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ABSTRACT
Learning the probabilities of multiple events from the environment is an important core competency of any organism. In our 
within- participant experiment, participants experienced samples from two distributions, or prospects, each comprised of two to 
four events, and were required to provide simultaneous, rather than sequential, judgment of the likelihood of the complete set of 
observed events. Empirical calibration curves that map experienced probabilities to subjective probabilities reveal that the degree 
of underextremity (overestimation of low likelihood events and underestimation of high likelihood events) is strongly conditional 
on the number of judged events. We uncover two regularities conditional on the number of events that modify (a) the crossover 
points of the calibration curves with the identity line and (b) the gradient or sensitivity of probability judgments. We present a 
process model of elicited (subjective) probabilities that captures these empirical regularities. Experienced events recalled from 
memory may be erroneously attributed to the wrong events based on the similarity of event outcomes. We conclude that the 
observed miscalibration of probability judgments can be attributed to the noisy retrieval component of a rational process- based 
decision model. We discuss the implications of our model for the conflicting empirical findings of overweighting and under-
weighting in the decisions from experience literature. Finally, we show that reliance on small samples can be an ecologically 
rational strategy for a bounded rational decision- maker (subject to noisy recall), as aggregated subjective probabilities are closer 
to the ecological probabilities than the experienced (or sampled) probabilities are.

1   |   Introduction

Learning the likelihood of real- world events, or ecological 
probabilities, is a crucial prerequisite and core competency for 
the adaptation of organisms to their environment that should 
not be ignored in psychological research (Brunswik  1943). 
Experiential probability learning is relevant not only to cogni-
tive psychology1 but also to economics and finance as people 
must infer the probability of future events based on experi-
ence, which can significantly influence beliefs and/or pref-
erences (e.g., Malmendier and Nagel 2011; Lejarraga, Woike, 
and Hertwig  2016). Peterson and Beach  (1967) echoed these 

sentiments arguing that humans must have evolved compe-
tencies that permit the accurate representation of statistical 
probabilities. In the spirit of the “mind as an intuitive stat-
istician,” decision makers' subjective probabilities should be 
relatively well- calibrated to the true ecological probabilities. 
However, this does not exclude the possibility of apparent 
systematic miscalibration that is simply the result of noise. 
That is, the deterministic component of the procedural model 
of subjective probability formation may still be perfectly cal-
ibrated. Acknowledging that no physical system—including 
the human brain—can ever function error- free, it would be 
remiss to call into question decision makers' rationality if 
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miscalibration is solely the result of an inherent error mech-
anism. In such cases, subjective probabilities may be inac-
curate in terms of levels (or magnitude) compared to the 
ecological probabilities, but may still be highly positively 
correlated with them and respectful of the rank- order rela-
tionship. On the other hand, systematic miscalibration aris-
ing from the deterministic component is valid grounds for 
questioning the rationality of decision makers (although even 
this may not necessarily be damning from the perspective of 
bounded rationality). An example of such cases in probability 
judgment could arise from decision processes involving repre-
sentativeness and availability (Tversky and Kahneman 1973; 
Kahneman and Tversky 1972), which are not guaranteed to be 
bias- free and could inject systematic miscalibration into prob-
abilistic judgments.

The purpose of this paper is to assess whether decision mak-
ers (bounded) rationally learn the probabilities of two to four 
events only from direct observations of distribution draws 
without the aid of cues or signals, that is, to understand multi-
ple probability learning as advocated by Vlek (1970). Consider 
the distinction made by Peterson and Beach (1967, 30), who 
separate intuitive statistics from psychological decision theory, 
where the former concerns gaining knowledge of the environ-
ment, and the latter with how to use this knowledge to select 
courses of action. Analyses based on choices may confound 
the underlying (separate) perceptual learning process and the 
decision process, because the latter is also influenced by ad-
ditional task- related characteristic such as the choice payoffs 
and specific instructions. In this spirit, we elicit the subjective 
beliefs of participants, rather than inferring them from deci-
sions derived from them, which may conflate the underlying 
learning process. Consequently, we can cleanly test the intui-
tive statistician hypothesis.

The subjective probability judgment (under uncertainty) liter-
ature can be broadly classified along two dimensions: the first 
concerns the source of the uncertainty and the second con-
cerns the type of environmental information that is available 
to aid judgment. Regarding the source of uncertainty, the bulk 
of the literature reviews (e.g., see  Wallsten and Budescu 1983) 
deal with epistemic uncertainty, that is, events that are in 
theory knowable (Tversky and Kahneman  1974) and a sig-
nificantly smaller literature deals with aleatory uncertainty, 
that is events that are inherently stochastic in nature.2 Our 
study is interested in subjective probability judgment primar-
ily under aleatory uncertainty with reducible epistemic uncer-
tainty. Decision makers experience the likelihood of multiple 
events by sampling from the true stochastic distribution of 
the events; as sampling progresses, the epistemic uncertainty 
of the task is reduced, however the aleatory uncertainty is 
irreducible. For simple tasks consisting of two mutually ex-
clusive events, the decision- maker often knows a priori the 
size of the event- space as it is often based on whether a state-
ment is true or false, or whether a specific event will occur or 
not. However, in our case the size of the event- space (rang-
ing from two to four) is unknown and only revealed through 
sampling. Consequently, there exist two sources of epistemic 
uncertainty that are reduced through sampling: (a) the size of 
the event- space and (b) the true likelihood of events.3 Such a 
frequentist sampling process is more closely aligned to how 

people learn in the real world; this is important as biases in 
tasks with descriptive probabilities are substantially reduced 
or even eliminated when they are described as frequencies of 
events (e.g., Gigerenzer and Hoffrage 1995; Gigerenzer 1996; 
Hertwig and Gigerenzer 1999).

A key question is how well calibrated are peoples' subjec-
tive probabilities? The JDM literature typically concludes 
that significant biases exist in judgment (e.g., Tversky and 
Kahneman 1973; Kahneman and Tversky 1972) whereas the 
cognitive psychology (CP) literature concludes that decision 
makers are typically well calibrated (Zacks and Hasher 2002; 
Sedlmeier and Betsch  2002; Betsch et  al. 2010; Kelly and 
Martin  1994; Hintzman  1976; Underwood  1969). We note 
that these opposing conclusions may be influenced by two 
important differences in terms of tasks and modeling. The 
JDM community focuses on tasks of epistemic uncertainty 
modeled with judgmental heuristics as exemplified by repre-
sentativeness, anchoring, and availability (e.g., Tversky and 
Kahneman 1973; Kahneman and Tversky 1972). The CP com-
munity instead focuses on tasks of aleatory uncertainty and 
process- based models involving memory encoding/retrieval 
and attention. For example, error- based models explain de-
viations from perfect calibration, such as overestimation of 
low probabilities, as the consequence of noisy retrieval and/
or encoding of experiences (leading to a regression to the 
mean effect), while the underlying processes are essentially 
rational (e.g., Erev, Wallsten, and Budescu 1994; Costello and 
Watts 2014; Fiedler and Unkelbach 2014).

In this study, we will examine how participants learn prob-
abilistic information when observing a sequence or sample 
of events drawn (freely and without consequence) from the 
true or objective distribution. We use the dataset from the 
experiment in Spiliopoulos and Hertwig  (2023), who elicited 
participants' subjective beliefs about the likelihood of all the 
events they had observed. Note, that there exist many stud-
ies examining multiple probability judgment without learning 
in non- aleatory tasks such as research on conjunction and 
disjunction effects for multiple events (e.g., Stolarz- Fantino 
et  al. 2003; Costello  2009), but only a handful of studies in-
volving aleatory tasks and learning from sampling. We report 
below these previous laboratory studies with elicited beliefs 
but note that—in contrast to our study—they did not imple-
ment within- participant tasks concurrently with significant 
variance in the number of outcomes per prospect (more than 
two). Fox and Hadar  (2006) elicited the subjective probabil-
ities for a small number of lotteries consisting of sure and 
two- outcome prospects and reported a close correspondence 
(median correlation of 0.97) between subjective and experi-
enced probabilities. When using the subjective probabilities 
in a two- stage model of decisions under uncertainty, they 
found over- weighting of rare events (relative to the subjective 
probabilities) even though as- if underweighting (relative to 
the objective sampling probabilities) could be inferred from 
choices. This difference was attributed to the sampling error 
arising from the use of small samples. Ungemach, Chater, 
and Stewart (2008, 477) analyzed the observed deviations be-
tween objective and subjective probabilities, and uncovered 
small deviations consistent with overestimation of low prob-
abilities and underestimation of high probabilities. Barron 
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and Yechiam (2009) examined a set of lotteries consisting of 
a safe prospect and a two- outcome risky prospect and elicited 
subjective beliefs in a within- participant design (unlike the 
between- participant design of other manuscripts). They also 
concluded that overestimation of experienced probabilities 
exists simultaneously with underweighting of rare events in 
choice, a finding confirmed by other subsequent studies as 
well (Plonsky, Teodorescu, and Erev 2015; Szollosi et al. 2019, 
fn. 25). Ert and Trautmann (2014, Fig. 2) reported that subjec-
tive probabilities overestimated both the experienced and ob-
served probabilities for tasks where participants had to choose 
between two- outcome risky and ambiguous prospects.

The overestimation of low probability events in decisions from 
experience (relative to the sampled or experienced probabili-
ties) is consistent with the findings in the wider probability 
judgment literature covering a very broad range of differ-
ent tasks. The canonical findings point to a pattern of over-
estimation of low probabilities and underestimation of high 
probabilities, the joint pattern referred to as underextremity 
(see  Griffin and Brenner 2004, for an extensive review of the 
literature). More recent research has explored a broader range 
of tasks involving probability judgment, generally confirm-
ing the pattern of underextremity: in beliefs about opponents' 
behavior in repeated games (Spiliopoulos 2012), when guess-
ing the relative number of black and white dots in an image 
(Zhang, Ren, and Maloney 2020), in tasks of aleatory and epis-
temic judgments (Tannenbaum, Fox, and Ülkümen 2017) and 
temporally distal experience of the likelihood of card com-
binations in poker (Zhu et  al. 2022, see also   Wagenaar and 
Keren 1985).

Our experiment includes payoff distributions with two, three, 
and four outcomes and within- participant elicitation of the 
full probability distribution4 for 240 prospects. This allows 
us to systematically document subjective probability func-
tions (or calibration curves) and how they depend on the 
number of events whose likelihood is to be judged. Due to 
limited sampling by participants, the objective5 probabilities 
(OP) will differ from the experienced probabilities (EP) that 
are realized by the sampling process. Consequently, we dis-
tinguish between two types of calibration that are relevant to 
probability learning from limited experience or samples: (a) 
e- calibration, which refers to the calibration function map-
ping experienced probabilities to subjective probabilities (SP) 
and (b) o- calibration, which refers to the calibration function 
mapping objective probabilities to subjective probabilities. 
As shown below in Figure 1, the driver of the difference be-
tween objective and experienced probabilities is the external 
sampling of events, and the driver of the difference between 
experienced and subjective probabilities is the (internal) en-
coding and retrieval processes arising in the mind. Note that 
an alternative yardstick for rationality, instead of the objective 
probabilities, can be derived from Bayesian inference, such as 

Laplace's Rule of Succession (Costello and Watts  2019).6 We 
chose to focus on the former for three reasons. First, since 
we are interested in the ecological rationality of probability 
judgment, the appropriate metric is the objective probabilities 
that determine the likelihood of payoffs to a decision- maker. 
Second, we are interested in examining the implications of 
our cognitive model for the description- experience gap, which 
is calculated with reference to the objective probabilities, not 
those derived from Bayesian inference. Third, when the num-
ber of events is a priori unknown as in this study, the principle 
of indifference upon which the uninformative priors in the 
Rule of Succession is predicated on is problematic.

The degree of underextremity can be broken down into two 
components arising from the curvature of the calibration 
curve and the elevation. Our first contribution is to empiri-
cally validate that both e-  and o- calibration curves differ 
significantly in both elevation and curvature conditional on 
the number of events. Prior studies have observed that the 
crossover point (elevation) of the e- calibration curve (w.r.t. 
the perfectly calibrated 45°  line) is approximately equal to 
the inverse of the number of events; the general effect was hy-
pothesized by Fox and Rottenstreich (2003) and See, Fox, and 
Rottenstreich (2006). For example, the crossover occurs close 
to 1/26 when estimating the likelihood that words start with 
one of the 26 letters of the English alphabet (Attneave 1953) and 
close to 1/4 when estimating the likelihood of four differently 
colored dots presented visually (Zhang and Maloney  2012). 
We dub this the 1/N crossover effect. Previous studies did 
not systematically manipulate the number of events within- 
participants and over a wide range of probability distributions 
to ascertain the generality and robustness of this effect. We 
confirm that the 1/N crossover effect is robustly present in 
our data and also discover that the gradient of e- calibration 
curves, or the sensitivity of subjective probabilities to expe-
rienced probabilities falls with the number of events, hence-
forth dubbed the inverse- sensitivity effect.

Our second contribution involves cognitively modeling the ob-
served 1/N crossover and inverse- sensitivity effects. We propose 
and estimate the similarity- based error diffusion model of prob-
ability judgment (SEDM) that implements differential diffusion 
of recall errors, conditional on a dimension of similarity that 
operates over the outcome values of events. We show that the 
SEDM best captures the behavior of 30%–40% of our partici-
pants, while the remaining participants' behavior is captured by 
a special case of our model, where similarity does not play a role 
in recall (the error- diffusion model, EDM). The EDM is consis-
tent with both the crossover and inverse- sensitivity effects. The 
full SEDM suggests that small deviations from the crossover ef-
fect occur due to the dependence on outcome values; however, 
averaging over different tasks, the expected crossover point is 
still very close to 1/N, with deviations for individual tasks. Both 
the SEDM and EDM predict the inverse- sensitivity effect if the 

FIGURE 1    |    Two measures of subjective probability calibration.
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recall error rate increases quickly enough with the number of 
events to be estimated.

Moving on, we will discuss the strong connections of our model 
to the decision- experience gap and show how our analysis of o- 
calibration (which is driven by the interaction of external sam-
pling and internal encoding/retrieval processes) relates to the 
mixed results observed in the literature regarding whether prob-
abilities tend to be overweighted or underweighted with respect 
to objective probabilities.

Finally, we compare our model to other theories that, while 
originally designed for judgments of uncertain epistemic events 
rather than probability learning of stochastic events, could be 
modified for our task, namely the simultaneous judgment of 
an exhaustive set of events (rather than individual judgments). 
These other theories fall into two categories. The first category is 
the most similar to the SEDM as they are error- based models (the 
PT + N model by  Costello and Watts 2014, and the noisy retriever 
model, NRM, by Marchiori, Guida, and Erev 2015). The SEDM 
can be viewed as extending the PT + N model previously applied 
to tasks of epistemic uncertainty in the following directions: (a) to 
tasks of irreducible aleatory uncertainty and reducible epistemic 
uncertainty through sampling, (b) to multiple exhaustive events 
(more than two) requiring some form of normalization, and (c) to 
similarity- based retrieval from memory. Also, the SEDM shares 
features with the NRM with respect to (a) modeling errors in the 
retrieval process and (b) considering the effects of similarity. In 
the NRM, similarity comparisons result from between- task expo-
sure to other similar tasks, whereas in the SEDM they result from 
similar within- task comparisons based on the similarity of the 
magnitude of payoffs between- events. The second category con-
sists of models involving priors (the Bayesian sampler model by 
Zhu, Sanborn, and Chater 2020, 2022, and partition- dependent 
support theory by Fox and Clemen 2003, 2005). We question the 
cognitive foundations of these prior- based alternative models for 
our specific task, which although relevant for the original tasks 
these models were proposed for, do not seem conceptually plau-
sible for ours. A special case of our SEDM can be shown to be 
isomorphic to some of these models from both categories if free 
parameters are allowed to vary across the number of events—we 
will discuss this in more detail later. Crucially, none of these al-
ternative models capture the outcome dependence arising from 
similarity- based retrieval that the SEDM does for a subset (30%–
40%) of our participants.

2   |   Methods

This study analyzes a subset of data (the elicited beliefs) gen-
erated by a previously published experiment (Spiliopoulos and 
Hertwig 2023), whose data was made publicly available online at 
the time of its publication https:// osf. io/ p924g/  . We report again 
the methods of the whole experiment below, as it is crucial in 
fostering understanding of the complex experimental design 
and how this relates to the modeling and analysis of the elicited 
belief data. We note that the elicited beliefs were not modeled 
or analyzed at all in Spiliopoulos and Hertwig (2023), and they 
were only used directly as inputs in models of choice behavior as 
observable data instead of inferring beliefs as latent variables in 
the estimation procedure.

2.1   |   Participants

The experiment was conducted at the laboratory of the Center 
of Adaptive Rationality at the Max Planck Institute for Human 
Development with an average participant age of 26 years 
(s.d. = 4.2, min. = 18, max. = 39) including both students (from 
all disciplines) and non- students. The data from 96 participants 
are analyzed after excluding a few participants for specific rea-
sons spelled out in the Supporting Information. The data and 
code can be found online at OSF repository (https:// osf. io/ 
ywkvn/  ). Approval for the experiment was granted by the Ethics 
Committee of the Max Planck Institute for Human Development 
(ARC 2016/37). This study was not preregistered.

2.2   |   Procedure

The experiment (first reported in  Spiliopoulos and Hertwig 2023) 
consisted of three within- participants treatments, performed 
on separate days, typically with a gap of two to three days, de-
signed for another study on decision making from description 
and experience. From the first two treatments (randomized in 
order), one consisted solely of decisions from description and 
the other solely of decisions from experience. Each treatment 
consisted of the same 120 lotteries comprised of two prospects 
each. The number of outcomes of each prospect ranged from 
one to four; here, we are interested in the prospects with two or 
more outcomes. The lotteries were constructed by quasi- random 
sampling in the following fashion to ensure that they covered 
the whole probability and outcome space after fixing the num-
ber of outcomes in the lotteries. Twenty (out of 120 lotteries) in-
volved a sure outcome versus a 2- outcome prospect, 40 lotteries 
involved two 2- outcome prospects, 20 lotteries a sure outcome 
versus a 4- outcome prospect, and 40 lotteries were comprised 
of two 4- outcome prospects. Given this fixed structure, payoffs 
and outcomes were independently drawn uniformly from the 
discrete probability simplex 

�

pi ∈ [0,0.05, … , 1]:
∑

pi = 1
�

 and 
uniformly from the range [0,200] in multiples of 10 (without re-
placement within a single lottery), respectively. A final step re-
moved lotteries with a stochastically dominated prospect and 
those where the difference in the expected value between the 
two prospects was greater than 10% of the expected value of the 
prospect with the highest expected value. The complete experi-
mental instructions can be found in the Supporting Information.

The average number of samples (total from both prospects) 
drawn by each person was distributed with mean 19.4 (s.d. = 
11.2) and median 18 (5% and 95% percentile, 6 and 41, respec-
tively), consistent with the level of sampling in other DfE studies 
(Wulff, Mergenthaler- Canseco, and Hertwig 2018). Due to sam-
pling, the experienced probabilities differed from the objective 
probabilities that were specified in the manner set out above. 
Figure 2 shows the realized probabilities that participants expe-
rienced for prospects with N events, confirming that the whole 
probability space was adequately covered.

The data for this study arises from the third and (always) final 
treatment of the experiment, the belief elicitation (BE) treatment 
that did not involve a further decision task based on the experi-
enced probabilities. During the earlier experience treatment, we 
recorded the exact sampling sequence and resulting outcomes 

https://osf.io/p924g/
https://osf.io/ywkvn/
https://osf.io/ywkvn/
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observed by each participant. Note, that the outcomes of two 
prospects may be intermingled through the sampling, as the par-
ticipants were free to sample from either one in any fashion they 
desired. Participants would have to keep track of up to eight out-
comes (a maximum of four from each prospect) simultaneously 
throughout the sampling process. In the belief elicitation treat-
ment, we presented each participant with the saved sequences of 
sampled outcomes they had experienced and asked them to report 
their estimates of the probability of each of the observed outcomes 
(which could be less than the true number of events in a prospect). 
They were not informed that these were the samples that they had 
generated in the prior treatment. An onscreen table was presented 
where they could record their beliefs with the restriction that prob-
abilities added up to one for each prospect. Participants did not re-
ceive any feedback about realized or foregone payoffs or outcomes 
and could not know how many outcomes existed in each prospect 
as this could be learned imperfectly only by sampling (some events 
may not have been sampled). As the order of the lotteries was ran-
domized, they could not infer the number of outcomes in a specific 
prospect; at best, they could learn from the description treatment 
that the prospects ranged from one to four outcomes.

That is, we elicited what are sometimes referred to in the liter-
ature as relative probabilities; we consider these to be subjec-
tive probabilities that are simultaneously elicited, rather than 
sequentially (or separately) as is often the case. The simultane-
ous elicitation of the probability distribution of the whole set of 
events requires elicited beliefs should sum to one, not just in ex-
pectation (over many responses/tasks), but also for each individ-
ual distribution they were requested to estimate.

3   |   Empirical Results

3.1   |   Aggregate e- Calibration

Figure 3 (left subfigure) plots the relationship between the mean 
elicited (subjective) probabilities and experienced probabilities 
averaged over all participants' decisions conditional on the num-
ber of experienced outcomes. The size of the markers is propor-
tional to the number of observations for each group of expected 

probabilities. Note that we have binned the experienced proba-
bilities by rounding to the nearest 0.05 increment, so that we can 
then compute the mean elicited probabilities for each bin. We 
exclude the cases where experienced probabilities were equal 
to zero or one.7 The right subfigure presents the fitted subjec-
tive probabilities using a model that is linear in experienced 
probabilities.

From Figure  3 it is clear that the participants exhibited un-
derextremity (overestimation for low and underestimation 
for high experienced probabilities), a regressive pattern often 
found in the relevant literature on probability judgment (e.g., 
Edwards  1968; Rapoport and Wallsten  1972; Erev, Wallsten, 
and Budescu  1994; Spiliopoulos  2012). Upon inspection of 
the graph, the three relationships (for different N) all seem 
to be very close to linear, particularly in the regions where 
many observations are found and the estimates are relatively 
precise. We formally tested this, comparing a linear model in 
experienced probabilities to models to quadratic and cubic 
functions, and concluded that the linear model performed 
best out- of- sample using cross- validation (see Appendix S2). 
We note that our conclusion regarding linearity contrasts that 
of many other studies that typically find an inverse- S shape 
(e.g., Varey, Mellers, and Birnbaum 1990; Erev, Wallsten, and 
Budescu  1994; Zhang and Maloney  2012; Zhang, Ren, and 
Maloney  2020). While directly measuring probability judg-
ments (not inferred judgments made from choices), these stud-
ies do not involve learning likelihoods by sequential sampling, 
therefore they are not necessarily directly comparable to our 
tasks. One explanation is that linearity is appropriate or an 
excellent approximation between the values of 0.05 and 0.95 in 
the tasks that we investigate, whereas detectable nonlineari-
ties may occur closer to the endpoints.

3.1.1   |   The 1/N Crossover 
and Inverse- Sensitivity Effects

What are the empirically derived crossover points for three 
and four outcomes? For experienced probabilities of exactly 
1/3 and 1/4, the mean subjective probabilities are 0.334 and 

FIGURE 2    |    Distribution of experienced probabilities for prospects with two, three, and four outcomes.
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0.2491, respectively.8 We conclude that there is strong evi-
dence for the 1/N crossover effect at the aggregate level. The 
estimated gradient of the linear fitted models (Figure 3, right 
panel) for N =2, 3, and 4 is 0.636 [95% CI: 0.627–0.644], 0.471 
[0.457–0.485], and 0.428 [0.412–0.445], respectively. The 
joint hypothesis that these coefficients are equal across N is 
rejected, F(2, 46, 415) = 357.31, p < 0.001. The estimated sen-
sitivity is therefore consistent with the inverse- sensitivity ef-
fect, that is, sensitivity decreases as the number of events N 
increases.

We conclude that strong evidence exists regarding the regu-
larity of the crossover and inverse- sensitivity effects for ag-
gregate e- calibration. However, the analysis on aggregated or 
pooled data may mask underlying systematic deviations from 
these effects and may be biased due to ignored heterogeneity. 
We will revisit the existence of these effects more rigorously at 
the individual level after proposing a cognitive model of sub-
jective probability formation.

3.2   |   Aggregate o- Calibration

Figure  4 presents the aggregate o- calibration curves, that is, 
the mapping from objective to the mean subjective probabilities 
conditional on N = 2 and N = 4 and averaged over all partici-
pants. Recall, that while there existed prospects with three ex-
perienced outcomes in the previous analysis, the true prospects 
had either two or four outcomes; three outcomes only happened 
when one outcome in a four- outcome prospect was not observed. 
The crossover point for N = 4 calculated as the mean subjective 
probabilities when the objective probability is 0.25 is equal to 
0.263, and when calculated as the median subjective probabil-
ity, it is 0.25. Consequently, we conclude that the 1/N crossover 
effect exists not just in e- calibration but also o- calibration—the 
latter has important implications for the decision- experience 
gap that we will return to later. The estimated gradient of the 
linear fitted models for N = 2 and 4 is 0.815 [0.805–0.826] and 
0.745 [0.734–0.756], respectively, and are significantly differ-
ent, F(1, 62, 972) = 81.93, p < 0.001. These are consistent with 

FIGURE 4    |    Subjective versus objective probabilities per number of outcomes.

FIGURE 3    |    Subjective versus experienced probabilities conditional on the number of experienced outcomes.
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an attenuated (compared to e- calibration) inverse- sensitivity 
effect, as sensitivity falls with the number of events.

A comparison of Figures 3 and 4 reveals that subjective prob-
abilities appear to be closer to the objective probabilities than 
they are to experienced probabilities. Note, also that sensitiv-
ity is now closer to the perfect calibration value of 1, than was 
the case with e- calibration. Define the average degree of mis-
calibration as the mean of the absolute differences between the 
mean elicited beliefs and the (binned) experienced or objective 
probabilities. According to this measure the miscalibration with 
respect to experienced probabilities is 0.081, 0.127, and 0.13 for 
N =2, 3, and 4; with respect to objective probabilities, it is 0.045 
and 0.063, for N =2 and 4. The dis- aggregated miscalibration re-
sults per EP and OP conditional on the number of experienced 
and objective outcomes (respectively) can be found in Table S1. 
Bear in mind that these are not exactly comparable as one uses 
the experienced number of outcomes and the other the objective 
number of outcomes. Note that the o- calibration function is sig-
nificantly closer to the identity line than the typically estimated 
probability weighting functions in decisions from description 
and exhibits less curvature. This implies that the behavior of a 
Subjective EU decision- maker (using the aggregate of these sub-
jective probabilities) will approximate that of an Expected Value 
(EV) heuristic, although the degree of similarity to EV behavior 
in a single task will depend on the specific sampling and error 
realizations. This evidence suggests that the increase in EV- like 
behavior in decision from experience is derived from two op-
posing effects occurring at the different stages of o- calibration, 
the effects of sampling mapping objective probabilities to ex-
perienced probabilities, and the e- calibration phase mapping 
experienced to subjective probabilities. The effects of limited 
sampling, specifically the possibility that some events are not 
observed at all, serves to bring the o- calibration curve closer to 
perfect calibration. We return to this in more detail in Section 6 
discussing the implications for the description- experience gap, 
and how the conflicting findings of overweighting and under-
weighting in decisions from experience can be reconciled.

4   |   A Cognitive Model of Subjective Probabilities

We propose the similarity- based error diffusion model (SEDM) of 
ecologically rational probability judgment tempered by noise in 
the retrieval of the frequentist experienced (or sampled) outcomes. 
The basic properties of the model in terms of encoding experi-
ence from sampling is identical to the PT + N model (Costello and 
Watts 2014); that is, it is based on the encoding of individual flags 
representing each observed sample, rather than directly encoding 
proportions. However, the SEDM differs from PT + N by extending 
the error mechanism associated with memory retrieval to multiple 
(more than two) events, by specifying how errors diffuse or are 
erroneously apportioned to the other events. Furthermore, the 
search and retrieval mechanism from memory is modified for si-
multaneous estimation of multiple exhaustive events ensuring that 
the sum of the subjective probabilities is necessarily equal to one. 
Thus far, these modeling assumptions were derived with knowl-
edge of the empirical regularities presented in Section 3, that is, 
the 1/N crossover effect and the inverse- sensitivity effect. These 
assumptions constitute a special case of the SEDM, the error- 
based model (without similarity). An extension of our original 

error- based model added a similarity component resulting in the 
SEDM; note that we had not empirically observed any similarity 
effect in the data, and therefore, the similarity extension can be 
considered as making a new prediction rather than an ex post ex-
planation. The decision to add a similarity extension was driven by 
the fact that similarity- based retrieval (along various dimensions) 
is found across a wide array of tasks involving memory retrieval 
and also mediates the degree of interference between memories 
(McGeoch and McDonald 1931; Conrad 1964; Ratcliff 2022).

Consider an exhaustive set of N∗ objective outcomes, so that the 
probabilities of all events sum to one. In our task, these are the 
possible outcomes associated with the set of events in each pros-
pect. A decision maker sequentially samples outcomes from two 
prospects (forming a lottery) and encodes these separately—for 
each prospect—as exemplars or flags in memory. That is, our 
encoding mechanism does not rely on a strength measure, but 
assumes that frequencies are represented in the brain inde-
pendently (Underwood 1969). Define the experienced number of 
outcomes of a prospect as N (specific outcomes are indexed by n) 
and let ei,t =

(

ei,t,1, … , ei,t,n, … , ei,t,N
)

 be the experienced prob-
abilities and vi,t =

(

vi,t,1, … , vi,t,n, … , vi,t,N
)

 the experienced 
outcome values for individual i when sampling from a prospect 
or task t  consisting of N∗ events with objective probabilities 
o∗
i,t
=

(

o∗
i,t,1
, … , o∗

i,t,N∗

)

 and event outcomes 

v∗
i,t
=

(

v∗
i,t,1
, … , v∗

i,t,N∗

)

. Due to limited sampling, the DM may 

not experience all the possible outcomes; therefore, we restrict 
the model to the experienced outcomes. For samples drawn by 
an individual for each prospect, upon completion of the sam-
pling processes, the memory register will consist of Fi,t flags 
(equivalent to the number of samples), where each flag rep-
resents a single experienced sample of a particular outcome n 
(assuming that there is no encoding error). Consequently, the 
number of flags in memory for any event n, fi,t,n, is equivalent to 
the product of the experienced probabilities ei,t,n and the total 
number of encoded flags, Fi,t =

∑

nfi,n,t. A decision- maker's set of 
subjective probabilities 

{

si,t,1, … , si,t,N
}

 are formed by retrieving 
each of the flags from memory with error, counting them and 
dividing by the total number of flags Fi,t to convert it to a proba-
bilistic format. That is, upon retrieving a flag, the DM i may at-
tribute it to the wrong outcome with probability � i,N—the error 
rate varies by individual and the number of experienced events 
N in task t . This belongs to the class of enumeration strategies in 
frequency estimation (Conrad, Brown, and Dashen 2003).

4.1   |   The Similarity- Based Error Diffusion Model

According to the SEDM, the expected retrieved evidence for 
outcome n will accrue from 

(

1 − � i,N

)

fi,t,n correct flags and 
from incorrect flags derived from the concurrent retrieval of 
the set of ¬n events. The errors arising from the retrieval of 
each of ¬n events (denoted by m) are � i,N fi,t,m. Let these errors 
diffuse across the events according to the similarity of events 
along the dimension of the value of their outcomes denoted by 
vi,t,n—see Ratcliff (2022) for empirical evidence that the degree 
of confusion between numbers decreases exponentially with 
distance. Define the similarity measure of two events n and m 
as e−�i,N |vi,t,n−vi,t,m|, where 𝜆i,N > 0 scales for the importance of 
similarity and may vary across individuals and the number of 
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experienced events in a prospect. Define the relative similar-

ity of these events as �i,n,m =
e
−�i,N �vi,t,n−vi,t,m�

∑

l:l≠me
−�i,N �vi,t,m−vi,t,l�

, implying that 

�i,n,m = �i,m,n. We assume that the more relatively similar 
events are, the higher the proportion of the errors that diffuse 
between them, that is, given that a flag is erroneously recalled, 
it is more likely to be misattributed to events that are relatively 
closer in the outcome space than farther. Furthermore, � i,N is 
assumed to be independent of all other variables including 
ei,t, vi,t and �i,N. Consequently, for each ¬n event the expected 
number of flags that will accrue erroneously to event n is given 
by the total number of flags recalled with error for event 
m,� i,N fi,t,m, weighted by the relative similarity between events 
m and n: �i,m,n� i,N fi,t,m. Note that our definition of the relative 
similarity can be interpreted as the proportion of errors in the 
retrieval of flags for event n that are diffused to event m (and 
by symmetry, vice- versa). Consequently, all errors from the 
retrieval of flags for any outcome m are attributed to the other 
¬m events and therefore the sum of reported subjective proba-
bilities always equals one.

Let the set �N contain tasks with N experienced outcomes only. 
Individuale- calibration curves are derived by taking the ex-
pectation for an individual i over tasks t  with N outcomes and 
conditioning on the experienced probabilities and outcomes, see 
Equation  (1). The first term in the square brackets is the con-
tribution from the correctly retrieved flags for event n, and the 
second is the contribution of the accrued flags for event n from 
the incorrect retrieval of the ¬n events. In the last step, we make 
use of the fact that the experienced probability of event n is given 
by ei,t,n = fi,t,n∕Fi,t. 

Finally, recall that out definition of rational probabilis-
tic judgment is dependent upon the deterministic compo-
nent of a decision model. If � i,N = 0 in Equation  (1), then 
subjective probabilities are perfectly calibrated on average as 
Et∈�N

[

si,t,n |ei,t,n,N
]

= ei,t,n. Consequently, we consider the SEDM 
model to be one of rational judgment. Note, however, that the 
subjective probability of event n is dependent upon the expe-
rienced probabilities not just of event n, but also of each event 
¬n, that is, on the whole vector ei,t (and also vi,t, through the 
similarity measure �i,m,n). Consequently, the individual (pooled 
over tasks) e- calibration curve is dependent on the specific tasks 
employed.

4.2   |   The Error Diffusion Model (Without 
Similarity)

A special case of the SEDM occurs if similarity is irrelevant 
(

�i,N = 0
)

, henceforth referred to simply as the error diffusion 
model (EDM). For �i,N = 0, the individual e- calibration function 

in Equation (1) collapses to (see the derivation in Appendix S4, 
Equation S4): 

Similarly, the EDM is also a rational model of probability judg-
ment as letting � i,N = 0 leads to perfect calibration, as was also 
the case with the SEDM. The aggregate e- calibration function 
can be derived by further taking the expectation over all individ-
uals, where Ei

[

� i,N

]

 is denoted by �N: 

For both the individual (Equation 3) and aggregate (Equation 4) 
e- calibration functions, it is clear that there is a linear relation-
ship between the expectation of subjective probabilities and 
experienced probabilities, conditional on the error rate and 
the number of experienced outcomes. If significant nonlin-
earities need to be modeled for observations very close to the 
endpoints, a similar extension to that made to the PT + N model 
by Howe and Costello (2020) might be appropriate.9 The cross-
over point occurs when Et∈�N

[

si,t,n|ei,t,n,N
]

= ei,t,n, substituting 
this into Equation (3) reveals this as 1∕N as we verified empir-
ically earlier—the same result holds in the aggregate. Notably, 
the crossover point is independent of the level of the error pa-
rameter. However, the sensitivity or gradient of the linear EDM 
1 − � i,NN∕(N − 1) is dependent upon both � i,N and the number 
of outcomes N. An increase in the error rate or the number of 
outcomes leads to a decline in sensitivity, that is, a flatter slope. 
The gradient is necessarily less than 1 and greater than zero as 
long as 𝜓 i,N < (N − 1)∕N—this is always true for any N, as long 
as 𝜓 i,N < 0.5. Furthermore, as the EP tends to zero, the SP tends 
to � i,N∕(N − 1), that is, the constant in a linear regression of SP 
on EP.10 The same relationships can be shown to hold for the 
aggregate e- calibration function (with � i,N replaced by its ag-
gregate mean �N) after performing the same steps as above on 
Equation (4).

5   |   Modeling Results

5.1   |   e- Calibration

We estimate the model in Equation (1) per participant and num-
ber of outcomes, and examine the estimated error rates and 
similarity measure—see Tables S2, S3, and S4 for the detailed 
regression results and parameter estimates.

Table  1 presents the median estimates of the error and sim-
ilarity parameters and the proportion of the individual esti-
mates of the latter that are greater than zero, as implied by 
the similarity hypothesis. The medians of the estimated error 
rates are increasing with N , or complexity as defined by the 
number of outcomes to track, 0.18, 0.36, and 0.46 for N =2, 3, 
4 respectively. The complexity hypothesis can also be tested 

(1)Et∈�N
[

si,t,n|ei,t,n,N
]

=
1

Fi,t

[

(

1−� i,N

)

fi,t,n+� i,N

∑

n≠m

Et∈�N
(

fi,t,m�i,m,n
)

]

(2)=
(

1−� i,N

)

ei,t,n+� i,N

∑

n≠m

Et∈�N
(

ei,t,m�i,m,n
)

(3)
Et∈�N

[

si,t,n|ei,t,n,N
]

=
� i,N

N −1
⏟⏟⏟
constant

+

[

1−
(

N

N −1

)

� i,N

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
gradient

ei,t,n

(4)
Ei
[

Et∈�N
[

si,t,n|ei,t,n,N
]]

=
�N

N −1
⏟⏟⏟
constant

+

[

1−
(

N

N −1

)

�N

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
gradient

ei,t,n
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more rigorously within- participant. The total possible number 
of rank orderings of the three error rates of each participant is 
3 ! = 6; therefore, the expected percentage if there is no asso-
ciation between complexity and error rates is 16.7%. The rank 
ordering is consistent with the complexity hypothesis for 72% 
of participants, and the probability of at least such a high re-
sult by chance is practically zero (to at least 6 decimal places, 
signed- rank test, two- sided binomial).

Turning to the similarity- based error diffusion process, Table 1 
presents the median of the similarity parameter estimates �̂i,N 
for N =3 and 4 and the probability that individual estimates 
per participant are greater than zero. Evidence for the simi-
larity hypothesis is confirmed at the individual level as 76% 
(for N = 3) and 79% (for N = 4) of the participants' estimates 
are greater than zero. Examining whether �̂i,N estimates were 
significantly different from zero using one- sided 95% (boot-
strapped) confidence intervals revealed that �i,3 and �i,4 were 
significantly greater than zero for 30.2% and 40.4% of the par-
ticipants, respectively—these values are significantly different 
(binomial test, p < 0.0001) from what would be expected due 
to the multiple comparisons (on average 5% due to chance).11 
Recall that for �i,N = 0, the SEDM collapses to the simplified lin-
ear EDM. Consequently, we conclude that 30.2%–40.4% of par-
ticipants' behavior was significantly more accurately modeled 
by the SEDM, while the remaining percentage is represented by 
the EDM.

Our categorization above of participants into two types (SEDM 
and EDM) was based on statistical significance. Another in-
teresting question is how different are the two models condi-
tional on our task in terms of behavioral predictions? 
Specifically, what is the improvement in estimated errors 
moving from the EDM to the SEDM (with �i,N as a free param-
eter)? Consider a comparison in the RMSE for participants for 
whom �̂i,N was identified as significantly greater than zero 
above: For N =3 and 4, the EDM's RMSEs are 0.132 and 0.099, 
and the SEDM's are 0.128 and 0.096, respectively. The distri-
bution of the differences between the two models for all par-
ticipants for N =3 and 4 is presented in Appendix S5 (Figure 
S1). In general, the differences between the two models are 
small (in terms of magnitude), despite the finding that �𝜆i,N > 0 
for many participants. Consequently, the improvement of al-
lowing �i,N to vary, rather than fixing it to zero (the EDM), are 
minimal for our particular set of prospects—this need not be 
the case for a different set that may include prospects for 
which the two models diverge more. In our tasks, for 

behavioral analyses, we could assume the linear EDM arising 
from �i,N = 0 with a negligible practical loss in performance. 
This will allow us to easily test the inverse- sensitivity effect; 
as for the EDM, the sensitivity is constant across the whole 
range of experienced probabilities and equal to the gradient 
[

1 −
(

N

N − 1

)

� i,N

]

, recall Equation  (3). The median estimated 

sensitivity of individuals verifies the inverse- sensitivity effect 
previously validated at the aggregate level: 0.641, 0.467, and 
0.385 for N =2, 3, and 4, respectively. Examining the inverse- 
sensitivity effect within- participant, we find that the expected 
rank- order relationship holds for 54% of participants. When 
�𝜆i,N > 0 in the SEDM, then whether subjective probabilities 
satisfy the 1/N crossover effect depends on each tasks' specific 
outcome values. This is evident in Figure 5, a graphical repre-
sentation of the individual- level predicted subjective beliefs of 
the EDM and SEDM. However, there is still an aggregate 1/N 
crossover effect when averaging over all our tasks, even 
though divergence can be seen for individual tasks—see the 
black line in the SEDM subgraph, which is a linear fit to the 
SEDM predictions, whose crossover points are virtually iden-
tical to 1/N.

5.2   |   Relationship to Other Theories

In this section, we discuss the relevance of the following alter-
native models of probability judgment to our experiential task, 
in some cases with necessary modifications to extend them to 
multiple events: the Probability Theory + Noise (PT + N) model 
(Costello and Watts  2014), the Bayesian sampler (BS) model 
(Zhu, Sanborn, and Chater 2020; Zhu et al. 2022), and partition- 
dependent support theory (ST) (Fox and Rottenstreich 2003; Fox 
and Clemen 2005).

First, the PT + N model can accommodate the elicitation of 
multiple subjective beliefs over a set of mutually exclusive 
events by introducing an additional normalization stage 
after using the standard model of sequential and separate 
estimation of each event's likelihood.12 Note that the EDM 
(without similarity) collapses to such a normalized version 
of the PT + N model—see Appendix S3 for details. The stan-
dard PT + N model was originally introduced for tasks in-
volving judgments rather than outright probability learning. 
Uncertainty about probabilities in the tasks of Costello and 
Watts (2014) is a product of lack of knowledge (epistemic un-
certainty), whereas in our case it arises from the sampling 
and the experiential process of a truly stochastic environment 
(aleatory uncertainty). There are other important differences 
with their model, as we require it to simultaneously predict 
the likelihoods of multiple outcomes, not binary outcomes (or 
multiple individual outcomes sequentially).13

Proofs of the following claims and a more detailed discussion can 
be found in Appendix S3. The BS model can be extended to mul-
tiple outcomes by substituting the Beta distribution prior with a 
Dirichlet prior. The ST model does not require any modification 
as it already captures multiple partitions by construct. All three 
modified models correctly predict the 1/N crossover effect. The 
PT + N model does this through the error mechanism, which is 
similar to that of the EDM. By contrast, the ST and BS models 

TABLE 1    |    Summary statistics of individually estimated parameters 
conditional on N.

�̂ i,N �̂i,N
(

× 10−2
)

# of outcomes Median Median p
(

�𝝀i,N

)

> 0

2 0.180 — —

3 0.358 0.29 0.76

4 0.462 0.36 0.79
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do so by assuming that subjective probabilities are influenced by 
uniform priors over the set of events. It is not clear how priors 
would play a role in our specific task (although they are relevant 
for the original tasks these models were applied to). A further 
implication of models using flat priors is that it is reasonable to 
expect that the relative weight attached to priors would be re-
lated to how much participants sampled. That is, the more they 
sampled, the greater the sensitivity to experienced probabilities 
as relatively less weight would be attached to the flat priors. We 
did not discover such a systematic relationship in our data, see 
Appendix S3. Note that it is trivial to extend the SEDM and EDM 
for other tasks where decision- makers may have priors over the 
likelihood of events (perhaps even unobserved events).14

Furthermore, we show the following results in Appendix S3. 
The normalized PT + N model and the BS model with Dirichlet 
priors are isomorphic to our EDM model—that is, they would 
make the same predictions as the EDM model, but not the 
SEDM. Consequently, our results that showed that the SEDM 
model better accounted for 30%–40% of participants than the 
EDM model, implies that the SEDM is also more appropriate 
than the PT + N and BS models for these participants. This is 
because the ST, PT + N, and BS models cannot capture the de-
pendence on outcome values that the SEDM does. Also, the ST 
model is not isomorphic to the EDM as it is a nonlinear function 
in the experienced probabilities, whereas the EDM, PT + N, and 
BS models are.

6   |   o- Calibration and Underweighting Decisions 
From Experience

In decisions from experience, limited sampling means that 
the experienced probabilities of low probability outcomes are 
more often lower than the objective probabilities than they are 
higher, although the expectation is the same15 (Hertwig et al. 
2004). This effect can contribute to an as- if underweighting of 
probabilities in choices; estimated probability weighting func-
tions in decisions from experience have mixed forms, in some 
cases inverse- S shaped and in other cases S- shaped (Wulff, 
Mergenthaler- Canseco, and Hertwig  2018).16 How do these 
findings about o- calibration relate to our model and the in-
teraction between sampling and e- calibration? The tendency 
for underweighting due to limited sampling is only one of two 
opposing effects. As we showed above participants' subjective 
probabilities of low probability events typically overestimate 
the experienced probabilities, contributing to an as- if over-
weighting of probabilities. As the two effects are in opposite 
directions, the total effect (captured by o- calibration) is depen-
dent on the relative magnitude of these effects. These magni-
tudes will depend on how much an individual samples (more 
samples decrease the magnitude of the sampling effect), the 
objective probabilities as the sampling effect and the degree 
of overestimation is not constant across the probability range, 
and the error rates of individuals during the subjective prob-
ability stage (which determine the degree of overestimation 

FIGURE 5    |    Predicted subjective probabilities conditional on N for SEDM and EDM.
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captured by e- calibration). Whether underweighting or over-
weighting occurs on average will depend on the relative mag-
nitude of these two effects.

Recall from Section  3 that o- calibration curves were better 
calibrated than the e- calibration curves—see Figure  4. This 
occurs due to the cases where the experienced probabilities 
are zero for events, whose associated objective probabilities 
are non- zero. Overestimation of low probabilities occurs in e- 
calibration, but only events that are observed with non- zero 
probability are considered by decision- makers. Unobserved 
events during sampling are an exception and are underesti-
mated as they are implicitly assigned a subjective probability 
of zero. The key difference is that in o- calibration, all events 
are considered when mapping objective to subjective proba-
bilities, but subjective probability formation is captured by e- 
calibration of experienced events only. Since the probability 
of not sampling an outcome that occurs with positive proba-
bility is higher the rarer the outcome is, we should expect low 
probability events to be better o- calibrated, which is what we 
showed earlier.

7   |   Discussion

Our manuscript sought to systematically investigate within- 
participant calibration functions relating subjective probabili-
ties to experienced probabilities arising from the sampling of 
multiple- outcome event distributions. We empirically deter-
mined the existence of two important regularities conditional 
on the number of events whose likelihoods must be estimated, 
the 1/N crossover effect and the inverse- sensitivity effect. 
These two regularities lead to changes in both the elevation and 
curvature of the calibration curves relating subjective probabil-
ities both to experienced probabilities from sampling and the 
objective probabilities of the true distributions, impacting the 
degree of underextremity that subjective probabilities typically 
exhibit. This is important in considering the external validity 
of the existing literature, which has focused primarily on mod-
eling probability judgments of two- outcome distributions. It is 
of direct relevance to the decisions from experience literature 
where decision makers learn about multiple probabilities by 
sampling from the environment. Consequently, our findings 
speak strongly to real- world decision making, which often in-
volves multiple stochastic events, whose likelihoods are rarely 
described rather than experienced. At the same time, proba-
bilistic reasoning and judgment are a core element of psycho-
logical theorizing and economic behavior—understanding the 
intricate relationships between ecological or objective probabil-
ities, experienced and subjective probabilities is of paramount 
importance.

We have also shown the importance of considering process 
models of cognition when considering the rationality (or lack 
thereof) of human behavior. At a superficial level, our empirical 
findings seem strongly suggestive of biases in human reasoning, 
as not only were subjective probabilities not perfectly calibrated, 
but also sensitive to the number of events under observation. 
Despite the significant empirical evidence we presented of devia-
tions from perfect calibration, we show that these can arise from 
a (noisy) rational model of probability judgment. The proposed 

similarity- based error diffusion model of subjective probability 
formation effectively captures within- participant variation in 
calibration curves conditional on the number of events to be 
estimated, and between- participant variation driven primarily 
from differences in error rates and the importance of similarity 
in the retrieval mechanism. That is, assuming no errors in mem-
ory encoding or retrieval, the deterministic component of our 
model collapses to perfect calibration, where the expectation of 
the subjective probabilities equals the experienced probabilities. 
A special case of our proposed model (without similarity) still 
predicts the 1/N crossover and inverse- sensitivity effects, and 
leads only to a small degradation in performance compared to 
the full model.

Another key empirical finding of our study is that subjective 
probabilities are better calibrated with respect to the ecological 
(or objective) probabilities than to the experienced (or sampled) 
probabilities. Our cognitive model provides a succinct explana-
tion for this intriguing finding. Noisy retrieval of the sampled 
events generally leads to overestimation of low probabilities. 
However, limited sampling produces a counteracting effect, 
leading to the underestimation of low probabilities, on average. 
The result is that limited sampling actual serves to improve 
calibration with respect to the ecological probabilities, and con-
sequently can be considered an ecologically rational strategy 
in the face of the irreducible nature of noisy memory. This is a 
novel justification for the robustness of limited sampling, which 
is pervasive in experimental and field studies.

Based on the evidence we have presented, we believe that the 
most important effects of the number of events on the calibra-
tion of subjective probabilities seem to be captured very well 
by our model; however, this is not to say that more complex 
models of exemplar encoding and retrieval are irrelevant, and 
would not capture other effects that our model may be miss-
ing. One example is the possibility of significant nonlineari-
ties at extreme probabilities that are not generally predicted by 
error- based models including our own, although an extension 
similar to that in Howe and Costello (2020) could also be ap-
plied to our model. Another example, in decisions from ex-
perience many participants may learn the conditional (rather 
than just unconditional) probabilities of events, for example, 
the probability of observing a pattern of outcomes (Plonsky, 
Teodorescu, and Erev 2015; Plonsky and Erev 2017). Similarly, 
conditional probabilities or pattern learning has been found 
in strategic interactions, or games, including cognitive oper-
ations such as forgetting, similarity- matching between pat-
terns during retrieval (Spiliopoulos  2012; 2013a; 2013b). On 
the other hand, the impact of patterns may be reduced as the 
number of outcomes increases, as limited sampling in deci-
sions from experience will drastically reduce the frequency 
of occurrence (and repetition) of patterns in the sample, un-
dermining the learning of conditional probabilities due to 
increased uncertainty. In contrast to such sequential pattern- 
based similarity, our similarity measure was defined over the 
dimension of outcome values. Subjective probabilities may 
depend on the magnitude of outcomes via other mechanisms 
as well. For example, outcomes large in magnitude, whether 
negative or positive, may mediate the attention given to these 
experiences, thereby possibly impacting the encoding and re-
trieval of exemplars from memory.
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Our goal was to model the formation of subjective probabilities 
when decision- makers observe a sequence of outcomes by sam-
pling from the true distribution (decisions from experience) and 
must concurrently estimate likelihoods of a set of collectively 
exhaustive events, whose probabilities necessarily sum up to 
one. Future work should be directed at examining our model's 
predictive ability in tasks where only a subset of experienced 
events are to be estimated, not just simultaneously, but also 
sequentially.
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Endnotes

 1 For example, see the sequence learning literature (Remillard 
and Clark  2001; Sun and Giles  2001; Clegg, DiGirolamo, and 
Keele 1998; Nissen and Bullemer 1987), which examines whether 
conditional probabilities can be learned through experience and 
the decisions from experience literature, where outcomes and their 
relative frequencies must be learned through sampling (Barron and 
Erev 2003; Hertwig et al. 2004; Hertwig and Erev 2009; Erev and 
Roth 2014).

 2 A similar distinction is made by Erev, Wallsten, and Budescu (1994), 
referring to uncertainty that is internal to the decision maker (e.g., 
due to lack of knowledge) or external to the decision maker (e.g., it is 
inherent to the environment).

 3 Uncertainty about the latter is composed of irreducible aleatory un-
certainty related to the true likelihood of events occurring, but also 
of epistemic uncertainty related to the learning process of these like-
lihoods. Thus, the more the decision- maker samples, the closer the 
experienced samples will be to the true likelihood, reducing the epis-
temic uncertainty of subjective estimates.

 4 There is a subtle distinction between the subjective beliefs of the ob-
jective probabilities and those of the experienced probabilities. The 
former must still be based on the experienced probabilities—unless 
a strong prior exists—but would require sophisticated corrections for 
the small sample properties of estimators of outcome likelihoods. We 
are unaware of empirical evidence of such bias corrections in peo-
ples' estimates; therefore, we believe that attempting to elicit either 
of these two quantities would likely result in very similar reported 
beliefs. Note that participants must also first learn the outcome space 
from sampling before inferring the likelihood of outcomes within 
that space. This further encourages the convergence of the subjective 
beliefs of objective and experienced probabilities, as unobserved out-
comes will not be reported in either case.

 5 We use the term objective probabilities in keeping with the termi-
nology in the decisions from experience literature. Alternatively, 
they may be referred to as the generating probabilities of the real-
ized samples drawn from a prospect or the true probabilities of a 
prospect.

 6 Upon observing k occurrences of an event from a sample of size N  , 
the optimal inference of the objective probability of said event is 

not k∕N , but rather k + 1∕N + 2. This can be extended to multiple 
events E to k + 1∕N + E, which however assumes that E is known a 
priori, which will not be the case in our tasks.

 7 Our experimental setup necessarily implied that the elicited beliefs in 
the former were zero (as only experienced outcomes were presented 
in the table that participants had to fill out), and presenting only a 
single outcome (for an experienced probability of one) clearly implied 
a subjective probability of one. We will return later to these special 
cases of experienced probabilities (EP) equal to zero or one and their 
importance for the transformation of objective probabilities (OP) to 
subjective probabilities (SP).

 8 Conducting two- sided signed- rank tests with the null hypoth-
esis that the median of the distribution of the subjective prob-
abilities is equal to 1/N: N = 3 (z = − 0.889, p = 0.374) and 
N = 4 (z = − 2.275, p = 0.023). While for N = 4, the hypothesis 
of no difference is not accepted at the 5% level (due to a large number 
of observations); for all intents and purposes, they are identical.

 9 This extension accommodates an inverse- S shape because propor-
tions exhibit less variation at the endpoints of the probability scale, 
thereby diminishing the regression effect.

 10 We examine the parametric form of the model for 0 < en < 1, as the 
endpoints exhibit discontinuities at en = 0 or 1. In the case of en = 0 , 
an outcome that has not been encoded in memory has no chance of 
being retrieved either, therefore sn = 0. If en = 1, since only a single 
outcome has been observed, there are no other outcomes to be erro-
neously retrieved; therefore, sn = 1.

 11 We consider the one- sided test to be more relevant as the similarity 
hypothesis clearly implies that � is greater than zero. For the sake of 
completeness, we note that using instead a 95% two- sided confidence 
interval we conclude that 24% and 30.9% were significantly different 
from zero for N =3 and 4, respectively.

 12 We are unaware of any published implementation of such a normal-
ization stage, and we thank an anonymous reviewer for suggesting 
this.

 13 Their model predicts empirical regularities from the judgment liter-
ature, for example, conservatism, subadditivity, the conjunction, and 
disjunction fallacies.

 14 Consider that said priors, however they may arise, are simply en-
coded and retrieved as flags just as the sample outcomes are. The 
error- retrieval based mechanism could then be applied to them as 
well; that is, flags represent both prior and experienced relative 
likelihoods.

 15 The majority of samples of size k will not include a rare event with prob-
ability q if (1−q)k > 0.5, or equivalently if k < log(0.5)∕log(1 − q) . 
For q = 0.1 this will be the case for k < 6.57. Therefore, if k is less 
than or equal to six, most samples will not include the rare event 
(Teoderescu, Amir, and Erev 2013). Note that contrary to prior as-
sertions of consistent underestimation for probabilities below 0.5, 
Shteingart and Loewenstein (2015) find the existence of a zigzag or 
alternating pattern of underestimation and overestimation.

 16 Regarding the as- if underweighting of rare probabilities as deter-
mined from differences in choice proportions across description and 
experience, in this case, what matters is not necessarily the expecta-
tion of the subjective probabilities, but the likelihood that individual 
estimates underestimate or overestimate the objective probabilities. 
As is well known, the OP to EP stage is more prone to underestima-
tion of rare events than overestimation. The EP to SP stage is more 
likely to overestimate the (low) experienced probabilities; the degree 
of which depends on the error rate. Consequently, whether subjective 
probabilities are more or less likely to underestimate the objective 
probabilities will depend on the relative magnitude of these opposite 
effects: the first arising from the OP- EP stage and the second from the 
erroneous retrieval in the EP- SP stage.

https://osf.io/ywkvn/
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