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Inference for Impulse Responses ∗

Abstract

Poor identification of individual impulse response coefficients does not necessarily mean that an
impulse response is imprecisely estimated. This paper introduces a three-pronged approach on how
to communicate uncertainty of impulse response estimates: (1) with Wald tests of joint significance;
(2) with conditional t-tests of individual marginal coefficient significance; and (3) with fan charts
based on the percentiles of the joint Wald statistics. The paper also shows how to anchor the
impulse response analysis with a priori economic restrictions that can be formally tested and used
to tighten structural identification. These methods are universal and do not depend on how the
impulse responses are estimated. An empirical application illustrates the techniques in practice.
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1 Introduction

A symptom of poor identification is when a model’s coefficient estimates are highly corre-

lated. However, lack of identification of individual effects does not necessarily imply that

the joint effect is imprecisely estimated: while t-statistics may be very “low,” an F-statistic

may still be very “high.” In fact, such an observation is the canonical diagnostic of multi-

collinearity in standard linear regression.

An autocorrelated vector time-series will naturally have impulse response coefficients that

are correlated. Thus, it is premature to conclude that impulse responses are imprecisely

estimated when traditional two standard-error bands are wide. After all, these bands are

the visual representation of the sequence of t-tests associated with each impulse response

coefficient. Ideally, one should check the null of joint significance with a formal test to

conclude whether or not the impulse response is accurately estimated.

In a perfect world, one would display the 95% confidence ellipsoid derived from the

joint distribution of the impulse response function but this is clearly impossible in two-

dimensional space. Sims and Zha (1999) are aware of this point and propose a principal

component decomposition of the impulse response’s covariance matrix as a way of parsing

the information contained in the joint distribution. Unfortunately, the associated factors are

difficult to interpret: as their paper shows, they can result in confidence bands that intersect,

and they can provide varying probability coverage of the impulse responses depending on

the application.

A different way of assessing the uncertainty associated with each impulse response coeffi-

1



cient is to orthogonalize each impulse response’s covariance matrix according to a triangular

factorization. Unlike the common short-run identification assumptions used for structural

identification of VARs, the passage of time provides a natural and unique way to project

each impulse response coefficient on its past. The resulting decomposition translates the

Wald statistic of the null of joint significance into the sum of the conditional t-statistics of

each coefficient. Such statistics have several advantages: (1) they have a natural statistical

interpretation; (2) they can be easily plotted to display appropriate conditional confidence

bands; and (3) they can be used to assess the contribution of each individual coefficient

toward the joint significance of the impulse response path.

Traditional two standard-error bands have another undesirable feature: they include

many paths with very little chance of being observed while excluding paths that fall well

inside conventional confidence levels. One way to avoid the complacency of interpreting the

confidence band as if “everything inside the band goes” is to plot the contours of the distri-

bution of the Wald statistic of joint significance for different quantiles and hence construct

a fan chart bounding the possible impulse response paths associated with each probability

level.

The joint distribution can also be used to anchor the impulse response analysis with

testable, a priori economic restrictions. For example, the hypothesis that the response of one

variable is completely exogenous to shocks in another can be used to refine the identification

of the system’s impulse responses. The hypothesis can then be formally tested with a Wald

test and, if it is not rejected, it can be used to tighten the uncertainty on the remaining
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impulse responses considerably.

It is important to differentiate that the paper is not a discussion about how best to ob-

tain estimates of impulse response coefficients with good small-sample properties. Whatever

method of estimation the end user chooses, determines the specifics of how these ideas are

implemented in practice, not their substance. For this reason, the paper compiles asymptotic

results already available for VARs and complements them with results for local projections

(Jordà, 2005) obtained under a variety of assumptions. Deriving asymptotic results for local

projections is not only useful in providing analytic formulas for large-sample approximations,

it is necessary to formally justify the validity of the bootstrap (see Horowitz, 2001). Addi-

tionally and since large-sample approximations can be poor guides in small samples, I will

also very briefly discuss resampling methods by which to obtain some of the statistics that

I propose although an exhaustive investigation of which alternative works best in practical

situations is left for future research.

Throughout the presentation, I illustrate the techniques introduced with impulse re-

sponses derived from the well known, three variable, monetary, VAR that Stock and Watson

(2001) use in their review article of vector autoregressions. Their system contains three vari-

ables: inflation (measured by the chain-weighted GDP price index); unemployment (mea-

sured by the civilian unemployment rate); and the average federal funds rate; and is based

on a sample of quarterly data beginning 1960:I that I extend to 2007:I. Like them, identifi-

cation is achieved with the short-run recursive ordering in which the variables are reported.

Further details on the specifics of the exercise are available from their paper.
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As a proponent of the method of local projections and to complement the Stock and

Watson (2001) analysis, I estimate impulse responses by local projections over the 24 periods

they investigate. Local-projection impulse responses are similar to those reported in figure 1

of Stock and Watson (2001), albeit slightly more imprecisely estimated. This turns out to be

a virtue since the techniques introduced here produce sharp answers (and with considerably

simpler formulas) despite this estimation imprecision.

2 Inference for Impulse Responses

Suppose we are investigating the system of impulse responses of a vector times series yt of

dimension r × 1 over h = 0, 1, ...,H horizons so that

Φ (0,H) =

⎡⎢⎢⎢⎢⎢⎢⎣
Φ0

...

ΦH

⎤⎥⎥⎥⎥⎥⎥⎦
is an r (H + 1) × r matrix that collects the structural impulse response coefficients for the

system. Let bφT = vec³bΦ (0,H)´ denote impulse response estimates based on a sample of
size T in r2 (H + 1) × 1 vector form constructed by stacking the columns of bΦ (0,H) with
the vec operator. Further, suppose that we can establish the asymptotic result

√
T
³bφT − φ0´ d→ N (0,Ωφ) . (1)
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The availability of such a result is all that is needed for the derivations that I introduce

below. Later on, I show that one can arrive at expression (1) with standard VARs or with

local projections under very general conditions. In addition to the analytic formulas that I

provide, I also discuss throughout resampling methods based on the availability of bφsT for
s = 1, 2, ..., S resamples of size T . Naturally, there are several ways of implementing the

bootstrap in practice and the reader is referred to Kilian (1998, 1999) and Lütkepohl (2005)

for appropriate discussions and references.

Traditional error bands are offered as visual cues about the uncertainty of impulse re-

sponses and are commonly constructed from the marginal distribution of each individual

impulse response coefficient so that, for a 95% confidence level, they are

bφT ± 1.96× diag ³bΩφ

´1/2
where diag

³bΩφ

´
is the r2 (H + 1)× 1 vector of diagonal elements of bΩφ.

To understand why reporting impulse response uncertainty with these bands is prob-

lematic, we must begin by recognizing that impulse response coefficients are usually highly

correlated. High correlation among coefficient estimates is a symptom that individual effects

are poorly identified but not necessarily that the joint effect is imprecisely estimated. The

situation is analogous to linear regression with colinear regressors. As an example, figure 1

displays the impulse response and two standard error bands of the response of prices (P) to

a shock in the federal funds rate (FF) from the Stock and Watson (2001) VAR. The table

underneath the figure reports the correlation matrix among impulse response coefficients.
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Since the 95% critical value of statistical significance is 0.15, it is readily apparent that the

majority of these correlations are quite high.

Naturally, a formal characterization of the uncertainty about the impulse response func-

tion requires its joint distribution yet no single statistic can convey all the features of an

impulse response path. What I propose in this paper is a three pronged approach. The

first prong is to report the Wald test of joint significance as an obvious summary statistic

on estimation precision. Define the selector matrix Sij = e0j ⊗ (IH+1 ⊗ ei)0 for i, j = 1, ..., r

where ek is an r × 1 vector of zeros with a 1 in the kth row for k = i, j. Consequently, the

impulse response of variable i to a shock in variable j is bφij = SijbφT and its associated
covariance matrix is Ωij = SijΩφS

0
ij so that the null hypothesis H0 : φij = 0 can be tested

with the Wald statistic

cWij = bφ0ijbΩ−1ij bφij (2)

which under expression (1) is such that cWij
d→ χ2H+1.

The 95% confidence ellipsoid associated with this null appropriately summarizes that

which traditional two standard error bands approximately only poorly. As an example, the

top panel of figure 2 displays a 95% confidence ellipse for an impulse response with only two

coefficients. Traditional two standard error bands result in the box overlaid on the ellipse.

Thus, when there is correlation (so that the ellipse is tilted as in figure 2), the area described

by the intersection between the ellipse and the box that contains point A, reflects trajectories

inside the two standard error bands with less than 5% chance of being observed. Meanwhile,
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the area containing point B reflects trajectories excluded by the bands but with better than

a 5% chance of being observed. The trajectories implied by points A and B are displayed

in the bottom panel of figure 2 (in the more traditional impulse response graph with two

standard error bands) to illustrate the point more clearly.

Sims and Zha (1999) recognized these difficulties and propose decomposing Ωij into its

first few principal components. The orthogonality between these factors makes calculation of

the factor’s 95% confidence bands simple. However, the percentage of the variance explained

by these factors will vary from application to application and hence, so will the coverage

implied for the original impulse response. Additionally, the bands for some of these factors

intersect (as figures 6, 11, and 12 of their paper show). Finally, the principal component

decomposition does not resolve satisfactorily how one should think about the uncertainty

associated with the impulse response shape as I do below.

Instead, the remaining two prongs of my approach consist, first, in realizing that the

original impulse response can be orthogonalized with a Cholesky factorization that has a

very natural statistical interpretation: it decomposes the null of joint significance into the

sum of squared conditional t-statistics for each individual coefficient in the impulse response.

This orthogonalization allows one to isolate those individual coefficients that are statistically

significant from those that are not by ordering the coefficients according to the time dimen-

sion. The third prong consists in constructing quantile bounds (not bands) of the joint

distribution of the impulse response coefficients to generate fan charts that summarize the

set of possible impulse response trajectories associated with each probability level. The next
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two subsections examine the details of these two prongs.

2.1 Conditional Confidence Bands

Expression (2) states that the Wald statistic of the null hypothesis H0 : φij = 0, i, j = 1, ..., r

is

cWij = bφ0ijbΩ−1ij bφij d→ χ2H+1

under standard regularity conditions (made more precise below). An orthogonalization of

bφij alternative to that in Sims and Zha (1999) is to realize that bΩij is positive-definite and
symmetric and hence admits a Cholesky decomposition

bΩij = bAij bDij bA0ij
where bAij is lower triangular with ones in the main diagonal and bDij is a diagonal matrix with
entries bdhij for h = 0, 1, ...,H; i, j = 1, ...r. Although, there are as many valid decompositions
as there are orderings of the elements of bφij, time provides a natural and unique sorting
mechanism. In particular, notice that bψij ≡ bA−1ij bφij transforms the original impulse response,
bφij, into an orthogonal coordinate system whose covariance matrix, bDij, is diagonal and
whose elements have the statistical interpretation

bψij = EL ³φhij|bφh−1ij , ..., bφ0ij´ ;h = 0, 1, ..., H,
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that is, the linear projection of each impulse response coefficient on its past. Thus, bdhij is the
variance of the hth coefficient of the original impulse response, conditional on the historical

average path bφh−1ij , ..., bφ0ij; h = 0, 1, ...,H.
Another way to see this is to recast the Wald statistic as

cWij = bφ0ijbΩ−1ij bφij = bφ0ij ³ bAij bDij bA0ij´−1 bφij
=

³ bA−1ij bφij´0 bD−1ij ³ bA−1ij bφij´
= bψ0ij bD−1ij bψij = HX

h=0

⎛⎝bψhijbdhij
⎞⎠2

=
HX
h=0

t2h(i, j),

that is, the null that the impulse response is jointly significant (under Gaussianity) is equiv-

alent to the sum of squares of the t-statistics of the null that each coefficient in the impulse

response at time h is significant, given its past. The orthogonality of the bψij means that a
95% confidence interval for each individual coefficient can be constructed as bψhij±1.96bdhij for
h = 0, 1, ...,H and hence conditional two standard error bands can be displayed along with

the original estimated impulse response bφij, as is done in figure 3.
Figure 3 displays the response of the U.S. unemployment rate (UN) to a shock in inflation

(P) in the Stock andWatson (2001) VAR. The figure displays the estimated impulse response

along with conventional (marginal) two standard error bands (the wider bands in the figure)

and the just introduced conditional, two standard error bands (the narrower bands). The

bottom values in that figure refer to the p-value of the joint significance test (”Joint 0.033”)

and the p-value of the significance test of the accumulated response after 24 periods (”Cum
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0.001”).

The impulse response displayed in figure 3 is emblematic of the VAR literature: the

width of the marginal error bands is often taken as evidence that there is little information

in the sample about the relationship between unemployment and prices (the marginal error

bands include zero for all but six out of the 24 periods displayed). Moreover and as Stock

and Watson (2001) themselves do, it is common to report one (rather than two) standard

error bands (for a 68% confidence level coverage, which is a somewhat peculiar confidence

level choice in statistics).

In fact the opposite conclusions are true. The p-value of the joint tests of significance and

cumulative significance (0.033 and 0.001 respectively) leave little doubt that the response

is significant: the impulse response does not wiggle around the zero line like, say, the plot

of a white noise process would; instead it is decidedly positive over all but one of the 24

periods displayed. The conditional error bands suggest that, although the response is mostly

indistinguishable from zero during the first three to five quarters after impact, it is distinctly

positive thereafter and for the duration of the remaining periods.

Instead of the analytic formulas provided, conditional error bands could be constructed

with resampling methods. There are many ways to proceed and the reader is referred to

Kilian, 1999 for a very informative discussion on the finite-sample properties and advantages

of various ways to implement the bootstrap. Here I showcase two natural approaches for

the purposes of illustration but not as a comprehensive guide. One option is, given a sample

of S bootstrap estimates bφsT s = 1, ..., S, to compute (with the analytic formulas provided
10



below), S estimates of bΩsφ and hence bΩsij. Then conditional error bands can be constructed
from the percentiles of the Cholesky decomposition of the S estimates bΩsij. Another option
is to rely less heavily on asymptotic results and to use the S bootstrap replicates to obtain

a bootstrap-sample-based estimate of Ωij, say eΩij, whose Cholesky decomposition can then
be used to construct the conditional confidence bands.

It is important to be clear that these conditional error bands (or graphical conditional

t-tests) are informative about the individual contribution of each estimated impulse response

coefficient to the overall significance of the impulse response path (given by the joint Wald

statistic). However, these bands remain silent about the overall uncertainty on the impulse

response shape. For that purpose, I discuss response percentile bounds and fan charts in the

next subsection.

2.2 Response Percentile Bounds

Let δαH+1 denote the critical value of a chi-squared distributed random variable with H + 1

degrees of freedom at an α-percentile level, that is

P
¡
Wij ≤ δαH+1

¢
= α (3)

Thus, the α% confidence ellipsoid for bφij is given by all the possible vectors φα
ij that satisfy

the equation

³bφij − φα
ij

´0
Ω−1ij

³bφij − φα
ij

´
= δαH+1 (4)
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When φij is of dimension 1× 1, condition (4) is simply the square of the t-statistic and

the impulse response estimate plus or minus 1.96 times its standard error defines a 95%

confidence interval (under Gaussianity). When φij involves more than one coefficient, then

obviously there are infinite combinations of intervals that would satisfy expression (4). In

two dimensions, the summary of all these possible combinations is displayed by the top panel

of figure 2 as the 95% confidence ellipse. For more than two coefficients, a plot of the 95%

confidence ellipsoid is obviously not practical. To solve this problem I consider instead a set

of conservative bounds.

The intuition on how to construct these bounds is best understood by returning to figure

2. The slope of the diagonal line that goes through the origin is given by the ratio of the

standard errors for each of the two coefficients displayed. The intersection of this diagonal

with the α-percentile ellipse (in the figure, the usual 95%) occurs at two points: the point

in the northeast (NE) quadrant represents a point in which the original coefficient estimates

(the center of the ellipse) are displaced in proportion to their standard errors (as would be the

case in a conventional confidence interval for a single coefficient). Similarly, the intersection

in the southwest (SW) quadrant reflects a proportional shift but of a negative nature.

The coordinates of these two points are:
µbφ1 + √δα2

2
σ11; bφ2 + √δα2

2
σ22

¶
for the NE point,

and
µbφ1 − √δα2

2
σ11; bφ2 − √δα2

2
σ22

¶
for the SW point. Since δ0.952 = 5.99, then

√
δ0.952

2
= 1.73,

which is slightly smaller than the well worn value of 1.96 we are accustomed to use to

construct 95% confidence intervals. The justification for the difference is that the ellipsoid

considers the joint occurrence of events whereas the 1.96 value refers to the 95% confidence
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level of an individual event.

In general, the simplest way to construct these bounds for any α-percentile level is to

exploit the Cholesky decomposition of bΩij as follows. Normalize the conditional coordinate
system bψij defined above to have unit variance as well, that is, eψij ≡ bA−1ij bD−1/2ij

bφij. The
orthogonality and unit variance of this coordinate system simplify the calculation of the

point in the α-percentile ellipse corresponding to a displacement of the origin in proportion

to the standard deviations of each coefficient, which is readily seen to be

eψij ±r δαH+1
H + 1

iH+1

where δαH+1 is defined in (3) and iH+1 is an (H + 1) × 1 vector of ones. Therefore, the

α-percentile bounds for the original impulse response can be recovered as

bφij ± bAij bD1/2
ij

r
δαH+1
H + 1

iH+1 (5)

so that for different values of α, one could plot each percentile bound to form a fan chart as

is done in figure 4, which plots the same impulse response as figure 3.

If resampling methods are preferred, one way to construct this percentile chart with the

bootstrap is as follows. Suppose bootstrap replications bφsij, s = 1, ..., S are available. Then
a bootstrap-based sample estimate of the covariance matrix can be readily computed, which

I denoted previously as eΩij. Next, construct S Wald statistics as in expression (4), that is
cW s
ij =

³bφij − bφsij´0 eΩ−1ij ³bφij − bφsij´ , s = 1, ..., S
13



which can be used to rank the S bootstrap impulse response paths according to their distance

to the sample estimate. Then a fan chart can be constructed with the bootstrap sample

paths corresponding to each desired percentile of the ranking of the cW s
ij. If one prefers to

rely more heavily on the asymptotic results provided below, then it is straightforward to

instead construct S replications of expression (5) and then use the desired percentiles to

construct the fan chart.

It is impossible to communicate all the features of a multidimensional object (the 95%

ellipsoid) in two-dimensional space. The conditional error bands convey information about

the significance of individual coefficients given the historical average path but remain silent

about the set of possible shapes the impulse response could have. A fan chart based on

α-percentile bounds gives better information on that front. Rather than presenting the 95th-

percentile bounds, it is more persuasive to plot the fan chart for several percentiles to avoid

the common visual complacency of thinking that any trajectory within the bounds is inside

the 95% confidence ellipsoid.

3 Anchoring Impulse Responses with Testable Eco-

nomic Restrictions

In any econometric model, imposing coefficient restrictions that are “true” often results in

more efficient estimates. In addition, coefficient restrictions in a structural impulse response

analysis can boost the structural identification of the responses. Economic interpretability is
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commonly achieved by imposing restrictions on the contemporaneous conditional correlation

matrix of the system’s variables. Often, such restrictions “just-identify” the system (such

as the common Cholesky decomposition) meaning that enough information is introduced

to achieve identification, but not enough to formally test the restrictions imposed with

conventional statistics.1

It seems natural that if economic theory is brought forward to achieve contemporaneous

identification that it should also be used to further anchor the impulse response exercise

with implied restrictions on the impulse response paths of certain variables. Examples of

such constraints may include zero impulse response restrictions; restrictions that the impulse

response path of a certain variable is strictly positive (or negative), or in general, any linear

constraint on the coefficients of a subset of the system’s impulse responses.

Accordingly, suppose we want to anchor an impulse response exercise around an assump-

tion on the path of variable k when it responds to a shock in variable l, for any k, l ∈ {1, ..., r}.

Call this assumed path φck,l. Then, under assumption (1) and the standard properties of pro-

jections in a linear context, it is easy to see that, for any i, j ∈ {1, ..., r} except the pair

{k, l},

bφij|φckl = bφij + SijbΩφS
0
kl

³
SklbΩφS

0
kl

´−1 ³
φckl − bφkl´ ,

where the selector matrices Sij, and Skl have been defined above (i.e., Smn = e0n⊗(IH+1 ⊗ em)0

1 An exception is the work by Granger and Swanson (1997) and Demiralp and Hoover (2003). Both of
these papers use graph theory to refine statistical statements about the underlying causal structure of the
system.
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for em a vector of zeros with a one in the mth position and m = i, k; n = j, l; i, j, k, l ∈

{1, ...r}). Denote the variance of bφij|φckl as bΩij|kl then the same projection properties used
above suggest that

bΩij|kl = SijbΩφS
0
ij −

³
SijbΩφS

0
kl

´³
SklbΩφS

0
kl

´−1 ³
SklbΩφS

0
ij

´
.

Notice that the first term of this expression is simply bΩij and that the second term is a

positive semi-definite matrix so that tr
³bΩij|kl´ ≤ tr ³bΩij´ , that is, the variance of bφij|φckl

is smaller than the variance of bφij. The reason is that the unknown path for φkl is replaced
by our assumption φckl. It is important to remark that it would have been just as easy to

condition the exercise on any linear restrictions for any subset of the entire vector of impulse

responses.

An attractive feature of this type of experiment is that its validity can be formally assessed

with standard statistics. Specifically, the null hypothesis H0 : φkl = φckl can be tested with

the Wald statistic

cW c
kl =

³bφkl − φckl

´0 ³
SklbΩφS

0
kl

´−1 ³bφkl − φckl

´
d→ χ2H+1 (6)

Similarly, notice that in the special case in which SijbΩφS
0
kl = 0 then φij is independent of

φkl (under Gaussianity) and any constraint φ
c
kl imposed on φkl will not affect bφij, a natural

consequence of exogeneity. One way to determine which impulses are most sensitive to

assumptions on φckl is with the Wald statistic
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cW c
ij =

³bφij|φckl − bφij´0 bΩφ(i, j|k, l)−1
³bφij|φckl − bφij´ d→ χ2H+1. (7)

finite-sample statistics based on resampling methods can be easily applied to expression (6)

and (7).

Another tempting interpretation of the role of φckl is that of a counterfactual experiment

along the lines of Leeper and Zha’s (2003) “modest policy interventions.” Thus, cW c
ij would

provide a formal measure about the “modesty” of the counterfactual φckl, which is expressed

in terms of the impulse response function rather than in terms of restrictions on some of the

coefficients of the VAR representation of the data. However, to justify such an interpretation

requires a more careful analysis than is provided here and it is left for future research.

I now return to the Stock andWatson (2001) VAR to illustrate how this type of restriction

can be used in practice. In particular, consider the impulse response of inflation (P) in

response to a shock in the federal funds rate (FF) displayed in the bottom panel of figure

5 as the impulse response in squares (along with two standard error conditional bands). As

is often the case, prices appear to respond positively to a positive shock in interest rates, at

least for the first few quarters, in what is now commonly dubbed as the “price puzzle” in

the monetary economics literature (e.g. Sims, 1992). Suppose now that, given our theory

on how economies should behave, we impose that this response is negative starting in the

first period. As an example, I have subtracted 0.25% to every coefficient in that impulse

response. The new response is represented by the line in circles in the bottom panel of figure

5.
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The p-value of the Wald test of the plausibility of this restriction (given by the Wald

test in expression (6)) is 0.217 so that the restriction is not rejected by the data. The

original and the conditional impulse responses of unemployment (UN) and interest rates

(FF) in response to an interest rate shock are plotted in the top panels of figure 5 along

with their respective two conditional standard error bands. It is interesting to see that the

conditional response of interest rates is shifted upwards (on impact, interest rates go up by a

full percentage point instead of 0.65% and remain approximately 20 basis points higher than

the unconditional response throughout) whereas the response of unemployment during the

first two years is approximately the same but with a much sharper decline for the conditional

response thereafter. Interestingly, the conditional impulse responses that I report in figure

5 correspond rather well to the impulse responses in figure 2 of Stock and Watson (2001).

However in that paper, Stock and Watson achieve these results by imposing a version of the

Taylor-rule on the contemporaneous structure of their VAR. Instead the results in figure 5

combine a basic Cholesky assumption with a restriction on how prices should respond to

interest rates and whose plausibility we formally tested.

4 Asymptotic Distribution of Impulse Responses

Large-sample approximations provide analytic expressions of statistics of interest with mini-

mal assumptions and serve to justify the validity of finite-sample calculations with resampling

methods (e.g. for the bootstrap, see Horowitz, 2001). This section presents asymptotic re-

sults for structural impulse responses under a variety of assumptions and estimation methods
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based on least-squares techniques. Although many of the derivations are scattered elsewhere

in the literature, it is perhaps useful to catalog the main results together and compile a brief

guide for practitioners here.

Recall that the r(H + 1) × 1 matrix Φ(0, H) collects the structural impulse responses

of a system yt of r variables over H + 1 horizons. These are constructed as Φ (0,H) =

B (0,H)P where B (0,H) is an r (H + 1)× r matrix of reduced-form impulse responses and

P is the r× r rotation matrix required for structural identification. Accordingly, I begin by

discussing results for bbT = vec³ bBT (0,H)´ first. Then, I derive estimates of P under short-
run (Cholesky) and long-run (Blanchard and Quah, 1989; Galí, 1999) recursive identification

assumptions. Given bbT and bPT , then it is straight-foward to derive the distribution of
vec(Φ (0, H)) = bφT = ³ bP 0T ⊗ I´ bbT . Many of the results in this section are derived, with a
little bit of work, directly from standard references such as Hamilton (1994) and Lütkepohl

(2005).

4.1 The Reduced-Form Estimators

Let yj for j = H, ..., 1, 0,−1, ...,−K be the (T −K −H)× r matrix of stacked observations

for the 1 × r vector y0t+j. Hence, let Yh ≡ (y0, ...,yh) be the (T −K −H) × rh matrix

of dependent variables for any h = 0, 1, ..., H. Next, define the matrix of regressors Xk ≡

(y−1, ...,y−k) , which is of dimensions (T −K −H) × rk for k = 1, ..., K. Let 1T denote

a vector of ones (meant for the constant term) of dimension (T −K −H) × 1 and the

associated projection matrix M1 = IT−K−H − 1T10T . Let Zk ≡ (1T ,y−2, ...,y−k) be an (T −

K − H) × r(k − 1) + 1 matrix for k = 2, ..., K with associated projection matrix Mz =
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IT−K−H − Zk (Z 0kZk)−1 Z 0k of dimensions (T −K −H)× (T −K −H).

Estimates of the reduced-form impulse response coefficients based on a VAR(K) can be

obtained from the least-squares estimates

bAT ≡
⎡⎢⎢⎢⎢⎢⎢⎣
bA1
...

bAK

⎤⎥⎥⎥⎥⎥⎥⎦ = (Y
0
1M1XK) (X

0
KM1Xk)

−1 (8)

and with the recursions bBh =Ph
j=1

bBh−1 bAj for h = 1, 2, ..., H and B0 = Ir from which it is

straightforward to construct bBT (0,H) . I will denote with bε the (T −K −H)×r the matrix
of residuals from this VAR(K), which coincide exactly with the residuals for the first local

projection in expression (9) below.

Instead, impulse response coefficients can be obtained directly by local projections with

the least-squares estimates

bBT (1,H) = (Y 0HMzX1) (X
0
1MzX1)

−1 (9)

and by setting B0 = Ir. The large-sample distributions of these two estimators will depend

on a set of assumptions for covariance-stationary but possibly infinite-order processes, or a

set of assumptions for finite-dimensional but possibly integrated vector processes.
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4.2 Assumptions for Covariance-Stationary Processes

A1. Let yt be an r × 1, covariance-stationary vector time-series generated by the infinite

order process

yt =
∞X
j=1

Ajyt−j + εt,

where the constant term and other deterministic terms have been omitted for simplicity

but without loss of generality.

A2. E(εt) = 0 and εt are i.i.d.

A3. E(εtε0t) = Σε
r×r

and finite.

A4.
P∞

j=1 kAjk <∞ where kAjk2 = tr(A0jAj)

A5. yt can also be represented by the infinite moving average process

yt =
∞X
j=0

Bjεt−j

with B0 = Ir and the constant term and other deterministic terms omitted for sim-

plicity.

A6. det
³P∞

j=0Bjz
j
´
6= 0 for |z| ≤ 1; andP∞

j=1 j
1/2||Bj|| <∞.

A7. K3/T →∞;K,T →∞. K is the truncation lag of the VAR(K).

A8. K1/2
P∞

j=K+1 ||Aj||→ 0 as K,T →∞.
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Notice that assumption A1 includes as a special case finite-dimensional processes since

for a finite value K, we can set AK+j = 0 for j ≥ 1. Assumption A1 imposes covariance-

stationarity but below I show that in the finite-dimensional case, the asymptotic results carry

through as long as the process yt admits a Beveridge-Nelson decomposition. Assumption

A2 is more stringent than is necessary and it can often be relaxed to accommodate general

forms of heteroskedasticity. I will remark on the effect of relaxing the assumption where

appropriate. Assumption A5 is really a consequence of assumptions A4 and A6 (see, e.g.

Anderson, 1994). Assumptions A1-A6 cover a wide class of models that includes the well-

trotten finite dimensional VAR but also include finite-dimensional VARMA models and

potentially other covariance-stationary processes.

4.3 Assumptions for Systems with Unit Roots

A1’. Let yt be an r × 1 vector time-series generated by the process

yt =
KX
j=1

Ajyt−j + εt

with K finite, and define Cs ≡ − [As+1 + ...+AK ] for s = 1, 2, ...,K − 1 and C0 =

A1 + ...+AK so that the system can be expressed in the differences as

∆yt =
K−1X
j=1

Cj∆yt−j + (C0 − I)yt−1 + εt.

Depending on rank (C0 − I) = g, we can have that if g = 0, then the system has

exactly r unit roots and C0 − I = 0; if 0 < g < r then the system is cointegrated;

and if g = r then the system is stationary in the levels and we can revert back to

assumptions A1-A8.
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A2’. Same as assumption A2.

A3’. Same as assumption A3.

A4’. If 0 < g < r then we can rewrite C0 − I = αβ0 where α and β are r × g. Let α⊥ and

β⊥ denote the space spanned by vectors orthogonal to the space spanned by α and β

respectively, then assume that

α0⊥

Ã
Ir −

K−1X
j=1

Cj

!
β⊥

is non-singular. If g = 0, then assume that all values z satisfying
¯̄
Ir − C1z − ...− CK−1zK−1

¯̄
=

0 lie outside the unit circle.

A5’-A6’. ∆yt is a stationary process with infinite MA representation

∆yt =
∞X
j=0

Bjεt−j

where
P∞

j=0 j||Bj|| < ∞;B(1) =
P∞

j=0Bj 6= 0 and hence yt has a Beveridge-Nelson

decomposition given by

yt = y0 +B (1)
tX
j=1

εj +
∞X
j=0

B∗jεt−j +
∞X
j=0

B∗j ε−j

where B∗j = −
P∞

i=j+1Bj for j = 0, 1, ...; y0 and ε−j are initial conditions; andP∞
j=0

¯̄
B∗j
¯̄
<∞.

Often times the covariance-stationary assumption in A1 is violated in macroeconomic

data. When the source of non-stationarity are the presence of unit roots in the system, it will

turn out to have little effect on the large-sample results reported below — impulse response
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estimates based on a VAR or on local projections are still asymptotically normally distributed

although the covariance matrix now has reduced rank. This has the only consequence of

affecting the rates of convergence and asymptotic distribution of certain linear combinations

of parameters (such as the long-run accumulated responses) but leaves all other relevant

statistics unchanged.

4.4 Propositions

Before stating the relevant results, it is useful to define the following auxiliary expressions:

Σv ≡ ΨB (IH+1 ⊗ Σε)Ψ
0
B (10)

ΨB
r(H+1)×r(H+1)

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r B1 Ir ... 0r

...
...

... ...
...

0r BH−1 BH−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and notice that a consistent and asymptotically normal estimate of Σε (see e.g., proposition

15.2 in Lütkepohl, 2005) can be obtained as:

bΣε =
bε0bε

(T −K −H) (11)

where bε are the least-squares residuals of the VAR(K) estimates in expression (8). The
following two propositions provide the asymptotic distribution of the reduced-form impulse

response coefficients.
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Proposition 1 Let bbV ART denote vec( bBT (0,H)) for bBT (0,H) estimated from the VAR(K)
estimates in expression (8) and the recursion bBh = Ph

j=1
bBh−j bAj for h = 1, 2, ..., H and

B0 = Ir. Then under assumptions A1-A8p
(T −K)

³bbV ART − b0
´

d→ N (0,ΩB)

where ΩB can be consistently estimated with bΩB = ³bΣ−1ε ⊗ bΣv´ based on expressions (10)
and (11).

Proof. The proof is a direct result of proposition 15.4 in Lütkepohl (2005) and is mostly

based on results by Lewis and Reinsel (1985) and Lütkepohl and Poskitt (1991).

Proposition 2 Let bbLPT denote vec( bBT (0, H)) for bBT (0,H) estimated by local projections
as in expression (9). Then, under assumptions A1-A8p

(T −K −H)
³bbLPT − b0´ d→ N (0,ΩB)

where ΩB can be consistently estimated with bΩB = ³(X 0
1MzX1)

−1 ⊗ bΣv´ based on expressions
(10) and (11).

Proof. The proof is a direct consequence of theorem 3 in Jordà and Kozicki (2006) and

Lewis and Reinsel (1985).

Several results deserve comment. First, the consistency of the VAR(K) coefficients Aj is

only guaranteed up to lagK by the conditions that lead to proposition 1 (specifically, assump-

tions A7-A8 ). Since impulse responses estimated with a VAR(K) are Bh =
Ph

j=1Bh−jAj,

then consistency of the bBh requires that the truncation lag K be chosen to be such that

K ≥ H. Thus, while efficiency may suffer in small samples, consistency of the impulse re-

sponse function suggests a preference for VAR specifications with relatively long lags. In

contrast, local projection estimates of Bh only require that the residuals be approximately
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uncorrelated and can be specified with more parsimonious lag length choices.2 Second,

the assumption that the εt are i.i.d. could be replaced by the assumption that they are

instead a conditionally heteroskedastic martingale difference sequence of errors. The basic

consequence of this alternative assumption would be to replace the estimate of Σε with a

heteroskedascity-robust covariance estimator such as White (1980). The reader is referred

to Kuersteiner (2001, 2002) and Gonçalves and Kilian (2006) for related applications.

Propositions 1 and 2 extend to systems with unit roots as follows.

Proposition 3 Let bbV ART denote vec( bBT (0,H)) for bBT (0,H) estimated from the VAR(K)
estimates in expression (8) and the recursion bBh = Ph

j=1
bBh−j bAj for h = 1, 2, ..., H and

B0 = Ir. Then under assumptions A1’-A6’p
(T −K)

³bbV ART − b0
´

d→ N (0,ΩB)

where the i, jth block of ΩB can be consistently estimated with bGibΣα
bG0j for i, j = 1, ..., r with

Gi ≡ ∂vec(Bi)
∂vec(A)

as in proposition 3.6 in Lütkepohl (2005) and Σα as given in Corollary 7.1.1.
in Lütkepohl (2005).

Proof. The relevant proofs and discussion are all contained in Hamilton (1994) chapter

18 and Lütkepohl (2005) chapter 7 (more specifically corollary 7.1.1 and proposition 3.6).

Proposition 4 Let bbLPT denote vec( bBT (0, H)) for bBT (0,H) estimated by local projections
as in expression (9). Then, under assumptions A1’-A6’p

(T −K −H)
³bbLPT − b0´ d→ N (0,ΩB) .

Proof. The proof is based on applying the results in Hamilton (1994), chapter 18 and by

realizing that the asymptotic distribution of the impulse response coefficients is dominated

2 A good practical way to choose lag lengths in vector autoregressive processes is Hurvich and Tsai’s
(1989) AICc criterion. This criterion is a correction to Akaike’s information criterion based on a second
order expansion of the Kulback-Leibler information that is tailored to autoregressive processes and is shown
to have better small sample properties than either AIC or SIC.
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by the terms converging at rate
√
T so that terms converging at rate T do not affect the

resulting asymptotic distribution.

Several results deserve comment. For systems with exactly r unit roots, impulse responses

based on the system in the differences have the same distribution as that obtained for

covariance-stationary processes under assumptions A1-A8. When there is cointegration, the

only alternatives are to either estimate the vector-error correction form or to estimate the

system in levels (i.e., without imposing cointegrating restrictions). Propositions 3 and 4 deal

with the latter case where the most important caveat is to keep in mind that ΩB is reduced

rank and that, although the distribution of the bAj is asymptotically normal, the distribution
of quantities based on

PK
j=1

bAj is non-standard (such as would be required to obtain the
long-run cumulated response, for example).

4.5 Structural Impulse Responses

The residuals εt in assumptions A1-A1’ are not assumed to be orthogonal to each other

and therefore E (εtε0t) = Σε is a symmetric, positive-definite matrix with possibly non-zero

entries in the off-diagonal terms. Let the structural residuals ut be the rotation of the

reduced-form residuals εt given by Put = εt, where E (utu0t) = Ir and hence Σε = PP 0.

Notice that the decomposition of Σε is not unique: Σε contains r(r+1)/2 distinct terms but

P contains r2 terms and therefore r(r−1)/2 additional conditions are required to achieve just-

identification of the terms in P. Traditional methods of estimating P consist in exogenously

imposing r(r−1)/2, ad-hoc, constraints. Two common approaches are identification via the

Cholesky decomposition of Σε (which is equivalent to imposing r(r − 1)/2 zero restrictions
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on P ); and identification with long-run restrictions that impose r(r − 1)/2 zero restrictions

on the long-run matrix of structural responses.

4.5.1 Short-Run Identification

When identification is achieved by imposing short-run identification assumptions via the

Cholesky decomposition, then

Ωφ =
∂φ

∂b
ΩB

∂φ

∂b0
+

∂φ

∂vec(P )

∂vec(P )

∂vech(Σε)
ΩΣ

∂vec(P )

∂vech(Σε)0
∂φ

∂vec(P )0
(12)

withΩΣ ≡ E
£
vech (Σε) vech (Σε)

0¤ andE [b, vech(Σε)] = 0 sinceE [X 0
1M1ε/ (T −K −H)] p→

0. Since Φ(0, h) = B (0, h)P then it is easy to see that

∂φ

∂b
= (P 0 ⊗ Ih+1)

∂φ

∂vec(P )
= (Ir ⊗B (0, h))

Lütkepohl (2005), chapter 3 provides the additional results

∂vec(P )

∂vech(Σε)
= L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1 (13)

√
T
³
vech

³bΣε

´
− vech (Σε)

´
d→ N (0,ΩΣ)

ΩΣ = 2D+
r (Σε ⊗ Σε)D

+0
r

where Lr is the elimination matrix such that for any square r × r, matrix A, vech(A) =

Lrvec(A), Krr is the commutation matrix such that vec(A0) = Krrvec(A), and D+
r =

(D0
rDr)

−1Dr, where Dr is the duplication matrix such that vec(A) = Drvech(A) and hence
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D+
r vec(A) = vech(A). Notice that D

+
r = Lr only when A is symmetric, but does not hold

for the more general case in which A is just a square (but not necessarily symmetric) matrix.

Putting together all of these results, we have,

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ = (P 0 ⊗ Ih+1)ΩB (P ⊗ Ih+1) +

2 (Ir ⊗B (0, h))CD+
r (Σε ⊗ Σε)D

+0
r C

0 ¡Ir ⊗B (0, h)0¢
C = L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1

where in practice, bΩφ can be calculated by plugging the sample estimates bB (0, h) ; bΩB; bP ;
and bΣε into the previous expression.

4.5.2 Long-Run Identification

The infinite order process in assumption A1 can be rewritten, without loss of generality, as

yt =
∞X
j=1

Cj∆yt−j + C0yt−1 + εt (14)

with Ci = −
P∞

j=iAj and C0 =
P∞

j=1Aj. Let Π = (I − C0) then Π−1 is the reduced-form,

long-run impact matrix. Notice that if the system has unit roots, Π is not full rank (in the

case of cointegration) and it is exactly 0 if there are r unit roots in the system. Thus, when

unit roots are present, care should be exercised since some recursive long-run restrictions may

not actually carry any proper identifying information on the true structure in the system.

This is a point often overlooked in the literature. Of course, a similar situation would arise if
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Σε were a diagonal matrix already and one were to impose short-run recursive assumptions

to achieve identification. For these reasons, I assume that Π is full rank and briefly discuss

below what happens if it is reduced-rank.

If P is the structural rotation matrix such that Put = εt, then the structural long-run

impact matrix is

Φ∞ = Π−1P.

Lütkepohl (2005) then shows that long-run identification assumptions can be easily imposed

by applying the Cholesky decomposition to

Φ∞Φ0∞ = Π−1PP 0Π0−1 = Π−1ΣεΠ
0−1 = QQ0 (15)

and hence P = ΠQ.

A direct estimate of Π can be easily obtained with the least-squares estimate of a trun-

cated version of the Beveridge-Nelson decomposition of expression (14). Assuming the sys-

tem is covariance-stationary, this estimate will be asymptotically normally distributed with

covariance matrix, say, Ωπ. If the system contains unit roots, then the estimate will be

super-consistent and it will not affect the distribution of the structural impulse responses.

The structural impulse responses can be constructed as

bΦ (0, h) = bB (0, h) bΠ bQ (16)

where the asymptotic normality of each element ensures that
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√
T
³bφT − φ0

´
d→ N (0,Ωφ)

but where now

Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bπT Ωπ
∂bφT
∂bπ0T + (17)

∂bφT
∂bqT

⎡⎢⎣ ∂bqT
∂bπT Ωπ

∂bqT
∂bπ0T + ∂bqT

∂vech
³bΣε

´ΩΣ
∂bqT

∂vech
³bΣε

´0
⎤⎥⎦ ∂bφT

∂bq0T
with bqT = vech

³ bQT´ ; ΩΣ is the covariance matrix of vech
³bΣε

´
and we make use of the

fact that bqT and vech³bΣε

´
are uncorrelated.

It is easy to see that the partial derivatives in (17) are:

• ∂bφT
∂bbT = bQ0bΠ0 ⊗ I

• ∂bφT
∂bπT = −

³ bQ⊗ bB (0, h)´
• ∂bφT

∂bqT = I ⊗ bB (0, h) bΠL0r
• ∂bqT

∂bπT =
n³ bQ⊗ I´L0ro−1 nbΠ−1bΣε ⊗ I

onbΠ0−1 ⊗ bΠ−1o
• ∂bqT

∂vech(bΣε)
=
n
L
hbΠ⊗ bΠi (Ir2 +Krr)

³ bQ⊗ I´L0o−1
When Π is less than full rank but non-zero, we are dealing with a cointegrated system.

The immediate consequence of this is that Π converges at rate T and the distribution of

bφT is then dominated by the terms converging at rate √T so that expression (17) simplifies
considerably to essentially the expression we had for the short-run recursive case, that is
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Ωφ =
∂bφT
∂bbT ΩB ∂

bφT
∂bb0T + ∂bφT

∂bqT
⎡⎢⎣ ∂bqT
∂vech

³bΣε

´ΩΣ
∂bqT

∂vech
³bΣε

´0
⎤⎥⎦ ∂bφT

∂bq0T (18)

where the formulas for each of the terms in the previous expression are the same as those

already derived above.

5 Conclusion

If impulse response coefficients were independent of each other, we would expect impulse

response plots to look rather noisy, much like the plot of the error series from a regression.

Seldom is this the case: impulse response paths are rather smooth, a manifestation of the

high degree of correlation among the coefficients of the response. High colinearity makes

identification of individual effects difficult even when collectively, there may be little ambi-

guity about the overall effect. Understanding and communicating the sources of uncertainty

associated to such objects requires statistics based on their joint distribution.

The major contribution of this paper is to alert the profession of this seemingly self-

evident observation and to provide a collection of intuitive statistical tools with which to

determine what is learnt from an empirical impulse response exercise. These tools are inde-

pendent of the method used to estimate the impulse responses in the sense that the formulas

rely on the availability of the joint distribution, not on how this distribution is arrived at.

The paper collects a variety of asymptotic results, not out of preference for large-sample

approximations necessarily, but rather because these are foundational results that are needed

to justify resampling, finite-sample methods in general and because they provide the neces-
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sary formulas to carry out the bootstrap with asymptotic refinements.
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Figure 1 – Correlation Among Impulse Response Coefficients: Response of Inflation 
to a shock in the Federal Funds Rate 
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Correlation Matrix: asymptotic critical value of significance is 0.15 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 0.52 0.34 0.27 0.37 0.22 0.21 0.14 0.20 0.10 0.13 0.08 0.09 0.07 0.11 0.13 0.11 0.07 0.08 0.08 0.04 0.04 0.03 0.08
2 0.52 1 0.61 0.43 0.45 0.46 0.33 0.26 0.23 0.22 0.13 0.15 0.10 0.09 0.11 0.14 0.14 0.09 0.08 0.10 0.08 0.05 0.05 0.05
3 0.34 0.61 1 0.64 0.52 0.51 0.50 0.36 0.31 0.24 0.23 0.15 0.15 0.10 0.11 0.13 0.15 0.13 0.10 0.09 0.10 0.09 0.06 0.06
4 0.27 0.43 0.64 1 0.67 0.55 0.54 0.52 0.39 0.32 0.26 0.24 0.16 0.16 0.12 0.13 0.14 0.15 0.14 0.11 0.09 0.10 0.09 0.07
5 0.37 0.45 0.52 0.67 1 0.70 0.59 0.54 0.54 0.38 0.31 0.26 0.23 0.15 0.17 0.14 0.14 0.12 0.15 0.14 0.11 0.10 0.10 0.10
6 0.22 0.46 0.51 0.55 0.70 1 0.73 0.60 0.56 0.53 0.37 0.32 0.26 0.22 0.16 0.18 0.14 0.12 0.12 0.15 0.14 0.12 0.11 0.11
7 0.21 0.33 0.50 0.54 0.59 0.73 1 0.74 0.62 0.56 0.52 0.39 0.33 0.26 0.24 0.18 0.19 0.13 0.13 0.13 0.15 0.15 0.13 0.12
8 0.14 0.26 0.36 0.52 0.54 0.60 0.74 1 0.75 0.64 0.57 0.54 0.41 0.35 0.29 0.27 0.20 0.20 0.15 0.15 0.14 0.17 0.17 0.15
9 0.20 0.23 0.31 0.39 0.54 0.56 0.62 0.75 1 0.76 0.66 0.60 0.56 0.44 0.39 0.33 0.30 0.22 0.23 0.18 0.17 0.17 0.19 0.20

10 0.10 0.22 0.24 0.32 0.38 0.53 0.56 0.64 0.76 1 0.77 0.68 0.62 0.59 0.47 0.42 0.35 0.32 0.25 0.25 0.20 0.19 0.19 0.22
11 0.13 0.13 0.23 0.26 0.31 0.37 0.52 0.57 0.66 0.77 1 0.78 0.69 0.64 0.61 0.50 0.45 0.38 0.35 0.27 0.27 0.22 0.21 0.22
12 0.08 0.15 0.15 0.24 0.26 0.32 0.39 0.54 0.60 0.68 0.78 1 0.79 0.71 0.66 0.63 0.51 0.46 0.40 0.36 0.29 0.29 0.24 0.24
13 0.09 0.10 0.15 0.16 0.23 0.26 0.33 0.41 0.56 0.62 0.69 0.79 1 0.80 0.73 0.68 0.65 0.53 0.48 0.42 0.37 0.31 0.31 0.27
14 0.07 0.09 0.10 0.16 0.15 0.22 0.26 0.35 0.44 0.59 0.64 0.71 0.80 1 0.82 0.75 0.69 0.66 0.55 0.50 0.43 0.39 0.33 0.33
15 0.11 0.11 0.11 0.12 0.17 0.16 0.24 0.29 0.39 0.47 0.61 0.66 0.73 0.82 1 0.83 0.75 0.70 0.67 0.56 0.50 0.44 0.40 0.35
16 0.13 0.14 0.13 0.13 0.14 0.18 0.18 0.27 0.33 0.42 0.50 0.63 0.68 0.75 0.83 1 0.83 0.76 0.71 0.68 0.57 0.51 0.45 0.43
17 0.11 0.14 0.15 0.14 0.14 0.14 0.19 0.20 0.30 0.35 0.45 0.51 0.65 0.69 0.75 0.83 1 0.83 0.77 0.72 0.68 0.57 0.52 0.47
18 0.07 0.09 0.13 0.15 0.12 0.12 0.13 0.20 0.22 0.32 0.38 0.46 0.53 0.66 0.70 0.76 0.83 1 0.84 0.77 0.72 0.68 0.57 0.53
19 0.08 0.08 0.10 0.14 0.15 0.12 0.13 0.15 0.23 0.25 0.35 0.40 0.48 0.55 0.67 0.71 0.77 0.84 1 0.84 0.77 0.72 0.68 0.58
20 0.08 0.10 0.09 0.11 0.14 0.15 0.13 0.15 0.18 0.25 0.27 0.36 0.42 0.50 0.56 0.68 0.72 0.77 0.84 1 0.84 0.77 0.72 0.69
21 0.04 0.08 0.10 0.09 0.11 0.14 0.15 0.14 0.17 0.20 0.27 0.29 0.37 0.43 0.50 0.57 0.68 0.72 0.77 0.84 1 0.84 0.78 0.72
22 0.04 0.05 0.09 0.10 0.10 0.12 0.15 0.17 0.17 0.19 0.22 0.29 0.31 0.39 0.44 0.51 0.57 0.68 0.72 0.77 0.84 1 0.85 0.78
23 0.03 0.05 0.06 0.09 0.10 0.11 0.13 0.17 0.19 0.19 0.21 0.24 0.31 0.33 0.40 0.45 0.52 0.57 0.68 0.72 0.78 0.85 1 0.85
24 0.08 0.05 0.06 0.07 0.10 0.11 0.12 0.15 0.20 0.22 0.22 0.24 0.27 0.33 0.35 0.43 0.47 0.53 0.58 0.69 0.72 0.78 0.85 1  

 
Notes. Top Panel: impulse response calculated by local projections with 6 lags for the 
Stock and Watson (2001) system. Traditional, marginal two, standard-error bands 
displayed. Bottom Panel: correlation matrix of impulse response coefficients. Asymptotic 
critical value of significance is 0.15. 
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Figure 2 – 95% Confidence Ellipse for Two Impulse Response Coefficients 
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Notes. Top Panel: 95% confidence ellipse for two positively correlated impulse response 
coefficients. Box represents traditional two standard error bands. Coefficient estimates 
are centered at their mean values. Bottom Panel: representation of estimated impulse 
response and paths A and B from the top panel along with two standard error bands. 
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Figure 3 – 95% Conditional Error Bands for Response of Unemployment to 
Inflation Shock 
 

 
 
 
Notes: Dashed lines are traditional two marginal standard error bands. Dashed lines with 
circles are two conditional standard error bands. “Joint 0.033” refers to the p-value of the 
null hypothesis that all the response coefficients are jointly zero. “Cum 0.001” is the p-
value of the null that the accumulated impulse response after 24 periods is equal to zero. 
Impulse response calculated by local projections with 6 lags on the Stock and Watson 
(2001) system.
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Figure 4 – Fan Chart of Percentile Bounds for Response of Unemployment to 
Inflation Shock 
 

 
 
Notes: Percentile bounds for 95th , 25th , and 1st percentiles of the Wald test of joint 
significance.  Impulse response calculated by local projections with 6 lags on the Stock 
and Watson (2001) system.
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Figure 5 – Anchoring Experiment: Making the Initial Response of Prices to a Shock 
in the Federal Funds Rate Negative 
 
 

 
 

 
 

Notes: solid lines with squares and companion dashed lines are the original impulse 
responses with 95% conditional confidence error bands. Solid line with circles is the 
counterfactual response in the bottom graph and the conditional responses given this 
counterfactual for the top panels with associated 95% conditional error bands. All 
impulse responses come from Stock and Watson’s (2001) system estimated by local 
projections with 6 lags. 
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