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Abstract

We analyze a symmetric n-firm Cournot oligopoly with a heterogeneous population of

optimizers and imitators. Imitators mimic the output decision of the most successful firms

of the previous round a là Vega-Redondo (1997). Optimizers play a myopic best response to

the opponents’ previous output. Firms are allowed to make mistakes and deviate from their

decision rules with a small probability. Applying stochastic stability analysis, we find that

the long run distribution converges to a recurrent set of states in which imitators are better

off than are optimizers. This finding appears to be robust even when optimizers are more

sophisticated. It suggests that imitators drive optimizers out of the market contradicting a

fundamental conjecture by Friedman (1953).
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“Men nearly always follow the tracks made by others and proceed in their affairs by

imitation, even though they cannot entirely keep to the tracks of others or emulate

the prowess of their models. So a prudent man should always follow in the footsteps

of great men and imitate those who have been outstanding.” Niccolò Machiavelli

1 Introduction

One of the most fundamental assumptions in economics is that firms maximize absolute profits.

However, already Alchian (1950) suggested that firms may maximize relative profits in the

long run rather than absolute profits. In contrast, Friedman (1953) argued that evolutionary

selection forces favor absolute profit maximization. In particular, he postulated that, although

firms may not know their profit functions, we can assume that they behave as if they maximize

profits because otherwise they would be driven out of the market by firms that do behave as

if they maximize profits. Koopmans (1957), p. 140, remarked that if selection does lead to

profit maximization then such an evolutionary process should be part of economic modeling.

Taking Koopmans’ suggestion into consideration, this paper describes an attempt to prove

Friedman’s conjecture. This attempt failed. That is, in the model presented here it turns out

that Friedman’s conjecture is false.

The present paper was partly inspired by Vega-Redondo (1997).1 He shows that in a

quantity setting symmetric n-firm Cournot oligopoly with imitators, the long run outcome con-

verges to the competitive output if small mistakes are allowed. Imitators mimic the output of

the most successful firms in the previous round. His result is in sharp contrast to optimizers,

whose outputs are known to converge under certain conditions in the Cournot tatonnement to

the Cournot Nash equilibrium. It seems natural to wonder what happens if imitators and op-

timizers are mixed together in a heterogeneous population. According to Friedman, we should

find that optimizers are better off than are imitators, and that consequently optimizers drive

out imitators in any payoff monotone selection dynamics. However, we find that imitators are

strictly better off than are optimizers, which is at first glance a rather surprising result given

that imitators are less sophisticated than optimizers. In a sense, this result is reminiscent of

1See also related work by Schaffer (1989), Rhode and Stegeman (2001), and Alós-Ferrer, Ania, and Vega-

Redondo (1999).
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Stackelberg behavior. That’s why we name the support of the long run distribution the set

of Pseudo-Stackelberg states. First, imitators and optimizers play roles analogous to those of

the “independent” and the “dependent” firms respectively in von Stackelberg’s (1934) work.2

Optimizers are “dependent” since by definition they play a best response. Imitators are “in-

dependent” because they do not perceive any influence on the price but take it as given. Note

however, that they do not conform exactly to the Stackelberg conjecture. Second, analogous to

the profits of von Stackelberg’s independent and dependent firms, every imitator is better off

than every optimizer. Finally, our analysis retains the important aspect of von Stackelberg’s

idea: the modeling of asymmetries and behavioral heterogeneity of firms.

Imitators and optimizers differ with respect to the knowledge required to take their decisions.

Whereas for imitators it is sufficient to know the previous period’s outputs of every firm and

their associated profits, optimizers need to know the total output of their opponents as well

as their own profit function, which involves knowing inverse demand and costs, in order to

calculate the myopic best response. Imitation is often associated with boundedly rational

behavior but note that imitation of successful behavior can be also viewed as a rational rule

of thumb (Vega-Redondo, 1997) when firms and decision makers have difficulties in perceiving

their profit functions. They can easily judge their performance relative to other firms in the

industry. This might be also one reason why a part of executives’ remuneration-packages is

often based on the firm’s stock outperforming the market index or similar means of relative

comparison.

In the proofs of our results, we rely on two main concepts, quasisubmodularity of payoff

functions and stochastic stability analysis. Quasisubmodularity (see Topkis, 1998, pp. 43) is

closely related to strategic substitutes (see Bulow, Geanakoplos, and Klemperer, 1985) and the

dual single-crossing property (see Milgrom and Shannon, 1994). The intuition for quasisub-

modularity in our context is that if a firm prefers a larger quantity to a lower quantity for a

given total market quantity, then it prefers also the larger quantity to the lower quantity for

2It is interesting to note that von Stackelberg himself never used the word “leader” in his book but spoke of

the “independent” and the “dependent” firm. Today’s familiar sequential representation of the Stackelberg game

is not due to von Stackelberg. The idea of a game with a first mover advantage was introduced first without

reference to Stackelberg (1934) as the “majorant game” by von Neumann and Morgenstern (1944), pp. 100. I

thank Professor Selten for pointing me to the “majorant game”.
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a lower total market quantity. The Cournot oligopoly satisfies this property by definition (see

Lemma 1). A similar version of this property, in which the total market quantity is replaced

by the opponents’ quantity, is used in modern oligopoly theory (see Vives 2000, Amir, 1996,

Amir and Lambson, 2000, etc.). Vega-Redondo’s (1997) result can be generalized to the class

of aggregative quasisubmodular games (see Schipper, 2003).

Following Kandori, Rob, and Mailath (1993) and Young (1993), the dynamic analysis in

this paper uses the concept of stochastic stability developed by Freidlin and Wentzel (1984)

(see also Ellison, 2000, and others). The general idea is that mutations select among absorbing

sets of the decision process such that only the most robust absorbing sets remain in the support

of the limiting invariant distribution. There are several alternative interpretations of the noise

in our context. First, firms are assumed to innovate with a small probability in a sense of

experimenting with various output levels. Second, firms are assumed to be boundedly rational

such that there is always a small positive probability of making mistakes in output decisions.

Finally, every period, a small fraction of the firms is replaced by newcomers who choose their

output from tabula rasa. Any of those interpretations adds some realistic feature to the model.

Instead of making use of the graph theoretic arguments developed by Freidlin and Wentzel

(1984) as well as Kandori, Rob, and Mailath (1993) and Young (1993), we employ a simpler

necessary condition for stochastic stability introduced by Nöldeke and Samuelson (1993, 1997)

and Samuelson (1994). They show that a necessary condition for a state to be contained in the

support of the unique invariant limiting distribution is that this state is contained in the minimal

set of absorbing sets that is robust to a single mutation. Such a set is called a recurrent set.

In our main result we show that the symmetric Cournot Nash equilibrium, the only absorbing

state in which optimizers are as well off as imitators, is not the unique stochastically stable

state. Moreover, we also show in an example that there are assumptions on the parameters of

the game such that the entire set of Pseudo-Stackelberg states is the unique recurrent set. In

any case, the support of the unique limiting invariant distribution implies that imitators are

strictly better off than are optimizers.

Apart from a pure theoretical interest, the analysis presented here is of practical relevance

since imitation, in the form of “benchmarking” and “best practices”, is widely used in to-

day’s management. Given that such imitative behavior exists among other decision rules in

today’s business practice, it is only natural for theorists to investigate imitation as well as the
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heterogeneity of decision rules.

Conlisk (1980) also analyzes a dynamic model with imitators and optimizers. However, he

takes the cost of optimizing into account, and this cost is a key for obtaining his results. Our

result appears to be stronger since in our work imitators are better off than are optimizers even

without any optimizers’ cost of sophistication. Conlisk’s (1980) result has a similar flavor to

Stahl (1993), who concludes using a different approach that dumb players may never die out

and smart players with maintenance costs may vanish. Using a different approach, Banerjee and

Weibull (1995) study optimizers and players that are programmed to actions in evolutionary

symmetric 2-player games. They show that long run resting states hold a positive share of

programmed players. There has been extensive research on imitation in game theory. For

instance, Schlag (1998) analyzes various imitation rules in multi-armed bandit problems and

shows that a certain type of imitation rule is optimal. Gale and Rosenthal (1999) study imitators

and experimenters where former mimic to a certain extent the population average. Roughly

they find that the population converges to the Nash equilibrium in various games with a unique

equilibrium, but note that their imitators differ from ours. Kaarbøe and Tieman (1999) study

imitators and myopic optimizers in strict supermodular games and find among others that the

set of absorbing sets corresponds to the set of Nash equilibria. This is in contrast with the strict

submodular game studied in our paper, for which there are also other absorbing states than the

Nash equilibrium. Research on Friedman’s profit maximization hypothesis has been done for

example by Blume and Easley (2002) and Sandroni (2000), who find support for it in a general

equilibrium context. Dutta and Radner (1999) show in a model with entrepreneurs and capital

markets that other behaviors than profit maximization may survive. The present paper is also

related to the literature on interdependent preferences. In particular, Koçkesen, Ok, and Sethi

(2000) found that players who also care about relative payoffs may have a strategic advantage

in a class of symmetric games including the Cournot game. Note that imitators do care about

relative payoffs since their decision rule involves a comparison of profits among firms.

The paper is organized as follows: Section 2 introduces the model and the decision rules.

It is followed in section 3 by a discussion of candidates for solutions. Section 4 presents the

results, which are subsequently discussed in the concluding section 5. All proofs are contained

in the appendix. The required mathematical tools are introduced along the way.
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2 Basic Model and Decision Rules

This section outlines the basic model in the spirit of Cournot (1838), pp. 79. Consider a finite

number of firms N = {1, 2, ..., n} and a market for a homogeneous good. Inverse demand is

given by a function p : R+ −→ R+. For every total output quantity Q ∈ R+ this function

specifies the market clearing price p(Q). By the assumption of symmetry, every firm i ∈ N

faces the same demand and possesses the same production technology. Hence the cost functions

c : R+ −→ R+ are identical. For each firm, it is a function of the quantity qi it produces. Let

the total output over all firms be Q :=
∑

i∈N qi. For later analysis, it will be convenient to

write profits as a function of the individual quantity and the total quantity,

πi(qi, Q) := qip(Q)− c(qi), for all i ∈ N. (1)

We restrict our analysis to a symmetric oligopoly since imitation is more reasonable if firms

face similar conditions of production.3

For technical reasons we assume that firms choose output from a common finite grid Γ =

{0, δ, 2δ, ..., νδ}, where both δ > 0 and ν ∈ N are arbitrary. This turns the strategic situation

into a game with a finite action space and allows us to focus on finite Markov chains later in

the dynamic analysis.

In the proofs of our results, the following observation will be crucial. This observation

does not require any additional assumptions (other than Assumption 1) it is a property of the

Cournot oligopoly. Therefore we introduce it here instead later in the text.

Definition 1 (Submodularity) πi is submodular in (qi, Q) on Γ×{0, δ, 2δ, ..., nνδ} if for all

q′′i > q′i, Q′′ > Q′,

πi(q′′i , Q′)− πi(q′i, Q
′) ≥ πi(q′′i , Q′′)− πi(q′i, Q

′′). (2)

It is strictly submodular if Inequality (2) holds strictly.

Assumption 1 (Strictly Decreasing Demand) For all Q,Q′ ∈ {0, δ, 2δ, ..., nνδ}, if Q′ >

Q then p(Q′) < p(Q).

3Our model could be extended to asymmetric settings, in which each firm may imitate opponents that are

most similar to her in terms of the payoff function.
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Lemma 1 By Assumption 1, πi is strictly submodular in (qi, Q) on Γ × {0, δ, 2δ, ..., nνδ} for

all i ∈ N .

If Assumption 1 is modified such that p is weakly decreasing, then πi is submodular in

(qi, Q) on Γ× {0, δ, 2δ, ..., nνδ}.

Remark 1 (Quasisubmodularity) Strict submodularity of πi implies that πi is strictly qua-

sisubmodular in (qi, Q) on Γ × {0, δ, 2δ, ..., nνδ} (but not vice versa), i.e., for all q′′i > q′i,

Q′′ > Q′,

πi(q′′i , Q′′) ≥ πi(q′i, Q
′′) =⇒ πi(q′′i , Q′) > πi(q′i, Q

′), (3)

πi(q′i, Q
′) ≥ πi(q′′i , Q′) =⇒ πi(q′i, Q

′′) > πi(q′′i , Q′′). (4)

The intuition for quasisubmodularity is that if a firm with a higher quantity has a higher profit

than a firm with a lower quantity for a given market quantity, then the first firm has also

a higher profit for a lower market quantity. That is, in some cases the property allows us to

compare profits of firms operating with different quantities in the same market. The observation

that the payoff function is quasisubmodular in the individual quantity and the total output is

used later in the proofs repeatedly. Note that this property follows directly by the structure of

the Cournot game. No additional assumptions on the game have to be imposed.

The dynamics of the system is assumed to proceed in discrete time, indexed by t = 0, 1, 2, ....

At each t the state of the system is identified by the current output schedule

ω(t) = (q1(t), q2(t), ..., qn(t)).

Thus, the state space of the system is identical to Γn. Associated with any such state ω(t) ∈ Γn

is the induced profit profile π(t) = (π1(t), π2(t), ..., πn(t)) at t, defined by

πi(t) := qi(t)p(Q(t))− c(qi(t)), for all i ∈ N. (5)

At every time t = 1, 2, ..., each firm i ∈ N has regardless of history an i.i.d. probability

ρ ∈ (0, 1) of being able to revise her former output qi(t − 1). Note that since 0 < ρ < 1,

the process has inertia. That is, not every period all firms adjust output. The idea is that it

is too costly to always adjust output. Moreover, it will become clear later on that with this

assumption we rule out cycles of the best response dynamics.
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The finite population of firms N is partitioned into two subpopulations of imitators and

optimizers respectively. Let I be the subset of N that contains all imitators. The fraction of

imitators in the population is denoted by θ = ]I
]N . The firms in the two subpopulations are

characterized by different decision rules. The idea of a decision rule is appropriately summarized

by Nelson and Winter (1982, p. 165) who write that “...at any time, firms in an industry can be

viewed as operating with a set of techniques and decision rules (routines), keyed to conditions

external to the firm ... and to various internal state conditions...” Conventional economics

focuses mainly on profit maximization. However, “benchmarking”, “best practices”, and other

imitation rules can be found in today’s management practice.

Definition 2 (Imitator) An imitator i ∈ I chooses with full support from the set

DI(t− 1) := {q ∈ Γ : ∃j ∈ N s.t. q = qj(t− 1) and ∀k ∈ N,πj(t− 1) ≥ πk(t− 1)}. (6)

The imitation rule is explained as follows: Every period there exists a firm j that had the

highest profit in the previous period. An imitator imitates the previous period’s quantity of

firm j. It is the same imitation rule as used by Vega-Redondo (1997).

Definition 3 (Optimizer) An optimizer i ∈ N\I chooses from the set

DO(t− 1) := {q ∈ Γ : q ∈ b(q−i(t− 1))}, (7)

with q−i :=
∑

j∈N\{i} qj and b : {0, δ, 2δ, ..., (n − 1)νδ} −→ Γ is the firm’s best response corre-

spondence defined by

b(q−i) := {q′i ∈ Γ : q′ip(q−i + q′i)− c(q′i) ≥ qip(q−i + qi)− c(qi),∀qi ∈ Γ}. (8)

Definition 3 means that an optimizer sets an output level that is a best response to the op-

ponents’ total output in the previous period. In the last section we discuss how our results

generalize to more sophisticated optimizers.

It is assumed that initially in t = 0 every firm starts with an arbitrary output within the

admissible domain Γ.

The process induced by the decision rules is a n-vector discrete time finite Markov chain

with stationary transition probabilities. Finiteness is provided by the finite state space Γn. It
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is a vector process since each ω is a vector in Γn. Due to the myopic decision rules, the process

has the Markov property, namely prob{ω(t+1)|ω(t), ω(t−1), ..., ω(t−k)} = prob{ω(t+1)|ω(t)}.

That is, ω(t) contains all the information needed to determine transition probabilities. Since

the decision rules themselves do not change over time, the process has stationary transition

probabilities prob{ω′(t + 1)|ω(t)} = prob{ω′(t + k + 1)|ω(t + k)}, k = 0, 1, ...

The Markov operator is defined in the standard way as the ]Γn× ]Γn-transition probability

matrix P = (pωω′)ω,ω′∈Γn with pωω′ = prob{ω′|ω}, pωω′ ≥ 0, ω, ω′ ∈ Γn and
∑

ω′∈Γn pωω′ = 1,

for all ω ∈ Γn. That is, the element pωω′ in the transition probability matrix P is the conditional

probability that the state is in ω′ at t+1 given that it is in ω at t. According to this definition of

a Markov transition matrix, probability distributions over states are represented by row vectors.

At every output revision opportunity t, each firm follows her decision rule with probability

(1 − ε), ε ∈ (0, a], a < 1, and with probability ε she randomizes with full support Γ. As a

matter of convention, we call a firm mutating at t if she randomizes with full support at t. The

noise has a convenient technical property: Let P (ε) be the Markov chain P perturbed with

the level of noise ε. P (ε) is regularly perturbed (Young, 1993, p. 70), i.e., it is an ergodic and

irreducible Markov chain on Γn. This implies that there exists a unique invariant distribution

ϕ(ε) on Γn (for standard results on Markov processes see for example Masaaki, 1997). To put it

more intuitively, the noise makes any state accessible from any other state in finite time. This

is sufficient for the existence of the unique invariant distribution.

The following analysis focuses on the unique limiting invariant distribution ϕ∗ of P defined

by ϕ(ε)P (ε) = ϕ(ε), ϕ∗ := limε→0 ϕ(ε) and ϕ∗P = ϕ∗. In particular, the focus is on how

to characterize this probability vector since it provides a description of the long run output

behavior of the market when the noise goes to zero. For that reason we will refer to it also

as the long run distribution. It determines the average proportion of time spent in each state

of the state space in the long run, or expressed differently, the relative frequency of a state’s

appearance as the time goes to infinity (see Fudenberg and Levine, 1998, or Samuelson, 1997,

for an introduction and discussion of this method).
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3 Candidates for Solutions

In this section we informally discuss candidates for solutions. By standard results (e.g. see

Samuelson, 1997, Proposition 7.4) we know that the support of the long run distribution can

only contain states that are elements of absorbing sets of the unperturbed process. Therefore

we consider first the case of no noise, ε = 0, and define an absorbing set A ⊆ Γn in the standard

way by

(i) for all ω ∈ A and for all ω′ /∈ A, pωω′ = 0; and

(ii) for all ω, ω′ ∈ A, there exists a finite m ∈ N s.t. p
(m)
ωω′ > 0, p

(m)
ωω′ being the m-step transition

probability from ω to ω′.

Vega-Redondo (1997) showed that a homogeneous population of imitators converges to the

competitive solution.

Definition 4 (Competitive Solution) The competitive solution ω∗ = (q∗1, ..., q
∗
n) is defined

by for all i ∈ N ,

q∗i p(Q∗)− c(q∗i ) ≥ qip(Q∗)− c(qi), for all qi ∈ Γ, with Q∗ :=
∑
i∈N

q∗i . (9)

Can the competitive solution be an absorbing state given a heterogeneous population of imita-

tors and optimizers? Suppose that the competitive solution exists uniquely in the grid. Consider

first the imitators. Every firm plays its share of the competitive solution. By symmetry all

firms make identical profits. Thus nobody is better off and imitators have no reason to deviate

from their output. However, since n is finite, optimizers do not generally play a best response.

Each optimizer’s share of the competitive output is larger than the best response. Hence they

will deviate to the best response leading to a state different from the competitive solution. It

follows that the competitive solution is not an absorbing state.

Consider now a state where every firm sets its symmetric Cournot Nash equilibrium output

assuming that it exists in the grid Γ and that it is unique.

Definition 5 (Cournot Nash Equilibrium) A combination of output strategies ω◦ = (q◦1, q
◦
2, ..., q

◦
n) ∈

Γn is a Cournot Nash equilibrium if for all i ∈ N ,

q◦i p(Q◦)− c(q◦i ) ≥ qip(Q◦ − q◦i + qi)− c(qi), for all qi ∈ Γ. (10)
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It is known that in Cournot oligopoly with a homogeneous population of optimizers, the se-

quential best response process converges under certain conditions to Cournot Nash equilibrium.

In a heterogeneous population, imitators do not deviate since all firms set identical outputs and

earn identical profits. Optimizers do not deviate too since they set their best response quanti-

ties anyway. Thus the symmetric Cournot Nash equilibrium is an absorbing state. However, is

it the unique absorbing state? Consider the following state:4

Definition 6 (Pseudo-Stackelberg Solution) The Pseudo-Stackelberg solution is a state

ωS = (q1, ..., qθn, qθn+1, ..., qn) that satisfies the following conditions:

(i) for all i ∈ I, qi = qS s.t.

qSp(θnqS + (1− θ)nqD)− c(qS) > qp(θnqS + (1− θ)nqD)− c(q), for all q 6= qS , (11)

(ii) for all i ∈ N\I, qi = qD,

qD := b(θnqS + ((1− θ)n− 1)qD). (12)

In the Pseudo-Stackelberg solution all imitators set identical outputs. This output maximizes

profits of imitators given that they do not perceive any influence on the price and the optimizers

set identical best responses. Clearly, this outcome has features of the competitive solution (for

imitators) and the Cournot Nash equilibrium (for optimizers). If θ = 1, then it is identical to

the competitive solution since Inequality (12) becomes vacuous. If θ = 0, then it is identical

to the Cournot Nash equilibrium since Inequality (11) becomes vacuous. We call this outcome

the Pseudo-Stackelberg Solution because of its obvious similarities and differences to the notion

of Stackelberg solution in the literature. Analogous to the profits of von Stackelberg’s (1934)

independent and dependent firms, every imitator is strictly better off than is every optimizer

since Inequality (11) holds for all q ∈ Γ, q 6= qS , hence also for qD 6= qS . I.e., it follows that if

qD 6= qS then5

πi(qS , qD, n, θ) > πj(qS , qD, n, θ), for all i ∈ I and for all j ∈ N\I.

4We assume here that the best response is unique. The uniqueness condition later in Assumption 3 ensures

that the best response to the opponents’ output is indeed a singleton (see Lemma 2 in the appendix).

5For notational convenience we write πi(q, q
′, n, θ) for πi(q, θnq+(1−θ)nq′) if i ∈ I, or for πi(q

′, θnq+(1−θ)nq′)

if i ∈ N\I.
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Every imitator is strictly better off than every optimizer.

Why is the Pseudo-Stackelberg solution an absorbing state? Assume that the Pseudo-

Stackelberg solution exists in Γn. Consider first the imitators: all imitators set identical outputs

and each of them is strictly better off than is any optimizer. Hence an imitator has no reason

to deviate from her output. Optimizers do not deviate too from their output since each of them

plays the best response. Thus the Pseudo-Stackelberg solution is an absorbing state.

Existence of Pseudo-Stackelberg solution is analogous to existence of competitive solution

in Vega-Redondo (1997) and the existence of Cournot Nash equilibrium. Standard assumptions

on costs, i.e., strictly increasing marginal costs and small fixed costs, and Assumption 3 in the

next section suffice. By the strict Inequality (11), quasisubmodularity, and Assumption 3 in

the next section, the Pseudo-Stackelberg solution must be unique if it exists (see Lemma 2 (vi)

in the appendix).

Example 1 (Pseudo-Stackelberg Solution) Suppose n = 4 and θ = 1
2 such that we have

two imitators and two optimizer. Inverse demand is given by p(q1 +q2 +q3 +q4) = 10−q1−q2−

q3−q4, where q1, q2 are the outputs of the imitators and q3, q4 are the outputs of the optimizers.

Costs are strictly convex and identically for all firms c(qi) = 1
2q2

i , i ∈ {1, 2, 3, 4}. Each optimizer

maximizes individually profits according to the Cournot conjecture as follows (since the setting

is symmetric qI denotes the identical output of either imitator): (10−2qI−q3−q4)q3− 1
2q2

3 −→

maxq3, which leads to b3(2qI + q4) = 10−2qI−q4

3 . Substituting optimizer 4’s best response into

optimizer 3’s best response, we get an optimizer’s symmetric equilibrium quantity given the

any imitators’ symmetric quantity, qD = 5−qI

2 . Each imitator maximizes profits taking the

price p̄ fixed (as indicated by p̄), i.e., for i = 1, 2, p̄qi − 1
2q2

i −→ maxqi, which leads to price

equals marginal cost, p̄ = qi =: qI . Substituting inverse demand for p̄ taking into account the

optimizers’ equilibrium quantities leads to qS = 5
2 . It follows that qD = 5

4 , πi = 100
32 for i = 1, 2

and πi = 75
32 for i = 3, 4. Note that each imitator sets a higher output than each optimizer.

Moreover, each imitator is strictly better off than each optimizer.

Previous arguments suggest already that the Cournot Nash equilibrium and the Pseudo-

Stackelberg solution may not be the only candidates for solutions. To facilitate the analysis we

11



define the following set of states:6

Definition 7 (Pseudo-Stackelberg States) The set of Pseudo-Stackelberg states H consists

of all states ω = (q1, ..., qθn, qθn+1, ..., qn) ∈ Γn that satisfy the following properties:

(i) qi = qI , for all i ∈ I and some qI ∈ Γ,

(ii) qi = qD, for all i ∈ N\I, qD := b(θnqI + ((1− θ)n− 1)qD),

(iii) πi(qI , qD, n, θ) ≥ πj(qI , qD, n, θ), for all i ∈ I and all j ∈ N \ I,

(iv) πi(qI , qD, n, θ) = πj(qI , qD, n, θ) for all i ∈ I and all j ∈ N \ I, iff qI = qD.

Each Pseudo-Stackelberg state is an absorbing state. If condition (i) is not satisfied, then

an imitator may mimic a different output decision from another imitator if the latter happens

to have higher profits. If condition (ii) is not satisfied, all optimizers that don’t play a best

response will have an incentive to deviate. If condition (iii) is not satisfied, imitators will mimic

optimizers. To understand the motivation of (iv) note that by symmetry, qI = qD implies

πi(qD, qI , n, θ) = πj(qD, qI , n, θ) for all i ∈ I and all j ∈ N \ I. To see the purpose of the other

direction note that if πi(qD, qI , n, θ) = πj(qD, qI , n, θ) for some i ∈ I and some j ∈ N \ I, and

qI 6= qD then some imitators would be indifferent between qI and qD, thus adding a source of

instability.

In each Pseudo-Stackelberg state, imitators are weakly better off than are optimizers. In

fact, imitators are strictly better off in any Pseudo-Stackelberg state except the Cournot Nash

equilibrium, the only state where optimizers are as well off as imitators.

It is clear that the set of Pseudo-Stackelberg states is nonempty since the Cournot Nash

equilibrium - assume that it exists - belongs to it. Moreover, it is easy to see that the competitive

solution is not a Pseudo-Stackelberg state since optimizers do not set a best response in the

competitive solution (unless n →∞ or θ = 1). Finally, if marginal costs are strictly increasing

then the Pseudo-Stackelberg solution is a Pseudo-Stackelberg state since qS > qD are such that

πi(qS , qD, θ, n) > πj(qS , qD, θ, n) for all i ∈ I and all j ∈ N \ I. Thus properties (i) to (iv) of

Definition 7 of Pseudo-Stackelberg states are satisfied.

6Again, we assume here that the best response is unique. The uniqueness condition later in Assumption 3

ensures that the best response to the opponents’ output is indeed a singleton (see Lemma 2 in the appendix).
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Can there be other absorbing sets like cycles? Following example shows that there are cases

where we can answer this question in the affirmative.

Example 2 (Cycle) Consider three firms, n = 3, two imitators and one optimizer, θ = 2
3 ,

linear demand p(Q) = 10 − Q, and fixed cost c(qi) = 85
2 , and let Γ = {0, 5}. It is straight

forward to compute that the monopoly output, qM = b(0) = 5. Moreover, b(2 ·5) = 0. The profit

from setting the monopoly output when one other firm sets the monopoly output too is strictly

negative, π(qM , 2qM ) = −5
2 . The profit of a monopolist is strictly positive, π(qM , qM ) = 5

2 .

Consider the state in which imitators play zero output and the optimizer the monopoly output,

ω = (0, 0, 5). Clearly, while the optimizer plays the best response, the imitators are worse

off. Hence, ω is not a Pseudo-Stackelberg state. Imitators have an incentive to adjust. In

particular, they will mimic the optimizer and subsequently the optimizer will adjust to that.

Thus we will reach a state ω′ = (5, 5, 0). Again, the optimizer plays the best response while the

imitators are worse off. It is not a Pseudo-Stackelberg state and imitators have an incentive

to adjust quantities by mimicking the optimizer. After the optimizer adjusts, we reach again

ω. Note that inertia does not destroy such cycle. That is, it is still true that from ω we reach

after a couple of periods ω′ and vice versa. In fact, this game has no Pseudo-Stackelberg state,

Pseudo-Stackelberg solution nor symmetric pure strategy Cournot Nash equilibrium.

Example 2 appears to be contrived by the restricted action space. But even with a finer grid

there are less trivial cycles. In order to rule out any cycles, we impose following assumption:

Assumption 2 Let qS denote the imitators output in the Pseudo-Stackelberg solution and let

q(1−θ)n be the unique symmetric (1− θ)n-firm Cournot Nash equilibrium output, i.e., q(1−θ)n =

b(((1− θ)n− 1)q(1−θ)n). We assume that qS > q(1−θ)n.

This assumption ensures that when imitators mimic identical best responses of optimizers, they

will eventually play a Pseudo-Stackelberg state quantity, and thus no cycles can arise. It is a

strong assumption, but it is for instance satisfied in the standard Cournot quadropoly with

linear demand and convex cost of Example 1.7 However, in Example 4 we show that this

assumption is not necessary for our results.

7This would be enough for our aim of showing that there is an interesting class of counter-examples to the

proposition that optimizers are better off than non-optimizers.
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4 Results

Before we state and prove the results in this section, we need to state formally two assumptions.

As before, let q−i denote the total output of all firms but i.

Assumption 3 For q′−i < q−i, q′ ∈ b(q′−i), q ∈ b(q−i), we have

0 >
q′ − q

q′−i − q−i
> −1. (13)

This assumption states that the slopes of the best response correspondence are strictly

lower than 0 and strictly larger than −1. Former implies by Dubey, Haimanko, and Zapechel-

nyuk (2005) that the game is a pseudo-potential game and has a Cournot Nash equilibrium.

Moreover, since it is a pseudo-potential game there exists a finite improvement path such that

sequential best response converges to the Cournot Nash equilibrium. Note, that the assumption

of the existence of a pseudo-potential is weaker than of an exact, weighted or ordinal potential

(Monderer and Shapley, 1996). Most Cournot games in the literature are games with strategic

substitutes and thus pseudo-potential games.

The assumption that the slopes of the best response correspondence are strictly larger than

−1 is made in order to obtain an unique best response. Vives (2000, Theorem 2.8) shows in a

simple proof that if a Cournot Nash equilibrium exists and the above assumption holds, then

it must be unique. Note that the condition is equivalent to if q′−i < q−i then q′−i + q′ < q−i + q.

It means that total output is strictly increasing in the opponents’ output when the player

sets best responses. Since we have a symmetric game, the uniqueness condition implies that

the unique Cournot Nash equilibrium is symmetric (Vives, 2000, Remark 17) and that the

best response correspondence is in fact a function (see Vives, 2000, p. 43). In Lemma 2 we

show that by Assumptions 3, total output is increasing in imitators output, and that if the

Pseudo-Stackelberg solution exists, it must be unique.

The next assumption is very useful to compare in some cases profits of players with different

output facing the same market output. Together with quasisubmodularity it allows us also to

compare in some cases profits of players with different output when we change the market

output.
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Assumption 4 (Quasiconcavity) Let πi be quasiconcave in qi on Γ for all Q ∈ {0, δ, 2δ, ..., nνδ},

i.e., for any qi, q
′
i, q

′′
i ∈ Γ with q′i ≤ qi ≤ q′′i ,

πi(qi, Q) ≥ min{πi(q′i, Q), π(q′′i , Q)}, for all Q ∈ {0, δ, 2δ, ..., nνδ}. (14)

In Lemma 3 in the appendix we show, that this assumption together with quasisubmodularity

and Assumption 3 implies that for any quantity between the Cournot Nash equilibrium and

the Pseudo-Stackelberg solution, there is a Pseudo-Stackelberg state in which imitators play

symmetrically this quantity.

We are finally ready to state our results. Let Z be the collection of all absorbing sets in Γn.

Recall that H is the set of all Pseudo-Stackelberg states (Definition 7).

Theorem 1 Let ε = 0 and suppose previous assumptions hold. Then Z = {{ω} : ω ∈ H}.

In previous section, we have argued already that each Pseudo-Stackelberg state must be an

absorbing set. To show that every absorbing set is a Pseudo-Stackelberg state, we use Assump-

tions 2 and 3 to show that there aren’t any cycles and any adjustment process converges to

a Pseudo-Stackelberg state. Such adjustment process involves profit comparisons by imitators

for which we make use quasisubmodularity and quasiconcavity.

Let S denote the support of the long run distribution ϕ∗. By standard results, Theorem 1

implies that S ⊆ H.

Corollary 1 Under previous assumptions, in the long run imitators are weakly better off than

are optimizers.

The question we answer next is whether the noise selects among absorbing states.

Theorem 2 If θ ∈ (0, 1], then under previous assumptions it is never true that S = {ω◦}.

This result follows from Theorem 1 above and Lemmata 4 and 5 in the appendix. In particular,

we show in Lemma 5 that the Pseudo-Stackelberg solution can be reached from any Pseudo-

Stackelberg state by just one suitable mutation followed by the unperturbed adjustment process.

This is so because an imitator when switching to the output of the Pseudo-Stackelberg solution
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may decrease her own payoff but decreases the payoffs of any other players even more. By

Lemma 4, the instability against a single mutation is sufficient to conclude that the Cournot

Nash equilibrium can never be the unique long run outcome. Note that the Cournot Nash

equilibrium is the only Pseudo-Stackelberg state in which optimizers are as well off as are

imitators. It is worth to put following implication on record:

Corollary 2 Under previous assumptions, in the long run imitators are strictly better off than

are optimizers.

Since the Cournot state ω◦, the only state in which optimizers are as well off as imitators, is

never the unique long run outcome, the long run distribution must put strict positive weight

on some other state in the non-singleton set of Pseudo-Stackelberg states. Hence, in the long

run imitators are strictly better off than are optimizers.

Theorem 2 does not exclude any absorbing states from the support of the long run distrib-

ution. Since in Lemma 5, which is used to prove Theorem 2, the Pseudo-Stackelberg solution

figures prominently, one may conjecture that the Pseudo-Stackelberg solution is the unique long

run outcome. This would be also analogous to Vega-Redondo’s (1997) competitive solution as

long run outcome in a homogeneous population of imitators. It turns out that this conjecture

is false. An imitator deviating from the Pseudo-Stackelberg solution may become worse off

than others and consequently should switch back. However, in the meantime, some optimizers

may have already adjusted their best responses. This adjustment may lead temporarily to

higher profits of those optimizers. Subsequently, imitators may mimic those optimizers such

that the adjustment process may lead to another Pseudo-Stackelberg state. In fact, we prove

the following result:

Example 3 Consider for example p(Q) = 10−Q, c(qi) = 1000
501 q2

i +1, θ = 0.2, δ = 0.001, n = 5

and a sufficiently large ν. Then S = H, i.e., the support of the long run distribution comprises

of the entire set of Pseudo-Stackelberg states (see appendix).

Above example shows that one can find reasonable assumptions on functions p and c and

parameters θ, δ, ν, and n that are sufficient for the entire set of Pseudo-Stackelberg states

to be the support of the unique limiting invariant distribution. While the example appears
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rather standard (i.e., linear demand, convex cost), it takes quite a bit of proof to obtain the

result (see appendix). To prove the example, we show first that we can find a sequence of

single mutations by which we can move step-wise through the set of Pseudo-Stackelberg states,

starting from the Pseudo-Stackelberg state with the lowest (resp. largest) output of imitators

up (resp. down) to Pseudo-Stackelberg solution (Lemma 6). For sufficiently large ν we can also

show that the Pseudo-Stackelberg solution can be destabilized by a sufficiently large mutation

that leads subsequently back to either the Pseudo-Stackelberg state with the largest or lowest

output of imitators (Lemma 8 and 9). Thus the assumptions in the example are sufficient

to show that any Pseudo-Stackelberg state can be connected to any other Pseudo-Stackelberg

state by a sequence of single suitable mutations. Hence, we can conclude by Lemma 4 that the

set of Pseudo-Stackelberg states is the unique recurrent set and the support of the long run

distribution.

Note that we obtain known results for homogeneous populations of either imitators or

optimizers as extreme cases. If there is a homogeneous population of optimizers (θ = 0),

then the Pseudo-Stackelberg solution is the Cournot Nash equilibrium. In this case, the set of

Pseudo-Stackelberg states is a singleton containing the Cournot Nash equilibrium only. Hence

Theorem 1 implies that the Cournot Nash equilibrium is the unique absorbing set. Mutations do

not matter since mutations must also select the unique absorbing set. If there is a homogeneous

population of imitators (θ = 1), then the Pseudo-Stackelberg solution is equivalent to the

competitive solution. The proof of Lemma 5 in the appendix implies Vega-Redondo’s (1997)

result.8 I.e., the competitive solution is the unique long run outcome.

Following simple example illustrates a process with mutations and adjustments.

Example 4 Suppose n = 3 and θ = 2
3 such that we have two imitators and one optimizer.

Inverse demand is given by p(q0 + q1 + q2) = 10 − q0 − q1 − q2 where q0 is the output of the

optimizer and q1, q2 are the outputs of the first and second imitator respectively. Costs are

strictly convex and identically for all firms, c(qi) = 1
2q2

i , i ∈ {0, 1, 2}. The Pseudo-Stackelberg

solution can be computed as qS = 20
7 , qD = 10

7 , πi = 200
49 for i = 1, 2 and π0 = 150

49 . Note

that the monopoly output qM = 10
3 > qS. Hence, Assumption 2 is violated. Nevertheless, there

8In this case, Inequality (15) holds also for k = n− 1. Thus more than one mutation is needed to escape the

competitive solution.
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Figure 1: Process in Example 2
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exists no cycle. To see this note that any best response by the optimizer to some output of

imitators is below the Pseudo-Stackelberg state with the largest symmetric output of imitators.

Moreover, observe that the symmetric quantities of an imitator in any Pseudo-Stackelberg states

are bounded above by the monopoly output and below by the Cournot Nash equilibrium output.

Suppose that the optimizer is better off then any imitator at some state along the cycle. Then

imitators mimic the optimizer. If the optimizer’s quantity was between the largest Pseudo-

Stackelberg state and the Cournot Nash equilibrium state, then we reach a Pseudo-Stackelberg

state after the optimizer adjusts too. If the optimizer’s quantity was below the Cournot Nash

equilibrium, then the optimizer will subsequently adjust to a output above the Cournot Nash

equilibrium output but below the monopoly output. Since this is not a Pseudo-Stackelberg state,

imitators must be worse off. Consequently they will mimic the optimizer. Thus they reach a

Pseudo-Stackelberg state quantity. After the optimizer adjusts in the next step, we must have

reached Pseudo-Stackelberg state. That is, if the process starts outside the Pseudo-Stackelberg

state it leads to a Pseudo-Stackelberg state. This example shows that Assumption 2 is not

necessary.

Figure 1 below illustrates an example of a process with mutations and adjustments. The

upper graph plots the quantities over time, the lower one the profits. At t = 1 we start in an

arbitrary starting state. It happens that the optimizer makes the highest profit. Thus imitators

mimic in period 2. The optimizer adjusts in period 3, and we reach an absorbing Pseudo-

Stackelberg state, in which the optimizer is worse off than is any imitator. At period 4, imitator

1 innovates with the quantity of the Pseudo-Stackelberg solution. Imitator 2 mimics imitator 1

and the optimizer adjusts in period 5. The optimizer adjusts again in period 6 and we reach the

Pseudo-Stackelberg solution, which is an absorbing state. In the following periods we illustrate

that also the Pseudo-Stackelberg solution can be destabilized by single large mutation and how

we reach another absorbing Pseudo-Stackelberg state in period 12.

5 Discussion

The significance of the previous results stems from the following conclusion: If imitators are

strictly better off than are optimizers, then any payoff monotone selection dynamics (see for

example Weibull, 1995) on the long run profits selects imitators in favor of optimizers. That
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is, an evolutionary dynamics reflecting the paradigm of “survival of the fittest” will show that

imitators drive optimizers out of the market. Thus Friedman’s (1953) conjecture is false in

the oldest formal model of market competition in economics, the Cournot oligopoly (Cournot,

1838). In a working paper version (Schipper, 2002) we make this argument precise by showing

how imitators drive out optimizers in the example of the discrete time finite population repli-

cator dynamics on the long run profits. The intuition there is that firms enter each market day

with a fixed decision rule and the market day takes as long as the long run outcome of outputs

to emerge. Before markets are reopened the next day, the “evolutionary hand” chooses for each

firm the decision rule selecting effectively among firms. Alternatively, one can assume that at

the end of each day, the management of every firm holds a strategy meeting to decide on its

decision rule for the next day according to the relative performance of their current decision

rule. The market sessions are repeated day for day. One can show that a homogeneous popula-

tion of imitators is the unique asymptotically stable population state. From this evolutionary

prospectus we can not assume in economics that firms behave as if they maximize absolute

profits.9 After all, Vega-Redondo’s (1997) imitators are supported by those evolutionary argu-

ments. The same holds for Alchian’s (1950) suggestion since imitators want to be as well off as

others, which is closely related to relative profit maximization.

There are a few critiques we like to address. First, one may criticize the limitations of the

optimizers. Playing myopic best response is not really sophisticated optimization. Consider

what happens if we make the optimizers more and more sophisticated. Suppose first that we

would allow optimizers to take a longer history of output decisions into account when deciding

which output level to set. Then results are not likely to change but convergence may be slower

since the optimizers’ adjustment process becomes similar to fictitious play.10 Second, suppose

that optimizers are able forecast the behavior of the imitators. What does it help them if

imitators set some large output, which happens in finite time by the noise assumed? All the

optimizers can do is playing best responses against their beliefs leading them to play a smaller

output with smaller profits than imitators. Even if they could temporarily “low-ball” the

9Alternatively, one may want to extend the Markov chain to a product set of the output space and the decision

rule space. If we assume that the probability of revising the decision rule is sufficiently lower than the probability

of adjusting the output, then the same result will emerge. This is followed up recently by Thijssen (2005).

10Regarding fictitious play refer for example to Fudenberg and Levine (1998), pp. 29.
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imitators with some quantities, imitators would erase any profit advantage by mimicking those

quantities such that they never shows up in the support of the long run distribution.

In this context it is natural to ask, why optimizers do not just mimic imitators? Suppose

they do. Then all firms behave as if they are imitators and Vega-Redondo’s (1997) result of

a competitive solution would emerge. However, in the competitive solution every optimizer

has an incentive to deviate to its lower best response output since it would increase its profit

although it increases the profits of imitators even more. The imitation rule is a commitment

technology, which the optimizer does not like to adopt because the optimizer is worse off in

absolute terms when adopting the technology although it can improve its relative standing.

Note that our result is likely to break down if we make imitators more smart. I.e., consider

imitators that take a longer memory than just one period into account. Then they may re-

member that they decreased their absolute profits (although they may increased their relative

profits) and return to their former output. Alós-Ferrer (2004) shows in Vega-Redondo’s (1997)

framework that the long run outputs of imitators with longer (but finite) memory converge

to a set of monomorphic states between the Cournot Nash equilibrium and the competitive

solution. An analogous result is likely to hold in our setting with a heterogeneous population of

optimizers and imitators with a longer memory. However, our arguments in this article suggest

that similar to optimizers, such imitators with longer memory may do worse against imitators

with just a single-period memory. Hence, long memory imitators may not survive when facing

single period memory imitators (as in this article) in Cournot games.

What does it take to make optimizers better off than imitators in our setting? A possible

answer to this question is pursued by a follow up paper by Hehenkamp and Kaarbøe (2005).

They show in a special example of a two-player game with strategic substitutes that if para-

meters of the game (like the demand) change as fast as players can make decisions, then it is

possible that optimizers are better off than are imitators if the strategic interdependencies are

sufficiently weak. It is clear from our analysis that if the game changes less rapidly such that

long run outcomes can emerge sufficiently often in between, then imitators will be still better

off than optimizers in the long run. Moreover, one can envision an evolutionary stable speed of

changing decisions in which sufficiently quick imitators (relative to the speed of change of the

environment) would win against optimizer of any speed.
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A second critique could aim at the semantics of profit optimization. Obviously in my setting

the optimizers are absolute profit maximizers in regard to their objective but not in terms of

the result. This highlights the ambiguity of profit maximization in Cournot oligopoly. Aiming

to maximize absolute profit may not be the way to actually achieve the highest relative profit.

We show that the standard text book understanding of profit maximizing firms can not be

supported by evolutionary arguments in Cournot oligopoly. Our awareness of the ambiguity of

“profit maximization” in a class of games is an insight gained from this analysis.

A third possible critique point is of a more technical nature. We use the concept of stochastic

stability developed by Freidlin and Wentzel (1984) as well as Kandori, Rob, and Mailath (1993)

and Young (1993). In many applications of this concept in literature (for a partial review of the

increasing literature using this method see for example Fudenberg and Levine, 1998, chapter

5), the characterization of the long run distribution involves a comparison of a multiplicity of

highly unlikely mutations. A meaningful application of this method must address the question

about the speed of convergence. How long does it take for the long run outcome to emerge?

The advantage of applying the concept of recurrent set by Nöldeke and Samuelson (1993,

1997) and Samuelson (1994) is that one can conclude immediately that just a single suitable

mutations is required to trigger the long run outcome. That is, in our model convergence to

the long run outcome is comparatively rather fast. In Theorem 2, we show that the Cournot

Nash equilibrium is not robust against a single mutation. Instead using stochastic stability

as a refinement tool, we use it as a robustness check. In Example 1 we show that there are

reasonable assumptions on the game such that no proper subsets of absorbing states can be

selected by stochastic stability. Thus we show that the concept of stochastic stability is of

limited use for a refinement of our results in this model.

The key property driving the result is the observation that payoff functions of a Cournot

game are quasisubmodular in the individual and the total quantity. This is closely related

to strategic substitutes. It allows us in some cases to compare profits of firms with different

quantities facing a change of the market quantity. Our results are likely to be generalized to

other games with strategic substitutes such as Cournot oligopoly with differentiated substitute

products, Bertrand oligopoly with differentiated complementary products, some rent seeking

22



games, common pool dilemmatas etc. For instance, consider a repeated Nash demand game11

and suppose that the imitator demands a share larger than 50% of the pie. What can an

optimizer do? She can optimize by demanding the highest share compatible to the claim of the

imitator. If the optimizer demands less then it forgoes profits. If the optimizer demands more

then both make zero profits. Assuming that the imitator mimics itself in such situation we can

conclude that the optimizer can not manipulate the decision of the imitator in its favor. Hence

it appears that also in this repeated Nash demand game the imitator is better off than is the

optimizer. What is eventually wrong with Friedman’s conjecture is that he does not consider

a class of strategic situations in which “the wise one gives in” (a translated German proverb:

“Der Klügere gibt nach.”).12 Our result is likely to be generalized to a class of aggregative

quasisubmodular games (for such generalization of Vega-Redondo’s result see Schipper, 2003).

Earlier experimental studies of Cournot oligopoly like the one by Sauermann and Selten

(1959) found some support for the convergence to Cournot Nash equilibrium. Recent stud-

ies by Huck, Normann, and Oechssler (1999, 2000) found support for imitative behavior in

experimental Cournot settings. Whereas in former experiments subjects had profit tables for

easy calculation of the best response available, in later studies subjects received feedback about

the competitors’ profits and output levels. The informational framework of these experimental

designs corresponds closely to the information required by each of the two decision rules (see

also Offerman, Potters, and Sonnemans, 2002, for further experimental evidence). Since both,

imitation behavior as well as best response, is supported by experimental findings in Cournot

markets depending on the information provided to subjects, it is only natural to test whether

our results can be supported experimentally if different information is given to various firms in

an oligopoly experiment. This shall be left to further research. However, Dürsch et al. (2005)

show already in a recent experiment on a repeated Cournot duopoly that subjects earn on

average higher profits than the opponent when playing against computers programmed to best

response, fictitious play, reinforcement learning and trail & error learning but do much worse

against computers programmed to imitation.

11I thank Ariel Rubinstein for suggesting this example.

12To be fair, Friedman (1953) had probably only perfectly competitive situations in mind.
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A Proofs

Proof of Lemma 1.

Let q′′ > q′ and Q′′ > Q′. Since by Assumption 1, p is strictly decreasing

p(Q′) > p(Q′′)

p(Q′)(q′′ − q′) > p(Q′′)(q′′ − q′)

p(Q′)(q′′ − q′)− c(q′′) + c(q′) > p(Q′′)(q′′ − q′)− c(q′′) + c(q′)

π(q′′, Q′)− π(q′, Q′) > π(q′′, Q′′)− π(q′, Q′′)

This completes the proof of Lemma 1. �

For the proofs of the following results it is useful to state following two lemmata and remark:

Lemma 2 If Assumptions 1 and 3 hold then we conclude the following:

(i) For any fixed quantities by imitators, the game in which the set of optimizers is the set of players

has a Nash equilibrium.

(ii) Sequential best response converges to such Nash equilibrium in finite time.

(iii) Any optimizer’s best response is unique, and in above Nash equilibrium best responses are sym-

metric.13

(iv) Given θ ∈ (0, 1], let x′, x be total outputs of all imitators. If x′ < x, then x′ + (1 − θ)nqD′
<

x + (1− θ)nqD, with qD = b(x + ((1− θ)n− 1)qD) and qD′
= b(x′ + ((1− θ)n− 1)qD′

).

(v) If ωS exists, then it is unique.

Proof. For any fixed quantities by imitators, the game in which the set of players is the set of optimizers

satisfies Assumptions 1 and 3. Hence, (i) and (ii) are implied Dubey, Haimanko, and Zapechelnyuk

(2005), and (iii) is implied by Vives (2000, p. 43).

(iv) For θ = 1, the result follows trivially. Consider now θ ∈ (0, 1). Suppose to the contrary that

x′ < x and x′+(1−θ)nqD′ ≥ x+(1−θ)nqD. Last inequality is equivalent to x′−x ≥ (1−θ)n(qD−qD′
).

Since by assumption 0 > x′ − x we conclude that 0 > (1 − θ)n(qD − qD′
). Since θ ∈ (0, 1) and n ≥ 1,

the last equality is satisfied if and only if 0 > qD − qD′
. Define q′−i := x′ + ((1 − θ)n − 1)qD′

and

analogously for q−i. Suppose q′−i ≥ q−i, then by Assumption 3 (strictly decreasing best responses)

qD′ ≤ qD (with equality if q′−i = q−i), a contradiction to above. Suppose now that we have q′−i < q−i.

13This implies that the Cournot Nash equilibrium is unique and symmetric.
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Then by Assumption 3, q′−i + qD′
< q−i + qD, a contradiction to x′ + (1 − θ)nqD′ ≥ x + (1 − θ)nqD

above.

(v) Let ωS′
and ωS′′

be two Pseudo-Stackelberg solutions with ωS′ 6= ωS′′
. Denote by QS′

=

θnqS′
+ (1 − θ)nqD′

, QS′′
= θnqS′′

+ (1 − θ)nqD′′
, qD′

= b(θnqS′
+ ((1 − θ)n − 1)qD′

), and qD′′
=

b(θnqS′′
+ ((1 − θ)n − 1)qD′′

). Inequality (11) implies πi(qS′
, QS′

) > πi(qS′′
, QS′

) and πi(qS′′
, QS′′

) >

πi(qS′
, QS′′

). If qS′′
> qS′

then QS′′
> QS′

by (iv). By Assumption 1 (Lemma 2 and Remark 1, upper

Formula (3)) πi(qS′′
, QS′′

) > πi(qS′
, QS′′

) implies πi(qS′′
, QS′

) > πi(qS′
, QS′

), a contradiction. Likewise

for qS′′
< qS′

(using lower Formula (4)). �

Recall that by qI we denote the symmetric output of imitators and by q◦ a firm output in the

symmetric Cournot Nash equilibrium.

Lemma 3 If Assumptions 1, 3 and 4 hold, then for any q ∈ {q◦, q◦ + δ, ..., qS}, there exists a state

ω ∈ H such that any imitator’s output qI
ω = q.

Proof. By definition, ω◦, ωS ∈ H. Consider any qI
ω s.t. q◦ < qI

ω < qS . We claim that qD
ω < q◦, where

qD
ω = b(θnqI

ω +((1− θ)n−1)qD
ω ). Suppose to the contrary that qD

ω ≥ q◦. Then θnq◦ +((1− θ)n−1)q◦ <

θnqI
ω + ((1− θ)n− 1)qD

ω . We conclude by Assumption 3, qD
ω < q◦, a contradiction. Hence qD

ω < q◦. By

transitivity, qD
ω < qI

ω.

By definition of ωS (Definition 6),

πi(qS , θnqS + (1− θ)nqDS ) > πi(qD
ω , θnqS + (1− θ)nqDS ) (15)

with qDS = b(θnqS + ((1− θ)n− 1)qDS ). By Assumption 4 (quasiconcavity),

πi(qI
ω, θnqS + (1− θ)nqDS ) ≥ πi(qD

ω , θnqS + (1− θ)nqDS ). (16)

By Lemma 2 (iv), θnqI
ω + (1 − θ)nqD

ω < θnqS + (1 − θ)nqDS . Hence by Assumption 1, Lemma 1, and

Remark 1 (strict quasisubmodularity),

πi(qI
ω, θnqI

ω + (1− θ)nqD
ω ) > πi(qD

ω , θnqI
ω + (1− θ)nqD

ω ). (17)

It follows that ω ∈ H. �

Proof of Theorem 1.

Recall that Z is the collection of all absorbing sets of the unperturbed decision dynamics when ε = 0.

We need to show that previous assumptions imply Z = {{ω} : ω ∈ H}.

First, we show that every {ω} with ω ∈ H is an absorbing state. Consider any imitator i ∈ I. Since

in ω ∈ H it follows by Definition 7 (i), (iii), and (iv) that no imitator i ∈ I wants to deviate form its
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output in ω ∈ H. Now consider an optimizer i ∈ N \ I. Since ω ∈ H, it follows by aforesaid Definition 7

(ii) that no optimizer i ∈ N \ I wants to deviate from its best response in ω ∈ H, which is by Lemma 2

uniquely defined. Since both types of firms do not deviate in ω ∈ H, no firm i ∈ N deviates in any of

the following periods. Hence {ω} is an absorbing state.

Second, we show that there are no other absorbing sets other than {{ω} : ω ∈ H}. Consider any

state ω′ /∈ H. At least one condition of (i) to (iv) of Definition 7 is violated. From any ω′ /∈ H there

is an unperturbed adjustment path based on the decision rules leading in the subsequent periods to a

state ω′′ = (qI , θn..., qI , qD, (1−θ)n... , qD) in which (a) all imitators play identical quantities qI and (b) all

optimizers play identical best responses qD = b(θnqI +((1− θ)n− 1)qD). (a) follows from the imitators’

decision rule (Definition 2) since by inertia there is positive probably that in the next period all imitators

adjust to the same quantity. (b) follows by Assumption 3 (Lemma 2), since each optimizer can reach in

finite time the symmetric best response given that imitators play θnqI . Note that ω′′ satisfies condition

(i) and (ii).

Suppose now that (iii) or (iv) are not satisfied in ω′′. Then

πi(qI , θnqI + (1− θ)nqD) ≤ πi(qD, θnqI + (1− θ)nqD)

and qI 6= qD. To show that there exists an unperturbed adjustment path based on the decision rules

leading in the subsequent periods to a state ω ∈ H, it is sufficient to show that

πi(qD, θnqD + (1− θ)nqD′
) ≥ πi(qD′

, θnqD + (1− θ)nqD′
)

with strict inequality if and only if qD 6= qD′
, and qD′

= b(θnqD + ((1− θ)n− 1)qD′
). I.e., it is sufficient

to show that if imitators mimic the optimizers’ outputs in ω′′ and optimizers play their symmetric best

response to it, the resulting state is a Pseudo-Stackelberg state.

Consider the case qD > qD′
: By definition of ωS (Definition 6), we have

πi(qS , θnqS + (1− θ)nqDS ) > πi(qD′
, θnqS + (1− θ)nqDS )

with qDS = b(θnqS +((1− θ)n− 1)qDS ). We claim that qS > qD for qD = b(θnqI +((1− θ)n− 1)qD) for

any qI ∈ Γ. By Assumption 2, qS > q(1−θ)n = b(((1−θ)n−1)q(1−θ)n) = b(θn ·0+((1−θ)n−1)q(1−θ)n).

By Lemma 2 (iv), θnqI + ((1 − θ)n − 1)qD > θn · 0 + ((1 − θ)n − 1)q(1−θ)n for qI ≥ 0 and equality for

qI = 0. We need to show that qD ≤ q(1−θ)n: Suppose to the contrary that qD > q(1−θ)n. Since qI ≥ 0,

θnqI + ((1− θ)n− 1)qD ≥ θn · 0 + ((1− θ)n− 1)q(1−θ)n (with equality if qI = 0). By Assumption 3, it

implies q(1−θ)n ≥ qD (with equality if qI = 0), a contradiction. Hence, qS > qD > qD′
. By Assumption 4

(quasiconcavity),

πi(qD, θnqS + (1− θ)nqDS ) ≥ min{πi(qS , θnqS + (1− θ)nqDS ), πi(qD′
, θnqS + (1− θ)nqDS )}.
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We conclude by definition of ωS (Definition 6),

πi(qD, θnqS + (1− θ)nqDS ) ≥ πi(qD′
, θnqS + (1− θ)nqDS ).

By Assumption 1, Lemma 1 and Remark 1, strict quasisubmodularity of πi implies

πi(qD, Q) > πi(qD′
, Q) for all Q < θnqS + (1− θ)nqDS .

Since qS > qD we have by Lemma 2 (iv), θnqS + (1− θ)nqDS > θnqD + (1− θ)nqD′
. Hence

πi(qD, θnqD + (1− θ)nqD′
) > πi(qD′

, θnqD + (1− θ)nqD′
).

Consider now the case qD < qD′
. We show that there exists an unperturbed adjustment path based

on the decision rules leading in the subsequent periods to a state satisfying the previous case. If qD < qD′

and ω′′ /∈ H, there is by inertia and the imitators’ decision rule (Definition 2) positive probability that in

the next period all imitators adjust to the same quantity qD′
. By Assumption 3 (Lemma 2) and inertia,

let all optimizers reach in finite time the symmetric best response qD′′
= b(θnqD′

+ ((1− θ)n− 1)qD′′
)

given that imitators adjusted previously to identical outcomes qD′
. If the resulting state ω′′′ is in H,

then ω′ and ω′′ were not absorbing. Suppose now that ω′′′ /∈ H. We claim that qD′
> qD′′

, hence we

are in previous case. Suppose to the contrary that qD′′ ≥ qD′
. Together with qD′

> qD we conclude

nθqD′
+ ((1 − θ)n − 1)qD′′

> nθqD + ((1 − θ)n − 1)qD′
. By Assumption 3, it implies qD′′

< qD′
, a

contradiction. This completes the proof of Theorem 1. �

In order to characterize the support of the unique limiting invariant distribution, we consider small

perturbations, ε > 0. We call states ω and ω′ adjacent if exactly one mutation can change the state from

ω to ω′ (and vice versa), i.e., if exactly one firm’s change of output changes the state ω to the state ω′.

The set of all states adjacent to the state ω is the single mutation neighborhood of ω denoted by M(ω).

The basin of attraction of an absorbing set A is the set B(A) = {ω ∈ Γn|∃m ∈ N,∃ω′ ∈ A s.t. p
(m)
ωω′ > 0}.

It is the collection of all states from which there is a strict positive probability that the (unperturbed)

dynamics leads to the absorbing set A. A recurrent set R is a minimal collection of absorbing sets with

the property that there do not exist absorbing sets A ∈ R and A′ /∈ R such that there exists an ω ∈ A,

M(ω) ∩ B(A′) 6= ∅. That is, a recurrent set R is a minimal collection of absorbing sets for which it

is impossible that a single mutation followed by the unperturbed dynamics leads to an absorbing set

not contained in R. The importance of the recurrent set stems from below Lemma 4 by Nöldeke and

Samuelson (1993, 1997) and Samuelson (1994).

Lemma 4 (Nöldeke and Samuelson) Given a regularly perturbed finite Markov chain, then at least

one recurrent set exists. Recurrent sets are disjoint. Let the state ω be contained in the support of
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the unique limiting invariant distribution ϕ∗. Then ω ∈ R, R being a recurrent set. Moreover, for all

ω′ ∈ R, ϕ∗(ω′) > 0.

A proof of Lemma 4 is contained in Samuelson (1997), Lemma 7.1 and Proposition 7.7., proof pp.

236-238.

Proof of Theorem 2.

It is sufficient to show that {ω◦} is not a recurrent set.

Lemma 5 Given previous assumptions, if ωS ∈ H then M(ω) ∩B({ωS}) 6= ∅, for all ω ∈ H \ {ωS}.14

Proof of Lemma. Assume ωS ∈ H. It is sufficient to show that for all q ∈ Γ, q being a component

of an arbitrary ω ∈ H, ω 6= ωS , k ∈ N, 0 < k ≤ θn,

qSp((θn− k)q + kqS + (1− θ)nqD)− c(qS) > qp((θn− k)q + kqS + (1− θ)nqD)− c(q), (18)

with qD = b((θn− k)q + kqS + ((1− θ)n− 1)qD).

By Assumption 1, Lemma 1 and Remark 1, πi is strictly quasisubmodular (Formulas (3) and (4))

in (q, Q) on Γ × {0, δ, 2δ, ..., nνδ}. Set q′′ ≡ qS , q′ ≡ q, Q′ = (θn − k)q + kqS + (1 − θ)nqD′
and

Q′′ = θnqS + (1− θ)nqD′′
with qD′ ≡ qD and qD′′ ≡ b(θnqS + ((1− θ)n− 1)qD′′

) being uniquely defined

by Lemma 2. If q′′ > q′ then θnq′′ > (θn − k)q′ + kq′′. By Lemma 2 (iv), we conclude that Q′′ > Q′.

If q′′ < q′ then θnq′′ < (θn − k)q′ + kq′′. By Lemma 2 (iv), we conclude that Q′′ < Q′. It follows that

if qS > q then the left hand side of “=⇒” in Formula (3) is given by Inequality (11) of Definition 7

of the Pseudo-Stackelberg solution (i). In this case the right hand side of “=⇒” in Formula (3) yields

above Inequality (18). If qS < q then the left hand side of “=⇒” in Formula (4) is given by Inequal-

ity (11) of Definition 7 of the Pseudo-Stackelberg solution (i). In this case the right hand side of “=⇒”

in Formula (4) yields above Inequality (18). Finally, set k = 1 to see that one suitable mutation only is

required to connect every ω ∈ H to ωS ∈ H. �

Since Lemma 5 holds for any absorbing state except the Pseudo-Stackelberg solution, it holds also

for the Cournot Nash equilibrium ω◦. By Lemma 4, this implies Theorem 2. �

Proof of Example 3.

14This result can be easily extended to all states in which imitators play identical quantities and optimizers

play identical best responses, i.e., all states satisfying conditions (i) and (ii) of Definition 7. Such generalization

may be of interest if one does not want to rule out cycles and gives up Assumption 2.
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We show that under certain assumptions on the parameters of the game, we connect all Pseudo-

Stackelberg states by a sequence of single suitable mutations.

Denote by ω̄ (resp. ω) the Pseudo-Stackelberg state with the largest (resp. smallest) symmetric

output of the imitators. I.e., if q̄I is the symmetric output of any imitator in ω̄, there should not exist

ω ∈ H s.t. qI
ω > q̄I (analogously for ω).

Let qI
ωj

be the identical output of imitators in the state ωj ∈ H. We call a sequence of Pseudo-

Stackelberg states ω1, ..., ωm ∈ H increasing (resp. decreasing) if and only the identical output of each

imitator in those Pseudo-Stackelberg states is ordered such that qI
ωj

< qI
ωj+1

(resp. qI
ωj

> qI
ωj+1

),

j = 1, ...,m− 1. Such order on H is the natural order on Γ.

Lemma 6 Under previous assumptions we conclude:

(i) If ωS ∈ H, then there exists an increasing sequence ω1, ..., ωm ∈ H with ω1 = ω and ωm = ωS s.t.

M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

(ii) If ωS ∈ H, then there exists a decreasing sequence ω1, ..., ωm ∈ H with ω1 = ω̄ and ωm = ωS s.t.

M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

Proof of Lemma. (i): Let ω1, ..., ωm ∈ H be an increasing sequence of absorbing states with ω1 = ω◦

and ωm = ωS . In order to show that M(ωj)∩B({ωj+1}) 6= ∅ for j = 1, ...,m− 1, it is sufficient to show

for 0 < k < θn

qI
ωj+1

p((θn− k)qI
ωj

+ kqI
ωj+1

+ (1− θ)nqD)− c(qI
ωj+1

) >

qI
ωj

p((θn− k)qI
ωj

+ kqI
ωj+1

+ (1− θ)nqD)− c(qI
ωj

), (19)

with qD = b((θn− k)qI
ωj

+ kqI
ωj+1

+ ((1− θ)n− 1)qD), which is uniquely defined by Lemma 2.

By Assumption 1, Lemma 1 and Remark 1, πi is strictly quasisubmodular. Set q′′ = qI
ωj+1

, q′ = qI
ωj

,

Q′ = (θn − k)qI
ωj

+ kqI
ωj+1

+ (1 − θ)nqD′
and Q′′ = θnqI

ωj+1
+ (1 − θ)nqD′′

, with qD′
= qD and

qD′′
= b(θnqI

ωj+1
+ ((1− θ)n− 1)qD′′

) being uniquely defined by Lemma 2.

Note that each qI
ωj+1

∈ [qI , qS ] ∩ Γ. We claim that πi(qI
ωj

, Q′′) = min{πi(qS , Q′′), πi(qI
ωj

, Q′′)}. We

know that πi(qS , QS) > πi(qI
ωj

, QS) by definition. Since qI
ωj

< qS for j = 1, ...,m − 1, we know by

Lemma 2 that QS > Q′′. By strict quasisubmodularity (upper Formula (3)) πi(qS , Q′′) > πi(qI
ωj

, Q′′)

and the claim follows. By quasiconcavity πi(qI
ωj+1

, Q′′) ≥ πi(qI
ωj

, Q′′). It implies Inequality (19) by strict

quasisubmodularity (upper Formula (3)). (i) follows from setting k = 1 in Inequality (19).

(ii) The proof is analogous to (i). Set q′ = qI
ωj+1

, q′′ = qI
ωj

, Q′′ = (θn− k)qI
ωj

+ kqI
ωj+1

+ (1− θ)nqD′′

and Q′ = θnqI
ωj+1

+ (1− θ)nqD′
, with qD′′

= qD and qD′
= b(θnqI

ωj+1
+ ((1− θ)n− 1)qD′

) and use the

lower Formula (4) of strict quasisubmodularity.
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This completes the proof of Lemma 6. �

Lemma 7 Let q◦2 ∈ Γ be a firm’s Cournot duopoly equilibrium output.15 There exist p, c, θ, δ, ν, and

finite n such that

q◦p((2n− 3)q◦)− c(q◦) ≤ 0, (20)

(n− 1)q◦p((n− 1)q◦)− c((n− 1)q◦) ≤ 0, (21)

π(q, νδ) < 0,∀q > 0, (22)

q◦2 = q̄I , (23)

qI = q◦, (24)

πi is quasiconcave in qi, ωS ∈ Γn exists, and all previous assumptions are satisfied.

Proof of Lemma. Consider p, c, θ, δ, ν, and n in Example 3, i.e., p(Q) = 10 − Q, c(qi) = 1000
501 q2

i + 1,

θ = 0.2, δ = 0.001, n = 5, and sufficiently large ν (e.g. ν = 30000). Straight forward calculations verify

that Formulas (20) to (24) as well as all previous assumptions hold, and that ωS exists. Moreover, since

πi is strictly concave in qi, it is quasiconcave. �

Lemma 8 Let p, c, θ, δ, ν, and n be such that the properties of Lemma 7 hold. Then M(ω)∩B({ω}) 6= ∅,

for all ω ∈ H.

Proof of Lemma. Suppose in t any arbitrary state ω(t) ∈ H. By Lemma 2 such state exists. W.l.o.g.

suppose that in t + 1 a mutation by one firm i ∈ N occurs such that qi(t + 1) = (n− 1)q◦. Note that by

Lemma 2, the Cournot Nash equilibrium output q◦ ∈ Γ exists and is unique. Since ω(t) ∈ H, we have

Q(t+1) ≥ (n− 1)q◦ +(n− 1)q◦ = (2n− 2)q◦ > (2n− 3)q◦. By Lemma 7, Inequality (20), πj(t+1) < 0,

for all j ∈ N . W.l.o.g. assume that a firm k ∈ N\I, k 6= i and only a firm k has the opportunity to

adjust output in t+2. Since DO(t+1) = 0, we have qk(t+2) = 0. Q(t+2) ≥ (2n− 3)q◦. By Lemma 7,

Inequality (20), πj(t + 1) < 0, for all j ∈ N\{k}. Since DO(t + 2) = DI(t + 2) = 0 assume w.l.o.g. that

all j ∈ N\{i} adjust output in t + 3 such that Q(t + 3) = qi(t + 3) = qi(t + 2) = qi(t + 1) = (n− 1)q◦.

By Lemma 7, Inequality (21), πi(t + 3) ≤ 0. Since DO(t + 3) = b((n − 1)q◦) = q◦ assume w.l.o.g.

that another firm k ∈ N\I has the opportunity to adjust output in t + 4. Since πk(t + 4) > πj(t + 4),

j ∈ N\{k} and DI(t + 4) = q◦ we can assume w.l.o.g. that all j ∈ I adjust output. Let all remaining

optimizers adjust output in the subsequent periods such that with positive probability ω◦ is reached in

finite time (by Lemma 2). By Lemma 7, ω◦ = ω. Since we started in any arbitrary absorbing state

ω(t) ∈ H (in particular it also includes ωS if ωS ∈ H) we have shown that M(A) ∩ B({ω}) 6= ∅, for all

A ∈ Z. �

15The Cournot duopoly equilibrium is a special case of the Cournot Nash equilibrium (Definition 5) for n = 2.
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Lemma 9 Let p, c, θ, δ, ν, and n be such that the properties of Lemma 7 hold. Then M(ω)∩B({ω̄}) 6= ∅,

for all ω ∈ H.

Proof of Lemma. Suppose in t any arbitrary state ω(t) ∈ H. W.l.o.g. assume that in t + 1 a mu-

tation by an imitator i ∈ I occurs setting a large quantity νδ such that by Lemma 7, Inequality (22),

πj(t + 1) < 0, for all j ∈ N . W.l.o.g. assume that all optimizers in N\I have the opportunity to adjust

output in t + 2. Since DO(t + 1) = 0, we have qD(t + 2) = 0 with πD(t + 2) = 0. By Inequality (22),

we have πI(t + 2) < πD(t + 2). W.l.o.g. assume that all imitators in I adjust output in t + 3 to

DI(t + 2) = qI(t + 3) = 0. Hence, Q(t + 3) = 0. W.l.o.g. assume now that in t + 4 two optimizers and

only two optimizers adjust output such that by Lemma 2 we reach a market output of 2q◦2 in finite

time, i.e. at t + k. W.l.o.g. assume that in the following period all imitators in I adjust output such

that DI(t + k) = q◦2(t + k + 1). Let all optimizers in N\I adjust output in subsequent periods such

that by Lemma 2 a state ω◦2 = (q◦21 , ..., q◦2θn, qD
θn+1, ..., q

D
n ) is reached in finite time. Since by Lemma 7,

q̄I = q◦2, we have that ω◦2 = ω̄. �

In Lemma 6 we showed that we can connect the Pseudo-Stackelberg states by an increasing (starting

with Pseudo-Stackelberg state with the smallest output of imitators) or decreasing sequence (starting

with the Pseudo-Stackelberg state with the largest output of imitators) of single suitable mutations

followed by the decision dynamics to the Pseudo-Stackelberg solution. In Lemma 8 and 9 we showed

that we can connect by a single suitable mutation followed by the decision dynamics any Pseudo-

Stackelberg state to the Pseudo-Stackelberg state with the largest (resp. smallest) output of imitators if

the properties of Lemma 7 hold. Hence there exists a sequence of single suitable mutations by which we

can move through the entire set of Pseudo-Stackelberg states. It follows that H is the unique recurrent

set. By Lemma 4 it follows that S = H. This completes the proof of Example 3. �
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