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1 Introduction

Estimation uncertainty on impulse responses is almost always reported by displaying two
standard-error bands based on the marginal distribution of each individual coefficient (a
notable exception being Sims and Zha, 1999). One can think of this visual device as the
equivalent to graphically displaying the sequence of associated t-statistics. However, the co-
efficients of the impulse response are usually very highly correlated over time. In a traditional
linear regression context, we tend to favor testing the joint significance of highly colinear
regressors rather than relying on individual t-tests — individual coefficients are poorly identi-
fied and hence estimated imprecisely. Similarly, I will show that impulse response coefficients
are often imprecisely estimated but that the impulse response path is not.

A natural consequence of this discussion is the desire to display impulse response uncer-
tainty with the joint distribution rather than with the individual marginals so as to account
for possible correlation. Ideally, one would display the 95% confidence, multi-dimensional
ellipse associated with all the coefficients of the impulse response: this is clearly impossible
in two-dimensional (and even three-dimensional) space.

However, the coefficients of an impulse response have a natural and unique temporal
ordering. It turns out that the Cholesky decomposition of the covariance matrix of the
impulse path translates the original responses into an orthogonal system of uncorrelated
variates. This decomposition has several virtues. Uncertainty on the orthogonal system can
be displayed with two standard error bands since, by construction, its joint distribution is

the product of its marginals. Moreover, the sum of the sequence of these conditional t-tests



squared is the Wald statistic of the null hypothesis that the coefficients of the response path
are jointly zero. Thus, these conditional t-tests not only identify which of the individual
coefficients is more or less likely to be zero statistically, they represent the uncertainty
associated to each coefficient conditional on the response so far experienced. I will call the
graphical display of the sequence of these conditional t-tests conditional confidence bands.

In addition to each individual coefficient’s conditional uncertainty, we are also interested
in an overall measure of uncertainty for the response’s path that summarizes all the individual
possibilities at each horizon. For a given probability level «, there are obviously infinite
possible paths so it seems sensible to focus on those that are most extreme to provide a sense
about the boundaries of what we can reasonably expect to observe. For any probability level
«, these can be easily constructed with the orthogonalized variates and then translated back
to the original coordinate system. I will call these response percentile bounds.

Knowledge of the joint distribution allows one to construct joint tests of significance based
on the Wald principle. In addition to these, I will discuss how to conveniently formulate
tests on the null that the cumulative effect of the response is zero; tests that two responses
can be considered equal from a statistical point of view; and tests that the cumulative effect
of two responses is equal.

Leeper and Zha (2003) discuss a method of counterfactual simulation based on feeding
alternative sequences of errors into an estimated VAR and then construct a statistic that
allows one to examine whether the counterfactual is “modest” (that is, unlikely to violate

the Lucas critique; Lucas, 1976). Instead, I propose a method of experimentation in which a



counterfactual path replaces the historical path and where the “modesty” of the counterfac-
tual is measured by whether or not the counterfactual path would be rejected by the Wald
statistic of the joint hypothesis measuring the distance between the counterfactual and the
historical paths. This approach has two obvious virtues. First, it allows for counterfactuals
based on simultaneously experimenting with more than one alternative path. Second, the
method allows one to calculate the distribution of the system of impulse responses condi-
tional on the counterfactual so that one can formally evaluate the effects of the experiment
statistically.

All of these statistics require knowledge of the joint distribution of the impulse responses.
This paper derives the asymptotic distribution of structural impulse responses identified
either with short-run (e.g. Cholesky) or long-run (e.g. Blanchard and Quah, 1989) recur-
sive identification restrictions and estimated semiparametrically by local projections (Jorda,
2005). Local projections have several advantages over impulse responses derived from vec-
tor autoregressions (VARs). Among others, they are more robust to lag length and other
forms of misspecification discussed in Jorda (2005). Also, they are a natural building block
from which to estimate impulse responses with more flexible, possibly nonlinear models.
Consequently, deriving convergence results to a multivariate Gaussian distribution with an-
alytic formulas for the covariance matrix that are closed form and analytically tractable is
not only important to construct many statistics of interest discussed below, but also as a
starting point for further generalizations of the method. Since these results are not directly

available elsewhere, this becomes another contribution of the paper.



The paper proposes a statistical protocol to analyze vector time series with impulse
responses and of necessity contains a number of econometric derivations, many of which
result from familiar statistical principles. I view this simplicity as an advantage rather than
a detraction for the methods presented here — basic least squares results, while seemingly
unsophisticated, tend to be very robust. The goal of the paper is not to muddle the presenta-
tion with excessive econometric wizardry but rather to provide empirical practitioners with
a set of clear, robust and easily implementable tools of analysis. For this reason, the paper
contains a detailed empirical application of a two-country basic macroeconomic system in-
volving U.S. and U.K. data illustrating all of these techniques. For clarity, the assumptions
required to derive the main results are kept as simple as possible. Where appropriate, I

discuss without proof the practical implications of relaxing some of these assumptions.

2 Joint Inference for Impulse Responses

Suppose we are investigating the system of impulse responses of a vector times series y; of

dimension r x 1 over h = 0,1, ..., H horizons so that

Do

& (0, H) =

Qu

is an r (H + 1) x r matrix that collects the structural impulse response coefficients for the

system. Neither the method of structural identification, nor the method by which these



coefficients are estimated is relevant here. All that is needed now is an available result
such that, if EBT = vec <<T> (0, H )) (that is, the vectorized estimates of the impulse response

coefficients from a sample of size T'), then at least asymptotically

VT (3= 6y) = N (0,02). (1)

As an example, below I provide such a result for impulse responses estimated by local
projections under either short-run or long-run recursive identification assumptions.

Error bands for impulse responses are often used as visual cues about the uncertainty of
the possible time profiles that the impulse responses can follow. Traditionally, these bands
have been constructed with the standard errors of each individual response coefficient, that

is, for 95% confidence bands

bp £1.96 x diag(Qy)"?,

were diag (Qb) is the 7% (H + 1) x 1 vector that contains the diagonal elements of Qb-
One interpretation of these bands is as the graphical equivalent to displaying the sequence
of individual t-tests associated to each impulse response coefficient. These are, strictly
speaking, correct and valid statistics on the unconditional uncertainty of each individual
coefficient under general assumptions but they ignore two elementary observations. The
first observation is that impulse response coefficients are highly colinear. To illustrate this
point, figure 1 displays the response of U.S. unemployment to a shock in the U.S. federal

funds rate from the empirical application in section 5. The correlation between the response



coefficient and those for periods 2-12 is displayed in the top right panel of figure 1 and ranges
from 0.7 between periods 1 and 2 to 0.2 between periods 1 and 12. The bottom panel of
figure 1 displays the entire correlation matrix where many entries have values above 0.5.
Even for an impulse response that would traditionally be considered as essentially zero on
the basis of the 95% unconditional confidence bands, the impulse response coefficients are
very highly correlated indeed.

In the context of traditional linear regression, we favor tests of joint significance of highly
colinear regressors rather than relying on individual t-tests — individual coefficients are poorly
identified and hence estimated with wide standard errors. Similarly, the uncertainty asso-
ciated to the impulse response path is summarized by its joint distribution and at a 95%
confidence level, it results in a multi-dimensional ellipsoid. Unfortunately, such an ellipsoid
cannot be displayed in two- or even three-dimensional space, although clearly, one could
construct a Wald statistic for the null hypothesis of joint significance. I will return to the

issue of testing joint hypothesis momentarily.

2.1 Conditional Confidence Bands

The second observation is that impulse response coefficients have a natural temporal or-
dering: the value of the impulse response today determines the possible trajectories of the
response in future periods but future periods cannot affect the current path of the response.
Therefore, it is natural to translate the original response into a system of orthogonal variates

that preserves this temporal ordering while simplifying the task of constructing error bands.



Specifically, suppose we are interested in the response of variable ¢ to a shock in variable
. . . ) ~0 ~1 ~H ) )

J and associated with the coefficients ¢;;, ¢;;, ..., ;;, which can be collected compactly into
the vector qzw Let 4 (¢, j) denote the covariance matrix associated to this impulse response
which can be constructed by choosing the appropriate rows and columns of the matrix €2,
as I will show below.

~

The Wald statistic of the null hypothesis Hy : ¢;; = 0 can be easily constructed as

fegm) i PN =1 (7 d
VVij = (¢z] - O) Q¢ (@a]) <¢z] - 0) - X12L1+1
Since the covariance matrix SA)¢ (1,7) is positive-definite and symmetric, it admits a unique

Cholesky decomposition such that

~

Qy (i,§) = A(i, ))D(i. ) A, j)
where A(i,j) is lower triangular with ones in the main diagonal and D (7, j) is a diagonal

~h ~h=1  ~0
matrix with positive entries that represent the variances of ¢;(¢;; ..., ¢;;- The way to see

~h
this is to realize that the matrix A(i,j) projects each impulse response coefficient ¢;; onto

. ~h—=1  ~0
the response coefficients ¢;; ..., &,

h ~h ~h=1  ~0
Define ¢,;; = ¢ij|¢ij ;s @;5» that is, the impulse response of variable i to a shock in j

~

at period h, conditional on the path ¢;; ..., ¢;; then 9;; = A(4, j) ' ¢;; and the covariance
matrix of the vector ’l//;ij is simply D (i,7) . Consequently, a 95% confidence region for these

conditional impulse responses can be easily calculated as



by, + 1.96 x diag <ﬁ(i,j)> 2)
and since D (4,7) is a diagonal matrix, the region just defined covers approximately the same
area as the formal 95% confidence ellipsoid.! Further, notice that the Wald statistic of the

joint null Hy : (751-3- = 0 can be recast as follows

Wy = (@y-0) 0(.0)7" (&, -0) 3)
= ¢,/(A(i,5)D(i, ) A(i,5)) ',
= /DI, )"
H {ZIZ 2 H
where @] is the h'" diagonal element of the matrix D(4, j) and t is the t-ratio of the null

hypothesis Hy : %}fj = ¢Z\$Z_l, - Egj = 0 and t?j 4N (0,1). In other words, the Wald
statistic of the joint null that the coefficients of the response of 7 to a shock in j is equivalent
to the sum of squared t-tests of the null that the A" conditional impulse response coefficient
is zero.

The conditional t-tests and the associated conditional error bands appropriately summa-
rize the uncertainty associated to each impulse response coefficient given its correlation with

coefficients at previous horizons. In fact, the conditional standard errors correctly summa-

~ 2
1 As I will shortly, formally this area is P £ M-;Ilimi[—[+l where x%; 41 (0.95) refers to the value of

the chi-square with H + 1 degrees of freedom at a 95% confidence level and igy; is an H + 1 x 1 vector
of ones. Intuitively, we are interested in ensuring that the event consisting on the union of the individual
conditional events have probabiliity 0.95, not that each of the constituent events have probability 0.95.
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rize the uncertainty of each coefficient conditional on any path followed up to that point,
not just the historical average observed. However, because at each horizon there is uncer-
tainty on the coefficient’s true value, an overall measure on the path’s uncertainty would
be desirable. This is what traditional two standard error bands would provide absent any
correlation between response coefficients.

The top panel of figure 2 displays the impulse response of U.S. unemployment to a shock
in U.S. inflation along with the usual unconditional 95% confidence bands and the conditional
95% confidence bands just discussed. In addition, the bottom of the panel shows the p-value
of the joint significance test to be 0.05, whereas the p-value of the joint cumulative test is
0.048. T will discuss these in more detail shortly. Meanwhile, the main message of figure 2
is to show that, while traditional error bands suggest the response borders significance only
for a few intermediate horizons, the joint tests clearly suggest the response is significantly
different from zero. The conditional error bands support this assessment, suggesting that,
while the response starts out insignificantly for the first three periods after impact, it is
clearly significant thereafter.

Formally, an overall measure of uncertainty requires all the possible paths the impulse
response could follow inside the 95% confidence ellipse (and described by the Wald statistic
in expression (3)) be considered. Clearly, this multi-dimensional object cannot be displayed
in two or even three dimensions. An alternative approach that I propose is to compute

response percentile bounds.



2.2 Response Percentile Bounds

Any vector of values on the conditional a%-confidence boundary can be translated into an
actual response a-percentile bound by translating the boundary values in the conditional
coordinate system @Abij into the original system &5” The orthogonality of the elements of
{Lij means that its joint distribution is simply the product of its marginals so that the +
a-percentile conditional bounds are

2
- X a),

where x%, () is the value of a chi-square with H 41 degrees of freedom at an « probability
level and ig, is an H + 1 x 1 vector of ones.

~

Since gAz’)ij = A\ijq/)ij, then the original response a-percentile bounds are

Thus, for different values of «, one could plot each percentile bound to form a fan chart.
Several remarks deserve comment. First, the response percentile bounds contain many paths
with less than 1 — « probability of being observed (hence the name bounds instead of bands).
That is because there will be paths inside the bounds that do not conform with the pattern
of correlation between impulse response coefficients observed in the data. Second, when the
correlation among the elements of (Aﬁij is zero, then (Eij = 1//;”- and conditional two standard
error bands, traditional two standard error bands and response 95-percentile bounds all

coincide. Third, a-percentile bounds are an answer to a natural “worst-case” scenario type
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of question but specific economic applications may suggest a different choice (obviously, with
a different interpretation). For example, one could imagine a situation where the bound of
interest is related to an event in which the conditional response coefficients all sit on the
positive a-percentile boundary for the first few periods and then on the negative a-percentile
boundary for the remaining periods. This would obviously lead to a different fan chart.

A fan chart based on the response percentile bounds for the impulse response of figure
2 discussed in the previous section, is displayed in the bottom panel of that figure. It is
important to note that the outer bounds fan out more widely than even the unconditional
95% confidence bands. This seemingly peculiar result is easily explained: unconditional 95%
confidence bands contain many response paths with less than 5% chance of being observed
while at the same time excluding many response paths with more than a 5% chance of
occurring. This disparity is caused by the correlation between coefficients, which is ignored
in the unconditional confidence bands. Therefore, a plot of the fan chart provides a better

sense of the set of admissible paths.

2.3 Joint Hypothesis Tests

Conditional confidence bands and response percentile bounds are two alternative methods
of assessing an impulse response exercise empirically. Knowledge of the approximate joint
distribution of aT given by expression (1) affords a third natural alternative: tests of joint
hypotheses. Specific applications will generate specific hypotheses, however, at least four
hypotheses are likely to be popular: (1) tests of the null of joint significance; (2) tests

of joint cumulative significance; (3) tests of response equality; and (4) tests of cumulative
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response equality.

To formulate these tests in practice it is convenient to introduce a selector matrix. Let
R; be an r x 1 column vector of zeroes with a one in the 7' entry; similarly, let C; be an
r X 1 column vector of zeroes with a one in the j entry; then define S;; = C; ® (Izr41 ® R;)

so that SijaT = ¢,;; and Sijﬁ(z)S{j = §¢(i,j). Interest is in tests of the generic null

HOZQSQs:(L

where () is a matrix of linear combinations, S is a selector matrix to be defined momentarily,
and q is a J x 1 vector. The Wald statistic for any null that can be crafted in this format is

readily seen to be

W= (@85, —a) (505 (@507 —a) 4 3

In particular, for each of the four hypotheses just considered:

1. Joint Significance Test: choose S = S;;; @ = Iny1; ¢ = Opyixi. This test evaluates
the null that the impulse response path is jointly indistinguishable from a zero path.
The p-values of this test appear at the bottom of both panels of figure 2 and in figures

3 and 4.

2. Joint Cumulative Significance Test: choose S = S;;; () = igq1; ¢ = 0. This test
evaluates the cumulative impact of the impulse response against a zero null and is

reported in figures 2, 3 and 4.
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3. Joint Test of Equality: choose S = (5 Si)'s Q= Iy —1Igi1); ¢ = Ogiixy.
This test compares any two impulse responses in the system and assesses whether they

are equal. An example is given in section 5.

4. Joint Test of Cumulative Equality: choose S = (Si; Sw)'; Q = (g1 —iga);
q = 0. This test compares whether the cumulative impact of any two impulse responses

is the same and an example is given in section 5.
3 Counterfactual Experimentation

The Lucas Critique (Lucas, 1976) warns of the dangers of counterfactual experimentation
with empirical models. In real economies, rational economic agents immediately adapt to
the new environment generated by the counterfactual in ways the empirical models alone
cannot anticipate. In essence, the parameters of the empirical model are not constant to the
counterfactual — they are functions of deep parameters only a behavioral model can uncover.
Hence, predictions based on keeping the parameters constant will be unreliable even though,
mechanically speaking, the construction of the counterfactual poses no technical difficulties.

Hoover and Jorda (2001) and Leeper and Zha (2003) examine the empirical aspects of
the Lucas Critique in the context of Cochrane’s (1998) model. Cochrane (1998) allows for a
mixed composition of adaptive and rational behavior to then argue that small deviations from
the full rational expectations paradigm can generate mostly adaptive responses and hence
approximately correct counterfactuals. Hoover and Jorda (2001) test Cochrane’s (1998)

theoretical results by using breaks in the policy equation of a VAR and the subsequent
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changes in the parametric structure of the data to provide confirmatory evidence in support
of Cochrane’s (1998) propositions.

Leeper and Zha (2003) instead examine the agents’ ability to discern policy interventions
from a statistical point of view by arguing that “modest” policy interventions may not
result in agents revising their behavior. Their approach consists in selecting a sequence of
shocks that can be reasonably expected to be drawn from the distribution of historical fitted
disturbances (the basis of their “modesty” test). Given this sequence, they then generate a
set of forecasts alternative to those generated without the intervention.

The approach that I introduce is to examine instead response paths that are drawn from
the empirical distribution of historical paths. It should be clear that the more uncertain the
data, the more difficult it is to ascertain changes in the economy that would cause agents
to revise their behavioral rules — in the limit, a parameter with an infinite variance would
be essentially unknowable and small variations could hardly be expected to affect optimal
economic behavioral rules. Accordingly, the types of experiments I have in mind consist of
alternative response paths whose “modesty” can be formally judged with a Wald metric by
the distance between the counterfactual and the historical paths in probability units.

Several aspects of this approach make it appealing. First, experimentation is done di-
rectly on to the response paths themselves, which are easier to interpret economically. Sec-
ond, the assumption that gAbT is normally distributed makes construction of the counterfactual
a straightforward application of well known properties of the multivariate normal distrib-

ution. In turn, these properties provide the distribution of the responses conditional on
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the counterfactual so that formal inference of the type introduced in the previous sections,
can be readily applied. Finally, the counterfactual can be constructed to involve alternative
paths for more than one response simultaneously since the Wald principle required to assess
its validity and the conditional formulas are directly based on $T~ Thus, for example, one
could ask how does inflation respond to different shocks in an economy where GDP and

interest rates are simultaneously made less responsive to oil shocks.

3.1 Is the Counterfactual Prudent?

Before I discuss how to conduct the counterfactual, it seems sensible to establish first how
best to evaluate its probity. Accordingly, suppose we want to examine how the systems’
responses change when we consider a counterfactual path for the response of variable k£ to a
shock in variable [ (denoted ¢f,;). I begin by noticing that the probity of this counterfactual,
and hence the inherent likelihood that rational agents would revise their behavior, can be

assessed with the following Wald statistic

Wy = ((/Z;kl - ¢2z)l§¢(k’a n ((/Z)kl - flbiz) = X1
where all the elements of the test can be constructed as described in previous sections. One
minus the p-value of this test can be thought of as the probability that the counterfactual
violates the historical average response path observed in the data. This is a natural metric
that is easy to communicate. A p-value of less than 0.05 (or a probability that the coun-
terfactual violates the data greater than 0.95) is not only problematic from the point of
view of possibly violating the Lucas Critique, but more generally, it would stretch the lim-

15



its of the estimated model: the counterfactual would involve extrapolating the model into
regions where very little or no data has ever been observed to occur. An example of this
test is used in section 5 and displayed in figure 5. In that example, the distance between the

counterfactual and the historical paths is 27% in probability units.

3.2 Estimation and Inference of the Responses to the Counterfac-
tual

The fundamentals required to conduct the counterfactual experiment are based on well
known results for the multivariate normal distribution. Specifically, we know that if y; and

y2 are two random vectors of generic dimensions with joint normal distribution

Y1 fq Y X2
~ N ; (4)

y2 o o1 a2

then the conditional distribution of y; given y, = y$ is

yily2 = y5 ~ N (p1)9; S1p2)

with

Hijg = py + Y1955 (5 — Ha) (5)

Y12 = Y11 — Y12559 Yot

Once we have assessed the probity of the counterfactual with the Wald statistic W,ﬁl, suppose
we are interested in examining the effect of the counterfactual onto the response of variable

16



i to a shock in j, where there are no restrictions on the possible values of 4, j, k, 1 € {1,...,7}.
Using the selector matrix defined in the previous section, we know that SMET = (Aﬁij; SquAbT =

¢, and hence, the covariance matrix for ¢;; and @y, is

) Sijﬁqbsij’ Sij§¢sllcl

S90Sl SuQsSy

~

Qy(7, ) Sij§¢51'cz

~

S5, Qu(k,1)

with the obvious correspondence to expression (4). Therefore, the conditional path of $ij

given ¢, = ¢y, is therefore a direct application of expression (5),

Bisltis = by + 5504 (Ulk D) (S5 B

with conditional variance

(i, 1k, 1) = Dol ) — S8l (Dulk 1)) 0285
Several remarks deserve comment. First, under the assumption of normality, §¢(i, Jlk,1) is
all we need to do hypothesis tests on (Aﬁij|¢zl or any of the derivations described in previous
sections. Second, notice that the second term in the expression of the conditional variance
is a positive definite matrix so that tr(§¢(i,j|k¢,l)) < tr(§¢(i,j)), that is, the variance
conditional on the counterfactual is smaller than the unconditional variance. The reason is

that the unknown path of the estimated response ¢, is being replaced with a fixed value
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given by ¢j,;. Third, the counterfactual is not limited to responses originating from a shock
in the same variable — the conditioning arguments do not impose any restrictions on the
math. It is also straightforward to experiment with counterfactuals involving more than one
response at a time by simply extending the selector matrices appropriately. Fourth, when
the correlation between the counterfactual estimated response, qAbkl, and the response whose
conditional distribution we are interested in computing, &;j, is zero then &;j\qﬁil = al] In
some instances, it may be of interest to test this hypothesis (e.g. is the economy’s response
to an oil shock different when the central bank does not raise interest rates in response to an

oil shock?). Such a hypothesis can be easily tested since under the null §¢(i, jlk, 1) = Q¢(z', J)

and hence

/\z]\kl (¢z]|¢kl > qu(Z J) <$ij|¢il - 3@) 4 X%I+1‘
In section 5, I provide an application of a counterfactual experiment that is displayed in
figure 5. Without laboring the details of how the figure is constructed, the panel displays
the historical and counterfactual paths along with conditional confidence bands constructed

from the historical and counterfactual distributions respectively.

4 The Joint Asymptotic Distribution of Impulse Re-
sponses by Local Projections

The previous sections describe several new methods of inference and counterfactual sim-
ulation that require knowledge of the joint distribution of the system’s vector of impulse
responses, &ET. In this section I provide such a result for structural impulse responses esti-

18



mated by local projections and whose identification has been achieved by either short- or
long-run recursive assumptions. Local projections are a relatively novel method for which
these results have not been previously established. Similar results for VARs can probably
be collated together from different sources and Liitkepohl (2005) and references therein is
probably a good place to start. Hence I will not review these here. Accordingly, consider a

covariance-stationary r x 1 vector of time series y;, whose Wold decomposition is given by

Y=+ Z Bjei; (6)
=0

where for simplicity no deterministic terms beyond the constant term are considered. Further

assume the following.

Assumption 1:
(i) E(e;) =0 and &, are i.i.d.

(ii) E(e)) = Xe

TXT

(iii) >2720 [|Bjll < oo where |B,]1> = tr(B;B;) and By = I,
(iv) det {B(2)} # 0 for [2| <1 where B(z) = >.2 B;#

Then from the Wold decomposition theorem (see e.g. Anderson, 1994) the process in (6)

can also be written as:

y: = m+ Z Ay + & (7)

J=1

such that the following holds.
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Result 1:

(1) 2252 14 < o0
(i) AG) = [ — 2, Ay = B(:)!
(iii) det{A(z)} # 0 for |z| < 1.

In what follows, I take expression (7) as primitive in describing the class of models
whose impulse responses we are interested in characterizing. These assumptions are quite
general and include as a special case invertible vector autoregressive moving average mod-
els (VARMA) and traditional VARs. The assumption that the €; are i.i.d. allows deriva-
tions with traditional central limit theorems and reduces the number of technical conditions
needed. Where appropriate, I discuss the consequences of relaxing this assumption.

Given this set-up, one could consider estimating a truncated VAR and then inverting
its estimates to obtain the impulse responses. This is the more familiar approach and
results on the asymptotic distribution of the marginal distributions of the impulse response
coefficients are available in Hamilton (1994) and Liitkepohl (2005), for example. Instead, I
estimate impulse responses by local projections (Jorda, 2005) for several reasons. First, I am
interested in the joint distribution (rather than the collection of marginals) of the system’s
impulse responses. Estimates from VARs are nonlinear functions of estimated coefficients
that require (not always reliable) delta method approximations and considerably complex
algebraic manipulations. The method of local projections is a direct estimate of the impulse

response coefficients so that familiar least-squares formulas is all that is needed to compute
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the joint asymptotic distribution. Second, Jorda (2005) shows that local projections are
more robust than VARs to certain types of misspecification, including lag length. Third,
unlike VARs, local projections can be easily generalized to nonlinear models so that deriving
asymptotic results is a natural building block for further extensions. Finally, the asymptotic
results presented below are not widely available and hence serve to complement the literature.

Jorda’s (2005) local projection method is based on the expression that results from simple

recursive substitution in the VAR(00) representation of expression (7), specifically

Yi+n = A?Yt + Ag}’t—l + ...+ €n + Biggn1 + ... + By1€i1 (8)

where:
(i) A} =B, forh>1
(ii) A;T‘ = By 1A; + A;:ll where h > 1; A9+1 =0; By=1I;and j > 1.

Now consider truncating the infinite lag expression (8) at lag k

Yi+n = A}fYt + A’zl}’t—l + ...+ AZYt—kH + Vitan 9)
0o h—1
Vit+h = Z Aly, i+ evn+ Z Bietinj-
j=k+1 Jj=1

Momentarily assume that A; = 0 for j > k so that the model is a VAR(k) and the first term
in the expression for vy ¢, vanishes. Hence, consider estimating the system in expression (9)
for h=0,...,H and define y; for j = H, ..., 1, 0, -1, ..., -k as the (T'— k — H) x r matrix of
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stacked observations of the 1 x r vector y;, ;. Additionally, define the (T'—k— H) xr(H +1)
matrix Y = (yo, ...,yg) ; the (T —k— H) X r matrix X = yo; the (T —k—H) xr(k—1)+1
matrix Z = (1(T—k—H)><1,y717 ...,y,kﬂ) and the (T'—k — H) x (T — k — H) matrix M, =
Ir v y—2(2'Z )_1 Z'. Notice that the inclusion of yq in Y is a simplifying notational trick
that has no other effect than to ensure that the first block of coefficients is I,. This will
be convenient when deriving the structural impulse response function in the next section.
Using standard properties of least-squares, impulse responses over h horizons can be jointly

estimated as

Br(0,H) = = [V'M.X] [X'M.X]" (10)

and it is straight-forward to see that by = vec(é\T(O, H)) converges in distribution to
VT (ZT - bo) <4 N(0,05) (11)

where (5 can be estimated with Q B = {[X "M, X ]_1 ® f]v } Although properly speaking the
equations associated with By = I, have zero variance, I find it notationally more compact

and mathematically equivalent to calculate the residual covariance matrix iv as
iv = {I\JB (IHJrl ® ie) {I}/Bv
where U B is
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0, By, By .. I

with, i = Tg;?H; vi= My, — szOB\l. Therefore, 0 B is a simple estimate of the analytic
asymptotic covariance matrix of impulse responses across time and across variables.
Several results deserve comment. First, Jorda and Kozicki (2006) show that least-squares
estimates of expression (8) produce consistent and asymptotically normal estimates of A? =
By, for h > 1 when k — oo as long as, among other technical conditions made explicit in

that paper,

1. k is chosen as a function of the sample size T such that

3
?—>O;T,k—>oo

2. k is chosen as a function of T such that

B2 | Aj = 0 as Tk — oo
j=k+1

and with the same asymptotic distribution just derived. Second, the assumption that
the g, are 7.7.d. could be replaced by the assumption that they are instead a conditionally
heteroskedastic martingale difference sequence of errors. The basic consequence of this al-
ternative assumption would be to replace the estimate of 3. with a heterostedascity-robust
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covariance estimator such as White (1980). The reader is referred to Kuersteiner (2001,

2002) and Gongalves and Kilian (2006) for related applications.

4.1 The Distribution of Structural Impulse Responses

The Wold decomposition for y; in expression (6) does not assume that the residuals €, are
orthogonal to each other and therefore E (g,e,) = ¥, is a symmetric, positive-definite matrix
with possibly non-zero entries in the off-diagonal terms. Let the structural residuals u; be
the rotation of the reduced-form residuals &; given by Pu; = &;, where E (wu}) = I, and
hence 3. = PP’. Notice that the decomposition of 3. is not unique: ¥, contains r(r +1)/2
distinct terms but P contains r? terms and therefore r(r — 1)/2 additional conditions are
required to achieve just-identification of the terms in P. Traditional methods of estimating
P consist in exogenously imposing r(r — 1)/2, ad-hoc, constraints. Two common approaches
are identification via the Cholesky decomposition of Y. (which is equivalent to imposing
r(r — 1)/2 zero restrictions on P); and identification with long-run restrictions that impose
r(r —1)/2 zero restrictions on the long-run matrix of structural responses, ®oo = > o~ ;.
Consequently, given some estimate P the structural impulse responses ®; can be calcu-

lated as follows:

d, I, p
(/I\)l ~ ~ El e B\lﬁ

B (0,h) = — B(0,h) P = P= (13)
ah éh B\hﬁ
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Let ?&T = vec <&> (0, h)) , we want to determine the asymptotic covariance matrix {2, since

it is clear that

VT (&;T - ¢0> - N(07Q¢)-

4.1.1 Short-Run Identification

When identification is achieved by imposing short-run identification assumptions via the

Cholesky decomposition, then

ngQ 9¢ d¢  Ovec(P) O Ovec(P) 0p

o = ab~ P oy i dvec(P) dvech(S.)  dvech(S.) dvec(P)’

(14)

with Qx, = E [vech (3.) vech (2.)'] and E [b, vech(%.)] = 0since E [X'M_v,/ (T — k — h)] 2,
0. Since ®(0, h) = B (0, h) P then it is easy to see that

9¢
b

99
Ovec(P)

(P'® Iny1)

= (I, ®B(0,h))

Liitkepohl (2005), chapter 3 provides the additional results

dvec(P)

avech(zs) L; {Lr (L“Z + Krr) (P ® Ir) L;«}il (15)

VT (vech (§]€> — vech (E€)> <, N (0,95)
Qs = 2D (X.®%.) D}
where L, is the elimination matrix such that for any square r x r, matrix A, vech(A) =

L,vec(A), K,, is the commutation matrix such that vec(A’) = K,vec(A), and D} =
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(D.D,) " D,, where D, is the duplication matrix such that vec(A) = D,vech(A) and hence
Dfvec(A) = vech(A). Notice that D = L, only when A is symmetric, but does not hold
for the more general case in which A is just a square (but not necessarily symmetric) matrix.

Putting together all of these results, we have,

\/T <$T - (bo) i’ N (O, qu)
Qy = (PP ®@Ih1) QU (P® Ihy) +
2(I, ® B(0,h)) CD; (£. ® .) D' C' (I, ® B(0,h))

C = L'{L (I:+K.,)(P®IL)L}"

where in practice, qu can be calculated by plugging the sample estimates B (0,h); QB; ﬁ;

and Y. into the previous expression.

4.1.2 Long-Run Identification

If instead structural identification is based on long-run identification assumptions, the infinite

order process in expression (7) can be rewritten, without loss of generality, as

yi = Z ViAy,—j + 1y, 1 + & (16)

j=1
with ¥; = =377, Ajand I = 3 7°° | A;. Under condition (v), then (1 — I1) " is the reduced-

form, long-run impact matrix. For P the structural rotation matrix such that Pu; = &,

then the structural long-run impact matrix is
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1

b= (P '—P'MI) =(I-1)"'P.

Liitkepohl (2005) then shows that long-run identification assumptions can be easily imposed

by applying the Cholesky decomposition to

S 0 =1 -1 'PPU-T"=I-1)"'S.(I-1I'"" = QQ (17)

and hence P = (I —1I) Q.
An estimate of II can be easily obtained by redefining M, in expression (10) as

—~ ~ o~ ~\ —1 o
7= (Lg—iyxt, AVic1, oy Ayiogpr) With M. = Iy — Z (Z’Z) 7 so that

o~ — — —1
II= (yészq) (yfleyq)
with

VT (7 — 1) 2 (0,Q)

where m = vec (II) and

Qr = <Y—1]\ZY—1) 1 ® e (18)

Y. can then be estimated as X, = 7+ Vi = M.y, — M.y 1L
Given the estimates ﬁ, is, then an estimate of () can be obtained from the Cholesky

decomposition described in expression (17) and the structural impulse responses can be

constructed as
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$(0,h) = B (0,h) (1 - ﬁ) 9) (19)

where the asymptotic normality of each element ensures that

\/T <$T - ¢0> i’ N (O-Q¢)

but where now

001, 20r | O0rq 00 (20)
dby b, ony 07y

8$T 9qr QO 9qr %r Oy Oqr aaT

ogr | omr " o7y Ovech (§35> Ovech <§35) 0y

with ¢r = vech <@T> ; Qs is the covariance matrix of vech (i;) and we make use of the
fact that gr and vech (§]€> are uncorrelated since F [yL 1MZV1 /(T — k:)} 0.

The appendix explains how the following results are derived:

(@ [0 5 {09000

o Gt = {L](1-T) e (1-0)] e+ K) (1) L’}_l
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and L, is the elimination matrix introduced in expression (15); {25 is given by expression
(11); Qg is given by expression (15); and €, is given by expression (18).

When condition (v) is violated, it is instructive to rewrite expression (16) as

Ay =Y WAy, ;+ Ty +e&

J=1

where I' = — (I —II) . Violation of condition (v) occurs when rank (I') < r, in which case
I has a non-standard asymptotic distribution and I' is superconsistent, i.e., convergence in
distribution occurs at rate T instead of the conventional rate v/T'. Such rank conditions can
be tested with a Johansen cointegration test (see Hamilton, 1994, chapters 19 and 20). If
rank (I') = 0, then the system has exactly r unit roots and clearly the long-run impact
matrix is simply /. The superconsistency of I' simplifies the derivation of (20): since r
(and hence ﬁ) converges at rate T, then the distribution of &BT is dominated by the terms

converging at rate v/T and hence expression (20) simplifies, considerably, to

8$T 8@ (ﬁT 9qr Oar 0$T
Obr O OGr | guech (2) dvech (2) Ir

Q= (21)

where the formulas for each of the terms in the previous expression are the same as those
already derived above. Expression (21) is therefore parallel to expression (14) and serves
to highlight that any identification scheme based on constraints that do not depend on
parameter estimates (irrespective of whether these are zero coefficient restrictions or some
other form of linear restriction) will generate a structural covariance matrix that can be

calculated on the basis of expression (14). Even when the restrictions imposed depend on
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coefficient estimates (such as long-run identification restrictions but not limited to these),
expression (14) is still valid as long as these coefficients are superconsistent and have no

effect on the distribution of terms converging at rate /7.
5 Policy Trade-offs in the U.S. and in the U.K.

This section examines the economies and policy choices of the U.S. and the U.K. with a
global system of seven variables divided into two sub-systems of three variables each (which
can be thought of a small scale version of a New-Keynesian model, see Walsh, 2003) and an
equation for the bilateral exchange rate between the two countries. There are several reasons
why I choose this application. Having the subsystems of two similarly developed economies
with comparable economic institutions naturally elicits joint tests based on comparing the
responses of both economies to similar stimuli. The relative size of the U.S. and the U.K.
economies in turn provide a natural relative ordering of the two sub-systems that I exploit for
structural identification (see Keating, 1996, on block-recursive identification assumptions).
Within blocks, I follow the standard practice of recursively ordering economic activity, prices
and then interest rates (e.g. see Christiano, Eichenbaum and Evans, 1999, and references
therein). The system’s relative high dimensionality also serves to showcase the robustness
of the methods introduced above.

The data includes the unemployment rate (in percent), consumer price inflation (in per-
cent) and the federal funds rate (in percent) for the U.S.; the unemployment rate (in percent),

retail price inflation (in percent), and the Bank of England’s lending rate (in percent) for
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the U.K.; and the U.S. Dollar/British Pound exchange rate (in logs). The data is available
monthly, beginning January 1971 and ending December 2005.

This system results in 49 impulse responses that I estimate jointly by local projections
with equation (10) over a horizon of twelve periods (one year). The lag length for the
projections is selected automatically by AIC.? to be four. Figures 3 and 4 display these 49
impulse response functions. In figure 3, each panel displays the following information: (1)
conditional 95% confidence bands; (2) unconditional 95% confidence bands; (3) the p-value
of the joint significance test of the responses labeled “Joint” and; (4) the p-value of the
cumulative joint significance test labeled “Cum.” The narrower bands always correspond
to the conditional confidence bands. Figure 4 displays fan charts based on the response
percentile bounds instead.

A number of questions of economic interest arise from this system, for example: (1) what
is the sensitivity of the policy interest rate to shocks in the unemployment, inflation, and
exchange rates; (2) what is the response of unemployment, inflation and exchange rates to
monetary shocks; (3) what is the sensitivity of domestic policy rates to shocks in the foreign
policy rate; (4) what is the response of exchange rates to shocks in inflation; and (5) what
is the response of the unemployment rate when the central bank responds more aggressively
to inflation shocks, to list a few.

Answers to question (1) can be used to compare the relative emphasis that each central

2 AIC, refers to the correction to AIC introduced in Hurvich and Tsai (1989), which is specifically
designed for autoregressive models. There were no significant differences when using SIC or the traditional
AIC.
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bank places on growth and price stabilization. Question (2) establishes the effectiveness
of monetary policy; question (3) determines whether policy changes in one central bank
influence policy changes in the other; question (4) speaks loosely about the relative merits
of the purchasing power parity condition; and question (5) measures how different is the
response of the unemployment rate when the central bank’s response to shocks in inflation
is more aggressive. Each of these five questions requires different types of inference based
on joint hypothesis tests and counterfactual simulations of the type introduced in previous

sections.

5.1 Results

The response of the U.S. unemployment rate to a shock in U.S. inflation and displayed
in the first row, second column of the panel of impulse response functions in figures 3
and 4, showcases the importance of joint inference over unconditional statements based on
individual coefficients. Traditional 95% confidence bands suggest this response is essentially
zero except perhaps between four to seven months after impact. Meanwhile, the much
narrower conditional 95% confidence bands suggest the response is clearly positive three
months after impact and thereafter, a conclusion that is well supported by the p-values of
the joint significance and the joint cumulative tests with values 0.05 and 0.048 respectively.

A different illustration is provided by the response of the U.S. Dollar/British Pound
exchange rate to a shock in U.S. inflation and displayed in row seven, column two of figures
3 and 4. This is an example of a response where the joint significance test has a p-value

of 0.344 but the joint cumulative test has a p-value of 0.055, a result that confirms the
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pattern displayed by the conditional bands, which suggest that the U.S. Dollar significantly
depreciates between the third and the eleventh/twelfth month after impact.

Returning now to the questions posed in the previous subsection, recall that in question
(1) we are trying to assess the relative sensitivity of the central bank to shocks in unem-
ployment, inflation and exchange rates. This information is summarized in columns one,
two and seven of figures 3 and 4, row three for the U.S. and row six for the U.K. In both
countries, interest rates drop significantly by about 50 basis points in response to a shock in
the unemployment rate, with both significance tests and profile bands indicating a statisti-
cally significant response (the p-values are essentially zero). However, tests of the joint and
cumulative equality of the responses between the two countries are rejected pretty decisively
(with p-values of 0.000 and 0.000 respectively). Perhaps this last result is not surprising:
the U.S. drops interest rates more quickly and keeps them low for a longer period than
the U.K. does. In contrast, both countries do not appear to respond to a shock in inflation:
both significance tests have p-values well above the normative 0.05 value and the conditional
bands are generally not significant at any horizon. Finally, while joint significant tests do
not indicate that interest rates respond to fluctuations in exchange rates, the U.S. displays a
significant cumulative effect of interest rates (p-value = 0.015) in response to a depreciation
of the U.S. Dollar, a result that is corroborated by the conditional bands.

Question (2) examines the relative effectiveness of monetary policy. The relevant panels
are rows one, two and seven of column three for the U.S. and rows four, five and seven

in column six for the U.K. The response of unemployment to a shock in interest rates is
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very similar in both countries although only the joint significance test for the U.K. has
a p-value bordering on significance at 0.075. Unemployment remains essentially flat six to
seven months after impact and then steadily climbs (in both countries, the conditional bands
suggest this climb is significant). More formally, joint and cumulative equality tests have
p-values of 0.52 and 0.83 which confirm both countries respond in a similar way.

Inflation in both countries tends to climb in response to an interest rate shock but only
significantly in the U.K. (the joint cumulative test has a p-value of 0.004). The joint equality
test cannot reject the null, attaining a p-value of 0.43 although the joint cumulative equality
test does, with a p-value of 0.055. Both results seem at odds with what economic theory
would predict although this price puzzle has been detected many times before in the U.S.
(see e.g. Sims, 1992).

Before discounting these results, it is important to examine the response of the exchange
rate. The U.S. Dollar tends to appreciate somewhat throughout the year after impact when
interest rates increase (the joint cumulative test has a p-value of 0.090 and the conditional
bands border on the zero line). The British pound significantly depreciates on impact but
then appreciates for the remainder of the year, although not in a statistically significant
way. Hence, although the initial responses of the exchange rate are consistent, the uncovered
interest rate parity condition seems to hold only somewhat for the U.K.

In terms of the effect that each central bank has on the other (row three, column six
for the U.S. and row six, column three for the U.K.), neither country exhibits a significant

response although these tend to remain on the positive side, suggesting that both countries
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tend to move interest rates in the same direction.

The final question has to do with the response of the exchange rate to a shock in inflation
and is displayed by the panels in row seven, column two for the U.S. and column five for
the U.K. The U.S. Dollar tends to depreciate in response to a positive shock in inflation,
as purchasing power parity would predict: the joint cumulative test has a p-value of 0.055
and the conditional bands are significant for about ten out of the twelve months displayed.
In contrast, the British Pound does not display any appreciable response at any horizon, an
observation confirmed by the joint significance and cumulative tests with p-values of 0.78
and 0.64 respectively.

Finally, consider a counterfactual simulation that investigates the effects of a more ag-
gressive response of monetary policy to inflation shocks in the U.S. The panel in the third
row, second column of figures 3 and 4 displays the response of the U.S. federal funds rate
to a shock in the U.S. inflation rate. This response is not statistically significant: the joint
significance and cumulative tests have p-values of 0.950 and 0.546 respectively. Hence, 1
choose a counterfactual experiment that constrains the response of the fed funds rate to
an inflation shock to be that corresponding to the upper, unconditional two standard-error
band. Before reporting on the counterfactual itself, notice that the response of the U.S.
unemployment rate to a positive inflation shock results in a statistically significant response
of unemployment as evinced in row one, column 2 of figure 5 by the conditional confidence
bands and joint and cumulative tests, with p-values 0.050 and 0.048 respectively. A test for

the probity of this counterfactual has a p-value of 0.73 (that is, one cannot reject the coun-
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terfactual is statistically equal to the historical path) or said differently, the counterfactual
is 27% away from the historical path in probability units, which is on the conservative side.

The counterfactual experiment itself is displayed in figure 5 and shows that a more
aggressive response of the central bank to an inflation shock surprisingly causes the unem-
ployment rate to be lower than it would otherwise be. Figure 5 displays the original and the
counterfactual responses along with the appropriate conditional bands under the counterfac-
tual described in section 3. The cumulative increase of the unemployment rate in response
to a 0.30% increase in inflation is 0.46% historically but only 0.12% in the counterfactual.
The conditional error bands show some overlap early on but suggest that the historical and
counterfactual responses are quite different six months after impact and beyond. These re-
sults are surprising considering that an increase in the federal funds rate generates higher

unemployment according to the panel in row one, column three of figures 3 and 4.

6 Conclusion

If impulse response coefficients were drawn from independent distributions, we would expect
their plots to look rather noisy, much like the plot of the error series from a regression. Seldom
is this the case: impulse response paths are rather smooth, a manifestation of the high degree
of correlation among the coefficients of the response. High colinearity makes individual
estimates of these coefficients imprecise even when collectively, there is little ambiguity about
the overall path. Understanding and communicating the sources of uncertainty associated

to such objects requires statistics based on their joint distribution.
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The major contribution of this paper is to alert the profession of this seemingly self-
evident observation and to provide a collection of easily understandable statistical tools
with which to determine what is learnt from an empirical impulse response exercise. These
tools are independent of the method used to estimate the impulse responses in the sense
that the formulas rely on the availability of the joint distribution, not how this distribution
is arrived at.

While I leave to the reader to decide how best to arrive at this point (and I expect others
will experiment with the bootstrap, Bayesian MCMC and other simulation techniques), I
provide the necessary results for impulse responses estimated by local projections. I do
this for several reasons having to do with the approximation properties of local projections
over traditional VARs (see Jordd, 2005); because it is considerably simpler to derive the
results with this estimator; and because these results have not been collected elsewhere in
the literature. Further, insofar as local projections can be easily extended for nonlinearities,
it is useful to provide results that can serve as a building block for further research.

Impulse responses are well-defined and rather accurately estimable summary statistics of
the data, much like the sample mean or a sample correlation. The tools provided in this paper
will look familiar even to readers with only informal knowledge of time series techniques.
In my view, this transparency is a major asset in improving the wide applicability and

communication of experiments among researchers.
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7 Appendix

I provide here the detailed derivations required to derive the covariance of the structural
impulse responses derived by imposing long-run identification assumptions. First notice that

there are three different ways of expressing the vec version of expression (19), specifically
( (1-T)@1)br
¢r = vec (‘I) (0, h)) ( § ) vec <[ — ﬁ)
( B (I — ﬁ)) vec (@)

from where we obtain gf;, ZL’ and aL by realizing that dvec <I H) = —dvec (ﬁ) and

since @ is lower triangular, vec (Q) = L'vech(Q).

. . % Ba\T . .
Next, I derive the expressions for i and Buech(5-) by first noticing that

(I-I)7's (1 -1)" =

so that

dI-T)7'S (I - '+ (T -1 "' Sd (I -T1) " + (22)

(I -1 de. (I -1 = dQQ + QdQ’

Begin by setting d (I —II)”' = 0 then

(I -1 de. (I -1 = dQQ + QdQ’
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Taking the vec operator on both sides of this expression

(1 - ) ' — H)fl} dvec (X)) = (Q®1I)dvec(Q)+ (I ® Q) K,rdvec(Q)
dvec(3.) = [I-1)@ I -1)] (L2 + K.) (Q®I)dvec(Q)
using the same rule for the right hand side as in the derivation of the short-run identification

case. Finally, using the elimination matrix L, introduced in expression (15) and noticing

that since @ is lower triangular then L' vech (Q) = vec(Q), we arrive at the desired result

dq

Dvech (50 (LT~ @I 1) (L2 + K,,) (Q@I) L'}

To derive %, return to expression (22) and instead set d%. = 0 so that

dI - 'S (I-) "'+ —I) "' Sed (I - 1) " = dQQ + QdQ'

Taking the vec operator on both sides of the expression and using similar manipulations as

in the previous derivation, it is easy to see that we arrive at

(I -T) 'S @] dvec{(I -T)"'} =(Q & I) dvec(Q)

where the term (1,2 + K,,.) cancels on both sides of the previous expression. It is straight

forward to see then that

dvec {(I —T1)"'} = [(1 1) '@ (1 - 1) dvee (11)

39



and since Llvech (Q) = vec(Q), then we arrive at the desired result,

g_i —{(QeDLy (I -I)"'S.el) {(I—H’)‘1® (I—H)*l}
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Figure 1 — Correlation Among Impulse Response Coefficients
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Notes: First panel displays impulse response and traditional two standard-error bands.
Correlation matrix displays correlations among all the elements of the impulse response
displayed.
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Figure 2 — 95% Conditional Confidence Bands versus 95 % Unconditional
Confidence Bands and Response Percentile Bounds
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Notes: Top panel: The solid line indicates the estimates impulse response. The narrow
bands with circles indicate the 95% conditional confidence bands. The dashed bands
indicate the usual 95% unconditional confidence bands. “Joint” refers to the p-value of
the null that all the coefficients of the impulse response are zero. “Cum” refers to the p-
value of the test that the cumulative effect is jointly zero. Bottom panel: fan chart with
the response 95", 50", and 1*" percentile bounds.
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Figure 3 — Impulse Responses and 95% Conditional and Unconditional Confidence Bands
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Figure 4 — Impulse Response Fan Charts: Response 95", 50™, and 1°
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Figure 5 — Counterfactual Experiment: Response of U.S. Unemployment to a U.S.
Inflation Shock when the Response of the Federal Funds Rate to an Inflation Shock
is made more aggressive
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Notes: Solid line with circles is the original impulse response. Solid line with squares is
the counterfactual response. The bands around the responses correspond to 95%
conditional confidence bands. Note that the counterfactual bands are calculated with the
counterfactual covariance matrix, not the original covariance matrix. In probability
metric, the counterfactual response of the U.S. federal funds rate to a shock in U.S.
inflation is only 27% away (in probability units) from the historical path.
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