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Abstract
A classic result of Korte and Hausmann [1978] and Jenkyns [1976] bounds the qual-

ity of the greedy solution to the problem of finding a maximum value basis of an

independence system (E,) in terms of the rank-quotient. We extend this result in

two ways. First, we apply the greedy algorithm to an inner independence system
contained in . Additionally, following an idea of Milgrom [2017], we incorporate

exogenously given prior information about the set of likely candidates for an opti-

mal basis in terms of a set  ⊆ . We provide a generalization of the rank-quotient

that yields a tight bound on the worst-case performance of the greedy algorithm

applied to the inner independence system relative to the optimal solution in . Fur-

thermore, we show that for a worst-case objective, the inner independence system

approximation may outperform not only the standard greedy algorithm but also the

inner matroid approximation proposed by Milgrom [2017]. Second, we generalize

the inner approximation framework of independence systems to inner approxima-

tions of packing instances in Z
n
≥0

by inner polymatroids and inner packing instances.

We consider the problem of maximizing a separable discrete concave function and

show that our inner approximation can be better than the greedy algorithm applied

to the original packing instance. Our result provides a lower bound to the general-

ized rank-quotient of a greedy algorithm to the optimal solution in this more general

setting and subsumes Malinov and Kovalyov [1980]. We apply the inner approxima-

tion approach to packing instances induced by the FCC incentive auction and by two

knapsack constraints.
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1 INTRODUCTION

In this paper’s first part, we examine the problem of deter-

mining a maximum value basis of an independence system.

Many well-known optimization problems are a special case

of this, such as knapsack, set packing, and matching with

side constraints. The problem is, of course, NP-hard, and it

is common to resort to heuristics to solve it (or any of its

special cases). The most well-known heuristic is the greedy

algorithm, in which elements of the ground set with nonneg-

ative value are selected in order of declining value as long as

they form an independent set. A classic result of Korte and

Hausmann (1978) and Jenkyns (1976) bounds the value of the

greedy solution relative to the optimal value in terms of the

rank-quotient of the underlying independence system.

We examine an alternative approximation approach. The

idea is to find an “inner approximation” of the feasible region

of the underlying optimization problem and optimize over

that. Milgrom (2017) and de Vries and Vohra (2020) examine

this approach in the context of independence systems. Specif-

ically, find an inner matroid that approximates the underlying

independence system well. An inner matroid is a matroid with

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2024 The Author(s). Naval Research Logistics published by Wiley Periodicals LLC.

Naval Res Logistics 2025;72:133–147 wileyonlinelibrary.com/journal/nav 133

http://creativecommons.org/licenses/by/4.0/
http:// wileyonlinelibrary.com/journal/NAV


134 DE VRIES ET AL.

the property that every one of its basis sets is contained in

a basis of the original independence system (but not con-

versely). Then, the greedy algorithm is applied to the inner

matroid. It is well known that this will recover the maximum

value basis of the inner matroid.

This paper proposes to approximate the given indepen-

dence system by an inner independence system (defined

similarly to the inner matroid). Then, the greedy algorithm

is applied to the inner independence system. At first blush,

this appears silly. Indeed, the best inner independence sys-

tem would be the given independence system itself? Second,

the greedy algorithm applied to the inner independence sys-

tem is itself suboptimal. Hence, one introduces two sources

of approximation error, first from the inner independence

system and second from the greedy solution itself. Surpris-

ingly, this is not the case. We show that an approximation

by inner independence systems may simultaneously outper-

form the approximation by inner matroids as well as the direct

application of the greedy algorithm regarding a worst-case

objective.

The basic intuition is this. The greedy algorithm is subop-

timal because it gets ‘stuck’ on a low-rank basis. An inner

independence system arises from the given independence sys-

tem by deleting some of the low-rank bases, that is, removing

potential local optima.

The second part of this paper extends the inner approx-

imation idea to more general combinatorial objects than

independence systems, namely packing instances. Such prob-

lems arise in combinatorial auctions (see e.g., de Vries &

Vohra, 2003). Towards this generalization, the independent

sets of the independence system are represented by their char-

acteristic vector. The set of these binary vectors forms an

independence system if and only if it is downward closed.

Specifically, if x is in the set, any binary vector y ≤ x
is also in the set. The maximal vectors in this set corre-

spond to the basis sets of the corresponding independence

system. Packing instances correspond to finite collections of

vectors in Z
E
≥0

that are downward closed. We consider pack-

ing instances where the objective function is nondecreasing,

separable, and discrete concave and show that the greedy

algorithm’s worst-case approximation guarantee can be out-

performed by an approximation with inner polymatroids and

by inner integer packing instances.

1.1 A motivating example

Before formally explaining our approach, we start with an

example to build up some intuition.

Example 1. Consider a packing problem whose

feasible solutions are the set of dots in Figure 1.

A natural (heuristic) approach to solve this

problem for arbitrary c ∈ R
2

≥0
is the greedy

algorithm, which, at each iteration, selects among

the variables that can be augmented by 1 without

FIGURE 1 Feasible set (dots) of the original packing instance. Its bases

are boxed.

FIGURE 2 Feasible set (dots) of the inner packing instance. Its basis is

boxed.

violating feasibility. Among these, the one with

the largest objective coefficient value is picked,

and its coordinate is increased by 1. If cT =
(1, 1 + 𝜀), for 𝜀 arbitrary small then, the greedy

algorithm outputs the solution (0, 3)T with value

3 + 3𝜀, while the optimal solution for this par-

ticular choice of c is (10, 0) with a value of 10.

Thus, in the worst case, the greedy algorithm

cannot approximate the optimal solution by a fac-

tor better than
3

10
. We restrict the set of feasible

solutions to improve this approximation factor, as

depicted in Figure 2.

The greedy algorithm applied to this inner
packing instance outputs the solution (10, 2)T ,

independent of the choice of c ∈ R
2

≥0
. It is easy

to see that the worst-case approximation might

occur for c = (0, 1). For this particular choice

of c, the greedy algorithm applied to the inner

packing instance yields a value of 2. In contrast,

the optimal value of 3 is achieved at the point

(0, 3) (which was excluded in the inner packing

instance). However, this implies that the greedy

algorithm approximates the optimal solution by a

factor not worse than
2

3
.

Thus, Example 1 demonstrates that reducing the set of

feasible solutions might significantly improve the greedy

algorithm’s performance. The present paper formalizes this

inner approximation approach and provides several examples,

demonstrating the possible superiority of inner approximation

over plain greedy.
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Algorithm 1. Greedy algorithm for independence systems

Input : An independence system (E,) given by an inde-

pendence oracle. Values vi ∈ R+
Output: A basis Ig ∈ 

1 Order the elements of E in nondecreasing order such that v1 ≥

v2 ≥ · · · ≥ v|E|
2 Set I = ∅
3 for i ← 1 to |E| do
4 if I ∪ {i} ∈  (oracle call) then
5 I = I ∪ {i}

6 Set Ig = I and return

1.2 Outline of the paper

Section 2 describes the greedy algorithm for independence

systems and presents the approximation guarantee of inner

approximation by independence systems. Section 3 compares

inner approximation by independence systems with inner

approximation by matroids. Section 4 covers the inner approx-

imation of packing instances. Section 5 provides applications

of the inner approximation framework. We end with a conclu-

sion and an outlook for further applications in Section 6.

Notice that all deferred proofs and calculations are in the

appendix.

2 GREEDY ALGORITHM AND INNER
APPROXIMATION BY INDEPENDENCE
SYSTEMS

We recall the definition of an independence system.

Definition. A finite set E = {1, … , n} and a

family of subsets of E denoted is called an inde-
pendence system if ∅ ∈  and  is downward
closed, thus, J ∈  implies I ∈  for all I ⊆ J.

A set I ∈  is called independent, and all other

subsets of E are called dependent. A set B ∈  is

called a basis of S ⊆ E if B ⊆ S and B ∪ {s} ∉ 
for all s ∈ S⧵B. A basis of E is called a basis. The

set of bases of (E,) is denoted  . Any subset

 of 2
E

for which {i} ∈  for all i ∈ E is called

normal.

We associate values vi ∈ R+ with i ∈ E. Then, the problem

of finding a maximum value basis of (E,) is maxI∈ v(I) ∶=
maxI∈

∑
i∈I vi. Let (E,) be a normal independence system

and vi ∈ R+ for i ∈ E. A standard approach to solve the

problem V∗(, v) ∶= maxI∈ v(I) is the greedy algorithm:

Let Vgreedy(, v) denote the value of the worst possible (if

ties occurs) greedy solution. A common approach to eval-

uate the quality of an algorithm is to compare the value

of its output with the optimal value in the worst-case, here

minv∈R
E
+⧵{0}

Vgreedy(,v)
V∗(,v)

if  is normal.

Definition. The cardinality of the largest basis

of a set T ⊆ E is called the rank of T , hence

r(T) ∶= max{|I| ∶ I ∈ , I ⊆ T}, and the size

of the smallest basis of a set T ⊆ E is called

the lower rank of T , that is, l(T) ∶= min{|I| ∶
I ∈ , I ⊆ T , I ∪ {i} ∉  for all i ∈ T ⧵ I}.
The rank-quotient of the independence system

(E,) is denoted by q() ∶= minS⊆E∶ r(S)≠0

l(S)
r(S)

.

Korte and Hausmann (1978) and Jenkyns (1976) showed

min
v∈R

E
+⧵{0}

Vgreedy(, v)
V∗(, v)

= q()

for normal independence systems. Motivated

by Milgrom (2017), we incorporate exogenously given prior

information about the set of likely candidates for an optimal

basis, denoted  ⊆ .

Definition. We call the acceptable set. If =
, we call this the zero prior knowledge case.

In contrast to Milgrom (2017), we do not require  to

be downward closed but will point out where it becomes

necessary.

For any acceptable set  we define 
⊆ ∶= {I ⊆ O ∶ O ∈

}. The optimal value with respect to the acceptable set  is

denoted V∗(, v) ∶= maxI∈ v(I). We consider an indepen-

dence system (E, ) inside the independence system (E,)
(but not necessarily containing all elements of ) and apply

the greedy algorithm to find an optimal value basis in  . We

call an independence system (E, ) an inner independence
system of (E,) if  ⊆  and propose that the greedy solu-

tion to (E, ) be used as a solution to the problem of finding

a maximum value basis in .

We want to compare the quality of the greedy solution of

the inner independence system to V∗(, v).

Definition. We abbreviate the condition S ⊆

E, S ≠ ∅ by S ⊑ E.

Assumption. For an independence system

(E,), an inner independence system (E, ) and

acceptable set  we assume that 
⊆

is normal,

hence for every i ∈ E there exists O ∈  with

i ∈ O.

We define the generalized rank-quotient as

𝜔(,, ) ∶= min
S⊑E

l (S)
max{|O| ∶ O ⊆ S,O ∈ ⊆}

= min
S⊑E

l (S)
r⊆ (S)

.

The normality assumption of 
⊆

is needed to ensure that

𝜔(,, ) is well defined. Otherwise, there exists i ∈ E with

{i} ∉ ⊆ such that
l

({i})

max{|O|∶O⊆{i},O∈⊆}
is undefined.

The definition of the generalized rank-quotient is similar to

the rank-quotient and depends only indirectly on . We pro-

vide a bound on the quality of the solution Vgreedy( , v) in

terms of 𝜔(,, ).
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Theorem 2. Let (E,) be an independence sys-
tem, (E, ) an inner independence system of
(E,), and  the acceptable set. Then,

min
v∈R

E
+⧵{0}

Vgreedy( , v)
V∗(, v)

= 𝜔(,, ).

Proof. Let S∗ ∈ arg minS⊑E
l

(S)

r
⊆
(S)
= 𝜔(,, ).

Then, with v = 1S∗ holds l (S∗) =
Vgreedy( , 1S∗ ) and r⊆ (S∗) = V∗(, 1S∗ ) and

minv∈R
E
+⧵{0}

Vgreedy( ,v)
V∗(,v)

≤ 𝜔(,, ).

To prove minv∈R
E
+⧵{0}

Vgreedy( ,v)
V∗(,v)

≥

minS⊑E
l

(S)

r
⊆
(S)

we argue similar to Korte and

Hausmann (1978). Let v ∈ R
E
+ ⧵ {0}, and Xg a

worst possible greedy solution for (E, ), and O
the optimal solution for . Let E be ordered such

that v1 ≥ v2 ≥ … ≥ vn ≥ vn+1 ∶= 0. Define

Ei ∶= {1, … , i}. Then, for F ∈  we can rewrite

v(F) =
n∑

i=1

|F ∩ Ei| ⋅ (vi − vi+1). (1)

Note that O∩Ei ⊆ O, and therefore O∩Ei ∈ ⊆,

hence r⊆ (Ei) ≥ |O ∩ Ei| for all i ∈ E. Fur-

thermore, Xg ∩ Ei is a basis of Ei for  for all

i ∈ E, since the greedy algorithm generates it.

That implies |Xg ∩ Ei| ≥ l (Ei) for all i ∈ E. It

follows

v(Xg)
v(O)

=
∑n

i=1
|Xg ∩ Ei| ⋅ (vi − vi+1)

∑n
i=1
|O ∩ Ei| ⋅ (vi − vi+1)

≥

∑n
i=1

l (Ei) ⋅
|O∩Ei|

r
⊆
(Ei)

⋅ (vi − vi+1)
n∑

i=1

|O ∩ Ei| ⋅ (vi − vi+1)

=

∑n
i=1
|O ∩ Ei| ⋅ (vi − vi+1) ⋅

l

(Ei)

r
⊆
(Ei)

n∑

i=1

|O ∩ Ei| ⋅ (vi − vi+1)

≥

∑n
i=1
|O ∩ Ei| ⋅ (vi − vi+1) ⋅min

S⊑E

l

(S)

r
⊆
(S)

n∑

i=1

|O ∩ Ei| ⋅ (vi − vi+1)

=
∑n

i=1
|O ∩ Ei| ⋅ (vi − vi+1)

∑n
i=1
|O ∩ Ei| ⋅ (vi − vi+1)

⋅min
S⊑E

l (S)
r⊆ (S)

= min
S⊑E

l (S)
r⊆(S)

.

▪

The classic result of Hausmann et al. (1980) is a special

case of Theorem 2 for  = :

Corollary 3. For an independence system (E,)
holds 𝜔(,,) = q().

Proof. It holds that 𝜔(,,) =
minS⊑E

l

(S)

max{|O|∶O⊆S,O∈}
= minS⊑E

l

(S)

r

(S)
= q(). ▪

We give an example that shows that an inner independence

system approximation can outperform the direct application

of the greedy algorithm. For an independence system (E,)
and acceptable set  call any element of

argmax

⊆∶ (E, ) is independence system

𝜔(,, )

a best inner independence system.

We need a technical definition to represent the next example

simply:

Definition. For any pair of sets A,B of sets we

define A ∨ B ∶= {s ∶ s = a ∪ b, a ∈ A, b ∈ B}.

Example 4. Consider the independence system

(E,) with E = {a, b} ∪ C with C ∶=
{c1, … , c10} defined via its set of bases  =
{{a, b},C}∪

(

{{a}} ∨
(

C
5

))

∪
(

{{b}} ∨
(

C
5

))

with

(
C
5

)

∶= {S ⊆ C ∶ |S| = 5}. Let  =  so

that the acceptable set coincides with the set of

all independent sets. The ground set has a basis C
of cardinality 10, and {a, b} is a low rank basis of

cardinality 2, therefore, q() ≤ 1

5
. We calculate

(see Appendix A.2) for  ∶=  ⧵ {{a, b}} that

𝜔(,, ) = 1

2
, which yields a better worst-case

approximation guarantee than q().

One can extend Example 4 to show that there exist cases

where the inner independence system approximation yields

an arbitrarily better worst-case approximation guarantee than

the original independence system:

Example 5. For i ∈ N define the independence

system (E2i
,

2i) with E2i ∶= {a, b} ∪ C2i
and

C2i ∶= {c1, … , c2i} via its set of bases  =
{{a, b},C2i}∪({{a}}∨

(
C2i

i

)

)∪({{b}}∨
(

C2i

i

)

).
Let 

2i = 
2i

and 
2i ∶= 

2i ⧵ {{a, b}}.
An analogous argument as in Example 4 shows

that q(2i) = 2

2i
and 𝜔(2i

,
2i
,

2i) = 1

2
and

therefore limi→∞
𝜔(2i

,
2i
,

2i)
q(2i)

= limi→∞
i
2
→ ∞.

3 COMPARISON TO INNER MATROID
APPROXIMATION

To compare our result with the inner matroid approximation

proposed by Milgrom (2017) and de Vries and Vohra (2020),

we recall some definitions from matroid theory:

Definition. An independence systems (E,) can

also be characterized via a rank function: Let r ∶
2

E → N0 be such that

(R1) r(∅) = 0,
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(R2) r(S) ≤ r(S ∪ {i}) ≤ r(S) + 1 for all S ⊂
E, i ∈ E ⧵ S,

then, the pair (E, {I ⊆ E ∶ r(I) = |I|}) is an inde-

pendence system. If not clear from context, we

denote the rank function of the independence sys-

tem (E,) by r . An independence system (E,)
is called a matroid if q() = 1. We present

several equivalent characterizations of matroids

used later. A matroid is an independence system

(E,) with rank function r for which one of the

following holds:

(Submodularity) r(S) + r(S ∪ {i, j}) ≤ r(S ∪
{i}) + r(S∪ {j}) for all i, j ∈
E, S ⊆ E ⧵ {i, j}.

(Basis Exchange) For every pair of bases

B1,B2 ∈  and i ∈ B1 ⧵B2

there exists a j ∈ B2 ⧵ B1

such that (B1 ∪ {j}) ⧵ {i} is

a basis.

A standard example of a matroid is the uni-
form matroid Uk

n, which consists of all subsets

of an n-element set of cardinality at most k, where

0 ≤ k ≤ n.

We compare our result with the inner matroid approx-

imation proposed by Milgrom (2017) and de Vries and

Vohra (2020). Milgrom (2017) considers an inner matroid
(E,) of the independence system (E,) with ⊆  and

proposes the greedy solution to (E,) be used as a solu-

tion to the problem of finding a maximum value basis in

the downward closed acceptable set  ⊆ . He calls the

term minS∈⧵{∅}
r

(S)
|S|

=∶ 𝜌(,,) the substitutability
index of  for  with respect to the acceptable set  ⊆ .

Note that minS∈⧵{∅}
r

(S)
|S|

= minS∈⧵{∅} maxM∈∶ M⊆S
|M|

|S|
.

Consequently, he defines the best inner matroid by

(E,∗) ∈ argmax

⊆∶(E,ℳ) is matroid

min
S∈𝒪⊆⧵{∅}

max
M∈∶M⊆S

|M|

|S|
.

We show that the substitutability index is unsuitable when

applied to an inner independence system instead of inner

matroids.

Example 6. Let N ∶= {1, 2, 3} be an indepen-

dence system (E,) whose bases are  ∶=
{{1, 2}, {3}}, thus q() = 1

2
. Let the inner inde-

pendence system (E, ) coincide with (E,), and

the acceptable set is = . Clearly, 𝜌(,, ) =
1. The greedy algorithm, however, may fail to

find an optimal basis. Assume v1 = v2 = 1, v3 =
1 + 𝜀. Clearly, V∗( , v) = 2 = V∗(, v). The

greedy algorithm carried out on  gets stuck

with the low rank basis {3} with Vgreedy(E, ) =
1 + 𝜀 and therefore

Vgreedy(E, )
V∗(,v)

= 1+𝜀
2

. Hence, the

greedy algorithm performs worse than 𝜌(,, )
suggests.

However, the substitutability index of  coincides with

the generalized rank-quotient (,,) in the case of (E,)
being an inner matroid and acceptable set  being the inde-

pendence set of a normal independence system (E,).

Theorem 7. Let (E,) an inner matroid of
the independence system (E,) and  ⊆ 

an acceptable set such that (E,) is a nor-
mal independence system. Then, it holds that
𝜔(,,) = 𝜌(,,).

The proof of Theorem 7 can be found in Appendix A.1.

As reported in Milgrom (2017) and de Vries and

Vohra (2020), the substitutability index can be used to bound

the approximation quality of an inner matroid (E,) if 

is a normal independence system. It follows directly from

Theorems 2 and 7.

Corollary 8 (de Vries & Vohra, 2020; Mil-

grom, 2017). Let (E,) be an inner matroid of
the independence system (E,). If  is a normal
independence system, then

min
v∈R

E
+⧵{0}

V∗(, v)
V∗(, v)

= min
S∈⧵{∅}

r(S)
|S|

.

Remark 9. Note that in de Vries and

Vohra (2020), the condition that  is an inde-

pendence system is wrongly omitted. For an

example, see Remark 22 in the appendix.

It is natural to ask if the inner independence system approx-

imation outperforms the best inner matroid approximation.

This is not the case in Example 4, as the following shows.

Example 10. Let (E,) be defined as in

Example 4 and (E,) be defined by its bases

 ∶=
(

C
6

)

∪ ({{a}} ∨
(

C
5

)

) ∪ ({{b}} ∨
(

C
5

)

).
Verification of the basis exchange axiom (see

Appendix A.1) would confirm that (E,)
is a matroid. An analogous argument, as in

Example 4, yields

𝜔(,,) = 1

2
.

Despite this, there exist examples, even in the zero prior

knowledge case  = , where the approximation guaran-

tee of the best inner independence system strictly dominates

the approximation guarantee of the best inner matroid. First,

we provide some intuition for why the later inequality might

occur before giving Example 11.

Suppose for some independence system (E,) we know

a nonmatroidal best approximating independence system

(E, ). Assume now that we want to construct an inner

matroid (E,) contained in (E, ) with the same approxi-

mation guarantee. Recall that for any pair of rank function

r and lower rank function l of a matroid, it has to be

that l(S) = r(S) for every S ⊆ E. As (E,) is nonma-

troidal, there exists S∗ ⊆ E such that l (S∗) < r (S∗) with F
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lower rank basis of S∗ and G upper rank basis of S∗. There-

fore, to construct an inner matroid from (E, ) one either has

to reduce the rank of F to eliminate the low-rank basis F
and make the newly independent subsets of F contained in a

higher rank basis of S∗ or one has to reduce the rank of G to

obtain r(S∗) = r(F) = r(G). Note that both ideas can be

incorporated by adding circuits to  . If we follow the idea to

reduce the rank of F it might occur that
r′

(F′)

r
⊆
(F′)

< minS⊆E
l

(S)

r
⊆
(S)

for some F′ ⊆ F. Conversely, in the case that we reduce the

rank of G it could happen that we implicitly reduce the rank

of some A ⊃ G such that
r′

(A)

r
⊆
(A)
< minS⊆E

l

(S)

r
⊆
(S)

.

This explanation tacitly assumes that the best inner matroid

is contained in the best inner independence system. This

assumption need not be true because the best inner matroid

could be a superset of some best inner independence system.

To see this, consider the independence system (E,) and the

best inner matroid (E,) defined as in Example 10. The

inner independence system (E, ) given via its bases  ∶=
 ⧵ {{c1, c2, c3, c4, c5, c6}} is a best inner independence

system but ⊃  .

In the following example, we exhibit an independence

system , which is a best inner independence system that

contains a best inner matroid with a worse generalized rank

quotient.

Example 11. Let E ∶= {1, 2, 3, 4, 5} and the

independence system (E,) be defined via its

bases  ∶= {{1, 2, 3}, {1, 4}, {2, 5}}. We ver-

ify (see Appendix A.2) that q() = 1

2
and

𝜔(,,) = 1

3
for the best inner matroid

(E,) with = U1

5
.

Definition. An independence system (E,)
arises from a knapsack problem if there exists

W ∈ R+ and w ∶ E → R+ such that

 = {I ⊆ E ∶
∑

x∈I w(x) ≤ W}.

We remark that the independence system in Example 11,

unlike that in Example 4, cannot arise from a knapsack

problem.
1

In a knapsack instance, either {1, 5} ∈  or

{2, 4} ∈  would be necessary, since for the weight function

w it has to be that w(1) ≤ w(2) or w(2) ≤ w(1). Therefore, we

conjecture a connection between knapsack-like independence

systems and the equivalence in the generalized rank-quotient

of inner matroids and inner independence systems.

Conjecture 1. For every knapsack instance the

underlying independence system (E,) fulfills

max
⊆∶ (E, ) independence system

𝜔(,, )

= max
⊆∶ (E,) matroid

𝜔(,,).

The converse of Conjecture 1 is false. To see this, con-

sider the independence system (E,) on the ground set

E = {1, 2, 3, 4} given by its bases  ∶= {{1, 2}, {3, 4}}.
No knapsack instance can induce the independence system

(E,): Assume w.l.o.g. that w1 ≤ wi for i ∈ {2, 3, 4}. Then,

it has to hold that {1, 3}, {1, 4} ∈  since w1 + w3 ≤

w3 + w4 and w1 + w4 ≤ w3 + w4. Nevertheless, it holds

that max⊆∶(E, ) is independence system 𝜔(,, ) = q() = 1

2
=

max⊆∶(E,) is matroid 𝜔(,,) = 𝜔(,,U1

4
).

3.1 An example demonstrating superiority of inner
independence system approximation

We have seen in Example 11 that the best inner independence

system may outperform the best inner matroid. However, the

approximation guarantee of the best inner independence sys-

tem does not improve over the standard greedy algorithm.

Example 4 and Remark 10 show that the best inner indepen-

dence system may have the same approximation guarantee as

the best inner matroid but outperforms the standard greedy

algorithm. To provide an example where the best inner inde-

pendence system outperforms not only the best inner matroid

but the standard greedy algorithm as well, we need the fol-

lowing Lemma

Lemma 12. Let (E1,1) and (E2,2) be inde-
pendence systems with E1 ∩ E2 = ∅ and
(E,) ∶= (E1∪̇E2,1∨2), where E1∪̇E2 denotes
the disjoint union of E1 and E2. Furthermore,
let (E1,1) and (E2,2) be inner independence
systems (matroids) and 1,2 acceptable sets.

Then, it holds that q() = min{q(1), q(2)},
and for the inner independence system (matroid)

(E, ) ∶= (E1∪̇E2,1 ∨ 2} and acceptable
set  ∶= 1∪̇2 we have 𝜔(,, ) =
min {𝜔(1,1,1), 𝜔(2,2,2)}.

We provide an independence system (E,), a best inner

matroid (E,), and a best inner independence system (E, )
for which hold q() < 𝜔(,,} < 𝜔(,, ) by joining

Examples 4 and 11.

Example 13. Let (E,) be the direct sum of

the independence systems in Example 4 and

Theorem 11, hence E1 = {a, b, c1, .., c10} with

(E1,1) given by the bases 
1
∶= {{a, b},C} ∪

({{a}} ∨
(

C
5

)

) ∪ ({{b}} ∨
(

C
5

)

) with C ∶=

{c1, … , c10} and

(
C
5

)

∶= {S ⊂ C ∶ |S| = 5}
and E2 = {1, 2, 3, 4, 5} with (E2,2) defined by

its bases 
2
∶= {{1, 2, 3}, {1, 4}, {2, 5}} and

(E,) ∶= (E1∪̇E2,1 ∨ 2), hence

 ∶=
(

{{a, b},C} ∪
(

{{a}} ∨
(C

5

))

∪
(

{{b}} ∨
(C

5

)))

∨ {{1, 2, 3}, {1, 4}, {2, 5}} .

Then, it can be verified (see Appendix A.2) that

q() < 𝜔(,,) < 𝜔(,, ),
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where (E, ) and (E,) are the best inner inde-

pendence system and best inner matroid, respec-

tively.

We have demonstrated that an inner independence sys-

tem can improve the performance guarantee of the greedy

algorithm. Next, we extend our findings to a more general

structure than independence systems.

4 INNER APPROXIMATIONS TO
PACKING INSTANCES

In the previous section, we approximated independence sys-

tems by inner independence systems. Here, we consider inner

approximations of more general structures. Every indepen-

dence system (E,) can be interpreted as a subset of {0, 1}n

by identifying independent sets I ∈  with their character-

istic vectors 𝜒
I
. We allow for multiplicities and generalize

independence systems:

Definition. A finite set D ⊂ Z
n
≥0

is called a

packing instance if x ∈ D implies y ∈ D for all

y ∈ Z
n
≥0

such that y ≤ x (component wise). Con-

sequently, G ⊆ D is an inner packing instance
of D if G is a packing instance. Call a packing

instance normal if it contains all unit vectors.

Although one can define packing instances over arbitrary

posets, here we focus on the special case of the poset (Zn
≥0
,≤).

For each i ∈ E ∶= {1, … , n} let f ∶ Z≥0 → R+
be a nondecreasing and discrete concave function (hence,

fi(x + 1) − fi(x) ≤ fi(y + 1) − fi(y) if y ≤ x). Then the

function f ∶ Z
n
≥0
→ R+, f ∶=

∑n
i=1

fi is called nondecreas-
ing, separable and discrete concave. We are interested in

the problem maxx∈D f (x). Note, that this is more general than

maxx∈D
∑n

i=1
xi ⋅ vi with values vi associated to i ∈ E.

Definition. For any packing instance D ⊂ Z
n
≥0

,

an element x ∈ D is called maximal if x+ei ∉ D
for all i ∈ {1, … , n} where ei

denotes the i-th
unit vector. Let D+

denote the set of maximal ele-
ments of D and r(D) ∶= max{

∑
i∈E xi ∶ x ∈ D+}

the maximal height and l(D) ∶= min{
∑

i∈E xi ∶
x ∈ D+} the minimal height of D.

In the following, assume D is normal and

for 𝛼 ∈ Z
n
≥0

define the 𝛼-truncated packing

instance D
𝛼
∶= {x ∈ D ∶ xi ≤ 𝛼i for i ∈ E} and

the height-quotient of D as

𝜌(D) ∶= min
𝛼∈Z

n
≥0
⧵{0}

l(D
𝛼
)

r(D
𝛼
)
.

Clearly, 𝜌(D) = min
𝛼∈Z

n
≥0
⧵{0}∶𝛼≤𝛽

l(D
𝛼

)
r(D

𝛼

)
with 𝛽i ∶=

maxx∈D xi, hence 𝜌(D) is well defined.The following notion is

equivalent to Dunstan & Welsh (1973).

Algorithm 2. Greedy algorithm for integer packing

instances

Input : A packing instance D ⊂ Z
n
≥0

given by a

membership oracle. Nondecreasing separable

discrete concave function f ∶ Z
n
≥0
→ R+

Output: A maximal element xg ∈ D+

1 Set x = 0
2 while x is not maximal (oracle call) do
3 choose j ∈ arg maxi∈E∶ x+ei∈D (oracle call) f (x + ei)
4 x = x + ej

5 Set xg = x and return

Definition. The packing instance D is called a

polymatroid if 𝜌(D) = 1 , and an inner poly-
matroid of a packing instance D is a polymatroid

P ⊆ D.

Notice that this polymatroid definition coincides with the

integer-restriction of the standard definition of an integer

polymatroid, as for D ⊂ Z
n
≥0

with 𝜌(D) = 1 the function

rD ∶ 2
{1,… ,n} → Z≥0, rD(S) ∶= maxx∈D

∑
i∈S xi turns out to

be nondecreasing submodular and D = {x ∈ Z
n
≥0
∶
∑

i∈S xi ≤

rD(S) fo all S ⊆ E} (see e.g., Theorem 44.5, Schrijver, 2003).

However, since we are only interested in subsets of Z
n
≥0

, for

convenience, we regard polymatroids as consisting only of

integer-valued members.

The solution of maxx∈D f (x) of a packing instance D can be

approached by the greedy algorithm generalizing Algorithm 1

for independence systems, which yields an exact solution if D
is a polymatroid.

Let V∗(D, f ) ∶= maxx∈D
∑n

i=1
f (x) and Vgreedy(D, f ) be

the worst possible (if tie-breaking occurs) solution obtained

by Algorithm 2. Malinov and Kovalyov (1980) show the

height-quotient 𝜌(D) to be the worst-case approximation

guarantee.

Theorem 14 (Malinov & Kovalyov, 1980). Let
D ⊂ Z

n
≥0

be a normal packing instance and
f (x) ∶=

∑n
i=1

fi(xi) with fi ∶ Z≥0 → R+
being nondecreasing and discrete concave. Then,
Vgreedy(D,f )

V∗(D,f )
≥ 𝜌(D). Furthermore, for any nor-

mal packing instance D ⊆ Z
n
≥0

, there exists a
nondecreasing, separable, and discrete concave
function f such that

Vgreedy(D, f )
V∗(D, f )

= 𝜌(D). (2)

We want to approximate packing instances by inner packing

instances and inner polymatroids for the economy of expo-

sition. We assume that the whole packing instance forms

the acceptable set, so  = D. Our results are easily gen-

eralized to other acceptable downward closed subsets of the

packing instance D. To achieve a better performance than

Equation (2), we first search for an inner packing instance G
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contained in D, and then apply Algorithm 2 to G. We aim to

find G such that the worst-case performance of Algorithm 2

on G is better than the worst-case performance on D.

Definition. For a normal packing instance D ⊂

Z
n
≥0

and a packing instance G ⊆ D we define the

generalized height-quotient as

min
𝛼∈Z

n
+⧵{0}

l(G
𝛼
)

r(D
𝛼
)
=∶ 𝜔(D,G).

Analogously to independence systems, for any packing

instance D ⊂ Z
n
≥0

, we call any packing instance contained in

argmax

G⊆D∶ G is packing instance

𝜔(D,G)

a best inner packing instance, and any polymatroid con-

tained in

argmax

G⊆D∶ G is polymatroid

𝜔(D,G)

a best inner polymatroid.

Remark 15. Consider a normal packing instance

D ⊂ Z
n
≥0

. The unique maximal integer-valued

nondecreasing submodular function r′ weakly

below rD induces a best inner polymatroid.

However, there are other ways to construct best

inner polymatroids.

The next result generalizes Theorem 2 and Equation (2).

Theorem 16. Let D,G ⊂ Z
n
≥0

be packing
instances such that D is normal, G ⊆ D, and

 ∶= {f ∶ Z
n
≥0
→ R+ ∶ f is nondecreasing,

separable, and discrete concave}.

Then, holds

min
f∈

Vgreedy(G, f )
V∗(D, f )

= 𝜔(D,G).

The proof of Theorem 16 is in Appendix A.1.

Note that Theorem 16 also implies the Theorems 14 and 2,

and the classic result of Hausmann et al. (1980).

4.1 An example demonstrating superiority of inner
packing instance approximation

As seen in Example 13, there exist cases in which the

inner independence system approximation simultaneously

outperforms the inner matroid approximation and the greedy

algorithm performed on the original independence system.

For completeness, by combining Examples 1 and 11, we pro-

vide an additional, genuine packing instance, in which the

inner packing instance approximation simultaneously outper-

forms the direct application of Algorithm 2 to the original

packing instance and the inner polymatroid approximation.

We make use of an analog to Lemma 12.

Lemma 17. Let E ⊂ Z
n
≥0

and F ⊂ Z
m
≥0

be pack-
ing instances, and H ⊆ E and I ⊆ F inner

packing instance and D ∶= E×F and G ∶= H×I.

Then, 𝜔(D,G) = min{𝜔(E,H), 𝜔(F, I)}.

Proof. Let 𝛼
n ∈ argmin𝜔(E,H) and 𝛼

m ∈
argmin𝜔(F, I). Let w.l.o.g. 𝜔(E,H) ≤ 𝜔(F, I).
For any 𝛽 ∶= (𝛽n

, 𝛽

m) ∈ Z
n
≥0
× Z

m
≥0

it

is
l(𝛽n

,𝛽
m)(G)

r(𝛽n
,𝛽

m)(D)
= l

𝛽
n (H)+l

𝛽
m (I)

r
𝛽

n (E)+r
𝛽

m (F)
≥

l
𝛼

n (H)+l
𝛽

m (I)
r
𝛼

n (E)+r
𝛽

m (F)
≥

l
𝛼

n (H)+l
𝛼

m (I)
r
𝛼

n (E)+r
𝛼

m (F)
≥

l
𝛼

n (H)
r
𝛼

n (E)
= 𝜔(E,H). Obviously,

𝜔(E,H) ≥ 𝜔(D,G), therefore𝜔(E,H) = 𝜔(D,G)
and this concludes the proof. ▪

Note that Lemma 17 also implies 𝜌(D) = min{𝜌(E), 𝜌(F)}
since 𝜌(X) = 𝜔(X,X) for any packing instance X.

Example 18. Let D ⊂ Z
7

+ be given by its set of

maximal elements

D+ ∶= {(10, 2), (0, 3)}
×{(1, 1, 1, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 0, 1)}.

Then, D is the cartesian product of the pack-

ing instances in Examples 1 and 11. It follows

by Lemma 17, Example 1, and Theorem 11 that

P+ ∶= {(10, 2)} × {x ∈ R5 ∶ x = ei
for 1 ≤

i ≤ 5} is the set of maximal elements of

a best inner polymatroid, G+ ∶= {(10, 2)} ×
{(1, 1, 1, 0, 0), (1, 0, 0, 1, 0), (0, 1, 0, 0, 1)} is the

set of maximal elements of a best inner packing

instance and

𝜌(D) ≤ 1

4

< max
P⊆D∶Pispolymatroid

𝜔(D,P) = 1

3

< max
G⊆D∶Gispackinginstance

𝜔(D,G) = 1

2
.

5 APPLICATIONS

5.1 Applications in auctions

We give an application of the inner approximation concept to

the recent incentive auction run by the FCC (see Milgrom &

Segal, 2020). The auction was conducted to reallocate radio

spectrum for wireless broadband services. In the procure-

ment phase, spectrum licenses were acquired by the FCC from

the current spectrum holders of channels 38–51 through a

descending auction. Any spectrum licenses not acquired were

reassigned to other channels. The FCC purchased licenses that

were not reassigned.

The problem of deciding which license holders to reassign

is an inner packing instance. Roughly speaking, holders who

demanded a high price would be candidates for reassignment.

However, the set of holders who are reassigned needs to sat-

isfy various packing constraints. Hence, a maximum-weight

set of licenses that satisfied all the packing constraints would
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be reassigned. Under the assumption that bidders bid truth-

fully, the descending auction implemented by the FCC used a

greedy algorithm for selecting which subset of license holders

to reassign, that is, Algorithm 2 applies.

Assume each holder owns a single license, and there are

two types of spectrum holders. In fact, 11 of type A and three

of type B. The dots in Figure 3 represent all feasible combi-

nations of the two types of holders that can be reassigned. For

example, it is feasible to reassign all type A holders. It is also

feasible to reassign all type B holders. It is feasible to reassign

4 of the type A holders and 2 of the type B holders.

Every type A holder values their license at $1.1, and each

type B holder values their license at $1. The greedy algorithm

would result in the FCC reassigning all type B holders and

purchasing all licenses from type A holders and no licenses

from type B holders for a total expenditure of $12.1. The

total value of the reassigned spectrum would be $3.3. Instead,

suppose the set of feasible combinations of license holders

that can be reassigned is artificially restricted by the FCC as

shown in Figure 4. This set corresponds to an inner packing

instance for Figure 3.

If we apply the greedy algorithm with the same valua-

tions to this instance, ten type A holders and two type B

holders would be reassigned. The FCC would purchase one

license from type A and one from type B holders for a total

expenditure of $2.1, lower than before. The total value of the

reassigned spectrum would be $12.2, higher than before.

The inner approximation could notably lower the FCC’s

expenditures needed to clear channels 38–51.

5.2 Application to two-dimensional knapsack

Next, we present an application of the inner approximation

framework to variations of the knapsack problem. Recall that

in Example 4, the best inner independence system yields

FIGURE 3 Set of feasible reassigned holders (dots) with bases boxed.

FIGURE 4 Restricted set of feasible reassigned holders (dots) with bases

boxed.

a worst-case approximation guarantee of
1

2
, whereas the

direct application of the greedy algorithm only guarantees
1

5
. However, as previously noted, Example 4 represents a

knapsack problem. For knapsack problems, there is a clas-

sic algorithm that always guarantees worst-case approxima-

tion of
1

2
: Given a knapsack instance (E,) with capacity

W ∈ R+ and item weights w ∶ E → R+ and values ve
for e ∈ E, let the elements in Line 1 of Algorithm 2 be

ordered decreasingly according to the ratio ve

we
and denote the

worst-case solution of Algorithm 2 (if ties occur) by V ratio
.

Further, let Vbest of ∶= max{V ratio(, v),maxe∈E ve} be the

best of the ratio-greedy solution and the maximum value

item. Then, it is well-known (see e.g., Dantzig, 1957) that
Vbest of

V∗(,v)
≥

1

2
. Thus, in particular, for the knapsack problem

in Example 4, an inner approximation is not stronger than

this classic algorithm. Therefore, Example 4 fails to demon-

strate the superiority of the inner approximation framework

in knapsack-induced independence systems over that classic

algorithm.

However, the situation looks quite different if more than one

knapsack constraint induces the independence system. Then,

there does not exist an analog to the aforementioned clas-

sic algorithm that yields a constant factor approximation (see

e.g., Kellerer et al., 2013).

We examine packing instances generated by two knapsack

constraints, each associated with three types of items: one

restricted by the first knapsack constraint, another by the sec-

ond knapsack constraint, and a third constrained by both.

In this scenario, we demonstrate in Example 19 that inner

approximation might outperform the basic greedy algorithm,

which might be perceived as the intuitive choice in such a

setting. We introduce a two-person game where the inner

approximations surpass the greedy algorithm.

Example 19. Consider a class of packing

instances in Z
3

+ given by the following two

knapsack constraints:

k1 ⋅ x1 + 0 ⋅ x2 + 10 ⋅ x3 ≤ 100, (3)

0 ⋅ x1 + k2 ⋅ x2 + 10 ⋅ x3 ≤ 100,

xi ∈ Z≥0, i ∈ {1, 2, 3},
(4)

with k ∶= (k1, k2), k1, k2 ∈ [10, 20] ∩Z. For such

k, let Dk
denote the associated packing instance.

Then, in Appendix A.2 we demonstrate that for

any k ∈ ([10, 20] ∩ Z)2 there exists Gk
⊊ Dk such

that

𝜔(Dk
,Gk) ≥ 𝜌(Dk),

and for a majority of possible choices of k this

inequality is strict.

In most of the packing instances considered in Example 19,

the worst-case approximation guarantee of the greedy

algorithm applied to a well-chosen inner independence sys-

tem improves over the direct application of the greedy
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algorithm. However, there still exist (only a few) instances

in which inner approximation only matches the worst-case

approximation guarantee of the greedy algorithm. Next, we

provide a more generic application of the inner independence

system approach in which inner approximation dominates the

direct application of the greedy algorithm.

Consider the following two-person game: A set of normal

packing instances of the same dimension is revealed to the

first player. The first player has to propose a simple generic

algorithm to determine a maximal element of any packing

instance of this set. Afterward, the second player chooses an

instance with the worst possible approximation ratio obtained

by the algorithm from the family of packing instances. Thus,

the goal of the first player is to maximize his worst-case

approximation guarantee over the worst instance of the given

set of packing instances. In this setting, we show that inner

approximation outperforms the standard greedy algorithm for

the set of instances of Example 19. Notice that our game

resembles the min-max regret knapsack problem introduced

by Furini et al. (2015), in which the known knapsack con-

straints are fixed, but the coefficients of the linear objective

function are variable. Further, a similar game to ours was con-

sidered in the context of approximating perfect matchings in

bipartite graphs by Eden et al. (2022).

Example 20. Consider the set of pack-

ing instances given in Example 19, denote

K ∶= ([10, 20] ∩ Z) × ([10, 20] ∩ Z), and recall

that

min
k∈K

𝜌(Dk) = 𝜌(D(20,20)) =
l(D(20,20)

10,0,10
)

r(D(20,20)
10,0,10

)
= ||(5, 0, 0)||1
||(0, 0, 10)||1

= 1

2
.

Now, for k ∈ K define Gk
by adding the con-

straints x1 ≤ ⌊
100

k
1

⌋−2, x2 ≤ ⌊
100

k
2

⌋−2 and x3 ≤ 7

to Dk
. Then, it holds by Example 19 that

min
k∈K

𝜔(Dk
,Gk) = 𝜔(D(20,20)

,G(20,20)) =
l(D(20,20)

10,0,0
)

r(D(20,20)
10,0,0

)
= 3

5
>

1

2
.

and thus the worst-case approximation

guarantee of inner approximation over
⋃

k
1
,k

2
∈[10,20]∩Z

D(k
1
,k

2
)

is strictly better than

the approximation guarantee of the greedy

algorithm.

One might think that the superiority of inner approximation

in Example 20 is due to the zero coefficients in the knap-

sack constraints. However, increasing the class of packing

instances by allowing the first type of items to be also con-

strained by the second constraint and the second type of items

to be also constrained by the first constraint, hence, allowing

the zeros in the Inequalities 3 and 4 to be small natural num-

bers, actually increases the power of the inner approximation,

as shown in the following example.

Example 21. Consider a set of packing

instances in Z
3

+ given by the following two

knapsack constraints:

k1 ⋅ x1 + l1 ⋅ x2 + 10 ⋅ x3 ≤ 100,

k2 ⋅ x1 + l2 ⋅ x2 + 10 ⋅ x3 ≤ 100,

xi ∈ Z≥0, i ∈ {1, 2, 3},

where k1, l2 ∈ [10, 20]∩Z and k2, l1 ∈ [0, 5]∩Z.

For k = (k1, k2), l = (l1, l2) let D(k,l)
denote the

associated packing instance. It holds that

min
(k,l)∈(([10,20]×[0,5])∩Z2)×(([0,5]×[10,20])∩Z2)

𝜌(D(k,l))

= 𝜌(D(20,1),(1,10)) =
l(D(20,1),(1,10)

10,10,0
)

r(D(20,0),(0,10)
10,10,10

)

= ||(5, 0, 0)||1
||(4, 9, 0)||1

= 5

13
,

and therefore, greedy performs even worse than

in Example 20.

Now, for (k, l) ∈ (([10, 20] × [0, 5]) ∩ Z2) ×
(([0, 5] × [10, 20]) ∩ Z2) define G(k,l)

by adding

analogous constraints to D(k,l)
as in Example 20,

namely x1 ≤

⌊
100

k
1

⌋

− 2, x2 ≤

⌊
100

l
2

⌋

− 2, x3 ≤ 7.

Then, it is

min
(k,l)∈(([10,20]×[0,5])∩Z2)

𝜔(D(k,l)
,G(k,l))

= 𝜔(D((20,0),(5,10))
,G((20,0),(5,10)))

=
l(G((20,0),(5,10))

(10,0,0) )

r(D((20,0),(5,10))
(10,0,0) )

= ||(3, 0, 0)||
||(5, 0, 0)||

= 3

5
>

5

13
.

Therefore, relaxing the condition that the constraints (3)

and (4) must have a zero-coefficient increases the worst-case

superiority of the inner approximation approach.

Dobson (1982) proposes a variant of the greedy algorithm

which selects elements based on the ratio
vi

∑
j∈{1,2} wi,j

, where wi,1

is the weight of item i in the first constraint and wi,2 is the

weight of item i in the second constraint. It is easy to see that

inner approximation also outperforms this ratio-greedy in the

Examples 20 and 21, since for k1 = k2 = 20 all items have

the same weight and therefore the worst-case approximation

guarantee of this ratio-greedy algorithm applied to D(20,20)

coincides with the height-quotient 𝜌(D(20,20)), hence, equals
1

2
<

3

5
.

6 CONCLUSION

We studied the problem of maximizing a nondecreasing, sep-

arable, and discrete concave function over a packing instance,

particularly the important special case of finding a maximum

value basis of an independence system.



DE VRIES ET AL. 143

The concepts of inner independence systems and inner

packing instances were introduced, and generalizations

of the rank-quotient of independence systems and the

height-quotient of packing instances were given to provide a

bound on the approximation quality of the greedy algorithm

applied to inner independence systems and inner packing

instances compared to the optimal solution. We demonstrated

that the generalized rank-quotient and the height-quotient

provide tight bounds on the worst-case performance of our

algorithms. Furthermore, we provided examples where our

approach simultaneously outperforms the standard greedy

algorithm for independence systems, as well as the method

proposed by Milgrom (2017) and de Vries and Vohra (2020)

of approximating independence systems by inner matroids,

in terms of worst-case approximation guarantee. Similarly,

we demonstrated that our algorithm may outperform the

greedy algorithm when applied to maximize a nondecreas-

ing, separable, and discrete concave function over a packing

instance. Lastly, we presented genuine applications of the

inner approximation framework.
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ENDNOTE

1 To see that the independence system in Example 4 is a

knapsack problem set vci = 1 for all i ∈ {1, … , 10},
va = vb = 5 and the capacity to 10.
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APPENDIX A

A.1 Omitted arguments

Proof of Theorem 7. Clearly, for S ∈  ⧵
{∅} it holds that

l

(S)

|r
⊆
(S)|

= r

(S)
|S|

and there-

fore 𝜔(,,) ≥ 𝜌(,,). Suppose S′ ∈
arg minS⊑E

l

(S)

r
⊆
(S′)

but S′ ∉ ⊆. Let F be upper

rank basis of S′ for
⊆

, then F ⊂ S′ and r⊆(S′) =
r⊆(F). But since (E,) is a matroid it holds that

l(F) = r(F) ≤ r(S′) = l(S′) and there-

fore
l

(F)

r
⊆
(F)
≤

l

(S′)

r
⊆
(S′)

, hence F ∈ arg minS⊑E
l

(S)

r
⊆
(S)

and 𝜔(,,) ≤ 𝜌(,,), and the claim

follows. ▪

Remark 22. The following explains why as in

Remark 9, the condition that  is an indepen-

dence system is wrongly omitted in de Vries and

Vohra (2020). Let E = {1, 2, 3, 4, 5} and  =
2
{1,2,3}∪2

{1,4,5}
and the bases of the inner matroid

be given by  = {{1, 2}, {1, 3}, {1, 4}, {1, 5}}
and  = {{1, 2, 3}, {1, 4, 5}}. It is easy to see

that minS∈⧵{∅}
r

(S)
|S|

= 2

3
. However, setting v1 =

v2 = v3 = 0 and v4 = v5 = 1

2
yields
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V∗(, v) = 1

2
and V∗(, v) = 1, and therefore

minv∈R
E
+⧵{0}

V∗(,v)
V∗(,v)

≤
1

2

!
<

2

3
.

Proof of Lemma 12. Let S ∈ arg minT⊆E
l

(T)

r

(T)

with S1 = S ∩ E1, S2 = S ∩ E2, and w.l.o.g. let

q(1) ≤ q(2). It holds that

q() = l

(S)

r

(S)
=

l
1
(S

1
)+l
2
(S

2
)

r
1
(S

1
)+r

2
(S

2
)

≥ min

{
l
1
(S

1
)

r
1
(S

1
)
,

l
2
(S

2
)

r
2
(S

2
)

}

≥ min{q(1), q(2)},

and since clearly q() ≤ min{q(1), q(2)} it

follows that q() = min{q(1), q(2)}.
Analogously, let F ∈ arg minS⊑E

l

(S)

r
⊆
(S)

and T ∈
arg max{|O| ∶ O ⊆ F,O ∈ ⊆} with F1 = F ∩
E1, F2 = F∩E2, T1 = T∩E1 and T2 = T∩E2, and

w.l.o.g. 𝜔(1,1,1) ≤ 𝜔(2,2,2). It holds

that

𝜔(,𝒪 , ) =
l (F)
|T|

=
l

1
(F1) + l

2
(F2)

|T1| + |T2|

≥ min

{ l
1
(F1)
|T1|

,

l
2
(F2)
|T2|

}

≥ min{𝜔(1,𝒪1,1), 𝜔(2,𝒪2,2)},

and since trivially holds 𝜔(,, ) ≤

min{𝜔(1,1,1), 𝜔(2,2,2)} the claim

follows. ▪

Proof of Theorem 16. Let 𝛽 ∈
arg min

𝛼∈Z
n
≥0
⧵{0}

l(G
𝛼

)
r(D

𝛼

)
and u ∈ arg max{||x||1 ∶

x ∈ D+
𝛽

}, hence ||u||1 = r(D
𝛽
) and

v ∈ arg min{||x||1 ∶ x ∈ G+
𝛽

}, hence

||v||1 = l(G
𝛽
).

Define gi(xi) ∶= 1

||u||
1

⋅ xi for xi ≤ 𝛽i and

gi(xi) ∶=
𝛽i

||u||
1

for xi > 𝛽i and g(x) ∶=
∑n

i gi(xi).
Hence, gi is a piecewise linear function in xi
that has slope

1

||u||
1

between 0 and 𝛽i and con-

stant value
𝛽i

||u||
starting from 𝛽i. Observe that for

y ∈ D⧵D
𝛽

holds g(y) = maxx≤y∶ x∈D+
𝛽

g(x), hence

maxx∈D{g(x)} = maxx∈D
𝛽

{g(x)}. For every x ∈
D
𝛽

it holds that g(x) =
∑n

i=1
xi

||u||
1

≤

∑n
i=1

ui

||u||
1

. Hence,

V∗(D, g) =
∑n

i=1
gi(ui) =

∑n
i=1

ui

||u||
1

= 1. The

worst greedy solution that Algorithm 2 may pro-

duce on G is Vgreedy(G, g) = g(v) =
∑n

i=1

vi

||u||
=

||v||
1

||u||
1

. In total, we get
Vgreedy(G,g)

V∗(D,g)
= ||v||

1

||u||
1

and there-

fore minf∈
Vgreedy(G,f )

V∗(D,f )
≤

Vgreedy(G,g)
V∗(D,g)

= ||v||
1

||u||
1

=

min
𝛼∈Z

n
≥0
⧵{0}

l(G
𝛼

)
r(D

𝛼

)
.

Conversely, let f ∈ . Denote the marginal

value of fi(⋅) of j by Δfi(j) ∶= fi(j) − fi(j − 1)
for i ∈ E, 1 ≤ j ≤ k and totally order F ∶=

{(i, j) ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ k)} such that

(i, j) is ordered before (u,w) if Δfi(j) > Δfu(w)
and (i, j) is ordered before (i, j + 1) if Δfi(j) =
Δfi(j+1). Hence, F is ordered such that the higher

the marginal value of an additional unit of i added

to (j − 1), the earlier (i, j) occurs. Let p ∶ F →
{1, … , n ⋅m} be such that p((i, j)) is the position

of (i, j) in the ordered sequence. For 1 ≤ t ≤ n ⋅m
and i ∈ E define qi(t) ∶= |{(i, j) ∶ p((i, j)) ≤ t}|,
which can be interpreted as the total number of

units of i among the t most valuable units, and

set q(t) ∶= (q1(t), … , qn(t)). Furthermore, for

x ∈ Z
n
≥0

we set (q(t)∧x)i ∶= min{xi, qi(t)}, hence

(q(t)∧x)i counts how many of the t best elements

of F are among the xi best of i ∈ {1, … , n}. Con-

sequently, q(t) ∧ x = (q1(t) ∧ x, … , qn(t) ∧ x) and

||q(t) ∧ x||1 =
∑n

i=1
(q(t) ∧ x)i. For convenience,

we define p−1(m ⋅ n + 1) ∶= 0 and h ∶ F →
R+, h((i, j)) ∶= Δfi(j).Thus, for x ∈ Z

n
≥0

, we can

rewrite analogous to Equation (1)

f (x) =
m⋅n∑

t=1

(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x||1.

Let xg
be a worst-case greedy solution obtained

by Algorithm 2 on G and x∗ an optimal solu-

tion on D. Note that for x ∈ D or x ∈ G, we

can interpret q(t) ∧ x as the quantity of i in x
which also is contained in Dq(t) and Gq(t), respec-

tively. Then, it holds that q(t) ∧ xg ∈ Gq(t) and

q(t)∧xg+ei ∉ Gq(t) due to the definition of qg
i (t).

Hence, q(t) ∧ xg ∈ G+
q(t), which yields the simple

inequality l(Gq(t)) ≤ ||q(t) ∧ xg||1. Analogously, it

holds that q(t)∧x∗ ∈ Dq(t) and q(t)∧x∗+ei ∉ Dq(t),

therefore q(t)∧x∗ ∈ D+
q(t), which yields r(Dq(t)) ≥

||q(t) ∧ x∗||1. We use these two inequalities to

show

f (xg)
f (x∗)

=
∑m⋅n

t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ xg||1

∑m⋅n
t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x∗||1

≥

∑m⋅n
t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ l(Gq(t)) ⋅

||q(t)∧x∗||
1

r(Dq(t))
∑m⋅n

t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x∗||1

=

∑m⋅n
t=1
(h(p−1(t)) − h(p−1(t + 1)))
⋅||q(t) ∧ x∗||1 ⋅

l(Gq(t))
r(Dq(t))

∑m⋅n

t=1
(p−1(t)′ − p−1(t + 1)′ ⋅ ||q(t) ∧ x∗||1

≥

∑m⋅n
t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x∗||1

⋅ min
1≤s≤m⋅n

l(Gq(s))
r(Dq(s))

∑m⋅n

t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x∗||1
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=
∑m⋅n

t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x∗||1

∑m⋅n
t=1
(h(p−1(t)) − h(p−1(t + 1))) ⋅ ||q(t) ∧ x∗||1

⋅ min
1≤s≤m⋅n

l(Gq(s))
r(Dq(s))

= min
1≤s≤m⋅n

l(Gq(s))
r(Dq(s))

=
l(G

𝛽
)

r(D
𝛽
)

and the claim follows. ▪

A.2 Omitted calculations

Calculations in Example 4. It is

 = {C} ∪
(

{{a}} ∨
(C

5

))

∪
(

{{b}} ∨
(C

5

))

.

For {a, b} it is
l

({a,b})

r

({a,b})

= 1

2
since {a}, {b} ∈  ∌ {a, b}.

Now, let S ⊆ E, S1 = S∩{a, b} and S2 = S∩C. If S1 = ∅ then

 (S) = {S2} and therefore
l

(S)

r

(S)
= 1. If S1 = {a} (note that

S1 = {b} is treated analogously) and |S2| ≤ 5 it is  (S) =
{{a}} ∨ {S2} and therefore

l

(S)

r

(S)

= 1 and if S1 = {a} and

|S2| > 5 it is  (S) = ({{a}} ∨
(

C
5

)

) ∪ {S2} and therefore

l

(S)

r

(S)
≥

5

r

(S)
≥

5

10
= 1

2
. The case remains that S1 = {a, b}.

Then, if |S2| < 5 it is (S) = ({{a}}∨{S2})∪({{b}}∨{S2})
and therefore

l

(S)

r

(S)
≥

1+|S
2
|

2+|S
2
|
≥

1

2
. If |S2| ≥ 5 it is B (S) =

({{a}} ∨
(

C
5

)

) ∪ ({{b}} ∨
(

C
5

)

) ∪ {S2} and therefore
l

(S)

r

(S)
≥

5

10
= 1

2
. In total, it follows

𝜔(,, ) = 1

2
> q() = 1

5
.

It is evident that (E, ) is a best inner independence system:

For any inner independence system (E, ′) with {a, b} ∈  ′
holds𝜔(,, ′) ≤ l

 ′ (E)
r

(E)

= 2

10
and any independence system


′
⊂  cannot improve the approximation guarantee since

𝜔(,, ′) ≤ l
 ′ ({a,b})
r

({a,b})

≤
1

2
.

Calculation that (E,) is a matroid in Example 10. Each

of

(
C
6

)

, {{a}}∨
(

C
5

)

and {{b}}∨
(

C
5

)

is the set of bases of a

matroid of rank 6. Therefore, it suffices to consider any pair of

bases Y ,Z that is not contained in the same matroid to prove

the basis exchange axiom for matroids. Note that {{a}}∨
(

C
5

)

and {{b}} ∨
(

C
5

)

are isomorphic. Let Y ∈
(

C
6

)

and Z ∈

{{a}} ∨
(

C
5

)

. Then, it holds that a ∈ Z ⧵ Y and for each

y ∈ Y ⧵Z it is (Y ⧵{y})∪{a} ∈ {{a}}∨
(

C
5

)

. Conversely, for

every y ∈ Y ⧵ Z it is (Y ⧵ {a}) ∪ {y} ∈
(

C
6

)

and for z ∈ Z ⧵ y

and y ∈ Y ⧵ Z it is (Z ⧵ {z}) ∪ {y} ∈ {{a}} ∨
(

C
5

)

. It remains

Y ∈ {{a}} ∨
(

C
5

)

and Z ∈ {{b}} ∨
(

C
5

)

. Clearly, it holds

that (Y ⧵ {a}) ∪ {b} ∈ {{b}} ∨
(

C
5

)

and for y ∈ Y ⧵ Z, y ≠ a

and z ∈ (Z ⧵ {b}) ⧵ (Y ⧵ {a}) it holds that (Y ⧵ {y}) ∪ {z} ∈
{{a}} ∨

(
C
6

)

.

Calculations in Example 11. Claim: q() = 1

2
.

Proof of claim. Since {l(S) ∶ S ⊑ E} =
{r(S) ∶ S ⊑ E} = {1, 2, 3} it has to hold

q() ∈
{

1,
1

2
,

1

3
,

2

3

}

. It is q() ≤ l({1,3,5})
r({1,3,5})

= 1

2
.

Suppose there were S ⊆ E with r(S) = 3, then

it has to hold S ⊇ {1, 2, 3}. It is l({1, 2, 3}) =
3 and l({1, 2, 3, 4}) = l({1, 2, 3, 5}) =
l({1, 2, 3, 4, 5}) = 2. Therefore, there cannot

exist S ⊆ E with,
l(E)
r(E)

= 1

3
and it follows

q() = 1

2
. ▪

Claim: 𝜔(,, ) = 1

2
for a best inner independence

system (E, ).

Proof of claim. Since  is an independence sys-

tem  ∶=  itself is an inner independence

system with 𝜔(,, ) = 1

2
. Assume a bet-

ter approximation of inner independent system

(E, ′) exists. It either has to hold that the only

basis of 
′

containing 4 is {4} or {1, 4}. Either

way, it is
l
 ′ ({2,4,5})

max{|O|∶O⊆{2,4,5},O∈}
≤

1

2
and therefore

𝜔(,, ′) ≤ 1

2
. ▪

Claim: 𝜔(,,) = 1

3
for a best inner matroid (E,).

Proof of claim. We argue that the uniform

matroid U1

5
is the best inner matroid. A best inner

matroid (E,) has to be contained in (E,).
Consider S = {1, 4, 5} and note that {5} is a low

rank basis of E in (E,). In order to construct r
out of r , we cannot reduce the rank of {5} since

this would make {5} inapproximable. Therefore,

r({1, 4, 5}) = 1, hence r({1, 4}) = 1. Since

{1, 4} ∉ it must be that r({4}) = 1 because

setting r({4}) = 0 would would make {4} inap-

proximable. Now, since {2, 4} ∉  and {3, 4} ∉
 it follows that r({1, 2, 3, 4}) = r({4}) = 1.

Then, as {4, 5} ∉  it has to hold that {4} is a

basis of {1, 2, 3, 4, 5} from which follows  =
U1

5
. This yields 𝜔(,,) = l


({1,2,3,4,5})

r

{1,2,3,4,5},

=
l

({1})

r

({1,2,3})

= 1

3
. ▪

In sum, we can conclude

max
⊆∶(E,) is matroid

𝜔(,,)

= 1

3

!
<

1

2
= max
⊆∶(E, ) is indpendence system

𝜔(,, ).
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Calculations in Example 13. Let
1
∶= {C}∪({{a}}∨

(
C
5

)

)∪({{b}}∨
(

C
5

)

) and
2
∶= {{1, 2, 3}, {1, 4}, {2, 5}} be the set

of bases of a best inner independence systems regarding (E,1) and (E,2) (due to Example 4 and Theorem 11). Then, since E1

and E2 are disjoint, it holds that ∶=
(

{C} ∪ ({{a}} ∨
(

C
5

)

) ∪ ({{b}} ∨
(

C
5

)

)
)

∨{{1, 2, 3}, {1, 4}, {2, 5}} is the set of bases

of a best inner independence system regarding (E,) by Lemma 12. Analogously,
1
∶=

(
C
6

)

∪({{a}}∨
(

C
5

)

)∪({{b}}∨
(

C
5

)

)
and 

2
∶= U1

5

are best inner matroids regarding (E,1) respectively (E,2) due to Remark 10 and Theorem 11. Then, again

by Lemma 12, it holds that  ∶= (
(

C
6

)

∪ ({{a}} ∨
(

C
5

)

}) ∪ ({{b}} ∨
(

C
5

)

)) ∨U1

5

is the set of bases of a best inner matroid

regarding (E,). It follows directly from Lemma 12 that

q() = 1

5
<

1

3
= 𝜔(,,} < 1

2
= 𝜔(,, ).

Calculations in Example 19. It holds that maxx∈Dk xi ≤ 10 for i ∈ {1, 2, 3}. Let 𝛼i ∈ [0, 10] ∩ Z, i ∈ {1, 2, 3} and define

𝛽i ∶= min{𝛼1, ⌊
100

k
1

⌋} for i ∈ {1, 2}. It holds that

l(Dk
(𝛼

1
,𝛼

2
,𝛼

3
)) = min

{

𝛼3 +min

{

𝛼1,

⌊
100 − 10 ⋅ 𝛼3

k1

⌋}

+min

{

𝛼2,

⌊
100 − 10 ⋅ 𝛼3

k2

⌋}

,

𝛽1 + 𝛽2 +min

{

𝛼3,

⌊
100 −max{𝛽1 ⋅ k1, 𝛽2 ⋅ k2}

10

⌋}}

and

r(Dk
(𝛼

1
,𝛼

2
,𝛼

3
)) = max

{

𝛼3 +min

{

𝛼1,

⌊
100 − 10 ⋅ 𝛼3

k1

⌋}

+min

{

𝛼2,

⌊
100 − 10 ⋅ 𝛼3

k2

⌋}

,

𝛽1 + 𝛽2 +min

{

𝛼3,

⌊
100 −max{𝛽1 ⋅ k1, 𝛽2 ⋅ k2}

10

⌋}}

.

Due to symmetry, we can assume w.l.o.g. k1 ≥ k2. Then, it is easy to see that
l(Dk

(𝛼1 ,𝛼2 ,𝛼3)
)

r(Dk
(𝛼1 ,𝛼2 ,𝛼3)

)
is minimized either for 𝛼 = (10, 10, 10)

or for 𝛼 = (10, 0, 10) (depending on k). (The ratio of lower and higher rank is minimized if either the lower rank is obtained by

packing only items of type 3 into the knapsack and the higher rank is obtained by packing as many items as possible of type 1

and 2 into the knapsack, or the lower rank is obtained by excluding the items of type 2 and packing only a few items (possibly

only 5) of type 1 into the knapsack and the higher rank is obtained by packing as many as possible items of type 3 (possibly up

to 10) into the knapsack.) Therefore, it holds that

𝜌(Dk) = min

{
l(Dk

(10,10,10))

r(Dk
(10,10,10))

,

l(Dk
(10,0,10))

r(Dk
(10,0,10))

}

=min

⎧
⎪
⎪
⎨
⎪
⎪
⎩

||(0, 0, 10)||1

||

(
⌊

100

k
1

⌋

,

⌊
100

k
2

⌋

,min

{⌊
100−k

1
⋅
⌊

100

k1

⌋

10

⌋

,

⌊
100−k

2
⋅
⌊

100

k2

⌋

10

⌋})

||1

,

||

(⌊
100

k
1

⌋

, 0,

⌊
100−⌊ 100

k1

⌋

10

⌋)

||1

||(0, 0, 10)||1

⎫
⎪
⎪
⎬
⎪
⎪
⎭

=min

⎧
⎪
⎪
⎨
⎪
⎪
⎩

10

⌊
100

k
1

⌋

+
⌊

100

k
2

⌋

+min

{⌊
100−k

1
⋅
⌊

100

k1

⌋

10

⌋

,

⌊
100−k

2
⋅
⌊

100

k2

⌋

10

⌋} ,

⌊
100

k
1

⌋

+

⌊
100−

⌊
100

k1

⌋

10

⌋

10

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

We distinguish the following cases:

(i) k1 ≤ 12,

(ii) k1 ∈ {13, 14} and k2 ∈ {10, 11, 12},
(iii) 13 ≤ k2 ≤ k1 ≤ 14,

(iv) k1 ∈ {16, 19, 20},
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(v) k1 = 15 and k2 ∈ {10, 11},
(vi) k1 = 17,

(vii) (k1, k2) ∈ ({15} × {12, 13, 14, 15}) ∪ ({18} × ([10, 20] ∩ Z)).
In the cases (i) and (ii) consider the inner packing instance Gk

defined by adding the constraint x3 ≤ 7 to Dk
. It holds that

𝜔(Dk
,Gk) =

l(Gk
(10,10,10))

r(Dk
(10,10,10))

=
||

(⌊
30

k
1

⌋

,

⌊
30

k
2

⌋

, 7

)

||1

||

(⌊
100

k
1

⌋

,

⌊
100

k
2

⌋

, 0

)

||1

≥
||(2, 2, 7)||1

⌊
100

k
1

⌋

+
⌊

100

k
2

⌋ = 11
⌊

100

k
1

⌋

+
⌊

100

k
2

⌋

>

10
⌊

100

k
1

⌋

+
⌊

100

k
2

⌋ = 10

⌊
100

k
1

⌋

+
⌊

100

k
2

⌋

+min

{⌊
100−k

1
⋅
⌊

100

k1

⌋

10

⌋

,

⌊
100−k

2
⋅
⌊

100

k2

⌋

10

⌋} = 𝜌(Dk).

In cases (iii) and (iv), consider the inner packing instance Gk
defined by adding the constraints x1 ≤ ⌊

100

k
1

⌋−2 and x2 ≤ ⌊
100

k
2

⌋−2.

We have

𝜔(Dk
,Gk) =

l(Gk
(10,0,0))

r(Dk
(10,0,0))

and𝜌(Dk) =
l(Dk

(10,0,10))

r(Dk
(10,0,10))

,

and thus

𝜔(Dk
,Gk) =

l(Gk
(
⌊

100

k1

⌋

−2,0,0)
)

r(Dk
(10,0,0))

=

⌊
100

k
1

⌋

− 2

⌊
100

k
1

⌋ >

⌊
100

k
1

⌋

10
= 𝜌(Dk).

In the case (v), define the inner packing instance Gk
by adding the the constraints x1 ≤

⌊
100

k
1

⌋

− 1 = 5, x2 ≤

⌊
100

k
2

⌋

− 2 and

x3 ≤ 7. It is

𝜌(Dk) =
l(Dk

(10,10,10
)

r(Dk
(10,10,10))

= ||(0, 0, 10)||1
||(6,

⌊
100

k
2

⌋

, 0)||1
= 10

6 +
⌊

100

k
2

⌋ ≤
10

15
<

7

10
= min

{
7

10
,

11

15

}

≤ min

⎧
⎪
⎨
⎪
⎩

||(5, 0, 2)||1
||(0, 0, 10)||1

‖
‖
‖
‖

(

2,

⌊
30

k
2

⌋

, 7

)‖
‖
‖
‖1

‖
‖
‖
‖

(

6,

⌊
100

k
2

⌋

, 0

)‖
‖
‖
‖1

⎫
⎪
⎬
⎪
⎭

=
l(Dk

(0,0,10
)

r(Dk
(0,0,10))

= 𝜔(Dk
,Gk).

In the case (vi), define the inner packing instance Gk
by adding the the constraints x1 ≤

⌊
100

k
1

⌋

− 1 and x2 ≤

⌊
100

k
2

⌋

− 1. It is

𝜌(Dk) = min

{
l(Dk

(10,10,10))

r(Dk
(10,10,10))

,

l(Dk
(10,0,10))

r(Dk
(10,0,10))

}

= min

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

||(0, 0, 10)||1
‖
‖
‖
‖
‖
‖

(

5,

⌈
100

k
2

⌉

,

⌈
100−

⌈
100

k2

⌉

⋅k
2

100

⌉)‖
‖
‖
‖
‖
‖1

,

||(5, 0, 1)||1
||(0, 0, 10)||1

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

= 6

10

< min

{
10

15
,

7

10

}

= min

{
||(0, 0, 10)||1
||(5, 10, 0)||1

,

||(4, 0, 3)||1
||(0, 0, 10)||1

}

≤ min

⎧
⎪
⎨
⎪
⎩

l(Gk
(5,⌊ 100

k2

⌋−1,10
)

r(Dk
(6,⌊ 100

k2

⌋,10)
)
,

l(Gk
(5,0,10

)

r(Dk
(6,0,10))

⎫
⎪
⎬
⎪
⎭

= min

{
l(Gk

(10,10,10
)

r(Dk
(10,10,10))

,

l(Gk
(10,0,10))

r(Dk
(10,0,10))

}

= 𝜔(Dk
,Gk).

In the case (vii), there exists no inner packing instance Gk
for which the generalized height-quotient 𝜔(Dk

,Gk) is better than the

height-quotient 𝜌(Dk). However, there exists a proper inner packing instance for which the generalized height-quotient is not

worse than the height-quotient, for example, adding x1 ≤

⌊
100

k
1

⌋

− 1 to Dk
yields one.
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