η) be the distribution function of η. When the realization of η is not known the probability

of s given e is

P (s, e) .=
∫

<
p(s, e, η)dG(η)

since η is independent of the idiosyncratic shocks. We assume that the random variables {ε1, · · · , εK , η}
are not observable by any agent but that the structure of the economy (p1, . . . , pK , G) is common

knowledge.

Each firm k is owned by a collection of risk-neutral shareholders, who hire the manager and offer

an incentive contract τk which guarantees the manager’s reservation utility level. Each manager is

risk averse and, given the pay schedule τk and effort ek has utility

Uk(τk, ek) = E(uk(τk))− ck(ek)

where uk(·), ck(·) are differentiable, increasing, uk(·) is concave and ck(·) is convex. Let ν̄k denote

the manager’s reservation utility.
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Because the realization s−k of firms other than k contains information about the common shock

η, the optimal contract τk for manager k will use this information to provide incentives at least

cost for the shareholders. The contract τk will thus depend on the realized state s = (sk, s
−k) and

since the probability of the realization s−k depends on the effort levels e−k of the other agents, the

optimal effort of manager k will indirectly depend on the effort levels of the other managers. We

will restrict attention to interior Nash equilibria where all managers are induced to make a positive

effort.

Definition. (τ̄ , ē) = (τ̄1, . . . , τ̄K, ē1, . . . , ēK) with ē � 0 is an interior Nash equilibrium with

optimal incentive contracts if for each k ∈ K, (τ̄k, ēk) solves the problem (Pk)

max
(τk ,ek)∈<S×<+

∑

s∈S

P (s, ek, ē
−k)(yk

sk
− τk(s))

subject to
∑

s∈S

P (s, ek, ē
−k)uk(τk(s))− ck(ek) ≥ ν̄k (PCk)

∑

s∈S

∂

∂ek
P (s, ek, ē

−k)uk(τk(s)) − c′k(ek) = 0 (ICk)

Remark. It is easy to verify that under A1-A3, concavity of uk and convexity of ck, the first-order

condition (ICk) characterizes the optimal effort ēk > 0 of manager k (even though the contract

depends on s−k), and that the associated multiplier is positive.

3. Result

The properties of the optimal contract τ̄k at a Nash equilibrium (τ̄ , ē) can be derived from the

first-order conditions for the maximum problem (Pk) with respect to τk = (τk
s )s∈S which are

1 =

(
λk + µk

∂
∂ek

P (s, ē)

P (s, ē)

)
u′

k(τ̄
k(s)), s ∈ S (Fτ)

where (λk, µk) � 0 are the multipliers associated with the participation and incentive constraints

(PCk) and (ICk). Define the local likelihood function Lk : Sk ×<+ ×< → < by

Lk(sk, ek, η) =
∂

∂ek
pk(sk, ek, η)

pk(sk, ek, η)

Proposition. Let (A1)-(A4) be satisfied. For any realization sk ∈ Sk, the optimal reward schedule

τ̄k(sk , s−k) in a Nash equilibrium is a decreasing (increasing) function of s−k for all distribution
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functions G(η) if and only if the local likelihood function Lk(sk, ēk, η) is a decreasing (increasing)

function of η.3

Proof: (⇐) Suppose Lk(sk, ēk, η) is decreasing in η. We want to show that if s, s′ ∈ S are such

that sk = s′k and sj ≥ s′j for all j 6= k with at least one strict inequality, then τ̄k(s) < τ̄k(s′). Since

µk > 0 and u′
k is strictly decreasing it follows from (Fτ) that what we need to show is that A < 0,

where A is defined by

A
.=

∂
∂ek

P (s, ē)

P (s, ē)
−

∂
∂ek

P (s′, ē)

P (s′, ē)
(1)

Note that
∂

∂ek
P (s, ē)

P (s, ē)
=
∫

<
Lk(sk, ēk, η)a(s, ē, η)dG(η)

where

a(s, ē, η) =

∏

j∈K

pj(sj , ēj , η)

∫

<

∏

j∈K

pj(sj , ēj, η)dG(η)

Note that for all s ∈ S, a(s, ē, η) > 0,
∫
< a(s, ē, η)dG(η) = 1, and

a(s, ē, η)
a(s′, ē, η)

=
∏

j∈K

pj(sj , ēj, η)
pj(s′j , ēj, η)

P (s′, ē)
P (s, ē)

By (A4), since log-supermodularity is symmetric in (sk, η), if sj > s′j , the ratio pj(sj , ēj, η)/

pj(s′j , ēj , η) is an increasing function of η. Since sj > s′j for at least one firm, it follows that

the ratio λ(η) .= a(s, ē, η)/a(s′, ē, η) is an increasing function of η.4 Since
∫
< a(s, ē, η)dG(η) =

∫
< λ(η)a(s′, ē, η)dG(η) =

∫
< a(s′, ē, η)dG(η) = 1, λ(η) cannot be always strictly larger or strictly

smaller than 1. Thus there exists η̄ ∈ < such that λ(η) ≤ 1 if η ≤ η̄ and λ(η) > 1 if η > η̄, and
∫
η≤η̄ dG(η) > 0,

∫
η>η̄ dG(η) > 0.

A =
∫

η≤η̄
Lk(sk, ēk, η)

(
a(s, ē, η)− a(s′, ē, η)

)
dG(η)+

∫

η>η̄
Lk(sk, ēk, η)

(
a(s, ē, η)− a(s′, ē, η)

)
dG(η)

If η ≤ η̄ then a(s, ē, η)− a(s′, ē, η) ≤ 0 and since the likelihood function is a decreasing function of

η, Lk(sk , ēk, η) ≥ Lk(sk , ēk, η̄) so that

Lk(sk, ēk, η)
(
a(s, ē, η)− a(s′, ē, η)

)
≤ Lk(sk, ēk, η̄)

(
a(s, ē, η)− a(s′, ē, η)

)
(2)

3i.e. if pk(sk, ēk, η) is log-submodular (log-supermodular) in (ek, η).
4For sake of completeness and to tie this part of the proof with the “only if” part, we give the direct proof without

using the fact that a is supermodular in (s, η) and that this in turn implies a property of first-order stochastic
dominance.
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If η > η̄, then a(s, ē, η)−a(s′, ē, η) > 0 and Lk(sk, ēk, η) < Lk(sk, ēk, η̄) so that (2) is satisfied with

a strict inequality. Thus

A < Lk(sk , ēk, η̄)
∫

<

(
a(s, ē, η)− a(s′, ē, η)

)
dG(η) = 0

If the function Lk(sk, ēk, ·) is increasing in η then inequality (2) is reversed and A > 0, so that the

optimal wage schedule is increasing in s−k .

(⇒) Suppose Lk(sk, ēk, ·) is not decreasing. Then there exist η > η′ such that Lk(sk, ēk, η) ≥
Lk(sk , ēk, η

′). Consider a distribution function G which puts weight only on η and η′. Since

a(s, ē, ·)/a(s′, ē, ·) is increasing in η, and
∫
< a(s, ē, η)dG(η) =

∫
< a(s′, ē, η)dG(η) = 1, it must be

that a(s, ē, η′) − a(s′, ē, η′) < 0 and a(s, ē, η)− a(s′, ē, η) > 0. Thus A defined in (1) is such that

A ≥ Lk(sk, ēk, η
′)
(
a(s, ē, η′) − a(s′, ē, η′))G(η′) + (a(s, ē, η)− a(s′, ē, η))(1− G(η′))

)
= 0

and, for the distribution function G, the payoff is non-decreasing in s−k . Thus the payoff is

decreasing in s−k for all distribution G only if the local likelihood function Lk is decreasing in η.

2

Remark. To create incentives at minimum cost, the optimal contract τ̄k must reward the manager

in circumstances which are most likely to occur when the agent makes a high rather than a low

effort and punish the agent in circumstances which are more likely with a low effort. If ek is a high

effort level and e′k a lower effort level, the relative likelihood of observing sk when the effort is ek

rather than e′k is
pk(sk, ek, η)
pk(sk, e

′
k, η)

= exp
∫ ek

e′k

Lk(sk , t, η)dt

If the local likelihood Lk at sk decreases when η increases, then the relative likelihood that sk is

observed with ek rather than e′k decreases (or the relative likelihood that sk is observed with e′k

rather than ek increases). If the shareholders could observe the common shock and base the contract

on η, the reward of the manager would decrease when η increases. When η is not observable, the

realizations s−k of the firms other than k give information on the value of η: since by A4 the

likelihood of high outcomes increase with η, higher values for s−k lead to a higher estimate of η

and a lower reward for manager k.
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4. Examples

We give two examples of settings where the Proposition can be used to analyze properties of the

optimal reward schedule.

Example 1. Consider the simple symmetric setting where the characteristics of all firms and

managers are the same and each firm has only two outcomes (Sk = 2, k ∈ K), a good outcome

yg and a bad outcome yb, with 0 < yb < yg . The optimal reward schedule for manager k is of

the form τk(sk, s
−k) = τk(sk, n(s−k)) where n(s−k) denotes the number of good outcomes for the

K − 1 other firms: in view of the symmetry, the number n = n(s−k) is all that is needed to

characterize the realizations s−k of the other firms. To simplify notation let ρ(e, η) denote the

probability of a good outcome for a firm when its manager’s effort is e and the aggregate shock

is η, i.e. pk(g, ek, η) = ρ(ek, η) and pk(b, ek, η) = 1 − ρ(ek, η), k ∈ K. Using subscripts for partial

derivatives, A1-A4 are satisfied if ρe > 0, ρη > 0, ρee ≤ 0. Since the derivatives of the likelihood

function L for the good and the bad outcome are given by

Lη(g, e, η) =
ρeηρ − ρeρη

ρ2
, Lη(b, e, η) =

−ρeη(1 − ρ) − ρeρη

(1 − ρ)2

the characteristics of the reward schedule τk(sk, n(s−k)) depend on the sign of the cross partial

derivative ρeη.

(a) ρeη = 0

The likelihood function L is decreasing in η for both outcomes and the optimal reward schedule

satisfies τ̄k(b, n) < τ̄k(g, n) (because of A2) and τ̄k(sk, n) < τ̄k(sk, n
′) if n > n′. The reward

schedule is “tournament-like” in that the more other agents there are who have a good outcome,

the less manager k is paid.

(b) ρeη 6= 0

(i) ρeη > 0. The likelihood function is decreasing in η for the low outcome, Lη(b, e, η) < 0, but

for the high outcome the sign is ambiguous. If ρ is given by ρ(e, η) = a + b eα ηβ with a > 0, b >

0, a + b < 1, 0 < α < 1, β > 0 then Lη(g, e, η) > 0. In this case the reward τ̄k(b, n) decreases

when n increases, while τ̄k(g, n) is an increasing function of n. When few other firms have good

outcomes, η is likely to be low and effort is not likely to have much effect, so that a good or bad

outcome for firm k has to be attributed to chance. When more firms have good outcomes, signaling
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a higher η, the managers’s effort is more likely to have an effect so that it is worthwhile to reward

when the outcome is good and punish when it is bad.

(ii) ρeη < 0. L is decreasing in η for the good outcome and has an ambiguous sign for the bad

outcome. If ρ is given by ρ(e, η) = a + b (e + η)α with 0 ≤ e ≤ 1/2, 0 ≤ η ≤ 1/2, a > 0, b >

0, a + b ≤ 1, 0 < α < 1 and (1 − α)/α > b/(1 − a), then Lη(b, e, η) > 0. In this case τ̄k(g, n)

decreases when n increases, while τ̄k(b, n) is an increasing function of n. Because of the decreasing

returns property in e + η, a high value of η implies that the marginal effect of effort is low. Thus

observing a high number of good outcomes for the other firms makes it unlikely that either a good

or a bad outcome is the result of effort. As n decreases, the reward for a good outcome, and the

punishment for a bad outcome, increase. Thus, while in case (i) the biggest differential between a

good and a bad outcome for manager k occurs when many firms have good outcomes, in case (ii)

it occurs when few firms have good outcomes.

For simplicity of exposition we have focused on the case where the outcome is a discrete random

variable but it is clear that the proposition applies to models in which the outcome is a continuous

random variable (with density replacing probability mass), provided A4 is satisfied and the optimal

contract satisfies the FOCs (Fτ) with µk > 0.

Example 2. In standard continuous outcomes models with a common shock, η enters either

additively as in the model of Lazear-Rosen (1981) and Green-Stokey (1983) with hk(ek, εk, η) =

z(ek, εk) + η, or multiplicatively as in the model of Nalebuff-Stiglitz (1983) with hk(ek, εk, η) =

ekη + εk . In all cases (ε1, . . . , εK) are i.i.d. and independent of η.

Let us show that the optimal reward schedule is tournament-like in the additive case while the

reward can be either increasing or decreasing in the performance of others when the common shock

affects the marginal product of effort.

(a) η does not affect the marginal product of effort.

Let h(e, η, ε) = z(e, ε)+η be the production function common to all firms where the distribution

of z given e has a density f(z, e) which is log-concave and satisfies MLRC, i.e.

fz(z, e)
f(z, e)

is decreasing in z,
fe(z, e)
f(z, e)

is increasing in z

f is assumed to be log-concave to ensure that A4 holds: this is not a demanding assumption since

most standard distributions (normal, gamma, chi square, Poisson, exponential, and more) are log-

concave. The density function of the output y given the manager’s effort e and the aggregate shock
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η is given by f̃(y, e, η) = f(y−η, e), with the local likelihood function L(y, e, η) = fe(y−η, e)/f(y−
η, e). If f satisfies MLRC, then L is a decreasing function of η: for a given realization of a firm,

if η is higher, z is lower and, since MLRC holds, this tends to signal less effort on the part of the

manager. Since A4 is satisfied, for any realization yk , the pay of manager k is a decreasing function

of the outcomes of the other agents.

(b) η affects the marginal product of effort.

Consider a more general version of the model of Nalebuff-Stiglitz where all firms have the

production function h(e, η, ε) = φ(e, η) + ε, with φ > 0, φe > 0, φη > 0 where φ describes the

production due to effort and the aggregate shock η, and the idiosyncratic shock ε is additive. To

ensure that A4 holds we assume that the density of the idiosyncratic shock f(ε) is log-concave.

The density function for the outcome y given e and η is f̃(y, e, η) = f(y−φ(e, η)) and the function

L is given by L(y, e, η) = −φe(e, η)f ′(y − φ(e, η))/f(y− φ(e, η)). It is difficult to sign Lη without

making more specific assumptions on the form of the density function f . The standard assumption

is that the idiosyncratic shock is normally distributed with mean zero and variance σ2. Then

L(y, e, η) = (1/σ2)φe(e, η)(y − φ(e, η)) and

Lη(y, e, η) =
1
σ2

(φeηy − (φeηφ + φeφη))

(i) φeη > 0. An increase in η increases the marginal product of effort. If y < 0 then Lη(y, e, η) <

0: when a low outcome is observed for firm k, the higher the realizations of other firms, the more

likely it is that η was high and that effort was productive, and the more likely that the bad outcome

can be attributed to shirking. When y is positive Lη(y, e, η) may not have the same sign for all values

of η, but the sign is positive for sufficiently high outcomes, provided φ is bounded. For example if

φ(e, η) = eαηβ, with 0 < α < 1, β > 0, e ∈ [0, emax], η ∈ [0, ηmax], then φeηφ + φeφη = 2φφeη and

Lη(y, e, η) = (1/σ2)φeη(y − 2φ) > 0 if y > 2φ(emax, ηmax). This case is the analogue for the model

with continuous outcomes of case b(i) in Example 1.

(ii) φeη < 0. To sign φeηφ + φeφη, let us assume that φ(e, η) = (e + η)α, with 0 < α < 1. If

0 < α < 1/2, φeηφ + φeφη < 0, so that if y < 0, then Lη(y, e, η) > 0. In this case the decreasing

returns are very strong: a higher value of η decreases the productivity of effort so that a bad

outcome is less likely to be due to lack of effort and the punishment decreases. For y > 0 the sign

of Lη may not be constant but it is negative for high values of y (y > 1−2α
1−α φ(emax, ηmax)) if φ is

bounded. If α = 1/2, φeηφ + φeφη = 0, so that Lη > 0 for y < 0 and Lη < 0 for y > 0. If α > 1/2,

φeηφ + φeφη > 0 so that when y > 0, Lη < 0. For y < 0 the sign may not be constant but is
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positive for low values of y provided φ is bounded. The case φeη < 0 is thus the analogue of case

b(ii) in Example 1.

5. Conclusion

The discussion of relative performance compensation of CEOs in corporate finance generally

uses the simplest additive model (hk(ek, εk, η) = ek + εk + η)) as the reference model (see e.g.

Gibbons-Murphy (1990)). It is argued that relative performance evaluation is valuable because it

factors out the effect of agggregate shocks and eliminates unnecessary risks from the compensation:

relative performance evaluation implies that a CEO’s compensation should be a decreasing function

of the outcomes of other firms. Murphy’s survey (1999) however reports that only 20% of large

US companies explicitly use relative performance criteria to determine CEO compensation. On the

other hand the same survey shows that the majority of large corporations use stock options and

that in the last ten years they have become the most significant component of CEO compensation.

Although stock options could be indexed on the market—to make them adhere to the relative

performance criterion—in practice they are not. As a result, the compensation of a CEO is higher

when the overall level of economic activity and the stock market are higher.

From the above analysis this type of compensation may be justified if the general state of the

economy positively affects the productivity of the top executive. And it seems plausible, when

entrepreuneurship and innovation are the qualities required, that the actions of a CEO will have

their greatest impact in good times, when the economy is expanding and has the greatest capacity to

absorb new products or new technologies. However if the principal part of the CEO’s contribution

is to steer the firm through difficult times, then the compensation should be higher when the firm

does well while the market as a whole is depressed, and in this case stock options are not an

appropriate type of compensation. Thus it seems that a model like that in Example 2(b), which

obliges us to specify how the economic environment affects the productivity of managerial input,

may be useful for assessing whether CEO compensation should, or should not, factor out industry

and economic trends.
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