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Abstract

This paper develops new forecasting methods for an old and ongoing problem

by employing 13 machine learning algorithms to study 147 years of systemic

financial crises across 17 countries. Findings suggest that fixed capital forma-

tion is the most important variable. GDP per capita and consumer inflation

have increased in prominence whereas debt-to-GDP, stock market, and con-

sumption were dominant at the turn of the 20th century. A lag structure and

rolling window both improve on optimized contemporaneous and individual

country formats. Through a lag structure, banking sector predictors on average

describe 28% of the variation in crisis prevalence, the real sector 64%, and the

external sector 8%. Nearly half of all algorithms reach peak performance

through a lag structure. As measured through AUC, F1 and Brier scores, top-

performing machine learning methods consistently produce high accuracy

rates, with both random forests and gradient boosting in front with 77% correct

forecasts, and consistently outperform traditional regression algorithms.

Learning from other countries improves predictive strength, and non-linear

models generally deliver higher accuracy rates than linear models. Algorithms

retaining all variables perform better than those minimizing the influence of

variables.
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1 | INTRODUCTION

A decade after the Global Financial Crisis, its remnants
are vividly illustrated by the lackluster pace of economic
activity hampering progress in several advanced and
developing countries. Financial crises have further

increased in prominence, first, through the awarding of
the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel 2022 (Nobelprize, 2022) for
research on banking and financial crises, and secondly,
due to a spate of recent banking failures and troubles in
2023. First Republic Bank, Silicon Valley Bank, and
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Signature Bank are respectively the second, third, and
fourth biggest US banks to fail (FDIC, 2023), while trou-
bled bank Credit Suisse, the second largest in
Switzerland was taken over by UBS, the largest bank
in the country (FSO, 2023). While financial crises have
occurred periodically over centuries (Reinhart &
Rogoff, 2009), the consequential high social, economic,
and political costs (Chen et al., 2019; Funke et al., 2016;
Laeven & Valencia, 2010; Laeven & Valencia, 2018)
necessitate an improved preventative framework to miti-
gate the next financial catastrophe. Recent advances in
artificial intelligence, in general, and machine learning,
in particular, present innovative approaches to revisit
forecasting performance of financial crises and assess its
contribution to the literature on preventative frame-
works. A salient benefit of machine learning comprises
its ability to accommodate non-linear interactions
between crisis variables, which is useful as crises can
have different precursors, and during a volatile environ-
ment, crisis indicators generally fail to exhibit a linear
trajectory. Another advantage is that machine learning
methods are able to surface leading indicators. For policy
makers, it is both a practical and straightforward
approach given its proliferation across statistical pro-
grams. In comparison to traditional macroeconomic tools
such as probit or logit models, machine learning
approaches have improved forecasting performance
(Alessi et al., 2015; Casabianca et al., 2019; Davis
et al., 2011; Döpke et al., 2017; Fouliard et al., 2021a).
With the ongoing banking distress, crisis prevention has
become more urgent. Can these new forecasting methods
better predict and thereby assist policy makers to prevent
an old and ongoing problem that has caused havoc over
centuries and continues to confront both large and small
economies?

This paper contributes to the literature by studying
147 years of systemic financial crises, comprising a total
of 17 present-day advanced economies that experienced a
combined 90 crises between 1870 and 2016. Given that
some countries resembled emerging markets during the
period under review, results are not limited only to
advanced economies and support generalizable implica-
tions. Based on economic theory, this study features a
vector of 12 leading indicators, encompassing real, bank-
ing, and external sectors. In scrutinizing antecedents to
financial crises, the relationships between these sectors
are recurrently underscored in economic literature
including Kindleberger (1978), Gonz�alez-Hermosillo
et al. (1997), Hardy and Pazarbasioglu (1998), Kaminsky
and Reinhart (1999), Reinhart and Rogoff (2009),
Claessens et al. (2011), and du Plessis (2022a, 2022b).
Real sector variables encompass gross domestic product
per capita, consumption expenditure, fixed capital
formation, and capital output ratio, while banking sector

indicators include total loans, debt, short-term and
long-term interest rates, inflation, and stock market,
whereas external sector factors comprise exchange rates
and current account balance.

Across four modeling dimensions, the predictive
strength of machine learning methods is assessed.
These dimensions entail an optimized contemporane-
ous panel format with an expanding window,
transformations with lag structure, and a rolling win-
dow as well as in individual country format. Across
recursive out-of-sample performance, assessed measures
include AUC (area under the curve), F1 and Brier
scores. Findings suggest that an expanding window
with lag structure and rolling window generally improve
on both the optimized contemporaneous panel and
individual country formats.

The algorithms in this paper include a
non-parametric technique, regression algorithms,
instance-based, regularization, and dimensionality reduc-
tion procedures, as well as decision tree methods and
ensemble algorithms. Six of the thirteen algorithms reach
the highest accuracy through the lag structure. Top-
performing machine learning methods consistently pro-
duce high accuracy rates, on average above 70% for all
derivates of the panel format, and frequently feature ran-
dom forests and gradient boosting, the latter consistently
outperforming commonly used regression algorithms.
Compared to a non-parametric baseline, all top models
add an accuracy value, above 20 percentage points for
several countries.

A measure of complexity underscores that the models
encountered a majority of complicated forecasting envi-
ronments, holding both in panel and individual country
formats. Further contributions highlight how learning
from other countries improves predictive strength, and
non-linear models generally deliver higher accuracy rates
than linear models. Algorithms keeping all variables per-
form better than those minimizing or excluding the
influence of variables.

In an analysis of important variables, fixed capital for-
mation has the largest influence. GDP per capita and
consumer inflation have risen in prominence over the
last century, while debt-to-GDP, stock market, and con-
sumption expenditure had the highest influence at the
turn of the 20th century. According to the lag structure,
banking sector variables on average constitute 28% of
the variation in crisis prevalence, the real sector 64%, and
the external sector 8% over the full period.

The remaining structure of the paper is as follows:
Section 2 provides an overview of the empirical literature.
Section 3 describes the machine learning methodology.
Section 4 highlights the data and variable selection and
Section 5 evaluates the findings. Section 6 provides policy
implications and Section 7 concludes.
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2 | EMPIRICAL LITERATURE

In recent years, the adoption of machine learning
methods has proliferated given its processing ability to
analyze Big Data, and deal with non-linear interactions
between variables, both vital to identify the most impor-
tant indicators and account for different precursors to cri-
ses. Furthermore, the evolution and central aim in the
development of machine learning algorithms are found
predominantly in out-of-sample forecasting performance.
Estimation of pivotal tipping points presents another key
benefit. Widespread inclusion of numerous algorithms in
statistical programs further broadens the utilization of
innovative methods. Yet, one drawback involves the
inability of algorithms to compute the marginal contribu-
tions of each predictor or confidence interval for thresh-
old levels (Joy et al., 2015). Furthermore, financial crises
are regarded as rare events, but machine learning has
demonstrated its ability to forecast rare events including
pandemics (Coulombe et al., 2021).

Advanced by Breiman et al. (1984), classification and
regression trees (CART) represent a prevailing set of
machine learning techniques to study financial crises.
Using binary recursive trees for currency crises during
the period 1987 and 1999, Ghosh and Ghosh (2003) iden-
tify macroeconomic imbalances, high debt-equity ratios
of organizations, and weak governing institutions as key
contributory factors. Analyzing balance of payment crises
from 1994 to 2005, Chamon et al. (2007) underscore the
significance of international reserves, current account
balance, short-term external debt, reserve cover, external
indebtedness, and gross domestic product. Examining
sovereign debt crises of emerging markets between 1970
and 2002, Manasse and Roubini (2009) highlight liquid-
ity, solvency, and macroeconomic imbalances, subse-
quently corroborated in an analogous investigation by
Savona and Vezzoli (2012), that further reveals the effects
of contagion as key indicators. A shortfall of the CART
approach is an intrinsic insensitivity to cross-sectional
and time series features (Joy et al., 2015).

Surveying banking crises across a large group of coun-
tries during the period 1979 to 2003, Davis and Karim
(2008), found domestic credit growth as the most impor-
tant predictor. Dattagupta and Cashin (2011) study crises
in emerging markets between 1990 and 2005 and reveal
the relevance of elevated inflation, severe currency depre-
ciation, and lackluster bank profitability. Spanning
20 countries in Asia and Latin America, Davis et al.
(2011) compare the CART approach to a logistic regres-
sion. While varying by region, early warning predictors
for Asian countries include national budget deficit and
low domestic growth, and for Latin American countries
involve currency depreciation and bank credit. Expand-
ing on the generalized CART methodology in studying

episodes of systemic risk, Alessi and Detken (2018) high-
light random forests to be reliable in their identification
of leading signals. Employing CART and random forests
to scrutinize 36 advanced countries during the period
1970 to 2010. Joy et al. (2017) found tight interest rate
spreads and inverted yield curves are leading predictors
in the short-term, with house prices significant over the
long-term. Across a horse race involving nine forecasting
models on 27 EU countries, Alessi et al. (2015) under-
score the high predictive strength of CART and random
forests in comparison to probit and logit models, signals
and a Bayesian model averaging approach. CART reveals
a narrow yield curve, elevated money market rates, and
low bank profitability as precursors, yet for random for-
ests, house price valuation constitutes the most signifi-
cant factor, across short and long prediction horizons.
Bank credit, government debt, long-term yield, and frail
macroeconomic variables also serve as early warning sig-
nals. In another extension of the CART methodology,
Casabianca et al. (2019, 2022) find adaptive boosting to
outperform a logistic regression in forecasting financial
crises between 1970 and 2017. du Plessis (2022a) high-
lights gradient boosting outperforming multiple outcome
models including several machine learning models in cri-
sis predictions. Fouliard et al. (2021a) show decision trees
to outperform a regression model between 1985 and
2018, while Beutel et al. (2019) observe an opposite result.
Ward (2017), Bluwstein et al. (2020), and Fouliard et al.
(2021b) employ machine learning models to predict
financial crises using the Macrohistory Database. While
Ward (2017) applies classification tree ensembles against
commonly used early warning models, Bluwstein et al.
(2020) employ decision trees, random forests, support
vector machines, and neural networks together with a
logistic regression model. An enhancement by Ward
(2017) entails creating a bigger number of derivations of
the predictors to assess the value of modeling a larger
number of variables compared to fewer variables. Bluw-
stein et al. (2020) reduced the sample size and focus on
pre-crisis periods, with cross-validation as the main fore-
casting dimension, and using Shapley values to deter-
mine leading indicators. Fouliard et al. (2021b) likewise
instate a narrower sample size with pre-crisis signals
forecasted recursively out-of-sample. These three studies
each use between five and six algorithms, with forecast-
ing assessed using AUC. While Fouliard et al. (2021b)
also consider RMSE to assess accuracy, Bluwstein et al.
(2020) further identify leading indicators.

This paper differs from other studies and contributes
to the literature in several ways. First, a horse race is
instituted spanning 13 machine learning algorithms and
thereby covering the modeling literature more broadly
than studies only employing a few forecasting methods.
Second, across four modeling dimensions, the predictive
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strength of machine learning methods is assessed. These
dimensions entail an optimized contemporaneous panel
format with an expanding window, transformations with
lag structure, and a rolling window as well as in individ-
ual format. This expands beyond one main dimension
employed by other studies, thereby providing a richer
understanding of the predictive value of the machine
learning algorithms. Third, the paper investigates the
leading indicators of the top-performing models, and pro-
vides an in-depth assessment of the economic drivers of
financial crises, thereby verifying, and addressing some
of the research lacunas, and highlighting prominent fac-
tors for ongoing monitoring. Fourth, the study builds
more dynamic and comprehensive models and under-
scores the evolution of the economic drivers over a nearly
150-year period, with fixed capital formation found to be
the most dominant factor. Fifth, an examination of eco-
nomic sectors, by means of a panel format with a lag
structure, highlights banking sector predictors describing
on average 28% of the variation in crisis prevalence, the
real sector 64%, and the external sector 8%. Sixth, several
measures are employed to assess the forecasting perfor-
mance of the machine learning algorithms, thereby
improving on inquiries with a reliance on a single fore-
casting measure and including receiver operating charac-
teristics with the area under curve estimates (AUROC),
F1, F2, and F0:5 scores, Brier scores, and a novel complex-
ity measure. Seventh, algorithmic learning is assessed to
determine if learning from other countries holds more
benefits than learning from unique and own experiences.
Eight, linear models are compared to non-linear models
to determine optimal frameworks for rare events such as
financial crises. Lastly, based on the workings of the algo-
rithms, where some operate on all variables and others
retain only the most important variables, the strength of
these different modeling approaches is assessed.

3 | EMPIRICAL METHODS

This paper develops 13 machine learning models, all clas-
sified under the domain of supervised learning as it
involves scrutinizing a function that is mapping inputs to
outputs based on a training dataset. According to this
process, algorithms search for crisis signals, informed by
threshold values and rules that increase the likelihood of
an event. Although the instance-based algorithm leans
towards unsupervised learning through its clustering out-
put and can be used as unsupervised learning, the opti-
mizable distance estimator within the algorithm allows
an option for supervisory input. Further, supervised
learning is necessary given the objective of predicting

financial crises, which requires the algorithm to learn
from labeled observations.

Machine learning can also be used for classification
and regression. Where machine learning models simplify
functions to a known functional form, these can be classi-
fied as a parametric approach, whereas algorithms han-
dling different functional forms would be categorized as
a non-parametric approach. The models in this paper
include a non-parametric technique, regression algo-
rithms, instance-based, regularization, and dimensional-
ity reduction procedures, as well as decision tree methods
and ensemble algorithms. While neural networks were
initially considered, reduced comparative accuracy to
other machine learning methods in a recent study on
banking crises by du Plessis (2022a), which could be
attributed to the low frequency of crisis observations,
resulted in its exclusion. Forecasting efficacy of these
machine learning models is assessed through their per-
formance on a test dataset of various dimensions. Mathe-
matical descriptions of the methodologies and
hyperparameter implementations feature in Appendix B.
To optimize the machine learning algorithms, cross-
validation is employed on the in-sample or training data-
set. The process generally entails stratifying the training
dataset into a number of folds, where during each itera-
tion, one of the folds is used as the validation set while
the remaining folds are used to train the algorithm. All
folds are eventually used as a validation set. Based on the
performance of the trained models on each of the valida-
tion sets, algorithms can further be enhanced through
optimizing their hyperparameters in constructing the
final model, and in turn used for recursive out-of-sample
forecasting. While the cross-validation process is compa-
rable between the different algorithms, there are nuances
given the workings and nature of the optimization
parameters, with some requiring initial parameters to be
set to initiate the process by which the algorithms can
tune and optimize hyperparameters. Hyperparameters
are summarized in Table B1 (Appendix B).

3.1 | Benchmark algorithms

To allow testing across a broad spectrum of models, sim-
ple to more complex algorithms are developed and
employed. Serving as a benchmark, a non-parametric
model includes a baseline approach in the form of a con-
ditional mean estimation whereas regression algorithms
constitute a linear probability model and probit model,
where the dependent variable is, respectively, a linear
and non-linear function of the regressors, also with dis-
similar distributional assumptions. The baseline model
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generates an approximation of future expectations based
on past values and is less sensitive to low and high out-
liers. As the baseline model continuously recalibrates
after each forecast based on new information, it serves as
a dynamic benchmark that is continuously learning from
incoming data. The output signifies a long-term trend,
which is also useful to describe a fundamentals-based
forward-looking path.

Although the linear probability model encounters sta-
tistical challenges for dichotomous dependent variables,
practically, results can be comparable to logistic models
especially if most of the modeled probabilities are
between 0.20 and 0.80, which then overlap with the logit
model, and further assist interpretability (Hellevik, 2009).
While a logit model was also considered, notwithstanding
little difference in the outcome of probit models
(Greene, 2012) its theoretical limitations dealing with
random variations of independent variables and ability to
handle panel data when unobserved factors are corre-
lated over time, which are all solved by probit, eventu-
ated in the selection of the latter. One drawback of probit
is the assumption that unobserved components are nor-
mally distributed (Train, 2002). Furthermore, the selected
modeling techniques are frequently utilized in forecast-
ing financial distress. Formulations of the methods are
discussed in Appendix B.

3.2 | Instance-based algorithms

Instance-based algorithms comprise k-nearest neighbors
and support vector machines. The k-nearest
neighbors (k-NN) algorithm involves the estimation of
the conditional distribution of Y given X in order to cate-
gorize an observation according to the outcome class
with the highest estimated probability. Support vector
machine (SVM) improves on the constraint of linear
classifiers by accommodating non-linear relationships
including quadratic and cubic terms. Achieved by
employing kernels to enlarge the feature space of the
predictors, the technique further improves computational
efficiency as it does not explicitly execute in the enlarged
feature space, but implicitly through its internal products
of observations.

3.3 | Regularization algorithms

Through a regularizing procedure, coefficients of less rel-
evant predictors shrink toward zero. Two algorithms fea-
ture in this paper, namely ridge and lasso.

In contrast to the ordinary least squares statistical
technique which computes slope coefficients β0,β1,…,βp

by employing values that minimize the residual sum of
the squared equation, ridge applies tuning parameter
λ≥ 0, where the shrinkage penalty is small when β1,…,βp
are near zero, so it reduces the estimates of βj
toward zero.

Analogous to the ridge, lasso reduces the estimated
coefficients of explanatory variables towards zero, but the
penalty component forces some of the coefficients exactly
to zero when the tuning parameter λ is adequately large.
Through this procedure, lasso operates a variable selec-
tion technique and enhances the interpretability of the
model output, eventually also ensuring sparse models,
which is an advantage in addressing variable correlation
in the model. Furthermore, cross-validation is likewise
integrated to estimate the optimal level of λ (James
et al., 2013).

3.4 | Dimensionality reduction
algorithms

Partial least squares (PLS) regression serves as a dimen-
sion reduction method by detecting a new set of features
Z1,…,Zm, which are linear combinations of the initial fea-
tures, and subsequently fitting a linear model using least
squares. As the PLS approach identifies new features,
which approximate the original features that are associ-
ated with the outcome variable Y, it explicates the out-
come and explanatory indicators (James et al., 2013;
Wold, 1985). Principal component analysis was also con-
sidered, a comparable yet more limited method to PLS,
which estimates fewer linear combinations of the inde-
pendent variables through a parsimonious summariza-
tion approach, but in contrast to PLS, does not take into
account how each predictor is related to the outcome var-
iable (Bair et al., 2006; Kleinbaum et al., 1998; Rosipal &
Krämer, 2006). As it would entail a weaker understand-
ing of how the crisis outcome is influenced by the eco-
nomic information, resultantly only PLS was retained in
the study.

3.5 | Decision tree algorithms

3.5.1 | Full tree

The implementation of the classification and regression
trees (CART) algorithm accentuates several advantages.
By following a semi-parametric framework, CART is not
constrained by a predetermined functional form and can
process various dimensions of data. Moreover, the
method is suited to handle large and heterogenous data-
sets such as Big Data and can accommodate numerous
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predictors, and operates with missing values. The CART
algorithm allows non-linear relationships, implements
threshold levels, and supports interactions between
variables. Resultantly, relationships between predictors
could fluctuate given cross-sectional and time dimen-
sions. By analyzing all data observations, specification
errors are minimized. Relevant to crisis literature, the
CART method ranks predictors according to their level of
importance, thereby rendering leading indicators. Indeed,
results from classification and regression trees are
straightforward to interpret and a practical instrument
for policy makers.

However, the classification and regression trees
approach encounters some limitations. As classification
trees are predisposed to overfitting it could impact the
accuracy of out-of-sample forecasts. Yet, it can be
addressed through pruning, a technique that reduces
branches of trees. Accordingly, during each iteration, the
model condenses the amount of data analyzed from the
full sample, which results in a local rather than global
optimum. In comparison to regression models, as proba-
bility distributions are not operationalized, confidence
intervals cannot be computed. Given that an individual
probability value is allocated to all observations within a
categorized set, marginal contributions of the explanatory
variables are not estimated, even though the variation in
the probability of surpassing threshold levels is computed
at each node. Finally, the ranking of variables could
result in essential predictors being excluded from the
final tree (Joy et al., 2015).

CART algorithm implements a top-down approach to
partition data recursively, involving several predictors.
Originally, through a partition with one predictor, a par-
ent node is formed. Subsequently, dividing into two
homogenous child nodes, which are based on the discrete
outcomes of the dependent variable, in this instance a
systemic financial crisis or no-crisis. For every division,
the algorithm chooses an optimal threshold value of the
predictor. Child nodes are continually divided through
this procedure until reaching a terminal node, which
signifies the final partitioning of data. This process can
graphically be plotted as a decision tree. A forecasting
model is computed as based on the decision path of each
terminal node. Resultantly, this method analyses several
divisions of predictors and selects those splits that best
classify crisis and no-crisis episodes.

3.5.2 | Pruned tree

A shortfall of the full tree approach is the manifestation
of over-fitting as all observations are considered. To
lessen misclassification, pruning is employed as a general
enhancement to the algorithmic framework. Centrally,

pruning shrinks the size of a decision tree by transform-
ing unreliable branch nodes into leaf nodes, and conse-
quently by eliminating leaf nodes. Contextually, and
according to the bias-variance trade-off, classification
trees could fit the training data satisfactorily, yet become
less accurate with new testing data.

3.6 | Ensemble Algorithms

Ensemble algorithms operationalize a cohort of weak
learners to jointly construct a strong learner, with the
goal of improving the performance of an individual
forecast. This is accomplished through a multi-classifiers
approach, involving the training of multiple models using
an identical algorithm. To lessen variance and bias, two
prominent modeling frameworks comprise bagging and
boosting. While both modeling approaches produce new
data in the training environment through sampling by
replacement, bagging assigns the same probability of
replacement while boosting apportions weights, which
thereby modifies replacement probabilities. In contrast,
trees are formed independently and in parallel within the
bagging process, but sequentially for boosting, the latter
in order to enhance error rates by penalizing misclassi-
fied observations or through shrinking a loss function.
Strong learners are determined using a simple average
across every prediction tree for bagging, while in compar-
ison, in the case of boosting, the weighted average is
slanted towards better learners or inclusion of learning
rates (Brownlee, 2016; James et al., 2013).

In this paper, two boosting algorithms are employed,
namely adaptive boosting and gradient boosting, while
the bagging algorithm is random forests.

3.6.1 | Adaptive boosting

Adaptive boosting or AdaBoost represents one of the ini-
tial boosting algorithms. Distinctively, while the classifi-
cation and regression trees algorithm constructs full trees
on all observations, AdaBoost only builds stumps or weak
learners. The error value obtained from one stump affects
thereafter how the following stump is assembled based
on a bootstrap sampling with the replacement procedure.
Each stump is also assigned a weight given its computed
prediction error, which further denotes its contribution
to the strong learner.

3.6.2 | Gradient boosting

As an extension of the AdaBoost approach, gradient
boosting is a variation that employs a gradient descent

8 du PLESSIS and FRITSCHE



procedure for regression and classification trees through
a stepwise technique which solves for a loss function.
Through this process, pseudo residuals are estimated to
optimize every weak or base learner in a consecutive
manner. The quantity of weak learners can be stipulated
in the context of the bias-variance trade-off, with the aim
of identifying the optimal quantum. Increasing the num-
ber of weak learners would lessen the bias as the model
tracks the training data narrowly, but variance surges in
the context of a noise factor, leading to reduced forecast-
ing accuracy when new data is presented. Selecting fewer
weak learners could result in higher bias, but a reduced
probability of overfitting. A shrinkage parameter governs
the learning rate of a weak learner, where a smaller value
necessitates more iterations to optimize and develop the
final model (James et al., 2013).

3.6.3 | Random forests

Random forests (RF) algorithm employs a group of weak
learners to jointly create a strong learner, a process cen-
tered on bootstrapping and aggregation to enhance stabil-
ity and accuracy. Executed in conjunction with a bagging
procedure, a large quantum of regression trees is created
through bootstrapped samples with replacements,
obtained from the initial training sample. Nodes of trees
are created based on a random selection of explanatory
variables as well as the most optimal split amongst the
predictors. Given that each tree renders a prediction,
these predictions are averaged to calculate the final
prediction.

A benefit of employing a large quantity of trees cre-
ated from independent bootstrapped samples comprises
diminishing variance without increasing bias (Nyman &
Ormerod, 2016). RF method addresses the overfitting
phenomenon of classification and regression trees by not
processing all explanatory variables simultaneously, but
by opting for the most important variables through
majority votes, and further only integrating the selected
variables into the algorithm (Breiman et al., 1984). In
contrast to individual trees, variable importance classifi-
cations of RF are more robust (Joy et al., 2015). Analo-
gous to classification and regression trees, the RF
algorithm can process sizeable datasets, is not sensitive to
outliers, models interactions between explanatory vari-
ables, and is not limited by distributional assumptions.

Random forests algorithm permits optimization
through stipulation of tree complexity or depth, the quan-
tity of variables featuring in each tree, bootstrap sample
size, and the quantum of trees (Mullainathan &
Spiess, 2017). Drawbacks of the RF approach comprise
an inability to backwardly deduce interaction effects

between variables due to the simple average procedure
employed across a large number of decision trees (Joy
et al., 2015), and a somewhat opaque framework, given
an algorithmic process executing across a multiplicity of
bootstrap samples. Robust in-sample performance is
intermittently not repeated with the addition of unseen
observations (Alessi et al., 2015).

4 | DATA AND VARIABLE
SELECTION

4.1 | Data composition

The classification and dating of systemic financial crises
are centered on interpretation and judgment. This paper
utilizes the definition from Laeven and Valencia (2012),
which describes a systemic financial crisis as a situation
in which there are significant signs of financial sector dis-
tress and losses in wide parts of the financial system that
result in widespread insolvencies or significant policy
interventions. In contrast to isolated banking failures,
such as Herstatt Bank in Germany in 1974 or the termi-
nation of Baring Brothers in the United Kingdom in
1995, to be included as part of the definition, financial
distress needs to be system-wide for instance the crises of
1890s, 1930s, Japanese banking crises in the 1990s and
during the Global Financial Crisis. Dates on systemic
financial crises are based on Jordà et al. (2013, 2017),
which feature historical series from Bordo et al. (2001)
and Reinhart and Rogoff (2009) for the period 1870 to
1970, and post-1970 from Laeven and Valencia (2008,
2012). Table 1 chronicles the systemic financial crises
experienced by the countries in this study.

Each instance of systemic financial crisis is repre-
sented by a categorical variable, expressed by Yit ¼ 0 for a
no-crisis episode and Yit ¼ 1 as a proxy for a crisis event,
where Yit = 1 is not limited to the onset of a crisis, but is
based on duration, and references all time periods where
a crisis is present and in progress. While countries are
selected for this study based on a key requirement to
have experience with at least one systemic financial cri-
sis, the preponderance of crisis episodes remains limited,
with only 3.6% of all observations classified as Yit ¼ 1.
Given that machine learning models represent
novel approaches to dealing with financial crises, the
low prevalence of crisis episodes can be expected to
constrain some models to function optimally. Whereas
the commonly used models might perform differently in
a setting with a higher proportion of each outcome of the
categorical response variable, through the horse race of
algorithms, fit-for-purpose models are expected to
stand out.
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While more than two outcomes were considered,
such as the post-crisis period as employed by Bussière
and Fratzscher (2006) and du Plessis (2022a), the main
focus on crisis prevention, which is aimed at mitigating
its severe impact and resultant costs, is concerned with
optimizing correct signals for actual crisis events. By
instituting a lag structure and optimized contemporane-
ous structure as two of the modeling dimensions in this
paper, both the pre-crisis and crisis periods can be
studied to ensure timely early warning signals.

Literature studies on financial crises underscore a
solid relationship between macroeconomic factors and
financial sector distress (Abiad, 2003; Berg et al., 2005;
Claessens et al., 2011; du Plessis, 2022a, 2022b;
Hardy & Pazarbasioglu, 1998; Vlaar, 2000). Specifically,
Gonz�alez-Hermosillo et al. (1997) find that banking
sector factors reveal the probability of a bank failure,
while real sector indicators impact its timing.
Accordingly, for this study three classes of predictors are
assessed, encompassing real, banking, and external
sectors.

Real sector indicators underscore the degree of effi-
cient credit utilization in the economy and emphasize the
ability of borrowers to settle their debt obligations. Partic-
ularly, this study assesses real gross domestic product per
capita, real consumption expenditure, real fixed capital

formation, and capital output ratio. Gross domestic prod-
uct per capita serves as a valuation of collective economic
activity, which in conjunction with consumption and
investment, elicits credit demand. The capital output
ratio functions as a proxy for the efficient use of invest-
ments. A severe credit boom as a result of unsustainable
over-investment and consumption expenditure could
portend an ensuing real sector slowdown. In turn,
subdued gross domestic product per capita, impacting
employment, aggregate output, and income growth, fur-
ther encumbers the ability of households and corporate
borrowers to repay outstanding debt. In this context,
consumer spending represents a measure of economic
health. Hardy and Pazarbasioglu (1998) find that banking
distress is associated with a concurrent reduction in real
gross domestic product growth and a drop in the capital
output ratio.

Banking sector indicators comprise banking perfor-
mance and inherent confidence and include knowledge
of total loans, debt-to-GDP, inflation, short-term and
long-term interest rates, and stock market levels. Accord-
ing to Reinhart and Rogoff (2009), credit booms and asset
bubbles have frequently resulted in financial sector dis-
tress. While accelerating bank credit growth portends an
ensuing lending boom with unsustainable debt levels,
sharp fluctuations in stock market asset values could con-
solidate a loss of confidence and lead to further asset
price deterioration. Consumer inflation and interest rates
feature as shock variables affecting debt repayment and
liability growth. Demirgüç-Kunt and Detregiache (1998)
highlight that higher interest rates and consumer infla-
tion increase the probability of a crisis. In the context of
diminishing income growth, rising inflation and interest
rates hinder the repayment ability of debtors.

External sector indicators gauge regional spillovers
and global contagion through the US dollar exchange
rate and current account balance. Banking crises can be
multinational in nature, with weaknesses spread across
interlinkages between countries, as conveyed through the
external sector variables. A steep currency depreciation,
following reversals in capital flows, could result in a
slump in asset values, and a surge in the cost of imported
goods, which restrains the ability of borrowers to meet
their periodic debt obligations. Kaminsky and Reinhart
(1999) point out declining terms of trade are an anteced-
ent to banking crises. A weakening in the current
account balance results in a comparatively higher
outflow of working capital.

Explanatory indicators feature in Table A1
(Appendix A). Data are obtained from Jordà-Schularick-
Taylor Macrohistory Database (Jordà et al., 2017) and
consist of an annual time series. Another consideration
includes the experience of a previous systemic financial

TABLE 1 Systemic financial crisis dates by country.

Country Crisis Dates

Australia: 1893, 1989

Belgium: 1870, 1885, 1925, 1931, 1934, 1939, 2008

Canada: 1907

Denmark: 1877, 1885, 1908, 1921, 1931, 1987, 2008

Finland: 1877, 1900, 1921, 1931, 1991

France: 1882, 1889, 1930, 2008

Germany: 1873, 1891, 1901, 1907, 1931, 2008

Italy: 1873, 1887, 1893, 1907, 1921, 1930, 1935,
1990, 2008

Japan: 1871, 1890, 1907, 1920, 1927, 1997

Netherlands: 1893, 1907, 1921, 1939, 2008

Norway: 1899, 1922, 1931, 1988

Portugal: 1890, 1920, 1923, 1931, 2008

Spain: 1883, 1890, 1913, 1920, 1924, 1931, 1977,
2008

Sweden: 1878, 1907, 1922, 1931, 1991, 2008

Switzerland: 1870, 1910, 1931, 1991, 2008

United
Kingdom:

1890, 1974, 1991, 2007

United States: 1873, 1893, 1907, 1929, 1984, 2007
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crisis. The final sample spans the period 1870–2016 and
consists of 17 advanced economies, which collectively
experienced 90 systemic financial crises over a combined
2,499 years and with 12 variables constituting 29,988
observations. As all countries in the database experienced
financial crises, no countries have been excluded from
this study. While the annual time series nature of the
database could be a limitation for modeling more imme-
diate events, the advantage of the database is its long-
term horizon spanning a century and a half. This allows
the models to learn from more diverse and richer
experiences. To provide lead time, a lag structure is used
as the primary modeling dimension. The final dataset is
available from the Harvard Dataverse (du Plessis &
Fritsche, 2023). A representative sample of countries
stems from Australasia, Europe, and North America.
According to Table A2 (Appendix A), the mean and
median quantum of crises experienced by the countries
amount to five, with Canada on one and Italy on nine.

Figure 1 illustrates the share of countries in crisis over
the past 147 years. A higher crisis frequency was
observed from 1870 to the Second World War, which
resumed in 1974, following the great moderation. In par-
ticular, the crises of 1907–1908, 1929–1931, and 2007–
2008 were more ubiquitous and global in nature, impact-
ing more than 50% of the sampled countries. The Global
Financial Crisis had the largest scale, comprising 70% of
all the countries.

As the first step, all variables in the Jordà-Schularick-
Taylor Macrohistory Database were considered, but only
those variables that were congruent with economic the-
ory and literature findings on precursors to financial cri-
ses were used. One of the critiques of machine learning is
that it is more challenging to determine causal relation-
ships compared to traditional regression models. There-
fore, by relying on economic theory, the potential
limitation of clearly attributing causality is addressed.

The second step thereafter retained variables in the
model if their statistical power in a traditional probit
regression model is found to be significant. The develop-
ment of the benchmark for comparability was deemed
important in this study in order to directly evaluate the
performance of the machine learning models in contrast
to commonly used regression models. As a key aim of the
study is to determine the predictive accuracy of machine
learning models and to contextualize its performance rel-
ative to traditional probabilistic models, where the latter
are informed by diagnostic assessments such as stationar-
ity and statistical significance, and variables are trans-
formed based on the diagnostic results, and subsequently
variables with poor levels of statistical significance are
excluded. This serves to demonstrate whether machine
learning models are better than a best-in-class probit
model, and if affirmative, by how much the former
improves on commonly used models.

To counter stationarity, ratios, first difference, and log
forms are employed, with a number of lags included
based on adequate statistical significance from p-values
below 0.1 and so within the acceptance region, while real
transformations confine the influence of inflation. Unit
root tests for the probit model produce satisfactory results
as described in Table A3 (Appendix A).

These steps ensure that findings are based on eco-
nomic theory, causality is implicit, variables are selected
based on statistical significance, and the methods can be
compared to commonly used econometric regression
models.

4.2 | Significance of individual variables

To verify if variables are significantly different between
crisis and no-crisis periods, and test for equality of
means, a two-tail t-test is used. The sample means for
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the three sets of indicators, encompassing real, banking,
and external sectors are described in Table A4
(Appendix A), and include a two-tailed t-test with
significance levels.

Real sector indicators highlight a differentiated eco-
nomic environment during a systemic financial crisis.
Real gross domestic product per capita drops during a cri-
sis. Similarly, real consumption expenditure and real
investment are higher absent a crisis, with the latter turn-
ing negative during bouts of financial instability. Capital
output ratio, as a proxy for efficient use of investment
capital, could be construed as reflecting diminishing
returns in the build-up to a crisis due to an overinvest-
ment boom, while the lower asset valuations during a
catastrophe present higher forward-looking return rates
for long-term investment projects.

Banking sector indicators accentuate banking perfor-
mance. Debt, as a ratio to gross domestic product, drops
sharply during a crisis as liquidity constraints, more
stringent credit appetite, and lower demand weigh on
credit extensions, exemplified by a shrinkage in total
loans. The lower revaluation of assets is reverberated
by the decline in the stock market. Consumer inflation
lowers during a crisis period due to a reduction in
aggregate demand for goods and services. While real
short-term interest rates increase during a crisis, partly
due to lower inflation, and also as a result of the higher
cost to obtain and access credit, long-term rates also
inch up, due to a risk-on environment, albeit more
stable given its forward-looking characteristics. The
more recent and post-crisis applications of quantitative
easing would be picked up by non-crisis periods in the
subsequent years.

External sector indicators underscore the spillover
between trade partners. Real exchange rates depreciate in
the wake of systemic events as capital flows follow safer
havens. The current account weakens in response to
more expensive imports and the impact of lower
aggregate demand.

Results from the two-tail t-test show that all but two
variables are significant, which accentuates a discernable
environment between crisis and no-crisis periods. The
null hypothesis of similarity between crisis and tranquil
observations can be rejected for all individual real sector
variables. For the banking sector, short-term rates are sig-
nificantly different at a 99% confidence level, consumer
inflation, long-term rates, and debt-to-GDP at 95%, and
total loans at 90% confidence levels. In the case of the
external sector, the current account is dissimilar at 95%
confidence levels. The robust statistical significance
between the crisis and non-crisis observations further
demonstrates the limited influence that a post-crisis
period could have on no-crisis observations, which was

identified by Bussière and Fratzscher (2006) as a useful
period to consider in the modeling process. The low
influence could also be explained by the small amount of
90 post-crisis observations in the 2,499 observations
dataset.

While the yield curve features as harbinger of reces-
sions (Benzoni et al., 2018) and recently is also modeled
in financial crisis literature (Alessi et al., 2015; Bluwstein
et al., 2020; Joy et al., 2015), the inclusion of this factor
has not resulted in improved forecasting performance,
likely given its covariance with other variables such as
short-term and long-term rates, as well as the smaller
impact of interest rates compared to real and other bank-
ing sector variables and therefore do not appear in this
paper.

5 | EMPIRICAL RESULTS

5.1 | Modeling dimensions

Serving as new methods to study an old problem, a total
of 13 machine learning algorithms are developed to
model 147 years of systemic financial crises. Model fit
and forecasts are assessed across four dataset dimensions.
All these modeling dimensions are mathematically
described in this section, as based on the benchmark
probit regression. While all machine learning models
employ the same transformed variables, relationships are
not expected to be linear as in the traditional regression
equations or to feature every variable where only some
are retained as in the case of regularization and dimen-
sion reduction algorithms and pruned trees. The formal
equations for each of the four modeling dimensions
denote the commonly used probit benchmark and
describe the input–output framework, while the inner
workings and mapping vary by machine learning
method.

As the main modeling dimension, and aimed at pro-
viding an immediate early warning signal, a standard
one-period lag structure is employed for all variables in
the panel format. Given the low prevalence of Y¼ 1, the
machine learning algorithms are modeled across
the panel dataset, which encompasses a time series of the
same cross sections, the latter comprising all the coun-
tries in this study. Collective and faster algorithmic learn-
ing is enabled through a larger sample size, more
variance in the predictors, higher degrees of freedom
with more crisis episodes, and underscores a practical
approach to assess financial catastrophes given global
interlinkages. Formally, and with variables captured in
Table A1 (Appendix A), the benchmark regression model
can be stated as
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Yi,t ¼ citþ
XN
i¼1

XT
t¼1

β1 GDPð Þi,t�1þβ2 CEð Þi,t�1

þβ3 FCFð Þi,t�1þβ4 CORð Þi,t�1þβ5 DEBTð Þi,t�1

þβ6 LOANSð Þi,t�1þβ7 STOCKð Þi,t�1þβ8 CPIð Þi,t�1

þβ9 SRð Þi,t�1þβ10 LRð Þi,t�1þβ11 ERð Þi,t�1

þβ12 CAð Þi,t�1þ εi,t,

where Yi,t is the crisis index, N the number of countries,
T the entire time period and εi,t stochastic error term.
Benefits of the lag structure include faster response times
as the release of annual data could follow after the com-
mencement of a crisis in the same or previous year, and
leveraging off pre-crisis signals to transmit more expedi-
tious early warnings.

To verify whether the main panel format with lag
structure delivers the highest predictive strength, the sec-
ond modeling dimension applies a contemporaneous
structure with optimized statistical properties as
described in Table A1 (Appendix A). Transformation of
variables in this model is done based on achieving opti-
mal statistical significance of the commonly used probit
model to ensure higher statistical power and robustness.
Most variables enter the probit model absent any lags,
thereby reflecting a contemporaneous structure. This
ensures that an optimal version of a benchmark model is
constructed to compare forecasting performance against
the machine learning models, and in the case of outper-
formance by the latter, to contextualize the effectiveness
of the novel methods given a frequently used alternative
as standard. Mathematically, the traditional probit equa-

tion is denoted as Yi,t ¼ ciþ
PN
i¼1

PT
t¼1

PK
j¼1

PL
l¼1

βjxj,i,t�lþ εi,t, with

xj the jth explanatory variable given j = 1, …,K, and l the
number of lags.

Thirdly, all the machine learning algorithms are mod-
eled independently for each individual country, by apply-
ing the optimized contemporaneous structure employed
by the second modeling dimension. Technically, the tra-
ditional probit regression is described as

Yi,t ¼ ciþ
PT
t¼1

PK
j¼1

βjxj,i,t�lþ εi,t, where i comprises the spe-

cific country. This allows a direct comparison between
country-level forecasts based on individual crisis experi-
ence and communal experience from the second model-
ing framework. While it comes at a trade-off of a smaller
sample size, advantages include a study on heteroge-
neous method responses where individual country
models are aimed at detecting idiosyncratic characteris-
tics and nuances.

Fourthly, given the long-term nature of the data
series, where structural breaks could occur or the level of
economic development is not comparable after several
decades, a rolling window of 20 years is employed to
assess forecasting performance. Also based on the opti-
mized contemporaneous framework, this dimension can
be formulated for the benchmark probit as

Yi,t wð Þ¼ ci wð ÞþPN
i¼1

PT
t¼w

PK
j¼1

βj wð Þxj,i,t�l wð Þþ εi,t wð Þ, where

w is a fixed window with 20 observations and t = w, w
+1, …, T with T�wþ1 the number of subsamples.

Essentially, the aim of these four approaches is to
verify whether the long-term panel, in optimized, disag-
gregated, lag, or period-bound dimensions is more condu-
cive to model accuracy, in the context of an inherent
bias-variance machine learning trade-off, and as mea-
sured by the error function and confusion matrix.

5.2 | Performance assessments

5.2.1 | Recursive out-of-sample forecasts

The performance of these novel methods is evaluated
across recursive out-of-sample predictions, by adding one
datapoint to the training set for each new iteration and
forecasting one year ahead, until the end of the sample.
Formally, and as based on the commonly used probit
model, Yi,tþh ¼ citþβjxj,i,tþhþ εi,tþh, where h denotes the
h-step ahead forecasting horizon, with 1≤ h ≤ T,
and xj,i,tþh a vector of regressors with time-varying
parameters. An expanding window is used in optimized
contemporaneous and lag formats, as well as for
individual countries. The expanding window structure
employed for the first three modeling dimensions simu-
lates the policy-making process which is based on avail-
able information up to a point in time. Given the low
frequency of crises, an updating dataset also provides
richer information from which the models could learn.
While the rolling window retains a consistent 20-year
range, it likewise updates iteratively by adding one new
year while simultaneously dropping the year furthest
back. A benefit of a rolling window is a focus on a
specific crisis period for instance the Asian Financial
Crisis of the 1990s or the Global Financial Crisis in the
late 2000s. The performance of individual countries is
modeled separately and reported in both individual and
aggregate formats for comparability. The starting date for
all model forecasts is based on available degrees of
freedom and commences from 1886 onwards, with
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recursive forecasts conducted on an annual basis until
the end of the period under review.

5.2.2 | Benchmark probit model

Serving as a regression algorithm, a probit model, which
is widely employed by policy makers to assess the likeli-
hood of an adverse event occurring, also constitutes a
valuable alternative to evaluate forecasting performance
compared to more recently developed algorithmic frame-
works. Coefficients and statistical significance for both
the lag structure and optimized contemporaneous probit
models are described in Table A5 (Appendix A). In the
case of the former, half of all variables are significant
whereas with the optimal model, with the exception of
the US dollar exchange rate, all variables are significant.
Gauged through diagnostic tests, statistically significant
properties ensure that the standard probit model is ade-
quately constructed and can serve as an appropriate
benchmark for comparative performance.

Given the interrelatedness of macroeconomic
variables, Granger causality is implemented to gauge the
degree to which an explanatory variable, x, can predict
the dependent variable, y. This is operationalized by
adding lagged values of x, to an autoregression of y, so
that yt ¼ cþA1yt�1þB1xt�1þ…þApyt�pþBpxt�mþ et.
The number of lags is based on the lowest values of
AIC and BIC and is limited to four lags. Granger
causality is an F-test on joint significance, where
H0 :B1 ¼B2 ¼…¼Bp ¼ 0. For the panel data, the Granger
causality test is based on Dumitrescu and Hurlin (2012),
which allows individual coefficients across cross-sections,
so test statistics are estimated for each individual country
to account for heterogenous factors, and then averaged
across all countries. Rejecting the null hypothesis of no
Granger causality signifies that a variable influences
another variable (Granger, 1969). The procedure is
repeated to determine the reverse causality between the
dependent variable and the explanatory variable.

During a crisis, as measured by the dependent vari-
able, the impact of a financial meltdown has been shown
to impact in turn the level and direction of macroeco-
nomic variables (Behringer et al., 2017). This is described
in Table A6 (Appendix), where real sector variables con-
sumption expenditure and fixed capital formation exert
influence on the formation of a crisis across three lags,
with reverse causality transpiring with the fourth lag.
Debt shows a comparable trajectory. Capital output ratio
features an inverse result, which can be explained by the
inclusion of gross domestic product within the ratio,
the latter observed to be affected over the short-term by a
crisis. Loans underscore bidirectional influence across

most lags, whereas exchange rates only with long lags.
Crises are further shown to influence the stock market,
inflation, long-term rates, and current account balance.

5.2.3 | Performance measures

Performance assessment criteria include area under the
receiver operating characteristics curves (AUROC), F1

measures and Brier scores. Employing a range of mea-
sures avoids an overreliance on one main measure. Not-
withstanding, results exhibit a high correlation between
the measures, which are constructed to individually
emphasize distinctive parameters. While receiver operat-
ing characteristic (ROC) curves constitute a visual repre-
sentation of the true positive rates by false positive rates,
the area under curve (AUC) summarizes the outcome
into a single value. True positive rate (TPR) is also
referred to as sensitivity or recall and comprises the ratio
of correct predictions (TP) to the summation of correct
predictions and false negatives (FN) or type II errors,
where TPR¼ TP

TPþFN. False negative is the incorrect accep-
tance of a false hypothesis. False positive rates (FPR) or
1-specificity consist of false alarms (FP) as a ratio to the
collective false alarms and true negatives (TN), denoted
mathematically as FPR¼ FP

FPþTN. In an environment
where the subject under study has a low prevalence as is
the case with financial crises, AUC is shown to exhibit
higher stability given its insensitivity to outcome imbal-
ances. AUC scores range from 0 to 1, where the latter
score signifies a correct set of forecasts. (DeLong
et al., 1988; Fawcett, 2006). As AUC is an aggregate mea-
sure that averages over all possible thresholds, it is not
dependent on classification thresholds. The result is
based on a 95% confidence interval and computed with
100 bootstrap iterations. Yet it is possible for policy
makers to derive a threshold value that maximizes sensi-
tivity and specificity by employing measures such as the
Youden Index (Youden, 1950). AUC serves as a general
performance measure to indicate overall predictive
strength, where the policy responses to a false crisis
and a missed crisis are both costly and could result in
recessions. When classes are imbalanced, true and false
positive rates can be individually assessed, and other
measures such as F1 scores can also be considered.

In comparison, F1 score represents another measure
of a model's accuracy for a given forecast. F1 scores are a
weighted average of recall and precision, the latter the
ratio of true positives to the combined true and false posi-
tives rates. F1 as a measure thereby takes into account
both false positives and false negatives or type I and type
II errors (Chinchor, 1992; Van Rijsbergen, 1979). F1 score
can formally be denoted as F1 ¼ TP

TPþ1
2 FPþFNð Þ, where a
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higher F1 score highlights a more accurate forecast, with
F1=1 showing a perfect forecast. Predictions without true
positive values would revert to F1=0. In contrast to AUC,
F1 focusses more on the performance of the positive
class, which is a useful measure when the positive class is
rare and false positives are not as costly as false negatives.
To compute the threshold that results in the optimal bal-
ance between precision and recall, F1 allocates equal
weight to precision and recall, to express the harmonic
mean of the two fractions as a single value. Maximizing
precision, minimizes false positives, and
maximizing recall minimizes false negatives. As robust-
ness tests, two further F measures are developed. For-

mally, in Fβ ¼ 1þβ2ð Þ�Precision�Recall
β2ð Þ�Precision�Recall , where F1 has a beta

equal to 1, the two additional measures F2 incorporates a
beta of 2 and F0:5 accordingly a beta of 0.5. While F2

places more weight on recall, thereby on minimizing
false negatives or the failure to signal a crisis, F0:5 assigns
more weight to precision, thereby minimizing false posi-
tives or false alarms.

The Brier score in contrast is akin to a cost function,
which measures the mean squared difference between
the predicted probability and the actual outcome
(Brier, 1950). Formally it can be stated as
Brier score¼ 1

N

PN
i¼1 f t�atð Þ2, where f is the forecasted

value, a the actual outcome and N the number of fore-
casts. Brier scores also range from 0 to unity, with the
inversion applicable, in that a lower score is indicative of
a lower error, and thereby a higher accuracy.

To synthesis the three sperate measures, an overall
ranking is estimated as a function of AUC + F1 Score -
Brier Score, where the highest values are indicative of
topmost predictive strength. While all three measures are
commonly used to assess predictive strength, with mea-
sures falling between zero to one, each highlights a
nuanced aspect of performance that is deemed more
essential. For AUROC and F1 score, the aim is to mea-
sure the share of crises signaled or missed. For Brier, the
difference between actual and predicted values, and
through a distance estimator, likewise underscores the
difference between crises correctly or incorrectly called.
While AUROC can be considered the main individual
measure given its wide adoption in the machine learning
literature, there is a high level of correlation, exceeding
two-thirds of the time, between the three measures.

5.3 | Recursive out-of-sample crisis
forecasts with lag structure

The main modeling dimension encapsulates all the data
in a panel format, with a key configuration in the lag

structure of the predictors. Given the annual time series,
and with the purpose of predicting an ensuing crisis at
the shortest lead time, all predictors are transformed
using one lag. Through variable importance techniques,
leading indicators are uncovered across nearly a century
and a half, simultaneously providing insights into the
workings of the machine learning models and serving as
an input into the policy-making process to prevent and
mitigate ensuing financial crises. Predictive strength for
all the algorithms is assessed through recursive out-
of-sample forecasts.

5.3.1 | Variable importance measures

A benefit of machine learning methods entails the identi-
fication of the most important explanatory indicators.
This is achieved by analyzing the prevalence of each vari-
able used by the algorithm to make key decisions. When
the selection of a variable at a split node results in better
performance of the error function, the higher its relative
importance becomes. A Gini index is employed to mea-
sure performance, based on a reduction in the sum of
squared errors, each time a variable is selected to split a
tree or node (Brownlee, 2016). An importance score is
estimated for every individual decision tree, based on the
value by which a variable employed at a split point
enhances the performance measure, which is weighted
by the number of observations where that variable is
used. Technically, Iℓk indicates the significance of the
variable Xℓ in partitioning the class k observations
from other classes. The overall expediency of Xℓ is
computed by averaging over all of the classes, where
I2ℓ ¼ 1

K

PK
k¼1 Iℓkð Þ2 (Hastie et al., 2009). The Gini index

expresses the importance of variables relative to each
other and is constructed on a 0–1 scale, where one has a
higher relative importance. The Gini index of the gradi-
ent boosting algorithm is employed as the variable impor-
tance measure.

As a robustness test, random forest variable impor-
tance employs two further measures. The first is the per-
mutation measure, formally denoted as

VI Xj
� �¼P tϵB

VI tð Þ Xjð Þ
ntree , where the importance measure for

indicator Xj is estimated as the summation of the impor-
tance scores across all trees. Expressed as a percentage
increase in mean squared error, it entails applying
permutations to each individual variable, to assess
the resultant impact on the overall accuracy of
predictions. Where a variable consists of random noise,
permutations should not affect accuracy. Second is the
increase in node purity. Mathematically described as
VI Xmð Þ¼ 1

ntree

P
T

P
t � T:v stð Þ¼Xm

p tð ÞΔi st, tð Þ, variable
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importance is based on the mean value determined
across all trees T and all nodes t, where p tð Þ shows the
number of samples reaching node t, and v stð Þ signifies
the variable utilized to split node t. This measure is anal-
ogous to the Gini index employed by gradient boosting,
where a reduction in the sum of the squared error from
the utilization of a variable to split a node, results in a
higher importance allocated to the associated variable
(Breiman, 2001; Hjerpe, 2016). From an interpretation
perspective, the scale is less relevant, whereas relative
values are indicative of inter-variable importance. A
drawback of the random forests variable importance
approach revolves around a higher influence of continu-
ous and multiple outcome variables on importance mea-
sures (Strobl et al., 2007).

5.3.2 | Variable importance results

Based on the Gini index of the gradient boosting algo-
rithm, which frequently outperforms among machine
learning methods in horse-race events (Nevasalmi, 2020),
and selected for its classification and regression abilities,
Figure 2 denotes all the predictors across the full sample
by means of the panel format and which are recursively
estimated by adding one new period at a time to forecast
the next period as based on an expanding window, while
Figure A1 (Appendix A) shows predictors individually on
a scale of 50.

According to the findings from the panel with lag
structure, fixed capital formation exerts the single most
influence, from around 20% at the turn of the 20th cen-
tury, spiking to 50% the year before the 1907 banking cri-
sis, followed by stabilization and a gradual increase over
the subsequent decades, reaching above 40% in the 2010s.
The second most influential variable is gross domestic
product per capita, which provides an overall gauge of
economic activity, adjusted for the size of the population,
and that grew from low single digits in the 1880s to 15%

at the end of the sample, hovering around 10% for most
of the period under review. While these variables stand
out, significant fluctuations in the levels of other vari-
ables are observed during specific developmental epochs.
For instance, debt-to-GDP spiked above a 35% level of
influence around the banking crises in the 1890s, while
the stock market remained above 20% in the years lead-
ing up to the 1907 crisis. Consumption expenditure
peaked at 20% around the first two decades of the 1900s.
These findings are consistent with research on the role of
fixed capital formation booms, vigorous consumption
spending, and escalating debt growth on the formation of
financial crises (Kindleberger, 1978; Reinhart &
Rogoff, 2009), with the stock market instrumental as an
indicator of existing vulnerabilities. Serving as a major
leading indicator for most of the 1900s, inflation has been
a pivotal indicator since the years before the Great
Depression as cost-push pressures exert more influence
on the repayment ability of debtors, while exchange rates
peaked around both world wars.

On average, as summarized in Figure A2
(Appendix A), and given the lag format, banking sector
variables constitute 28% of the variation in crisis preva-
lence, the real sector 64%, and the external sector 8%,
highlighting the impact of real sector developments in
contributing to banking sector vulnerabilities, thereby
underscoring its consequential role. After peaking around
a 65% level of importance in the 1880s, banking sector
predictors declined in prominence until the 1910s and
drifted upwards above 30% in the lead-up to the Great
Depression, after which it fluctuated within a 20–30%
band until the start of the 21st century. The real sector
demonstrates an inverse trajectory, gradually increasing
from around a 30% level of importance in the 1880s to
over 60% in the years before the start of the Great Depres-
sion in 1929. During the subsequent eight decades, real
sector variables continually contributed on a large scale
to the underlying causes of financial crises, spiking to
70% at the start of the Global Financial Crisis. The lag

FIGURE 2 Variable importance

over time.
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structure of the panel model partly detects the real estate
investment boom that contributed to the sub-prime crisis
and eventually culminated in a fully-fledged financial cri-
sis. Albeit more volatile, external sector influence
increased during the end of the 19th century and the first
two decades of the 20th century in tandem with the pro-
gression of globalization, remaining in a narrow band
during the subsequent decades, spiking again in the
1970s with the dissolution of the gold standard.

Findings from the robustness test using random for-
ests, as denoted in Figure A3 (Appendix A), broadly con-
firm the leading indicators. Fixed capital formation takes a
poll position in reducing the mean squared error and sum
of squared error and contributing to higher overall accu-
racy. Capital output ratio features in the top three most
influential variables across both measures, while inflation
is highlighted as having the second highest Gini index.
Furthermore, total loans and short-term rates are also clas-
sified as important variables, while the inclusion of total
loans and the current account increases overall accuracy.

The random forests variable importance measure for
the lag structure further underscores a similar outcome
as with the gradient boosting measure, with banking sec-
tor influence observed around 40%, real sector on 53%,
and the external sector at 7% according to their contribu-
tions to overall model accuracy. The broadly comparable
results between gradient boosting and random forests
support a targeted mitigation approach from a policy-
making perspective.

5.3.3 | Recursive out-of-sample forecasts
results

Table 2 exhibits the recursive out-of-sample forecasts
using AUC mean values, F1 and Brier scores. The top
performing methods using AUC are random forests, gra-
dient boosting, probit regression, ridge, linear regression,
and adaptive boosting, all around the 70% level of accu-
racy, against a non-parametric yet dynamic baseline of
53%. F1 shows a comparable result, with pruned trees fol-
lowed by gradient boosting and random forests. Brier
scores are lowest for the support vector machine, fol-
lowed by a full tree in reducing the mean squared error
between actual and predicted values. Results are clus-
tered within a 0.06 to 0.08 band for most algorithms. An
overall ranking is estimated as a function of AUC + F1

Score - Brier Score, where the highest values are indica-
tive of topmost predictive strength, with random forests
first, followed by gradient boosting and support vector
machine. Although the individual assessment measures
are generally comparable, in combination these
measures provide a broader evaluation of overall perfor-
mance as constructed through the underlying and

nuanced criteria of each measure. Overall AUC predic-
tive accuracy across all algorithms reaches 64% for the
lag structure. In Table A7 (Appendix A), a robustness test
employing the three different F measures, and in com-
parison to harmonic mean F1, highlights a reduction in F
scores when using F0:5, weighted in order to minimize
false alarms, and an increase in scores when applying F2,
geared towards minimizing failure to signal a crisis. All
three measures move in tandem, with a high correlation
of 95.2% between F1 and F2, and a near perfect correla-
tion of 99.8% between F1 and F0:5. Overall ranking in
combination with AUC and Brier scores when substitut-
ing the F measures, underscores an unchanged outcome.
Resultantly, F1 as harmonic mean features as the selected
F measure in the remaining assessments.

5.3.4 | Robustness test: Recursive out-
of-sample forecasts of economic downturns

Given that financial crises are rare events, a robustness
test is instituted to model economic downturns using the
same dataset and lag structure. The latter to provide sig-
nals in advance. While financial crises happen on average
once every 28 years, economic downturns, categorized as
periods with negative real gross domestic product growth,
transpire every four and a half years according to the lon-
gitudinal dataset. Benefits of modeling downturns
include more observations to train and test the models. It
features a dependent variable series which is readily
available as based on market performance, in contrast to
the financial crisis series which is classified by in-depth
studies and assessments. To ensure comparability to the
existing modeling framework, the same variables used
for financial crises are employed. Based on findings in
Table A8 (Appendix), the same top three models, namely
support vector machine, random forests, and gradient
boosting features with the highest predictive accuracy.
The lower overall accuracy of 61%, using AUC, compared
to 64% for financial crises (in Table 2) using the same
modeling approach, while comparable, could be due to
variable selection, which is informed by literature find-
ings on precursors to financial crises. Yet the consistency
in modeling performance highlights both the models'
accuracy and practical relevance.

5.4 | Recursive out-of-sample crisis
forecasts in contemporaneous format

As robustness tests, three more forecasting frameworks
are developed. The second modeling dimension also
entails combining all 17 countries in an optimized panel
format across the period under review. In contrast to the
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lag model, the aim is to verify if predictive accuracy
improves without the benefit of enhanced lead time, and
instead through the use of predominantly contemporane-
ous indicators, as informed by the optimal statistical sig-
nificance of the variables in the probit model. Similar to
the panel model with lag structure, this approach allows
the machine learning methods to observe and learn from
the experiences of all countries, and utilizes a compre-
hensive dataset in the context of a low-frequency event,
to build and calibrate each model in a recursive manner
in order to operationalize out-of-sample forecasting.

5.4.1 | Optimized contemporaneous panel:
Variable importance results

Comparatively, in applying an optimized contemporane-
ous structure, which is geared towards identifying predic-
tors at the time of an actual crisis, by means of the
gradient boosting algorithm, banking sector influence
increases to 50% while the real sector reduces to 42%, and
the external sector remains unchanged, thereby empha-
sizing the dynamic adjustments of leading indicators one
year preceding a crisis compared to the year of a crisis. In
contrast to the lag format, where the real sector appears
more dominant, assessing the results in conjunction with
the contemporaneous structure, highlights an interplay
between the real sector and banking sector over time,
which exemplifies the sequential role of vulnerabilities in
the real sector propagating to the banking sector in the
lead up to the crisis.

5.4.2 | Optimized contemporaneous panel:
Recursive out-of-sample results

Recursive out-of-sample results for all countries in opti-
mized contemporaneous panel format are summarized in
Table 3. In terms of AUC, gradient boosting is the best-
performing model followed by random forests. Linear
probability, ridge, and probit models also perform above
average. Assessing the F1 scores, full tree is in first posi-
tion, followed by gradient boosting and random forests.
An analysis of Brier scores shows support vector machine
with the lowest error, followed by ridge. A comparison of
the three measures demonstrates that AUC correlates
67% of the time with F1 scores, with the latter showing a
negative correlation with Brier score of 75%. Based on the
combined ranking across all three measures, gradient
boosting and random forests constitute the top two algo-
rithms followed by ridge. In contrast to the lag structure
dimension (overall AUC of 64%), the optimized contem-
poraneous format is shown to register lower average
results of 61% across all algorithms, emphasizing the
forecasting benefits of detecting vulnerabilities with
lead time.

5.4.3 | Individual countries: Out-of-sample
results

Individual country forecasts are implemented by taking
the experience of other countries into account. The pur-
pose is to authenticate if knowledge of the same type of
rare events from other countries could improve forecast-
ing performance for an individual country. While

TABLE 2 Recursive out-of-sample

forecasts with lag structure.
Method AUC F1 Score Brier Score Rank

Baseline 0.534 [0.474, 0.593] 0.030 0.073 0.068 8

Linear Prediction 0.707 [0.655, 0.759] 0.026 0.130 0.074 5

Probit Regression 0.732 [0.678, 0.787] 0.027 0.073 0.840 11

K-Nearest Neighbors 0.498 [0.497, 0.499] 0.000 0.000 1.000 13

Support Vector Machine 0.696 [0.640, 0.752] 0.028 0.116 0.015 3

Ridge 0.707 [0.653, 0.761] 0.027 0.137 0.071 4

Lasso 0.533 [0.473, 0.592] 0.030 0.073 0.069 9

Partial Least Squares 0.500 [0.500, 0.500] 0.000 0.000 1.000 12

Full Tree 0.617 [0.545, 0.690] 0.027 0.136 0.063 7

Pruned Tree 0.605 [0.528, 0.682] 0.039 0.181 0.064 6

Adaptive Boosting 0.697 [0.639, 0.756] 0.029 0.071 0.500 10

Gradient Boosting 0.754 [0.702, 0.807] 0.026 0.142 0.069 2

Random Forests 0.765 [0.719, 0.811] 0.023 0.139 0.072 1

Notes: Variance of AUC is defined by DeLong et al. (1988) and estimated with an algorithm specified by Sun
and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95% confidence intervals.
Standard errors in italics.
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experience could be nuanced with unique predictors,
findings from variable importance signify commonality
across the full cohort of countries, which could under-
score key learnings with broad-based applications. It also
allows more variability in the predictors and increases
the degrees of freedom. Mean AUC values are graphically
summarized for each country in Figure A4 (Appendix A),
amounting to an average of 62% across all the countries.

Table A9 (Appendix A) highlights the top-performing
model per country and the deviation to both baseline and
across all models. Accuracy rates range from 60.3% in the
case of Germany to 94.3% for Australia. Full tree, linear,
and probit regression each registers the highest accuracy
rates across three countries, gradient boosting and ran-
dom forests have the most correct predictions amongst
two countries each and support vector machine, ridge,
and adaptive boosting each outperforms in one country.

The deviation between the top-performing model and
baseline confirms the value added by the best algorithm
against a non-parametric benchmark, where a higher
variance denotes a larger enhancement. Top models add
value for all countries and contribute above 20 percentage
points for Australia, Finland, Italy, Sweden, Switzerland,
and the UK.

Overall deviation serves to mark the variability of the
models. A higher deviation would accentuate the com-
plexity of modeling the underlying series for the specific
country. Employing 10 percentage points as an arbitrary
threshold, and assessing all models, a large degree of
complexity is encountered for the majority of countries,
with Australia and the Netherlands at the top end of the
spectrum.

5.5 | Recursive out-of-sample crisis
forecasts for individual countries

The third modeling dimension revolves around the indi-
vidual experience of each country. In contrast to the opti-
mized panel format in the second modeling dimension,
models only take into account the knowledge of the
experiences that transpired in a particular country, which
ensures that idiosyncratic factors are ringfenced for the
development of country-specific models, and in turn,
used for recursive forecasting. For comparability, results
are reported in both individual country and aggregate
format, the latter a combination of the former.

5.5.1 | Individual countries: Variable
importance results

Variable importance results from the gradient boosting
algorithm are combined across all years for each individ-
ual country and summarized in Figure A5 (Appendix).
Fixed capital formation emerges as a leading indicator
across most countries, similar to the overall findings
(in Figure 2). Other variables include the stock market,
consumption expenditure, debt, capital output ratio, and
short-term interest rates. While there exists similarity
across most countries, there are notable exceptions such
as the strength of gross domestic product and current
account balance in the United Kingdom, loans and
exchange rates for France, and short-term rates together
with fixed capital formation in the United States. These
nuances highlight the ability of the models to detect

TABLE 3 Recursive out-of-sample

forecasts in an optimized panel format.
Method AUC F1 Score Brier Score Rank

Baseline 0.564 [0.500, 0.627] 0.032 0.068 0.076 7

Linear Prediction 0.687 [0.632, 0.742] 0.027 0.108 0.084 5

Probit Regression 0.681 [0.615, 0.747] 0.033 0.070 0.844 11

K-Nearest Neighbors 0.499 [0.498, 0.500] 0.000 0.000 1.000 13

Support Vector Machine 0.637 [0.588, 0.687] 0.025 0.098 0.020 4

Ridge 0.683 [0.629, 0.738] 0.027 0.114 0.073 3

Lasso 0.528 [0.457, 0.598] 0.035 0.082 0.076 8

Partial Least Squares 0.500 [0.500, 0.500] 0.000 0.000 1.000 12

Full Tree 0.570 [0.496, 0.643] 0.037 0.163 0.074 6

Pruned Tree 0.544 [0.486, 0.602] 0.029 0.075 0.076 9

Adaptive Boosting 0.638 [0.577, 0.700] 0.031 0.122 0.500 10

Gradient Boosting 0.750 [0.692, 0.808] 0.029 0.137 0.081 1

Random Forests 0.696 [0.637, 0.755] 0.030 0.126 0.084 2

Notes: Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified by Sun
and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95% confidence intervals.
Standard errors in italics.
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influential variables causing banking crises on an individ-
ual country level, underscoring the models' regional
applicable and practical value.

5.5.2 | Individual countries: Recursive out-
of-sample results

As shown in Table 4 and in aggregate format, the five
best-performing methods are adaptive and gradient
boosting, linear regression, full tree, and lasso, on average
slightly under or above 60%. In terms of F1 scores, full
tree, k-nearest neighbors, ridge, and gradient boosting
reach high accuracy, whereas support vector machine,
full and pruned tree reflect low Brier scores. Overall, the
top three models are gradient boosting, full tree, and sup-
port vector machine. With average AUC results of 56%
across all models, in contrast, the panel format in the sec-
ond modeling dimension shows how knowledge from
other countries somewhat improves the average aggre-
gate outcomes to 61% (from Table 3). In comparison, the
non-aggregate format displayed graphically on an indi-
vidual country level by mean AUC in Figure A6
(Appendix A), highlights a narrowing in the deviation
between the two approaches, at 61% to 62% (as shown in
Figure A4) for the panel format. However, when compar-
ing the best-performing models between the two
approaches as shown in Table A10 (Appendix A), the
inverse transpires, yet at marginal levels, with the indi-
vidual country format on 81% to the aggregate country
results from the panel format on 80%. Across both for-
mats, the top models therefore correctly predict at a high
accuracy rate (80%) across the 147 years under

investigation. In terms of the top performing models,
adaptive boosting records the most accurate prediction
across four countries, pruned tree across three countries,
lasso, ridge, support vector machine, and linear each for
two countries, with full tree and probit on one country
each. Although the experience of other countries
improves accuracy rates overall and for most countries,
Germany is an exception with better results observed
from models tailored to the country's individual
experiences.

In comparison to the aggregate results for individual
countries in the panel format, the slightly lower deviation
to baseline could be ascribed to less variability in the pre-
dictors. Lasso in the case of Sweden and full tree for
Germany add the most value. Although the complexity
encountered is slightly less for the panel format, with an
average difference of only one percentage point to that of
individual country format, the variability in predictors
might result in models becoming somewhat better
equipped to handle more complex datasets. Similar to the
individual country results derived through the panel for-
mat, Australia is at the top of the list for complexity, but
then followed by Canada. The lower prevalence of crises
experienced by these two countries can be expected to
contribute to the degree of complexity faced by the
models.

5.6 | Rolling window out-of-sample
crisis forecasts

As the fourth modeling dimension, a new configuration
is applied to the panel format. Instead of increasing the

TABLE 4 Recursive out-of-sample

forecasts for individual countries in

aggregate format.

Method AUC F1 Score Brier Score Rank

Baseline 0.501 [0.434, 0.567] 0.034 0.073 0.080 7

Linear Prediction 0.602 [0.536, 0.668] 0.033 0.092 0.220 8

Probit Regression 0.543 [0.474, 0.612] 0.035 0.074 0.970 11

K-Nearest Neighbors 0.503 [0.490, 0.516] 0.006 0.107 1.000 12

Support Vector Machine 0.559 [0.497, 0.621] 0.031 0.082 0.040 3

Ridge 0.530 [0.481, 0.580] 0.025 0.106 0.400 9

Lasso 0.582 [0.521, 0.643] 0.031 0.075 0.090 4

Partial Least Squares 0.499 [0.497, 0.500] 0.000 0.000 1.000 13

Full Tree 0.593 [0.535, 0.650] 0.029 0.107 0.070 2

Pruned Tree 0.501 [0.432, 0.570] 0.035 0.076 0.070 6

Adaptive Boosting 0.658 [0.597, 0.720] 0.031 0.067 0.500 10

Gradient Boosting 0.647 [0.587, 0.708] 0.030 0.094 0.100 1

Random Forests 0.537 [0.477, 0.597] 0.030 0.076 0.100 5

Notes: Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified by Sun
and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95% confidence intervals.
Standard errors in italics.
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cumulative volume of the training set during each itera-
tive procedure, a 20-year rolling window is employed. As
the economic landscape evolves over time, and in the
context of the extended historical series, comparability
between contemporaneous events and occurrences that
took place over a century ago might be limited, and could
affect the forecasting performance when applied to a dif-
ferent epoch. Informed by the mid-point of the Kuznets
infrastructural investment cycle, spanning 15–25 years
(Black et al., 2012), and given the importance of fixed
capital formation as the leading indicator over the
147-year period, a standardized 20-year window is
employed, executed on a rolling basis, through which the
time-bound focus allows events to be modeled and fore-
casted around a comparable period.

As shown in Table 5, average mean values of 64%
across all algorithms are similar to the panel format with
a lag structure. Top performing methods as based on fore-
casted accuracy consist of random forests and gradient
boosting, followed by probit and linear probability regres-
sions and ridge. Random forests and gradient boosting
generate high F1 scores with mid-tier Brier scores. Com-
bined top models comprise gradient boosting, random
forests, and linear probability regression. According to
AUC, a probit regression achieves a 73% accuracy com-
pared to the 77% of gradient boosting and random forests.
The four-percentage point difference between the models
over 17 countries and close to 2,499 annual forecasts
translates to around 100 more forecasts correctly called
by the top two ensemble algorithms compared to the tra-
ditional probit regression.

5.7 | Ranked methods across forecasting
models

Across the four modeling dimensions, from optimized
contemporaneous panel format to transformations with
lag structure and a rolling window to the aggregation of
individual countries, select machine learning methods
performed at consistently high accuracy levels. These are
inclusive of ensemble and decision tree algorithms as
well as traditional regressions. The strength of the probit
and linear probability regressions to perform above aver-
age is supported by studies on its comparative effective-
ness such as Beutel et al. (2019). In several instances,
further transformations improved model performance as
it became better equipped to model the underlying data-
set and predict an ensuing crisis.

Summarized by the highest AUC mean value for each
method specific to the associated top dimension, Table 6
underscores the variability and improvements across the
four dimensions. Accordingly, six of the thirteen models
reach the highest predictive strength through the lag
structure, four through the standardized rolling window,
two within the optimized contemporaneous panel for-
mat, and one when employing the aggregate format com-
prising individual countries. When applying this
combination, average mean AUC values increase to 65%,
with the top two algorithms featuring random forests and
gradient boosting, both on 77% overall accuracy rates
across 17 countries and 147 years. Notwithstanding,
average AUC mean values increase above 80% for top
individual country models, both in panel and aggregate

TABLE 5 Rolling window out-

of-sample forecasts.
Method AUC F1 Score Brier Score Rank

Baseline 0.527 [0.467, 0.587] 0.032 0.082 0.065 8

Linear Prediction 0.717 [0.652, 0.782] 0.033 0.136 0.072 3

Probit Regression 0.731 [0.662, 0.800] 0.035 0.066 0.869 11

K-Nearest Neighbors 0.499 [0.497, 0.500] 0.000 0.000 1.000 13

Support Vector Machine 0.648 [0.590, 0.706] 0.029 0.111 0.018 5

Ridge 0.696 [0.638, 0.755] 0.029 0.116 0.084 6

Lasso 0.528 [0.469, 0.587] 0.030 0.082 0.077 9

Partial Least Squares 0.500 [0.500, 0.500] 0.000 0.000 1.000 12

Full Tree 0.660 [0.581, 0.739] 0.040 0.160 0.068 4

Pruned Tree 0.536 [0.480, 0.592] 0.028 0.087 0.069 7

Adaptive Boosting 0.665 [0.601, 0.729] 0.032 0.066 0.500 10

Gradient Boosting 0.776 [0.717, 0.835] 0.030 0.158 0.076 1

Random Forests 0.778 [0.726, 0.829] 0.026 0.142 0.078 2

Notes: Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified by Sun
and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95% confidence intervals.

Standard errors in italics.
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format. Across all three measures, the top models are gra-
dient boosting, random forests, and support vector
machines. While both the lag structure and rolling win-
dow deliver 64% overall accuracy rates, the former
encompasses the highest prediction strength for nearly
half of the machine learning models. However, the two
best-performing models feature within a rolling window
framework, underscoring the value of employing a
diverse set of modeling tools for leaning against the wind
to prevent cleaning up after the bust.

Overall, most models outperform the baseline model,
which is a dynamic model but comparatively more stable
than the other models. In an environment where the out-
come is rare, relying on a baseline model which provides
a more fundamental view of developments, is expected to
deliver less false positives and more true positives of non-
crisis events. Yet overall, the highest performance
reaches 56%.

Non-linear models are shown to deliver higher accu-
racy rates compared to linear models, which can be
expected given that relationships are non-linear in the
formation of assets, debt, fixed capital formation, and
consumption bubbles, and break down during episodes
of distress. SVM performs better than its linear equivalent
k-NN, also exacerbated by the low frequency of crisis
events. In addition, models geared towards dimension
reduction, higher weighted regularization, and tree prun-
ing, which results in the exclusion of variables are also
shown to exhibit comparatively lower performance
strength. This explains why ridge outperforms lasso, PLS
underperforms the baseline model and full tree generally
delivers better results than a pruned tree. A finding cor-
roborated in a study by Ward (2017), showing larger
numbers of variables improve predictions.

Traditional regression methods, probit, and linear
probability models, perform above average according to
mean AUC values, respectively third and fourth best
across the lag and rolling window structure, and third
and fifth best across the optimized panel format. How-
ever, performance is more mixed for individual countries.
Based on the overall results combining three assessment
measures, the linear probability model reaches a top four
position after gradient boosting, random forests, and sup-
port vector machine.

6 | POLICY IMPLICATIONS

Systemic financial crises are rare events, yet with debili-
tating ramifications. Its unique nature requires novel
modeling approaches. The interplay between the real sec-
tor and the banking sector exemplifies the sequential role
of vulnerabilities in the real sector propagating to the
banking sector over time, with more stress in the banking
sector contributing to failures. While capital formation
constitutes an important variable in contributing to the
formation of banking crises over the long run, other real,
as well as banking and external sector variables continue
to evolve in prominence over time and require ongoing
monitoring.

New methods in the form of machine learning algo-
rithms are shown to improve the prediction of an old
problem. Across four modeling dimensions, a lag struc-
ture and rolling window are more conducive to optimize
forecasting performance. A panel format, that is based on
the communal experience of a large group of countries,
generates higher accuracy levels of forecasts for individ-
ual countries, given more episodes to learn from the

TABLE 6 Top recursive out-

of-sample forecasts across all formats.
Methods Top Dimension AUC F1 Score Brier Score Rank

Baseline Panel 0.564 0.068 0.076 8

Linear Prediction Window 0.717 0.136 0.072 4

Probit Regression Lag 0.732 0.073 0.840 11

K-Nearest Neighbors Individual 0.503 0.107 1.000 12

Support Vector Machine Lag 0.696 0.116 0.015 3

Ridge Lag 0.707 0.137 0.071 5

Lasso Lag 0.533 0.073 0.069 9

Partial Least Squares Panel 0.500 0.000 1.000 13

Full Tree Window 0.660 0.160 0.068 6

Pruned Tree Lag 0.605 0.181 0.064 7

Adaptive Boosting Lag 0.697 0.071 0.500 10

Gradient Boosting Window 0.776 0.158 0.076 1

Random Forests Window 0.778 0.142 0.078 2
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experience of other countries, and exposure to diverse
environments. Furthermore, non-linear models deliver
higher accuracy rates compared to linear models, which
underscores the deterioration of relationships during epi-
sodes of distress. In addition, models accommodating
more variables, and not excluding the influence of vari-
ables generally deliver higher performance strength.
Ensemble algorithms in general, and gradient boosting,
and random forests in particular, are consistently top-
performing models over a long-run horizon and provide
policymakers with an enhanced modeling toolkit. Yet,
commonly used regression methods, probit, and linear
probability models perform above average. Variations in
performance in individual countries underscore the value
of employing a diverse set of modeling tools for leaning
against the wind to prevent cleaning up after the bust.
The study on 147 years of crises highlights the robust per-
formance of novel modeling methods over the long run.
Higher predictive strength could further reduce and con-
tain resolution costs.

The old and ongoing problem of recurring financial
crises, as quantified in the historical dataset spanning a
century and a half, highlights that most countries con-
tinue to experience further financial crises and are not
able to graduate from these crises. In 2023, countries
including the USA and Switzerland are experiencing sev-
eral bank failures. So, the aim of this study is to address
this old and ongoing problem with novel modeling tools,
in the form of machine learning methods, to better fore-
cast financial crises over a long-run horizon.

Based on the forecasting accuracy of these novel
methods, it would have been beneficial for a policymaker
in the 1800s and 1900s to use machine learning rather
than commonly used alternatives such as the baseline
and probit models. Robust results over the long term,
recursively forecasted as if policymakers lived during the
past century and a half, underscores the potential of these
novel models for the long run future.

7 | CONCLUSION

In developing new forecasting methods for an old prob-
lem, 13 machine learning algorithms are employed to
study 147 years of systemic financial crises across
17 countries. The range of methods includes a baseline
model as a non-parametric approach as well as linear
probability and probit regressions to serve as a common
benchmark. Instance-based algorithms comprise
k-nearest neighbors, which categorize new observations
according to their closest points in an existing dataset,
and support vector machine that apply kernels to enlarge
the feature space to allow for non-linear relationships.

Regularization algorithm ridge reduces less significant
coefficients towards zero, while in the case of lasso, some
coefficient estimates equate to zero. Classification and
regression trees include full tree and pruned trees
and accommodate non-linear relationships and allow
interactions between variables. Partial least squares con-
stitute a dimension reduction method that finds new fea-
tures that approximate the initial features and are related
to the outcome variable. Ensemble algorithms operatio-
nalize a set of weak learners to communally build a
strong learner, with the aim of improving the perfor-
mance of an individual forecast. The algorithms span
random forests, which revolve around bagging, as well as
gradient boosting, and adaptive boosting, which make
use of a boosting process.

This paper implements a set of 12 leading indicators,
inclusive of real sector predictors such as gross domestic
product per capita, consumption expenditure, fixed capi-
tal formation, and capital output ratio, as well as banking
sector predictors comprising debt, credit, stock market,
inflation, and short-term and long-term interest rates,
together with external sector predictors which consist of
exchange rates and current account balance. A represen-
tative sample of countries across several regions is used.

Four modeling dimensions, which encompass an
optimized contemporaneous panel format, transforma-
tions with lag structure, and a 20-year rolling window as
well as an individual country format, are implemented to
assess the forecasting strength of machine learning
methods. Recursive out-of-sample forecasting perfor-
mance is assessed by means of AUC, F1, and Brier scores.
Findings highlight that an expanding window lag struc-
ture as well as a rolling window increase overall accuracy
rates in comparison to the optimized contemporaneous
panel and individual country format. Notwithstanding,
some individual country forecasts improve on the panel
experience utilized for individual country-level predic-
tions. Random forests and gradient boosting are consis-
tently top-performing machine learning methods, both
classifying through AUC, 77% of forecasts correctly across
17 countries and 147 years. Traditional regression models
probit and linear also perform above average at respec-
tively 73% and 71% accuracy rates. All top models add
accuracy value, reaching above 20 percentage points for
several countries in comparison to a non-parametric
baseline. A level of complexity is detected across the time
series for most countries, with the majority breaching an
arbitrary 10 percentage points threshold level in panel
and individual country formats.

In an analysis of leading indicators, fixed capital for-
mation exhibits the largest influence, followed by GDP
per capita according to gradient boosting, and inflation
by means of random forests variable importance
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measures. Debt-to-GDP, stock market, and consumption
were highly influential at the turn of the 20th century,
whereas inflation has increased in importance over the
last several decades. On an average basis over the full
period and using a lag structure, banking sector variables
constitute 28% of the variation in crisis prevalence, real
sector 64%, and the external sector 8%.

The practicality of implementing machine learning
algorithms, and its ability to handle large datasets, and
deal with non-linear relationships, allow policymakers a
straightforward and enhanced set of tools to study finan-
cial vulnerabilities with improved forecasting accuracy.
Across a long history of systemic financial crises, machine
learning models represent novel methods that make a
valued contribution to the literature on early warning
crisis signals and emerging forecasting frameworks.
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APPENDIX A

TABLE A1 Explanatory indicators.

Indicator Definition Category

GDP GDP per capita, first difference in
logs

Real

CE Consumption expenditure, first
difference in logs, two lags

Real

FCF Fixed capital formation, first
difference in logs, one lag

Real

COR Fixed capital formation to GDP, first
difference in logs

Real

DEBT Debt relative to GDP, first difference
in logs

Banking

LOANS Total loans, in logs, one lag Banking

STOCK Stock market, first difference in logs Banking

CPI Consumer inflation, in logs Banking

SR Short-term interest rates Banking

LR Long-term interest rates Banking

ER Exchange rate, first difference External

CA Current account balance External

TABLE A2 Number of crises by country.

Country Count of Crises

Australia 2

Belgium 7

Canada 1

Denmark 7

Finland 5

France 4

Germany 6

Italy 9

Japan 6

Netherlands 5

Norway 4

Portugal 5

Spain 8

Sweden 6

Switzerland 5

United Kingdom 4

United States 6
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TABLE A3 Unit root tests.

ADF – Fisher Test (Levels)

Indicator Specification
Inverse
chi-squared Inverse normal Inverse logit t

Modified inv.
chi-squared

GDP c,4 461.772*** �19.166*** �31.049*** 51.875***

CE c,4 469.377*** �19.365*** �31.561*** 52.797***

FCF c,4 478.482*** �19.491*** �32.172*** 53.901***

COR c,4 623.583*** �22.787*** �41.930*** 71.497***

DEBT c,4 448.313*** �18.337*** �30.112*** 50.242***

LOANS c,4 4.535 7.547 8.158 �3.573

STOCK c,4 532.674*** �20.703*** �35.817*** 60.473***

CPI c,4 2.424 7.429 7.794 �3.829

SR c,4 31.307 �0.504 �0.486 �0.326

LR c,4 31.743 �0.254 �0.359 �0.273

ER c,4 460.365*** �19.160*** �31.919*** 51.704***

CA c,4 83.126*** �1.985** �3.191*** 5.957***

Phillips-Perron – Fischer Test (Levels)

GDP c,4 1165.212*** �32.556*** �78.350*** 137.179***

CE c,4 1168.767*** �32.613*** �78.590*** 137.610***

FCF c,4 1138.007*** �32.020*** �76.521*** 133.880***

COR c,4 1171.288*** �32.643*** �78.759*** 137.916***

DEBT c,4 1101.636*** �31.377*** �74.075*** 129.469***

LOANS c,4 3.095 8.190 9.194 �3.747

STOCK c,4 1186.083*** �32.902*** �79.754*** 139.710***

CPI c,4 1.518 9.057 10.114 �3.938

SR c,4 72.864*** �4.074*** �4.247*** 4.713***

LR c,4 30.969 �0.684 �0.633 �0.367

ER c,4 1138.229*** �32.265*** �78.919*** 133.907***

CA c,4 50.684** 0.202 0.461 2.023**

Note: Unit root tests are constructed using Augmented Dicky-Fuller (see Hamilton, 1994) and Phillips and Peron (see Phillips & Peron, 1988) procedures. Based

on Choi (2001), four different methods are assessed to test the null hypothesis of a unit root across all panels, through an inverse χ2, inverse-normal, inverse-
logit transformation and a modification of the inverse χ2 transformation of the p-values. The latter is appropriate for N!∞.
*** (**, *) denotes significance at 1%, (5%, 10%).
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TABLE A4 Sample means of

explanatory indicators.
Indicators Y = 0 Y = 1 T-test

Real Sector

Gross domestic product per capita 0.002 0.000 0.017**

Consumption expenditure 0.017 0.006 0.068*

Fixed capital formation 0.105 �0.029 0.001**

Capital output ratio �0.001 0.019 0.003**

Banking Sector

Debt to gross domestic product 0.007 �0.470 0.018**

Total loans 5.913 4.457 0.052*

Stock market 0.010 �0.076 0.215

Consumer inflation 1.447 0.047 0.005**

Short-term interest rates 4.806 6.053 0.000***

Long-term interest rates 5.591 5.655 0.003**

External Sector

Exchange rates 0.052 0.069 0.682

Current account �57,591 �270,219 0.012**

Note: T-test p-values: ***/**/* denotes 10%, 5%, and 1% rejection of null hypothesis.

TABLE A5 Probit model results.

Lag Structure Optimal Contemporaneous Structure

No. of observations: 2,431 2,414

Constrained log-likelihood: �375.147 �374.526

Max. log-likelihood: �354.944 �338.919

LR-chiˆ2: 40.40*** 71.21***

AIC: 0.303 0.292

BIC: �18140.981 �18023.648

Variable dy/dx dy/dx

Gross domestic product per capita 0.556 (0.864) �1.212 (0.539) **

Consumption expenditure �0.353 (0.238) 0.404 (0.173) **

Fixed capital formation 0.007 (0.002) ** 0.005 (0.002) **

Capital output ratio �0.056 (0.061) 0.110 (0.049) **

Debt to gross domestic product 0.003 (0.001) ** �0.004 (0.001) ***

Total loans 0.001 (0.000) 0.001 (0.000) *

Stock market �0.001 (0.005) �0.007 (0.004) *

Consumer inflation �0.003 (0.001) ** �0.003 (0.001) ***

Short-term interest rates 0.007 (0.002) *** 0.010 (0.002) ***

Long-term interest rates �0.006 (0.002) *** �0.009 (0.002) ***

Exchange rates �0.015 (0.025) �0.001 (0.005)

Current account �0.000 (0.000) * 0.000 (0.000) *

Note: Margins with standard errors in brackets; *** (**, *) denotes significance at 1%, (5%, 10%).
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TABLE A6 Probit model: Granger causality.

Lag = 1 Lag = 2 Lag = 3 Lag = 4
Y X Z-bar tilde Z-bar tilde Z-bar tilde Z-bar tilde

Real Sector

Crisis GDP per capita 0.392 0.392 0.749 �0.179

GDP per capita Crisis 2.611*** 2.611 1.539 1.040

Crisis Consumption expenditure 2.566 2.566* 3.247*** 2.613***

Consumption expenditure Crisis �0.808 �0.808 �0.026 1.644*

Crisis Fixed capital formation 5.913*** 5.913*** 3.674*** 3.035***

Fixed capital formation Crisis 0.153 0.153 0.895 2.354**

Crisis Capital output ratio 0.402 0.402 1.082 1.859*

Capital output ratio Crisis 3.708*** 3.708** 2.998*** 1.527

Banking Sector

Crisis Debt to GDP �0.718 �0.718* �2.311** �2.980***

Debt to GDP Crisis �1.378 �1.378 1.700* 2.711*

Crisis Total loans �0.668 �0.668** 2.710* 4.254***

Total loans Crisis 6.233*** 6.233*** 3.156*** 3.397***

Crisis Stock market 1.037 1.037 �0.348 �1.014

Stock market Crisis 3.820*** 3.820*** 2.965*** 2.036**

Crisis Consumer inflation �0.751 �0.751 �0.864 0.601

Consumer inflation Crisis 3.941*** 3.941** 1.392 �0.006

Crisis Short-term rates 0.957 0.957 �0.172 �0.679

Short-term rates Crisis 11.940*** 11.940*** 10.671*** 7.924***

Crisis Long-term rates �0.335 �0.335 �0.381 �0.339

Long-term rates Crisis �0.514 �0.514** 0.710 0.882

External Sector

Crisis Exchange rates �0.869 �0.869 0.819 4.153***

Exchange rates Crisis 0.914 0.914 �0.535 �1.658*

Crisis Current account �0.517 �0.517 �0.891 �1.128

Current account Crisis 3.187*** 3.187*** 4.465*** 4.770***

Note: Granger causality for panel models using Dumitrescu and Hurlin (2012); *** (**, *) denotes p-value significance of Z-bar tilde at 1%, (5%, 10%).
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FIGURE A1 Gradient boosting: Variable importance by indicator.

FIGURE A2 Gradient boosting: Variable importance by sector.
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FIGURE A3 Random forests: Variable importance.

TABLE A7 Robustness test of F-measures using lag structure.

Method F1 score F2 score F0:5 score Rank incl F1 Rank incl F2 Rank incl F0:5

Baseline 0.073 0.162 0.051 8 8 8

Linear Prediction 0.130 0.259 0.089 5 5 5

Probit Regression 0.073 0.164 0.051 11 11 11

K-Nearest Neighbors 0.000 0.000 0.000 13 13 13

Support Vector Machine 0.116 0.232 0.079 3 3 3

Ridge 0.137 0.268 0.093 4 4 4

Lasso 0.073 0.162 0.051 9 9 9

Partial Least Squares 0.000 0.000 0.000 12 12 12

Full Tree 0.136 0.231 0.090 7 7 7

Pruned Tree 0.181 0.250 0.115 6 6 6

Adaptive Boosting 0.071 0.161 0.050 10 10 10

Gradient Boosting 0.142 0.277 0.096 2 2 2

Random Forests 0.139 0.278 0.095 1 1 1

TABLE A8 Recursive out-

of-sample forecasts of downturn with

lag structure.

Method AUC F1 score Brier score Rank

Baseline 0.539 [0.511, 0.568] 0.014 0.366 0.351 9

Linear Prediction 0.604 [0.575, 0.633] 0.014 0.386 0.374 7

Probit Regression 0.593 [0.563, 0.622] 0.015 0.082 0.687 11

K-Nearest Neighbors 0.557 [0.539, 0.576] 0.009 0.000 1.000 13

Support Vector Machine 0.652 [0.624, 0.679] 0.013 0.418 0.130 1

Ridge 0.604 [0.575, 0.633] 0.012 0.384 0.353 6

Lasso 0.530 [0.531, 0.559] 0.014 0.366 0.347 10

Partial Least Squares 0.497 [0.493, 0.501] 0.001 0.000 1.000 12

Full Tree 0.635 [0.606, 0.664] 0.014 0.432 0.309 4

Pruned Tree 0.625 [0.596, 0.654] 0.014 0.423 0.324 5

Adaptive Boosting 0.673 [0.647, 0.700] 0.013 0.440 0.500 8

Gradient Boosting 0.688 [0.661, 0.714] 0.013 0.456 0.314 3

Random Forests 0.703 [0.678, 0.728] 0.012 0.457 0.321 2

Note: Variance of AUC is defined by DeLong et al. (1988) and estimated with an algorithm specified by Sun
and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95% confidence intervals.

Standard errors in italics.
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TABLE A9 Top country models from optimized panel format.

Country Top model Top model accuracy Deviation to baseline
Overall deviation across
all models

Australia Probit 0.943 0.235 0.158

Belgium Full Tree 0.736 0.108 0.087

Canada Full Tree 0.810 0.165 0.089

Denmark Full Tree 0.824 0.178 0.109

Finland Ridge 0.843 0.281 0.146

France Random Forests 0.825 0.173 0.117

Germany Linear 0.603 0.086 0.042

Italy Linear 0.877 0.273 0.140

Japan Adaptive Boosting 0.701 0.037 0.065

Netherlands Probit 0.881 0.047 0.155

Norway Support Vector Machine 0.689 0.081 0.064

Portugal Probit 0.765 0.140 0.081

Spain Probit 0.772 0.136 0.102

Sweden Gradient Boosting 0.844 0.213 0.121

Switzerland Gradient Boosting 0.810 0.213 0.108

UK Random Forests 0.843 0.253 0.121

USA Linear 0.837 0.105 0.109

Baseline Linear Probit KNN SVM Ridge Lasso PLS
Full
Tree

Pruned
Tree

Ada
Boost

Gradient
Boost

Random
Forests

Australia

Belgium

Canada

Denmark

Finland

France

Germany

Italy

Japan

Netherlands

Norway

Portugal

Spain

Sweden

Switzerland

UK

USA

FIGURE A4 Individual countries: Recursive out-of-sample forecasts in panel format. Note: AUROC low (red) to high (green) gradient

results.
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FIGURE A5 Individual countries: Variable importance. Note: low (red) to high (green) gradient results.

FIGURE A6 Individual countries: Recursive Out-of-sample forecasts in independent format. Note: AUROC low (red) to high (green)

gradient results.
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APPENDIX B

B.1 | Non-parametric
B.1.1 | Baseline approach

As a non-parametric model, the baseline model functions
as a benchmark for the performance of all the algorithms.
Based on a conventional modeling framework, the
modeling approach studies mean values across the train-
ing dataset. Formally stated as bxit ¼ 1

N

PN
i¼1xit, the model

renders a straightforward non-parametric solution which
is employed for predictions of the test dataset.

B.2 | Regression algorithms
B.2.1 | Linear probability model

The linear probability model is an extension of the linear
regression equation and operationalized as a generalized
case of the binomial distribution. Thereby, underscoring
a linear relationship between the predictors and discrete
outcome variable Y. The probability of observing a sys-
temic financial crisis (Y = 1) or non-crisis (Y = 0) is
determined through vector x, mathematically stated as
Prob Y ¼ 1jxð Þ¼F x,βð Þ and Prob Y ¼ 0jxð Þ¼ 1�F x,βð Þ.
Given that the β parameters express the response of fluc-
tuations in x on the likelihood of a crisis episode, the
marginal effects of predictors on the probability of

the independent variable can be estimated. Following
Greene (2012), by inserting the linear regression equa-
tion, F x,βð Þ¼ x0β, the linear probability regression can be
denoted as Y ¼E yjx½ �þ y�E yjx½ � ¼ x0βþϵ. A shortfall of
the linear probability modeling framework is that x0β is
not constrained to the 0 to 1 interval, and out-of-range
results could inhibit clear interpretation (Greene, 2012).

B.2.2 | Probit regression

As one of the oldest (see Bliss, 1934, 1935;
Fechner, 1860; Gaddum, 1933) and most popular
statistical methods (Cramer, 2002) the probit regression,
comparable to the linear probability method, models a
binary outcome variable. Operationalized, by modeling
an inverse standard normal distribution of the outcome
variable as a non-linear relationship to the explanatory
variables. Based on Greene (2012), this can formally be
denoted as Yit

� ¼ x0itβþ εit, where εit N 0,1½ � and yit ¼ 1 if
yit

� >0, else yit ¼ 0. Given that yit follows a Bernoulli
distribution, which consists of a single draw from a
two-outcome binomial procedure, probability values
can be described by Prob yit ¼ 1jxitð Þ¼ϕ x0it,β

� �
and

Prob yit ¼ 0jxitð Þ¼ 1�ϕ x0it,β
� �

. Distinctively, the binary
choice model in comparison to the linear probability
model is estimated through maximum likelihood,
which in combination with success probability F x0itβ

�
),

TABLE A10 Top country models from independent format.

Country Top model Top model accuracy Deviation to baseline
Overall deviation across
all models

Australia Ridge 0.961 0.052 0.197

Belgium Adaptive Boosting 0.685 0.040 0.067

Canada Support Vector Machine 1.000 0.058 0.198

Denmark Adaptive Boosting 0.931 0.166 0.116

Finland Pruned Tree 0.777 0.020 0.097

France Ridge 0.810 0.164 0.115

Germany Full Tree 0.735 0.188 0.096

Italy Lasso 0.635 0.000 0.083

Japan Probit 0.752 0.118 0.086

Netherlands Pruned Tree 0.751 0.000 0.146

Norway Adaptive Boosting 0.844 0.070 0.127

Portugal Adaptive Boosting 0.850 0.106 0.113

Spain Linear 0.785 0.067 0.109

Sweden Lasso 0.762 0.236 0.104

Switzerland Support Vector Machine 0.814 0.047 0.113

UK Pruned Tree 0.871 0.092 0.143

USA Linear 0.821 0.102 0.094

36 du PLESSIS and FRITSCHE



and independent and random observations, can
be defined through a joint probability
as L yjX ,βð Þ¼Qn

i�1
ϕ x0itβ
� �� �yit 1�ϕ x0itβ

� �� �1�yit .

B.3 | Instance-based algorithms
B.3.1 | K-nearest neighbors (k-NN)

Advanced by Fix and Hodges (1951) and expanded by
Cover and Hart (1967), procedurally, and through a posi-
tive integer k and observation x0, the k-NN classifier
detects the k points in the dataset that are adjacent to x0,
characterized by N0. Consequently, the conditional prob-
ability for class j is estimated as the proportion of data-
points in N0 where the response values are identical to j,
described formally as pr y¼ jjx¼ x0ð Þ¼ 1

K

P
i � N0

I yit ¼ jð Þ.

Operationally, k-NN integrates Bayes' theorem to
label the test observation x0 as the outcome class with
the highest probability. Subsequent to the classifier tech-
nique, the k-NN regression method is estimated, wherebf x0ð Þ is determined as the average of all the training

responses in N0, stated as bf x0ð Þ¼ 1
K

P
xit � N0

yit . In setting

k, the allowable error rate impacts on the bias-variance
trade-off. Where k= 1, the error rate in the training data-
set converges to zero, but the variance encountered in
the test set would be large. By increasing the value of k, a
higher quantity of errors would lead to higher bias, while
the error count in the test dataset could shrink (James
et al., 2013). In this paper, cross-validation consists of
tenfold resampling, repeated 10 times, with a maximum
number of k estimated as 9, and with distance as 2.

B.3.2 | Support vector machine (SVM)

As developed by Boser et al. (1992), with a support vector
machine, kernels determine the level of relationship,
which in turn finds support vector lines to classify the
observations. Based on James et al. (2013), SVM is
constructed using support vector classifiers, where a
linear support vector classifier can be denoted as

f xð Þ¼ β0þ
XN
i¼1

αi x,xitð Þ, ðB1Þ

with N number of parameters αi. To estimate the kernel,
inner products of observations instead of actual observa-
tions are employed, represented by

xit,xit0ð Þ ¼
Xp
j¼1

xit ,xit0j
� �

, ðB2Þ

for observations (xi,xi0 Þ. Consequently, parameters
αi,…,αn are computed using inner products (xi,xi0 ) of
observations. Given that αi only takes positive values for
support vectors, αi turn zero for all non-support vector
observations. Where S constitutes the set of support
points, equation (B2) can be restated as

f xð Þ¼ β0þ
X
i � S

αit x,xitð Þ, ðB3Þ

resulting in significantly fewer terms to consider. The
inner product of the observations can be replaced with a
generalized version k xit,xit0ð Þ, where k is a kernel, a func-
tion that measures the resemblance across a set of obser-
vations. Enhanced with a polynomial kernel of degree
d so that

k xit,xit0ð Þ ¼ 1þ
Xp
j¼1

xitj,xit0j
� �d

,

 
ðB4Þ

where d > 1, to support more flexible decision bound-
aries. Compared to the original feature space, through
the polynomial, the kernel permits a higher-dimensional
space. A support vector classifier in conjunction with a
non-linear kernel results in a support vector machine
and can mathematically be denoted as

f xð Þ¼ β0þ
X
i � S

αitk x,xitð Þ: ðB5Þ

Where d = 1, the SVM and support vector classifiers
are considered identical.

For the SVM algorithm, the radial kernel is used with
gamma initially set to 0.083, cost constraints (regulariza-
tion constant) to 1, and insensitive loss-function (epsilon)
to 0.1.

B.4 | Regularization algorithms
Ridge and Lasso introduce some bias by adding a penalty
to the regression, with the aim of dealing with the bias-
variance trade-off encountered by machine learning.

B.4.1 | Ridge

The ridge procedure was developed and extended by
Tikhonov (1943, 1963), Foster (1961), Hoerl (1962) and
Phillips (1962). In contrast to the ordinary least squares
statistical technique which computes slope coefficients
β0,β1,…,βp by employing values which minimises the
equation
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RSS¼
XN
i¼1

yit�β0�
Xp
j¼1

βjxijt

 !2

, ðB6Þ

ridge coefficients are determined by minimizing the fol-
lowing equation,

Xn
i¼1

yit�β0�
Xp
j¼1

βjxijt

 !2

þ λ
Xp
j¼1

β2j ¼RSSþ λ
Xp
j¼1

β2j ,

ðB7Þ

where λ≥ 0 represents a tuning parameter. According to
component λ

P
j
β2j , the shrinkage penalty is small when,

β1,…,βp are near zero, so it reduces the estimates of βj
toward zero.

Indeed, when λ¼ 0, the ridge regression will be
comparable to least squares. However, in comparison to
least squares, ridge produces a dissimilar group of
coefficient estimates for distinctive values of λ. Choosing
the optimal value of λ can be achieved through cross-
validation. The shrinkage penalty is applied to
β1,…,βp, but not to the intercept. If the data matrix X has
a zero mean, then the intercept becomes
β0 ¼ yit ¼

Pn
i¼1

yit
n .

The cross-validation process involves allotting all
observations into λ folds, performed randomly, and based
on similar sizes. The first fold is considered the validation
set, with the estimated model fitted on the remaining
λ � 1 folds. Thereafter, the error value is calculated based
on the model performance on the λ � 1 folds. Repeated λ
times, the procedure treats a different fold as validation
set every time. Consequently, the tuning parameter is
chosen based on the cross-validation rendering the smal-
lest error. The final model applies the selected value of
the tuning parameter in conjunction with the full set
of observations.

Compared to ordinary least squares, ridge regression
improves through the bias-variance trade-off, where a
higher λ increases bias, but reduces variance. Given
that the shrinkage penalty λ

P
j
β2j reduces all

coefficients towards zero, yet none set exactly to zero, a
shortcoming of the ridge approach involves a final model
comprising all explanatory variables, even if their impact
is trivial, which in the context of a high number of
variables, could impact interpretability of results (James
et al., 2013).

In this study, to estimate hyperparameter settings,
initially β2j = 0 and λ¼ 100.

B.4.2 | Lasso

Overcoming the drawback of the ridge approach, Santosa
and Symes (1986) and Tibshirani (1996), devised the
Least Absolute Shrinkage and Selection Operator or
Lasso algorithm. Operationalized by minimizing the
equation

Xn
i¼1

yit�β0�
Xp
j¼1

βjxijt

 !2

þλ
Xp
j¼1

j βj j¼RSSþ λ
Xp
j¼1

j βj j ,

ðB8Þ

where the ridge penalty β2j is replaced by the lasso pen-
alty j βj j.

For the lasso algorithm in the study, to estimate
hyperparameters, initially j βj j= 1 and λ¼ 100.

B.5 | Dimensionality reduction algorithm
B.5.1 | Partial least squares (PLS)

Introduced by Wold (1985), the partial least squares pro-
cedure involves estimating PLS directions. The first PLS
direction is computed by normalizing the predictors p
and equating each ;jm in equation Zmt ¼

Pp
j¼1;jmXjt to

the coefficients from the linear regression of Y onto Xjt .
As a consequence, the coefficients are proportional to the
correlation between Y onto Xjt . In computing the equa-
tion Z1 ¼

Pp
j¼1;j¼1Xjt, PLS method puts larger weights

on the explanatory variables that are best related to
the outcome.

The second PLS direction is estimated by adjusting
each predictor for Z1, achieved by regressing each
predictor on Z1 and computing their residuals. These
residuals signify the unexplained information from the
first PLS direction. Following, Z2 can be estimated with
the same approach as Z1, iterating M number of times
to detect multiple new features, Z1,…,Zm. Once this
process is complete, ordinary least squares are employed
to fit a model predicting Y using Z1,…,Zm. The number
M of partial least squares directions represents a tuning
parameter that can be chosen using a cross-validation
approach. If the predictors are highly correlated with
each other, or if a smaller number of components
accurately model the response, then the number of
components in the PLS model would be less than
the number of predictors. The dimension reduction
procedure of PLS serves to reduce bias in existing
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datasets but faces lower accuracy when modeling
new data.

In this study, the PLS algorithm incorporates 10-fold
cross-validation, repeated 10-times, with the optimized
number of principle components determined through
cross-validation.

B.6 | Decision tree algorithms
B.6.1 | Full tree

Decision tree algorithm is based on the seminal work
of Breiman et al. (1984). The aim of the splitting proce-
dures is to minimize a loss function, which is computed
and directed by the divergence from an exact partition-
ing of respective crisis and no-crisis observations into
their identifiable nodes. As based on Joy et al. (2015),
the quantity of observations of class c at node n is repre-
sented by p cjnð Þ. With binary outcomes of financial
crises, class distribution can be denoted by p0,p1ð Þ, in
which case p0 signifies the probability of all no-crisis
occurrences delineated into node n, while p1 demon-
strates the probability of a crisis in node n. Divisions are
estimated by the deviances within the child nodes.
Skewed distributions such as (0,1) comprise smaller devi-
ances, with full divergence at (0.5,0.5). The Gini principle
supports the dividing approach, with the aim of minimiz-
ing the loss function c nð Þ: cgini nð Þ¼Pp0 nð Þp1 nð Þ. The
latter is consequently minimized when terminal nodes
include either of two classes of incidents, systemic
financial crisis or no-crisis.

Tolerance levels of misclassification can be integrated
through stipulation of weights, for instance not recogniz-
ing a crisis, which could result in the identification
of different predictors and their threshold levels. The
partitioning process of forming tree branches ceases,
when the fall in the misclassification ratio is lower
than the penalization imposed on additionally produced
terminal nodes. Analogously, this criterion is also
employed to choose the best tree, with goodness of
fit categorized as the optimal point between minimiz-
ing the classification rate while bigger trees are penal-
ized. Yet, terminal nodes are not always entirely
uniform.

The full tree algorithm only attempts splits which
reduces the overall lack of fit by the numerical value of
the complexity parameter, the latter determined by cross-
validation. Values that are lower than the complexity
parameter are expected to be pruned away in the subse-
quent procedure.

B.6.2 | Pruned tree

Following James et al. (2013), the decision tree equation
can formally be denoted as

XT
i¼1

X
xit � Rm

yit�byRmð Þ2þα jT j : ðB9Þ

While creating a full tree, cost complexity pruning is
applied to the large tree in order to obtain a series of solid
subtrees, as a function of α. K-fold cross-validation is per-
formed to select the value of α using the training data. By
means of a forecast utilizing a test or holdout dataset, the
root mean squared error is obtained and assessed. Fol-
lowing, the average results across every value of α are
estimated, and subsequently a value of α is selected that
would minimize the average error. Lastly, the subtree
associated with the chosen value of α can be identified.
The optimal size of tree nodes is estimated by the proce-
dure that minimizes the cross-validation error, which
also determines the nodes to prune.

B.7 | Ensemble Algorithms
B.7.1 | Adaptive boosting

Adaptive boosting was developed by Freund and Schapire
(1997). Mathematically, the training dataset consists of
x1þ y1ð Þ,…, xN þ yNð Þ, with weight vector w1

i ¼D ið Þ for i¼
1,…,N and for D the distribution over N . The quantity of
iterations is represented by S¼ 1,2,…,S. Initially, an
equal set of weights ws is applied across N , with distribu-

tion ps ¼ wsPN

i¼1
ws
it

, estimated by standardizing the weights.

The weak learner applies the distribution ps to produce a
new prediction hs. In a test on the efficacy of the
forecast, an error of hs is computed through

ϵt ¼
PN

i¼1p
s
i j hs xitð Þ� yit j. For every iteration, the weak

learner with lowest error is elected. The error is applied
to determine the new weights vector

wsþ1
it ¼ws

itβ
1�jhs xsð Þ�yit j
t , where βm ¼ � s

1� � s is also incorpo-

rated to signify the contribution of the chosen weak learner
to the last prediction of the strong learner. This process
continues across S where predictions are determined by

hf xð Þ¼ 1 if
XS

i¼1
log

1
βs

� �
hs xð Þf xð Þ≥ 1

2

XS

i¼1
log

1
βs

� �
0 otherwise

8<: .

Initial parameter settings applied in this paper
encompass number of trees on 100, with 10-fold cross-
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validation. The bootstrap sample of the training set is
centered on the weights for every observation during
each individual iteration.

B.7.2 | Gradient boosting

Gradient boosting was devised by Friedman (2001). Fol-
lowing Friedman (2001) and Döpke et al. (2017), mathe-
matically, the algorithm bootstrap sample from the
training dataset xitþ yitð Þf gNi¼1, with differentiable loss-
function L yit ,F xð Þð Þ to determine a negative gradient vec-
tor. The model is initialized with a constant, using
F0 xð Þ¼ argmin

PN
i¼iL yit,ρð Þ. For m= 1 to M, where the

quantity of weak learners is capped, residuals are calcu-

lated for every sample ~yi ¼� ∂L yit ,F xitð Þð Þ
∂ F xitð Þ

h i
F xð Þ¼Fm�1 xð Þ

, given

where ∂L yit ,F xitð Þð Þ
∂ F xitð Þ

h i
denotes the gradient derivative and ~yi

pseudo residuals, and computed using ~yi� gm xitðð Þf gNi¼1.
The following step involves fitting the regression tree to
the predicted residuals. Commencing with each leaf in
every tree, output is determined that minimizes the func-

tion γjm ¼ argmin
PN

xit � Rijt
L yit,Fm�1 xitð Þþ γð Þ, achieved

by adopting the previous prediction value and the
selected sub-sample. For the following trees, a learning
rate described by ϑ, ranging from 0 to 1 is added to lessen
the influence of a single tree on final output

Fm xð Þ¼Fm�1 xð Þþϑ
PJm

j¼1γjmI x �Rjm
� �

. Lastly, when

m=M, the strong learner Fm xð Þ is computed as the sum
of all weak learners, based on m= 0, …,M, which is
adopted to make predictions using the out-of-bag sample.

To process the model, maximum tree depth is set to
1 which denotes an additive model. Minimum number of
observations per final node equals 10 with a shrinkage
parameter of 0.1. The procedure is simulated 100 times
for purposes of statistical inference. Maximum quantity
of base learners is set to 100. Robustness tests done with
different initial values produced comparable results. And
50% of the training data is randomly elected to create
each new weak learner in the stepwise technique.

B.7.3 | Random forests

Advanced by Breiman (1984, 2001), and also based on
Hastie et al. (2009), a tree Tb using random forests is
grown through the bootstrapped procedure until a
minimum node size is reached. This process can be
formulated as:

1. Choosing m variables at random, from the p variables.
2. Find the best split-point amongst the m variables.
3. Subsequently, split the parent node into two child

nodes.
4. With the output of the trees encapsulated by Tbf gB1 .

Predictions at each new point x can be executed
through FB

rf xð Þ¼ 1
B

PB
b¼1Tb xð Þ.

To operationalize the random forests algorithm, ini-
tially, the quantity of trees is set to 1,000, but the optimal
number of trees necessary to calculate the minimum
error estimate is consequently computed in the testing
procedure and applied to predictions.

B.8 | Hyperparameters

TABLE B1 Hyperparameters.

Method Optimized Hyperparameter Value

Partial Least
Squares

Cross-validation (fold) 10

K-Nearest
Neighbors

Maximum K-number of neighbors 9

Distance 2

Support
Vector
Machine

Gamma 0.5

Regularization constant (cost
constraints)

1

Insensitive loss function (epsilon) 0.1

Ridge Shrinkage penalty 0

Cross-validation (folds) 10

Lasso Shrinkage penalty 1

Cross-validation (folds) 10

Adaptive
Boosting

Cross-validation (fold) 10

Initial number of trees 100

Gradient
Boosting

Learning rate (shrinkage) 0.1

Maximum tree depth (additive
model)

1

Base learners 100

Simulation 100

Random
Forests

Minimum number of observations in
a terminal node (nodesize)

5

Number of variables randomly
sampled at each node (mtry)

4

Initial quantity of trees 1,000
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