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Abstract

We consider cross-section regression models for country-pair data, such
as gravity models for trade volume between countries or models of exchange
rate volatility, allowing for the presence of country-specific errors. This
induces clustered errors in a nonstandard setting. OLS standard errors that
ignore this clustering are greatly underestimated. Under the assumption of
random country-specific effects we provide analytical results that permit
more efficient GLS estimation even in settings where the number of unique
country-pairs is very large. We include applications to international data
on real exchange rates and on bilateral trade that provided the motivation
for this paper. The results are more generally applicable to regression with
paired data.
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1. Introduction

The need to control for intracluster correlation of errors in linear regression in
regression errors is well known, with leading references including Kloek (1981)
and Moulton (1986, 1990). Examples include clustering on region, such as state,
on household and, in the case of panel data, on the individual unit of observation.
For the OLS estimator, estimated standard errors computed without regard to
clustering can be greatly understated. And more efficient estimators than OLS
are possible.
This paper presents valid statistical inference for paired data such as that

used in gravity models of international trade. A common example has dependent
variable yij equal to the volume of trade between countries i and j and regressors
that include the distance between countries and a measure of the relative sizes of
the two countries.
Early applications of gravity models ignored the clustering in errors that arises

with such paired data. Matyas (1997, 1998) pointed out the need to incorporate
country-specific error components that may be either fixed or random. Cheng and
Wall (2003) provide a recent summary.
Models with country-specific fixed effects can be simply estimated by OLS

regression in a model that additionally includes country-specific dummies. The
number of such dummies is typically small enough that direct OLS estimation is
feasible. The usual OLS standard errors can be used, provided these dummies
provide an adequate control for clustering.
Statistical inference for random effects models, which unlike fixed effect models

permit estimation of coefficients of country-specific regressors, is more challenging.
Rose and Engel (2002) provide an example. They estimate a gravity model by
OLS and report standard errors that control for heteroskedasticity in the error
but not error correlation. They note that these standard errors are likely to be
downward biased, but do not report cluster-robust standard errors as the simple
formulae for the commonest forms of clustering provided by standard statistical
packages are not applicable.
General results for paired data that take into account the specific structure of

the error variance-covariance matrix in the presence of random effects are given
in section 2. We present both a formula for cluster corrected standard errors of
the OLS estimator and a method to implement feasible GLS. In section three
we generate data with random components and confirm the results of section 2.
The proposed estimation techniques are applied to Rose and Engel (2002) data
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on real exchange rate volatility and on trade volume in section four. Section five
concludes.

2. Regression with Paired Data

We specialize to dependent variable that is symmetric with yij = yji, where i and
j denote countries and we refer to the pairs as country-pairs, for concreteness,
though the results are more generally applicable. Symmetry arises if the dependent
variable is the level of bilateral trade or a price index differential. Results can be
adapted to the nonsymmetric case (yij 6= yji) that is appropriate if export data,
for example, are being modelled; see subsection 2.6. And we assume that it is not
meaningful to model yii.
The random effects model being studied is a two-way random components

model with an unbalanced data set with n(n − 1)/2 unique country pairs. The
two random components are assumed to be drawn from the same distribution,
see (2.1) below. We present formulae for the true standard errors of the OLS
estimator and additionally show how to estimate by feasible GLS without having
to numerically invert the large-dimension error variance matrix.

2.1. The Model

For the i, jth country-pair the regression model is

yij = x
0
ijβ+αi+αj + εij, j = i+ 1, ..., n, i = 1, ..., n− 1, (2.1)

where αi is a country-specific error component and εij is an idiosyncratic error
component. For models with yij 6= yji, see subsection 2.6, it may be appropriate
to more generally specify the model yij = x0ijβ+αi+δj + εij, with δj 6=αj. But for
yij = yji, the case here, it is natural to impose the constraint δj=αj.
Stacking over j for country i yields⎡⎢⎣ yi,i+1

...
yi,n

⎤⎥⎦ =
⎡⎢⎣ x

0
i,i+1β
...

x0i,nβ

⎤⎥⎦+
⎡⎢⎣ αi
...
αi

⎤⎥⎦+
⎡⎢⎣ αi+1

...
αn

⎤⎥⎦+
⎡⎢⎣ εi,i+1

...
εi,n

⎤⎥⎦
or

yi = Xiβ +Piα+Miα+ εi, (2.2)
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where yi and εi are (n− i)× 1 vectors, Xi is an (n− i)× k matrix, β is a k × 1
parameter vector and α is an n × 1 parameter vector. The matrices Pi and Mi

are (n− i)× n matrices of zeroes and ones with

Pi =

⎡⎢⎣ 0 · · · 0 1 0 · · · 0
...

...
...
...

...
...

0 · · · 0 1 0 · · · 0

⎤⎥⎦ (2.3)

=
£
O(n−i)×(i−1) E(n−i)×1 O(n−i)×(n−i)

¤
=

£
00n−i0i−1 en−i 0n−i00n−i

¤
and

Mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0
...

...
...

0 · · · · · · 0
1 0 · · · 0

0 1 · · · ...
...

. . . 0
0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)

=
£
O(n−i)×i I(n−i)×(n−i)

¤
=

£
0n−i00i In−i

¤
,

where 0k is a k × 1 vector of zeroes, ek is a k × 1 vector of ones, Ok×l = 0k00l is
a k × l matrix of zeroes, Ek×l = eke0l is a k × l matrix of ones and Ok×0 = ∅ is
defined to be a null observation.
Stacking over all countries⎡⎢⎣ y1

...
yn−1

⎤⎥⎦ =
⎡⎢⎣ X1

...
Xn−1

⎤⎥⎦β +
⎡⎢⎣ P1

...
Pn−1

⎤⎥⎦α+
⎡⎢⎣ M1

...
Mn−1

⎤⎥⎦α+
⎡⎢⎣ ε1

...
εn−1

⎤⎥⎦ ,
or

y = Xβ +Pα+Mα+ ε
= Xβ + Lα+ ε,

(2.5)

where y and ε are T × 1 vectors, X is a T × k matrix, P andM and L = P+M
are T × n matrices and

T = n(n− 1)/2, (2.6)
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is the number of unique country pairs.
We make the standard random effects error components assumptions that

εij ∼ iid[0, σ2ε] (2.7)

αi ∼ iid[0, σ2α].

Note that then

Cov[vij , vkl] =

⎧⎨⎩ 2σ2α + σ2ε i = k, j = l
0 i 6= k 6= j 6= l,

σ2α otherwise.

The model (2.5) is then
y = Xβ + v (2.8)

where the error term
v = Lα+ ε,

where L = (P+M). Given assumptions (2.7),

Ω ≡ E[vv0]
= E[(Lα+ ε)(Lα+ ε)0]
= LE[αα0]L0 + E[εε0]

= Lσ2αINL
0 + σ2εIT

= σ2ε[IT + (σ
2
ε/σ

2
α)LL

0].

Hence the error variance matrix

Ω = σ2ε(IT + cLL0), (2.9)

where
c = σ2α/σ

2
ε (2.10)

is the ratio of country-specific error variance to idiosyncratic error variance.

2.2. OLS Estimation

The OLS estimator is bβOLS = (X0X)−1X0y.
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The correct variance matrix of the OLS estimator uses the sandwich form with
(X0X)−1X0ΩX(X0X)−1. Given Ω = σ2ε(IT + cLL0) this can be re-expressed as

V[bβOLS] = σ2ε(X
0X)−1[1 + cX0LL0X(X0X)−1]. (2.11)

If the clustering is erroneously ignored then we use, σ2v(X
0X)−1, or equivalently

Vwrong[bβOLS] = σ2ε(X
0X)−1[1 + 2c], (2.12)

using σ2v = (σ
2
ε + 2σ

2
α) = σ2ε(1 + 2c) where c is defined in (2.10).

2.2.1. OLS in Intercept-only Models

Exact results are possible in the case that the only regressor is an intercept.
Then X = eT , X0X =T , X0L = e0TL =(n − 1)en, see appendix 6.1, and hence
X0LL0X=(n− 1)2e0nen = 2(n− 1)T as T = n(n− 1)/2. Then

V[bβOLS] = σ2εT
−1[1 + 2c(n− 1)] (2.13)

Vwrong[bβOLS] = σ2εT
−1[1 + 2c],

where T = n(n− 1)/2. Table 2.1 presents these two variances for different values
of T and n.
The variance of the OLS estimator increases as the variance of the country-

specific effect increases, for fixed σ2ε and n, and is minimized when σ2α = 0. This
efficiency loss due to the country-specific effect can be quite great. For example,
when n = 50 and σ2α = 0.1 × σ2ε (so c = 0.1) the variance of the OLS is eleven
times larger than if c = 0.0, increasing from 0.0008 to 0.0088.
The variance of the OLS estimator decreases as the number of countries in-

creases, for fixed σ2ε and c, as expected. The interesting question is whether it
does so at rate T or at rate n. For c = 0 we obtain the usual result that it
decreases at rate T = n(n − 1)/2, since then V[bβOLS] = σ2εT

−1. For large c the
variance decreases much more slowly, at the rate of the number of countries (here
50/10 = 5), rather than the number of country-pairs (1225/45 = 27.222). Even
for moderate values of c, such as c = 0.1, the rate of decrease is much closer to n
than to T . For c 6= 0 and large n, V[bβOLS] ' 4cσ2εn−1. The gains to adding more
countries to a data set may be much smaller than thought a priori.
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Table 2.1: OLS: Efficiency gain and standard error bias as c and n vary

c=σ2α/σ
2
ε n T=n(n-1) Correct Variance Incorrect Variance

Countries Country-pairs variance gain variance ratio τ
0 10 45 0.0222 0.0222 1.000
0 50 1225 0.0008 27.222 0.0008 1.000
0.1 10 45 0.0622 0.0267 2.333
0.1 50 1225 0.0088 7.058 0.0010 9.000
1 10 45 0.4222 0.0667 6.333
1 50 1225 0.0808 5.224 0.0024 33.000
10 10 45 4.0222 0.4667 2.936
10 50 1225 0.8008 5.023 0.0171 46.7143
∞ 10 45 — — 9.000
∞ 50 1225 — 5.000 — 49.000

Note: Analytical results for intercept-only random effects model with σ2ε=1. Variance gain is
the gain in OLS variance in going from n=10 to n=50 countries (note that 1225/45=27.222).
Variance ratio is the true OLS variance divided by the incorrect OLS variance.

The multiplicative bias of the variance of the OLS estimator is

τ = V[bβOLS]/Vwrong[bβOLS]
= [1 + 2c(n− 1)]/[1 + 2c]
= 1 +

(n− 2)
1 + (1/2c)

.

The bias is increasing in c and n. For large c, τ ' (n− 1), and even for moderate
c the bias is very large. For example, if σ2α = 0.1 × σ2ε (so c = 0.1) then τ =
1 + (n− 2)/6 = 9 when n = 50.
Now consider the traditional grouped data model with

yjg = x
0
jgβg + αg + εjg, j = 1, ..., ng, g = 1, ..., G. (2.14)

Kloek (1981) and Moulton (1990) and others show that for regression on an inter-
cept with balanced clusters of sizeM = ng = T/G, V[bβOLS] = σ2T−1[1+ρ(M−1)]
and Vwrong[bβOLS] = σ2T−1 where σ2 = σ2α+σ

2
ε and ρ = σ2α/σ

2. Defining c = σ2α/σ
2
ε,

equivalently

V[bβOLS] = σ2εT
−1[1 + cM ].

Vwrong[bβOLS] = σ2εT
−1[1 + c].
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The result (2.13) is qualitatively similar, except that c is replaced by 2c since the
random effect αc appears twice in (2.1) and M is replaced by (n− 1) rather than
the average group size n/2.

2.2.2. OLS in Regression Models

For the grouped data model (2.14), Scott and Holt (1982) show that if a single
regressor is included then the multiplicative bias of the usual OLS standard error
for the slope coefficient is 1+bρxρ(M − 1), where bρx can be viewed as an estimate
of the intraclass correlation of the xjg. The bias of Vwrong[bβOLS] is therefore
greater for regressors that do not vary within group, such as the intercept, than
for regressors that do vary within group. If bρx = 0 then there is no bias.
A qualitatively similar result is expected here, since from the appendix

X0L =(n− 1) £ x̄1 · · · x̄n
¤
,

where x̄i = n−1
Pn

j=1 xij, soX
0LL0X =(n−1)2Pn

i=1 x̄ix̄
0
i, whileX

0X =
Pn−1

i=1 X
0
iXi =Pn−1

i=1

Pn
j=i+1 xijx

0
ij, so the inflation factor X

0LL0X(X0X)−1 in (2.11) is largest
when x̄i = xij for all j.

2.3. GLS Estimation

The GLS estimator is bβGLS = (X0Ω−1X)−1X0Ω−1y.

GLS estimation requires inversion of the T×T matrixΩ which is potentially large.
For example, with n = 50 countries Ω is a 1225 × 1225 matrix. Matyas (1997)
proposed GLS estimation for country-pair data but did not provide an expression
for Ω−1.
In general (IT + AA0)−1 = IT − A(In + A0A)−1A0, see for example a more

general result in Magnus and Neudecker (1988, p.25). Letting A =
√
cL it follows

that for Ω = σ2ε(IT + cLL0),

Ω−1 = σ−2ε [IT − cL(In + cL0L)−1L0] , (2.15)

which entails inversion of a much smaller n × n matrix. The GLS estimator is
therefore easily computed and has variance matrix

V[bβGLS] = (X0Ω−1X)−1. (2.16)
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For matrix L defined in subsection 2.1 even the matrix inversion within (2.15)
can be avoided, as then from appendix 6.2

Ω−1 = σ−2ε

∙
IT − c

1 + c(n− 2)
µ
LL0− 4c

1 + 2c(n− 1)eTe
0
T

¶¸
. (2.17)

For the intercept-only model bβGLS = bβOLS = ȳ, see appendix 6.2. Otherwise
the GLS estimator will usually be more efficient than OLS.

2.4. Feasible GLS Estimation

Feasible GLS estimation requires consistent estimates of σ2ε and σ2α (and hence
c = σ2α/σ

2
ε). As usual there are many possible ways to obtain consistent estimates

of the variance components. We use the following method.
First, we transform to a model that eliminates the country-specific effects

and has error with variance σ2ε. Define the matrix F such that F
0L = OT×T and

F0F = IT . Pre-multiplying the model (2.5) by F0 yields

F0y = F0Xβ + F0Lα+ F0ε (2.18)

= F0Xβ + F0ε,

where V[F0ε] = σ2εI, since E[F
0εε0F] = F0E[εε0]F = F0σ2εIF = σ2εI since F

0F = I.
[Note that the transformation will eliminate the intercept term since eT = Len/2,
see appendix 6.1, so F0eT= F0Len/2 = O as F0L = O]. Since the transformed
errors have variance σ2ε, the average of the squared residuals from OLS estimation
of the transformed equation (2.18) provides a consistent estimate of σ2ε, so

bσ2ε = (F0y − F0Xbβ)0(F0y− F0Xbβ)
rows[F ]− k

, (2.19)

where k is the number of regressors.
Second, note that for the OLS residual from the model (2.5) bv = Qv = Q(Lα+ ε)

where Q = IT −X(X0X)−1X0, the inner product has expected value

E[bv0bv] = E[trace[bv0bv]]
= E[trace[{Q(Lα+ ε)}0{Q(Lα+ ε)}]]
= E[trace[{Q(Lα+ ε)}0{Q(Lα+ ε)}]]
= E[trace[α0LQLα+ ε0QLα+α0L0Qε+Qεε0)]]
= trace[LQ0QL]E[αα0]+traceQE[εε0]
= trace[LQ0QL]σ2α+(T − k)σ2ε,
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using Q0Q = Q and independence of α and ε. This suggests estimate

bσ2α = bv0bv − (T − k)bσ2ε
trace[LQ0QL]

(2.20)

The main challenge in implementation is computation of the matrix F, the
orthonormal basis for the null space of the matrix L. In Matlab there is a direct
command to do this. In Stata there is no such command. One can form the
matrix F from the eigenvectors corresponding to zero eigenvalues of the matrix
L. However, this mechanical approach runs into size problems when n and hence
T is very large. Matlab and Stata code used in this paper will be made available.

2.5. Hausman Tests for Fixed Effects

The results so far assume that the country-specific effect αi is purely random,
see (2.7). An alternative assumption is the fixed effects assumption that αi is
correlated with some of the regressors. Then consistent estimation of β requires
controlling for αi. In the original model (2.1) the effects α1, ..., αn are viewed as
parameters to estimate along with β and the only error is εit.
The fixed effects model is easily estimated by introducing n dummy variables

d1, ..., dn, where dkij = 1 if k = i or if k = j and dkij = 0 otherwise, and by
estimating by OLS the country dummy variables model

yij = x
0
ijβ+

Xn

k=1
αkdkij+εij. (2.21)

In most applications n is sufficiently small that this is feasible without the need to
instead use a differencing transformation to eliminate the α parameters. Inclusion
of the dummies can control for any clustering and one can use the usual OLS
standard errors provided the error εij is iid.
A limitation of the fixed effects model is that it is no longer possible to identify

the coefficients of regressors that for given country i are invariant across country
j. For example, if x0ijβ = z

0
ijβz+w

0
iβw+ s

0
jβs then βw and βs are not identified.

They are estimable in the random effects model, but if the fixed effects assumption
is appropriate then the random effects estimator (OLS or GLS) is inconsistent.
This is the classical situation for a Hausman test. For the model yij = z0ijβz +
αi + αj + εij, where zij are regressors that vary over both i and j, let bβz denote
the random effects GLS estimator and eβz denote the fixed effects estimator. Then

H = (eβz − bβz)0 hbV[eβz]− bV[bβz]i−1 (eβz − bβz)
10



is asymptotically chi-squared distributed under the null hypothesis of random
effects.
The validity of the test requires that bβz is fully efficient under the null hypoth-

esis, since only then does Cov[eβz, bβz] =V[bβz] so that V[eβz − bβz] =V[eβz]−V[bβz].
This requires bβz to be the GLS estimator. Instead many applications erro-
neously let bβz be the OLS estimator, and further compound the error by using a
downward-biased estimate of the variance of the OLS estimator.
The GLS estimator given in subsection 2.3 enables correct implementation of

the Hausman test. This could potentially change the common empirical finding
that the Hausman test rejects the random effects model.

2.6. Extensions

The preceding analysis assumes that data are available for all country pairs (aside
from yii). Data on some pairs may be missing. For example, some countries
may not trade with each other. The preceding results still apply with the one
change that the corresponding rows of the the matrix L = (P +M) need to be
dropped. This matrix is then T ×n where now T < n(n− 1)/2. With this change
to L the analytical expression for Ω−1 is again that given in (2.15), though the
specialization (2.17) no longer holds.
The previous results focus on the symmetric case. In the asymmetric case

yij 6= yji and a natural model is

yij = x
0
ijβ+αi + δj + vij, j = 1, ..., (j − 1), (j + 1), ..., n, i = 1, ..., n.

Now there are n(n−1) unique observations and we no longer impose the constraint
that αi 6= δj. The preceding algebra can be adapted to this case. Alternatively
note that this is a classic two-way error components model, though is unbalanced
due to the absence of data for (i, i). The general results of Wansbeek and Kapteyn
(1989), summarized in Baltagi (2002, p.170) can be applied. These results may
simplify given the particular structure here.
For panel country-pair data yij becomes yijt. The panel case is actually simpler

than the cross-section case, if one more generally includes individual country-pair
effects (not identified with cross-section data alone) rather than individual country
effects. Then

yijt = x
0
ijtβ+γij + vijt,

Letting p denote a unique country pair (i, j), this three-index model for yijt col-
lapses to a two-index model ypt = x0ptβ+γp + vpt. Usual panel methods can then

11



Table 3.1: Simulation: Random Effects Model with Intercept and Single Regres-
sor.

True Estimator
OLS GLS FGLS FE

Intercept 2.0000 2.0081 2.0080 2.0080 2.0313
Correct se (0.2834) (0.2842) (0.2834) (0.2872)
Simulation se <0.2825> <0.2825> <0.2825> <2.0039>
White se [0.0488]
Default se {0.0488}
Slope 2.0000 2.0023 2.0012 2.0012 2.0012
Correct se (0.0520) (0.0346) (0.0346) (0.0346)
Simulation se <0.0520> <0.0354> <0.0354> <0.0354>
White se [0.0581]
Default se {0.0582}
σ2ε 1.0000 0.9997
σ2α 1.0000 1.0047
c 1.0000 1.0050

Note: Data generated from random effects model with intercept and single regressor. There

are 1000 replications. Standard errors for the slope coefficients that correct for clustering (see
text) are given in parentheses; the simulation standard error is the standard deviation of the
1000 parameter estimates; White standard errors that correct for heteroskedasticity but not

clustering are given in square brackets; and usual default estimates that assume iid errors are
given in braces.

be applied for either fixed or random effects models; see Selenga and Shin (2004).

3. Simulation

In the following simulation we estimate a random effects model using the estima-
tion strategy described above.
The data are generated for model (2.1) with

yij = 2 + 2xij + αi + αj + εij,

where αi ∼ N [0, 1] and εij ∼ N [0, 1] so c = 1.0, and xij ∼ N [0, σ2x] where σ2x is
chosen so that R2 ' 0.50 from OLS regression. The simulations use sample size
n = 50 and are performed 1000 times. The results are presented in Table 3.1.
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We first consider bias in the OLS standard errors. For the intercept the cor-
rect OLS standard error estimate based on (2.11) is 0.2834, much larger than the
incorrect estimate of 0.0488 based on (2.12) that ignores clustering, and the mul-
tiplicative bias

√
τ = 0.2834/.0488 = 5.81 which essentially equals the theoretical

value of
√
τ =

√
33 = 5.74 given in Table 2.1 for the intercept-only model. For

the slope coefficient the corresponding standard errors are 0.0520 and 0.0582 and√
τ = 0.89. There is little bias in the standard error for the slope coefficient here,

a result expected from the discussion in subsubsection 2.2.2 since the regressors
here are generated independently. In the application below, however, regressors
are correlated within country and there can be considerable bias in OLS standard
errors of slope coefficients. White’s heteroskedastic standard error estimates are
similar to those based on (2.12) since they too do not correct for clustering and
the data were generated using homoskedastic errors.
Now consider the efficiency gains to GLS and FGLS. There is no real efficiency

gain in estimation of the intercept. But there is considerable efficiency gain for
the slope coefficient, with standard error falling from 0.0520 for OLS to 0.0346
for FGLS. The FGLS and GLS estimates are almost identical, since the variance
components are quite precisely estimated with bc = 1.005 very close to the dgp
value of 1.0 used in GLS. For completeness we also present fixed effects estimators.
These essentially coincide with the random effects estimator.
As a consistency check we note that the simulation standard errors, the stan-

dard deviation of the 1000 estimated coefficients, coincide with the average of
“correct” standard errors computed using (2.11) for OLS and (2.16) for FGLS
and GLS.
Similar simulations were performed for other values of c and n. For n = 50

the multiplicative error in the standard error for the OLS estimated intercept
rises from 3.00 for c = 0.1 to 6.95 for c = 10, similar to the square root of
the values in the last column of Table 2.1, while there is again no bias in slope
coefficient standard errors since here the generated regressors are independent
within countries. FGLS provides negligible efficiency gain for the intercept, while
for the slope coefficient with n = 50 there is no real gain when c = 0.1 but a
considerable gain when c = 10 (standard error falls from 0.0485 for OLS to 0.0131
for FGLS).
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4. Applications

We re-estimate one of the models used by Rose and Engel (2002). The dependent
variable yij is a measure of real exchange volatility; see Rose and Engel (2002,
p.1080) for its definition and for definitions of the regressor variables. There
are 98 countries and data are available for 3262 unique country pairs, less than
theoretical maximum of 98 × 97/2 = 4753. The missing data for some country
pairs are handled by the modification given in subsection 2.6.
The first column of Table 4.1 reproduces the first column of Table 5 of Rose

and Engel (2002). The correct OLS standard errors use (2.11) based on the ran-
dom effects model (2.1). The variance components estimates are s2ε = 0.0004 and
s2α = 0.0030, so bc = 8.3448 which is quite high and indicates a large clustering
effect. The default standard errors are greatly downward biased, with the correct
standard errors using (2.11) for the slope coefficients being 1.8 (currency union)
to 5.6 times larger (Real GDP per Capita) than those calculated using (2.12).
White standard errors that correct for heteroskedasticity only are also consider-
ably downwards-biased. Rose and Engel (2002) used White standard errors, with
the caveat in their footnote 19 that “These standard errors may be biased down-
ward because of cross-sectional dependence that is not explicitly modeled here
(the British-French residual is likely to be highly related to the British-German
residual). Thus we urge the reader not to take our standard errors too literally.”
The second column of Table 4.1 presents GLS estimates. For the first four

regressors, which vary over country-pair, there are great gains to FGLS estimation
with a five-fold to ten-fold reduction in the standard errors. For the remaining
two regressors there is little efficiency gain to GLS. Note that ln(GDPi×GDPj) =
lnGDPi + lnGDPj, so these two regressors are essentially subscripted by i alone
(or by j alone), with no i, j interaction. Essentially they are varying across one
dimension rather than both dimensions.
The fifth column of Table 4.1 presents fixed effect model estimates. The co-

efficients of regressors that vary over one dimension but not both dimensions are
then not identified, so Real GDP per Capita and Real GDP are dropped. The
resulting fixed effects estimates, obtained by OLS regression on the other four
regressors and country dummy variables, are very close to the FGLS estimates of
the random effects model. This is a consequence of c being so high in this example,
analogous to the panel data result that the random effects estimator goes to the
fixed estimator as the variance of the individual specific error αi becomes large
relative to the variance of the idiosyncratic error εit.

14



Table 4.1: Application: Real Exchange Rate Volatility, Rose and Engel (2002,
Table 5).

Rose and Engel Model Reduced Model
OLS FGLS OLS FGLS FE

Intercept 0.2793 0.2989* 0.0920 0.0732* 0.0317*
Correct se (0.1652) (0.1441) (0.0493) (0.0122) (0.0080)
White se [0.0345] [0.0170]
Default se {0.0332} {0.0153}
Currency Union -0.0532 -0.0633* -0.0300 -0.0630* -0.0645*
Correct se (0.0394) (0.0058) (0.0402) (0.0058) (0.0057)
White se [0.0045] [0.0061]
Default se {0.0332} {0.0224}
(Log) Distance -0.0022 0.0063* -0.0017 0.0063* 0.0065*
Correct se (0.0057) (0.0005) (0.0058) (0.0005) (0.0005)
White se [0.0020] [0.0021]
Default se {0.0018} {0.0018}
Nominal Exchange Rate Volatility 0.3041* 0.1844* 0.3153* 0.1853* 0.1754*
Correct se (0.0260) (0.0064) (0.0258) (0.0064) (0.0066)
White se [0.0127] [0.0125]
Default se {0.0048} {0.0048}
(Log Product) Real GDP per Capita -0.0126* -0.0184*
Correct se (0.0062) (0.0058)
White se [0.0009]
Default se {0.0011}
(Log Product) Real GDP 0.0007 0.0016
Correct se (0.0037) (0.0034)
White se [0.0062]
Default se {0.0007}
s2ε 0.0004 0.0004
s2α 0.0030 0.0031bc 8.3448 8.5801

Note: Cross-section data for 3262 country-pairs formed from 98 countries. Table 5 of Rose
and Engel multiplies all coefficients by 100. Standard errors for the slope coefficients that

correct for clustering (see text) are given in parentheses; White standard errors that correct for
heteroskedasticity but not clustering are given in square brackets; and usual default estimates
that assume iid errors are given in braces. An asterisk denotes a coefficient with absolute t-value

in excess of 2 using the correct standard error.
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As an example of a Hausman test of fixed versus random effects, consider the
coefficient of currency union. The FGLS and FE coefficients are very close, with
difference eβFE − bβRE = −0.0645 + 0.0630 = −0.0015 that is small relative to the
estimated coefficients and their standard errors (0.0057 and 0.0058), suggesting
that a random effects model is adequate. Actual implementation of a Hausman
test is problematic, however, as the estimated variance of eβFE − bβRE = 0.00572−
0.00582 < 0. Such negative differences can arise for the Hausman test, see for
example Ruud (1984, p.214). There is a greater difference between the OLS and
FE estimates (the difference is 0.0113), but as noted in subsection 2.6 the standard
implementation of the Hausman test is no longer valid since the OLS estimator is
inefficient.
We conducted a similar analysis of the related model of Tenreyro and Barro

(2003) for comovement of prices. Again there was considerable clustering of the
errors, with bc = 8.7, leading to qualitatively similar conclusions of large underes-
timation of OLS standard errors and large efficiency gains for GLS. Feasible GLS
estimates were quite close to fixed effects estimates, which Tenreyro and Barro
(2003) also calculate.
As yet another application, similar analysis was applied to dependent variable

the natural logarithm of bilateral trade (in US$), replicating column 1 of Table
3 of Rose and Engel (2002). Then there are 127 countries and data available
for 4618 country pairs. The results are given in Table 4.2. A big difference is
that for this dependent variable and model bc = 0.2665, so clustering is much
less important. Nonetheless there is still significant bias in standard errors with
the correct OLS standard errors being 1.5 to 4 times the default standard errors.
White standard errors are within 20 percent of the default OLS standard errors
so are also considerably downwards biased. The greatest difference is for the last
two regressors which vary over one dimension not both dimensions, as discussed
earlier. The efficiency gains of FGLS are not as great as for the real exchange
volatility model, due to the lower value of c, but even here the standard errors
for the first two regressors, which vary over dimensions, are roughly halved. To
enable comparison with a fixed effects model, the regressors real GDP per Capita
and Real GDP again need to be dropped. Then bc = 1.9814 is higher, resulting
in increased bias in the default OLS standard errors, greater gains to feasible
GLS estimation, and closeness of fixed and random effects estimates of slope
coefficients.
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Table 4.2: Application: Gravity model for bilateral trade, Rose and Engel (2002,
Table 3).

Rose and Engel Model Reduced Model
OLS FGLS OLS FGLS FE

Intercept -32.8421* -32.0411* 18.4809* 20.9810* 15.0397*
Correct se (1.9174) (1.6155) (0.6458) (0.4467) (1.8063)
White se [0.6823] [0.5012]
Default se {0.6004} {0.5102}
Currency Union 1.8588* 1.3464* -3.1279* 1.1416* 1.2737*
Correct se (0.5359) (0.3251) (1.2416) (0.3365) (0.3380)
White se [0.4553] [0.5514]
Default se {0.3666} {0.6518}
(Log) Distance -1.3667 -1.5858* -0.1539 -1.5907* -1.5961*
Correct se (0.0755) (0.0319) (0.1955) (0.0322) (0.0321)
White se [0.0348] [0.0604]
Default se {0.0345} {0.0614}
(Log Product) Real GDP per Capita 0.7656* 0.7649*
Correct se (0.0741) (0.0678)
White se [0.0204]
Default se {0.0198}
(Log Product) Real GDP 0.8670* 0.8455*
Correct se (0.0414) (0.0367)
White se [0.0128]
Default se {0.0116}
s2ε 2.0295 2.0291
s2α 0.5409 4.0204bc 0.2665 1.9814

Note: Cross-section data for 4618 country-pairs formed from 127 countries. Table 3 of Rose
and Engel multiplies all coefficients by 100. Standard errors for the slope coefficients that

correct for clustering (see text) are given in parentheses; White standard errors that correct for
heteroskedasticity but not clustering are given in square brackets; and usual default estimates
that assume iid errors are given in braces. An asterisk denotes a coefficient with absolute t-value

in excess of 2 using the correct standard error.

5. Conclusions

This paper presents methods to obtain correct standard errors for OLS regression
using paired data such as country-pair data, and to implement more efficient FGLS
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estimation if a random effects model is estimated. Simulation and application
demonstrate considerable bias in estimated standard errors that fail to control for
the clustering inherent with such data, and the potential for considerable efficiency
gain by feasible GLS estimation.

6. Appendix

6.1. Appendix: Analytical Results for OLS

We begin with a summary of results for the T × n matrix L =M+P defined in
section 2.1.
Proposition: For eT a T = n(n − 1)/2 column vector of ones and en a n

column vector of ones we have:

1. e0TL=(n− 1)e0n
2. Len=2eT

3. L0L =(n− 2)In + ene0n
4. X0L =(n− 1) £ x̄1 · · · x̄n

¤
where x̄j = [(xj,j+1 + · · ·+ xj,n) + (x1,j + · · ·+ xj−1,j)]/(n− 1)

Proof: For property 1,

e0TP =
£
e0n−1 e0n−2 · · · e01

¤⎡⎢⎣ P1
...

Pn−1

⎤⎥⎦
=

Xn−1
i=1

e0n−iPi

=
Xn−1

i=1
e0n−i

£
0n−i00i−1 en−i 0n−i00n−i

¤
=

Xn−1
i=1

£
00i−1 (n− i) 00n−i

¤
=

£
(n− 1) (n− 2) · · · 1 0

¤
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and

e0TM =
Xn−1

i=1
e0n−iMi

=
Xn−1

i=1
e0n−i

=
Xn−1

i=1

£
00i e0n−i

¤ £
0n−i00i In−i

¤
=

£
0 1 · · · · · · 1

¤
+
£
0 0 1 · · · 1

¤
+ · · ·+ £ 0 · · · · · · 0 1

¤
=

£
0 1 · · · (n− 2) (n− 1) ¤ .

Property 1 follows using

e0TL= e
0
T (P+M) = e

0
TP+ e

0
TM.

To obtain property 2 start with Pien which is a (n− i)×n matrix times n× 1
vector yields (n− i) vector

Pien =
£
0n−i00i−1 en−i 0n−i00n−i

¤⎡⎢⎣ 1...
1

⎤⎥⎦ =
⎡⎢⎣ 1...
1

⎤⎥⎦ = en,
so

Pen=

⎡⎢⎣ P1
...

Pn−1

⎤⎥⎦ en =
⎡⎢⎣ P1en

...
Pn−1en

⎤⎥⎦ =
⎡⎢⎣ en−1...

e1

⎤⎥⎦ = eT .
SimilarlyMen = eT using

Mien =
£
0n−i00i In−i

¤⎡⎢⎣ 1...
1

⎤⎥⎦ =
⎡⎢⎣ 1...
1

⎤⎥⎦ = en.
Property 2 follows using Len = Pen +Men.
For property 3 start with

P0iPi =

⎡⎣ 0i−100n−ie0n−i
0n−i00n−i

⎤⎦ £ 0n−i00i−1 en−i 0n−i00n−i
¤
=

⎡⎣ 0 0 0
0 (n− i) 0
0 0 0

⎤⎦ ,
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so

P0P =
Xn−1

i=1
P0iPi =

⎡⎢⎢⎢⎢⎢⎢⎣
(n− 1) 0 · · · · · · 0

0 (n− 2) 0 · · · ...
...

...
. . . 0

...
...

... 0 1 0
0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
Similarly

M0
iMi =

∙
0i−100n−i
In−i

¸ £
0n−i00i−1 In−i

¤
=

∙
0 0
0 In−i

¸
,

so

M0M =
Xn−1

i=1
M0

iMi =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 · · · · · · 0

0 1 0 · · · ...
...

...
. . . 0

...
...

... 0 (n− 2) 0
0 · · · · · · · · · (n− 1)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Also

P0iMi =

⎡⎣ 0i−100n−ie0n−i
0n−i00n−i

⎤⎦ £ 0n−i00i−1 In−i
¤
=

⎡⎣ 0 0
0 e0n−i
0 0

⎤⎦ ,
so P0iMi has ith row with last (n − i) entries a one and all others are zero. It
follows that

P0M =
Xn−1

i=1
P0iMi =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 · · · 1

0 0 1 · · · ...
...

...
. . . 1

...
...

... 0 0 1
0 · · · · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
HenceP0P+M0M =(n−1)In and (P0M+M0P) = ene

0
n−In, so L0L =(n−2)In+

ene
0
n.
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6.2. Appendix: Analytical Results for GLS

To obtain the expression for Ω−1 given in (2.17), begin with (2.15) and substitute
L0L = (n− 2)In + ene0n from the proposition, so

Ω−1 = σ−2ε [IT − cL[In + c(n− 2)In + cene
0
n]
−1L0]

= σ−2ε [IT − cL[(1 + c(n− 2))In + cene
0
n]
−1L0]

= σ−2ε [IT − L[aIn + ene0n]−1L0] where a = (1 + c(n− 2))/c
= σ−2ε

∙
IT − L

∙
a−1

µ
In − 1

a+ n
ene

0
n

¶
L0
¸¸

= σ−2ε

∙
IT − a−1

µ
LL0− 1

a+ n
Lene

0
nL

0
¶¸

= σ−2ε

∙
IT − a−1

µ
LL0− 1

a+ n
2eT2e

0
T

¶¸
= σ−2ε

∙
IT − c

1 + c(n− 2)
µ
LL0− 4c

1 + 2c(n− 1)eTeT
0
¶¸

,

which is (2.17). The fourth equality uses

[aIn + ene
0
n]
−1 = a−1

∙
In − 1

a+ n
ene

0
n

¸
,

shown below, the sixth equality uses Len = 2eT , see the proposition, and the final
equality uses

4

a+ n
=

4

(1 + c(n− 2))/c+ n

=
4c

(1 + c(n− 2)) + nc

=
4c

(1 + 2c(n− 1)) .
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To verify that [aIn + ene0n]
−1 = a−1

£
In − 1

a+n
ene

0
n

¤
, note that

[aIn + ene
0
n]× a−1

∙
In − 1

a+ n
ene

0
n

¸
= a−1

∙
aIn + ene

0
n −

a

a+ n
ene

0
n −

1

a+ n
ene

0
nene

0
n

¸
= a−1

∙
aIn + ene

0
n −

a

a+ n
ene

0
n −

n

a+ n
ene

0
n

¸
since e0nen = n

= In.

Now consider GLS whenX = eT , so bβGLS = (e0TΩ−1eT )−1e0TΩ−1y. Then using
expression (2.17) for Ω−1,

(e0TΩ
−1e0T )

−1 = σ2ε

∙
T − c

1 + c(n− 2)
µ
2(n− 1)T− 4c

1 + 2c(n− 1)T
2

¶¸−1
= σ2εT

−1
∙
1− c

1 + c(n− 2)
µ
2(n− 1)− 4c

1 + 2c(n− 1)
n(n− 1)

2

¶¸−1
= σ2εT

−1
∙
1− 2c(n− 1)

1 + c(n− 2)
µ
1− cn

1 + 2c(n− 1)
¶¸−1

= σ2εT
−1
∙
1− 2c(n− 1)

1 + c(n− 2)
µ
1 + c(n− 2)
1 + 2c(n− 1)

¶¸−1
= σ2εT

−1
∙
1− 2c(n− 1)

1 + 2c(n− 1)
¸−1

= σ2εT
−1
∙

1

1 + 2c(n− 1)
¸−1

,

and

e0TΩ
−1y = σ−2ε

∙
T ȳ − c

1 + c(n− 2)
µ
2(n− 1)T ȳ− 4c

1 + 2c(n− 1)T
2ȳ

¶¸
= σ−2ε

∙
T − c

1 + c(n− 2)
µ
2(n− 1)T− 4c

1 + 2c(n− 1)T
2

¶¸
ȳ

= σ−2ε T

∙
1

1 + 2c(n− 1)
¸
ȳ,
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where the first equality uses

L = eT
X0y = e0Ty = T ȳ

X0LL0y =(n− 1)e0nn

⎡⎢⎣ ȳ1
...
ȳn

⎤⎥⎦ = (n− 1)2T ȳ
X0eTeT 0X = eT

0eTe0Ty =T × T ȳ = T 2ȳ.

where the third line uses L0y given in the proposition. Upon cancellation bβGLS =
(e0TΩ

−1eT )
−1e0TΩ

−1y =ȳ.
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