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1 Introduction

Estimation uncertainty on impulse responses is almost always reported by displaying two

standard-error bands based on the marginal distribution of each individual coefficient (a

notable exception being Sims and Zha, 1999). One can think of this visual device as the

equivalent to graphically displaying the sequence of associated t-statistics. However, the co-

efficients of the impulse response are usually very highly correlated over time. In a traditional

linear regression context, we tend to favor testing the joint significance of highly colinear

regressors rather than relying on individual t-tests — individual coefficients are poorly identi-

fied and hence estimated imprecisely. Similarly, I will show that impulse response coefficients

are often imprecisely estimated but that the impulse response path is not.

A natural consequence of this discussion is the desire to display impulse response uncer-

tainty with the joint distribution rather than with the individual marginals so as to account

for possible correlation. Ideally, one would display the 95% confidence, multi-dimensional

ellipse associated with all the coefficients of the impulse response: this is clearly impossible

in two-dimensional (and even three-dimensional) space.

However, the coefficients of an impulse response have a natural and unique temporal

ordering. It turns out that the Cholesky decomposition of the covariance matrix of the

impulse path translates the original responses into an orthogonal system of uncorrelated

variates. This decomposition has several virtues. Uncertainty on the orthogonal system can

be displayed with two standard error bands since, by construction, its joint distribution is

the product of its marginals. Moreover, the sum of the sequence of these conditional t-tests
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squared is the Wald statistic of the null hypothesis that the coefficients of the response path

are jointly zero. Thus, these conditional t-tests not only identify which of the individual

coefficients is more or less likely to be zero statistically, they represent the uncertainty

associated to each coefficient conditional on the response so far experienced. I will call the

graphical display of the sequence of these conditional t-tests conditional confidence bands.

In addition to each individual coefficient’s conditional uncertainty, we are also interested

in an overall measure of uncertainty for the response’s path that summarizes all the individual

possibilities at each horizon. For a given probability level α, there are obviously infinite

possible paths so it seems sensible to focus on those that are most extreme to provide a sense

about the boundaries of what we can reasonably expect to observe. For any probability level

α, these can be easily constructed with the orthogonalized variates and then translated back

to the original coordinate system. I will call these response percentile bounds.

Knowledge of the joint distribution allows one to construct joint tests of significance based

on the Wald principle. In addition to these, I will discuss how to conveniently formulate

tests on the null that the cumulative effect of the response is zero; tests that two responses

can be considered equal from a statistical point of view; and tests that the cumulative effect

of two responses is equal.

Leeper and Zha (2003) discuss a method of counterfactual simulation based on feeding

alternative sequences of errors into an estimated VAR and then construct a statistic that

allows one to examine whether the counterfactual is “modest” (that is, unlikely to violate

the Lucas critique; Lucas, 1976). Instead, I propose a method of experimentation in which a
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counterfactual path replaces the historical path and where the “modesty” of the counterfac-

tual is measured by whether or not the counterfactual path would be rejected by the Wald

statistic of the joint hypothesis measuring the distance between the counterfactual and the

historical paths. This approach has two obvious virtues. First, it allows for counterfactuals

based on simultaneously experimenting with more than one alternative path. Second, the

method allows one to calculate the distribution of the system of impulse responses condi-

tional on the counterfactual so that one can formally evaluate the effects of the experiment

statistically.

All of these statistics require knowledge of the joint distribution of the impulse responses.

This paper derives the asymptotic distribution of structural impulse responses identified

either with short-run (e.g. Cholesky) or long-run (e.g. Blanchard and Quah, 1989) recur-

sive identification restrictions and estimated semiparametrically by local projections (Jordà,

2005). Local projections have several advantages over impulse responses derived from vec-

tor autoregressions (VARs). Among others, they are more robust to lag length and other

forms of misspecification discussed in Jordà (2005). Also, they are a natural building block

from which to estimate impulse responses with more flexible, possibly nonlinear models.

Consequently, deriving convergence results to a multivariate Gaussian distribution with an-

alytic formulas for the covariance matrix that are closed form and analytically tractable is

not only important to construct many statistics of interest discussed below, but also as a

starting point for further generalizations of the method. Since these results are not directly

available elsewhere, this becomes another contribution of the paper.
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The paper proposes a statistical protocol to analyze vector time series with impulse

responses and of necessity contains a number of econometric derivations, many of which

result from familiar statistical principles. I view this simplicity as an advantage rather than

a detraction for the methods presented here — basic least squares results, while seemingly

unsophisticated, tend to be very robust. The goal of the paper is not to muddle the presenta-

tion with excessive econometric wizardry but rather to provide empirical practitioners with

a set of clear, robust and easily implementable tools of analysis. For this reason, the paper

contains a detailed empirical application of a two-country basic macroeconomic system in-

volving U.S. and U.K. data illustrating all of these techniques. For clarity, the assumptions

required to derive the main results are kept as simple as possible. Where appropriate, I

discuss without proof the practical implications of relaxing some of these assumptions.

2 Joint Inference for Impulse Responses

Suppose we are investigating the system of impulse responses of a vector times series yt of

dimension r × 1 over h = 0, 1, ...,H horizons so that

Φ (0,H) =

⎡⎢⎢⎢⎢⎢⎢⎣
Φ0

...

ΦH

⎤⎥⎥⎥⎥⎥⎥⎦
is an r (H + 1) × r matrix that collects the structural impulse response coefficients for the

system. Neither the method of structural identification, nor the method by which these
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coefficients are estimated is relevant here. All that is needed now is an available result

such that, if bφT = vec³bΦ (0,H)´ (that is, the vectorized estimates of the impulse response
coefficients from a sample of size T ), then at least asymptotically

√
T
³bφT − φ0

´
d→ N (0,Ωφ) . (1)

As an example, below I provide such a result for impulse responses estimated by local

projections under either short-run or long-run recursive identification assumptions.

Error bands for impulse responses are often used as visual cues about the uncertainty of

the possible time profiles that the impulse responses can follow. Traditionally, these bands

have been constructed with the standard errors of each individual response coefficient, that

is, for 95% confidence bands

bφT ± 1.96× diag(bΩφ)
1/2,

were diag
³bΩφ

´
is the r2 (H + 1)× 1 vector that contains the diagonal elements of bΩφ.

One interpretation of these bands is as the graphical equivalent to displaying the sequence

of individual t-tests associated to each impulse response coefficient. These are, strictly

speaking, correct and valid statistics on the unconditional uncertainty of each individual

coefficient under general assumptions but they ignore two elementary observations. The

first observation is that impulse response coefficients are highly colinear. To illustrate this

point, figure 1 displays the response of U.S. unemployment to a shock in the U.S. federal

funds rate from the empirical application in section 5. The correlation between the response
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coefficient and those for periods 2-12 is displayed in the top right panel of figure 1 and ranges

from 0.7 between periods 1 and 2 to 0.2 between periods 1 and 12. The bottom panel of

figure 1 displays the entire correlation matrix where many entries have values above 0.5.

Even for an impulse response that would traditionally be considered as essentially zero on

the basis of the 95% unconditional confidence bands, the impulse response coefficients are

very highly correlated indeed.

In the context of traditional linear regression, we favor tests of joint significance of highly

colinear regressors rather than relying on individual t-tests — individual coefficients are poorly

identified and hence estimated with wide standard errors. Similarly, the uncertainty asso-

ciated to the impulse response path is summarized by its joint distribution and at a 95%

confidence level, it results in a multi-dimensional ellipsoid. Unfortunately, such an ellipsoid

cannot be displayed in two- or even three-dimensional space, although clearly, one could

construct a Wald statistic for the null hypothesis of joint significance. I will return to the

issue of testing joint hypothesis momentarily.

2.1 Conditional Confidence Bands

The second observation is that impulse response coefficients have a natural temporal or-

dering: the value of the impulse response today determines the possible trajectories of the

response in future periods but future periods cannot affect the current path of the response.

Therefore, it is natural to translate the original response into a system of orthogonal variates

that preserves this temporal ordering while simplifying the task of constructing error bands.
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Specifically, suppose we are interested in the response of variable i to a shock in variable

j and associated with the coefficients bφ0ij, bφ1ij, ..., bφHij , which can be collected compactly into
the vector bφij. Let Ωφ (i, j) denote the covariance matrix associated to this impulse response

which can be constructed by choosing the appropriate rows and columns of the matrix Ωφ,

as I will show below.

The Wald statistic of the null hypothesis H0 : bφij = 0 can be easily constructed as
cWij =

³bφij − 0´0 bΩφ (i, j)
−1
³bφij − 0´ d→ χ2H+1

Since the covariance matrix bΩφ (i, j) is positive-definite and symmetric, it admits a unique

Cholesky decomposition such that

bΩφ (i, j) = bA(i, j) bD(i, j) bA(i, j)0
where A(i, j) is lower triangular with ones in the main diagonal and D (i, j) is a diagonal

matrix with positive entries that represent the variances of bφhij|bφh−1ij , ..., bφ0ij. The way to see
this is to realize that the matrix A(i, j) projects each impulse response coefficient bφhij onto
the response coefficients bφh−1ij , ..., bφ0ij.
Define bψhij ≡ bφhij|bφh−1ij , ..., bφ0ij, that is, the impulse response of variable i to a shock in j

at period h, conditional on the path bφh−1ij , ..., bφ0ij; then bψij = bA(i, j)−1bφij and the covariance
matrix of the vector bψij is simply bD (i, j) . Consequently, a 95% confidence region for these

conditional impulse responses can be easily calculated as
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bψij ± 1.96× diag
³ bD(i, j)´ (2)

and since bD (i, j) is a diagonal matrix, the region just defined covers approximately the same
area as the formal 95% confidence ellipsoid.1 Further, notice that the Wald statistic of the

joint null H0 : bφij = 0 can be recast as follows

cWij =
³bφij − 0´0 bΩφ (i, j)

−1
³bφij − 0´ (3)

= bφij 0( bA(i, j) bD(i, j) bA(i, j)0)−1bφij
= bψij

0 bD(i, j)−1bψij =

=
HX
h=0

⎛⎝ bψh

ijbdhij
⎞⎠2

=
HX
h=0

¡
thij
¢2

where bdhij is the hth diagonal element of the matrix bD(i, j) and thij is the t-ratio of the null
hypothesis H0 : ψhij = φhij|bφh−1ij , ..., bφ0ij = 0 and thij

d→ N (0, 1) . In other words, the Wald

statistic of the joint null that the coefficients of the response of i to a shock in j is equivalent

to the sum of squared t-tests of the null that the hth conditional impulse response coefficient

is zero.

The conditional t-tests and the associated conditional error bands appropriately summa-

rize the uncertainty associated to each impulse response coefficient given its correlation with

coefficients at previous horizons. In fact, the conditional standard errors correctly summa-

1 As I will shortly, formally this area is bψij ±qχ2H+1(0.95)

H+1 iH+1 where χ2H+1 (0.95) refers to the value of
the chi-square with H + 1 degrees of freedom at a 95% confidence level and iH+1 is an H + 1 × 1 vector
of ones. Intuitively, we are interested in ensuring that the event consisting on the union of the individual
conditional events have probabiliity 0.95, not that each of the constituent events have probability 0.95.
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rize the uncertainty of each coefficient conditional on any path followed up to that point,

not just the historical average observed. However, because at each horizon there is uncer-

tainty on the coefficient’s true value, an overall measure on the path’s uncertainty would

be desirable. This is what traditional two standard error bands would provide absent any

correlation between response coefficients.

The top panel of figure 2 displays the impulse response of U.S. unemployment to a shock

in U.S. inflation along with the usual unconditional 95% confidence bands and the conditional

95% confidence bands just discussed. In addition, the bottom of the panel shows the p-value

of the joint significance test to be 0.05, whereas the p-value of the joint cumulative test is

0.048. I will discuss these in more detail shortly. Meanwhile, the main message of figure 2

is to show that, while traditional error bands suggest the response borders significance only

for a few intermediate horizons, the joint tests clearly suggest the response is significantly

different from zero. The conditional error bands support this assessment, suggesting that,

while the response starts out insignificantly for the first three periods after impact, it is

clearly significant thereafter.

Formally, an overall measure of uncertainty requires all the possible paths the impulse

response could follow inside the 95% confidence ellipse (and described by the Wald statistic

in expression (3)) be considered. Clearly, this multi-dimensional object cannot be displayed

in two or even three dimensions. An alternative approach that I propose is to compute

response percentile bounds.
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2.2 Response Percentile Bounds

Any vector of values on the conditional α%-confidence boundary can be translated into an

actual response α-percentile bound by translating the boundary values in the conditional

coordinate system bψij into the original system bφij. The orthogonality of the elements of
bψij means that its joint distribution is simply the product of its marginals so that the ±

α-percentile conditional bounds are

bψij ±
s

χ2H+1(α)

H + 1
iH+1

where χ2H+1(α) is the value of a chi-square with H+1 degrees of freedom at an α probability

level and iH+1 is an H + 1× 1 vector of ones.

Since bφij = bAij bψij, then the original response α-percentile bounds are

bφij ±Aij
s

χ2H+1(α)

H + 1
iH+1

Thus, for different values of α, one could plot each percentile bound to form a fan chart.

Several remarks deserve comment. First, the response percentile bounds contain many paths

with less than 1−α probability of being observed (hence the name bounds instead of bands).

That is because there will be paths inside the bounds that do not conform with the pattern

of correlation between impulse response coefficients observed in the data. Second, when the

correlation among the elements of bφij is zero, then bφij = bψij and conditional two standard

error bands, traditional two standard error bands and response 95th-percentile bounds all

coincide. Third, α-percentile bounds are an answer to a natural “worst-case” scenario type
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of question but specific economic applications may suggest a different choice (obviously, with

a different interpretation). For example, one could imagine a situation where the bound of

interest is related to an event in which the conditional response coefficients all sit on the

positive α-percentile boundary for the first few periods and then on the negative α-percentile

boundary for the remaining periods. This would obviously lead to a different fan chart.

A fan chart based on the response percentile bounds for the impulse response of figure

2 discussed in the previous section, is displayed in the bottom panel of that figure. It is

important to note that the outer bounds fan out more widely than even the unconditional

95% confidence bands. This seemingly peculiar result is easily explained: unconditional 95%

confidence bands contain many response paths with less than 5% chance of being observed

while at the same time excluding many response paths with more than a 5% chance of

occurring. This disparity is caused by the correlation between coefficients, which is ignored

in the unconditional confidence bands. Therefore, a plot of the fan chart provides a better

sense of the set of admissible paths.

2.3 Joint Hypothesis Tests

Conditional confidence bands and response percentile bounds are two alternative methods

of assessing an impulse response exercise empirically. Knowledge of the approximate joint

distribution of bφT given by expression (1) affords a third natural alternative: tests of joint
hypotheses. Specific applications will generate specific hypotheses, however, at least four

hypotheses are likely to be popular: (1) tests of the null of joint significance; (2) tests

of joint cumulative significance; (3) tests of response equality; and (4) tests of cumulative
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response equality.

To formulate these tests in practice it is convenient to introduce a selector matrix. Let

Ri be an r × 1 column vector of zeroes with a one in the ith entry; similarly, let Cj be an

r× 1 column vector of zeroes with a one in the jth entry; then define Sij = Cj⊗ (IH+1 ⊗Ri)

so that SijbφT = φij and SijbΩφS
0
ij = bΩφ(i, j). Interest is in tests of the generic null

H0 : QSφ = q,

where Q is a matrix of linear combinations, S is a selector matrix to be defined momentarily,

and q is a J × 1 vector. The Wald statistic for any null that can be crafted in this format is

readily seen to be

cW =
³
QSbφT − q´0 ³SbΩφS

0
´−1 ³

QSbφT − q´ d→ χ2J

In particular, for each of the four hypotheses just considered:

1. Joint Significance Test: choose S = Sij; Q = IH+1; q = 0H+1×1. This test evaluates

the null that the impulse response path is jointly indistinguishable from a zero path.

The p-values of this test appear at the bottom of both panels of figure 2 and in figures

3 and 4.

2. Joint Cumulative Significance Test: choose S = Sij; Q = iH+1; q = 0. This test

evaluates the cumulative impact of the impulse response against a zero null and is

reported in figures 2, 3 and 4.
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3. Joint Test of Equality: choose S = (Sij Slk)
0 ; Q = (IH+1 − IH+1) ; q = 0H+1×1.

This test compares any two impulse responses in the system and assesses whether they

are equal. An example is given in section 5.

4. Joint Test of Cumulative Equality: choose S = (Sij Slk)
0 ; Q = (iH+1 − iH+1) ;

q = 0. This test compares whether the cumulative impact of any two impulse responses

is the same and an example is given in section 5.

3 Counterfactual Experimentation

The Lucas Critique (Lucas, 1976) warns of the dangers of counterfactual experimentation

with empirical models. In real economies, rational economic agents immediately adapt to

the new environment generated by the counterfactual in ways the empirical models alone

cannot anticipate. In essence, the parameters of the empirical model are not constant to the

counterfactual — they are functions of deep parameters only a behavioral model can uncover.

Hence, predictions based on keeping the parameters constant will be unreliable even though,

mechanically speaking, the construction of the counterfactual poses no technical difficulties.

Hoover and Jordà (2001) and Leeper and Zha (2003) examine the empirical aspects of

the Lucas Critique in the context of Cochrane’s (1998) model. Cochrane (1998) allows for a

mixed composition of adaptive and rational behavior to then argue that small deviations from

the full rational expectations paradigm can generate mostly adaptive responses and hence

approximately correct counterfactuals. Hoover and Jordà (2001) test Cochrane’s (1998)

theoretical results by using breaks in the policy equation of a VAR and the subsequent
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changes in the parametric structure of the data to provide confirmatory evidence in support

of Cochrane’s (1998) propositions.

Leeper and Zha (2003) instead examine the agents’ ability to discern policy interventions

from a statistical point of view by arguing that “modest” policy interventions may not

result in agents revising their behavior. Their approach consists in selecting a sequence of

shocks that can be reasonably expected to be drawn from the distribution of historical fitted

disturbances (the basis of their “modesty” test). Given this sequence, they then generate a

set of forecasts alternative to those generated without the intervention.

The approach that I introduce is to examine instead response paths that are drawn from

the empirical distribution of historical paths. It should be clear that the more uncertain the

data, the more difficult it is to ascertain changes in the economy that would cause agents

to revise their behavioral rules — in the limit, a parameter with an infinite variance would

be essentially unknowable and small variations could hardly be expected to affect optimal

economic behavioral rules. Accordingly, the types of experiments I have in mind consist of

alternative response paths whose “modesty” can be formally judged with a Wald metric by

the distance between the counterfactual and the historical paths in probability units.

Several aspects of this approach make it appealing. First, experimentation is done di-

rectly on to the response paths themselves, which are easier to interpret economically. Sec-

ond, the assumption that bφT is normally distributed makes construction of the counterfactual
a straightforward application of well known properties of the multivariate normal distrib-

ution. In turn, these properties provide the distribution of the responses conditional on
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the counterfactual so that formal inference of the type introduced in the previous sections,

can be readily applied. Finally, the counterfactual can be constructed to involve alternative

paths for more than one response simultaneously since the Wald principle required to assess

its validity and the conditional formulas are directly based on bφT . Thus, for example, one
could ask how does inflation respond to different shocks in an economy where GDP and

interest rates are simultaneously made less responsive to oil shocks.

3.1 Is the Counterfactual Prudent?

Before I discuss how to conduct the counterfactual, it seems sensible to establish first how

best to evaluate its probity. Accordingly, suppose we want to examine how the systems’

responses change when we consider a counterfactual path for the response of variable k to a

shock in variable l (denoted φckl). I begin by noticing that the probity of this counterfactual,

and hence the inherent likelihood that rational agents would revise their behavior, can be

assessed with the following Wald statistic

cW c
kl =

³bφkl −φckl´0 bΩφ(k, l)
−1
³bφkl −φckl´ d→ χ2H+1

where all the elements of the test can be constructed as described in previous sections. One

minus the p-value of this test can be thought of as the probability that the counterfactual

violates the historical average response path observed in the data. This is a natural metric

that is easy to communicate. A p-value of less than 0.05 (or a probability that the coun-

terfactual violates the data greater than 0.95) is not only problematic from the point of

view of possibly violating the Lucas Critique, but more generally, it would stretch the lim-
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its of the estimated model: the counterfactual would involve extrapolating the model into

regions where very little or no data has ever been observed to occur. An example of this

test is used in section 5 and displayed in figure 5. In that example, the distance between the

counterfactual and the historical paths is 27% in probability units.

3.2 Estimation and Inference of the Responses to the Counterfac-
tual

The fundamentals required to conduct the counterfactual experiment are based on well

known results for the multivariate normal distribution. Specifically, we know that if y1 and

y2 are two random vectors of generic dimensions with joint normal distribution

⎡⎢⎢⎣ y1
y2

⎤⎥⎥⎦ ∼ N
⎛⎜⎜⎝
⎡⎢⎢⎣ µ1
µ2

⎤⎥⎥⎦ ;
⎡⎢⎢⎣ Σ11 Σ12

Σ21 Σ22

⎤⎥⎥⎦
⎞⎟⎟⎠ (4)

then the conditional distribution of y1 given y2 = yc2 is

y1|y2 = yc2 ∼ N
¡
µ1|2;Σ11|2

¢
with

µ1|2 = µ1 + Σ12Σ
−1
22 (y

c
2 − µ2) (5)

Σ11|2 = Σ11 − Σ12Σ
−1
22 Σ21

Once we have assessed the probity of the counterfactual with the Wald statisticcW c
kl, suppose

we are interested in examining the effect of the counterfactual onto the response of variable
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i to a shock in j, where there are no restrictions on the possible values of i, j, k, l ∈ {1, ..., r}.

Using the selector matrix defined in the previous section, we know that SijbφT = bφij; SklbφT =
bφkl and hence, the covariance matrix for bφij and bφkl is

⎛⎜⎜⎝ Sij

Skl

⎞⎟⎟⎠ bΩφ

µ
S0ij S0kl

¶
=

⎡⎢⎢⎣ SijbΩφSij0 SijbΩφS
0
kl

SklbΩφS
0
ij SklbΩφS

0
kl

⎤⎥⎥⎦

=

⎡⎢⎢⎣ bΩφ(i, j) SijbΩφS
0
kl

SklbΩφS
0
ij

bΩφ(k, l)

⎤⎥⎥⎦
with the obvious correspondence to expression (4). Therefore, the conditional path of bφij
given φkl = φckl is therefore a direct application of expression (5),

bφij|φckl = bφij + SijbΩφS
0
kl

³bΩφ(k, l)
´−1 ³

φckl − bφkl´
with conditional variance

bΩφ(i, j|k, l) = bΩφ(i, j)− SijbΩφS
0
kl

³bΩφ(k, l)
´−1

SklbΩφS
0
ij.

Several remarks deserve comment. First, under the assumption of normality, bΩφ(i, j|k, l) is

all we need to do hypothesis tests on bφij|φckl or any of the derivations described in previous
sections. Second, notice that the second term in the expression of the conditional variance

is a positive definite matrix so that tr(bΩφ(i, j|k, l)) ≤ tr(bΩφ(i, j)), that is, the variance

conditional on the counterfactual is smaller than the unconditional variance. The reason is

that the unknown path of the estimated response φkl is being replaced with a fixed value
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given by φckl. Third, the counterfactual is not limited to responses originating from a shock

in the same variable — the conditioning arguments do not impose any restrictions on the

math. It is also straightforward to experiment with counterfactuals involving more than one

response at a time by simply extending the selector matrices appropriately. Fourth, when

the correlation between the counterfactual estimated response, bφkl, and the response whose
conditional distribution we are interested in computing, bφij, is zero then bφij|φckl = bφij. In
some instances, it may be of interest to test this hypothesis (e.g. is the economy’s response

to an oil shock different when the central bank does not raise interest rates in response to an

oil shock?). Such a hypothesis can be easily tested since under the null bΩφ(i, j|k, l) = bΩφ(i, j)

and hence

cW 0
ij|kl =

³bφij|φckl − bφij´0 bΩφ(i, j)
−1
³bφij|φckl − bφij´ d→ χ2H+1.

In section 5, I provide an application of a counterfactual experiment that is displayed in

figure 5. Without laboring the details of how the figure is constructed, the panel displays

the historical and counterfactual paths along with conditional confidence bands constructed

from the historical and counterfactual distributions respectively.

4 The Joint Asymptotic Distribution of Impulse Re-
sponses by Local Projections

The previous sections describe several new methods of inference and counterfactual sim-

ulation that require knowledge of the joint distribution of the system’s vector of impulse

responses, bφT . In this section I provide such a result for structural impulse responses esti-
18



mated by local projections and whose identification has been achieved by either short- or

long-run recursive assumptions. Local projections are a relatively novel method for which

these results have not been previously established. Similar results for VARs can probably

be collated together from different sources and Lütkepohl (2005) and references therein is

probably a good place to start. Hence I will not review these here. Accordingly, consider a

covariance-stationary r × 1 vector of time series yt, whose Wold decomposition is given by

yt = µ+
∞X
j=0

Bjεt−j (6)

where for simplicity no deterministic terms beyond the constant term are considered. Further

assume the following.

Assumption 1:

(i) E(εt) = 0 and εt are i.i.d.

(ii) E(εtε0t) = Σε
r×r

(iii)
P∞

j=0 kBjk <∞ where kBjk2 = tr(B0jBj) and B0 = Ir

(iv) det {B(z)} 6= 0 for |z| ≤ 1 where B(z) =P∞
j=0Bjz

j

Then from the Wold decomposition theorem (see e.g. Anderson, 1994) the process in (6)

can also be written as:

yt =m+
∞X
j=1

Ajyt−j + εt (7)

such that the following holds.
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Result 1:

(i)
P∞

j=1 kAjk <∞

(ii) A(z) = Ir −
P∞

j=1Ajz
j = B(z)−1

(iii) det{A(z)} 6= 0 for |z| ≤ 1.

In what follows, I take expression (7) as primitive in describing the class of models

whose impulse responses we are interested in characterizing. These assumptions are quite

general and include as a special case invertible vector autoregressive moving average mod-

els (VARMA) and traditional VARs. The assumption that the εt are i.i.d. allows deriva-

tions with traditional central limit theorems and reduces the number of technical conditions

needed. Where appropriate, I discuss the consequences of relaxing this assumption.

Given this set-up, one could consider estimating a truncated VAR and then inverting

its estimates to obtain the impulse responses. This is the more familiar approach and

results on the asymptotic distribution of the marginal distributions of the impulse response

coefficients are available in Hamilton (1994) and Lütkepohl (2005), for example. Instead, I

estimate impulse responses by local projections (Jordà, 2005) for several reasons. First, I am

interested in the joint distribution (rather than the collection of marginals) of the system’s

impulse responses. Estimates from VARs are nonlinear functions of estimated coefficients

that require (not always reliable) delta method approximations and considerably complex

algebraic manipulations. The method of local projections is a direct estimate of the impulse

response coefficients so that familiar least-squares formulas is all that is needed to compute

20



the joint asymptotic distribution. Second, Jordà (2005) shows that local projections are

more robust than VARs to certain types of misspecification, including lag length. Third,

unlike VARs, local projections can be easily generalized to nonlinear models so that deriving

asymptotic results is a natural building block for further extensions. Finally, the asymptotic

results presented below are not widely available and hence serve to complement the literature.

Jordà’s (2005) local projection method is based on the expression that results from simple

recursive substitution in the V AR(∞) representation of expression (7), specifically

yt+h = A
h
1yt +A

h
2yt−1 + ...+ εt+h +B1εt+h−1 + ...+Bh−1εt+1 (8)

where:

(i) Ah1 = Bh for h ≥ 1

(ii) Ahj = Bh−1Aj +A
h−1
j+1 where h ≥ 1; A0j+1 = 0; B0 = Ir; and j ≥ 1.

Now consider truncating the infinite lag expression (8) at lag k

yt+h = A
h
1yt +A

h
2yt−1 + ...+A

h
kyt−k+1 + vk,t+h (9)

vk,t+h =
∞X

j=k+1

Ahjyt−j + εt+h +
h−1X
j=1

Bjεt+h−j.

Momentarily assume that Aj = 0 for j > k so that the model is a VAR(k) and the first term

in the expression for vk,t+h vanishes. Hence, consider estimating the system in expression (9)

for h = 0, ..., H and define yj for j = H, ..., 1, 0, —1, ..., —k as the (T − k−H)× r matrix of
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stacked observations of the 1×r vector y0t+j. Additionally, define the (T −k−H)×r(H+1)

matrix Y ≡ (y0, ...,yH) ; the (T −k−H)× r matrix X ≡ y0; the (T −k−H)× r(k− 1)+1

matrix Z ≡ ¡1(T−k−H)×1,y−1, ...,y−k+1¢ and the (T − k −H)× (T − k −H) matrix Mz =

IT−k−H −Z (Z 0Z)−1 Z 0. Notice that the inclusion of y0 in Y is a simplifying notational trick

that has no other effect than to ensure that the first block of coefficients is Ir. This will

be convenient when deriving the structural impulse response function in the next section.

Using standard properties of least-squares, impulse responses over h horizons can be jointly

estimated as

cBT (0,H) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Y 0MzX] [X

0MzX]
−1 (10)

and it is straight-forward to see that bbT = vec(cBT (0,H)) converges in distribution to
√
T
³bbT − b0´ d→ N (0,ΩB) (11)

where ΩB can be estimated with bΩB = n[X 0MzX]
−1 ⊗ bΣvo. Although properly speaking the

equations associated with B0 = Ir have zero variance, I find it notationally more compact

and mathematically equivalent to calculate the residual covariance matrix bΣv as
bΣv = bΨB ³IH+1 ⊗ bΣ²´ bΨ0B,

where bΨB is
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bΨB
r(H+1)×r(H+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r bB1 Ir ... 0r

...
...

... ...
...

0r bBH−1 bBH−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

with, bΣ² = cv10cv1
T−k−H ; bv1 =Mzy1−Mzy0 bB1. Therefore, bΩB is a simple estimate of the analytic

asymptotic covariance matrix of impulse responses across time and across variables.

Several results deserve comment. First, Jordà and Kozicki (2006) show that least-squares

estimates of expression (8) produce consistent and asymptotically normal estimates of Ah1 =

Bh for h ≥ 1 when k → ∞ as long as, among other technical conditions made explicit in

that paper,

1. k is chosen as a function of the sample size T such that

k3

T
→ 0;T, k →∞

2. k is chosen as a function of T such that

k1/2
∞X

j=k+1

kAjk→ 0 as T, k →∞

and with the same asymptotic distribution just derived. Second, the assumption that

the εt are i.i.d. could be replaced by the assumption that they are instead a conditionally

heteroskedastic martingale difference sequence of errors. The basic consequence of this al-

ternative assumption would be to replace the estimate of Σε with a heterostedascity-robust
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covariance estimator such as White (1980). The reader is referred to Kuersteiner (2001,

2002) and Gonçalves and Kilian (2006) for related applications.

4.1 The Distribution of Structural Impulse Responses

The Wold decomposition for yt in expression (6) does not assume that the residuals εt are

orthogonal to each other and therefore E (εtε0t) = Σε is a symmetric, positive-definite matrix

with possibly non-zero entries in the off-diagonal terms. Let the structural residuals ut be

the rotation of the reduced-form residuals εt given by Put = εt, where E (utu0t) = Ir and

hence Σε = PP
0. Notice that the decomposition of Σε is not unique: Σε contains r(r+ 1)/2

distinct terms but P contains r2 terms and therefore r(r − 1)/2 additional conditions are

required to achieve just-identification of the terms in P. Traditional methods of estimating

P consist in exogenously imposing r(r−1)/2, ad-hoc, constraints. Two common approaches

are identification via the Cholesky decomposition of Σε (which is equivalent to imposing

r(r − 1)/2 zero restrictions on P ); and identification with long-run restrictions that impose

r(r − 1)/2 zero restrictions on the long-run matrix of structural responses, Φ∞ =
P∞

0 Φj.

Consequently, given some estimate bP the structural impulse responses Φi can be calcu-
lated as follows:

bΦ (0, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bΦ0
bΦ1
...

bΦh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= bB (0, h) bP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
bP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bP
bB1 bP
...

bBh bP

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)
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Let bφT = vec³bΦ (0, h)´ , we want to determine the asymptotic covariance matrix Ωφ since

it is clear that

√
T
³bφT − φ0

´
d→ N (0,Ωφ) .

4.1.1 Short-Run Identification

When identification is achieved by imposing short-run identification assumptions via the

Cholesky decomposition, then

Ωφ =
∂φ

∂b
ΩB

∂φ

∂b0
+

∂φ

∂vec(P )

∂vec(P )

∂vech(Σε)
ΩΣ

∂vec(P )

∂vech(Σε)0
∂φ

∂vec(P )0
(14)

withΩΣ ≡ E
£
vech (Σε) vech (Σε)

0¤ andE [b, vech(Σε)] = 0 sinceE [X 0Mzv1/ (T − k − h)] p→

0. Since Φ(0, h) = B (0, h)P then it is easy to see that

∂φ

∂b
= (P 0 ⊗ Ih+1)

∂φ

∂vec(P )
= (Ir ⊗B (0, h))

Lütkepohl (2005), chapter 3 provides the additional results

∂vec(P )

∂vech(Σε)
= L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1 (15)

√
T
³
vech

³bΣε

´
− vech (Σε)

´
d→ N (0,ΩΣ)

ΩΣ = 2D+
r (Σε ⊗ Σε)D

+0
r

where Lr is the elimination matrix such that for any square r × r, matrix A, vech(A) =

Lrvec(A), Krr is the commutation matrix such that vec(A0) = Krrvec(A), and D+
r =
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(D0
rDr)

−1Dr, where Dr is the duplication matrix such that vec(A) = Drvech(A) and hence

D+
r vec(A) = vech(A). Notice that D

+
r = Lr only when A is symmetric, but does not hold

for the more general case in which A is just a square (but not necessarily symmetric) matrix.

Putting together all of these results, we have,

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ = (P 0 ⊗ Ih+1)ΩB (P ⊗ Ih+1) +

2 (Ir ⊗B (0, h))CD+
r (Σε ⊗ Σε)D

+0
r C

0 ¡Ir ⊗B (0, h)0¢
C = L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1

where in practice, bΩφ can be calculated by plugging the sample estimates bB (0, h) ; bΩB; bP ;
and bΣε into the previous expression.

4.1.2 Long-Run Identification

If instead structural identification is based on long-run identification assumptions, the infinite

order process in expression (7) can be rewritten, without loss of generality, as

yt =
∞X
j=1

Ψj∆yt−j +Πyt−1 + εt (16)

with Ψi = −
P∞

j=iAj and Π =
P∞

j=1Aj. Under condition (v), then (I −Π)−1 is the reduced-

form, long-run impact matrix. For P the structural rotation matrix such that Put = εt,

then the structural long-run impact matrix is
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Φ∞ =
¡
P−1 − P−1Π¢−1 = (I −Π)−1 P.

Lütkepohl (2005) then shows that long-run identification assumptions can be easily imposed

by applying the Cholesky decomposition to

Φ∞Φ0∞ = (I −Π)−1 PP 0 (I −Π0)−1 = (I −Π)−1Σε (I −Π0)−1 = QQ0 (17)

and hence P = (I −Π)Q.

An estimate of Π can be easily obtained by redefining Mz in expression (10) as

eZ ≡ ¡1(T−k)×1, ∆yt−1, ..., ∆yt−k+1¢ with fMz = IT−k − eZ ³eZ 0 eZ´−1 eZ so that
bΠ = ³y00fMzy−1

´³
y−1fMzy−1

´−1
with

√
T (bπ − π0)

d→ (0,Ωπ)

where π = vec (Π) and

Ωπ =
³
y−1fMzy−1

´−1
⊗ Σε (18)

Σε can then be estimated as bΣε =
ev1ev01
T−k ; ev1 = fMzy0 − fMzy−1bΠ.

Given the estimates bΠ, bΣε, then an estimate of Q can be obtained from the Cholesky

decomposition described in expression (17) and the structural impulse responses can be

constructed as
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bΦ (0, h) = bB (0, h)³I − bΠ´ bQ (19)

where the asymptotic normality of each element ensures that

√
T
³bφT − φ0

´
d→ N (0.Ωφ)

but where now

Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bπT Ωπ
∂bφT
∂bπ0T + (20)

∂bφT
∂bqT

⎡⎢⎣ ∂bqT
∂bπT Ωπ

∂bqT
∂bπ0T + ∂bqT

∂vech
³bΣε

´ΩΣ
∂bqT

∂vech
³bΣε

´0
⎤⎥⎦ ∂bφT

∂bq0T
with bqT = vech

³ bQT´ ; ΩΣ is the covariance matrix of vech
³bΣε

´
and we make use of the

fact that bqT and vech³bΣε

´
are uncorrelated since E

h
y0−1fMzev1/ (T − k)i p→ 0.

The appendix explains how the following results are derived:

• ∂bφT
∂bbT = bQ0 ³I − bΠ0´⊗ I

• ∂bφT
∂bπT = −

³ bQ⊗ bB (0, h)´
• ∂bφT

∂bqT = I ⊗ bB (0, h)³I − bΠ´L0
• ∂bqT

∂bπT =
n³ bQ⊗ I´L0ro−1½³I − bΠ´−1 bΣε ⊗ I

¾½³
I − bΠ0´−1 ⊗ ³I − bΠ´−1¾

• ∂bqT
∂vech(bΣε)

=
n
L
h³
I − bΠ´⊗ ³I − bΠ´i (Ir2 +Krr)

³ bQ⊗ I´L0o−1
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and Lr is the elimination matrix introduced in expression (15); ΩB is given by expression

(11); ΩΣ is given by expression (15); and Ωπ is given by expression (18).

When condition (v) is violated, it is instructive to rewrite expression (16) as

∆yt =
∞X
j=1

Ψj∆yt−j + Γyt−1 + εt

where Γ = − (I −Π) . Violation of condition (v) occurs when rank (Γ) < r, in which case

Γ has a non-standard asymptotic distribution and Γ is superconsistent, i.e., convergence in

distribution occurs at rate T instead of the conventional rate
√
T . Such rank conditions can

be tested with a Johansen cointegration test (see Hamilton, 1994, chapters 19 and 20). If

rank (Γ) = 0, then the system has exactly r unit roots and clearly the long-run impact

matrix is simply I. The superconsistency of Γ simplifies the derivation of (20): since bΓ
(and hence bΠ) converges at rate T, then the distribution of bφT is dominated by the terms
converging at rate

√
T and hence expression (20) simplifies, considerably, to

Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bqT
⎡⎢⎣ ∂bqT
∂vech

³bΣε

´ΩΣ
∂bqT

∂vech
³bΣε

´0
⎤⎥⎦ ∂bφT

∂bq0T (21)

where the formulas for each of the terms in the previous expression are the same as those

already derived above. Expression (21) is therefore parallel to expression (14) and serves

to highlight that any identification scheme based on constraints that do not depend on

parameter estimates (irrespective of whether these are zero coefficient restrictions or some

other form of linear restriction) will generate a structural covariance matrix that can be

calculated on the basis of expression (14). Even when the restrictions imposed depend on
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coefficient estimates (such as long-run identification restrictions but not limited to these),

expression (14) is still valid as long as these coefficients are superconsistent and have no

effect on the distribution of terms converging at rate
√
T .

5 Policy Trade-offs in the U.S. and in the U.K.

This section examines the economies and policy choices of the U.S. and the U.K. with a

global system of seven variables divided into two sub-systems of three variables each (which

can be thought of a small scale version of a New-Keynesian model, see Walsh, 2003) and an

equation for the bilateral exchange rate between the two countries. There are several reasons

why I choose this application. Having the subsystems of two similarly developed economies

with comparable economic institutions naturally elicits joint tests based on comparing the

responses of both economies to similar stimuli. The relative size of the U.S. and the U.K.

economies in turn provide a natural relative ordering of the two sub-systems that I exploit for

structural identification (see Keating, 1996, on block-recursive identification assumptions).

Within blocks, I follow the standard practice of recursively ordering economic activity, prices

and then interest rates (e.g. see Christiano, Eichenbaum and Evans, 1999, and references

therein). The system’s relative high dimensionality also serves to showcase the robustness

of the methods introduced above.

The data includes the unemployment rate (in percent), consumer price inflation (in per-

cent) and the federal funds rate (in percent) for the U.S.; the unemployment rate (in percent),

retail price inflation (in percent), and the Bank of England’s lending rate (in percent) for
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the U.K.; and the U.S. Dollar/British Pound exchange rate (in logs). The data is available

monthly, beginning January 1971 and ending December 2005.

This system results in 49 impulse responses that I estimate jointly by local projections

with equation (10) over a horizon of twelve periods (one year). The lag length for the

projections is selected automatically by AICc2 to be four. Figures 3 and 4 display these 49

impulse response functions. In figure 3, each panel displays the following information: (1)

conditional 95% confidence bands; (2) unconditional 95% confidence bands; (3) the p-value

of the joint significance test of the responses labeled “Joint” and; (4) the p-value of the

cumulative joint significance test labeled “Cum.” The narrower bands always correspond

to the conditional confidence bands. Figure 4 displays fan charts based on the response

percentile bounds instead.

A number of questions of economic interest arise from this system, for example: (1) what

is the sensitivity of the policy interest rate to shocks in the unemployment, inflation, and

exchange rates; (2) what is the response of unemployment, inflation and exchange rates to

monetary shocks; (3) what is the sensitivity of domestic policy rates to shocks in the foreign

policy rate; (4) what is the response of exchange rates to shocks in inflation; and (5) what

is the response of the unemployment rate when the central bank responds more aggressively

to inflation shocks, to list a few.

Answers to question (1) can be used to compare the relative emphasis that each central

2 AICc refers to the correction to AIC introduced in Hurvich and Tsai (1989), which is specifically
designed for autoregressive models. There were no significant differences when using SIC or the traditional
AIC.
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bank places on growth and price stabilization. Question (2) establishes the effectiveness

of monetary policy; question (3) determines whether policy changes in one central bank

influence policy changes in the other; question (4) speaks loosely about the relative merits

of the purchasing power parity condition; and question (5) measures how different is the

response of the unemployment rate when the central bank’s response to shocks in inflation

is more aggressive. Each of these five questions requires different types of inference based

on joint hypothesis tests and counterfactual simulations of the type introduced in previous

sections.

5.1 Results

The response of the U.S. unemployment rate to a shock in U.S. inflation and displayed

in the first row, second column of the panel of impulse response functions in figures 3

and 4, showcases the importance of joint inference over unconditional statements based on

individual coefficients. Traditional 95% confidence bands suggest this response is essentially

zero except perhaps between four to seven months after impact. Meanwhile, the much

narrower conditional 95% confidence bands suggest the response is clearly positive three

months after impact and thereafter, a conclusion that is well supported by the p-values of

the joint significance and the joint cumulative tests with values 0.05 and 0.048 respectively.

A different illustration is provided by the response of the U.S. Dollar/British Pound

exchange rate to a shock in U.S. inflation and displayed in row seven, column two of figures

3 and 4. This is an example of a response where the joint significance test has a p-value

of 0.344 but the joint cumulative test has a p-value of 0.055, a result that confirms the
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pattern displayed by the conditional bands, which suggest that the U.S. Dollar significantly

depreciates between the third and the eleventh/twelfth month after impact.

Returning now to the questions posed in the previous subsection, recall that in question

(1) we are trying to assess the relative sensitivity of the central bank to shocks in unem-

ployment, inflation and exchange rates. This information is summarized in columns one,

two and seven of figures 3 and 4, row three for the U.S. and row six for the U.K. In both

countries, interest rates drop significantly by about 50 basis points in response to a shock in

the unemployment rate, with both significance tests and profile bands indicating a statisti-

cally significant response (the p-values are essentially zero). However, tests of the joint and

cumulative equality of the responses between the two countries are rejected pretty decisively

(with p-values of 0.000 and 0.000 respectively). Perhaps this last result is not surprising:

the U.S. drops interest rates more quickly and keeps them low for a longer period than

the U.K. does. In contrast, both countries do not appear to respond to a shock in inflation:

both significance tests have p-values well above the normative 0.05 value and the conditional

bands are generally not significant at any horizon. Finally, while joint significant tests do

not indicate that interest rates respond to fluctuations in exchange rates, the U.S. displays a

significant cumulative effect of interest rates (p-value = 0.015) in response to a depreciation

of the U.S. Dollar, a result that is corroborated by the conditional bands.

Question (2) examines the relative effectiveness of monetary policy. The relevant panels

are rows one, two and seven of column three for the U.S. and rows four, five and seven

in column six for the U.K. The response of unemployment to a shock in interest rates is
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very similar in both countries although only the joint significance test for the U.K. has

a p-value bordering on significance at 0.075. Unemployment remains essentially flat six to

seven months after impact and then steadily climbs (in both countries, the conditional bands

suggest this climb is significant). More formally, joint and cumulative equality tests have

p-values of 0.52 and 0.83 which confirm both countries respond in a similar way.

Inflation in both countries tends to climb in response to an interest rate shock but only

significantly in the U.K. (the joint cumulative test has a p-value of 0.004). The joint equality

test cannot reject the null, attaining a p-value of 0.43 although the joint cumulative equality

test does, with a p-value of 0.055. Both results seem at odds with what economic theory

would predict although this price puzzle has been detected many times before in the U.S.

(see e.g. Sims, 1992).

Before discounting these results, it is important to examine the response of the exchange

rate. The U.S. Dollar tends to appreciate somewhat throughout the year after impact when

interest rates increase (the joint cumulative test has a p-value of 0.090 and the conditional

bands border on the zero line). The British pound significantly depreciates on impact but

then appreciates for the remainder of the year, although not in a statistically significant

way. Hence, although the initial responses of the exchange rate are consistent, the uncovered

interest rate parity condition seems to hold only somewhat for the U.K.

In terms of the effect that each central bank has on the other (row three, column six

for the U.S. and row six, column three for the U.K.), neither country exhibits a significant

response although these tend to remain on the positive side, suggesting that both countries
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tend to move interest rates in the same direction.

The final question has to do with the response of the exchange rate to a shock in inflation

and is displayed by the panels in row seven, column two for the U.S. and column five for

the U.K. The U.S. Dollar tends to depreciate in response to a positive shock in inflation,

as purchasing power parity would predict: the joint cumulative test has a p-value of 0.055

and the conditional bands are significant for about ten out of the twelve months displayed.

In contrast, the British Pound does not display any appreciable response at any horizon, an

observation confirmed by the joint significance and cumulative tests with p-values of 0.78

and 0.64 respectively.

Finally, consider a counterfactual simulation that investigates the effects of a more ag-

gressive response of monetary policy to inflation shocks in the U.S. The panel in the third

row, second column of figures 3 and 4 displays the response of the U.S. federal funds rate

to a shock in the U.S. inflation rate. This response is not statistically significant: the joint

significance and cumulative tests have p-values of 0.950 and 0.546 respectively. Hence, I

choose a counterfactual experiment that constrains the response of the fed funds rate to

an inflation shock to be that corresponding to the upper, unconditional two standard-error

band. Before reporting on the counterfactual itself, notice that the response of the U.S.

unemployment rate to a positive inflation shock results in a statistically significant response

of unemployment as evinced in row one, column 2 of figure 5 by the conditional confidence

bands and joint and cumulative tests, with p-values 0.050 and 0.048 respectively. A test for

the probity of this counterfactual has a p-value of 0.73 (that is, one cannot reject the coun-

35



terfactual is statistically equal to the historical path) or said differently, the counterfactual

is 27% away from the historical path in probability units, which is on the conservative side.

The counterfactual experiment itself is displayed in figure 5 and shows that a more

aggressive response of the central bank to an inflation shock surprisingly causes the unem-

ployment rate to be lower than it would otherwise be. Figure 5 displays the original and the

counterfactual responses along with the appropriate conditional bands under the counterfac-

tual described in section 3. The cumulative increase of the unemployment rate in response

to a 0.30% increase in inflation is 0.46% historically but only 0.12% in the counterfactual.

The conditional error bands show some overlap early on but suggest that the historical and

counterfactual responses are quite different six months after impact and beyond. These re-

sults are surprising considering that an increase in the federal funds rate generates higher

unemployment according to the panel in row one, column three of figures 3 and 4.

6 Conclusion

If impulse response coefficients were drawn from independent distributions, we would expect

their plots to look rather noisy, much like the plot of the error series from a regression. Seldom

is this the case: impulse response paths are rather smooth, a manifestation of the high degree

of correlation among the coefficients of the response. High colinearity makes individual

estimates of these coefficients imprecise even when collectively, there is little ambiguity about

the overall path. Understanding and communicating the sources of uncertainty associated

to such objects requires statistics based on their joint distribution.
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The major contribution of this paper is to alert the profession of this seemingly self-

evident observation and to provide a collection of easily understandable statistical tools

with which to determine what is learnt from an empirical impulse response exercise. These

tools are independent of the method used to estimate the impulse responses in the sense

that the formulas rely on the availability of the joint distribution, not how this distribution

is arrived at.

While I leave to the reader to decide how best to arrive at this point (and I expect others

will experiment with the bootstrap, Bayesian MCMC and other simulation techniques), I

provide the necessary results for impulse responses estimated by local projections. I do

this for several reasons having to do with the approximation properties of local projections

over traditional VARs (see Jordá, 2005); because it is considerably simpler to derive the

results with this estimator; and because these results have not been collected elsewhere in

the literature. Further, insofar as local projections can be easily extended for nonlinearities,

it is useful to provide results that can serve as a building block for further research.

Impulse responses are well-defined and rather accurately estimable summary statistics of

the data, much like the sample mean or a sample correlation. The tools provided in this paper

will look familiar even to readers with only informal knowledge of time series techniques.

In my view, this transparency is a major asset in improving the wide applicability and

communication of experiments among researchers.
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7 Appendix

I provide here the detailed derivations required to derive the covariance of the structural

impulse responses derived by imposing long-run identification assumptions. First notice that

there are three different ways of expressing the vec version of expression (19), specifically

bφT = vec³bΦ (0, h)´ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

³ bQ0 ³I − bΠ´⊗ I´bbT³ bQ⊗ bB (0, h)´ vec³I − bΠ´³
I ⊗ bB (0, h)³I − bΠ´´ vec³ bQ´

from where we obtain ∂bφT
∂bπT , ∂bφT

∂bπT , and ∂bφT
∂bqT by realizing that dvec

³
I − bΠ´ = −dvec³bΠ´ and

since Q is lower triangular, vec (Q) = L0vech(Q).

Next, I derive the expressions for ∂bqT
∂bπT and ∂bqT

∂vech(bΣε)
by first noticing that

(I −Π)−1Σε (I −Π0)−1 = QQ0

so that

d (I −Π)−1Σε (I −Π0)−1 + (I −Π)−1Σεd (I −Π0)−1+ (22)

(I −Π)−1 dΣε (I −Π0)−1 = dQQ+QdQ0

Begin by setting d (I −Π)−1 = 0 then

(I −Π)−1 dΣε (I −Π0)−1 = dQQ+QdQ0
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Taking the vec operator on both sides of this expression

£
(I −Π)−1 ⊗ (I −Π)−1

¤
dvec (Σε) = (Q⊗ I) dvec (Q) + (I ⊗Q)Krrdvec(Q)

dvec (Σε) = [(I −Π)⊗ (I −Π)] (Ir2 +Krr) (Q⊗ I) dvec (Q)

using the same rule for the right hand side as in the derivation of the short-run identification

case. Finally, using the elimination matrix Lr introduced in expression (15) and noticing

that since Q is lower triangular then L0rvech (Q) = vec (Q) , we arrive at the desired result

∂q

∂vech (Σε)
= {L [(I −Π)⊗ (I −Π)] (Ir2 +Krr) (Q⊗ I)L0}−1

To derive ∂bqT
∂bπT , return to expression (22) and instead set dΣε = 0 so that

d (I −Π)−1Σε (I −Π0)−1 + (I −Π)−1Σεd (I −Π0)−1 = dQQ+QdQ0

Taking the vec operator on both sides of the expression and using similar manipulations as

in the previous derivation, it is easy to see that we arrive at

£
(I −Π)−1Σε ⊗ I

¤
dvec

©
(I −Π)−1

ª
= (Q⊗ I) dvec(Q)

where the term (Ir2 +Krr) cancels on both sides of the previous expression. It is straight

forward to see then that

dvec
©
(I −Π)−1

ª
=
h
(I −Π)−1 ⊗ (I −Π0)−1

i
dvec (Π)
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and since L0rvech (Q) = vec (Q) , then we arrive at the desired result,

∂q

∂π
= {(Q⊗ I)L0r}−1

©
(I −Π)−1Σε ⊗ I

ªn
(I −Π0)−1 ⊗ (I −Π)−1

o
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Figure 1 – Correlation Among Impulse Response Coefficients 
 

 
 
 
Correlation Matrix of Impulse Response Coefficients 
 

 

 
Notes: First panel displays impulse response and traditional two standard-error bands. 
Correlation matrix displays correlations among all the elements of the impulse response 
displayed. 

 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1 0.0 1.0 0.7 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.3 0.2 0.2 
2 -0.1 0.7 1.0 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 
3 0.0 0.6 0.8 1.0 0.9 0.8 0.8 0.7 0.6 0.6 0.5 0.5 0.4 
4 0.0 0.6 0.7 0.9 1.0 0.9 0.9 0.8 0.8 0.7 0.6 0.6 0.5 
5 0.0 0.5 0.7 0.8 0.9 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 
6 0.0 0.4 0.6 0.8 0.9 0.9 1.0 0.9 0.9 0.9 0.8 0.7 0.7 
7 0.0 0.4 0.6 0.7 0.8 0.9 0.9 1.0 0.9 0.9 0.9 0.8 0.7 
8 0.0 0.4 0.5 0.6 0.8 0.8 0.9 0.9 1.0 1.0 0.9 0.9 0.8 
9 0.0 0.3 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 0.9 0.9 

10 0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 0.9 
11 0.0 0.2 0.4 0.5 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.0 1.0 
12 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 0.9 1.0 1.0 
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Figure 2 – 95% Conditional Confidence Bands versus 95 % Unconditional 
Confidence Bands and Response Percentile Bounds 
 

 

 
 

Notes: Top panel: The solid line indicates the estimates impulse response. The narrow 
bands with circles indicate the 95% conditional confidence bands. The dashed  bands 
indicate the usual 95%  unconditional confidence bands. “Joint” refers to the p-value of 
the null that all the coefficients of the impulse response are zero. “Cum” refers to the p-
value of the test that the cumulative effect is jointly zero. Bottom panel: fan chart with 
the response 95th , 50th , and 1st  percentile bounds. 
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Figure 3 – Impulse Responses and 95% Conditional and Unconditional Confidence Bands 
 

 
Notes: narrow bands are conditional confidence bands, wide bands are the usual unconditional confidence bands. “Joint” refers to the p-
value of the joint significance test. “Cum” refers to the p-value of the joint cumulative effect. 
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Figure 4 – Impulse Response Fan Charts: Response 95th , 50th , and 1st percentile Bounds 

 
 
Notes: “Joint” refers to the p-value of the joint significance test. “Cum” refers to the p-value of the joint cumulative effect. 
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Figure 5 – Counterfactual Experiment: Response of U.S. Unemployment to a U.S. 
Inflation Shock when the Response of the Federal Funds Rate to an Inflation Shock 
is made more aggressive 
 
 

 
p-value of plausibility test: 0.73 
 
 
Notes: Solid line with circles is the original impulse response. Solid line with squares is 
the counterfactual response. The bands around the responses correspond to 95% 
conditional confidence bands. Note that the counterfactual bands are calculated with the 
counterfactual covariance matrix, not the original covariance matrix. In probability 
metric, the counterfactual response of the U.S. federal funds rate to a shock in U.S. 
inflation is only 27% away (in probability units) from the historical  path. 




