
Boeckmann, Jan; Thielen, Clemens

Article  —  Published Version

New Ways in Municipal Flood Mitigation: a Mixed-Integer
Programming Approach and its Practical Application

Operations Research Forum

Suggested Citation: Boeckmann, Jan; Thielen, Clemens (2023) : New Ways in Municipal Flood
Mitigation: a Mixed-Integer Programming Approach and its Practical Application, Operations
Research Forum, ISSN 2662-2556, Springer International Publishing, Vol. 4, Iss. 4,
https://doi.org/10.1007/s43069-023-00246-z

This Version is available at:
https://hdl.handle.net/10419/313672

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s43069-023-00246-z%0A
https://hdl.handle.net/10419/313672
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Vol.:(0123456789)

Operations Research Forum (2023) 4:86
https://doi.org/10.1007/s43069-023-00246-z

1 3

RESEARCH

New Ways in Municipal Flood Mitigation: a Mixed‑Integer 
Programming Approach and its Practical Application

Jan Boeckmann1,2 · Clemens Thielen1,2

Received: 9 September 2022 / Accepted: 22 August 2023 / Published online: 28 October 2023 
© The Author(s) 2023, corrected publication 2023

Abstract
Adapting to the consequences of climate change is one of the central challenges faced 
by humanity in the next decades. One of these consequences are intense heavy rain 
events, which can cause severe damage to buildings due to flooding. In this paper, we 
present the first use of optimization techniques that scales well enough to be applica-
ble for supporting decision-making in planning precautionary measures for flash floods 
caused by heavy rain events in realistic scenarios. Our mixed-integer programming 
model has been implemented as an innovative decision support tool in the form of a 
web application, which has already been used by more than 30 engineering offices, 
municipalities, universities, and other institutions. The model aims to minimize the 
damage caused in the case of a heavy rain event by taking best-possible actions subject 
to a limited budget and constraints on the cooperation of residents. We further present 
an efficient, graph-based representation and preprocessing of the surface terrain, a com-
binatorial algorithm for computing an initial solution of the mixed-integer program, and 
computational results obtained on real-word data from different municipalities.

Keywords Mixed-integer programming · Flood mitigation · Graph algorithms

1 Introduction

Adapting to the consequences of climate change is without doubt one of the cen-
tral challenges faced by humanity in the next decades. One of these consequences 
are intense heavy rain events, which scientists agree will increase both in their 
intensity and their frequency within the next years [1–3].

 * Jan Boeckmann 
 jan.boeckmann@tum.de

 Clemens Thielen 
 clemens.thielen@hswt.de

1 TUM Campus Straubing for Biotechnology and Sustainability, Weihenstephan-Triesdorf 
University of Applied Sciences, Am Essigberg 3, 94315 Straubing, Germany

2 Department of Mathematics, School of Computation, Information and Technology, Technical 
University of Munich, Boltzmannstr. 3, 85748 Garching bei München, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-023-00246-z&domain=pdf


 Operations Research Forum (2023) 4:86

1 3

86 Page 2 of 68

The flash flood from 14 to 15 July 2021 in Germany, Luxembourg, and Bel-
gium at the latest has caused a special public interest in adapting to such events. 
This event claimed more than 180 lives  [4] and caused tremendous damage, 
which has been estimated at a total of 32 billion euros [5].

Typically, flood mitigation concepts are created based on simulations rather 
than using optimization methods [6]. Prioritization of actions is then often done 
by a simple point scheme  [7]. This method, like any other purely simulation-
based method, lacks the consideration of site-specific interplay of actions, which 
motivates using optimization methods in the context of flood mitigation.

Although there is clear evidence of the efficacy of precautionary measures [8], 
the literature on the use of optimization techniques in order to design flood mitiga-
tion concepts is surprisingly limited, which is also pointed out in [9, 10]. The clos-
est related study to this work is  [9], where the “Optimal Flood Mitigation Prob-
lem,” which aims to optimize the positioning of a single type of precautionary 
measure (embankments) to protect critical assets in the case of a flood scenario, is 
introduced. Furthermore, two time-indexed mixed-integer programming formula-
tions that over- and underestimate the water flows during a flooding scenario are 
presented. Here, the over- and underestimation is caused by the linearization of 
nonlinear constraints. Due to the time-indexed formulation, however, the MIPs do 
not tractably scale to realistic scenarios (as noted in the abstract of Tasseff [9]).

The problem of designing mitigation concepts for coastal floods in the Neth-
erlands is an impressive example of the potential of using optimization tech-
niques in flood mitigation. A mixed-integer programming formulation for a cost-
efficient design of dike heights is presented in  [11, 12]. Furthermore, a greedy 
search algorithm to compute a combination of reinforcement measures for dike 
segments, which is 42% cheaper than the combination obtained from the common 
approach, is implemented in [13].

Moreover, a genetic algorithm is used to compute efficient mitigation concepts 
for fluvial (river-caused) flash floods on the Thames Estuary (London, England) 
in a multi-objective setting [10]. Apart from the measures themselves, they also 
compute a threshold value for the timing to make an intervention given the uncer-
tainty of the development of climate change and its impact on fluvial flash floods.

Another approach to the design of flood mitigation concepts can be found 
in [14], where a simulated annealing algorithm is used to determine an allocation 
of low-impact actions such as porous pavements and green roofs to districts in a 
megacity. Moreover, a particle swarm optimization algorithm is used in  [15] to 
determine an optimal pumping schedule and optimal weir crest heights for deten-
tion reservoirs to minimize downstream flood damage.

An often neglected but crucial factor in creating successful flood mitigation 
concepts is taking the cooperation of residents into account since; in many cases, 
the most effective actions are located on private properties. Indeed, the potential of 
incentives in flood prevention has already been established as promising  [16–18]. 
In practice, however, plans are often made before involving critical private actors. 
A holistic review on using market-based instruments for flood risk management is 
provided in [19].



1 3

Operations Research Forum (2023) 4:86 Page 3 of 68 86

Besides these approaches for flood mitigation, a wide variety of optimization 
techniques are used in post-disaster flood management. The design of evacuation 
plans including shelter location planning and helicopter assignment in a multi-
objective robust setting is investigated in  [20], and real-time operation procedures 
that specify reservoir releases during a flood are examined in [21, 22]. For a more 
extensive review of optimization and machine learning approaches in post-disaster 
flood management, we refer to [23].

Other applications of optimization techniques in water management involve the 
design of sewage water systems [24], a real-time release schedule for reservoirs dur-
ing a flood [22], and the geometrical design of retention basins [25].

1.1  The Project AKUT

The work presented in this paper has been performed within the project AKUT—an acro-
nym for the German translation of “Incentive Systems for Municipal Flood Prevention”—
which has been funded by the German Federal Ministry for the Environment, Nature 
Conservation, and Nuclear Safety from January 2019 to March 2021. Within the project, 
a mixed-integer programming approach has been developed to find an optimal combina-
tion of actions to be taken such that the resulting damage on buildings is minimized while 
respecting a given budget and constraints on the cooperation of the residents. The result-
ing MIP has been implemented in a web application (also referred to as AKUT) using the 
Flask framework and Python 3.8. The application is available for municipalities free of 
charge (so far only in German language).

The project team included a municipality providing us with real-world data 
and the engineering office “igr GmbH” validating our results by comparing them 
to results of state-of-the-art simulations. Furthermore, the Professorship of Water 
Resource Management and Sanitary Environmental Engineering at Mainz Univer-
sity of Applied Sciences formulated and developed the engineering methodology for 
the model while the authors of this paper formulated the mathematical model and 
implemented the web application.

1.2  Our Contribution

In this paper, we present a novel mixed-integer programming approach for com-
puting optimized flood mitigation concepts that minimize the damage to buildings 
due to flash floods caused by heavy rain events. To the best of our knowledge, this 
approach marks the first usage of optimization techniques in the context of planning 
precautionary measures for flood mitigation that scales well enough to be applied to 
real-world instances. Our model allows for different types of precautionary meas-
ures (basins, ditches, and embankments) that lead to elevations or depressions of 
the terrain surface. Moreover, the model takes constraints on the cooperation of the 
residents into account. One of the central challenges to make this approach work 
for realistic scenarios is modeling the surface terrain efficiently while still main-
taining a realistic representation. We tackle this challenge via an efficient graph-
based approach together with suitable preprocessing methods. Moreover, we present 



 Operations Research Forum (2023) 4:86

1 3

86 Page 4 of 68

a combinatorial algorithm that is able to quickly compute an initial feasible solution 
of the presented MIP.

Our approach has been implemented as an innovative decision support tool in the 
form of a web application, which has already been used in practice by more than 30 
engineering offices, municipalities, universities, and other institutions from all over 
Germany. We compare the results obtained from our model on real-world instances 
from different municipalities to results obtained from established simulation soft-
ware, and investigate the main drivers for the running time and the quality of the 
obtained solutions. The novelty of our approach in comparison to a selection of the 
previously presented existing literature is summarized in Table 1.

2  Problem Description and Input Data

In this section, we define the underlying problem and describe the input data on 
which our approach is based.

In short, given a set of possible locations for retention basins (simply called 
basins in the following), ditches, and embankments, the goal in the problem is to 
determine a subset of these actions to take such that the resulting damage to build-
ings is minimized while respecting a given budget and constraints on the coopera-
tion of residents.

The terrain surface is given as a digital terrain model (DTM), which is an estab-
lished standard in engineering [6]. A DTM contains 2D coordinates in UTM format 
on a given grid together with their corresponding geodesic height, which is similar 
to the elevation above sea level. In our case, we use a grid size of 1 m.

Each of the data points in the DTM then determines the geodesic height of the 
one by one meter square centered at the 2D coordinate. This square is called the 
shape of a coordinate, and two 2D coordinates are called adjacent if their distance is 
1 m, i.e., if one coordinate is 1 m to the north, south, west, or east of the other. These 
data are available for all German municipalities and, hence, suitable for applying our 
model in practice.

Table 1  Comparison of our work to existing literature. A tick in the column “optimization” indicates that 
optimization algorithms are used and a tick in the column “pluvial” represents that the paper considers a 
pluvial flood scenario (as opposed to a fluvial or coastal flood scenario). A tick in the column “scalable” 
indicates that the developed method scales well enough to be applied to realistic scenarios. Finally, a tick 
in the column “incentivation” means that incentives or cooperation of residents is considered

Reference Pre-/post-
disaster

Optimization Pluvial Scalable Incentivation

[9] Pre ✓ ✓

[10] Pre ✓ ✓

[11, 12] Pre ✓ ✓

[21, 22] Post ✓ ✓

[20] Post ✓ ✓ ✓

[18] Pre ✓ ✓

This paper Pre ✓ ✓ ✓ ✓



1 3

Operations Research Forum (2023) 4:86 Page 5 of 68 86

To estimate the damage that occurs due to flooding in the case of a rain event, 
information about the buildings’ locations is required. To this end, the shape of a 
building is defined as the polygon derived from its outline. The outlines of the build-
ings are obtained from ALKIS,1 which is a digital land information system. Just like 
the data for the DTM, these data are available to all German municipalities.

To link the positions of the buildings to the DTM coordinates, we say that a build-
ing is on a coordinate, if the shape of the building intersects with the shape of the 
coordinate. Conversely, we say that a coordinate intersects with a building in this case.

The definition of damage caused to buildings is based on the advisory leaf-
let DWA-M  119  [6] published by the German Association for Water, Wastewater 
and Waste (DWA) in 2016. The DWA is a politically and economically independent 
organization that supports safe and sustainable water management and prepares the 
DWA set of rules, which includes a large number of standards and advisory leaflets. 
Within the advisory leaflet DWA-M 119, they identify two main factors for the dam-
age caused to a building, the first of which is the maximum water level at the building.

Here, the maximum water level at a building is the maximum over all water levels at 
the coordinates intersecting with the building. The hazard class, which represents the 
maximum water level at a building, is a categorical measure attaining the values zero to 
four. It is derived from the maximum water level at a building by the following rules2:

• Zero: The maximum water level at a building is 0 cm, i.e., none of the coordi-
nates intersecting with the building has a strictly positive water level.

• One: The maximum water level at the building is strictly larger than 0 cm and 
less than or equal to 10 cm.

• Two: The maximum water level at the building is strictly larger than 10 cm and 
less than or equal to 30 cm.

• Three: The maximum water level at the building is strictly larger than 30 cm and 
less than or equal to 50 cm.

• Four: The maximum water level at the building is strictly larger than 50 cm.

The second main factor describes the (quite intuitive) fact that not every building 
suffers an equal amount of damage at a given water level. As an example, it is by 
far less severe if a garage is affected by the rain event compared to the case where 
a hospital is affected. To take this into account, the damage at a building does not 
only depend on the water level at the building (represented by its hazard class), but 
also on its damage class. The damage class is a categorical measure of the dam-
age occurring at a building if water accumulates at it. It can attain the values one to 
four, where one corresponds to the lowest damage class (the garage in our example), 
i.e., the least amount of damage, and four corresponds to the highest damage class 
(the hospital in our example). The data from ALKIS, aside from just the shape of 
the building, provide additional information about the building like its usage, which 
allows to preset the damage class for some of the buildings automatically. For the 
remaining buildings, the damage class has to be specified manually.

1 German acronym for “official real estate cadastre information system”
2 See advisory leaflet DWA-M 119 [6].



 Operations Research Forum (2023) 4:86

1 3

86 Page 6 of 68

The combination of the hazard class and the damage class yields the need for 
protection of a building, which is rated using a point system with a scale from zero 
to seven. For buildings with hazard class zero, i.e., none of the coordinates intersect-
ing with the building have a strictly positive water level, the need for protection is 
also zero. Every other building has a strictly positive need for protection, which is 
increasing in both the building’s damage class and its hazard class. The objective of 
the problem is to minimize the sum of all buildings’ needs for protection.

In order to protect the buildings, a set of potential basins, ditches, and embank-
ments is given, which together make up the possible actions. Each possible action is 
given by the polygon of its location, its construction costs, and its depth (in the case 
of a basin or ditch) or height (in the case of an embankment). The polygon of an 
action’s location is called its shape.

Similar to the buildings, we say that an action is on a coordinate if its shape inter-
sects with the shape of the coordinate. In this case, we also say that the coordinate 
intersects with the action. If an action is taken, i.e., a basin, ditch, or embankment is 
built, the geodesic height of all coordinates intersecting with the action is decreased 
by the action’s depth or increased by its height. The change in geodesic height 
affects the flow of the water on the terrain surface and, hence, can protect buildings. 
The overall cost for taking actions is bounded from above by a given budget.

Taking an action requires the consent of the owners of the properties on which 
the action is located. The owners of the properties are called actors in the following. 
The outlines of the properties are also obtained from ALKIS. As before, the shape 
of a property is defined as the polygon derived from its outline. An action is on a 
property if their shapes intersect. Convincing actors to cooperate might be more or 
less hard. To guarantee that the recommended combination of actions can realisti-
cally be implemented, the number of hard-to-convince actors on whose properties 
actions are to be taken is bounded from above. To this end, an extended traffic light 
rating system with the following characterizations is used:

• Green: The actor is willing to cooperate.
• Yellow: The actor needs minor incentives to cooperate.
• Red: The actor needs major incentives to cooperate.
• Black: The actor does not cooperate at all.

For simplicity, we also refer to green, yellow, red, and black properties in the 
following. The willingness to cooperate has to be assigned manually by the user for 
each property.

3  Mathematical Modeling

We now present a graph-based model for the problem described in Section 2 as well 
as an approach for reducing the size of the underlying graph (Section 3.1). After-
wards, in Section 3.2, we derive our mixed-integer programming formulation that 
is used for solving the graph-based model, and we describe valid inequalities and 
presolve techniques that are used to improve performance.



1 3

Operations Research Forum (2023) 4:86 Page 7 of 68 86

3.1  Graph‑Based Model

3.1.1  Construction of the Graph

In this section, we construct the directed graph Gor = (Vor,Ror) , which we call the 
original graph, from the DTM.

Recall that, for a directed graph G = (V ,R) , a node  v ∈ V  is called a child 
of u ∈ V  if there is an arc from u to v. Conversely, u is then called a parent of v. 
Moreover, a node v ∈ V  is called a successor of u ∈ V  if there exists a (directed) 
path from u to v. Conversely, u is then called a predecessor of v. The set of outgoing 
arcs of v ∈ V  is denoted by �+(v) and the set of incoming arcs by �−(v) . A node with 
no outgoing arcs is called a leaf, and a node without incoming arcs is called a root. 
For an arc r ∈ R , we denote its start node by �(r) and its end node by �(r).

For the construction of Gor = (Vor,Ror) , recall that the DTM contains data about 
the geodesic height for coordinates on a 1-m grid. The set Vor of nodes is constructed 
by associating one node with each of these coordinates, i.e., there is a one to one cor-
respondence between the coordinates in the DTM and the nodes in the graph. To keep 
track of this correspondence, each node gets the coordinate as an additional attribute.

The geodesic height of a node is defined as the geodesic height of its correspond-
ing coordinate. We store the geodesic height as an attribute for each node in the  
graph. We then index the nodes in Vor = {v1,… , vn} in non-decreasing order of geodesic  
height, where ties are broken arbitrarily. Furthermore, we define the shape of a node v ∈ Vor  
as the shape of its corresponding coordinate, i.e., in this case, the one by one meter square 
with its center at the corresponding coordinate. The definitions of whether a building, 
action, or property intersects with (the shape of) a node are analogous to the ones for 
coordinates provided in the previous section. Finally, each node  v ∈ Vor is assigned 
an area, which we denote by areav . In the case of the original graph, the area is 1 m²  
for each node. This changes though for the graphs we construct in Section 3.1.3.

For any two nodes whose corresponding coordinates are adjacent on the grid, 
there is an arc in Ror between the nodes, which is oriented from the node with the 
higher index to the node with the lower index. This means that arcs are directed 
from the node with larger geodesic height (the higher node) to the node with lower 
geodesic height (the lower node) whenever the two nodes do not have the same geo-
desic height. Note that, if all nodes in Vor have pairwise distinct geodesic heights, 
this makes the original graph Gor = (Vor,Ror) acyclic since the geodesic heights 
induce a topological sorting (both in the mathematical and literal sense) in this case. 
An example of the original graph is provided in Fig. 1.

To model the runoff behavior of the precipitation water, we compute flows in 
the graph, which are determined by the nodes’ geodesic heights. To this end, for 
an arc r ∈ Ror , we define its slope as the absolute difference of its incident nodes’ 
geodesic heights and denote it by sloper . When distributing the outflow of a 
node v ∈ Vor among its downhill arcs, we want to ensure that a higher slope causes 
more water flow on an arc. This is modeled by the ratios of the arcs, which are intro-
duced next and are based on the concept of processing networks [26, 27], in which 
flow is distributed among the outgoing arcs of a node according to fixed ratios.



 Operations Research Forum (2023) 4:86

1 3

86 Page 8 of 68

To compute the ratio of an arc r ∈ Ror , which we denote by ratior , we have to distin-
guish two cases. If the sum of the slopes of all outgoing arcs of the node �(r) is nonzero, 
we define the ratio of r by ratior ∶= sloper∕

∑
r̂∈𝛿+(𝛼(r)) sloper̂. If the sum is zero, the ratio of r 

is defined as one divided by the number of successors, i.e., as ratior ∶= 1∕|�+(�(r))|.  
In some situations, however, actions that are taken lead to water flowing in 

the opposite direction of an arc r ∈ Ror , which means that the original graph does 
not suffice for our model. A simple example for such a situation is illustrated in 
Fig. 2. To this end, for an arc r ∈ Ror , we denote the inverse arc by r⃖ . The extended 
original graph Gex

or
= (Vor,R

ex
or
) is then constructed by adding the inverse arc  r⃖ for 

each r ∈ Ror to the original graph and setting the ratio of the arc r⃖ to the ratio of r. 
Note that this does not change the node set Vor.

3.1.2  Description of the Graph‑Based Model

The goal in our problem is to provide best-possible protection for the buildings by 
taking a combination of actions respecting a given budget and the cooperation of 
the actors. In this section, we formulate the corresponding optimization problem 
formally by using the extended original graph introduced in the previous section.

The input of our graph-based model consists of the following:

• The original graph Gor = (Vor,Ror) and the extended original graph Gex

or
=

(V
or
,R

ex

or
)

• The set B of buildings, each of which is given by its shape and its damage class
• The set A of possible actions, each of which is given by its shape, its construc-

tion costs, and its depth/height

Fig. 1  An example of the original graph Gor = (Vor,Ror) on the left and an example of the extended origi-
nal graph Gex

or
= (Vor,R

ex
or
) on the right. The number in each node corresponds to its geodesic height, also 

indicated by the node’s color. The nodes are indexed in non-decreasing order of geodesic height, where 
ties are broken arbitrarily as, e.g., for v4 and v5 . The arcs in the original graph are directed such that they 
start at the node with the higher index



1 3

Operations Research Forum (2023) 4:86 Page 9 of 68 86

• The set P of properties, each of which is given by its shape and the willingness 
to cooperate of the corresponding actor

• A budget denoted by budget , which represents an upper bound on the total cost for 
taking actions

• The maximum combined number of yellow and red properties denoted by 
maxAllowedYellow +maxAllowedRed on which actions can be taken

• The maximum number of red properties maxAllowedRed on which actions 
can be taken

• The rain per square meter denoted by rain

A feasible solution is a set of actions whose total cost does not exceed the given budget 
and where neither the combined number of yellow and red properties on which actions 
are taken nor the number of red properties on which actions are taken exceeds the allowed 
maximum. The objective is to minimize the sum of all buildings’ needs for protection, 
which is computed from a given feasible solution as described in the following.

The decision on which actions are to be taken changes the geodesic heights of 
the nodes intersecting with these actions, which may in turn change the flows in the 
graph. The change of the geodesic height is straightforward if there is at most one 
action taken on a node. However, if there are several actions with different depths/
heights taken on one node, like, for example, a ditch leading into a deeper basin, we 
need a more sophisticated rule, which is given as follows:

(GH1) If at least one action decreasing the geodesic height (i.e., a basin or a ditch) 
is built on a node v ∈ Vor , then the geodesic height of v is set to the node’s original 
geodesic height minus the maximum depth of any of the basins or ditches built on v.
(GH2) If no actions decreasing the geodesic height are built on a node v ∈ Vor 
(i.e., neither basins nor ditches are built on v), then the geodesic height of v is 

Fig. 2  The instance consists of two nodes u and v, where v is the higher of the two nodes. This means 
that water flows from v to u, which is illustrated on the left-hand side. If a basin with depth strictly larger 
than the absolute difference of the nodes’ geodesic heights can be built on  v, the resulting geodesic 
height of v after building the basin is less than the geodesic height of u. Therefore, the water flows in the 
opposite direction after building the basin, which is illustrated on the right-hand side



 Operations Research Forum (2023) 4:86

1 3

86 Page 10 of 68

set to the node’s original geodesic height plus the maximum height of any of the 
embankments built on v.

Once this decision has been made, the resulting geodesic heights (after taking the 
actions) determine the flows between the nodes, which then allows us to compute 
the water levels. Before we describe how the flows are computed, we describe the 
connection between the flows and the water levels. To this end, we define the excess 
of a node v ∈ Vor as the amount of water accumulating at v, i.e., as the initial water 
from the rainfall plus the node’s inflow minus its outflow. The water level at v is 
defined as the excess of v divided by the node’s area.

We next describe how the water levels are computed. An efficient implementa-
tion of a combinatorial algorithm for this computation is provided as Algorithm 6 in 
Appendix 2, which uses Algorithms 4 and 5 as subroutines for computing the flows 
in the graph and joining nodes, respectively.

We define GD = (VD,RD) for a subset  D ⊆ A of actions as the graph that is 
obtained from  G when adjusting the geodesic heights as described in  (GH1) 
and (GH2) and changing arc directions where necessary. This graph then represents 
the input to Algorithm 6 if when computing the water levels in the scenario where 
exactly the actions in D are taken. Throughout the computation, we keep track of 
both the water levels and the excesses of all nodes in V. At the start of the algorithm, 
each node receives its initial water from the rainfall, which is computed by multiply-
ing the given rain per square meter with the node’s area. This water may then flow 
over the node’s outgoing arcs.

The outflow of a node v ∈ V (i.e., the water flowing from the node to its adjacent 
nodes) is distributed proportionally to the ratios of the outgoing arcs if  v is not a 
leaf. The leaves then start flooding until the water level at some leaf u ∈ V equals 
the absolute difference of the geodesic height of u and its lowest parent node v ∈ V , 
in which case we say that the water level at u matches the geodesic height of v. The 
nodes are then joined and from there on represented by u. Joining nodes within Algo-
rithm  6 is done via the subroutine presented in Algorithm  5. This process is then 
repeated until there is no node that is not a leaf in the graph and has strictly positive 
excess. The behavior of the flows during the algorithm is illustrated in Fig. 3.

After the flows are computed, the water levels at the nodes follow immediately by 
dividing the excess of each node by the nodes’ area. This allows us to determine the 
maximum water level at each of the buildings and, hence, its resulting hazard class, 
which is obtained as described in Section 2. The combination of the buildings’ haz-
ard and damage classes yield the corresponding needs for protections whose sum is 
to be minimized.

Note that implementing the described procedure for computing the water levels 
efficiently is important for obtaining feasible running times of our overall approach 
on real-world instances. In fact, this procedure is used both when reducing the graph 
size as described in the following subsection and for obtaining a feasible initial solu-
tion of our MIP as discussed in Section  4.2. The implementation as an efficient 
combinatorial algorithm presented in Appendix 2 uses an intelligent update of the 



1 3

Operations Research Forum (2023) 4:86 Page 11 of 68 86

flows, which decreases the running time by about 90% on average compared to com-
puting the flows from scratch in each iteration. Moreover, using a Fibonacci heap to 
store leaf nodes and the corresponding times until the water level at the leaf matches 
the geodesic height of its lowest parent further reduces the running time by about 
25% on average compared to a simple sorted-array implementation.

3.1.3  Reducing the Graph Size

The size of the original graph Gor = (Vor,Ror) or the extended graph Gex
or
= (Vor,R

ex
or
) 

is the main determinant for the size of a problem instance. In this section, we 
describe how the graph size can be reduced while still maintaining a realistic model 
of the problem described in Section 2.

It is worth noting that the sizes of both the original graph and the extended 
graph are linear in the cardinality of the node set Vor , which we therefore use as 
a natural measure of the size of these graphs. The aim of this section is to derive 
the reduced graph Gred = (Vred,Rred) from the original graph. In fact, applying our 
MIP presented in the next section based on the original graph only works for 
unrealistically small instances. Hence, reducing the size of the graph is actually 
crucial in order to obtain a model that is applicable in practice.

As a quick outline of this section, we provide a short summary of the ideas of 
our graph size reduction techniques: 

1. Instead of a fixed grid size of 1 m, we use a dynamic grid size, which means that 
certain parts of the terrain surface are modeled using coarser 25 m or 5 m grids.

2. We remove nodes that do not cause flow into critical locations.

Fig. 3  An illustration of the flows in Algorithm 6



 Operations Research Forum (2023) 4:86

1 3

86 Page 12 of 68

3. We contract all nodes in non-critical locations that dispense water to critical 
locations into one source node.

4. We contract adjacent nodes of similar geodesic heights.

Before we can apply these ideas, we have to introduce some further defini-
tions. To model the terrain surface using a grid size of  25 m, we construct the 
graph G25 = (V25,R25) from those coordinates in the DTM where both UTM coor-
dinates are integer multiples of 25 m. This works completely analogously to the 
construction of the original graph. The only difference is that the shape of a node 
in V25 is no longer a square with an edge length of 1 m, but now a square with an 
edge length of 25 ms. Consequently, each node’s area in G25 amounts to 625 m². 
Also note that, for example, a building is on a node v ∈ V25 if its shape intersects 
with the shape of v, which in G25 is a square with an edge length of 25 ms.

In the same fashion, we construct the graph G5 = (V5,R5) from those coordi-
nates in the DTM where both UTM coordinates are multiples of 5. It is important 
that, although the nodes in V25 , V5 , and Vor stem from the same coordinates, the 
sets are disjoint as the attributes of the nodes (e.g., their areas) differ.

To obtain more information about the graphs G25 , G5 , and Gor , we first assess 
for each node whether there are a buildings or possible actions on it. This means 
that, for each node v ∈ V̂  , where V̂  is one of the sets V25 , V5 , or Vor , we store a set 
of buildings on the node, which we denote by Bv , and a set of possible actions, 
which we denote by Av . An efficient algorithm for obtaining these sets is pro-
vided in Appendix 1.

1. Using a dynamic grid size: We construct a graph with a dynamic grid size, 
which we denote by Gdg = (Vdg,Rdg) . To this end, we first construct the node 
set Vdg and then the arc set Rdg . To construct the node set, we initialize Vdg as a 
copy of V25 , then resolve each node that intersects with a building or an action at 
a 5 m grid size, and finally resolve each node that has been resolved at a 5 m grid 
size and that intersects with a ditch or an embankment at a grid size of 1 m. This 
procedure is described in Algorithm 1. To keep track of the resolution at the sin-
gle nodes, we further store the resolution resv for each node v ∈ Vdg.

Algorithm 1  Construct-nodes



1 3

Operations Research Forum (2023) 4:86 Page 13 of 68 86

The set of arcs Rdg is then constructed by adding an arc between two nodes 
in Vdg if and only if they are adjacent on the dynamic grid (i.e., their shapes have 
a common edge). The arc is again directed from the node with the higher index 
to the node with the lower index according to the ordering of the corresponding 
nodes with the same coordinates in Vor (i.e., from the higher node to the lower 
node whenever the two nodes do not have the same geodesic height).

To compute the ratios, we also have to take the resolutions of the nodes into 
account. This stems from the fact that, with the dynamic grid size, the length of 
the common edge of two adjacent nodes’ shapes can be 1 m, 5 m, or 25 m. The 
ratio of an arc r ∈ Rdg , hence, depends on the slopes of the outgoing arcs of �(r) 
and on the proportion of the boundary of the shape of �(r) that the shapes of �(r) 
and �(r) have in common. The ratio of r is computed as

where

An example of shapes of nodes and the corresponding graph Gdg = (Vdg,Rdg) is 
provided in Fig. 4.

Modeling all buildings at a grid size of 5 m is still overly exact. Buildings at 
which no (or only negligible) water levels are to be expected can still be modeled 
at a grid size of 25 m. To assess a good grid size, we compute the water levels on 
the graphs Gdg = (Vdg,Rdg) and G25 = (V25,R25) using Algorithm 6, which is pre-
sented Appendix 2.

ratior ∶=
�
sloper∕

∑
r̂∈𝛿+(𝛼(r)) sloper̂

�
⋅ correctionr,

correctionr ∶=

{
1 if res�(r) ≤ res�(r)
res�(r)∕res�(r) else

.

Fig. 4  A screenshot from our web application on the left-hand side, where the dynamic grid size is 
visualized and the nodes intersecting with a building are colored yellow. The corresponding part of the 
graph Gdg = (Vdg,Rdg) is visualized on the right-hand side



 Operations Research Forum (2023) 4:86

1 3

86 Page 14 of 68

We call a node v ∈ V25 threatened, if it has a strictly positive water level in the 
computation on G25 = (V25,R25) or if any node in Vdg whose shape intersects with 
the shape of v has a water level greater than or equal to 1 cm in the computation 
on Gdg = (Vdg,Rdg).

For each non-threatened node v ∈ V25 that only intersects with buildings and not 
with actions, we rescale its resolution in Gdg = (Vdg,Rdg) back to 25 m, i.e., we con-
tract all nodes in Vdg whose shapes intersect with the shape of v into v. Afterwards, 
we recompute the arc set Rdg and the ratios with the updated node set Vdg as we have 
done before, which yields the final version of Gdg = (Vdg,Rdg).

The reduction in the overall number of nodes achieved by this step highly depends 
on the number of nodes in Vor that do not intersect with any buildings or actions, as 
the number of these nodes is reduced by the highest factor of 625. In the instances 
presented in Section 4, the overall number of nodes is usually reduced by a factor of 
about 500.

2. Removing nodes not causing flow into critical locations: Our next goal is to 
remove nodes from the graph that do not cause any flow into critical locations. To 
this end, we define four new properties for nodes. A node v ∈ Vdg is called ...

• critical if its shape intersects with a building or a potential action.
• relevant if it is critical, its resolution is not 25 m, or it is a successor of a criti-

cal node in Gdg = (Vdg,Rdg) . Apart from critical nodes, relevant nodes are either 
nodes where water may accumulate and then cause critical nodes to be flooded 
due to back pressure, or nodes that are needed to complete the grid without gaps.

• water-dispensing if it is not relevant, but it is a predecessor of a relevant node in 
Gdg = (Vdg,Rdg) . Water accumulating on such nodes does not cause flooding of 
relevant nodes due to back pressure. These nodes are, however, still interesting 
as they dispense water to relevant nodes.

• irrelevant if it is neither of the above. Irrelevant nodes do not contribute in any 
way to the flooding of relevant nodes.

As an example, think of a village at the foot of a mountain. Here, the nodes at 
coordinates within the village are the relevant nodes, the nodes at coordinates on 
the side of the mountain facing the village are the water-dispensing nodes, and the 
nodes at coordinates on sides of the mountain not facing the municipality are the 
irrelevant nodes.

The first step of the node removal consists of removing all irrelevant nodes from 
Vdg . It is worth noting that this may cause the graph to be no longer weakly con-
nected. In practice though, this only happens if buildings are spread widely apart 
from each other, which is seldom the case. Apart from this, our model still works if 
the graph is not weakly connected. We denote the graph obtained by this method by 
Gri = (Vri,Rri).3

The reduction in the overall number of nodes achieved by this step highly 
depends on the number of irrelevant nodes, which in turn depends on the choice of 

3 ri: remove irrelevant.



1 3

Operations Research Forum (2023) 4:86 Page 15 of 68 86

the input DTM. Barely any nodes are irrelevant in cases where the region covered by 
the DTM has been chosen relatively tight around the build-up region to be protected, 
whereas a lot of nodes are irrelevant if the region covered by the DTM has been cho-
sen relatively large. However, since the region covered by the DTM is composed of 
1 by 1 km rectangles and must always be chosen large enough so that no potentially 
relevant or water-dispensing nodes are omitted, a certain number of irrelevant nodes 
is usually unavoidable, so the removal of irrelevant nodes represents an important 
first step in reducing the overall number of nodes.

3. Contracting nodes in non-critical locations: In the next step, we deal with 
the water-dispensing nodes. By construction, flow through these nodes is not 
affected by the decision on which actions are taken. Next, we contract all water-
dispensing nodes into a single node s, which we call the source node. Note that this 
contraction also changes the arc set. The arcs that are incident to s arise from arcs 
in Gri that are directed from a water-dispensing node to a relevant node. In particu-
lar, this means that the in-degree of s is zero.

The area of the source node is set to the sum of the areas of all water-dispensing 
nodes. To compute the ratios of the arcs that are incident to s, we first compute the 
flows in the graph Gri using Algorithm 4 and denote the resulting flow on r ∈ Rri by  fr . 
The ratio of an arc r ∈ Rwd starting in s is then set to the sum of the inflow into �(r) 
from water-dispensing nodes divided by the total inflow from water-dispensing into 
relevant nodes in Gri:

For completeness, we set the geodesic height of s to the largest geodesic height 
in the graph before contraction plus 1 m. This ensures that the source node is never 
flooded unless an unrealistically large amount of rain per  m2 is used. We denote the 
obtained graph by Gwd = (Vwd,Rwd).4

4. Contracting adjacent nodes of similar geodesic heights: As a last step, we 
contract adjacent nodes into a new node if they have the same geodesic height up 
to a given threshold and the same combination of actions and buildings on them, 
which yields the desired reduced graph Gred = (Vred,Rred) . The exact procedure 
for computing Gred is presented in Algorithm  2, which will be explained in the 
following paragraphs. The corresponding reduction step has two benefits. First, it 
further reduces the number of nodes. Second, and far more beneficially, it greatly 
improved the numerical stability of the MIP. Indeed, numerical issues caused the 
MIP to be infeasible before we introduced this procedure. The improved numeri-
cal stability stems from the fact that, after the procedure, all nodes in the resulting 
reduced graph Gred have pairwise distinct geodesic heights, and there are only 
very few adjacent nodes that have similar geodesic heights.

ratior ∶=
∑

r̂∈Rwd∶
𝛼(r̂) is water-dispensing

and 𝜔(r̂)=𝜔(r)

f r̂

/ ∑
r̃∈Rwd∶

𝛼(r̃) is water-dispensing
and 𝜔(r̃) is relevant

f r̃

4 wd: water dispensing.



 Operations Research Forum (2023) 4:86

1 3

86 Page 16 of 68

Algorithm 2 is divided into four parts. In the first part, we contract nodes that 
intersect with the same sets of buildings and actions and have a similar geodesic 
height into a new node representing the contracted nodes. The shape of such a 
new node is defined as the union of the shapes of the contracted nodes, and the 
boundary of such a node is the boundary of its shape. The geodesic height of the 
new node is then set to the area-weighted average over the geodesic heights of the 
nodes that have been contracted into the new node v ∈ Vred:

In practice, this procedure usually leads to all nodes in Vred having pairwise 
distinct geodesic heights. However, if this is not the case, we add a slight noise 
to the geodesic heights of each pair of nodes that have the same geodesic height. 
This is important in order to guarantee that the MIP produces a feasible solution 
of the problem.

In the second part, we remove uphill arcs r ∈ Rred that might arise during this procedure.
In the third part, we recompute the ratios of the newly obtained arcs. This time, for 

a node v ∈ Vred , the ratio of an arc r ∈ �+
Gred

(v) is set proportionally to the slopes of the 
arcs leaving v and to the length of the intersection of the boundaries of v and �(r).

In the final part, we remove the node s and instead increase the area of nodes 
that are adjacent to s. This only decreases the size of the graph by a single node, 
but greatly improves the numerical stability of the MIP.

Finding a good value for the threshold is critical here. An overly high value leads 
to unrealistic results, whereas an overly low value decreases the performance gain 
obtained from the contraction. We found that, depending on the terrain surface, a 
value between 5 and 15 cm works best. On hilly surfaces, the value can preferably 
be set a bit higher, whereas on smooth surfaces, it is better to stick to low values.

The reduction in the overall number of nodes achieved in this last step mainly 
depends on the threshold parameter and the hilliness of the modeled region. The 
higher the threshold parameter and the flatter the region, the greater the reduction 
in the number of nodes.

For three representative regions, which are revisited later in Section 4.2, an over-
view of the reduction in the overall number of nodes from Gor to Gred is provided in 
Table 2.

ghv ∶=
∑

v�∈Vwd∶

v� is contracted into v

ghv� ⋅ areav�

/ ∑
v�∈Vwd∶

v� is contracted into v

areav�

Table 2  Reduction in the total 
number of nodes achieved for 
three representative regions, 
where the factor provided in 
the third column is obtained 
as |Vor

|∕|V
red
|  

Region |V
or
| |V

red
| Factor

Hilly region 12,239,475 4719 2594
Flat region 1 2,523,799 6613 382
Flat region 2 1,789,498 3778 474



1 3

Operations Research Forum (2023) 4:86 Page 17 of 68 86

Algorithm 2  Contract-components

The extended reduced graph Gex
red

= (Vex
red
,Rex

red
) is constructed from the reduced 

graph Gred = (Vred,Rred) returned by Algorithm  2 in the same manner as we con-
structed it for the original graph, i.e., for each arc r ∈ Rred , we add a copy of r in 
reverse direction.

3.2  Mixed‑Integer Programming Formulation and Presolve Techniques

In Section 3.2.1, we present our mixed-integer programming formulation of the 
problem defined in Section 3.1 as well as several intuitive valid inequalities that 



 Operations Research Forum (2023) 4:86

1 3

86 Page 18 of 68

improve solution times. The constraints are formulated verbally, while the math-
ematical formulation can be found in Appendix 3. We then describe methods to 
preset some of the variables in Section 3.2.2.

3.2.1  Mixed‑Integer Programming Formulation

Before stating the mixed-integer programming formulation, we provide complete 
lists of the sets, parameters, and variables for better readability. The MIP takes, 
among other things, a graph and its extended graph as an input. Any of the graphs 
we constructed before could be used, but, as already mentioned, we highly recom-
mend to use the reduced graph (and the corresponding extended reduced graph) 
here as all other graphs make the model too large or numerically unstable. The 
graph used in the MIP is denoted by G = (V ,R) and the corresponding extended 
graph by Gex = (V ,Rex) . Throughout this section, we assume that the nodes in V 
have pairwise distinct geodesic heights, which is the case if G = Gred.

Sets 
V  node set of the graph
R  arc set of the graph
Rex  arc set of the extended graph
B  set of buildings
B  set of possible retention basins
D  set of possible ditches
E  set of possible embankments
A  set of all possible actions, where A = B ∪D ∪ E

P  set of properties
Pyellow ⊆ P  set of properties where the corresponding actor needs minor incentives 

to cooperate
Pred ⊆ P  set of properties where the corresponding actor needs major incentives 

to cooperate
Pblack ⊆ P  set of properties where the corresponding actor does not cooperate 

at all

The sets corresponding to possible actions are denoted by calligraphic letters. We 
further introduce the set Bv ⊆ B for each v ∈ V  as the set of basins on v. The sets Dv 
and Ev are defined analogously, and we let V� denote the set of all nodes intersecting 
with building � ∈ B.

Parameters 
rain  total rain per  m2 in m
budget  budget for the total cost of taken actions
GHv  original geodesic height of node v ∈ V

areav  area of node v ∈ V  in  m2 
ratior  ratio of outflow of node �(r) allocated to arc r ∈ Rex

deptha  depth of basin or ditch a ∈ B ∪D in m



1 3

Operations Research Forum (2023) 4:86 Page 19 of 68 86

heighte  height of embankment e ∈ E in m
costa  cost of action a ∈ A

thresholdWLk  threshold water level in m for hazard class k ∈ {0, 1, 2, 3}

damagek,�  damage in the objective function if building � ∈ B belongs to 
hazard class k ∈ {1, 2, 3, 4}

maxAllowedYellow  maximum number of properties needing minor incentives to 
cooperate that actions can be built on

maxAllowedRed  maximum number of properties needing major incentives to 
cooperate that actions can be built on

Variables 
fr  total flow on arc r ∈ Rex in m3  
excessv  excess of node v ∈ V  in m3  
wlv  water level at node v ∈ V  in m
floodedv  1 if wlv > 0 , 0 otherwise
activer  1 if there is flow along arc r ∈ Rex , 0 otherwise
fullr  1 if wl𝛼(r) > 0 for r ∈ R , 0 otherwise
decBasinb  1 if basin b ∈ B is built, 0 otherwise
decDitchd  1 if ditch d ∈ D is built, 0 otherwise
decEmbe  1 if embankment e ∈ E is built, 0 otherwise
ghv  geodesic height of node v ∈ V  after actions have been built in m
downv  1 if a ditch or basin is built on v ∈ V  , 0 otherwise
max_incv    maximum increase of height through building embankments on 

v ∈ V  in m
max_decv    maximum decrease of height through building ditches or basins on 

v ∈ V  in m
aux_fdr    binary auxiliary variable for the flow distribution over arc r ∈ Rex : 1 

if arc is active and not full, 0 otherwise
odr  1 if node �(r) is higher than node �(r) after building the actions for 

r ∈ R , 0 otherwise
auxO1F1r  binary auxiliary variable for r ∈ R : 1 if odr = 1 and fullr = 1 , 0 

otherwise
auxO1F0r  binary auxiliary variable for r ∈ R : 1 if odr = 1 and fullr = 0 , 0 

otherwise
max_wl�    maximum water level at any node intersecting with building � ∈ B 

in m
hck,�  1 if building � ∈ B belongs to hazard class k ∈ {0,… , 4} , 

0 otherwise
actionp  1 if an action is taken on property p ∈ P , 0 otherwise
hdbb  absolute value of the height difference in m that is caused by building 

basin b ∈ B if basin b is built, 0 otherwise
hddd  absolute value of the height difference in m that is caused by building 

ditch d ∈ D if ditch d is built, 0 otherwise
hdee  absolute value of the height difference in m that is caused by building 

embankment e ∈ E if it is built, 0 otherwise



 Operations Research Forum (2023) 4:86

1 3

86 Page 20 of 68

Objective Function The only term in the objective function is the damage caused to 
the buildings, which depends on their hazard class and their damage class. Thus, the 
objective function to be minimized is given as

Constraints To enhance readability, we use the max  operator within our formula-
tion. This operator takes a set of variables and/or parameters as an argument and 
returns the maximum among their values. Note that the operator can alternatively be 
implemented using big M constraints. This, however, may lead to numerical insta-
bility if finding a suitable value M is difficult. We therefore use the max operator, 
which is pre-implemented in most modern MIP solvers.

Furthermore, we make use of indicator constraints. An indicator constraint is of 
the form

and states that the constraint aTx ≤ b must be satisfied if the binary variable  bin 
has value  val ∈ {0, 1} . An indicator constraint can also be implemented using a 
big  M constraint. It is, however, well known that indicator constraints have many 
advantages compared to big M formulations [28]. Indicator constraints are, like the 
max operator, pre-implemented in many modern MIP solvers.

The formulation of some constraints requires using strict inequalities, which 
is not possible theoretically in a MIP. In practice, however, values are encoded as 
floats with a bounded number of decimal places. Therefore, a strict inequality x < y 
can be formulated as x ≤ y − � for some small 𝜀 > 0.

Water Levels at Nodes To determine the water levels, we first compute the excess of 
each node v ∈ V  : 

1. The excess of node v ∈ V is the inflow minus the outflow plus the rain volume on 
the node. The excess of a node v ∈ V immediately yields the water level at the node:

2. The water level at node v ∈ V  is the excess of node v divided by its area.

Geodesic Heights of Nodes In contrast to most traditional flow problems, we do not 
aim to optimize the flow in the graph, but the terrain surface determining the flows. 
The following constraints therefore set the geodesic height variable ghv for each 
node v ∈ V  . First, to distinguish the two cases (GH1) and (GH2) from Section 3.1.2, 
the variable downv is set to one in case (GH1), and to zero otherwise: 

 3. If a basin b ∈ B is built on node v ∈ V  , the variable downv is set to one.
 4. If a ditch d ∈ D is built on node v ∈ V  , the variable downv is set to one.
 5. If neither ditches nor basins are built on node v ∈ V , the variable downv is set to zero.
   Next, the variables hdbb , hddd , and hdee for b ∈ B , d ∈ D , and e ∈ E that 

determine the height differences that result from taking actions are set:

∑
�∈B

4∑
k=1

damagek,� ⋅ hck,� .

bin = val ⟹ aTx ≤ b



1 3

Operations Research Forum (2023) 4:86 Page 21 of 68 86

 6. The variable hdbb is set to depthb if basin b ∈ B is built (i.e., if decBasinb = 1 ), 
and to zero otherwise.

 7. The variable hddd is set to depthd if ditch b ∈ B is built (i.e., if decDitchd = 1 ), 
and to zero otherwise.

 8. The variable hdee is set to heighte if embankment e ∈ E is built (i.e., if 
decEmbe = 1 ), and to zero otherwise.

   To enable setting the geodesic height variables as described in the case 
distinction, the maximum depth of any of the basins or ditches built on v in 
case (GH1) and the maximum height of any of the embankments built on v in 
case (GH2) is now computed:

 9. The maximum decrease max_decv of the geodesic height at node v ∈ V  is set 
to the maximum of the height differences that result from building basins or 
ditches on v and 0.

 10. The maximum increase of the geodesic height max_incv at node v ∈ V is set to the 
maximum of the height differences that result from building embankments on v and 0.

   Finally, the geodesic height variable ghv is set for each node v ∈ V:
 11. The geodesic height ghv of node v ∈ V  is greater than or equal to the original 

geodesic height of v minus the maximum decrease caused by basins and ditches.
 12. The geodesic height ghv of node v ∈ V  is less than or equal to the original geo-

desic height of v plus the maximum increase caused by embankments.
 13. If a basin or ditch is built on node v ∈ V (i.e., downv = 1 ), the geodesic height ghv 

of v is less than or equal to the original geodesic height of v minus the maximum 
decrease caused by basins and ditches and, hence, in combination with Con-
straint (11), equal to the original geodesic height of v minus the maximum decrease 
caused by basins and ditches. This is modeled using a big M constraint where 
M

v
∶= max({depth

b
|b ∈ B

v
} ∪ {depth

d
|d ∈ D

v
} ∪ {0}) +max({height

e
|e ∈

E
v
} ∪ {0}).

 14. If no basin or ditch is built on node v ∈ V  (i.e., downv = 0 ), the geodesic 
height ghv of v is greater than or equal to the original geodesic height of v plus 
the maximum increase caused by embankments and, hence, in combination 
with Constraint (12), equal to the original geodesic of v height plus the maxi-
mum increase caused by embankments. This is again modeled using a big M 
constraint with the same Mv as in the previous constraint.

Arc Directions There might be arcs in the input graph where, after taking actions 
and thereby changing the geodesic heights of nodes, the start node has a lower geo-
desic height than the end node, so the direction of the arc has to be reversed. If this 
is not the case for an arc r ∈ R , the arc is said to have original direction and the vari-
able odr is set to one by using indicator constraints: 

 15. If arc r ∈ R has original direction, the variable odr is set to one.
 16. Otherwise, the variable odr is set to zero.

Full Arcs The following constraints deal with the behavior of the flows on the arcs in the 
extended graph Gex = (V ,Rex) . To this end, we introduce the following terminology: An 



 Operations Research Forum (2023) 4:86

1 3

86 Page 22 of 68

arc r ∈ R is called full if the water level at the lower of the two nodes �(r) and �(r) is 
greater than or equal to the absolute difference of their geodesic heights. For its inverse 
arc 

←

r ∈ Rex ⧵ R , we say that this arc is full if and only if r is full.5 Note that this defini-
tion refers to the geodesic heights after taking actions, where it is possible that �(r) has a 
smaller geodesic height than �(r) . To connect the variables fullr to the water levels, some 
binary auxiliary variables incorporating the original direction variables are first introduced: 

 17. The variable auxO1F1r for arc r ∈ R is set to one if and only if odr = 1 and 
fullr = 1.

 18. The variable auxO1F0r for arc r ∈ R is set to one if and only if odr = 1 and 
fullr = 0.

 19. The variable auxO0F1r for arc r ∈ R is set to one if and only if odr = 0 and 
fullr = 1.

 20. The variable auxO0F0r for arc r ∈ R is set to one if and only if odr = 0 and 
fullr = 0.

   The following constraints connect the variables fullr to the water levels using 
the auxiliary variables:

 21. If arc r ∈ R has original direction and is full, the water level at �(r) must be 
greater than or equal to the absolute difference of the geodesic heights of �(r) 
and �(r).

 22. If arc r ∈ R has original direction and is not full, the water level at �(r) must be 
less than the absolute difference of the geodesic heights of �(r) and �(r).

 23. If arc r ∈ R does not have original direction and is full, the water level at �(r) 
must be greater than or equal to the absolute difference of the geodesic heights 
of �(r) and �(r).

 24. If arc r ∈ R does not have original direction and is not full, the water level at �(r) 
must be less than the absolute difference of the geodesic heights of �(r) and �(r).

Flooded Nodes A node v ∈ V  is called flooded if its water level wlv is strictly posi-
tive, and non-flooded otherwise. The following indicator constraints set the varia-
bles floodedv for v ∈ V  that indicate flooded nodes: 

 25. If the water level wlv at node v ∈ V  is strictly positive, the variable floodedv is 
set to one.

 26. If the water level wlv at node v is zero, the variable floodedv is set to zero.

Active Arcs The net flow between two adjacent nodes in the extended graph can be 
in either one or the other direction. An arc r ∈ Rex is called active if the flow on r 
is strictly positive. The following constraints set the variables activer forr ∈ Rex that 
indicate active arcs: 

5 Nodes in Gred have pairwise distinct geodesic heights, so the lower node is always well-defined. In 
practice, the geodesic heights after taking actions are also pairwise distinct. If this is not the case, one 
can decrease the depth of height of the action that causes the issue by a small value similarly to how pair-
wise distinct geodesic heights of nodes are enforced in Gred.



1 3

Operations Research Forum (2023) 4:86 Page 23 of 68 86

27 For arc r ∈ R and its inverse arc 
←

r ∈ Rex , at most one of the variables activer and 
active←

r
 can be equal to one.

28 If an arc r ∈ Rex is not active, the flow on the arc must be zero.

Flow on Arcs that Are Not Full The outflow of a node  v ∈ V  is to be distributed 
according to the ratios of its outgoing arcs in the extended graph Gex = (V ,Rex) that 
are active and not full. The following constraints set the auxiliary variables aux_fdr 
and aux_fd←

r
 for r ∈ R that indicate arcs that are both active and full: 

 29. For arc r ∈ R , the auxiliary variable aux_fdr is to one if and only if the arc is 
active and not full.

 30. For arc r ∈ R , the auxiliary variable aux_fd←

r
 for the inverse arc is set to one if 

and only if r⃖ is active and not full.6
   The outflow of each node v ∈ V  is now distributed among its outgoing arcs 

in the extended graph that are active and not full:
 31. For node v ∈ V  and each pair of arcs r1, r2 ∈ �+

Gex(v) , if both arcs are active and 
not full, the flow is distributed proportionally to the ratios ratior1 and ratior2.

   For each arc r ∈ R that is not full, the water level at the higher of the two 
nodes �(r) and �(r) must be zero.

 32. For each arc r ∈ R that is not full and has original direction, the water level 
at �(r) is set to zero.

 33. For each arc r ∈ R that is not full and does not have original direction, the water 
level at �(r) is set to zero.

   Water can only flow on downhill arcs r ∈ Rex that are not full:
 34. For each arc r ∈ R that is not full and has original direction, the arc r⃖ is not active.
 35. For each arc r ∈ R that is not full and does not have original direction, the arc r 

is not active.

Flow on Full Arcs As the flow is immediately connected to the water levels by Con-
straints (1) and (2), the flow on each full arc r ∈ R can be set indirectly by connect-
ing the water levels at its start node and its end node:

 36. For each full arc r ∈ R , the sum of the geodesic height and the water level must 
be equal in �(r) and �(r).

Maximum Water Levels at Buildings 

 37. For each building � ∈ B , the maximum water level variable max_wl� is set to 
the maximum of the water levels at nodes intersecting with the building.

   Note that, strictly speaking, the maximum is not taken here, but the maximum 
water level at the building is only bounded from below by each water level at an 
intersecting node. The objective function then aims to minimize the maximum 
water levels at the buildings to achieve equality.

6 Recall that 
←

r  is full if and only if r is full.



 Operations Research Forum (2023) 4:86

1 3

86 Page 24 of 68

Hazard Classes of Buildings 

 38. Each building � ∈ B belongs to exactly one hazard class.
 39. If building � ∈ B belongs to hazard class k ∈ {0,… , 4} , its maximum water 

level must be less than or equal to the upper threshold of this hazard class.
   Again, the maximum water levels are only bounded from above as a higher 

hazard class leads to a higher penalty in the objective function.

Budget Constraint 

 40. The total cost for building basins, ditches, and embankments must not exceed 
the given budget.

Incentives for Actors The following constraints enforce the given upper bounds on 
the incentives required for cooperation of actors and ensure that no actions are taken 
on properties of actors that do not cooperate at all. This is done by means of the var-
iables actionp for p ∈ P that indicate properties on which at least one action is taken: 

 41. Actions are taken on at most maxAllowedYellow +maxAllowedRed yellow and 
red properties in total.

 42. Actions are taken on at most maxAllowedRed red properties.
 43. No actions are taken on black properties.
 44. The variable actionp for property p ∈ P is set to one if at least one action is taken 

on property p.
   It is worth noting that it is not trivial to see that the MIP is indeed a correct 

formulation of the problem defined in Section 3.1. However, we show this in 
Appendix 2 by proving that any feasible solution of the MIP taking exactly 
the actions in D ⊆ A leads to the same water levels at the nodes as the result 
of Algorithm 6 applied on GD , which is the graph that results from taking the 
actions in D and adjusting the geodesic heights and arc directions accordingly 
as described in Section 2.

Valid Inequalities We finish the description of the MIP by presenting three intuitive 
sets of valid inequalities that improve the solution times of the model: 

 45. For each pair of consecutive original-direction (i.e., downhill) arcs r1, r2 ∈ R with 
�(r1) = �(r2) , the first arc r1 can only be full if the second arc r2 is full as well.

 46. If node v ∈ V is flooded, then each arc r ∈ �+
Gex(v) with ghv > gh𝜔(r) must be full 

(otherwise, water could still flow in downhill direction from v).
 47. If node v ∈ V is not flooded, then no arc r ∈ �−

Gex(v) with ghv < gh𝛼(r) can be full.

3.2.2  Presolve Techniques

We close this chapter by presenting two methods to preset some of the variables.



1 3

Operations Research Forum (2023) 4:86 Page 25 of 68 86

Through our analysis, we found that the variables floodedv for v ∈ V  are the major 
bottleneck of the MIP. It is therefore natural to investigate which nodes must always 
be flooded and which nodes can never be flooded in a feasible solution in order to 
preset some of these variables to one or zero, respectively.

We start by presetting variables for nodes that must always be flooded. To this 
end, we consider the leaves of the graph G = (V ,R) . If there is no possible embank-
ment on a leaf l ∈ V  and no possible ditches or basins on any of the nodes in �−(l) , 
the leaf will also be a leaf after taking actions—independent of which actions are 
selected. This means that l is flooded in any feasible solution since at least the initial 
water from the rain event will build up a water level strictly larger than zero at l. For 
all such leaves, we can therefore preset the variable floodedl to one.

Identifying nodes v ∈ V  for which the variable floodedv can be preset to zero (i.e., 
nodes that can never be flooded in any feasible solution) is more involved. The idea 
here is that, if no possible action is located on v, the water levels at all successors 
of v must match the geodesic height of v in order for v to be flooded. Thus, if the 
total amount of rain on the whole area does not suffice for raising the water level at 
each successor to the absolute difference of the geodesic height of the successor and 
the geodesic height of v, then v can never be flooded in any feasible solution.

In order to find such non-flooded nodes, we start by computing the maximum pos-
sible geodesic height of each node than can be obtained after taking actions,7 and then 
construct a new graph Gnf = (Vnf,Rnf) where each node is assigned its corresponding 
maximum possible geodesic height and arcs are directed in downhill direction with 
respect to these geodesic heights.8 For each node on which no actions are located, we 
compute its successors in Gnf.9 If the amount of rain that is needed to raise the water 
level at each of these successors to the absolute difference of the geodesic height of 
the successor and the geodesic height of v exceeds the total rain volume on the whole 
area, node v can never be flooded in any feasible solution. If this is not the case, we 
can apply the same idea using a larger set of nodes instead of the successors of v. To 
this end, we consider the undirected version of Gnf and remove all nodes that have 
strictly larger geodesic height than v. We then compute all nodes different from v that 
are in the same connected component as v in the remaining undirected graph. It is 
clear that the set of these nodes is a superset of the set of successors of v in Gnf , so we 
can apply the reasoning as before to this larger set of nodes.

The pseudocode of the corresponding algorithm is presented as Algorithm 7 in 
Appendix 4. Note that one could of course use the larger set of nodes right away, but 
this would cause a non-negligible overhead in computation.

4  Computational Results

In this section, we present a comparison of the results obtained from our MIP to 
results obtained from established simulation software (Section 4.1). Afterwards, we 
use real-world instances from different municipalities to identify and analyze the 

7 Recall that building embankments can increase the geodesic heights of nodes.
8 nf: non-flooded.
9 Note that nodes on which no actions are located have the same geodesic height in G and in Gnf.



 Operations Research Forum (2023) 4:86

1 3

86 Page 26 of 68

main drivers for the running time of our method and the quality of the obtained solu-
tions (Section 4.2).

4.1  Comparison with Established Simulation Software

To validate our approach, we compared the results obtained on real-world instances 
to results obtained on these instances from the well-established simulation software 
“HYSTEM-EXTRAN”  [29]. HYSTEM-EXTRAN is the German industry stand-
ard for hydro-dynamic simulations in urban water management and is used by most 
engineering offices and municipalities when evaluating precautionary measures for 
flash floods caused by heavy rain events. It does, however, not support any kind 
of optimization, but can only be used to simulate the water levels resulting from 
a given (usually manually chosen) combination of actions for a given amount of 
rain. Thus, we compared the water levels resulting from our approach for the status 
quo of each instance (which contains only the already implemented actions, if any) 
without allowing any additional actions to the water levels obtained from HYSTEM-
EXTRAN’s simulation for the same situation. The results obtained from HYSTEM-
EXTRAN have been provided and validated by the engineering office igr AG, which 
was one of our partners in the project AKUT.

All in all, we found that the results predominantly coincide, with only slight dif-
ferences that usually occur at the periphery of flooded areas. An illustrative exam-
ple, in which a 30-year rain event (i.e., the heaviest rain to be expected in the chosen 
area over a time span of 30 years) has been simulated in a hilly region, is provided 
in Fig. 5. We further found that AKUT slightly underestimates the damage to build-
ings in hilly regions whereas it slightly overestimates the damage to buildings in flat 
regions. This is due to the fact that HYSTEM-EXTRAN also takes damage caused 
by high current velocity into account, which is neglected in AKUT.

4.2  Running Time and Performance

We now investigate the running times of our MIP and the quality of the obtained solu-
tions. For both of them, we present the most important drivers that have been identified 

Fig. 5  Extract from a comparison of water levels obtained from HYSTEM-EXTRAN and AKUT for a 
30-year rain event in a hilly region. The darker the blue color, the higher the water level, where the high-
est obtained levels are illustrated in purple in the case of HYSTEM-EXTRAN



1 3

Operations Research Forum (2023) 4:86 Page 27 of 68 86

by applying our approach to a wide range of different real-world problem instances. 
As an illustration, results for nine representative instances obtained from three different 
regions (two municipalities and a part of a city) that are considered in three relevant 
scenarios are presented. The three scenarios are a 30-year rain event with a budget that 
allows to take four actions, a 50-year rain event with with a budget that allows to take 
four actions, and a 50-year rain event with with a larger budget that allows to take six 
actions.10 The regions are a municipality on a hilly terrain, called “Hilly Region” (HR) 
in the following, a municipality on a flat terrain, called “Flat Region 1” (FR1) in the 
following, and a part of a city on a flat terrain, called “Flat Region 2” (FR2) in the fol-
lowing. For each region, the set A of possible actions is the same for all three scenarios 
and consists of about 20 actions that have been selected according to the local circum-
stances such that each of them could be implemented in reality.

For each instance, an initial solution taking no actions, which is computed using 
Algorithm 6, is given to the MIP. As termination criterion, a 3% MIP gap is used for 
the hilly region, and a 5% MIP gap for the flat regions. Furthermore, a time limit of 
24 h is set. All computations in this section were executed using Gurobi 9.5.0 on a 
server with 32 AMD EPYC 7542 processors (2.9GHz). The most important charac-
teristics of the instances together with the results and the running times are provided 
in Table 3.

Table 3  Computational results for nine representative instances. The column “HM” (Hilliness Meassure) 
contains the median of the values obtained by dividing the slope of each arc by the Euclidean distance of 
the centers of its incident nodes, which is a measure of how hilly the terrain is. The column “FSF” con-
tains the time until the final solution is found. The column “IOV” contains the objective value of the initial 
solution of the MIP provided by applying Algorithm 6. The column “BOV” contains the objective value 
of the best solution returned by the MIP. Note that the different values of |V

red
| among instances with the 

same region result from different merging of nodes during preprocessing due to different rain events

Region Total area ( m2) # Buildings HM

Hilly region (HR) 2,294,375 579 7.2%
Flat region 1 (FR1) 1,728,799 573 1.9%
Flat region 2 (FR2) 585,123 957 2.0%

 Instance |V
red
| Running time FSF IOV BOV

HR, 30-year, 4 actions 4719 48 min 31 min 821 807
HR, 50-year, 4 actions 4750 2 h, 20 min 44 min 863 855
HR, 50-year, 6 actions 4750 56 min 42 min 863 854
FR1, 30-year, 4 actions 6613 1 h, 8 min 33 min 405 392
FR1, 50-year, 4 actions 6646 24 h 4 h, 26 min 418 399
FR1, 50-year, 6 actions 6646 24 h 2 h, 35 min 418 398
FR2, 30-year, 4 actions 3778 6 h, 36 min 6 h, 36 min 571 475
FR2, 50-year, 4 actions 3790 3 h, 2 min 2 h, 33 min 575 483
FR2, 50-year, 6 actions 3790 2 h, 27 min 2 h, 27 min 575 480

10 Recall that a 30-year (50-year) rain event corresponds to the heaviest rain to be expected in the chosen 
area over a time span of 30 years (50 years).



 Operations Research Forum (2023) 4:86

1 3

86 Page 28 of 68

In general, it is found that the maximum possible number of actions is taken in 
each of the nine instances. It is worth noting that there are instances, which are not 
presented here, where this is not the case. Possible reasons for not taking an action 
although it would be possible are (1) an overabundance of possible actions and a 
large budget such that the action that is not taken does not contribute to the quality 
of the solution anymore and (2) a poor-quality location of the action such that the 
action does not protect any buildings.

Among the 42 actions that are selected by the MIP in the presented instances, 40 
are basins, while only two are ditches or embankments. This confirms observations 
made on numerous real-world instances indicating that retention basins, if they can 
be built, are usually the most efficient actions. However, building retention basins 
requires free space, which is not always available, especially in densely populated 
urban areas. Embankments and ditches are usually built together with a retention 
basin such that the actions overlap geographically. An intuitive explanation for this 
behavior of the MIP is that retention basins act as a storage for the water, while 
ditches or embankments connect the inflow from a larger area to the basins.

Another interesting finding is that, in hilly regions, the most efficient retention 
basins, i.e., the ones that are typically selected by the MIP, are often low-lying and 
located centrally. As an illustration, in the three scenarios considered for HR, 10 of 
the 14 selected basins are low-lying and located centrally.

Although the rain volume is significantly higher in the instances modeling the 
50-year rain events, it is found that neither the budget nor the rain volume dramati-
cally change the set of taken actions. Among the 12 actions taken in the three con-
sidered instances with a 50-year rain event and four possible actions per instance, 
eight are also taken in the corresponding instances with a 30-year rain event. Fur-
thermore, among the 12 actions taken in the three instances with a 50-year rain 
event and six possible actions per instance, nine are also taken in the corresponding 
instances with four possible actions.

In general, the running times show high fluctuations as can be seen in FR1, where 
the instance with the 30-year rain event takes significantly less time to solve than the 
instances with the 50-year rain event. Still, several factors influencing the running 
time and the quality of the obtained solutions can be identified.

Concerning the running time, the most important factor is the number of nodes in 
the graph (i.e., |Vred| ). The instances of FR1, which are the instances with the largest 
number of nodes, with a 50-year rain event are the only instances in our experiments 
on which the MIP gap could not be closed before reaching the time limit, whereas 
all other instances could be solved within less than 7 h.

The second most important factor is the hilliness of the terrain surface. Com-
paring  HR and  FR2, the instances for  HR are solved significantly faster than the 
instances for FR2 despite the graph for FR2 being slightly smaller than the graph 
for HR. Further, in hillier regions, the MIP tends to be numerically more stable.

Although the parameter “MIPFocus” is set to 2 and the parameter “Heuristics” is 
set to 0.01, which both enforce a stronger attention on improving the lower bound, 
the final solution is usually found relatively quickly, and the solver spends a signifi-
cant part of the overall running time on improving the lower bound afterwards, as 
can be seen when comparing the values in the columns “Running Time” and “FSF” 



1 3

Operations Research Forum (2023) 4:86 Page 29 of 68 86

(final solution found) in Table  3. Without tuning the parameters accordingly, the 
running time increases drastically since the solver struggles to close the MIP gap.

Concerning the quality of the solutions, we observe that hillier regions usually 
have more damage potential overall. To illustrate this, we compare  HR to  FR1, 
which have almost the same number of buildings. However, the objective values of 
both the initial solution and the solution returned by the MIP are more than twice as 
large in HR as in FR1. This is due to two reasons. Firstly, hilly regions have heavier 
rainfalls than flat regions due to orographic precipitation  [30]. In our example, a 
30-year rain event in HR has a precipitation level of 44.9 mm whereas a 30-year 
rain event in FR1 has a precipitation level of only 35.9 mm. Secondly, hilly regions 
tend to have a larger drainage area, which can also be seen comparing the total areas 
of HR and FR1. Indeed, the difference in the total areas result almost entirely from a 
higher number of water-dispensing nodes in instances of HR.

Lastly, the density of the buildings (i.e., the number of buildings per area) affects 
the potential of how much better the solution returned by the MIP can be compared 
to the initial solution (i.e., the solution where no actions are taken). In our case, there 
is a significantly higher density of buildings in FR2 than there is in HR and FR1. 
We see that the difference between the objective values of the initial solution and 
the obtained solution from the MIP is considerably higher in FR2 than it is in HR 
and FR1. This stems from the fact that, if a high water level at a critical location is 
prevented by an action, the action protects more buildings in FR2 than it does in the 
other two regions. It is worth noting, however, that there are other instances with 
a high density of buildings where planning impactful actions becomes hard due to 
lack of space. In such cases, a high density of buildings can decrease the potential 
for damage reduction by taking actions significantly.

5  Conclusion

To the best of our knowledge, the web application AKUT is the first software that 
uses optimization techniques to support decision-making in planning precautionary 
measures for flash floods caused by heavy rain events and scales well enough to be 
applied to realistic scenarios. It is currently used by more than 25 organizations from 
all over Germany. The usage of optimization techniques in this context has evidently 
provided valuable support in handling a challenging and highly topical task for vari-
ous organizations like municipalities, engineering offices, and research institutes.

A mixed-integer program is used to minimize the damage in the case of a heavy 
rain event by taking best-possible actions subject to a limited budget and constraints 
on the cooperation of residents. To model the terrain surface, a grid graph obtained 
from a digital terrain model is transformed by several preprocessing methods such 
that the cardinality of its node set becomes small enough to apply the previously 
mentioned mixed-integer program while still maintaining a realistic representation 
of the terrain surface. Comparisons with results from established software provide 
strong evidence that solutions obtained from our approach yield realistic results.

When applying the software to large cities, these must currently be subdivided 
into several parts due to performance reasons. Hence, an interesting question would 



 Operations Research Forum (2023) 4:86

1 3

86 Page 30 of 68

be how the performance of our approach could further be improved such that it can 
handle larger instances. As the problem decomposes into several smaller subprob-
lems, using decomposition methods could be a promising attempt. Additionally, 
even though an efficiently implemented combinatorial algorithm (Algorithm 6) is 
already used to generate an initial feasible solution of our MIP, another possible 
approach for improving the running times of the model could be to implement call-
backs that use this algorithm to compute new solutions at later stages of the branch 
and bound process.

Appendix 1. Obtaining the Buildings and Actions on the Nodes

A straightforward algorithm to obtain the sets Bv of buildings and Av of actions for 
all nodes v ∈ V  is to loop over the nodes and, within this loop, iterate over all build-
ings and actions and check if the shape of the node and the shape of the building or 
action intersect. However, this has a horrendous running time and can be done way 
more efficiently using the connectivity of the shapes of buildings and actions.

For simplicity, we only present the algorithm to compute the set  Bv for all 
nodes v ∈ V  . The computation of the sets Av works similarly. For each building, 
we initialize a queue q containing a single node v� ∈ V  whose shape contains the 
coordinate of some vertex of the building’s shape. Note that the coordinate of such 
a node can easily be computed by rounding both components of the vertex’s coor-
dinate to the next multiple of 1, 5, or 25 depending on which of the node sets the 
algorithm is called for.

While the queue is not empty, we take a node v from the queue and check whether 
it intersects with the building. If this is the case, we add the building to B(v) and add 
the nodes north, south, west, and east of v that have not yet been processed for this 
building to the queue. The pseudocode is provided in Algorithm 3, which takes the 
set B of buildings and a node set V̂ ∈ {V25,V5,Vor} as its two arguments.

Algorithm 3  COMPUTE-BUILDINGS-ON-NODES



1 3

Operations Research Forum (2023) 4:86 Page 31 of 68 86

Appendix 2. Computing the Water Levels

In this part of the appendix, the algorithm for computing water levels, which has 
already been introduced in Section 3.1.2, is presented. The algorithm uses two sub-
routines that are presented first.

Computing the Flows in the Graph We start by describing the subroutine for com-
puting the flows in the graph. The idea is to start at the highest root node in the 
graph and dispense all its water to its children according to the ratios of the corre-
sponding arcs. Then, this root node is removed from the graph and we continue with 
the next highest root node in the graph. This process is repeated until all nodes have 
been visited. The pseudocode is provided in Algorithm 4.

Algorithm 4  COMPUTE-FLOWS

Note that the flows have to be recomputed in each iteration of Algorithm 6. Using 
Algorithm 4 to compute the flows from scratch for the whole graph in each iteration 
is highly inefficient and causes significant overhead. Instead, if one is provided the 
flows from the previous iteration and the nodes u, v ∈ Ṽ  that have just been joined 
using Algorithm  5, the flows can be updated. It is easy to see that the excess of 
nodes that are neither v nor one of its successors remain unchanged. Further, it is 
also easy to see that excessv increases exactly by areau ⋅ rain +

∑
r∈�−(u) fr . This addi-

tional excess is then distributed along the subgraph that is induced by v and its suc-
cessors, and the new flows are added to the flows that have been computed in the 
previous iteration. In fact, updating the flows in this way decreases the running time 
of Algorithm 6 by more than 90% compared to recomputing the flows from scratch 
in each iteration.

Joining Nodes The second subroutine that is called in Algorithm 6 joins two nodes u 
and  v in the graph  G̃t of the current iteration  t, which then becomes the current 
graph G̃t+1 in the next iteration t + 1 . Whenever the subroutine is called, it holds that v 
is the unique parent node of u with lowest geodesic height. Within the subroutine, all 
arcs in 𝛿−

G̃t

(u) are redirected such that v is their new end node, the new set represv,t+1 is 



 Operations Research Forum (2023) 4:86

1 3

86 Page 32 of 68

set to represv,t ∪ represu,t , and the new area of v in the next iteration t + 1 is set to 
areav,t + areau,t . The pseudocode of this subroutine is provided in Algorithm 5. It is 
worth noting that, when u is removed from Ṽt+1 in line 7 of the algorithm, u has no 
incident arcs. It has no outgoing arcs because the algorithm is only called for u being 
a leaf in G, and the incoming arcs are redirected in the for loop starting in line 2. It is 
worth noting that subsequent calls of this routine as it is done in Algorithm 6 can lead 
to parallel arcs in the graph.

Algorithm 5  JOIN-NODES

Computing the Water Levels We present the algorithm for computing the water 
levels for a given graph, whose pseudocode is provided in Algorithm 6. Initially, 
a copy G̃1 = (Ṽ1, R̃1) of the input graph is saved. This graph is modified in each 
iteration of the algorithm and we denote the graph at the beginning of the t-th 
iteration of the algorithm by G̃t = (Ṽt, R̃t) . With the flows that are computed using 
Algorithm 4 in the first iteration or its above-mentioned modified version using the 
update method in the following iterations, we compute for each leaf the proportion 
of the rain event that is needed to fill up the water level at the leaf to the geodesic 
height of its parent with lowest index (and, hence, lowest geodesic height), which 
we call the lowest parent. The leaf for which the least such proportion is needed is 
called the first flooded leaf.11 For a node v ∈ V  , we denote its lowest parent in G̃t 
by lpG̃t

(v) . If the graph is clear from the context, we omit the graph in the index. 
The extraction of the first flooded leaf is implemented using a Fibonacci heap, 
which results in a speedup of about 25% on average as opposed to extracting it 
using a simple sorted-array implementation.

The first flooded leaf and its lowest parent are then joined into a single node 
representing both those nodes by using Algorithm  5. The excesses until then are 
saved, and, from there on, the water is increased until either (1) the water level at the 
next leaf reaches the absolute difference of its own geodesic height and the geodesic 
height of its lowest parent in the graph G̃t of the current iteration of the algorithm, 
or (2) the sum of those proportions, which we denote by sp,12 equals or exceeds one, 
i.e., we have simulated the whole rain event.

11 In case that several leaves have the least proportion, any of them can be designated as the first flooded leaf.
12 sp: sum of proportions.



1 3

Operations Research Forum (2023) 4:86 Page 33 of 68 86

Throughout this process, for each node v that is created joining nodes as described 
above, we store the nodes in the input graph that are represented by v in the current 
iteration  t in a set  represv,t , which is updated within Algorithm 5. Afterwards, we 
recompute the water levels of all nodes in the input graph using these sets, which is 
done by setting the water level at each node v ∈ V  that has been removed from the 
graph during the algorithm to wlṽ,t + ghṽ − ghv , where ṽ is the unique node such that 
v ∈ represṽ,T with T denoting the number of iterations of the algorithm.13

We would like to point out that the iteration indices in Algorithm 6 are chosen 
such that all variables concerning the graph, i.e., the graph G̃t itself, the area areat 
and the sets represt , are initialized with one, and all variables concerning the flows 
on the graph, i.e., the flows  ft themselves, the excesses excesst , the proportions  p̂t , 
and the sum of proportions sp , are initialized with zero. This enforces that, in each 
iteration t of the algorithm, the flows  fr,t , r ∈ R̃t , are the flows on the graph G̃t.

Algorithm 6  COMPUTE-WATER-LEVELS

13 The existence and uniqueness of ṽ is shown in Lemma and Definition 1 in Appendix 2.



 Operations Research Forum (2023) 4:86

1 3

86 Page 34 of 68

Appendix 3. Constraints of the Mixed‑Integer Programming Formulation

We provide the mathematical formulation of the constraints of the MIP presented in 
Section 3.

Water Levels at Nodes Computing excessv for each node v ∈ V:

Computing the water level wlv at each node v ∈ V:

Geodesic Heights of Nodes Setting the variable downv for each node v ∈ V:

Setting the variables hdbb , hddd , and hdee for b ∈ B , d ∈ D , e ∈ E:

Computing the maximum height of an embankment for each node v ∈ V:

Setting the geodesic height variable ghv for each node v ∈ V:

(1)excessv =
∑

r∈�+
Gex

(v)

fr −
∑

r∈�−
Gex

(v)

fr + rain ⋅ areav ∀v ∈ V

(2)wlv =
excessv

areav
∀v ∈ V

(3)downv ≥ decBasinb ∀v ∈ V , b ∈ Bv

(4)downv ≥ decDitchd ∀v ∈ V , d ∈ Dv

(5)downv ≤
∑
b∈Bv

decBasinb +
∑
d∈Dv

decDitchd ∀v ∈ V

(6)hdbb = depthb ⋅ decBasinb ∀b ∈ B

(7)hddd = depthd ⋅ decDitchd ∀d ∈ D

(8)hdee = heighte ⋅ decEmbe ∀e ∈ E

(9)max_decv = max({hdbb|b ∈ Bv} ∪ {hddd|d ∈ Dv} ∪ {0}) ∀v ∈ V

(10)max_incv = max({hdee|e ∈ E(v)} ∪ {0}) ∀v ∈ V

(11)ghv ≥ GHv −max_decv ∀v ∈ V

(12)ghv ≤ GHv +max_incv ∀v ∈ V

(13)ghv ≤ GHv −max_decv + (1 − downv) ⋅Mv ∀v ∈ V



1 3

Operations Research Forum (2023) 4:86 Page 35 of 68 86

Arc Directions Setting the variable odr for each arc r ∈ R:

Full Arcs Setting the auxiliary variables auxO1F1r , auxO1F0r , auxO0F1r , and auxO0F0r 
for each arc r ∈ R:

Connecting the variables fullr to the water levels using the auxiliary variables:

(14)ghv ≥ GHv +max_incv − downv ⋅Mv ∀v ∈ V

(15)odr = 1 ⇒ gh�(r) ≥ gh�(r) ∀r ∈ R

(16)odr = 0 ⇒ gh𝛼(r) < gh𝜔(r) ∀r ∈ R

(17.1)auxO1F1r ≥ −1 + odr + fullr ∀r ∈ R

(17.2)auxO1F1r ≤ fullr ∀r ∈ R

(17.3)auxO1F1r ≤ odr ∀r ∈ R

(18.1)auxO1F0r ≥ odr − fullr ∀r ∈ R

(18.2)auxO1F0r ≤ 1 − fullr ∀r ∈ R

(18.3)auxO1F0r ≤ odr ∀r ∈ R

(19.1)auxO0F1r ≥ −odr + fullr ∀r ∈ R

(19.2)auxO0F1r ≤ fullr ∀r ∈ R

(19.3)auxO0F1r ≤ 1 − odr ∀r ∈ R

(20.1)auxO0F0r ≥ 1 − odr − fullr ∀r ∈ R

(20.2)auxO0F0r ≤ 1 − fullr ∀r ∈ R

(20.3)auxO0F0r ≤ 1 − odr ∀r ∈ R

(21)auxO1F1r = 1 ⇒ wl�(r) ≥ gh�(r) − gh�(r) ∀r ∈ R

(22)auxO1F0r = 1 ⇒ wl𝜔(r) < gh𝛼(r) − gh𝜔(r) ∀r ∈ R

(23)auxO0F1r = 1 ⇒ wl�(r) ≥ gh�(r) − gh�(r) ∀r ∈ R



 Operations Research Forum (2023) 4:86

1 3

86 Page 36 of 68

Flooded Nodes Setting the variable floodedv for each node v ∈ V:

Active Arcs Setting the variable activer for each arc r ∈ Rex:

Flow on Arcs that are not Full Setting the auxiliary variables aux_fdr and aux_fd←

r
 for 

each arc r ∈ R:

Distributing the outflow of each node  v ∈ V  among its outgoing arcs in the 
extended graph that are active and not full: Setting the auxiliary variables aux_fdr 
and aux_fd←

r
 for each arc r ∈ R:

For each arc r ∈ R that is not full, the water level at the higher of the nodes �(r) 
and �(r) must be zero:

(24)auxO0F0r = 1 ⇒ wl𝛼(r) < gh𝜔(r) − gh𝛼(r) ∀r ∈ R

(25)floodedv = 0 ⇒ wlv = 0 ∀v ∈ V

(26)floodedv = 1 ⇒ wlv > 0 ∀v ∈ V

(27)activer + active←

r
= 1 ∀r ∈ R

(28)activer = 0 ⇒ fr = 0 ∀r ∈ Rex

(29.1)aux_fdr ≥ activer − fullr ∀r ∈ R

(29.2)aux_fdr ≤ activer ∀r ∈ R

(29.3)aux_fdr ≤ 1 − fullr ∀r ∈ R

(30.1)aux_fd←

r
≥ active←

r
− fullr ∀r ∈ R

(30.2)aux_fd←

r
≤ active←

r
∀r ∈ R

(30.3)aux_fd←

r
≤ 1 − fullr ∀r ∈ R

(31.1)aux_fdr2 = 1 ⇒ fr1 ≤
ratior1

ratior2
⋅ fr2 ∀v ∈ V , r1, r2 ∈ �+

Gex(v)

(31.2)aux_fdr1 = 1 ⇒ fr2 ≤
ratior2

ratior1
⋅ fr1 ∀v ∈ V , r1, r2 ∈ �+

Gex(v)

(32)auxO1F0r = 1 ⇒ wl�(r) = 0 ∀r ∈ R



1 3

Operations Research Forum (2023) 4:86 Page 37 of 68 86

Water can only flow on downhill arcs r ∈ Rex that are not full:

Flow on Full Arcs Setting the flow on each full arc r ∈ R indirectly by connecting the 
water levels at its start node and its end node:

Maximum Water Levels at Buildings Bounding the maximum water level variable max_wl� 
from below for each building � ∈ B:

Hazard Classes of Buildings Setting a hazard class for each building � ∈ B via its 
maximum water level:

Budget Constraint 

Incentives for Actors Enforcing the given upper bounds on the incentives required 
for cooperation of actors and ensuring that no actions are taken on properties of 
actors that do not cooperate at all:

(33)auxO0F0r = 1 ⇒ wl�(r) = 0 ∀r ∈ R

(34)auxO1F0r = 1 ⇒ active←

r
= 0 ∀r ∈ R

(35)auxO0F0r = 1 ⇒ activer = 0 ∀r ∈ R

(36)fullr = 1 ⇒ gh�(r) + wl�(r) = gh�(r) + wl�(r) ∀r ∈ R

(37)max_wl� ≥ wlv ∀� ∈ B, v ∈ V�

(38)
4∑

k=0

hck,� = 1 ∀� ∈ B

(39)hck,� = 1 ⇒ max_wl� ≤ thresholdWLk ∀� ∈ B, k ∈ {0, 1, 2, 3}

(40)

∑
b∈B

costb ⋅ decBasinb +
∑
d∈D

costd ⋅ decDitchd +
∑
e∈E

coste ⋅ decEmbe ≤ budget

(41)
∑

p∈Pyellow

actionp +
∑
p∈Pred

actionp ≤ maxAllowedYellow +maxAllowedRed

(42)
∑
p∈Pred

actionp ≤ maxAllowedRed

(43)actionp = 0 ∀p ∈ Pblack

(44.1)decBasinb ≤ actionp ∀b ∈ B, p ∈ P ∶ b is located on p



 Operations Research Forum (2023) 4:86

1 3

86 Page 38 of 68

Valid Inequalities The first arc in a pair of consecutive original-direction (i.e., 
downhill) arcs can only be full if the second arc is full as well:

If node v ∈ V  is flooded, then each arc r ∈ �+
Gex(v) with ghv > gh𝜔(r) must be full:

If node v ∈ V  is not flooded, then no arc r ∈ �−
Gex(v) with ghv < gh𝛼(r) can be full:

Appendix 4. Proof of Validity of the Mixed‑Integer Programming 
Formulation

In this section, we prove that the MIP is a valid formulation of the problem 
described in Section  3.1. To formally define the statement we want to prove, let 
D ⊆ A be a set of actions such that building exactly the actions in  D fulfills the 
budget Constraint  (40) and does not violate any bounds on the incentives in Con-
straints (41)–(44.3). Throughout this section, we let x denote a feasible solution of 
the MIP taking exactly the actions in D, and let y denote the result of Algorithm 6 
applied on GD = (VD,RD) , which is the graph that results from taking the actions 
in D and adjusting the geodesic heights and arc directions accordingly as described 
in Section 2.

As some variables are denoted the same in the MIP and in Algorithm 6, we write, 
e.g., x.wl and y.wl , respectively, in case of the water levels, to distinguish between 
them whenever the distinction is not clear from the context.

The aim of this section is to prove that, for each node v ∈ V(= VD) , the water level 
at v in x is the same as the water level at v in y, i.e., x.wlv = y.wlv for all v ∈ V . As the 
value of the objective value is determined by the water levels, this in particular means 
that the objective value of a solution of the MIP only depends on the taken actions.

It is worth noting that, although we prove that the water levels in any feasible 
solution x of the MIP taking a given set D of actions coincide with those of the cor-
responding result y of Algorithm 6, the flows in different MIP solutions taking the 
same actions can still differ. The reason is that, if a cycle of flooded nodes exists 

(44.2)decDitchd ≤ actionp ∀d ∈ D, p ∈ P ∶ d is located on p

(44.3)decEmbe ≤ actionp ∀e ∈ E, p ∈ P ∶ e is located on p

(45)fullr2 ≥ fullr1 − (2 − odr1 − odr2) ∀r1, r2 ∈ R ∶ �(r1) = �(r2)

(46.1)floodedv = 1 ⇒ fullr ≥ odr ∀v ∈ V , r ∈ �+
G
(v)

(46.2)floodedv = 1 ⇒ fullr ≥ 1 − odr ∀v ∈ V , r ∈ �−
G
(v)

(47.1)floodedv = 0 ⇒ fullr ≤ 1 − odr ∀v ∈ V , r ∈ �−
G
(v)

(47.2)floodedv = 0 ⇒ fullr ≤ odr ∀v ∈ V , r ∈ �+
G
(v)



1 3

Operations Research Forum (2023) 4:86 Page 39 of 68 86

in Gex , an arbitrary amount of flow might be sent over this cycle, which conserves 
feasibility but can cause the flows to be different in the different solutions even 
when the same actions are taken.

For the proof, we make the following assumptions: 

1. The graph G and, hence, also the graph GD is weakly connected. This is the case 
in all realistic instances and, moreover, can be assumed without loss of generality 
because the arguments in the proof can be applied to each weakly connected com-
ponent individually in case that there are multiple weakly connected components.

2. The highest node in the graph G is non-flooded in both x and y. This assumption 
is satisfied in all real-world problem instances since rain events that flood each 
single node are unrealistic, and damage on buildings could not be mitigated by 
any realistic actions anyway in such cases.

3. The geodesic heights of nodes in GD are pairwise distinct, which is true if G = Gred.

Firstly note that Constraints (3)–(14) imply that, for each v ∈ V  , it holds that x.ghv 
is the geodesic height of v in GD . We therefore omit the “x.” for the geodesic height 
in the following. Also note that taking actions only directly affects the geodesic 
heights, but the flows and, hence, the water levels are only affected indirectly via 
their dependence on the geodesic heights in GD . As, furthermore, the variables od 
only act as a case distinction in the MIP, it suffices to show that x.wlv = y.wlv for all 
v ∈ V  in the case where D = � and, thus, GD = G , i.e., for the case that no actions 
are taken.

Appendix 4.1. Characterization of Flooded Subgraphs

In this section, for both the feasible solution x of the MIP and the result y of Algo-
rithm 6, we present a characterization of inclusionwise-maximal weakly connected 
subgraphs consisting of nodes that are flooded, i.e, have a strictly positive water level. 
These subgraphs will be referred to as sinks and are formally defined as follows:

Definition 1 Given x or y, each weakly connected component of the subgraph Gflooded 
of  G induced by the set of flooded nodes is called a sink. The set of all sinks is 
denoted by S(x) and S(y) for x and y, respectively.

The goal of this section is to show that, for both x and y, every sink is a pre-sink, 
i.e., it consists of a node v and all nodes that can be reached from v via undirected 
paths that contain no nodes of geodesic height larger than v. Formally, pre-sinks are 
defined as follows:

Definition 2 For v ∈ V  , the weakly connected component containing  v in the 
induced subgraph G≤v ∶= G|{v�∈V∶ghv�≤ghv} is called the pre-sink induced by v. The 
set of nodes contained in the pre-sink induced by v is denoted by PS(v).



 Operations Research Forum (2023) 4:86

1 3

86 Page 40 of 68

Note that, in the following, we slightly abuse notation by identifying a sink or pre-
sink with the set of nodes it contains as long as this does not lead to any confusion.

Appendix 4.1.1. Characterization of Flooded Subgraphs for x

We start by proving the desired connection between sinks and pre-sinks for the fea-
sible solution x of the MIP. Throughout this subsection, we omit the “x.” when refer-
ring to variables, so, e.g., the water level at a node v is denoted by wlv instead of 
x.wlv.

Observation 1 Let r ∈ Rex with �(r) = u , �(r) = v , and ghv < ghu . If wlu > 0 , then 
wlv + ghv = wlu + ghu.

Proof Constraints (46.1) and (46.2) imply that r is full. Constraint (36) then yields 
wlv + ghv = wlu + ghu.  ◻

Observation 2 Let r ∈ Rex with �(r) = u , �(r) = v , and ghv < ghu . If wlv > ghu − ghv , 
then wlv + ghv = wlu + ghu.

Proof Constraint (22) (if r ∈ R ) or (24) (if r ∉ R ) forces fullr = 1 as wlv > ghu − ghv . 
As before, Constraint (36) then yields wlv + ghv = wlu + ghu.  ◻

The two observations are used to prove the following important proposition:

Proposition 1 Let v ∈ V  . If ghv� + wlv� > ghv for some v� ∈ PS(v) , then every node 
v̂ ∈ PS(v) is flooded with ghv̂ + wlv̂ = ghv� + wlv�.

Proof Let v� ∈ PS(v) with ghv� + wlv� > ghv and let v̂ be an arbitrary node in PS(v) . 
Then, since the pre-sink is weakly connected, there exists an undirected path P with 
trace(P) = (v�, ṽ1,… , ṽk, v̂) in G≤v . In particular, this means that ghṽi ≤ ghv for all 
i ∈ {1,… , k} . Applying Observations 1 and 2 inductively on the path yields

which proves the claim.  ◻

Using Proposition 1, we can now prove the desired connection between sinks and 
pre-sinks for x:

Proposition 2 Let S ∈ S(x) and let v ∈ S be the node with highest geodesic height 
among all nodes in S. Then, S = PS(v).

wlṽi = wlv� + ghv� − ghṽi > 0 for all i ∈ {1,… , k}, and

wlv̂ = wlv� + ghv� − ghv̂ > 0,



1 3

Operations Research Forum (2023) 4:86 Page 41 of 68 86

Proof By definition of PS(v) , it holds that v ∈ PS(v) . Moreover, it is easy to see 
that PS(v) ⊆ S by applying Proposition 1 for v� = v . Hence, it only remains to show 
that S ⊆ PS(v) . To this end, let v� ∈ S be an arbitrary node. By definition of a sink, 
S is weakly connected, which means that there exists an undirected path  P in  G 
only containing nodes in  S with trace(P) = (v, ṽ1,… , ṽk, v

�) and ghṽi ≤ ghv for all 
i ∈ {1,… , k} . This means that P is also a path in G≤v and, hence, that v′ is in the 
same connected component of G≤v as v. Therefore, we obtain that v� ∈ PS(v).  ◻

The proofs of Propositions 1 and 2 also yield the following helpful property about 
the water levels at nodes within the same sink:

Corollary 1 Let S ∈ S(x) and u, v ∈ S . Then, wlv + ghv = wlu + ghu.

When investigating the water levels, it therefore suffices to know the water level 
at one node within each sink.

Appendix 4.1.2. Characterization of Flooded Subgraphs for y

We now prove the desired connection between sinks and pre-sinks for the result y 
of Algorithm 6. Throughout this subsection, we again omit the “y.” when referring 
to variables, so, e.g., the water level at a node v is denoted by wlv instead of y.wlv . 
Although the proof is a bit more involved, the basic idea is similar to the proof of 
Proposition 2. Before we show two observations similar to Observations 1 and 2, 
we introduce some notation and obtain some further structural results.

Notation 1 The total number of iterations of the while-loop in Algorithm 6 is denoted 
by  T. Furthermore, we write G = (V ,R) ∶= (ṼT , R̃T ) and represv ∶= represv,T for 
v ∈ V.

Further, let t ∈ {1,… , T − 1} and let v ∈ V  such that v is the first flooded leaf 
in iteration  t. We then say that  v leaves the graph in iteration  t. Given a node 
v ∉ V  , we denote the unique iteration in which v leaves the graph by tv . In the fol-
lowing, we present some structural results about the sets represv for v ∈ V .

Observation 3 Let v ∈ V  . For two nodes u1, u2 ∈ represv , it holds that 
ghu1 + wlu1 = ghu2 + wlu2

Proof Due to lines 23 to 27 of the algorithm, it holds that

  ◻

As shown in the previous observation, the water level at a node v ∉ V  is deter-
mined by a node v̄ ∈ V  such that v ∈ represv̄ . We now introduce a suitable notion 
for this node and show that it is uniquely defined.

ghu1 + wlu1 = ghv + wlv and ghu2 + wlu2 = ghv + wlv.



 Operations Research Forum (2023) 4:86

1 3

86 Page 42 of 68

Lemma and Definition 1 For each t ∈ {1,… , T} and each node v ∈ V  , there exists 
exactly one node ṽ ∈ Ṽt such that v ∈ represṽ,t . For a node v ∈ V  , we call the 
(unique) node v̄ ∈ V  such that v ∈ represv̄ the highest representative of v and write 
v̄ = hrv.

Proof For t = 1 , the claim is clear as represv,1 = {v} for all v ∈ V  . In each iteration 
t ∈ {1,… , T − 1} of the algorithm, one node u leaves the graph and is joined with 
its lowest parent v. All nodes in represu,t are then in represv,t+1 in the next iteration 
and all other sets represv′,t for v� ∈ Ṽt ⧵ {u} remain unchanged. Hence, the property 
is conserved in each iteration of the algorithm, which proves the claim.  ◻

Note that the set represv,tv is not deleted when a node v ∈ V  leaves the graph, 
which means a node v ∈ V  can be in several sets  represv′ for v� ∈ V  . Also note 
that, as soon as a node v ∈ V  joins a set represu,t for some other node u ∈ V  in 
some iteration  t ∈ {1,… , T − 1} , the node never leaves this set again, which 
implies that v ∈ represu in this case. Moreover, the previous proof yields the fol-
lowing observation:

Observation 4 Let v ∈ V  . Then, v ∈ V  if and only if v = hrv.

We proceed by proving some further structural results in order to obtain the 
analogous statements to Observations 1 and 2 in the context of y.

Lemma 1 Let r ∈ R with �(r) = u and �(r) = v . If u ∉ V , then it holds that v ∈ represu.

Proof Let u ∉ V  . We start by showing that also v ∉ V  . Suppose for the sake of a 
contradiction that v ∈ V  . Then, the child v of u never leaves the graph, which implies 
that u is never a leaf. Consequently, u can never be removed and, thus, u ∈ V  , which 
contradicts the assumption that u ∈ V .

Hence, we obtain that v ∉ V , so there exists an iteration  tv where  v leaves the 
graph, i.e., joinNodes v, ṽ1 is called for ṽ1 = lpG̃tv

(v) . Thus, we have v ∈ represṽ1,tv+1 
in the following iteration, so also v ∈ represṽ1.

If ṽ1 = u , we are done. Otherwise, ghu > ghṽ1 and there exists an arc r1 ∈ R̃tv+1
 

from u to ṽ1 . In the same way as for v, it then follows that ṽ1 ∉ V  and that it must, 
hence, be joined into another node ṽ2 ∈ V  in some iteration. Furthermore, it holds 
that v ∈ represṽ2 . Applying this argument iteratively induces a sequence of nodes 
with strictly increasing geodesic heights until eventually ṽk = u for some k ∈ ℕ . 
Thus, it holds that v ∈ represu.  ◻

Lemma 2 Let r ∈ R with �(r) = u and �(r) = v . If wlu > 0 , then v ∈ represu.

Proof Case 1: u ∉ V  Then, the claim follows directly from Lemma 1.
Case 2: u ∈ V  As wlu > 0 , u must be a leaf in G , which implies that v ∉ V  . 

Hence, there exists an iteration tv where v leaves the graph, i.e., joinNodes v, ṽ1 is 
called for ṽ1 = lpGtv

(v) . As in the proof of Lemma 1, this implies that v ∈ represṽ1.



1 3

Operations Research Forum (2023) 4:86 Page 43 of 68 86

If ṽ1 = u , we are done. Otherwise, ghu > ghṽ1 and there exists an arc r1 ∈ R̃tv+1
 

from u to ṽ1 . In this case, we show that ṽ1 ∉ V  . For the sake of a contradiction, sup-
pose that ṽ1 ∈ V  . Then, r1 remains in the graph from iteration tv + 1 until the termi-
nation of the algorithm, meaning that u is not a leaf in G and, hence, is not flooded. 
This contradicts the assumption that wlu > 0 , so we obtain that ṽ1 ∉ V  . Thus, ṽ1 
must be joined into another node ṽ2 ∈ V  in some iteration. Furthermore, it holds that 
v ∈ represṽ2 . Applying this argument iteratively induces a sequence of nodes with 
strictly increasing geodesic heights until eventually ṽk = u for some k ∈ ℕ . Thus, it 
holds that v ∈ represu.  ◻

One further structural result is needed, which can be interpreted as the transi-
tivity of the representatives.

Observation 5 Let u, v,w ∈ V such that u ∈ represv and v ∈ represw . Then, u ∈ represw.

Proof Let u join represv in iteration tu , and let v join represw in iteration tv . Since 
the set  represv remains unchanged after v leaves the graph, it must then hold that 
tu < tv . Moreover, in all iterations t > tu , the nodes u and v are always in the same set 
represṽ,t for ṽ ∈ Ṽt . Thus, when v joins represw in iteration tv > tu , so does u, which 
proves the claim.  ◻

The technical results above allow proving the following observation, which is 
the analogue of Observation 1 in the context of y:

Observation 6 Let r ∈ R with �(r) = u and �(r) = v . If wlu > 0 then hru = hrv and 
wlu + ghu = wlv + ghv.

Proof Lemma 2 implies that v ∈ represu . From Observation 5, we obtain that v ∈ represhru 
and, hence, that hru = hrv . Observation 3 then implies that wlu + ghu = wlv + ghv.  ◻

To prove the analogue of Observation 2, we need one more structural result:

Lemma 3 Let r ∈ R with �(r) = u and �(r) = v with wlv > ghu − ghv , then v ∈ represu.

Proof We start by proving that v ∉ V  . For the sake of a contradiction, suppose that 
v ∈ V  . Due to Lemma 1, it must then hold that u ∈ V  as, otherwise, this would imply 
that v ∉ V  . Therefore, the arc r is never removed or changed during the algorithm, 
so r ∈ Rt for all t ∈ {1,… , T} . As wlv > ghu − ghv , and v ∈ V  , the node v must be 
a leaf in G . Let ṽ = lp

G
(v) . It must hold that wlv ≤ ghṽ − ghv as, otherwise, v would 

have been joined into its lowest parent during the algorithm. As u is a parent of v in 
each iteration, it must hold that ghṽ ≤ ghu . This implies that wlv ≤ ghu − ghv , which 
is a contradiction to wlv > ghu − ghv . Thus, it holds that v ∉ V .

As v ∉ V  , there exists an iteration tv where v leaves the graph, i.e., joinNodes 
v, ṽ1 is called for ṽ1 = lpG̃tv

(v) . Hence, it holds that v ∈ represṽ1 . If ṽ1 = u , we are 
done. Otherwise, ghu > ghṽ1 and there exists an arc r1 ∈ R̃tv+1

 from u to ṽ1.



 Operations Research Forum (2023) 4:86

1 3

86 Page 44 of 68

We now prove that ṽ1 ∉ V  . For the sake of a contradiction, suppose ṽ1 ∈ V  . 
Then, ṽ1 = hrv and Observation 3 implies that wlṽ1 = wlv + ghv − ghṽ1 > ghu − ghṽ1 . 
The desired contradiction is now obtained analogously to the argumentation above 
showing that v ∉ V .

Thus, ṽ1 must be joined into another node ṽ2 ∈ V  in some iteration. Furthermore, 
it holds that v ∈ represṽ2 . Applying this argument iteratively induces a sequence 
of nodes with strictly increasing geodesic heights until eventually ṽk = u for some 
k ∈ ℕ . Thus, it holds that v ∈ represu.  ◻

Observation 7 Let r ∈ R with �(r) = u and �(r) = v with wlv > ghu − ghv . Then, it 
holds that hru = hrv and wlu + ghu = wlv + ghv.

Proof Lemma 3 implies that v ∈ represu . From Observation 5, we obtain that v ∈ represhru 
and, hence, that hru = hrv . Observation 3 then implies that wlu + ghu = wlv + ghv.  ◻

We now use the two previous observations to prove the analogue of Proposition 1 
in the context of y:

Proposition 3 Let v ∈ V  . If ghv� + wlv� > ghv for some  v� ∈ PS(v) , then every 
node v̂ ∈ PS(v) is flooded with ghv̂ + wlv̂ = ghv� + wlv�.

Proof The proof is completely analogous to the proof of Proposition 1 except for 
using Observations 6 and 7 instead of Observations 1 and 2.  ◻

Proposition 3 finally allows us to prove the desired connection between sinks and 
pre-sinks for y:

Proposition 4 Let S ∈ S(y) and let v ∈ S be the node with highest geodesic height 
among all nodes in S. Then, S = PS(v).

Proof The proof is completely analogous to the proof of Proposition  2, but uses 
Proposition 3 instead of Proposition 1.  ◻

Similar to the case of Proposition 2, the proof of Proposition 4 also yields the fol-
lowing corollary:

Corollary 2 Let S ∈ S(y) and u, v ∈ S . Then, wlv + ghv = wlu + ghu.

Appendix 4.2. Characterization of flooded pre‑sinks

Using Propositions 2 and 4 together with Corollaries 1 and 2, it remains to show 
that S(x) = S(y) and that, for each node  v ∈ V  with PS(v) ∈ S(x) , it holds that 
x.wlv = y.wlv . To this end, we now characterize, for each of x and y, when all nodes 



1 3

Operations Research Forum (2023) 4:86 Page 45 of 68 86

in a pre-sink are flooded, in which case the corresponding pre-sink will also be 
called flooded. The following definition is useful in this context:

Definition 3 Let v ∈ V  . If v is not the highest node in G, the lowest parent lp(PS(v)) 
of the pre-sink  PS(v) is defined as the node with minimal geodesic height in 
�−
G
(PS(v)).14 If v is the highest node in G, we set  lp(PS(v)) ∶= v to avoid notation 

issues. Further, the threshold of the pre-sink PS(v) is defined as

and the capacity of the pre-sink PS(v) is defined as

Intuitively, the threshold of a pre-sink is the maximum amount of water it 
can hold before it becomes flooded, and the capacity is the maximum amount of 
water it can hold before its water level matches the geodesic height of its lowest 
parent. We next show that a pre-sink is flooded if and only if the amount of rain 
on the pre-sink plus the inflow from uphill nodes, which is exactly the positive 
contribution to the excess of the node, exceeds its threshold.

Before we prove this characterization separately for x and y, we show a simpler 
characterization of when a pre-sink is flooded:

Observation 8 Let v ∈ V  . Then, all nodes in PS(v) are flooded if and only if v 
is flooded.

Proof The forward direction is clear. The backward direction follows immediately 
from Proposition 1 for x and from Proposition 3 for y.  ◻

Appendix 4.2.1. Characterization of Flooded Pre‑sinks in x

We again start by presenting the characterization for  x and omit the “x.” when 
referring to variables whenever this does not lead to any confusion.

Definition 4 Let v ∈ V  . The positive contribution to the excess of the pre-sink PS(v) 
in x is defined as

Next, we prove that any water that enters a non-flooded pre-sink remains in 
this pre-sink.

thr(PS(v)) ∶=
∑

v�∈PS(v)

(ghv − ghv� ) ⋅ areav�

cap(PS(v)) ∶=
∑

v�∈PS(v)

(ghlp(PS(v)) − ghv� ) ⋅ areav� .

x.pcePS(v) ∶=
∑

r∈�−
Gex

(PS(v))

x.fr +
∑

v�∈PS(v)

rain ⋅ areav� .

14 Note that the lowest parent exists in this case as G is assumed to be weakly connected. In general, it 
does not hold that lp(PS(v)) = lp(v).



 Operations Research Forum (2023) 4:86

1 3

86 Page 46 of 68

Lemma 4 Let v ∈ V  be non-flooded. Then, it holds that

Proof The latter equality is clear by definition. To prove the first equality, we refor-
mulate the excess of the pre-sink:

We investigate the first sum and observe: 

1. The flow on any arc r ∈ Rex with �(r),�(r) ∈ PS(v) appears exactly once in each 
of the two inner sums. Therefore, the flow on this arc does not contribute to the 
overall value of the sum.

2. The flow on ayn arc r ∈ �−
Gex(PS(v)) appears exactly once in the first inner sum.

3. We claim that any arc r ∈ �+
Gex(PS(v)) has x.fr = 0 . This holds since gh𝜔(r) > ghv 

(otherwise, �(r) ∈ PS(v) ) and gh�(r) + wl�(r) ≤ ghv (since v would be flooded due 
to Proposition 1 otherwise). Constraints (21) and (23) then force fullr to be zero 
and, hence, fr = 0 , which yields the desired result.

4. Any other arc does not appear in the sum at all.

Therefore, we obtain that

  ◻

Using this lemma, we can prove the first direction of the desired characteriza-
tion of flooded pre-sinks:

Lemma 5 Let v ∈ V  . If pcePS(v) > thr(PS(v)) , then PS(v) is flooded.

Proof Due to Observation 8, it suffices to show that v is flooded. For the sake of a 
contradiction, suppose v is not flooded. Then, it holds that

pcePS(v) =
∑

v�∈PS(v)

excessv� = excessPS(v).

�
v�∈PS(v)

excessv� =
�

v�∈PS(v)

⎡
⎢⎢⎣

�
r∈�−

Gex
(v�)

fr −
�

r∈�+
Gex

(v�)

fr

⎤
⎥⎥⎦

+
�

v�∈PS(v)

rain ⋅ areav�

∑
v�∈PS(v)

x.excessv� =
∑

r∈�−
Gex

(PS(v))

x.fr +
∑

v�∈PS(v)

rain ⋅ areav�

= x.pcePS(v).



1 3

Operations Research Forum (2023) 4:86 Page 47 of 68 86

This means there exists a node  v̂ ∈ PS(v) with wlv̂ > ghv − ghv̂ . Proposition  1 
then implies that wlv > 0 , which yields the desired contradiction.  ◻

Before proving the other direction, we firstly observe that, for every node v ∈ V  , 
it holds that pcePS(v) ≥ excessPS(v) since, by definition, pcePS(v) contains all positive 
summands from the definition of excessPS(v).

Lemma 6 Let v ∈ V  . If pcePS(v) ≤ thr(PS(v)) , then PS(v) is not flooded.

Proof Again, due to Observation 8, it suffices to show that v is not flooded. Similar 
to the proof of Lemma 5, it holds that

For the sake of a contradiction, suppose that wlv > 0 . Applying Proposition 1 
for every v� ∈ PS(v) yields that wlv� > ghv − ghv� , which is a contradiction to the 
above inequality.  ◻

Lemmas 5 and 6 finally enable us to prove the desired characterization of flooded 
pre-sinks for x:

Proposition 5 Let v ∈ V  . Then, PS(v) is flooded in  x if and only if it holds that 
x.pcePS(v) > thr(PS(v)).

Appendix 4.2.2. Characterization of Flooded Pre‑sinks in y

We now present the characterization for y and omit the “y.” when referring to vari-
ables whenever this does not lead to any confusion. The proof, however, is remark-
ably more technical than for  x. A major part of the proof involves showing that 

∑
v�∈PS(v)

(gh
v
− gh

v� ) ⋅ areav� = thr(PS(v))

< pcePS(v)

Lemma 4
=

∑
v�∈PS(v)

excess
v�

=
∑

v�∈PS(v)

wl
v� ⋅ areav� .

∑
v�∈PS(v)

(ghv − ghv� ) ⋅ areav� = thr(PS(v))

≥ pcePS(v)

≥
∑

v�∈PS(v)

excessv�

=
∑

v�∈PS(v)

wlv� ⋅ areav� .



 Operations Research Forum (2023) 4:86

1 3

86 Page 48 of 68

y.excessPS(v) =
∑

v�∈PS(v) y.wlv� ⋅ areav� , which is the first milestone of this subsection. 
To this end, we start by showing that any two pre-sinks are either disjoint or one is 
contained in the other.

Lemma 7 Let u, v ∈ V with ghu > ghv . Then, either PS(v) ∩ PS(u) = � or PS(v) ⊆ PS(u).

Proof Let K be the set of nodes of the weakly connected component in G≤u that contains v. 
Then, it immediately follows that PS(v) ⊆ K . If it holds that PS(v) ∩ PS(u) ≠ � , it also 
holds that K ∩ PS(u) ≠ � . It follows that PS(u) = K ⊆ PS(v) , which proves the claim.  ◻

Next, we prove that, when the end node of an arc r ∈ R is changed during the 
joinNodes-routine, its original end node is in the pre-sink of the new end node. 
To this end, we first introduce a notation that keeps track of changes of arcs during 
the algorithm.

Definition 5 For t ∈ {1,… , T} and r ∈ R̃t , we call the unique arc r� ∈ R that r stems 
from the original arc of r and denote it by oa(r) . Conversely, we call r the changed 
arc of r’ at iteration t and write cat(r�) = r.

Note that cat(r) is not necessarily defined for every arc  r ∈ R in every itera-
tion t ∈ {1,… , T} . We next prove that, when the end node of an arc is changed, it 
stays within the same pre-sink.

Observation 9 Let r ∈ R and t ∈ {1,… , T} such that cat(r) is defined. Then, 
�(r) ∈ PS(�(cat(r))).

Proof For the sake of a contradiction, suppose that �(r) ∉ PS(�(cat(r))) . Without 
loss of generality, we may assume that r is chosen such that �(r) has minimal geo-
desic height among all arcs with this property and that �(r) ∈ PS(�(cat−1(r))).15

To enhance readability, we name the nodes as follows. The start node of the arcs 
r, cat(r) , and cat−1(r) is called u.16 The end nodes of r, cat(r) , and cat−1(r) are called 
v, w, and w′ respectively.

The second assumption implies that joinNodes w′,w has been called in iteration 
t − 1 . Hence, there exists an arc r̂ ∈ R̃t−1 from w to w′ . This means that 𝛼(oa(r̂)) = w . Due 
to the first assumption, the claim of the observation holds true for oa(r̂) , which implies that 
𝜔(oa(r̂)) ∈ PS(𝜔(cat(oa(r)))) = PS(𝜔(r̂)) = PS(w�) for all t ∈ {1,… , T} . By definition 
of a pre-sink, it also holds that 𝜔(oa(r̂)) ∈ PS(𝛼(oa(r̂))) = PS(w) . It, therefore, must hold 
that 𝜔(oa(r̂)) ∈ PS(w�) ∩ PS(w) . Lemma 7 implies that PS(w�) ⊆ PS(w) . As u ∈ PS(w�) , 
it then also holds that �(r) = u ∈ PS(w) = PS(�(cat(r))) , which is a contradiction.  ◻

15 Note that t ≥ 2 as R̃1 = R.
16 Note that the start node of an arc is never changed in Algorithm 5, so it holds that �(r) = �(ca

t
(r)) =

�(ca
t−1(r)).



1 3

Operations Research Forum (2023) 4:86 Page 49 of 68 86

This observation can be utilized to obtain a useful result about the nodes in the 
sets represv for v ∈ V  at the end of the algorithm.

Lemma 8 Let v ∈ V  and t ∈ {1,… , T} . Then, represv,T ⊆ PS(v).

Proof We prove this by induction over the iterations. In the first iteration, the 
claim clearly holds true as represv,1 = {v} ⊆ PS(v) for all v ∈ V  . Now let the claim 
hold in some iteration t ∈ {1,… , T − 1} , i.e., represv,T ⊆ PS(v) for all v ∈ V  . Let 
u,w ∈ V  such that joinNodes u, w is called in iteration  t. For any node v ≠ w , 
the set represv,T remains unchanged in iteration  t, so the claim still holds in the 
next iteration t + 1 . Due to the update rule in the joinNodes-routine, it remains 
to show that represu,t ⊆ PS(w) . From the induction hypothesis, we already know 
that represu,t ⊆ PS(u) . Further, we know that ghu < ghw . Using Lemma  7, it 
remains to show that PS(u) ∩ PS(w) ≠ � . As joinNodes u,  w is called in itera-
tion  t, there must be an arc r ∈ R̃t with �(r) = w and �(r) = u . Using Observa-
tion 9, we get that �(oa(r)) ∈ PS(u) . By definition of a pre-sink, it also holds that 
�(oa(r)) ∈ PS(�(r)) = PS(w) . Hence, it holds that PS(u) ∩ PS(w) ≠ � , which com-
pletes the proof.  ◻

If v ∉ V  , we can even show a stronger statement.

Lemma 9 Let t ∈ {1,… , T} and v ∈ V ⧵ Ṽt . Then, represv,T = PS(v).

Proof We already showed represv,T ⊆ PS(v) in Lemma 8. For the other direction, let 
w ∈ PS(v) . This means there exists an undirected path with trace (v, w̃1,… , w̃k,w) of 
nodes in PS(v) . As v ∉ Ṽt , it holds that wlv,t > 0 . Applying Lemmas 2 and 3 induc-
tively on this path yields w ∈ represv,T , which proves the claim.  ◻

The proof immediately shows another result.

Corollary 3 If v ∈ V  is a leaf in G̃t for some t ∈ {1,… , T} , then represv,T = PS(v).

We use this statement to show that, whenever two nodes are joined, the higher 
one is the lowest parent of the pre-sink induced by the lower one.

Observation 10 Let joinNodes u, v be called during the algorithm. Then, it holds 
that v = lp(PS(u)).

Proof We first prove that v is a parent of PS(u) . Let joinNodes u, v be called in 
iteration t. This means that there exists an arc r ∈ R̃t with �(r) = v and �(r) = u . Due 
to Observation 9, it holds that �(oa(r)) ∈ PS(u) . As the source node of an arc is never 
changed, it further holds that �(oa(r)) = v , which means that v is a parent of PS(u).

We conclude the proof by showing that v is the lowest parent of PS(u) . As join-
Nodes u, v is called in iteration t, it holds that u ∉ V  . Lemma 9 then implies that 
represu = PS(u) . This means that, for every arc r ∈ R with �(r) ∈ PS(u) , if cat(r) 



 Operations Research Forum (2023) 4:86

1 3

86 Page 50 of 68

exists, it holds that �(cat(r)) = u . As v is by choice of the algorithm the lowest par-
ent of u in G̃t , it also is the lowest parent of PS(u) in G, which proves the claim.  ◻

A further consequence of Lemma 9 is stated in the following corollary.

Corollary 4 Let v ∈ V ⧵ V  . Then, excessv =
∑

v�∈PS(v)(ghlp(PS(v)) − ghv) ⋅ areav�.

Proof Due to Lemma 9, it holds that represv = PS(v) . As v ∉ V  , the node v must 
leave the graph in some iteration t. In order for the node to leave the graph, it must 
become the first flooded leaf, which only happens if

Rearranging and plugging in areav,t =
∑

v�∈PS(v) areav� yields the desired result.  ◻

We next investigate the structure of the sets represv for v ∈ V  in more detail. 
This requires a further definition, which will be particularly important in a later 
stage of the proof as well.

Lemma and Definition 2 Let v ∈ V  . Then, all weakly connected components of 
G|PS(v)⧵{v} are pre-sinks. We call a node u inducing such a pre-sink a follow-up node 
of v and denote the set of all follow-up nodes of v by FUN(v).

Proof Let C be a weakly connected component of G|PS(v)⧵{v} and let u be the highest 
node in C. We show that C = PS(u).

Let w ∈ C . As C is weakly connected and u is the highest node in C, there exists 
an undirected path with trace (u, ũ1,… , ũk,w) where all intermediate nodes are in C 
as well. This means that w ∈ PS(u).

Let w ∈ PS(u) . This means there exists an undirected path  P with trace 
(u, ũ1,… , ũk,w) of nodes in PS(u) . As u ∈ PS(v) , it holds that PS(u) ⊆ PS(v) due to 
Lemma 7, which implies that ũi ∈ PS(v) for all i ∈ {1,… , k} . Further, as ũi ∈ PS(u) , 
it holds that ũi ≠ v for all i ∈ {1,… , k} . This implies P is an undirected path in 
G|PS(v)⧵{v} , which means that w ∈ C.  ◻

Using this definition, an advanced structural result about the sets represv for 
v ∈ V  can be shown.

Corollary 5 Let v ∈ V  and t ∈ {1,… , T} . Then, there exists a set U ⊆ FUN(v) such 
that represv,T = {v} ∪

⋃
u∈U

PS(u).

Proof Let u ∈ FUN(v) . If u ∈ represv,T , then this implies that u ∉ Ṽt . Lemma  9 
implies that represu,t = PS(u) . As u ∈ represv,T , so must be all nodes in represu,t , 
which implies PS(u) ⊆ represv,T.

If u ∉ represv,T , then Observation 10 implies that u ∈ Ṽt . This means that v can-
not become the lowest parent of any of the nodes in PS(u) , which implies that no 
node in PS(u) is in represv,T.  ◻

excessv∕areav,t = ghlp(PS(v)) − ghv.



1 3

Operations Research Forum (2023) 4:86 Page 51 of 68 86

We use Corollaries 4 and 5 to prove the next result.

Lemma 10 Let v ∈ V  and u ∈ FUN(v) such that u ∈ represv . Then

Proof As u ∈ represv , it also holds that PS(u) ⊆ represv due to Corollary 5. This then 
implies that any node w ∈ PS(u) must leave the graph in some iteration, i.e., w ∉ V  , 
which allows us to apply Corollary 4 for any node in PS(u):

Let v1,… , vk ∈ PS(u) be the nodes in order of ascending geodesic heights such 
that v� ∈ represvi for all i ∈ {1,… , k} . This implies that v1 = v� and vk = u . Further, 
Observation 10 implies that vi+1 = lp(PS(vi)) for all i ∈ {1,… , k − 1} . The terms in 
the above sum involving areav′ can then be written as

 
Inserting this into the sum above yields the desired result.  ◻

A similar idea can be used to prove the following lemma.

Lemma 11 Let v ∈ V ⧵ V  . Then, it holds that

Proof As v ∉ V  , it must hold that represv = PS(v) due to Lemma 9. This means that, 
for every w ∈ PS(v) , it must holds that w ∉ V  . The rest of the proof is then along the 
same lines as the proof of Lemma 10.  ◻

We can now prove that, for v ∈ V  , the excess is obtained by summing up the 
product of the water level and the area over all nodes in PS(v).

Proposition 6 Let v ∈ V  . Then, it holds that

excessPS(u) =
∑

v�∈PS(u)

(ghv − ghv� ) ⋅ areav� .

excessPS(u) =
∑

v�∈PS(u)

excessv�

=
∑

v�∈PS(u)

∑
ṽ∈PS(v�)

(ghlp(PS(v�)) − ghv� ) ⋅ areaṽ

=
∑

v�∈PS(u)

∑
ṽ∈represv�

(ghlp(PS(v�)) − ghv� ) ⋅ areaṽ

[(ghlp(PS(u)) − ghu) + (ghu − gh(vk−1)) +⋯ + (gh(v2) − ghv� )] ⋅ areav�

=(ghv − ghv� ) ⋅ areav�

excessPS(v) =
∑

v�∈PS(v)

(ghlp(PS(v)) − ghv� ) ⋅ areav� .

excessPS(v) =
∑

v�∈PS(v)

wlv� ⋅ areav� .



 Operations Research Forum (2023) 4:86

1 3

86 Page 52 of 68

Proof For a non-flooded node v� ∈ V  , it is clear that excessv� = 0 . Due to Proposi-
tion 4 and Lemma 7, any sink S ∈ S(y) is either contained in PS(v) or disjoint from 
PS(v) . Let S1,… , Sk ∈ S(y) be the sinks contained in PS(v) and let u1,… , uk ∈ V  be 
the nodes inducing their corresponding pre-sinks respectively. Then, we can write 
the excess as

We fix some i ∈ {1,… , k} and distinguish two cases.

Case 1: ui ∈ V  As ui is in a sink, it must hold that wlui > 0 , which means that ui is 
a leaf in G . Corollary 3 then yields that represui = PS(ui) . For any follow-up node 
u� ∈ FUN(ui) , Lemma 10 yields 

 Further, as represui = PS(ui) , we get that 

 This yields 

Case 2: ui ∉ V  Lemma 11 yields that 

 Let ũ = lp(PS(ui)) . As ũ ∉ PS(ui) = Si , it must hold that wl(ũ) = 0 and, hence, 
that ũ ∈ V  . As ui ∉ V  , it must hold that ui ∈ repres(ũ) . Observation 3 then yields 
that 

(3)excessPS(v) =

k∑
i=1

excessPS(ui)

excessPS(u�) =
∑

v�∈PS(u)

(ghui − ghv� ) ⋅ areav� .

excessui = areaPS(ui) ⋅ wlui =
∑

v�∈PS(ui)

areav� ⋅ wlui .

excessPS(ui) =
∑

u�∈FUN(ui)

∑
v�∈PS(u�)

(ghui − ghv� ) ⋅ areav�

+
∑

v�∈PS(ui)

areav� ⋅ wlui

=
∑

v�∈PS(ui)

(wlui + ghui − ghv� ) ⋅ areav�

Prop. 3
=

∑
v�∈PS(ui)

wlv� ⋅ areav� .

excessPS(ui) =
∑

v�∈PS(ui)

(ghlp(PS(ui)) − ghv� ) ⋅ areav� .

ghlp(PS(ui)) − ghv� = wlv� ,



1 3

Operations Research Forum (2023) 4:86 Page 53 of 68 86

 which then implies 

 which is the same result as in the previous case. Resubstituting this into  (3) 
yields 

  ◻

Now that we have reached this milestone, we next prove the analogue of Prop-
osition 5 in the context of Algorithm 6. To this end, we firstly define the positive 
contribution to the excess.

Definition 6 Let v ∈ V  and t ∈ {1,… , T} . We define the positive contribution to the 
excess of pre-sink PS(v) in iteration t as

and the positive contribution to the excess of pre-sink PS(v) until iteration t as

As a short-hand notation, we define y.pcePS(v) ∶= y.pcePS(v),≤T . Further, for 
t ∈ {1,… , T} , the change of excess in iteration  t is defined as Δexcess

v,t
∶=

excess
v,t
− excess

v,t−1 , where excessv,0 = 0 for all v ∈ V .

It is worth noting that we will introduce a similar definition for the MIP solu-
tion x later. To avoid confusion, we keep the “y.” in the central results. For smaller 
technical results, however, we omit the “y.” whenever it is clear from the context.

We start by proving a structural result, whose statement is similar to the one of 
Observation 9.

Lemma 12 Let t ∈ {1,… , T} and v ∈ Ṽt . Further let r ∈ R such that �(r) ∉ PS(v) 
and �(r) ∈ PS(v) . Then, cat� (r) exists for every t′ ≤ t and �(cat� (r)) ∈ PS(v).

Proof We start by proving that cat� (r) exists for every t′ ≤ t . Suppose for the sake of a 
contradiction that this is not the case. Then, there exists a last iteration t̂ ≤ t , in which 
cat̂(r) exists. This means that joinNodes 𝜔(cat̂(r)), 𝛼(r) is called in iteration  t̂ . As 
�(r) ∉ PS(v) , it must hold that gh𝛼(r) > ghv . Further, as �(r) is a parent of PS(v) , it 
holds that v ∈ PS(�(r)) . As 𝜔(cat̂(r)) ∈ repres𝛼(r),t , it also holds that v ∈ repres�(r),t 
due to Corollary 5. This, however, implies that v ∉ Ṽt , which is a contradiction.

excessPS(ui) =
∑

v�∈PS(ui)

wlv� ⋅ areav� ,

excessPS(v) =
∑

v�∈PS(v)

wlv� ⋅ areav� .

y.pcePS(v),t ∶=
∑

r∈𝛿−
G
(PS(v))∶

cat(r) exists

fcat(r),t +
∑

v�∈PS(v)

areav� ⋅ rain ⋅ p̂t

y.pcePS(v),≤t ∶=

t∑
t�=1

y.pcePS(v),t� .



 Operations Research Forum (2023) 4:86

1 3

86 Page 54 of 68

We proceed by proving the second claim by contradiction. So suppose there 
exists an iteration  t′ ≤ t such that �(cat�−1(r)) ∈ PS(v) and �(cat� (r)) ∉ PS(v) . 
This means that joinNodes �(cat�−1(r)),�(cat� (r)) has been called in itera-
tion t� − 1 . Hence, there exists an arc r� ∈ R̃t�−1 from �(cat� (r)) to �(cat�−1(r)) . Let 
r̂ = oa(r�) . Clearly, it holds that 𝛼(r̂) = 𝜔(cat� (r)) . Due to Observation  9, it holds 
that �(cat�−1(r)) ∈ PS(�(cat� (r))) . Hence, PS(�(cat� (r))) ∩ PS(v) ≠ � , which 
implies that PS(𝜔(cat� (r))) ⊆ PS(v) due to Lemma 7. In particular, this shows that 
�(cat� (r)) ∈ PS(v).  ◻

The lemma above allows proving that, as long as a node v ∈ V  has not left the 
graph, the change of the excess of its induced pre-sink in an interation t is exactly 
the positive contribution to the excess of the pre-sink in iteration t.

Lemma 13 Let t ∈ {1,… , T} and v ∈ Ṽt . Then, it holds that pcePS(v),t = ΔexcessPS(v),t.

Proof Firstly, note that any water that enters a node v� ∈ PS(v) or that arises from 
the rain on v′ is sent over the outgoing arcs of v′ in G̃t if there are any. Observation 9 
guarantees that the child of such an arc is itself in PS(v�) and, hence, in PS(v) . There-
fore, the water that arrives at the leaves of G̃t is exactly the inflow into the pre-sink 
plus the rain on the pre-sink.

The rain on the pre-sink is exactly 
∑

v�∈PS(v) areav� ⋅ rain ⋅ p̂t and the inflow into 
the pre sink 𝛿−

G̃t

(PS(v)) = {r ∈ 𝛿−
G
(PS(v))|cat(r) exists} due to Lemma 12 and Obser-

vation 9, which proves the claim.  ◻

There are two useful corollaries that directly follow from this.

Corollary 6 Let v ∈ V  and t ∈ {1,… , T} such that v ∈ Ṽt . Then, it holds that 
pcePS(v),≤t = excessPS(v),t.

Proof Sum over the iterations from one to t and use Lemma 13.  ◻

Corollary 7 Let v ∈ V  . Then, it holds that pcePS(v) ≥ excessPS(v).

We can now prove the characterization of a pre-sink being flooded.

Lemma 14 Let v ∈ V  . If pcev > thr(PS(v)) , then PS(v) is flooded.

Proof As in the context of the MIP, it suffices to show that v is flooded. For the sake 
of a contradiction, suppose that v is not flooded. Particularly, this means that v ∈ V  . 
Corollary 6 then implies that



1 3

Operations Research Forum (2023) 4:86 Page 55 of 68 86

This means that there exists a node v� ∈ PS(v) with wlv� > (ghv − ghv� ) . Then, 
Proposition  3 implies that wlv > 0 . This however directly implies that for all 
ṽ ∈ PS(v) , it holds that wlṽ > (ghv − ghṽ) , which is a contradiction to (4).  ◻

Next, the other direction is shown.

Lemma 15 Let v ∈ V  . If pcev ≤ thr(PS(v)) , then PS(v) is not flooded.

Proof For the sake of a contradiction, suppose that v is flooded. We distinguish two cases:

Case 1: v ∉ V

Due to Lemma 11, it holds that 

 Corollary 7 then implies that 

 This, however, is a contradiction to ghv < ghlp(PS(v)).
Case 2: v ∈ V Proposition 6 yields 

 Using Corollary 7, we get that 

Proposition 3, however, states that ghv� + wlv� = ghv + wlv > ghv for each v� ∈ PS(v) , 
which is a contradiction.  ◻

(4)

∑
v�∈PS(v)

(ghv − ghv� ) ⋅ areav� = thr(PS(v)) < pcePS(v) = excessPS(v)

Prop. 6
=

∑
v�∈PS(v)

wlv� ⋅ areav�

excessPS(v) =
∑

v�∈PS(v)

(ghlp(PS(v)) − ghv� ) ⋅ areav� .

∑
v�∈PS(v)

(ghv − ghv� ) ⋅ areav� = thr(PS(v)) ≥ pcePS(v) ≥ excessPS(v)

=
∑

v�∈PS(v)

(ghlp(PS(v)) − ghv� ) ⋅ areav� .

excessPS(v) =
∑

v�∈PS(v)

wlv� ⋅ areav� .

∑
v�∈PS(v)

(ghv − ghv� ) ⋅ areav� = thr(PS(v)) ≥ pcePS(v) ≥ excessPS(v)

=
∑

v�∈PS(v)

wlv� ⋅ areav� .



 Operations Research Forum (2023) 4:86

1 3

86 Page 56 of 68

As a result, we finally obtain the desired characterization of flooded pre-sinks for y:

Proposition 7 Let v ∈ V . Then, PS(v) is flooded in y if and only if y.pcev > thr(PS(v)).

Appendix 4.3. Characterization of Inflows and Outflows of Pre‑sinks

Propositions 5 and 7 imply that, if x.pcev = y.pcev for a node v ∈ V  , then PS(v) is 
flooded in x if and only if it is flooded in y. The fact that the positive contribution 
to the excess highly depends on the flows in the graph motivates to investigate the 
flows in more detail. In this section, we present a characterization of the inflows and 
outflows of pre-sinks.

Appendix 4.3.1. Characterization of Inflows and Outflows of Pre‑sinks for x

We start by presenting the characterization for x and omit the “x.” when referring to 
variables whenever this does not lead to any confusion.

Definition 7 Let S ∈ S(x) . The sink  S is called filled to capacity (ftc) if 
excessS = cap(S) , and it is called backfloating if

In this case, the sink’s backfloat is defined as

The following lemma provides an alternative characterization of a pre-sink being ftc.

Lemma 16 Let S ∈ S(x) . Then S is ftc if and only if wlv + ghv = ghlp(S) for all v ∈ S.

Proof Let S ∈ S(x) be ftc. Using Constraint  (2) together with the definition of 
cap(S) , this is equivalent to

Proposition 1 further implies that wlv ≤ ghlp(S) − ghv for all v ∈ S since otherwise 
wllp(S) > 0 , which is a contradiction to lp(S) ∉ S . This means that the above equation 
holds if and only if wlv + ghv = ghlp(S) for all v ∈ S.  ◻

∑
r∈Rex∶
𝛼(r)∈S,

𝜔(r)=lp(S)

x.fr >
∑

r∈Rex∶
𝛼(r)=lp(S),
𝜔(r)∈S

x.fr.

x.bfS ∶=
∑

r∈Rex∶
�(r)∈S,

�(r)=lp(S)

x.fr −
∑

r∈Rex∶
�(r)=lp(S),
�(r)∈S

x.fr.

∑
v∈S

wlv ⋅ areav =
∑
v∈S

(ghlp(S) − ghv) ⋅ areav.



1 3

Operations Research Forum (2023) 4:86 Page 57 of 68 86

Corollary 8 Let S ∈ S(x) be non-ftc. Then, wlv + ghv < ghlp(S) for all v ∈ S.

Proof Use Lemma 16 and Corollary 1.  ◻

These two statements allow investigating the flows on arcs leading into a sink in 
more detail.

Corollary 9 Let S ∈ S(x) be ftc. Then, every arc r ∈ �−
G
(S) ∩ �+

G
(lp(S)) is full and 

every arc r ∈ �−
G
(S) ⧵ �+

G
(lp(S)) is not full.

Proof Due to Lemma  16, it holds that wlv + ghv = ghlp(S) for all v ∈ S . Let now 
r ∈ �−

G
(S) ∩ �+

G
(lp(S)) , then  r is full due to Constraints  (22) and  (24). For an arc 

r ∈ �−
G
(S) ⧵ �+

G
(lp(S)) , it must hold that gh𝛼(r) > ghlp(S) = wlv + ghv . Hence, Con-

straint (36) implies that r is not full.  ◻

Corollary 10 Let S ∈ S(x) be non-ftc. Then, no arc r ∈ �−
G
(S) is full.

Proof Use Corollary 8 and Constraint (36).  ◻

Next, we provide a characterization of a sink being backfloating. The idea is that, 
if the rain on the sink plus the flow on incoming arcs from nodes that are not the 
lowest parent of the sink is larger than the sink’s capacity, then the sink is backfloat-
ing. To this end, we split the positive contribution to the excess into two parts.

Definition 8 Let v ∈ V  . We define the positive contribution to the excess from non-
lowest parents of pre-sink PS(v) as

and the positive contribution to the excess from the lowest parent of pre-sink PS(v) 
as

We firstly observe the following:

Observation 11 Let S ∈ S(x) be backfloating, then is is also ftc.

Proof Suppose S is not ftc. Then, due to Corollary 10, all incoming arcs into S are 
not full, which means that

x.pcenlpPS(v) ∶=
∑

r∈�−
Gex

(PS(v))∶

�(r)≠lp(PS(v))

x.fr +
∑

v�∈PS(v)

rain ⋅ areav�

x.pcelpPS(v) ∶=
∑

r∈�−
Gex

(PS(v))∶

�(r)=lp(PS(v))

x.fr.



 Operations Research Forum (2023) 4:86

1 3

86 Page 58 of 68

Hence, S cannot be backfloating.  ◻

We start proving the first direction of our characterization described above.

Lemma 17 Let S ∈ S(x) be backfloating. Then, it holds that x.pcenlpS > cap(S) and 
x.bfS = x.pcenlpS − cap(S).

Proof Due to Observation 11, it holds that S is ftc. Furthermore, Corollary 9 implies 
that every arc r ∈ �−

G
(S) ∩ �+

G
(lp(S)) is full and every arc r ∈ �−

G
(S) ⧵ �+

G
(lp(S)) is not 

full, which implies that:

Using that

it follows that cap(S) < pcenlpS and that cap(S) = pcenlpS + bfS , which concludes 
the proof.  ◻

The following corollary is a direct consequence of this proof:

Corollary 11 Let S ∈ S(x) be ftc. Then, it holds that

∑
r∈Rex∶
�(r)∈S,

�(r)=lp(S)

x.fr = 0.

cap(C) = Excess
S

=
�

v�∈PS(v)

⎡
⎢⎢⎣

�
r∈�−

Gex
(v�)

x.f
r
−

�
r∈�+

Gex
(v�)

x.f
r

⎤
⎥⎥⎦
+

�
v�∈PS(v)

rain ⋅ area
v�

=
�

r∈�−
Gex

(S)

x.f
r
+

�
v�∈PS(v)

rain ⋅ area
v� −

�
r∈�+

Gex
(S)

x.f
r

Cor. 9
=

�
r∈�−

Gex
(S)∶

�(r)≠lp(S)

x.f
r
+

�
v�∈PS(v)

rain ⋅ area
v�

+
�

r∈�−
Gex

(S)∶

�(r)=lp(S)

x.f
r
−

�
r∈�+

Gex
(S)∶

�(r)=lp(S)

x.f
r

= x.pcenlp
S
+

�
r∈�−

Gex
(S)∶

�(r)=lp(S)

x.f
r
−

�
r∈�+

Gex
(S)∶

�(r)=lp(S)

x.f
r

∑
r∈𝛿−

Gex
(S)∶

𝛼(r)=lp(S)

x.fr −
∑

r∈𝛿+
Gex

(S)∶

𝜔(r)=lp(S)

x.fr < 0,

∑
r∈�−

Gex
(S)∶

�(r)=lp(S)

x.fr −
∑

r∈�+
Gex

(S)∶

�(r)=lp(S)

x.fr = cap(S) − x.pcenlpS.



1 3

Operations Research Forum (2023) 4:86 Page 59 of 68 86

Next, the opposite direction is shown.

Lemma 18 Let S ∈ S(x) with x.pcenlpS > cap(S) . Then  S is backfloating with 
x.bfS = x.pcenlpS − cap(S).

Proof We first prove that S is ftc. Suppose this was not the case, then, by Corol-
lary 10, no arc r ∈ �−

G
(S) is full. Hence, it holds that

which is a contradiction.
By the same arguments as in the proof of Lemma 17, the desired result is obtained.  ◻

The two lemmas are summarized in the following proposition:

Proposition 8 Let S ∈ S(x) . Then, S is backfloating if and only if x.pcenlpS > cap(S) . 
In this case, it holds that x.bfS = x.pcenlpS − cap(S).

Appendix 4.3.2. Characterization of Inflows and Outflows of Pre‑sinks for y

We proceed by presenting an analogue characterization for y and omit the “y.” when 
referring to variables whenever this does not lead to any confusion.

Definition 9 Let S ∈ S(y) . We call S filled to capacity (ftc) if excessS = cap(S) . Fur-
thermore, let v ∈ V  such that S = PS(v) and v ∉ V  . We then call S backfloating if

excessS =
�

v�∈PS(v)

⎡
⎢⎢⎣

�
r∈𝛿−

Gex
(v�)

x.fr −
�

r∈𝛿+
Gex

(v�)

x.fr

⎤
⎥⎥⎦

+
�

v�∈PS(v)

rain ⋅ areav�

=
�

r∈𝛿−
Gex

(S)

x.fr +
�

v�∈PS(v)

rain ⋅ areav� −
�

r∈𝛿+
Gex

(S)

x.fr

���������
=0

=x.pcenlpS + x.pcelpS > cap(S),

∑
t>tv

∑
r∈𝛿−

G
(PS(v))∶

cat(r) exists,
𝛼(r)≠lp(PS(v))

fcat(r),t +
∑

v�∈PS(v)

areav� ⋅ rain ⋅ (1 − sptv )

>
T∑
t=1

∑
r∈𝛿−

G
(PS(v))∶

cat(r) exists,
𝛼(r)=lp(PS(v))

fcat(r),t.



 Operations Research Forum (2023) 4:86

1 3

86 Page 60 of 68

In this case, the sink’s backfloat is defined by

In contrast to the MIP, only one direction of the characterization of a sink 
being ftc is needed for the proof. It is worth noting that the other direction holds 
as well.

Lemma 19 Let S ∈ S(y) be non-ftc. Then, for all v ∈ S , it holds that wlv + ghv < ghlp(S).

Proof Clearly, it cannot hold that wlv + ghv > ghlp(S) as, in this case, due to Propo-
sition 3, it would hold that wllp(S) > 0 and, hence, that lp(S) ∈ S , which is clearly 
a contradiction. So suppose that wlṽ + ghṽ = ghlp(S) holds for some ṽ ∈ S . Again, 
Proposition 3 implies that wlv� + ghv� = ghlp(S) holds for all v� ∈ S . Let v ∈ V  such 
that S = PS(v) . We then distinguish two cases.

Case 1: v ∈ V

We apply Proposition 6 and obtain 

 which is a contradiction to S being non-ftc.
Case 2: v ∉ V

We apply Lemma 11 and obtain 

 which, again, is a contradiction to S being non-ftc.  ◻

We divide the positive contribution to the excess as before.

Definition 10 Let v ∈ V  and t ∈ {1,… , T} . We define the positive contribution to 
the excess from non-lowest parents of pre-sink PS(v) until iteration t as

bfS ∶=
∑
t>tv

∑
r∈𝛿−

G
(PS(v))∶

cat(r) exists,
𝛼(r)≠lp(PS(v))

fcat(r),t +
∑

v�∈PS(v)

areav� ⋅ rain ⋅ (1 − sptv)

−

T∑
t=1

∑
r∈𝛿−

G
(PS(v))∶

cat(r) exists,
𝛼(r)=lp(PS(v))

fcat(r),t.

excessS =
∑

v�∈PS(v)

wlv� ⋅ areav�

=
∑

v�∈PS(v)

(ghlp(S) − ghv� ) ⋅ areav�

= cap(S),

excessS =
∑

v�∈PS(v)

(ghlp(PS(v)) − ghv� ) ⋅ areav� = cap(S),



1 3

Operations Research Forum (2023) 4:86 Page 61 of 68 86

and the positive contribution to the excess from the lowest parent of pre-sink PS(v) 
as

Furthermore, we introduce the short-hand notations pcenlpPS(v) ∶= pcenlpPS(v),T 
and pcelpPS(v) ∶= pcelpPS(v),T

This allows proving the following observation.

Observation 12 Let S ∈ S(y) be backfloating, then it is also ftc.

Proof Suppose this is not the case, then Lemma 19 implies that, for all v� ∈ S , it 
holds that wlv� + ghv� < ghlp(S) . In particular, for v ∈ V  such that S = PS(v) , this 
means that v ∈ V  , which means that S is not backfloating.

Using this observation, we prove the first direction of our characterization of a 
sink being backfloating.

Lemma 20 Let S ∈ S(y) be backfloating. Then, it holds that pcenlpS > cap(S) and 
that bfS = pcenlpS − cap(S).

Proof Let v ∈ V such that S = PS(v) . As S is backfloating, it must hold that v ∉ V and, 
due to the above observation, it must also hold that cap(S) = excessS . We then argue that

y.pcenlpPS(v),T ∶=

t∑
t�=1

∑
r∈�−

G
(PS(v))∶

cat� (r) exists,
�(r)≠lp(PS(v))

y.fcat(r),t� +
∑

v�∈PS(v)

areav� ⋅ rain ⋅ spt

y.pcelpPS(v),T ∶=

t∑
t�=1

∑
r∈�−

G
(PS(v))∶

cat� (r) exists,
�(r)=lp(PS(v))

y.fcat(r),t� .

cap(S) = excess
S

Cor. 6
= pce

S,≤t
v
= pcenlp

S,t
v
+ pcelp

S,t
v

=
∑
t�≤t

v

∑
r ∈ 𝛿−

G
(PS(v)) ∶

ca
t�
(r) exists,

𝛼(r) ≠ lp(PS(v))

fca
t
(r),t� +

∑
v�∈PS(v)

area
v�
⋅ rain ⋅ sp

t
v

+
∑
t�≤t

v

∑
r ∈ 𝛿−

G
(PS(v)) ∶

ca
t�
(r) exists,

𝛼(r) = lp(PS(v))

fca
t
(r),t� +

∑
t�>t

v

∑
r ∈ 𝛿−

G
(PS(v)) ∶

ca
t�
(r) exists,

𝛼(r) = lp(PS(v))

fca
t
(r),t�

���������������������������������������
=0



 Operations Research Forum (2023) 4:86

1 3

86 Page 62 of 68

A further direct consequence of the proof is the following statement.Using that S 
is backfloating, by definition, it follows that

which means that cap(S) < pcelpS . Further, plugging in the formula for bfS into the 
above equation yields bfS = pcenlpS − cap(S).  ◻

Lemma 21 Let S ∈ S(y) with pcenlpS > cap(S) . Then, it holds that S is backfloating 
and that bfS = pcenlpS − cap(S).

Proof Let v ∈ V  such that S = PS(v) . We first show that S is ftc. Suppose the con-
trary, then it holds that v ∈ V  . Hence, applying Corollary 6 yields

which is a contradiction. Executing the same proof as for Lemma  20 yields the 
desired result.  ◻

The two previous lemmas are summarized in the following proposition.

Proposition 9 Let S ∈ S(y) . Then S is backfloating if and only if y.pcenlpS > cap(S) . 
In this case, it holds that y.bfS = y.pcenlpS − cap(S).

A further direct consequence of the proof is the following statement.

Corollary 12 Let S ∈ S(y) be ftc. Further, let v ∈ V such that S = PS(v) . Then, it holds that

=
∑
t�≤tv

∑

r ∈ 𝛿−
G
(PS(v)) ∶

ca
t� (r) exists,

𝛼(r) ≠ lp(PS(v))

fcat(r),t
� +

∑
v�∈PS(v)

area
v� ⋅ rain ⋅ sptv + pcelp

S

= pcenlp
S
−
∑
t>tv

∑

r ∈ 𝛿−
G
(PS(v)) ∶

ca
t
(r) exists,

𝛼(r) ≠ lp(PS(v))

fcat(r),t

−
∑

v�∈PS(v)

area
v� ⋅ rain ⋅ (1 − sp

tv
) + pcelp

S
.

∑
t>tv

∑
r ∈ 𝛿−

G
(PS(v)) ∶

cat(r) exists,

𝛼(r) ≠ lp(PS(v))

fcat(r),t +
∑

v�∈PS(v)

areav� ⋅ rain ⋅ (1 − sptv ) > pcelpS,

cap(S) > excessS = pceS = pcenlpS + pcelpS ≥ pcenlpS,



1 3

Operations Research Forum (2023) 4:86 Page 63 of 68 86

Appendix 4.4. Proof of Equal Water Levels in x and y

We now use the results obtained about the water levels and flows in pre-sinks to 
show that x.wlv = y.wlv for all v ∈ V  . The idea of the proof is to show from the high-
est node to the lowest node that either the water levels are the same or that the flows 
on all outgoing arcs that are not full in x are the same in x and y. The overall flows 
over an arc r ∈ R in y are defined by y.fr ∶=

∑
t ∈ {1,… , T} ∶

cat(r) exists

y.fca(r),t . We formal-

ize the above-mentioned property of a node in the following definition:

Definition 11 A node v ∈ V  is called explored above if v is non-flooded in x and y 
and all v� ∈ V  with ghv′ > ghv fulfill the following properties: 

1. x.wlv� = y.wlv�

2. For each arc r ∈ �+
G
(v�) that not full in x, it holds that x.fr = y.fr.

It is now shown that, if a node v ∈ V  is explored above, each pre-sink induced by 
a follow-up node of PS(v) is backfloating in x if and only if it is in y.

Lemma 22 Let v ∈ V  be explored above. Then, for each ui ∈ FUN(v) , it holds that 
PS(ui) is backfloating in x if and only if it is in y. If it is backfloating, it further holds 
that x.bfPS(ui) = y.bfPS(ui).

Proof As  v is not flooded, it holds that every arc r ∈ �−(PS(ui)) with �(r) ≠ v 
is not full in  x. Then, due to Property  2 of  v being explored above, it holds that 
x.pcenlpPS(ui) = y.pcenlpPS(ui) . The claim then follows using Propositions 8 and 9. 
 ◻

The lemma in particular shows that, if a pre-sink induced by a follow-up node ui 
is backfloating, the water levels of all nodes in PS(ui) are the same in x and y. We 
next investigate the follow-up nodes whose induced pre-sinks are not ftc. To this 
end, we introduce a further definition.

cap(S) = y.pcenlpS −
∑
t>tv

∑
r∈𝛿−

G
(PS(v))∶

cat(r) exists,
𝛼(r)≠lp(PS(v))

y.fcat(r),t

−
∑

v�∈PS(v)

areav� ⋅ rain ⋅ (1 − sptv ) + y.pcelpS.



 Operations Research Forum (2023) 4:86

1 3

86 Page 64 of 68

Definition 12 Let v ∈ V  and let ui ∈ FUN(v) . The total ratio of the lowest parent is 
defined by

We observe two important properties of the total ratio of the lowest parent.

Observation 13 Let v ∈ V  and z ∈ {x, y} . Further, let ui, uj ∈ FUN(v) such that 
PS(ui) and PS(uj) are not ftc in z. Then, it holds that

Proof For z = x , this is clear since all arcs in �−
G
(PS(ui)) and �−

G
(PS(uj)) are not full. 

The claim is then clear from Constraint (31.1 and 31.2). For z = y , the claim is also 
clear as all arcs in �−

G
(PS(ui)) and �−

G
(PS(uj)) are never removed from the graph (oth-

erwise, PS(ui) or PS(uj) would be ftc).  ◻

Observation 14 Let z ∈ {x, y} and v ∈ V  be non-flooded with z.pcePS(v) < thr(PS(v)) . 
Then, there exists a pre-sink PS(ui) for some ui ∈ FUN(v) that is non-ftc in z.

The two previous observations show that the following is well-defined:

Definition 13 Let z ∈ {x, y} and v ∈ V  be non-flooded with z.pcePS(v) < thr(PS(v)) . 
Furthermore, let ui ∈ FUN(v) such that PS(ui) is non-ftc in z. Then, we define the 
non-full arc distribution of v as

We next show that x.nfadv = y.nfadv for each non-flooded and explored-above node 
v ∈ V with z.pcePS(v) < thr(PS(v)) . To prove this, an additional lemma is required.

Lemma 23 Let z ∈ {x, y} and v ∈ V be non-flooded with z.pcePS(v) < thr(PS(v)) . Further let 
ui ∈ FUN(v) . If it further holds that z.nfadv ⋅ ratiolpPS(ui) ≥ cap(PS(ui)) − z.pcenlpPS(ui) , 
then PS(ui) is ftc in z.

Proof Suppose PS(ui) is not ftc. Then, by definition, it holds that

which means that z.excessPS(ui) ≥ cap(PS(ui)) (due to Lemma 4 in the case of z = x 
and Corollary 6 in the case of z = y ). As v is non-flooded, it must also hold that 
z.excessPS(ui) ≤ cap(PS(ui)) , which means that equality holds and PS(ui) is ftc.  ◻

ratiolpPS(ui) ∶=
∑

r∈�−
G
(PS(ui))∶

�(r)=v

ratior.

z.pcelpPS(ui)

z.pcelpPS(uj)
=

ratiolpPS(ui)

ratiolpPS(uj)
.

z.nfadv ∶=
z.pcelpPS(ui)

ratiolpPS(ui)
.

z.pcelpPS(ui) = z.nfadv ⋅ ratiolpPS(ui)

≥ cap(PS(ui)) − z.pcenlpPS(ui),



1 3

Operations Research Forum (2023) 4:86 Page 65 of 68 86

We proceed by showing that x.nfadv = y.nfadv for each explored-above node 
v ∈ V  for which it holds that z.pcePS(v) < thr(PS(v)).

Lemma 24 Let z ∈ {x, y} and v ∈ V  be explored above with z.pcePS(v) < thr(PS(v)) . 
Then, it holds that x.nfadv = y.nfadv.

Proof As  v is explored above, the node is non-flooded, and hence, it holds that 
x.excessPS(v) = y.excessPS(v) due to Lemma 4 and Corollary 6.

For the sake of a contradiction, suppose that x.nfadv ≠ y.nfadv . It is firstly 
assumed that x.nfadv > y.nfadv . The proof of the other case is along the same lines.

For all ui ∈ FUN(v) for which PS(ui) is ftc in  y, Lemma  23 shows that PS(ui) 
is also ftc in  x. In particular, this yields x.excessPS(ui) = y.excessPS(ui) . For all 
ui ∈ FUN(v) , for which PS(ui) is not ftc in y, we distinguish two cases.

• Case 1: PS(ui) is ftc in  x Then, y.excessPS(ui) ≤ cap(PS(ui)) = x.excessPS(ui) by 
definition of ftc.

• Case 2: PS(ui) is not ftc in  x. Then, by definition, it holds that 
x.pcelpPS(ui) > y.pcelpPS(ui) . As  v is explored above, it further holds that 
x.pcenlpPS(ui) = y.pcenlpPS(ui) , which yields x.pcePS(ui) > y.pcePS(ui) . As PS(ui) is 
not ftc in both x and y, it holds that 

 All in all, since there exists a ui ∈ FUN(v) such that PS(ui) is not ftc in y due to 
Observation 14, it holds that 

 which is a contradiction.  ◻

We now prove the final proposition, which shows that, if a node v is explored 
above, then its non-flooded follow-up nodes are as well.

Proposition 10 Let v ∈ V  be explored above with z.pcePS(v) < thr(PS(v)) for all 
z ∈ {x, y} . Then, it holds that 

(a) x.wlv = y.wlv
(b) For all ui ∈ FUN(v) , it holds that x.wlui = y.wlui
(c) For all r ∈ �+

G
(v) where r is not full in x, it holds that x.fr = y.fr.

Proof We prove the claims individually. 

x.excessPS(ui) = x.pcePS(ui) > y.pcePS(ui) = y.excessPS(ui).

x.excessPS(v) =
∑

ui∈FUN(v)

x.excessPS(ui)

>
∑

ui∈FUN(v)

y.excessPS(ui) = y.excessPS(v),



 Operations Research Forum (2023) 4:86

1 3

86 Page 66 of 68

(a) As z.pcePS(v) < thr(PS(v)) for all z ∈ {x, y} , it holds that v is non-flooded in both x 
and y.

(b) Let ui ∈ FUN(v) . If PS(ui) is ftc in x, then it is also in y due to Lemmas 23 
and 24, which means that the claim holds in this case. If PS(ui) is not ftc in x, 
it is, again because of Lemmas 23 and 24, not ftc in y. In this case, it holds that 
x.excessPS(ui) = y.excessPS(ui) , which shows the claim.

(c) Let r ∈ �+
G
(v) where r is not full in x. Then, due to Lemma 24, it holds that 

fr = nfadv ⋅ ratior in both solutions, which proves the claim.  ◻

Using this proposition, the final theorem can be shown.

Theorem 1 For all v ∈ V  , it holds that x.wlv = y.wlv.

Proof Let v� ∈ V  be the highest node in the graph. As we assumed that v′ is not 
flooded, it clearly holds that v′ is explored above. If pce(v�) = thr(v�) , we know that 
all pre-sinks induced by the follow-up nodes of  v′ are ftc, which means that the 
claim holds. If this is not the case, Proposition 10 shows that, for each ui ∈ FUN(v�) , 
it holds that x.wlui = y.wlui . If wlui > 0 , it must hold that PS(ui) is a sink, and, hence, 
that all nodes in PS(ui) have the same water level in the two solutions. Otherwise, 
Proposition 10 shows that ui is explored above. We then continue applying the same 
arguments to all such ui and work our way down the graph until we have shown the 
claim for all nodes.  ◻

Appendix 5. Algorithm for presolving non‑flooded nodes

An algorithm for computing the nodes that can be preset to be non-flooded is pro-
vided as Algorithm 7.

Algorithm 7  PRESOLVE-NON-FLOODED



1 3

Operations Research Forum (2023) 4:86 Page 67 of 68 86

Author Contribution JB and CT jointly developed the presented mathematical models. JB implemented 
the models and performed the computational experiments. Both authors contributed equally to the writ-
ing of the manuscript and have approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was partially sup-
ported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety 
(BMU) within the project “AKUT – Incentive Systems for Municipal Flood Prevention” (grant number 
67DAS156C).

Data Availability The datasets generated during and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Code Availability The code is available from the corresponding author on reasonable request.

Declarations 

Ethics Approval Not applicable

Consent to Participate Not applicable

Consent for Publication Not applicable

Conflict of Interest The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/  
licen ses/ by/4. 0/.

References

 1. Blenkinsop S, Fowler HJ, Barbero R, Chan SC, Guerreiro SB, Kendon E, Lenderink G, Lewis 
E, Li XF, Westra S et al (2018) The INTENSE project: using observations and models to under-
stand the past, present and future of sub-daily rainfall extremes. Adv Sci Res 15:117–126

 2. IPCC: Climate Change 2021 (2021) The Physical Science Basis. Contribution of Working Group 
I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 
University Press. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, 
Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, 
Waterfield T, Yelekçi O, Yu R, Zhou B (eds.)

 3. Rajczak J, Schär C (2017) Projections of future precipitation extremes over Europe: a multi-
model assessment of climate simulations. Journal of Geophysical Research: Atmospheres 
122(20):10773–10800

 4. Fekete A, Sandholz S (2021) Here comes the flood, but not failure? Lessons to learn after the 
heavy rain and pluvial floods in Germany 2021. Water 13(21):3016

 5. Mohr S, Ehret U, Kunz M, Ludwig P, Caldas-Alvarez A, Daniell JE, Ehmele F, Feldmann H, 
Franca MJ, Gattke C, Hundhausen M, Knippertz P, Küpfer K, Mühr B, Pinto JG, Quinting J, 
Schäfer AM, Scheibel M, Seidel F, Wisotzky C (2023) A multi-disciplinary analysis of the 
exceptional flood event of July 2021 in central Europe - Part 1: Event description and analysis. 
Nat Hazard 23(2):525–551

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Operations Research Forum (2023) 4:86

1 3

86 Page 68 of 68

 6. German Association for Water, Wastewater and Waste (2016) Merkblatt DWA-M 119, Risikoman-
agement in der kommunalen Überflutungsvorsorge für Entwässerungssysteme bei Starkregen (Risk 
management in municipal flood protection for drainage systems in the event of heavy rain)

 7. Siekmann T (2018) Methodik zur Priorisierung von Maßnahmen der Sturzflutvorsorge. https:// www. 
siekm ann- ingen ieure. de/ media/ prior isier ung- massn ahmen_ metho dik. pdf. Accessed 01 April 2023

 8. Kreibich H, Thieken AH, Petrow T, Müller M, Merz B (2005) Flood loss reduction of private 
households due to building precautionary measures-lessons learned from the Elbe flood in 
August 2002. Nat Hazard 5(1):117–126

 9. Tasseff B (2021) Optimization of critical infrastructure with fluids. Ph.D. thesis, University of 
Michigan

 10. Woodward M, Kapelan Z, Gouldby B (2014) Adaptive flood risk management under climate 
change uncertainty using real options and optimization. Risk Anal 34(1):75–92

 11. Brekelmans R, den Hertog D, Roos K, Eijgenraam C (2012) Safe dike heights at minimal costs: 
the nonhomogeneous case. Oper Res 60(6):1342–1355

 12. Zwaneveld P, Verweij G, van Hoesel S (2018) Safe dike heights at minimal costs: an integer pro-
gramming approach. Eur J Oper Res 270(1):294–301

 13. Klerk W, Kanning W, Kok M, Wolfert R (2021) Optimal planning of flood defence system rein-
forcements using a greedy search algorithm. Reliability Engineering & System Safety 207:107344

 14. Huang C, Hsu N, Liu H, Huang Y (2018) Optimization of low impact development layout 
designs for megacity flood mitigation. J Hydrol 564:542–558

 15. Ngo TT, Yoo DG, Lee YS, Kim JH (2016) Optimization of upstream detention reservoir facili-
ties for downstream flood mitigation in urban areas. Water 8(7):290

 16. Jack B, Kousky C, Sims K (2008) Designing payments for ecosystem services: lessons from 
previous experience with incentive-based mechanisms. Proceedings of the National Academy of 
Sciences (PNAS) 105(28):9465–9470

 17. Machac J, Hartmann T, Jilkova J (2018) Negotiating land for flood risk management: upstream-
downstream in the light of economic game theory. Journal of Flood Risk Management 11(1):66–75

 18. Poussin J, Botzen W, Aerts J (2014) Factors of influence on flood damage mitigation behaviour 
by households. Environmental Science & Policy 40:69–77

 19. Filatova T (2014) Market-based instruments for flood risk management: a review of theory, prac-
tice and perspectives for climate adaptation policy. Environmental Science & Policy 37:227–242

 20. Khalilpourazari S, Pasandideh SHR (2021) Designing emergency flood evacuation plans using 
robust optimization and artificial intelligence. J Comb Optim 41:640–677

 21. Che D, Mays LW (2015) Development of an optimization/simulation model for real-time flood-
control operation of river-reservoirs systems. Water Resour Manage 29(11):3987–4005

 22. Wei C, Hsu N (2008) Multireservoir real-time operations for flood control using balanced water 
level index method. J Environ Manage 88(4):1624–1639

 23. Munawar HS, Hammad AWA, Waller ST, Thaheem MJ, Shrestha A (2021) An integrated 
approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: 
a review. Sustainability 13(14):7925

 24. Schmitt TG, Worreschk S, Kaufmann Alves I, Herold F, Thielen C (2014) An optimization and 
decision support tool for long-term strategies in the transformation of urban water infrastructure. 
In: Proceedings of the 11th International Conference on Hydroinformatics (HIC), pp. 1–8

 25. Nematollahi B, Parnian BH, Talebbeydokhti N, Rakhshandehroo GR, Nikoo MR, Gandomi AH 
(2022) A stochastic conflict resolution optimization model for flood management in detention 
basins: application of fuzzy graph model. Water 14(5):774

 26. Holzhauser M, Krumke S, Thielen C (2017) Maximum flows in generalized processing net-
works. J Comb Optim 33:1226–1256

 27. Koene J (1983) Minimal cost flow in processing networks: a primal approach. Ph.D. thesis, Cen-
trum voor Wiskunde & Informatica, Amsterdam

 28. Bonami P, Lodi A, Tramontani A, Wiese S (2015) On mathematical programming with indicator 
constraints. Math Program 151:191–223

 29. Institut für technisch-wissenschaftliche Hydrologie GmbH: HYSTEM-EXTRAN. https:// itwh. de/ 
en/ softw are- produ cts/ deskt op/ hystem- extran/. Accessed 1 April 2023

 30. Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33(1):645–671

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://www.siekmann-ingenieure.de/media/priorisierung-massnahmen_methodik.pdf
https://www.siekmann-ingenieure.de/media/priorisierung-massnahmen_methodik.pdf
https://itwh.de/en/software-products/desktop/hystem-extran/
https://itwh.de/en/software-products/desktop/hystem-extran/

	New Ways in Municipal Flood Mitigation: a Mixed-Integer Programming Approach and its Practical Application
	Abstract
	1 Introduction
	1.1 The Project AKUT
	1.2 Our Contribution

	2 Problem Description and Input Data
	3 Mathematical Modeling
	3.1 Graph-Based Model
	3.1.1 Construction of the Graph
	3.1.2 Description of the Graph-Based Model
	3.1.3 Reducing the Graph Size

	3.2 Mixed-Integer Programming Formulation and Presolve Techniques
	3.2.1 Mixed-Integer Programming Formulation
	3.2.2 Presolve Techniques


	4 Computational Results
	4.1 Comparison with Established Simulation Software
	4.2 Running Time and Performance

	5 Conclusion
	Appendix 1. Obtaining the Buildings and Actions on the Nodes
	Appendix 2. Computing the Water Levels
	Appendix 3. Constraints of the Mixed-Integer Programming Formulation
	Appendix 4. Proof of Validity of the Mixed-Integer Programming Formulation
	Appendix 4.1. Characterization of Flooded Subgraphs
	Appendix 4.1.1. Characterization of Flooded Subgraphs for x
	Appendix 4.1.2. Characterization of Flooded Subgraphs for y

	Appendix 4.2. Characterization of flooded pre-sinks
	Appendix 4.2.1. Characterization of Flooded Pre-sinks in x
	Appendix 4.2.2. Characterization of Flooded Pre-sinks in y

	Appendix 4.3. Characterization of Inflows and Outflows of Pre-sinks
	Appendix 4.3.1. Characterization of Inflows and Outflows of Pre-sinks for x
	Appendix 4.3.2. Characterization of Inflows and Outflows of Pre-sinks for y

	Appendix 4.4. Proof of Equal Water Levels in x and y

	Appendix 5. Algorithm for presolving non-flooded nodes
	References


