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Abstract
As the cyber insurance market is expanding and cyber insurance policies continue to 
mature, the potential of including pre-incident and post-incident services into cyber 
policies is being  recognised by insurers and insurance buyers. This work addresses 
the question of how such services should be priced from the insurer’s viewpoint, i.e. 
under which conditions it is rational for a profit-maximising, risk-neutral or risk-
averse insurer to share the costs of providing risk mitigation services. The interac-
tion between insurance buyer and seller is modelled as a Stackelberg game, where 
both parties use distortion risk measures to model their individual risk aversion. 
After linking the notions of pre-incident and post-incident services to the concepts 
of self-protection and self-insurance, we show that when pricing a single contract, 
the insurer would always shift the full cost of self-protection services to the insured; 
however, this does not generally hold for the pricing of self-insurance services or 
when taking a portfolio viewpoint. We illustrate the latter statement using toy exam-
ples of risks with dependence mechanisms representative in the cyber context.
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Introduction

Motivation and approach

Cyber insurance is still a relatively new, but steadily expanding market. The rea-
sons for its ongoing growth in demand are manifold: the dynamically expand-
ing and evolving cyber-threat landscape (ENISA 2021; tenable 2021), extensive 
media coverage of severe cyber incidents (Advisen and PartnerRe 2017, 2018; 
Marotta et al. 2017), ubiquitous introduction of stricter legislation (Anchen and 
Pain 2017; Marotta et al. 2017), and increased awareness of companies about their 
augmented dependence on information technology. To emphasise the first point, 
in particular the growing extent of the professionalism and economic potential 
of the ransomware “industry” are addressed, e.g. in ENISA (2021). As of 2020, 
cyber incidents were ranked the number one peril to businesses worldwide (Alli-
anz 2020) and their perilousness can hardly be expected to have diminished since, 
as the COVID-19 pandemic and its effects (e.g. extensive ad-hoc shifts to remote 
work without adequate time to amend IT security measures and practices) have 
been labelled by some experts “the largest-ever cybersecurity threat” (Munich 
Re 2021). Many insurers are already actively participating in the global cyber 
insurance market, while still grappling with a firm understanding of this new 
and dynamic type of risk and its underlying drivers. Far from being solved is 
the question of how to adequately assess and price cyber risk given the various 
challenges, e.g. scarcity of historical data, non-stationarity of claims, association 
between claims, and strategic motivations of threat actors. Many academic works 
have recently been devoted to understanding and modelling these challenges in 
cyber risk. We, therefore, deliberately refrain from providing an exhaustive over-
view and refer to the surveys (Marotta et al. 2017;  Awiszus et al. 2023).

In most established insurance lines, insurers have multiple years of claims 
experience and established technical expertise to quantify risks. In contrast, 
assessing and pricing cyber risks is particularly challenging due to the dynami-
cally evolving threat landscape and the high complexity of modern IT systems. 
Therefore, insurers strive to collaborate with specialised IT security service pro-
viders (consider Bosch CyberCompare as an example or Advisen for a market 
overview), who not only support insurers in accurately assessing to-be-insured 
risks, but collaborate in providing services that aim at mitigating the insured risk 
as part of an insurance policy. Such cyber-assistance services can be divided into 
pre-incident services, such as network security, back-up of critical systems and 
data, and patch management, and post-incident services, such as restoration of 
data, forensic services, and legal advice (see Munich Re 2021). The former typi-
cally serve to decrease the probability of a cyber incident, while the latter sup-
port mitigation of the loss size in case an incident has occurred. In practice, the 
effects of both types of service are naturally intertwined, and additionally, all 
types of cyber assistance can also serve to provide insurers with additional infor-
mation, i.e. to enhance their cyber-risk assessment practices or simply to obtain 
supplementary data (see also Remark 1 below). A recent survey (Munich Re 
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2021) indicates that the majority of (prospective) buyers believes that such ser-
vices should be covered by holistic cyber insurance solutions, indicating that both 
the supply and demand side have realised that cyber insurance coverage should 
encompass more than pure compensation for financial losses. One type of service 
which is not yet explicitly advertised on the market, but holds great potential, is 
the insurer’s ability to use the interdependence of cyber incidents to all parties’ 
benefit by offering additional risk mitigation services.

To the best of our knowledge, established actuarial pricing approaches for these 
new policies are yet to be developed. The aim of this work is to propose a math-
ematical framework to study the optimal price structure of such insurance contracts, 
in particular to start addressing the question if (and under which circumstances) an 
insurer is economically incentivised to subsidise risk reduction services within an 
insurance policy. As part of this question, the issue of the optimal combination of 
insurance and risk mitigation (depending on their prices) from an insurance buyer’s 
point of view is also studied. A further point, which is particularly relevant in the 
cyber context, is that for an insurer, it is not exhaustive to consider every single poli-
cyholder separately, but due to the potential interconnectedness of cyber losses, a 
portfolio viewpoint considering dependencies needs to be taken into account.

Our approach is based on the work of Bensalem et al. (2020), by using the frame-
work of distortion risk measures and stochastic ordering of loss distributions, respec-
tively, to capture risk assessment of all parties and the effects of risk mitigation ser-
vices, and by modelling the interaction between insurer and insurance buyer(s) as 
a Stackelberg game. We extend their setting to a bivariate problem for the insurer, 
allowing her to choose the price for both risk transfer and risk mitigation, and ana-
lyse the results of the corresponding buyer’s problem [which is conceptually similar 
to Bensalem et  al. (2020)] in the cyber insurance context. Furthermore, we tran-
scend from the study of an interaction with a single buyer to examples of (sequential 
or simultaneous) interactions with several buyers with dependent losses.

Related literature

A concise overview of academic studies on the interaction between risk reduction 
and insurance in the cyber context is given in Xiang et  al. (2021). As mentioned 
therein, many of these studies rely on very simplified assumptions regarding the dis-
tribution of random cyber losses or the interplay between costs of prevention and 
consequence on the reduction of risk. Most often, the optimal combination of secu-
rity provisions and insurance from an insured’s point of view is studied, see, e.g. the 
early game-theoretic contribution of Pal and Golubchik (2010), the work of Young 
et  al. (2016), and subsequently Mazzoccoli and Naldi (2020), or Yang and Lui 
(2014), Chase et al. (2017), and Mazzoccoli and Naldi (2021) who investigate opti-
mal security investments under the presence of cyber insurance in a heterogeneous 
network, in a cloud computing environment, and for a multi-branch firm with corre-
lated vulnerabilities, respectively. Zhang and Zhu (2021) use a dynamic moral haz-
ard type of principal–agent model with Markov decision processes to capture deci-
sions on self-protection of the insured and Skeoch (2022) expands the Gordon–Loeb 
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model (Gordon and Loeb 2002) for cybersecurity to a cyber insurance context. Pal 
et  al. (2014, 2017) more generally study synergies between cybersecurity and the 
(existence of a then nascent) cyber insurance market.

Fewer studies emphasise the insurer’s role in designing cyber insurance contracts, 
e.g. by choosing premium and contractual indemnity (Dou et al. 2020), employing 
a bonus-malus system (Xiang et  al. 2021), or trying to mitigate moral hazard by 
means of risk preference design (Liu and Zhu 2022).

The problem of combining different strategies of coping with risk, in particu-
lar the combination of risk reduction by investing in prevention measures and risk 
transfer by purchasing insurance, is of course not specific to cyber and has been the 
interest of many earlier studies. A good starting point is the survey (Courbage et al. 
2013) on the economic literature on prevention and precaution. As differentiated 
therein, prevention activities encompass self-protection, i.e. modifying the probabil-
ity of a loss, and self-insurance, i.e. shaping the potential loss size. The seminal 
work by Ehrlich and Becker (1972) examined the relationship of both activities to 
market insurance, and many authors have subjected these results to various model 
changes (for an overview, see Courbage et al. 2013), see, e.g. Dionne and Eeckhoudt 
(1985) and Hiebert (1989). Most aforementioned models use an Expected Utility 
(EU) framework and consider only two states (i.e. a loss occurs = “bad” state or no 
loss occurs = “good” state).1 Another model of behaviour under risk, namely Rank 
Dependent Expected Utility (RDEU), has been considered for the study of preven-
tion, e.g. in Konrad and Skaperdas (1993), Bleichrodt and Eeckhoudt (2006), Etner 
and Jeleva (2013). Courbage (2001) considered the relationships between market 
insurance, self-insurance, and self-protection in the context of Yaari’s Dual Theory.

Our work is conceptually most closely related to Bensalem et  al. (2020), who 
model the interaction between insurer and insurance buyer as a so-called Stackel-
berg game (see, e.g. Osborne and Rubinstein 1994; Fudenberg and Tirole 1991), a 
setting recently used to describe the interaction between reinsurer(s) and insurer(s), 
e.g. in Bai et al. (2022), Chen and Shen (2018), Chen et al. (2020), and Cheung et al. 
(2019).2 Recently, some authors have also studied equilibria in sequential optimi-
sation games in an insurance-reinsurance-setting, see, e.g. Boonen and Ghossoub 
(2022), Boonen et  al. (2021) and Boonen and Zhang (2022). Let us also mention 
that in the cyber insurance domain, some works employ different game-theoretic 
approaches including the insurer and insured as parties, sometimes additionally fea-
turing malicious third parties (cyber attackers), see, e.g. Zhang et al. (2017) and Yin 
et al. (2021). One aspect of the usual (principal-agent)problem between an insurer 
(acting as principal) and an insurance buyer (responding as agent) is the problem of 
moral hazard, i.e. the fact that the (risk reduction) actions of the agent are unobserv-
able to the principal (see, e.g. Holmstrom 1979). This complicates matters, i.e. static 
principal-agent problems involving moral hazard are typically hard to solve (see, 

1  The distinction between self-protection and self-insurance provides good guidance and fits well with 
simple two-state models and frequency-severity approaches. Note that in reality, the effects of altering 
loss probabilities and loss sizes are often inseparable, which may be particularly relevant for cyber risks.
2  The cited studies use a continuous-time setting, whereas we consider a one-period model.
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e.g. Rogerson 1985; Jewitt 1988). Many of the above-mentioned works incorporate, 
or at least mention, the issue of asymmetric information in their studies, e.g. Liu and 
Zhu (2022), Boonen et al. (2021), and Zhang and Zhu (2021).3

The popular framework of risk measures to model risk preferences of both the 
insurance buyer and insurer has recently been used by, e.g. Bensalem et al. (2020), 
Cheung et  al. (2019), Boonen and Ghossoub (2022), and Balbás et  al. (2011), 
mostly in an insurance-reinsurance context. In the insurance context, an axiomatic 
characterisation of insurance prices as Choquet integrals (see Denneberg 2013) 
with respect to distorted probabilities was introduced in Wang et  al. (1997) and 
studied further, e.g. in Bellini and Caperdoni (2007) and Wang (2000).4 The first 
explicit connection of distortion risk measures and insurance pricing was made by 
introducing the proportional hazard transform (Wang 1995, 1996, 1998). Wang 
et al. (1997) described an axiomatic characterisation of insurance prices as Cho-
quet integrals and Wang (2000) introduces another particular distortion in the gen-
eral setting of Wang (1996), later called Wang transform, with the aim of connect-
ing the pricing of insurance and financial risks. Finally, let us mention that many 
questions that arise from the practical usage (due to corresponding regulatory 
frameworks) of the value-at-risk (VaR) and average value-at-risk (AVaR) meas-
ures are subsequently studied for a more general class of distortion risk measures, 
e.g. backtesting methods [see, e.g. Christoffersen and Pelletier (2004) and Ziggel 
et al. (2014) for VaR, Emmer et al. (2015) and Kratz et al. (2018) for AVaR, and 
Bettels et  al. (2022) for general distortion risk measures and an extensive over-
view of works on VaR and AVaR backtesting] or risk sharing [see, e.g. Galchion 
(2010) for VaR, Embrechts et al. (2018) for quantile-based risk measures (range 
value-at-risk), and Wang (2016), resp. Weber (2018), for more general (resp. VaR-
type) distortion risk measures].

3  Indeed, in other insurance domains, if incentive programmes exist (e.g. discounts on health insurance 
for participating in fitness regimes), they often give rise to moral-hazard issues, i.e. the insurer needs to 
secure the insured actually complies with the agreed-upon level of effort. In the cyber context, however, 
moral hazard does not seem to be a major concern for two reasons: first, due to the novelty and dynamics 
of cyber risk and the high complexity of technical systems, it is likely that neither of the parties (insurer 
and insured) have a full understanding of the underlying risk, i.e. the main problem is a lack of informa-
tion for both parties rather than information being withheld. Due to the necessity for up-to-date technical 
expertise, insurers collaborate with specialised IT service providers to assess and monitor the insured 
risks and recommend or employ risk mitigation measures. Thus, in our framework, we assume both risk 
transfer and risk reduction are offered through the insurer (principal), i.e. risk reduction services are part 
of the insurance contract and therefore their uptake (ex-ante) and upholding (ex-post) observable to the 
insurer. Second, as e.g. reputational risk from cyber events or losses from threats classified as war actions 
are not fully insurable but substantial risks in practice, the insured has an intrinsic motivation to mitigate 
such risks, even if an insurance policy to transfer other financial losses is in place.
4  Such distortion risk measures result from the properties of law-invariant, coherent risk measures if the 
property of sub-additivity for all random variables is replaced by additivity for comonotone random vari-
ables (see, e.g. Föllmer and Schied (2016) and Dhaene et al. (2012) for a detailed exposition and Dhaene 
et al. (2006, 2011) for a general review on (distortion) risk measures and their relation to comonotonic-
ity). The sub-class of distortion risk measures with concave distortion functions used in this study can 
furthermore be shown to be coherent (see Wirch and Hardy 1999), i.e. are a sub-class of law-invariant, 
coherent risk measures.
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Contribution

This paper extends the landscape of previous studies on the combination of risk 
reduction and risk transfer by bestowing the insurer with a more central role, namely 
controlling the cost of both risk transfer and risk mitigation. This relates to the real-
world situation in cyber insurance, where insurers have started to endow insurance 
policies (risk transfer) with so-called cyber-assistance services (risk mitigation). We 
consider a monopolistic, profit-maximising, risk-averse or risk-neutral insurer using 
a concave distortion risk measure and study separately the cases of cyber-assistance 
services relating to the concepts of self-protection and self-insurance.5 The interac-
tion between the insurer and the insurance buyer(s),6 who are risk averse and also 
use a concave distortion risk measure, is modelled as a Stackelberg game, where 
the “inner” optimisation problem corresponds to the insurance buyer’s response to 
a given price structure by the insurer and the “outer” optimisation problem corre-
sponds to the insurer’s problem of determining prices for (cyber) risk transfer and 
(cyber) assistance services. In particular, we derive the following insights:

•	 The “The insurer’s problem: single-contract case” section addresses the insurer’s 
problem in the single-contract case, studying in which cases an insurer is incentivised 
to encourage risk reduction in her policyholders by sharing the cost of risk reduction 
measures. We find that under the above assumptions, the insurer would never share 
the cost of risk reduction in a single-contract, pure self-protection scenario (Theo-
rem 1 and case study in section A.5 in the electronic supplementary information). 
This does not hold in a single-contract, pure self-insurance scenario, where the opti-
mal share of risk mitigation cost the insurer chooses to bear may depend e.g. on the 
parameters of the loss size distribution and both parties’ risk aversions (Remark 11 
and case study in section A.6 of the electronic supplementary information).

•	 The “The insurer’s problem: portfolio viewpoint” section extends the insurer’s 
study of the pure self-protection scenario from a single-contract view to bivariate 
examples of insurance buyers facing dependent cyber losses under dependence 
mechanisms relevant for cyber (loss propagation, common events). We dem-
onstrate that the finding from the single-contract case does not carry over, i.e. 
already for these small toy portfolios, the insurer may have an incentive to subsi-
dise risk mitigation in some policyholders. The study is extended to an example 
of a larger ( N ≥ 2 ) portfolio in section A.7.3 in the electronic supplementary 
information, illustrating the increasing importance of taking a portfolio view-
point for dependent risks.

5  While both types of services can have intertwined effects and relate to gaining information via risk 
assessment services, the issues of moral hazard / asymmetric information and the prospect of gaining 
additional information are excluded from the mathematical analysis in the main part of this paper. A dis-
cussion of how to potentially address the effect of risk assessment services is provided in section A.1 in 
the electronic supplementary information.
6  We consider a single buyer during the first part of the paper and extend this to examples of two (resp. 
N ≥ 2 ) buyers with dependent cyber-loss occurrences in the “The insurer’s problem: portfolio view-
point” section (resp. section A.7.3. in the electronic supplementary information).
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•	 The “Solution to the insurance buyer’s problem” section addresses the insur-
ance buyer’s solution to his problem of choosing an optimal combination of 
insurance and risk mitigation for a given price structure by the insurer (Corol-
lary 3) and deduces the potentially complementary nature of the two activities 
(Corollary 4).

In summary, the contribution offers threefold insights, regarding the viewpoints of 
insurers, (prospective) insurance buyers, and the general (cyber insurance) mar-
ket. For insurers, the study of the insurer’s bivariate optimisation problem offers a 
first guidance to the optimal pricing of insurance policies including risk mitigation 
services (under specific assumptions). For insurance buyers, it is also invaluable to 
better understand how different contracts would be optimally priced by an insurer, 
in particular that the price structure a prospective policyholder is offered (and the 
included incentive for risk reduction) may not only depend on his own characteric-
tics, but on the insurer’s existing portfolio and the (assumed prospective) depend-
ence between losses.7 The study of the insurance buyer’s problem on the optimal 
combination of risk transfer and risk mitigation is not conceptually new, but its 
detailed consideration offers valuable insights. Next to naturally providing guidance 
on the recommended course of action for insurance buyers, it may serve to theo-
retically explain the insurance gap observed in the cyber insurance market (see, e.g. 
Shetty et al. 2018), an offer-demand mismatch caused by the fact that potential buy-
ers often look for insurance against extreme cyber events and tend to perceive asked 
prices of such coverage as excessive, while insurers seek to limit their liabilities 
from unprecedented cyber losses either by limiting coverage or by charging heavy 
risk premiums. One way to mitigate this mismatch, where no premium acceptable 
to both parties can be found for the original risk, is to equip insurance policies with 
(potentially subsidised) risk reduction services which help to alter the risk in a way 
that allows the insurer to reduce premiums and offer desired coverage at an accept-
able (from the buyer’s viewpoint) premium.

The remainder of this paper is structured as follows:  in the “Model set-up and 
assumptions” section, the model assumptions and set-up are explained;  in the 
“Solution to the insurance buyer’s problem” and “The insurer’s problem: single-
contract case” sections the insurance buyer’s and insurer’s optimisation problems, 
respectively, are studied in the single-contract setting; the “The insurer’s problem: 
portfolio viewpoint” section addresses the insurer’s problem in simple portfolio set-
tings with dependent losses. The “Conclusion” section summarises and outlines 
future research opportunities.

7  This implies that a prospective buyer would be particularly well advised to enquire about prices at 
different insurers, as the offered price structures may differ depending on the existing portfolio, even if 
(hypothetically) the insurers’ risk assessment and modelling processes were identical.
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Model set‑up and assumptions

Risk mitigation services in cyber insurance (cyber assistance)

We first consider a model involving one profit-maximising, risk-averse insurer 
(‘she’) and one risk-averse (insurance) buyer (‘he’). Before detailing the model set-
up and the mechanics of the sequential optimisation game, we give some compelling 
arguments for considering risk mitigation services in conjunction with cyber insur-
ance policies and subsume types of risk mitigation services into three categories: 

	(R1)	 Reduction of loss probability after initial risk assessment: Insurers often work 
with specialised IT service providers (SP) who help them to thoroughly clas-
sify a prospective client’s IT security. After the effort of such an assessment 
is invested, the SP and the assessed company share a common understanding 
of the company’s IT security standpoint and potential need for action. Given 
that the risk is deemed insurable, a joint offer by SP and insurer to the com-
pany is in everyone’s interest: the company receives insurance protection and 
high-quality IT security maintenance services as a joint package without the 
necessity of extra effort to ensure complying with the insurer’s requirements, 
which is especially relevant for small companies. The insurer does not forfeit 
the upfront investment for risk assessment and has certainty about the main-
tenance and potential improvement of the IT security according to the SP’s 
assessment. The SP has certainty about the company’s willingness to comply 
with recommendations in order not to jeopardise insurance coverage, and about 
insurance coverage with a trusted “counterparty” who will not doubt their work 
in case a cyber event still occurs.8

	(R2)	 Reduction of loss magnitude in a cyber event: Among the insured’s obligations 
within a typical cyber insurance contract is the immediate notification of the 
insurer in case of a (suspected) cyber event. This allows the insurer to supply 
immediate technical and legal support in order to mitigate economic losses. 
Naturally, it is in both the company’s and insurer’s interest for these experts 
to already have a good understanding of the company’s IT security landscape 
and to be available immediately, both of which can be guaranteed by including 
these services – to be performed by a service provider collaborating with the 
insurer – in an insurance contract.

	(R3)	 Use of insurer’s knowledge about current cyber-loss landscape: While many 
businesses dedicate their attention to describing current cyber-threat trends, 
insurers have invaluable knowledge about economic losses currently suffered 
by their portfolio of clients. Companies are usually obliged by contract to notify 
their cyber insurer about cyber events, while naturally being reluctant to volun-
tarily share this information publicly or with external parties (e.g. researchers) 
in order to avoid reputational damage. Therefore, insurers have an information 

8  All of the above considerations emphasise again that moral hazard and information asymmetries might 
not be a severe problem in cyber as knowledge and incentives are aligned.
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advantage regarding current threats and their common causes (e.g. a new trend 
in phishing mails or a vulnerability in a software used by companies of a spe-
cific industry sector) and can make use of this extra knowledge to warn other 
policyholders who are particularly prone to similar threats and vulnerabilities 
(e.g. all policyholders from the same industry sector or all using some vulner-
able software). The benefit of doing so is reducing the probability of additional 
cyber losses from the same cause in their portfolio. This is especially relevant 
for large companies with sophisticated IT security (who may already work with 
external SPs) which might not find it necessary to additionally take advantage 
of (R1) and (R2) as part of insurance coverage. For the insurer, this type of 
mitigation helps to reduce the impact of systemic events and, thus, accumula-
tion risk in the portfolio.

Remark 1  (Link between theoretical and marketed types of risk reduction service) 
The types of service currently offered on the cyber insurance market and suggested 
above direct quite naturally to the concepts of self-protection and self-insurance: 

	(R1)	 Describes pre-incident services which are self-protection activities. Examples 
are network security, back-up of critical systems and data, anti-malware tools, 
identity and access management, IT security consulting, employee awareness 
measures, patch management, and mobile device management (Munich Re 
2021).

	(R2)	 Describes post-incident services which are self-insurance activities, such as res-
toration of data, 24h help hotlines, forensic post-breach services, legal advice, 
and consulting in case of extortion (Munich Re 2021).

	(R3)	 Describes a type of self-protection activity not yet advertised on the market, as 
contracts are typically viewed stand alone. However, using the insurer’s port-
folio knowledge to install such warning mechanisms would be an important 
way to use dependencies (and information) between risks to the insurer’s and 
insureds’ advantage.

Of course, the above categorisation simplifies reality regarding several points: pre- 
and post-incident services are usually not offered disjointly, but as a complete “cyber 
assistance” service package, and each service activity within the above categories 
can have beneficial effects on both cyber-loss probability and severity. For example, 
anti-malware tools not only serve their primary purpose, i.e. to deter malware from 
entering the system (preventing a cyber incident completely), but as a side effect – in 
case malware circumvents the protection – may help to identify the source of a cyber 
incident more efficiently and reduce the time until system functionality is restored 
(reducing the economic impact of an occurred cyber incident). Nevertheless, from a 
mathematical viewpoint, it is convenient (and in line with previous academic work) 
to study the two concepts separately and therefore it is helpful to keep in mind the 
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types of “real-world cyber assistance activities” they relate to.9 One aspect of cyber 
assistance which is purposely omitted here is risk-assessment services (see section 
A.1 in the electronic supplementary information). This includes, e.g. extensive IT 
audits conducted by an IT service provider collaborating with the insurer to analyse 
a company’s IT security provisions, to identify vulnerabilities, and to provide rec-
ommended courses of action.

Model prerequisites

Following the framework of Bensalem et  al. (2020), we assume that over a given 
policy year, the buyer faces a random loss represented by a non-negative ran-
dom variable (r.v.) X from a family of distributions Fs indexed by a param-
eter s ∈ [0,∞).10 For X ∼ Fs , we denote the corresponding survival function by 
FX,s(x) = ℙs(X > x), x ∈ ℝ , and its generalised inverse, the tail quantile function, by 
qX,s(u) = F

−1

X,s
(u) = inf{x ∈ ℝ ∶ FX,s(x) ≤ u}, u ∈ (0, 1) . To formalise the relation-

ship between the parameter s and the distributions Fs , we assume a decreasing order 
in the sense of first-order stochastic dominance ( ≤FSD ), i.e. for any 0 ≤ s1 < s2 < ∞ 
and X1 ∼ Fs1

, X2 ∼ Fs2
 it holds that X2 ≤FSD X1 . This is equivalent (see Müller and 

Stoyan (2002), Theorem 1.2.8) to assuming

for any non-decreasing11 function f ∶ ℝ → ℝ for which both expectations exist. We 
furthermore assume that �s[X] > 0, ∀s ∈ [0,∞) , meaning that no risk reduction can 
ever completely eliminate the possibility of a positive loss.

The decreasing order in the sense of FSD of Fs implies that

This means that increasing s alters the risk X in such a way that for any probability 
level, the minimum loss amount that is exceeded by X with this probability does not 
increase.

Assumption 1  (Convexity of tail quantile in s). Furthermore, we assume that

0 ≤ s1 < s2 < ∞ ⟹ �s2

[
f (X)

] ≤ �s1

[
f (X)

]

(A1)for any u ∈ (0, 1), the map s ↦ qX,s(u) is non-increasing.

(A2)for any u ∈ (0, 1), the map s ↦ qX,s(u) is convex.

10  The parameter s denotes the amount of risk mitigation service, whose categories were detailed above.
11  Throughout, we use the term non-decreasing for a real-valued function that fulfils 
∀x, y ∶ x < y ⟹ f (x) ≤ f (y) and increasing if the order in the implication is strict. The terms non-
increasing and decreasing are used analogously.

9  Naturally, an extension to a setting where both concepts are studied as intertwined remains an interest-
ing task for future research.
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This assumption can be interpreted as a decrease in marginal effect of service, i.e. 
the impact per unit of s on the risk X in the sense of (A1) does not increase as the 
baseline level of s increases, which is a very natural economic assumption.

We assume that both parties evaluate risk by using law-invariant, coherent risk 
measures, whose properties are recalled in section A.2 of the electronic supplemen-
tary information. An important class of risk measures are so-called distortion risk 
measures (see Wang et al. 1997), defined for a real-valued r.v. X as the usual Cho-
quet integral that simplifies for non-neg. X to

where � ∶ [0, 1] → [0, 1] is a distortion function12 and qX(u), u ∈ (0, 1), is the tail 
quantile function. From Eq. (1), one can directly see that the distortion risk measure 
for a.s. non-neg. losses represents a distorted expectation of X.

Assumption 2  (Concavity of distortion function). Concavity of the distortion func-
tion is a natural economic assumption. As it corresponds to assigning a higher 
weight to small probability events, it describes risk aversion of the decision maker, a 
standard assumption and indeed a prerequisite for the existence of insurance. There-
fore, we will restrict our analysis to distortion risk measures with concave distortion, 
a class of coherent, law-invariant risk measures.13

Remark 2  [Distortion risk measures and stochastic dominance, e.g. Dhaene et  al. 
(2006)] Any distortion risk measure � preserves first-order stochastic dominance, i.e. 
for any a.s. non-negative r.v. X1,X2 , it holds that X1 ≤FSD X2 ⟹ �(X1) ≤ �(X2).

Example 1  Table 1 lists some commonly used distortion risk measures and their cor-
responding distortion functions. In the case studies of our latter analysis, we focus 
on the proportional hazard transform.

The above assumptions on the risk measures and loss distributions [in particular 
(A2)] are convenient insofar as they imply that the map s ↦ �s(X) (and as a special 
case s ↦ �s[X] ) is convex, continuous, non-increasing, and 𝜌s(X) ≥ �s[X] > 0 [see 
Bensalem et al. (2020) and section A.3 in the electronic supplementary information].

(1)�(X) ∶= ∫
∞

0

�(FX(x))dx
e.g. [32]
= ∫

1

0

qX(u)d�(u),

13  By the properties of the Choquet integral (see Denneberg 2013), any distortion risk measure fulfils 
1., 2., 4., and 5. in Definition 1  (Section A.2 of the electronic supplementary information) and addition-
ally 3. if the distortion function � is concave (and the underlying probability space has no atoms), see, 
e.g. Wirch and Hardy (1999).

12  A distortion function � ∶ [0, 1] → [0, 1] is a continuous, non-decreasing function with �(0) = 0 and 
�(1) = 1 . The distortion is often economically interpreted as a subjective weighting of objective prob-
abilities representing the decision maker’s views or risk preference.
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Interaction between cyber‑insurance buyer and insurer

We now describe how the interaction between insurance buyer and insurer in the 
case of a cyber insurance contract is modelled as a Stackelberg game, i.e. a sequen-
tial optimisation game between two parties, where one party (the leader) moves 
first by choosing her strategy and the other party (the follower) moves second by 
choosing his strategy depending on the selected strategy of the leader, whereby both 
parties seek to maximise a gain or utility function or equivalently, minimise a loss 
function. For a general introduction to Stackelberg games, see Fudenberg and Tirole 
(1991) and Osborne and Rubinstein (1994). A common tool to solve a Stackelberg 
game is backward induction (see Fudenberg and Tirole 1991), i.e. first solving the 
follower’s problem for any possible choice of the leader’s strategy and then – know-
ing all the follower’s responses – solving the leader’s problem. The search for a solu-
tion (and its existence) therefore depends on the specific formulation of both prob-
lems, which we now detail in our case.

0.	 Common (correct) knowledge of initial loss distribution

The prospective insurance buyer approaches the insurer to inquire about offered 
prices for cyber insurance policies (in person or by entering data into an online cal-
culation system), where in order to receive price quotes, he needs to provide infor-
mation that allows the insurer (with the help of an IT service provider) to classify 
his risk profile given his characteristics (e.g. industry sector, company size, IT secu-
rity measures). We assume he provides the information truthfully and to the best 
of his knowledge, such that buyer and insurer have a common, unambiguous view 
of the original loss distribution, denoted F0.14 The real-world uncertainty of either 

Table 1   Popular distortion risk measures (DRM) and underlying distortion functions

Risk measure Distortion �(u) , u ∈ (0, 1) � concave Parameters and remarks

VaR� �{u>1−𝛼} No � ∈ (0, 1)

AVaR� min
{

u

1−�
;1
}

Yes � ∈ (0, 1)

Wang transform RM (Wang 
2000)

Φ
(
Φ−1(u) + �

)
Yes � ∈ (0,∞) , Φ is std. Normal 

c.d.f.
Beta DRM (Wirch and Hardy 

2000)
1

�(a,b)
∫ u

0
ta−1(1 − t)b−1dt Yes 0 < a ≤ 1, b ≥ 1 , 

�(a, b) =
Γ(a)Γ(b)

Γ(a+b)

Proportional Hazard (PH) 
transform RM (Wang 1995)

ur Yes r ∈ (0, 1], Special case of Beta 
DRM

14  F0 denotes the loss distribution of the buyer given his initial characteristics, including his existing 
IT security measures. The subscript 0 indicates that no additional services to reduce the risk have yet 
been acquired following the initial risk assessment. As the initial IT security level (and other characteris-
tics) vary between prospective buyers, the initial risk assessment yields inhomogeneous F0 . Note that for 
some companies, the risk assessment as part of the insurance take-up process may be the first compre-
hensive analysis of the cybersecurity level of their organization. While not every inquiry about insurance 
prices leads to the closure of a cyber insurance contract, the process may serve as a wake-up call for the 
acquisition of (additional) risk reduction measures within or without an insurance policy.
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parties’ knowledge of the unknown initial loss distribution is not studied here. Natu-
rally, the question of accurate cyber-risk assessment has gained increased practical 
importance and expresses itself, e.g. in the increasing number of service providers in 
this domain, see, e.g. Bosch CyberCompare as an example or Advisen for a market 
overview. For a seminal discussion of cyber-risk assessment services and a proposal 
how to approach them mathematically, see section A.1 in the electronic supplemen-
tary information.

1.	 Prices quotes by the insurer

Given the buyer’s original risk X ∼ F0 , the insurer offers price quotes Π for a 
range of contracts, where each offered contract is characterised by the included level 
of risk mitigation service s ∈ [0,∞).15 Assume that the price of entering a contract 
with service level s ∈ [0,∞) is given by

where the first term represents the risk premium according to the expected value 
principle with loading � and the second term denotes the service premium, where we 
assume that providing service at level s ∈ [0,∞) requires a monetary cost of c(s) for 
the insurer, of which a proportion � ∈ [�, 1] , 𝛽 > 0,16 is charged to the insured and, 
thus, the remaining proportion (1 − �) can be regarded a subsidy by the insurer to 
incentivise risk reduction. Analogously to (A1) and (A2), s ↦ c(s) is assumed to be 
increasing, strictly convex, and continuous with c(0) = 0 and lim

s→∞
c(s) = ∞ . The cost 

incurred by the insurer can be understood e.g. as the internal cost charged by the IT 
service provider for providing pre- or post-incident services (i.e. (R1) and (R2)) or 
the administrative cost of monitoring and evaluating loss data to warn policyholders 
about imminent threats (i.e. (R3)). Thus, the insurer’s task is to choose a combina-
tion (�, �) ∈ [0,∞) × [�, 1] which then defines price quotes for all feasible contracts.

2. Choice of a contract by the buyer (or opt-out)
Given a family of prices Π(s) for all feasible contracts, the buyer selects a con-

tract by choosing a proportional insurance share � ∈ {0, 1} (to opt into full insur-
ance � = 1 or to not buy insurance � = 0 ) and the amount of risk mitigation ser-
vice s ∈ [0,∞) . We assume that the purchase of (additional) service at any level 
s is also feasible outside of an insurance contract, but at a higher cost �oc(s) with 
𝛽o > 1 . This can be understood as the cost of buying service directly through an IT 
service provider (without a discount offered for insurance customers) or from the 

Π(s) = (1 + �)�s[X] + �c(s),

15  One might argue that s should rather be chosen from a discrete set {s1,… , sn}, n ∈ ℕ (a potentially 
interesting combinatorial optimisation problem), representing all feasible combinations of service pack-
ages offered by the insurer. This is reasonable and we regard this as a mathematically different version of 
the problem whose analysis is not the present focus.
16  As � does not depend on s (a potential generalisation for future studies), we do not allow the insurer 
to give away service for free, as otherwise the cost of service �c(s) would not increase with its amount, 
which is unnatural.
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insurer herself at a mark-up.17 In summary, given the prices for all feasible con-
tracts as offered by the insurer, the insurance buyer’s problem consists of choos-
ing (�, s) ∈ {0, 1} × [0,∞) . We detail in Remark 4 how the insurance buyer’s choice 
encapsulates three classical ways of dealing with risk (acceptance, reduction, trans-
fer), see, e.g. Marotta et al. (2017).

3. Solution by backward induction
To find both parties’ optimal solution, we use backward induction (see, e.g. 

Osborne and Rubinstein 1994) by first finding the buyer’s optimal response (�∗, s∗) 
to any insurer’s choice of (�, �) and second, given all optimal buyer’s responses, 
finding the insurer’s optimal choice (�∗(�∗, s∗), �∗(�∗, s∗)) . In order to formulate and 
solve the game, below we state the loss functions of buyer and insurer, respectively.

Remark 3  We highlight some similarities and distinctions between the present work 
and the study of Bensalem et al. (2020), whose framework was our inspiration: as 
indicated above, the choice of risk measures and the ordering of loss distributions 
follows Bensalem et  al. (2020) and from the insurance buyer’s point of view, the 
risk reduction service s fulfils a very similar role to the effort considered in Bensa-
lem et  al. (2020), yielding related optimisation problems for the buyer within the 
Stackelberg game. In the present study, however, the insurer’s role is more cen-
tral, as she controls the cost of risk mitigation service within an insurance contract 
(via the share � of administrative cost charged to the insured). This implies that the 
insurer has to solve a two-dimensional problem (choosing a combination of risk pre-
mium and service premium optimally), and circumvents the moral-hazard problem 
that often occurs in studies on prevention and insurance. As in the present setting 
the risk mitigation service is offered through the insurer, the challenge of ensuring 
that the buyer actually complies with the agreed-upon optimal level of risk reduc-
tion (according to which insurance is priced) does not arise. Furthermore, we extend 
the study of the interaction with one insurance buyer to toy examples of interac-
tions with a portfolio of dependent buyers, a particularly relevant issue in the cyber 
context.

Formalisation of the Stackelberg game

We now combine the assumptions of the above sections to formulate the optimisa-
tion problems of both parties within a Stackelberg game. For the reader’s conveni-
ence, all parameters and functions appearing within the optimisation problems are 
summarized in Tables  2 and 3. The insurance buyer’s objective is to minimise a 
coherent and law-invariant risk measure �1 associated to his total position includ-
ing insurance, while the insurer’s objective is to minimise, given the buyer’s opti-
mal response, another coherent and law-invariant risk measure �0 associated to her 
(negative) total loss.

17  The latter option is not necessarily feasible in practice, as the insurer may not be interested in or 
legally allowed to sell such services.
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 where we have used that both risk measures are cash-additive and positively homo-
geneous. It is obvious that the insurer’s loss depends on (�, �) directly as well as via 
the buyer’s optimal response denoted (�∗(�, �), s∗(�, �)).

Remark 4  (Interpretation of insurance buyer’s choice) The buyer’s options corre-
spond to three classical ways of dealing with risk:

•	 Risk acceptance: The choice (�, s) = (0, 0) yields L1(0, 0) = �1,0(X) , i.e. is 
equivalent to opting out of buying insurance or services and just retaining and 
accepting the original risk.

•	 Pure risk transfer: Choosing (�, s) = (1, 0) yields L1(1, 0) = (1 + �)�0[X] , 
meaning that the buyer opts for fully insuring the original risk.

•	 Pure risk reduction: A choice 𝛼 = 0, s > 0 yields L1(0, s) = �1,s(X) + �oc(s) , 
i.e. the buyer opts out of risk transfer but chooses to reduce the original retained 
risk by purchasing risk reduction services (from the insurer outside of a policy or 
from a service provider directly).18

•	 Combination of risk transfer and risk reduction: A choice 𝛼 = 1, s > 0 yields 
L1(1, s) = (1 + �)�s[X] + �c(s) and means that the buyer chooses an insurance 
policy with risk mitigation services included, i.e. opts for insuring a reduced risk.

Remark 5  (Buyer’s and insurer’s optimal attainable loss) 

•	 Note that as the insurance buyer starts out by facing the non-negative  random 
loss X, by assumption L1(𝛼∗, s∗) > 0 , i.e. the insurance buyer can never com-
pletely eliminate his risk or even make a profit.

•	 On the contrary, we naturally assume that the insurer only offers a contract if it 
is profitable, i.e. only if she can obtain a negative loss L0(𝜃∗, 𝛽∗) < 0 . Otherwise, 
she would refrain from offering a contract by refusing to quote a price.

(BP)

min
(�,s)∈{0,1}×[0,∞)

L1(�, s) ∶= �1,s(X) + �oc(s) + �
[
(1 + �)�s[X] − �1,s(X) + (� − �o)c(s)

]
,

(IP)

min
(�,�)∈[0,∞)×[�,1]

L0(�, �) ∶= �∗(�, �)
(
�0,s∗(�,�)(X) − (1 + �)�

s∗(�,�)[X] + (1 − �)c(s∗(�, �))
)
,

18  If one does not want to allow the interpretation that such contracts are offered by the insurer outside 
of an insurance policy (e.g. due to legal restrictions), the insurer’s loss function should be formulated in 
a way that makes these contracts unprofitable (e.g. as done here by restricting � ∈ [�, 1] ). If one wants 
to allow such contracts (one could argue that such a contract could be closed in the cyber domain with a 
client that has other contracts with the same insurer), a choice of 𝛽 > 1 would allow the insurer to sell her 
services at a mark-up (one could argue that this might be profitable for an insurer who has the appropri-
ate infrastructure in place anyway for the rest of her portfolio). In our analysis, we stick to the interpreta-
tion that these outside service contracts are offered by third parties, i.e. service providers, and their price 
is externally given and higher than any within-insurance price (i.e. 𝛽o > 1 , see above).
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Solution to the insurance buyer’s problem

As the analysis of (BP) is an extension of Bensalem et al. (2020), this section focuses 
on the additions to their analysis originating from the new formulation of (IP) and 
the interpretation of all results in the cyber insurance context. Derivations and proofs 
are outlined in section A.3 of the electronic supplementary information. First, one 
determines the set of values of s such that full insurance is demanded (i.e. �∗(s) = 1 , 
denoted I  ) and its complement (no insurance is demanded, �∗(s) = 0, N ∶= I

� ). 
Note that for fixed s, the choice �∗ ∈ {0, 1} depends only on the sign of the expres-
sion in the last bracket of (BP) such that it follows:

 On the sets I  and N  , the buyer’s loss function is a sum of convex functions:

Therefore, one considers (BP) separately on I  and N  and compares the resulting local 
minima to obtain a global minimum. To this end, one first needs to study I  and N  for 
given (�, �) , i.e. the behaviour of s ↦ G�(s) with respect to the threshold (1 + �) . We 
know that by assumption and Lemma 1 (see section A.3 in the electronic supplemen-
tary information), s ↦ G�(s) is continuous and its second summand s ↦ (�o − �)

c(s)

�s[X]
 

is non-negative and increasing.19 In this study, we consider two cases:

•	 Self-protection: In a self-protection scenario (Ehrlich and Becker 1972), i.e. if 
service only affects the probability of a loss, the map s ↦ �s(X)

�s[X]
 is monotone non-

decreasing (see Bensalem et al. 2020, Lemma 3.2, and section A.3 in the elec-
tronic supplementary information). Economically, this means that increased risk 
reduction has a larger impact on (reducing) the price of insurance than on (reduc-
ing) the risk.20 Mathematically, this implies increasingness of the entire map 

(2)

�∗ = 1 ⟺ G
� (s) ∶=

�1,s(X)

�
s
[X]

+ (�
o
− �)

c(s)

�
s
[X]

≥ (1 + �) ⟹ I ∶= {s ∈ [0,∞) ∶ G
� (s) ≥ (1 + �)},

(3)𝛼∗ = 0 ⟺ G𝛽(s) < (1 + 𝜃) ⟹ N ∶= {s ∈ [0,∞) ∶ G𝛽(s) < (1 + 𝜃)}.

L1,N(s) ∶= �1,s(X) + �oc(s), s ∈ N,

L
�,�

1,I
(s) ∶= (1 + �)�s[X] + �c(s), s ∈ I.

19  This follows immediately as by assumption �s[X] > 0 , 𝛽o − 𝛽 > 0 , and s ↦ c(s) is non-negative and 
increasing, while by Lemma 1, s ↦ �s[X] is non-negative and non-increasing.
20  This can be seen even more clearly by rewriting Equation (A3) in terms of elasticity � with respect 
to s [as used in economics for e.g. the price-elasticity of demand, see e.g. Parkin et al. (2002)], i.e. for 
0 < s1 < s2 < ∞ as

yielding that the expectation is more elastic with respect to service than the risk measure.

�s2
[X]−�s1

[X]

�s1
[X]

s2−s1
s1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
�
�,s

≤
�s2

[X]−�s1
[X]

�s1
[X]

s2−s1
s1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
��,s

≤ 0,



521Risk mitigation services in cyber insurance: optimal contract…

s ↦ G�(s) , meaning that G�(s) could intersect (for given � and � ) the threshold 
(1 + �) at most once, making I  and N  straightforward to determine. This setting 
will be considered in the following.

•	 Special case of self-insurance: Bensalem et al. (2020) argue that in a scenario 
of self-insurance, i.e. in the present context if service only affects the severity of 
a cyber loss, for some standard loss distributions (e.g. Pareto, Weibull, or Log-
Normal), s ↦ �s(X)

�s[X]
 is monotone non-increasing. This does not lead to a straight-

forward expression of I  and N  , as monotonicity of s ↦ G�(s) is not implied and 
there is a priori no limit for the number of times it crosses a given threshold 
(1 + �) for s ∈ [0,∞) , such that no general results for this case can be stated. In 
section A.6  in the electronic supplementary information, we study the particular 
case of a Pareto-distributed loss whose severity is affected by risk reduction ser-
vice. Here, under mild assumptions, G�(s) turns out to be strictly convex (with 
lim
s→∞

G�(s) = ∞ ), yielding only one additional case compared to the self-protec-
tion case, namely G�(s) intersecting the level (1 + �) exactly twice.

As outlined above, we now consider a scenario of self-protection (Ehrlich and 
Becker 1972), i.e. an a.s. non-negative loss X which stems from a family of zero-
inflated distributions of the form

where s ↦ p(s) ∈ [0, 1] is decreasing and FY is the c.d.f. of an a.s. positive r.v. Y. 
This means that a positive loss with c.d.f. FY (which could describe a single loss or 
be a compound distribution describing a cumulative loss) occurs with a probability 
that can be lowered by purchasing services while the severity distribution remains 
untouched, relating to (R1) and (R3) above. Ansatz (4) only assumes s ↦ p(s) to 
be decreasing (which is natural, as increased service should decrease the loss prob-
ability). As a standard economic assumption (e.g. Courbage et al. 2013) is s ↦ p(s) 
being convex (decreasing marginal impact), (A2) is not necessarily implied. There-
fore, we assume another sufficient condition to ensure convexity of s ↦ �s(X) for 
distributions of the form (4), namely that both the objective loss probabilities p(s) 
and the subjective loss probabilities �(p(s)) are decreasing in a convex way (see 
Bensalem et al. 2020, Lemma 3.3, and section A.3 in the electronic supplementary 
information).

Example 2  As � is concave, s ↦ p(s) must be “sufficiently” convex for the con-
catenation to be convex; e.g. for the common choice of distortion function 
�(u) = ur, r ∈ (0, 1] , a sufficient condition for the convexity of �(p(s)) = p(s)r 
would be for s ↦ p(s) to be logarithmically convex (see section A.5 in the electronic 
supplementary information).

(4)FX,s(x) = [(1 − p(s)) + p(s)FY (x)]1{x≥0},
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Increasingness of s ↦ G�(s) for any � ∈ [�, 1] in the self-protection case allows 
a convenient expression of the sets I  and N .

Corollary 1  (Structure of I  and N  in the self-protection case, extension of Bensa-
lem et al. (2020), Lemma 3.2) There exists a constant �0 ≥ 0 such that: 

(1)	 If � ≤ �0 , then N = � and I = [0,∞).
(2)	 If 𝜃 > 𝜃0 , then for any � ∈ [�, 1] , there exists sB(𝜃, 𝛽) > 0 such that 

N = [0, sB(�, �)) and I = [sB(�, �),∞).

In the latter case, both maps � ↦ sB(�, �) and � ↦ sB(�, �) are increasing.

Remark 6  (Interpretation of Corollary 1) Case (1) states that if the loading is lower 
than a given constant level �0 , the buyer would purchase insurance already for the 
original risk (at s = 0 ) and therefore at any level s (recall that increasing s reduces 
the price more than the risk). Case (2), illustrated in Figure 1, corresponds to a situ-
ation where the loading is too high for the buyer to insure the original risk, but by 
adding a service level of at least sB(�, �) (which depends on � as well as its relative 
cost � ), an insurance contract with loading � becomes acceptable for the buyer.

This directly relates to the insurance gap on the cyber insurance market: for the 
pure risk transfer ( s = 0 ) policies offered with loading � , it may not be acceptable for 
the buyer to insure the original risk at the price the insurer demands. To make an insur-
ance contract possible, either � would have to be lowered to at most a level �0 (move 
from case (2) to case (1)) or risk reduction services equivalent to a level sB would have 
to be offered as part of the policy (in case (2), enable a move from N  to I).

Lastly, it is intuitive that if the risk premium or service premium increase, the 
with-insurance solution becomes relatively more expensive for the buyer, and the 
interval corresponding to N  (resp. I  ) becomes larger (resp. smaller).

To solve the buyer’s problem, first note that L1,N(s) , resp. L�,�
1,I
(s) , each admit a 

unique global minimiser on [0,∞) , denoted sN resp. sI(�, �).

Corollary 2  (Solutions of separate problems, extension of Bensalem et  al. 
(2020, section 3.3)

1. For any � ∈ [�, 1] , there exists a positive constant 𝜃N(𝛽) > 𝜃0 such that

The map � ↦ �N(�) is decreasing.

2. For any � ∈ [�, 1] , there exists a constant �I(�) such that

𝜃 < 𝜃N(𝛽) ⟹ argminNL1,N(s) = sB(𝜃, 𝛽),

𝜃 ≥ 𝜃N(𝛽) ⟹ argminNL1,N(s) = sN .
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In the latter case, the following hold: 

	 (i)	 For any � ∈ [�, 1] , the map � ↦ sI(�, �) is increasing.
	 (ii)	 For any 𝜃 > 0 , the map � ↦ sI(�, �) is decreasing.

Remark 7  (Interpretation of Corollary 2) 

Part 1.: As the loading � increases, the set N  (no insurance) expands, i.e. the 
boundary sB(�, �) increases (shift to the right in Fig. 1). The value �N(�) is the small-
est loading such that the global minimiser of L1,N(s) lies in N

Part 2.: For fixed service cost � , as � increases, it becomes relatively more expen-
sive to transfer risk, which makes it economically rational to reduce the to-be-
insured risk by increasing service. Vice versa, for fixed risk loading � , as � increases, 
and thus, service becomes relatively more expensive, it is economically rational to 
decrease the purchased amount of service.

Corollary 2 does not make a statement about the local solution on I  . As both 
sI(�, �) (by Corollary 2) and sB(�, �) (by Corollary 1) are non-decreasing in � , 
to determine the local solution on I  and the global solution to the minimisa-
tion of L1(�∗(s), s) , one has to consider all possible cases regarding the order of 
sN , sI(�, �), sB(�, �) (see sectin A.3 in the electronic supplementary information).

Corollary 3  (Global solution in the self-protection case, extension of Bensalem et al. 
(2020, Theorem 3.2) For any � ∈ [�, 1] , there exists a constant �R(�) ≥ 0 , such that: 

	 (i)	 If � ≤ �R(�) , the global minimiser of L1(�∗(s), s) is (�∗, s∗) = (1, sI(�, �)).
	 (ii)	 If 𝜃 > 𝜃R(𝛽) , the global minimiser of L1(�∗(s), s) is (�∗, s∗) = (0, sN).

Furthermore, it holds �R(�) ≥ �N(�) and the map � ↦ �R(�) is non-increasing.

𝜃 ≤ 𝜃I(𝛽) ⟹ sI(𝜃, 𝛽) = 0,

𝜃 > 𝜃I(𝛽) ⟹ sI(𝜃, 𝛽) > 0.

Fig. 1   Schematic illustration 
of G� (s) and resulting sB(�, �) 
for one value of � . �0 is the 
minimum value of the loading 
such that G� (s) intersects the 
level 1 + � , resulting in N  being 
non-empty
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Remark 8  (Interpretation of Corollary 3) For any choice of � , there is a maximum 
loading �R(�) the insurance buyer is willing to accept: if it is not exceeded, he sub-
scribes to full insurance with service level sI(�, �) ; else, he refrains from purchas-
ing insurance and buys service at level sN from an outside provider. The maximum 
acceptable loading decreases as the share of service cost increases, which is intuitive 
as the buyer accepts the contract if his total loss with insurance does not exceed his 
(fixed) total loss without insurance.

The relationship between risk loading and service demand is summarised in 
Corollary 4.

Corollary 4  (Based on Bensalem et al. 2020, Corollary 3.3) For any � ∈ [�, 1] , the 
map � ↦ s∗(�, �) is non-decreasing for � ≤ �R(�) and constant (equal to sN ) for 
𝜃 > 𝜃R(𝛽) . It has a negative jump of size sN − sI(�R(�), �) at � = �R(�) , which means 
that demand for risk transfer and service can be complements.

Remark 9  (Interpretation of Corollary 4 in the cyber context) Corollary 4 is mean-
ingful in cyber insurance: earlier game-theoretic studies concerned with the exist-
ence and efficiency of a cyber-insurance market where agents in a network invest in 
interdependent security measures (e.g. Lelarge and Bolot 2009; Schwartz et al. 2013; 
Schwartz and Sastry 2014; Shetty et al. 2010, 2010) have in many cases concluded 
that given the availability of cyber insurance, individuals’ willingness to invest in 
self-protection decreases and it is, thus, generally not possible to design insurance 
as a means to reach socially optimal levels of investment. Corollary 4 emphasises 
the much more optimistic perspective that in case of self-protection, the existence of 
insurance can indeed lead to higher optimal levels of risk reduction at least for indi-
vidual policyholders. While we do not consider negative externalities of interdepend-
ent security investments, it is reasonable to postulate that by subscribing to insurance 
with a high service level, policyholders inadvertently benefit other agents in their net-
work, e.g. by reducing the risk of cyberattacks being propagated through their sys-
tems or by providing loss data the insurer can use to warn other policyholders.

Furthermore, Corollary 4 allows another understanding of the cyber insurance 
gap: as the optimal service demand within insurance can be higher than without 
insurance, for a given combination (�, �) that an insurer demands in practice, if the 
service that can be offered is limited (e.g. due to technical constraints or due to lim-
ited contracts between insurers and service providers), the optimal within-insurance 
service level may not be attainable and the company may prefer the no-insurance 
solution. A way to close (or narrow) the gap would be to either decrease the pre-
mium or to increase the amount of available service within an insurance policy to 
make sI(�, �) attainable.

Having found the insurance buyer’s optimal response to any combination 
(�, �, �o) , we address the insurer’s problem of choosing (�, �) to minimise her loss 
over all optimal responses of the buyer.
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The insurer’s problem: single‑contract case

Given the results of Corollary 3, (IP) reduces to a minimisation over a compact set:

 assuming that the obtainable objective value of (5) is negative. This corresponds 
to a choice (�, �) yielding full risk transfer with service level sI(�, �) ≥ 0 as the 
buyer’s optimal response. In case the insurer could not obtain a negative objective 
value in (5), she abstains from offering risk transfer by choosing 𝜃 > 𝜃R(𝛽) in (IP). 
In this case, the buyer’s optimal response is (�∗, s∗) = (0, sN(�o)) , i.e. to buy ser-
vice at level sN(�o) outside an insurance policy.21 Note that the special case � = 1 , 
where the insurance buyer carries the full cost of self-protection, has already been 
studied previously, the difference here being that the self-protection measures can 
be obtained cheaper within an insurance contract, increasing the maximum risk pre-
mium chargeable by the insurer.

We now state that in the self-protection case, choosing � = 1 is also a solution to the 
more general problem (5). The steps leading to this result are outlined subsequently, 
proofs are postponed to section A.4 in the electronic supplementary information.

Theorem  1  (Solution of (5) in the self-protection case) Let the assumptions of 
Lemma 2 (self-protection, see section A.3 in the electronic supplementary informa-
tion) hold. Then, a solution (�∗, �∗) to the minimisation problem (5) lies in the com-
pact set {(�, 1) ∶ � ∈ [0, �R(1)]} . This means that in the self-protection case, i.e. if 
service only affects the loss probability, it is always optimal for the insurer to shift 
the full service cost to the insured.

Example 3  (Zero-inflated Pareto loss) The solution to (5) cannot be characterised 
further without more structure. Details for the special case of a zero-inflated Pareto-
distributed loss are given in section A.5 of the electronic supplementary informa-
tion. In this case, the insurer’s loss can be shown to be monotone in � for � = 1 , 
yielding the solution �∗ = �R(1) (see Bensalem et  al. 2020). Combining this with 

(5)

min
(�,�)∈A∶=[0,�R(�)]×[�,1]

L0(�, �) = �0,sI (�,�)(X) − (1 + �)�sI (�,�)
[X] + (1 − �)c(sI(�, �)),

21  As mentioned above, one could theoretically allow the insurer to offer “service-only” contracts by 
solving

which certainly yields a non-positive objective value. It might be feasible to assume that the insurer 
would be able to offer such services cheaper than other market participants, as she might have certain 
service infrastructures (contracts with IT experts, warning mechanisms) in place already for her insur-
ance clients. One might also assume that the insurer has initially solved this problem, thus, determining 
�o , and the upper bound in (6) is the next-cheapest outside option. Under no circumstance would we find 
it realistic to allow the insurer to simultaneously compare (negative) objective values of (5) and (6) and 
choose the lower one. In other words, the insurer should not compare for a prospective buyer where risk 
transfer is profitable whether it could be more profitable to offer only services and choose a solution that 
discourages the buyer from buying risk transfer.

(6)min
�∈[1,�o]

(1 − �)c(sN (�)),
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Theorem  1 means that for a Pareto-distributed loss whose occurrence probability 
can be lowered by risk reduction services, an optimal solution for the insurer is 
given by shifting the full cost of service to the insured and charging the maximum 
acceptable loading, i.e. (�∗, �∗) = (�R(1), 1).

Remark 10  Theorem  1 does not make a statement about uniqueness of the solu-
tion, as uniqueness only holds whenever the maximum attainable loading �R(�) is 
larger than the minimum loading �I(�) that makes pure risk transfer undesirable to 
the insured compared to a combination of risk reduction and risk transfer (i.e. leads 
to a solution sI(𝜃, 𝛽) > 0 , see the proof of Corollary 2). This holds true under quite 
general assumptions on the function s ↦ c(s) , e.g. for its right-side derivative at 0 to 
vanish, i.e. c�(s)|s=0+ = 0.

We use the (implicit) definition of the maximum feasible loading for any share of 
service cost �R(�) from the proof of Corollary 3, given as

which is well-defined for any � ∈ [�, 1] , as the map � ↦ L
�,�

1,I
(sI(�, �)) is increas-

ing with L0,𝛽
1,I
(sI(0, 𝛽)) < L1,N(sN) . Furthermore, it is shown that for any � ≥ 0 (resp. 

𝜃 > 𝜃I(𝛽) ), the map � ↦ L
�,�

1,I
(sI) is non-decreasing (increasing) such that � ↦ �R(�) 

is non-increasing (decreasing). By denoting � ∶= �R(1) and 𝜃̄ ∶= 𝜃R(𝛽) , it holds 
L
𝜃,𝛽

I
(sI(𝜃, 𝛽)) < LN(sN) for any 𝜃 ∈ [0, 𝜃̄] , such that one can likewise define for any 

such � the constant

denoting the maximum feasible share of service cost such that the contract is 
accepted for a given loading. The map � ↦ �M(�) is by definition non-increasing on 
𝜃 ∈ [0, 𝜃̄] . As a corollary of Lemma 2, we deduce that for � ≥ 0 fixed, the insurer’s 
loss is monotone in the share of service cost �.

Proposition 1  (Monotonicity of insurer’s loss in � ) Under the conditions of 
Lemma 2 (self-protection) and under the necessary condition of profitability for the 
insurer, i.e. if L0(𝜃, 𝛽) < 0 , � ↦ L0(�, �) is a monotone, non-increasing function for 
any � ≥ 0.

Proposition 1 states that for any (fixed) loading � , an optimal solution for the 
insurer is to choose the maximum possible service cost �M(�) acceptable to the 
buyer, or equivalently that the insurer has no incentive to subsidise risk reduc-
tion through a rebate on services. This implies that an optimal solution to prob-
lem (5) lies in the (compact) set {(𝜃, 𝛽M(𝜃)), 𝜃 ∈ [𝜃, 𝜃̄]} ∪ {(𝜃, 1), 𝜃 ∈ [0, 𝜃]} or 
equivalently {(�R(�), �), � ∈ [�, 1]} ∪ {(�, 1), � ∈ [0, �]} (see Figure 2). The one-
dimensional optimisation problem on {(�R(�), �), � ∈ [�, 1]} can be understood 
as solving the insurer’s trade-off between charging a higher service cost versus a 

�R(�) ∶= sup
{
� ≥ 0 ∶ L

�,�

1,I
(sI(�, �)) ≤ L1,N(sN)

}
,

�M(�) ∶= max
{
� ∈ [�, 1] ∶ L

�,�

I
(sI(�, �)) ≤ LN(sN)

}
,
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higher risk loading while offering a contract the buyer will accept. The following 
proposition states that the insurer’s loss on this set is monotone in � , leading to 
the statement of Theorem 1.

Proposition 2  (Monotonicity of insurer’s loss in � with maximum feasible risk pre-
mium) Under the conditions of Lemma 2 (self-protection), the map � ↦ L0(�R(�), �) 
is non-increasing.

Remark 11  (Self-insurance) A central property leading to the above results for the self-
protection case is non-decreasingness of s ↦ �s(X)

�s[X]
 . In case of self-insurance, this 

assumption does not necessarily hold; indeed, for some standard loss distributions 
(e.g. Pareto, Weibull, or Log-Normal), the converse holds true, i.e. s ↦ �s(X)

�s[X]
 is non-

increasing (see Bensalem et al. 2020). In section A.6 in the electronic supplementary 
information, we study the particular case of a Pareto-distributed loss whose severity is 
affected by risk reduction service. We find that in this self-insurance case, the insurer 
can indeed have an incentive to subsidise service cost (i.e. offer contracts with 𝛽∗ < 1 ), 
where the optimally subsidised share (1 − �∗) increases with the insurer’s risk aver-
sion. In particular, if the risk aversions of insurer and insurance buyer are similar (i.e. 
r0 ↘ r1 for the PH transform risk measure), a mutually acceptable contract may only 
exist if the cost is shared ( 0 < 𝛽 < 1 ). This further implies that the insurer’s optimal 
solution, i.e. the price structure the insurance buyer is offered, may depend on his 
choice of risk measure, even if the initial risk assessment is equivalent.

So far, we scrutinised the interaction between the insurer and a single insur-
ance buyer as an isolated problem. This is often reasonable, as in practice insurers 

Fig. 2   Schematic illustration of the insurer’s admissible set A = [0, �R(�)] × [�, 1] (grey) and the set con-
taining the optimal solution in the self-protection case. According to Proposition 1, an optimal solution 
must lie on the boundary {(�R(�), �), � ∈ [�, 1]} ∪ {(�, 1), � ∈ [0, �]} (solid black line). Proposition 2 
restricts the set containing an optimal solution to the set {(�, 1), � ∈ [0, �]} (dashed black line). For the 
special case of a Pareto-distributed loss, the optimal solution (�∗, �∗) = (�, 1) is marked by a cross (for 
details, see section A.5 in the electronic supplementary information)
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usually price individual risks on a stand alone basis without taking into account 
the existing portfolio. However, the failure of the independence assumption 
between risks is one of the central challenges in cyber insurance, as cyber inci-
dents at different firms can be dependent, e.g. due to common underlying vulner-
abilities (e.g. Böhme et al. 2018; Zeller and Scherer 2022) or due to propagation 
for worm-type viruses. Therefore, one could argue that rather than finding price 
structures (�, �) by considering problem (5) separately for each customer, the 
insurer should jointly optimise the risk measure for the entire portfolio against 
the sum of all premiums received (note that distortion risk measures are in most 
situations not additive for non-comonotonic risks).

In  the “The insurer’s problem: portfolio viewpoint” section, we illustrate 
that already for portfolios of two dependent losses, the results of Theorem 1 do 
not necessarily hold anymore, i.e. when optimising from a portfolio viewpoint, 
indeed the insurer can have an incentive to subsidise self-protection measures for 
some policyholders.

The insurer’s problem: portfolio viewpoint

In the self-protection case, a central property is that for any single contract in a 
portfolio of n policyholders with risks Xi, i ∈ {1,… , n} , for any feasible  loading 
�i, i ∈ {1,… , n} , the reduction in price for increased service outweighs the reduc-
tion in the insurer’s risk measure �0,si(Xi), i ∈ {1,… , n} for each single risk, i.e.

However, ordering of the relevant sensitivities is not necessarily preserved in a 
portfolio context, i.e. when adding a new policyholder to an existing portfolio, the 
reduction of the overall portfolio risk measure �0,s(X) may outweigh the price reduc-
tion of the additional contract, i.e. for some i ∈ {1,… , n}: 

 where s ∶= (s1,… , sn) and X =
∑n

i=1
Xi is the aggregated loss. This may imply a 

situation where the insurer has an economic incentive to subsidise risk reduction 
for some policyholders in the self-protection case, as we will now analyse in a toy 
example of two policyholders with dependence mechanisms representative for cyber 
risk: (directed) loss propagation, common cyber events, and copula approaches. 
While these bivariate examples will already be sufficient to work out the structural 
difference to the univariate case, we provide one exemplary extension to a general 
multivariate setting in section A.7.3 of the electronic supplementary information.

(1 + 𝜃i)
𝜕�si

[Xi]

𝜕si
�����������������

sensitivity of premium for Xi

<
𝜕𝜌0,si (Xi)

𝜕si
�������

sensitivity of risk measure for Xi

≤ 0, i ∈ {1,… , n}.

(7)
𝜕𝜌0,s(X)

𝜕si
< (1 + 𝜃i)

𝜕�si
[Xi]

𝜕si
<

𝜕𝜌0,si (Xi)

𝜕si
≤ 0,
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(Directed) loss propagation

A popular way of modelling dependencies between cyber losses is to consider a 
model of epidemic spreading in an underlying network, i.e. a directed or undirected 
graph whose nodes are interpreted as companies (or machines) and whose edges 
are interpreted as connections between these companies (or machines) through 
which a state of “infectiousness” can be passed on. These models, often originat-
ing from mathematical biology, have been extensively studied in the cyber context 
over the last few years, see, e.g. Fahrenwaldt et al. (2018), Xu and Hua (2019), Xu 
et al. (2015) or the surveys Marotta et al. (2017), and Kerstin Awiszus et al. (2022). 
Interpretations of such models are worm-type viruses spreading between connected 
machines or a state of business interruption propagating through a supply chain.

Example 4  (Bivariate model with one directed edge) For illustration purposes, we 
consider a portfolio of two firms with one directed edge between them and we 
understand the “infected” state as a loss occurrence, i.e. assume a loss occurrence in 
firm 1 can cause a loss in firm 2 with probability q ∈ [0, 1] , but not vice versa.22 If 
a loss occurs, the loss sizes are deterministic; w.l.o.g. 0 < L1 ≤ L2 < ∞ . We assume 
that the events of the occurrence of a loss in firm 1, its propagation, and the occur-
rence of a non-propagated loss in firm 2 are independent. This implies that, depend-
ing on the chosen service levels si, i ∈ {1, 2} , the loss r.v.s Xi, i ∈ {1, 2} , take the 
values

 where s ↦ pi(s) are continuous, non-increasing functions with lim
s→∞

pi(s) > 0 for 
i ∈ {1, 2} . Let X ∶= X1 + X2 denote the portfolio loss, such that the insurer’s portfo-
lio risk measure, using  �(u) = ur0 , r0 ∈ (0, 1] , is given by (see section A.7.1 in the 
electronic supplementary information):

 where the dependence on si, i ∈ {1, 2} , is suppressed for notational convenience 
and s ∶= (s1, s2).

Figure 3 illustrates that (7) may hold in the above example, which indicates that 
the insurer can have a financial incentive to subsidise service.

Remark 12  (Insurer’s problem: individual optimisation) If the insurer evaluates the 
two contracts individually, she solves separately

X1 =

{
0 w.p. 1 − p1(s1),

L1 w.p. p1(s1),
X2 =

{
0 w.p. 1 − (p2(s2) + qp1(s1)(1 − p2(s2))),

L2 w.p. p2(s2) + qp1(s1)(1 − p2(s2)),

�0,s(X) = L1[(p1 + p2 − p1p2)
r0 + (p1q + p1p2 − p1p2q)

r0] + (L2 − L1)(p2 + p1q − p1p2q)
r0 ,

22  The cited works typically use two processes, one to model the state of infectiousness among nodes in 
the graph and another one for loss occurrences among “infected” nodes; we regard this additional com-
plexity as unnecessary for the present example.
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 where the superscript ‘ind’ denotes individual contract pricing.

Remark 13  By very similar calculations as for the Pareto case, one can show 
that for a loss of deterministic severity, � ↦ L0,i(�, 1) is monotone non-increas-
ing, such that the insurer’s optimal solution to the minimisation problems (8) is 
(�∗

i
, �∗

i
) = (�R,i(1), 1), i ∈ {1, 2} , i.e. to shift the full cost of service to the buyers and 

charge the maximum feasible loading, respectively.

We now consider her optimisation problem from a portfolio viewpoint in a two-
contract set-up, where, interestingly, it has to be distinguished whether the contracts 
with the buyers are closed sequentially or simultaneously. Let us commence by 
assuming that the two contracts are closed sequentially and firm 2 is insured first.

Example 5  (Interpretation of sequential contract closure) Sequential contract closure 
could be interpreted as a situation where for a prospective policyholder, a loss could 
be caused by an occurrence at another firm (e.g. a supplier) outside the insurer’s 
portfolio, but insuring the other firm is not feasible (yet).

(8)

min
(�i ,�i)∈[0,�R,i(�i)]×[�,1]

L
ind

0,i
(�

i
, �

i
) =�0,sIi(�i ,�i)(Xi

) − (1 + �
i
)�

sIi(�i ,�i)
[X

i
] + (1 − �

i
)c(s

I,i(�i, �i)), i ∈ {1, 2},

0 5 10 15 20

−0
.5

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

s1

Derivative of  ρ1(X1)
Derivative of  ρ0(X1)
Derivative of  (1 + θ) E[ X1 ]
Derivative of  ρ0(X)

Derivative of  ρ1(X1)
Derivative of  ρ0(X1)
Derivative of  (1 + θ1) E[ X1 ]
Derivative of  ρ0(X)

Fig. 3   Comparison of derivatives with respect to  s1 of single-contract and portfolio risk measures as well 
as the price of insurance (at a feasible loading �1 = 0.35 ). Note that Equation (7) holds: The decrease in 
price outweighs the decrease in both single-contract risk measures, but is outweighed by the reduction in 
the insurer’s portfolio risk measure. The parameters for this example are chosen as 
r0 = 0.8, r1 = r2 = 0.3, L1 = 5, L2 = 10, p1(s1) =

1

a+s1
+ b =

1

2.5+s1
+ 0.2, p2 = 0.3, q = 0.8
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Remark 14  (Insurer’s problem: sequential optimisation, first policy) The results for 
firm 2, being insured first, are analogous to the single-contract case: In her initial 
risk assessment, assume the insurer correctly assesses the loss probability (given 
service level s2 ) as

which depends (due to loss propagation) on the unknown loss probability of 
firm 1.23 For this study, we assume that firm 1 has not subscribed to insurance yet, 
but has solved the minimisation problem for the no-insurance case correctly, such 
that in Eq. (9) we set s1 = sN1 . As remarked above, we know that the solution to the 
insurer’s problem (8) for i = 2 is given by (�∗

2
, �∗

2
) = (�R,2(1), 1) and given (9), we 

can proceed analogously to Sect. 3 to deduce firm 2’s optimal service level without 
insurance sN2 and sI2(�∗2 , �

∗
2
) within insurance.

The striking observation is as follows: By incentivising a higher service level in a 
subsequent contract with firm 1, the insurer not only improves the to-be-insured risk 
in that contract, but also the already priced risk in the existing contract with firm 2, 
as the probability for a propagated loss decreases.24

Remark 15  (Insurer’s problem: sequential optimisation, second policy) If the insurer 
prices each contract as if the risks were independent (or the propagation potential is 
undetected), she would solve (8) for i = 1 yielding (�∗

1
, �∗

1
) =

(
�R,1(1), 1

)
 . However, 

if she correctly takes the effect on the portfolio risk into account, to find (�∗
1
, �∗

1
) she 

instead considers the problem

 where the superscript ‘seq’ denotes sequential contract closure and X = X1 + X2.
25

Remark 16  Sequential contract closure in the reverse order can be studied analo-
gously. It is, however, obvious from the set-up of directed loss propagation that the 
insurer has no additional incentive to subsidise service for firm 2, independently of 
whether firm 1 is part of the portfolio, i.e. this analysis would not yield different 
results from the single-contract case and is, thus, omitted.

(9)ℙ
s
(X2 = L2) = p2(s2) + qp1(s1)

(
1 − p2(s2)

)
,

(10)

min
(�1,�1)∈[0,�R,1(�1)]×[�,1]

L
seq

0,1
(�1, �1) =�0,sI1(�1,�1),sI2(�R,2(1),1)(X)

− (1 + �1)�sI1(�1,�1)
(X1) − (1 + �2)�sI2(�2,R(1),1)

(X2)

+ (1 − �1)c(sI1(�1, �1)) + (1 − �2)c(sI2(�2,R(1), 1)),

25  Note that the terms corresponding to contract 2 are not adjusted at this point and therefore will not 
appear in the minimisation.

23  Note that (9) implies that by buying service from the insurer, firm 2 can reduce the probability of a 
non-propagated loss only.
24  This example is somewhat related to the question studied in Khalili et al. (2019) about jointly under-
writing a service provider and its customers as interdependent insurance customers.
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We now assume that both contracts are priced simultaneously.

Example 6  (Interpretation of simultaneous contract closure) In practice, simultane-
ous contract closure could be interpreted as two firms jointly inquiring about insur-
ance (e.g. companies along a supply chain or parent company and subsidiary) or the 
insurer approaching both before the first contract is closed.

Remark 17  (Insurer’s problem: simultaneous optimisation) If the insurer offers both 
contracts simultaneously, she considers the four-dimensional problem

where the superscript ‘sim’ denotes simultaneous contract closure, X = X1 + X2, 
and A ∶= [0, �R,1(�1)] × [�, 1] × [0, �R,2(�2)] × [�, 1] is the admissible set for this 
problem.

The results of numerically solving the above optimisation problems are given in 
Fig.  4 for the propagation probability q ∈ [0, 1] , which in this set-up governs the 
dependence between the risks.26

Remark 18  (Interpretation of results for directed loss propagation) 

•	 Panel 4(a) depicts the optimal pricing parameters (�∗
1
, �∗

1
) of the contract offered 

to firm 1 (the “source of propagation”). If the contract with firm 2 is priced first, 
the insurer may subsidise service (i.e. choose 𝛽∗ < 1 ) in the subsequent con-
tract with firm 1, as this reduces the insured risk in contract 2 (without having to 
adjust the premium of firm 2). This subsidy (1 − �∗) , as well as the loading �∗

1
 , 

increase with the dependence between the risks. The same effect occurs, but to 
a smaller extent, if the contracts are priced simultaneously. This is caused by the 
fact that by subsidising service for firm 1, the insured risk in firm 2 is reduced, 
but this now has to be reflected in a decreased chargeable premium for that con-
tract. Therefore, the incentive to subsidise service for firm 1 is smaller relative to 
the case where the price of contract 2 is fixed first.

•	 Panel 4(b) depicts the optimal parameters (�∗
2
, �∗

2
) of the contract offered to firm 

2. As the service level of firm 2 has no additional effect on firm 1, the insurer’s 
problem for firm 2 is always analogous to the single-contract case, and thus, ser-
vice cost is never subsidised ( �∗ = 1 ). However, the risk loading depends on the 

(11)

min
(�1,�1,�2,�2)∈A

Lsim
0

(�1, �1, �2, �2) = �0,sI1(�1,�1),sI2(�1,�1,�2,�2)(X)

− (1 + �1)�sI1(�1,�1)
[X1] − (1 + �2)�sI2(�1,�1,�2,�2)

[X2]

+ (1 − �1)c(sI1(�1, �1)) + (1 − �2)c(sI2(�1, �1, �2, �2)),

26  The calculation of the gradients, used in the numerical optimisation routine, is detailed in section 
A.7.1 of the electronic supplementary information.



533Risk mitigation services in cyber insurance: optimal contract…

loss probability ℙ
s
(X2 = L2) , which differs between the cases as it depends on s∗

1
 

and therefore on whether firm 1 is insured already (and under which parameters).
•	 Panel 4(c) depicts the insurer’s optimally attainable negative loss (gain) 

L0(�
∗
1
, �∗

1
, �∗

2
, �∗

2
) , which decreases with increasing dependence between the 

risks, while the additional gain from pricing contracts “correctly”, i.e. using the 
portfolio risk measure, increases with the dependence. Analogous observations 
hold for the insurer’s portfolio risk, see Panel 4(d).

Cyber events at multiple ‘targets’

Another way to understand dependence between cyber losses is to consider the 
presence of common (systemic) vulnerabilities which allow cyber threats to affect 
multiple companies simultaneously (see, e.g. Böhme et al. 2018; Zeller and Scherer 
2022). Realistic examples for systemic events causing incidents in multiple firms 
are the accidental outage or the malicious exploitation of a vulnerability in com-
monly used software or operating systems, leading to, e.g. data breaches or fraudu-
lent activity (e.g. ransomware claims).27
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Fig. 4   Aspects of the insurer’s solution in the portfolio case with directed loss propaga-
tion. The parameters for this example are: loss sizes L1 = 50,L2 = 100 , loss probability param-
eters a1 = a2 = 2.5, b1 = b2 = 0.2 , risk aversion r0 = 0.8, r1 = 0.7, r2 = 0.3 , cost parameters 
� = 0.5, � = 2, �o = 1.1 , q ∈ [0, 1]

27  One recent example were the multiple, sometimes effectively simultaneous attacks on exchange serv-
ers via the so-called ProxyShell exploit during 2021, see, e.g. Born (2021).
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Remark 19  (Buyer’s vs. insurer’s perspective on common events) In this setting, 
each company faces incidents from systemic events as well as idiosyncratic inci-
dents occurring independently from other firms, e.g. the loss or theft of hardware 
or negligent employee behaviour leading to involuntary data disclosure or business 
interruption. From the viewpoint of each company (insurance buyer), both types of 
incidents are indistinguishable in the sense that they aggregate to one loss arrival 
process, i.e. the company simply monitors if a loss occurs (disregarding its source) 
without knowing (or caring) if others may be simultaneously affected. From the 
insurer’s portfolio viewpoint, however, the two types of incidents are viewed dif-
ferently: incidents from systemic events are particularly  worrisome as they entail 
accumulation risk, whereas idiosyncratic incidents are “desirable” in the sense that 
they constitute (if correctly priced) the basis of the insurance business and can be 
“diversified away” in a large portfolio.

Example 7  (Bivariate model with common events) Consider as model for the risks 
X1 and X2:

with E1 ∼ Exp(�1), E2 ∼ Exp(�2) , and E12 ∼ Exp(�12) independent with 
𝜆1, 𝜆2, 𝜆12 ≥ 0, s.t. 𝜆i + 𝜆12 > 0, i ∈ {1, 2} , and w.l.o.g. 0 < L1 ≤ L2 < ∞ . E1 and 
E2 model the arrival times of an idiosyncratic incident to firm 1 and 2, respectively, 
whereas E12 models the arrival time of a common event causing simultaneous 
incidents in both firms, with deterministic loss sizes L1 and L2 , respectively. Let T 
denote the time horizon of the policy under consideration (w.l.o.g. T = 1 in what fol-
lows) and let

denote the overall marginal arrival rates of incidents to firms 1 and 2, respectively.28 
It follows that the buyers’ risk measure and expected loss are given by

while the insurer’s portfolio risk measure is given by (see section A.7.2 in the elec-
tronic supplementary information)

 where y00 ∶= e−(�1+�2+�12), y10 ∶= (1 − e−�1 )e−(�2+�12), y01 ∶= (1 − e−�2 )e−(�1+�12) 
are the probabilities of none (subscript 00 ) or exactly one (subscripts 10 and 01 ) of the 
companies experiencing a loss.29

X1 = L1�{min{E1,E12}≤T}, X2 = L2�{min{E2,E12}≤T},

�I ∶= �1 + �12, �II ∶= �2 + �12,

�1(X1) = L1(1 − e−�I )r1 , �[X1] = L1(1 − e−�I ),

�2(X2) = L2(1 − e−�II )r2 , �[X2] = L2(1 − e−�II ),

�0(X) = L1[(1 − y00)
r0 + (1 − (y00 + y10 + y01))

r0] + (L2 − L1)(1 − (y00 + y10))
r0 ,

28  This corresponds to the seminal Marshall–Olkin shock model, see Marshall and Olkin (1967).
29  In this case X1 and X2 are comonotone iff �1 = �2 = 0 , implying y00 = e−�12 , y10 = y01 = 0 
such that the risk measure is additive (a well-known general result for DRM): 
�(X1) + �(X2) = �(X) = (L1 + L2)(1 − e−�12 )r0.
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Remark 20  (Interpretation: Self-protection by prevention of systemic events) We 
now consider the effect of self-protection services which can be distinguished into 
different categories described in Table 4. In the following, we scrutinise one pos-
sible type of effect we regard as particularly interesting in the cyber context, namely 
the prevention of systemic events: as the existence of common vulnerabilities (e.g. 
use of the same software) is regarded as the source of dependence between losses, 
it is firstly crucial for a cyber insurer to identify such common factors among poli-
cyholders and offer services which prevent the manifestation of a loss from a sys-
temic event for the policyholder himself (e.g. timely patch management for standard 
software). Second, it is in the insurer’s interest to use knowledge about an incident 
(or so-called near miss, i.e. a threat that did not lead to an incident due to adequate 
controls) at one insured company to immediately warn other policyholders about the 
imminent threat and, thus, hopefully increase the chance of averting a loss mani-
festation for them. Thus, the total portfolio loss in case of a systemic event could 
be reduced or, if all policyholders are warned on time, the manifestation of the sys-
temic event could even be prevented.30

Remark 21  (Insurer’s problem: sequential optimisation, first policy) Assume again 
sequential contract closure, where w.l.o.g. the contract with firm 2 is closed first 
and its chosen service level affects the rate �II via a decreasing map s2 ↦ �II(s2).31 
Recall that by Lemma 3 (see section A.3 in the electronic supplementary informa-
tion) a sufficient condition for convexity of the insurance buyer’s optimisation prob-
lem is to choose the map s2 ↦ �II(s2) in such a way that the subjective loss prob-
ability s2 ↦ �2

(
ℙ
s
(X2 = L2)

)
= (1 − e−�II (s2))r2 is convex. For simplicity, we choose 

analogously to above (however, for the rate, not the loss probability directly)

with a2, b2 > 0 such that the above convexity condition is fulfilled.
With the contract closure of firm 2, the insurer solves the single-contract problem 

(8) for i = 2 , resulting in (�∗
2
, �∗

2
) =

(
�R,2(1), 1

)
 and within-insurance service level 

s∗
2
= sI2

(
�R,2(1), 1

)
 determining the loss probability of firm 2 via the rate �II(s∗2).

�II(s2) =
1

s2 + a2
+ b2,

31  In this sequential set-up, there is no distinction between idiosyncratic incidents and incidents 
from systemic events yet, as firm 1 is not yet part of the portfolio; in other words, the overall rate 
�II = �2 + �12 can be observed, but it is not yet distinguished between �2 and �12.

30  Our model implicitly equates incident arrival times (e.g. Z1 ∶= min{E1,E12} ) with loss occurrence 
times, which would not allow time for a warning mechanism as all losses occur instantly and simultane-
ously. In reality, however, the discovery and exploitation of the same vulnerability in different firms can 
be delayed over time, see again, e.g. the ProxyShell exploit case (Born 2021). As we do not take into 
account discounting over the policy year and therefore do not need to explicitly model a delayed loss 
occurrence time after the incident arrival time, we assume the warning mechanism to directly prevent the 
incident arrival.
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Remark 22  (Insurer’s problem: sequential optimisation, second policy) At subse-
quent contract offering to firm 1, we assume that the service level of firm 1 influ-
ences the rate �I(s1) via a decreasing map

with a12, b12 > 0 such that s1 ↦ �1

(
ℙ
s
(X1 = L1)

)
 is convex and it must hold 

�12(s1) ≤ �II(s
∗
2
) for any s1 ≥ 0 . The marginal rates for both firms are then given by 

(now the incidents can be classified as idiosyncratic or systemic)

for some constant 𝜆1 > 0 , implying that the choice of s1 affects the marginal distri-
butions of both risks as well as the dependence between them, e.g. expressed by 
s1 ↦ 1 −

�1

�I (s1)
.32 Therefore, when offering a contract to firm 1, the insurer should 

again consider problem (10) to correctly take the dependence into account, as 
opposed to solving (8) for i = 1.

Remark 23  (Results for prevention of systemic events) Numerical results of solving 
(10) are given in Fig. 5 for varying degree of dependence between the two risks.33 
We observe that if the contract of firm 1 is priced using (10), it can be optimal for 
the insurer to choose 𝛽∗

1
< 1 , leading to an increased risk loading, an increased 

optimal service level sI1 within the insurance policy, a decreased loss probability 
for both policyholders, and an increased gain and decreased portfolio risk for the 
insurer. These effects increase with the dependence between the two risks.34

Copula approaches

Copula approaches have become a widely popular method to assess and describe 
dependence between random variables, as they allow the decomposition of a mul-
tivariate distribution function (c.d.f.) F of a random vector (X1,… ,Xd) into mar-
ginal c.d.f.s F1,… ,Fd and an object representing the dependence structure, called 
copula C, which itself is a multivariate c.d.f. with standardized uniform margin-
als (see section A.2  in the electronic supplementary information). In empirical 
research on cyber-risk modelling, one starts with observations of cyber losses that 

s1 ↦ �12(s1) =
1

s1 + a12
+ b12,

�I(s1) = �1 + �12(s1),

�II(s1, s
∗
2
) = �2(s

∗
2
) + �12(s1),

33  The gradients used for the numerical optimisation are given in section A.7.2 in the electronic supple-
mentary information. Due to the symmetrical set-up of the dependence, we do not consider the reverse 
order of contract closures.
34  Note that contrary to the last example, the x-axis does not start at �12(0) = 0 representing (initial) 
independence, resulting in 𝛽∗

1
< 1 for the whole depicted range �12(0) ∈ {0.15, 2}.

32  Note that in this set-up, neither independence nor comonotonicity can be reached, as b12 > 0 and 
𝜆1 > 0 , respectively.
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are conjectured not to be independent. As the main goal of many empirical studies is 
the description and analysis of the observed data, bottom-up approaches that seek to 
mimic the mechanism underlying the dependence between cyber losses may not be 
available for a statistical investigation, yet. Rather, a top-down approach of analysing 
the multivariate observations by fitting (parametrically or non-parametrically) uni-
variate distributions to the marginals and by choosing a flexible parametric copula 
family and fitting its parameter(s) to the observed data, is often preferred (due to 
numerical tractability).

In the cyber context, e.g. Eling and Jung (2018) study the cross-sectional depend-
ence of data breach losses (cross-industry and cross-breach type) using a Gaussian 
copula, among others. Previously, Böhme and Kataria (2006) and Herath and Her-
ath (2011) proposed models for cyber risk using the t-copula and the Archimedean 
copula family (Clayton and Gumbel), respectively. More recently, Peng et al. (2018) 
studied the multivariate dependence exhibited by real-world cyber attack data using 
a Copula-GARCH model with vine copulas.

Example 8  (Bivariate Gumbel copula) An example akin to the ones above would be 
for the bivariate case (X1,X2) ∼ F

s
 with
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Fig. 5   Aspects of the insurer’s solution in the portfolio case with common cyber events. The parameters 
for this example are: L1 = 50,L2 = 100 , �1 = 0.5 , r0 = 0.8, r1 = 0.4, r2 = 0.3 , � = 0.5, � = 2, �o = 1.1 , 
with �12(0) =

1

a12
+ b12 ∈ [0.15, 2] and lims→∞ �12(s)

�12(0)
=

1

2
 for any starting value
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where Fi,si
 are the marginal c.d.f.s of the single risks depending on the chosen 

service levels si (for example, zero-inflated Pareto distributions as considered in 
Appendix 7.5 in elctronic supplementary information) and C�(s)(u, v) is the bivariate 
Gumbel copula (see Gumbel 1960)

which seems a suitable choice in the cyber-risk context as it allows for capturing 
upper tail dependence and is the only member of the Archimedean family which 
is also an extreme-value copula.35 The dependence is governed by the parameter 
�(s) ∈ [1,∞) , ranging between the independence copula for �(s) = 1 and perfect 
positive dependence (i.e. converging to the comonotonicity copula) for �(s) → ∞.36

Remark 24  (Effects of service on portfolio risk in the copula setting) Again, differ-
ent assumptions about how the chosen service levels s = (s1, s2) of insurance buyers 
influence the (joint) portfolio risk can be postulated:

•	 If service only influences the marginal distribution of the insured risk, i.e. via 
si ↦ Fi,si

, i ∈ {1, 2} , inducing a decreasing order in the sense of the “Model 
set-up and assumptions” section, the analysis does not differ from the univariate 
case. For examples in the cyber context, see the first row of Table 4.

•	 If service only affects the dependence between the risks via a (in some suitable 
(partial) ordering decreasing) map s ↦ �(s) without altering the marginals, it is 
obvious that no insurance buyer would have an economic incentive to purchase 
such service (compare the last case in Table 4) and another (interesting!) ques-
tion would arise, namely, how much the insurer should optimally spend on giv-
ing away service (as a free addition to risk transfer) to favourably (in her risk 
measure) alter the dependence structure of her portfolio.

•	 If service affects both the marginal distribution(s) and the dependence structure, 
an example where both parties agree to share the cost of service could be con-
structed. For interpretations in the cyber context, compare the second and third 
row of Table 4.

F
s
(x1, x2) = C�(s)

(
F1,s1

(x1),F2,s2
(x2)

)
, x1, x2 ∈ ℝ,

C�(s)(u, v) = exp
[
−
(
(− ln(u))�(s) + (− ln(v))�(s)

)1∕�(s)]
, �(s) ∈ [1,∞), u, v ∈ [0, 1],

36  Note that generally, an Archimedean copula is not parametrised by a parameter � , but by the so-called 
(Archimedean) generator � = �� , a non-increasing function � ∶ [0,∞) → [0, 1] with �(0) = 1 and 
limx→∞ �(x) = 0 . The Gumbel copula is obtained by using the parametric family ��(x) = exp

(
− x

1

�

)
 ; 

for brevity, we use the notation C� instead of C��
.

35  Extreme-value copulas allow to capture the dependence structure between certain rare events, for 
details see, e.g. Mai and Scherer (2017). The necessity of dealing adequately with extreme events in the 
cyber context has been emphasised by many authors, e.g. the comprehensive data-driven analysis of 
cyber losses by Eling and Wirfs (2019) advocated for distinguishing between “cyber risks of daily life” 
and “extreme cyber risks”.
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As remarked above, however, the main drawback of such a top-down modelling 
approach is that it is not based on an attempt to causally understand the dependence 
between cyber losses; instead, its merit is based on the analytical decomposition in 
Theorem  2 (see section A.2 in the electronic supplementary information)  and its 
tractability in statistical inference. This is a somewhat questionable foundation in the 
cyber context due to scarcity, limited reliability, and suspected non-stationarity of 
available data, limiting the informativeness of models estimated on past data for the 
prediction of future losses. Therefore, we do not go into more detail on this example, 
but reiterate that in principle it provides the same flexibility regarding the effect of 
risk reduction services in insurance policies as the examples treated in detail above.

Conclusion

In recent years, with demand for cyber insurance increasing tremendously, cyber 
insurance markets around the world have been growing and the range of available 
cyber policies has been continuously expanding. As policies continue to mature, 
many prospective insurance buyers and external cyber experts agree that pure risk 
transfer cannot be an optimal cyber-risk management solution. Instead, companies 
– insured or not – have to make ongoing efforts to keep their cybersecurity measures 
up-to-date, given the evolving cyber-threat landscape. Therefore, there is mutual 
benefit (for all stakeholders) in the combination of risk transfer and risk reduction 
measures, leading to the (prospective) ubiquitous offering of pre-incident and post-
incident services.

In this study, we have dealt with this combination of risk reduction and risk trans-
fer in the cyber insurance context, and in particular addressed the question of how 
such risk reduction services should be optimally priced from an insurer’s viewpoint. 
We have illustrated how common services within cyber insurance can be classified 
into the concepts of self-protection and self-insurance, and have argued how insur-
ers should make use of their unique position regarding knowledge about the cur-
rent cyber-loss landscape to offer additional pre-incident (warning) services to their 
policyholders.

We have shown that in the univariate case, i.e. when pricing a single contract 
alone, an insurer using a distortion risk measure with concave distortion (i.e. being 
risk-neutral or risk-averse) never has an economic incentive to subsidise pure self-
protection services (i.e. only considering the effect on loss probability, factoring out 
potential cross-effect on loss sizes and the prospect of gaining additional informa-
tion) and will, thus, always shift their full cost to the insurance buyer. Interestingly, 
this does not generally hold for the pricing of self-insurance services or when taking 
a multivariate (portfolio) viewpoint, in which case it can be optimal (and in some 
cases even mandatory to find an acceptable contract for both parties) to share the 
cost of risk reduction service between insurer and policyholder. We illustrate this 
finding using toy examples of two risks with dependence mechanisms representative 
for the cyber context and one exemplary extension to a larger multivariate setting.

From the insurance buyers’ point of view, the study serves to illustrate how 
their initial risk (when approaching the insurer) and their choice of (distortion) risk 
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measure as well as the existing portfolio of the insurer can influence the insurance 
price offered to them for different contracts (i.e. how much risk reduction is implic-
itly incentivised for them by the insurer’s choice of price structure).

Some interesting aspects, however, remain for future research. We restricted the 
insurance buyer’s options to full or no insurance (as is customary for primary insur-
ance in the cyber context), but one could extend this to more general payout func-
tions (e.g. proportional at any share � ∈ [0, 1] or excess-of-loss per risk at different 
priorities and limits).37 Furthermore, we have mentioned that in the cyber context, 
part of the risk should be considered non-insurable (e.g. reputational risk), an aspect 
that could generalize the modelling of the insurance buyer’s optimisation problem.

From the insurer’s point of view, the pricing of self-protection and self-insurance 
services has been studied disjointly, whereas in practice, the combination of both 
types of services within a policy is customary. Furthermore, we have only illustrated 
the insurer’s portfolio viewpoint in bivariate examples and an exchangeable exten-
sion. Fully exploring the question of optimal offering of cyber services using an 
insurer’s more general multivariate viewpoint on a portfolio of dependent policy-
holders comprises many interesting questions for future work.

Furthermore, especially due to the potential for extreme cyber losses result-
ing from single large losses or accumulation risk from a large cyber event, many 
insurers work with reinsurance providers to limit their exposure and manage their 
portfolio risk. This opens the potential to analyse a suitable Stackelberg game 
between insurer and reinsurer(s) or even a set-up involving all three parties (insur-
ance buyer(s), insurer, and reinsurer(s)). In this context, also interesting questions 
about optimal risk sharing arise.

Lastly, we have argued that the understanding of the dependence between 
cyber losses is crucial for insurers, as purely top-down dependence modelling 
approaches may not be suitable in the highly dynamic, non-stationary cyber 
domain. Therefore, more empirical research on the dependence structures under-
lying cyber risk, e.g. to more accurately determine underlying common factors 
leading to simultaneous exposure to a certain cyber event, is certainly neces-
sary to better understand the evolving cyber-threat landscape. Lastly, it should 
be mentioned that many related questions from a not purely mathematical view-
point arise. For example, economically and legally, it needs to be investigated 
how to ideally set up cyber insurance policies including services such that all 
parties (insurer, insureds, and IT security experts as service providers) draw syn-
ergies from the collaboration. From a technical viewpoint, one important issue is 
how to effectively quantify (and monitor) the IT security landscape of a poten-
tially highly complex enterprise for actuarial applications. These issues empha-
sise the importance of interdisciplinary collaboration and research in the cyber 

37  An immediate generalization is a proportional insurance share � ∈ {0} ∪ [�0, 1] , which could illus-
trate not only the two cases no insurance and full insurance, but additionally the case where the insur-
ance buyer purchases a minimum feasible share of risk transfer �0 in order to benefit from the risk reduc-
tion services within insurance; in other words, insurers could sell policies that customers would not buy 
from a pure risk transfer viewpoint by including attractive services.
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insurance domain in order to tackle this challenging risk. This article is comple-
mented by an electronic supplement (Appendix) containing a seminal discussion 
of risk-assessment services, mathematical preliminaries, proofs, case studies and 
extended calculations.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1057/​s41288-​023-​00289-7.
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