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1 Introduction

Estimating and testing alternative structural models of the macroeconomy is necessary to advance

our understanding of the fundamental forces at work and it is critical in establishing appropriate

policy responses in actual economies. Inevitably, macroeconomic models compromise realism in

favor of tractability and analysis. These opposing forces offer significant challenges for formal sta-

tistical evaluation. For instance, the maximum likelihood principle and its asymptotic optimality

properties require that the structural model be a representation of the density of the underlying

data generation process (DGP ). This demand is very hard to meet in practice and results in

rejection of many economically useful models. Routine failure of specification tests has therefore

led researchers down the path of evaluating economic models more informally.

This paper introduces new methods to estimate and evaluate dynamic, stochastic macroeco-

nomic models, which may only be partial representations of a larger, unknown, macroeconomic

system. The method, which we label projection minimum distance (PMD), is a two-step esti-

mator. In the first step, we estimate impulse responses from the data semiparametrically with

the local projections estimator introduced by Jordà (2005). These impulse responses can be cal-

culated from a system with many variables that are not included nor explained by the candidate

macroeconomic model. Next, we represent the stable solution of the model in terms of the Wold

representation of this larger system, and obtain the mapping between the structural parame-

ters and the Wold coefficients by the method of undetermined coefficients (see Christiano, 2002).

Hence, the structural parameters of the model are estimated in a second step that consists of

minimizing the distance between the impulse responses from the data and those implied by the

model. The resulting estimator is based on a minimum chi-square estimator (Ferguson, 1958) and

belongs to the broader family of minimum distance estimators of which GMM is also a member

of the class.

However, PMD has important advantages that distinguish it from GMM and other com-
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monly used estimators. First, we provide an overall misspecification test based on overidentifying

restrictions that is distributed chi-square. Effectively, this test formalizes the common practice of

evaluating a model by how well its impulse responses match those from the data. Second, PMD

provides consistent estimates even when the model’s dynamics are insufficient to fit the data. We

show that the common GMM practice of using lags of the endogenous variables as instruments

can only be justified by the internal dynamics of the data, not the dynamics prescribed by the

model. This basic, well-known observation is often ignored, which results in invalid instrument

problems and inconsistent estimates. PMD avoids these problems since the starting premise is

that the model is an insufficient representation for the data. On a practical level, PMD consists

of two, simple, least-squares steps, and therefore, is easily implementable and can be general-

ized to nonlinear environments. In fact, we show that PMD can be used to estimate generic

VARMA(p,q) models that would usually require numerical optimization routines.

Econometrically, the paper has two main contributions. First, the consistency and asymp-

totic normality of PMD requires that we determine the asymptotic distribution of the first-step

estimates of the impulse responses from the data. In and of itself, this is an important result

as it provides analytic formulas for the asymptotic covariance matrix of the impulse response

coefficients across time and across variables. This consistency and asymptotic normality proof

accommodates a DGP with possibly infinite lags. Second, the minimum chi-square step is based

on an unknown function of the structural parameters that can only be estimated consistently.

Therefore, we derive the consistency and asymptotic normality of the minimum chi-square step so

that the asymptotic covariance matrix reflects this estimation uncertainty. In addition, we show

that an overall misspecification test based on overidentifying restrictions is distributed chi-square.

We introduce PMD and the main results in the context of a flexible, linear state-space repre-

sentation of a dynamic rational expectations model. However, PMD is not limited by linearity:

the first-step local projections can be estimated more flexibly (even nonparametrically) as de-

scribed in Jordà (2005) and the second step is not limited to linearity nor rational expectations
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mechanisms. However, because the paper is already dense with results, we defer these develop-

ments to future papers.

The empirical section of the paper includes a Monte Carlo exercise where a traditional ARMA(1,1)

model is estimated simultaneously by maximum likelihood and by PMD. This exercise is meant

to highlight that PMD is truly a general estimation method. PMD is less efficient than maximum

likelihood by construction (the efficiency bound is reached in the extreme case in which infinite

impulse response coefficients are used) but we show that PMD is quite efficient even in small sam-

ples. The second empirical exercise replicates the analysis in Fuhrer and Olivei (2004) and includes

PMD as an alternative for comparison. We show that estimates of an IS and Phillips curves by

PMD compare very favorably with GMM , maximum-likelihood and optimal-instruments GMM .

2 Projection Minimum Distance: The Method

This section describes the basics of PMD with a backward-forward looking type of formulation.

We think of this benchmark model as a summary of the Euler conditions implied by a generic,

dynamic, stochastic macroeconomic model of interest. This model may be incomplete in two

dimensions: the dynamics of the model may insufficiently explain the dynamics observed in the

data, and the model may only describe a subset of the many relevant variables in a macroeconomy.

We present the method with this benchmark specification as a scenario empirical researchers are

likely to encounter in practice. However, PMD is quite general and we expect that the reader

will be able to extrapolate the principles we are about to present to other problems that we do

not directly discuss here.

The principle behind PMD consists in representing the stable solution path of the candidate

macroeconomic model in terms of its Wold decomposition and the structural parameters we want

to estimate. Then we minimize the weighted quadratic distance between the data’s and the model’s

Wold coefficients by choosing the parameter vector that achieves the minimum of this distance.
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Representing the solution path in terms of the Wold decomposition is advantageous for two reasons:

we do not have to make choices about the roots of the autoregressive representation of the stable

path and, in a linear model, the relation between the Wold coefficients and the parameters is

linear and uniquely determined. In what follows, we provide a mathematical characterization of

this principle that allows us to derive the statistical results that follow.

Consider an economy that can be described by a vector of variables yt = (y01t y02t)
0 of di-

mension r × 1, where r = r1 + r2. The proposed macroeconomic model describes the behavior of,

possibly, only some of the variables in this system. Without loss of generality, we find it useful

collect these variables into the vector y1t and collect the variables not described by the model into

y2t. A natural benchmark is to characterize the behavior of y1t by a generic rational expecta-

tions formulation (e.g., see Farmer, 1993; and Evans and Honkapohja, 2001) with backward- and

forward-looking terms, specifically

Φ00y1t = Φ
0
1y1t−1 +Φ

0
2Ety1t+1 + u1t, E(u1tu

0
1t) = I (1)

where u1t is the r1 × 1 vector of expectational errors. The r1 × r1 coefficient matrix Φ0 makes

explicit the nature of the contemporaneous relations between elements of y1t. Expression (1)

does not imply that the model must have first order dynamics. Nothing in the derivations that

follow require that the dynamics be restricted to one lag of y1t : the vector y1t can always be

appropriately redefined so that (1) can be thought of as a state-space representation.1 When

y1t = yt, expression (1) completely specifies the economy but otherwise, it should be clear that

y2t collects variables omitted in the model but possibly relevant in the real economy.

A stable solution of the underlying system describing yt is a dynamic, stochastic, difference

equation. The stability of the solution implies that it is covariance-stationary, and hence, by the

Wold decomposition theorem (see Anderson, 1994), can be represented as (for simplicity we omit

1 We also remark that y1t can also contain exogenous forcing variables. In that case it should be clear that rows
of Φ2 corresponding to the forcing variables will be zero.
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the constant and other deterministic components),

yt =
∞X
j=0

B0jεt−j

⎡⎢⎢⎣ y1t

y2t

⎤⎥⎥⎦ =
⎡⎢⎢⎣ ε1t

ε2t

⎤⎥⎥⎦+
⎡⎢⎢⎢⎣
B1

0
11

r1×r1
B1

0
21

r1×r2

B1
0
12

r2×r1
B1

0
22

r2×r2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣ ε1t−1

ε2t−1

⎤⎥⎥⎦+ ... (2)

with εt = (ε01t ε02t)
0
, B0 = Ir, E(εtε

0
t) = Σε where

Σε =

⎡⎢⎢⎣ Σ11 Σ12

Σ21 Σ22

⎤⎥⎥⎦
and E (εitεjt−k) = 0 for i 6= j, k 6= 0. The Wold decomposition for y1t is therefore

y1t = ε1t +
∞X
j=1

Bj
0
11ε1t−j +

∞X
j=1

Bj
0
21ε2t−j . (3)

Substituting this expression into (1) we obtain

Φ00
³
ε1t +B

01
11ε1t−1 + ...+B

10
21ε2t−1 + ...

´
= (4)

= Φ01
³
ε1t−1 +B0111ε1t−2 + ...+B

10
21ε2t−2 + ...

´
+

+Φ02
³
B0111ε1t + ...+B

10
21ε2t + ...

´
+ u1t.

This expression maps the structural coefficients of the macroeconomic model to the impulse re-

sponse coefficients of the system yt.

Our next objective is to write down this mapping more specifically, beginning with the coeffi-

cients in Φ0. Hence, consider post-multiplying both sides of expression (4) by ε01t and then take

expectations on both sides to obtain,

Φ00Σ11 = Φ
0
2B

10
11Σ11 +E (u1tε

0
1t) .

5



Let P1u1t = ε1t, that is, the reduced-form residuals are simply some rotation of the structural

residuals, and noting that Σ−111 is guaranteed to exist and Σ11 = P1P
0
1, the previous expression

can be rearranged as

P 01 (P1P
0
1)
−1

= Φ00Ir1 +Φ
0
10− Φ02B1

0
11 (5)

P−11 = Φ00Ir1 +Φ
0
10− Φ02B1

0
11.

We now set these conditions aside momentarily to make our derivations more transparent to the

reader. In practice, we have found many models can be estimated by ignoring expression (5) with

little loss in efficiency. In addition and to further streamline the presentation, we will assume in

what follows that Φ0 = I, as is commonly done in many popular macroeconomic specifications.

However, once we establish the basic results with these restrictions, we will derive the results in

full generality in section 4.3.

With these considerations, post-multiply expression (4) by ε01t−j and ε02t−j and then take

expectations to arrive at the set of conditions,

Bj
0
11 = Φ

0
1B

j−10
11 +Φ02B

j+10
11

Bj
0
21 = Φ

0
1B

j−10
21 +Φ02B

j+10
21

⎫⎪⎪⎬⎪⎪⎭ for j ≥ 1 (6)

with B011 = Ir1 and B
0
21 = 0r2,r1 . In what follows, the notation 0j,k is used to indicate a matrix of

zeros of dimension j × k. The conditions in expression (6) can be stacked conveniently. For that

purpose, let

Bj =

⎡⎢⎢⎣ Bj11 Bj12

Bj21 Bj22

⎤⎥⎥⎦ ; B(0, h) = B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

B1

...

Bh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)
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where h is the impulse responses’ maximum horizon considered in the estimation. Notice that h

has to be finite in finite samples but can be let to grow as the sample size grows to infinity Define

the selector matrices

S0 =

∙
0

r(h−1)×r
(Ih−1 ⊗ Ir) 0

r(h−1)×r

¸
, (8)

S1 =

∙
(Ih−1 ⊗ Ir) 0

r(h−1)×r
0

r(h−1)×r

¸
,

S2 =

∙
0

r(h−1)×r
0

r(h−1)×r
(Ih−1 ⊗ Ir)

¸
,

and

R =

⎡⎢⎢⎣ Ir1

0r2,r1

⎤⎥⎥⎦ . (9)

These auxiliary matrices allow us to write the conditions in (6) for j = 1, ..., h more compactly as

S0BR = S1BRΦ1 + S2BRΦ2. (10)

The vec operator can be applied to both sides of this expression to appropriately vectorize the co-

efficient vectors. Let b ≡ vec(B); φ ≡ {vec(Φ1) vec(Φ2)}0 and noting the following relationships,

vec(S0BR) = (R0 ⊗ S0) b (11)

vec

⎡⎢⎢⎣(S1BR S2BR)

⎛⎜⎜⎝ Φ1

Φ2

⎞⎟⎟⎠
⎤⎥⎥⎦ = (Ir1 ⊗ (S1BR S2BR))φ

then (10) can be written as

(R0 ⊗ S0) b = {(Ir1 ⊗ S1BR) (Ir1 ⊗ S2BR)}φ . (12)

or in the special case where the system is completely specified and R = Ir,

(Ir ⊗ S0) b = {(Ir ⊗ S1B) (Ir ⊗ S2B)}φ . (13)
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If one had estimates bBT (and therefore bbT ) of B (and therefore b), then expression (12) is of

the form bbT = g
³bbT ;φ´ and classical minimum-distance estimation would be a natural way to

obtain bφT . In particular, let

SbbT ≡ (R0 ⊗ S0)bbT (14)

g
³bbT ;φ´ ≡

n³
Ir1 ⊗ S1 bBTR´ ³

Ir1 ⊗ S2 bBTR´oφ (15)

then φ can be found by minimizing

min
φ

bQT (φ) = hSbbT − g ³bbT ;φ´i0cW h
SbbT − g ³bbT ;φ´i (16)

for some weighting matrix cW.
Notice that the matrices Φ1 and Φ2 contain 2r21 parameters that we want to estimate but we

have (h− 1)(r21 + r1r2) conditions available for estimation.

In the next section we derive consistency and asymptotic normality results for the first-stage

local projection estimator proposed therein. Estimates from this first-step are then incorporated

into the minimum chi-square step (16), whose consistency and asymptotic normality properties

we derive in subsequent sections.

3 First-Step: Local Projections

The first step in deriving the minimum distance estimator of expression (16) is to obtain estimates

of the Wold coefficients in B. There are several reasons why we find local projections superior to

estimates of B derived from a finite order V AR. As we will show momentarily, local projections

ensure the consistency of bB even when the underlying process is of infinite order. This is an

important consideration since an essential class of macroeconomic models have solutions charac-

terized by V ARMA(p, q) dynamics. In addition Jordà (2005) shows that the local nature of the

approximation of the projections in many cases provides estimates of B robust to misspecification.
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When the underlying dynamics are nonlinear, the possibility of estimating local projections with

nonlinear and even nonparametric techniques affords a considerable advantage over V ARs.

An estimate of the full covariance matrix of B is another essential element to obtain analytic

standard errors in the second-stage, minimum chi-square step. Local projections provide a sim-

ple analytic expression for this covariance matrix — that is, the covariance of impulse response

coefficients across time and across variables. Estimates of impulse responses based on a V AR

require delta-method or numerical simulation techniques to compute their covariance matrix: a

very substantial and complex computational burden. Thus, this section derives consistency and

asymptotic normality results for the projections that we use in deriving the formal statistical

properties of PMD in section 4.

3.1 Consistency

We assume the rational expectations model in (1) has a stable solution. Thus, this model is

covariance-stationary and has a Wold decomposition,

yt =
∞X
j=0

Bjεt−j (17)

where for simplicity and without loss of generality we drop the constant and any deterministic

terms. From the Wold decomposition theorem (see e.g. Anderson, 1994):

(i) E(εt) = 0 and εt are i.i.d.

(ii) E(εtε0t) = Σε
r×r

(iii)
P∞
j=0 kBjk <∞ where kBjk2 = tr(B0jBj) and B0 = Ir

(iv) det {B(z)} 6= 0 for |z| ≤ 1 where B(z) =P∞j=0Bjzj
then the process in (17) can also be written as:

yt =
∞X
j=1

Ajyt−j + εt (18)
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such that,

(v)
P∞
j=1 kAjk <∞

(vi) A(z) = Ir −
P∞
j=1Ajz

j = B(z)−1

(vii) det{A(z)} 6= 0 for |z| ≤ 1.

Jordà’s (2005) local projection method of estimating the impulse response function is based

instead on the expression that results from simple recursive substitution in the V AR(∞) repre-

sentation, that is

yt+h = A
h
1yt +A

h
2yt−1 + ...+ εt+h +B1εt+h−1 + ...+Bh−1εt+1 (19)

where:

(i) Ah1 = Bh for h ≥ 1

(ii) Ahj = Bh−1Aj +A
h−1
j+1 where h ≥ 1; A0j+1 = 0; B0 = Ir; and j ≥ 1.

Now consider truncating the infinite lag expression (19) at lag k

yt+h = A
h
1yt +A

h
2yt−1 + ...+A

h
kyt−k+1 + vk,t+h (20)

vk,t+h =
∞X

j=k+1

Ahj yt−j + εt+h +
h−1X
j=1

Bjεt+h−j .

In what follows, we show that least squares estimates of (20) produce consistent estimates for Ahj

for j = 1, ..., k, in particular Ah1 , which is a direct estimate of the impulse response coefficient Bh.

We obtain many of the derivations that follow by building on the results in Lewis and Reinsel

(1985), who show that the coefficients of a truncated V AR(∞) are asymptotically normal as long

as the truncation lag grows with the sample size at an appropriate rate.

Let Γ(j) ≡ E(yty0t+j) with Γ(−j) = Γ(j)0. Further define:

10



(i) Xt,k =
¡
y0t,y0t−1, ...,y0t−k+1

¢0
that is, the regressors in (20).

(ii) bΓ1,k,h
kr×r

= (T − k − h)−1PT−h
t=k Xt,ky

0
t+h

(iii) bΓk = (T − k − h)−1PT−h
t=k Xt,kX

0
t,k

Then, the mean-square error linear predictor of yt+h based on yt, ...,yt−k+1 is given by the

least-squares formula

bA
r×kr

(k, h) = ( bAh1 , ..., bAhk) = bΓ01,k,hbΓ−1k (21)

The following theorem establishes the consistency of these least-squares estimates for A(k, h) =¡
Ah1 , ..., A

h
k

¢
.

Theorem 1 Consistency. Let {yt} satisfy (17) and assume that:

(i) E|εitεjtεktεlt| <∞ for 1≤ i, j, k, l ≤ r
(ii) k is chosen as a function of T such that

k2

T
→ 0 as T, k →∞

(iii) k is chosen as a function of T such that

k1/2
∞X

j=k+1

kAjk→ 0 as T, k →∞

Then: °°° bA(k, h)−A(k, h)°°° p→ 0

The proof of this theorem is in the appendix. A natural consequence of the theorem provides

the essential result, namely bAh1 p→ Bh.

3.2 Asymptotic Normality

We now show that least-squares estimates from the truncated projections in (20) are asymptoti-

cally normal, although for the purposes of the PMD estimator, proving that bAh1 is asymptotically

11



normally distributed would suffice. Notice that we can write

bA(k, h)−A(k, h) = ((T − k − h)−1 T−hX
t=k

vk,t+hX
0
t,k

)bΓ−1k
= (T − k − h)−1

⎡⎣T−hX
t=k

⎧⎨⎩
⎛⎝ ∞X
j=k+1

Ahj yt−j

⎞⎠+ εt+h +
h−1X
j=1

Bjεt+h−j

⎫⎬⎭X 0
t,k

⎤⎦ bΓ−1k
= (T − k − h)−1

⎧⎨⎩
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahj yt−j

⎞⎠X 0
t,k

⎫⎬⎭nΓ−1k +
³bΓ−1k − Γ−1k ´o+

(T − k − h)−1
⎧⎨⎩
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭nΓ−1k +
³bΓ−1k − Γ−1k ´o

Hence, the strategy of the proof will consist in showing that the first term in the sum above

vanishes in probability and that the second term converges in probability as follows,

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i p→

(T − k − h)1/2 vec
⎡⎣(T − k − h)−1

⎧⎨⎩
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭Γ−1k
⎤⎦

so that by showing that this last term is asymptotically normal, we complete the proof.

Define,

U1T =

⎧⎨⎩(T − k − h)−1
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahj yt−j

⎞⎠X 0
t,k

⎫⎬⎭
U∗2T =

⎧⎨⎩(T − k − h)−1
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭
then

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i =

(T − k − h)1/2
⎧⎪⎪⎨⎪⎪⎩

vec
£
U1TΓ

−1
k

¤
+ vec

h
U1T

³bΓ−1k − Γ−1k ´i
+vec

£
U∗2TΓ

−1
k

¤
+ vec

h
U∗2T

³bΓ−1k − Γ−1k ´i
⎫⎪⎪⎬⎪⎪⎭

12



hence

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i− (T − k − h)1/2 vec £U∗2TΓ−1k ¤ =

(T − k − h)1/2
⎧⎪⎪⎨⎪⎪⎩
vec

£
U1TΓ

−1
k

¤
+ vec

h
U1T

³bΓ−1k − Γ−1k ´i
+vec

h
U∗2T

³bΓ−1k − Γ−1k ´i
⎫⎪⎪⎬⎪⎪⎭ =

¡
Γ−1k ⊗ Ir

¢
vec

h
(T − k − h)1/2 U1T

i
+n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U1T i+n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U∗2T i

Define, with a slight change in the order of the summands,

W1T =
n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U1T i

W2T =
n³bΓ−1k − Γ−1k ´⊗ Iro vec h(T − k − h)1/2 U∗2T i

W3T =
¡
Γ−1k ⊗ Ir

¢
vec

h
(T − k − h)1/2 U1T

i
then, in the next theorem we show that W1T

p→ 0, W2T
p→ 0, W3T

p→ 0.

Theorem 2 Let {yt} satisfy (17) and assume that

(i) E |εitεjtεktεlt| <∞; 1 ≤ i, j, k, l ≤ r

(ii) k is chosen as a function of T such that k
3

T → 0, k, T →∞
(iii) k is chosen as a function of T such that

(T − k − h)1/2
∞X

j=k+1

kAjk→ 0; k,T→∞

Then

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i p→

(T − k − h)1/2 vec
⎡⎣⎧⎨⎩(T − k − h)−1

T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭Γ−1k
⎤⎦

13



The proof is provided in the appendix. Now that we have shown that W1T , W2T , and W3T

vanish in probability, all that remains is to show that

AT ≡ (T − k − h)1/2 vec
⎡⎣(T − k − h)−1

⎧⎨⎩
T−hX
t=k

⎛⎝εt+h + h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭Γ−1k
⎤⎦ d→

N(0,ΩA) with ΩA =
¡
Γ−1k ⊗ Σh

¢
; Σh =

⎛⎝Σε + h−1X
j=1

BjΣεB
0
j

⎞⎠
Since, vec

h bA(k, h)−A(k, h)i p→ AT , andAT
d→ N(0,ΩA), then we will have vec

h bA(k, h)−A(k, h)i d→

N(0,ΩA). We establish this result in the next theorem.

Theorem 3 Let {yt} satisfy (17) and assume

(i) E|εitεjtεktεlt| <∞; 1≤ i, j, k, l ≤ r
(ii) k is chosen as a function of T such that

k3

T
→ 0, k, T →∞

Then
AT

d→ N(0,ΩA)

The proof is provided in the appendix.

In practice, we find it convenient to estimate responses for horizons 1, ..., h jointly as follows.

Define,

(i) Xt−1,k
r(k−1)×1

≡ ¡10,y0t−1, ...,y0t−k+1¢0 where 1 is a vector of ones for the constant term.
(ii) Yt,h

rh×1
≡ ¡y0t+1, ...,y0t+h¢0

(iii) Mt−1,k
1×1

≡ 1−PT−h
t=k X

0
t−1,k

³PT−h
t=k Xt−1,kX

0
t−1,k

´−1
Xt−1,k

(iv) bΓ1|k
r×r
≡ (T − k − h)−1PT−h

t=k ytMt−1,ky0t

(v) bΓ1,h|k
r×rh

≡ (T − k − h)−1PT−h
t=k ytMt−1,kY 0t,h

Hence, the impulse response coefficient matrices for horizons 1 through h can be jointly esti-

mated in a single step with

14



bΓ01,h|kbΓ−11|k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bA11
bA21
bAh1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bB1
bB2
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= bB(1, h) (22)

Using the usual least-squares formulas, notice that

bB(1, h) = B(1, h) +((T − k − h)−1 T−hX
t=k

ytMt−1,kV 0t,h

)0 bΓ−11|k + op(1) (23)

where Vt,h ≡
¡
v0t+1, ...,v0t+h

¢0
;vt+j = εt+j + B1εt+j−1 + ... + Bj−1εt+1 for j = 1, ..., h and the

terms vanishing in probability in (23) involve the terms U1T , U2T , and U3T defined in the proof of

theorem one, which makes use of the condition k1/2
P∞
j=k+1 ||Aj || → 0 as T, k → ∞. Under the

conditions of theorem 2, we can write

(T − k − h)1/2vec
³ bB(1, h)−B(1, h)´ p→ (24)

(T − k − h)1/2 vec
"(
(T − k − h)−1

T−hX
t=k

Vt,hMt−1,ky0t

)bΓ−11|k
#

from which we can derive the asymptotic distribution under theorems 2 and 3.

Next notice that

(T − k − h)−1
T−hX
t=k

Vt,hV
0
t,h

p→ Σv
rh×rh

(25)

The specific form of the variance-covariance matrix Σv can be derived as follows. Let 0j = 0
j×j
;

0m,n = 0
m×n;and recall that Vt,h ≡

¡
v0t+1, ...,v

0
t+h

¢0
, specifically,

15



Vt,h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εt+1

εt+2 +B1εt+1

...

εt+h +B1εt+h−1 + ...+Bh−1εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ΨBεt,h,

where

ΨB
rh×rh

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 ... 0

B1 Ir ... 0

...
... ...

...

Bh−1 Bh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; εt,h
rh×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
εt+1

...

εt+h

⎤⎥⎥⎥⎥⎥⎥⎦ (26)

Then E
h
Vt,hV

0
t,h

i
= E

h
ΨBεt,hε

0
t,hΨ

0
B

i
= ΨBE

h
εt,hε

0
t,h

i
Ψ0B with E

h
εt,hε

0
t,h

i
= (Ih ⊗ Σε) and

hence

E
£
Vt,hV

0
t,h

¤
= Σv = ΨB (Ih ⊗ Σε)Ψ0B

and therefore

(T − k − h)1/2 vec
³ bB(1, h)−B(1, h)´ d→ N (0,ΩB)

ΩB
r2h×r2h

=

Ã
Γ−11|k
r×r
⊗ Σv
rh×rh

!

In practice, one requires sample estimates bΓ−11|k and bΣv.With respect to the latter, notice that the
parametric form of expression (??) allows us to construct a sample estimate of ΩB by plugging-in

the estimates bB(1, h) and bΣε into the expression (??).
3.3 Practical Summary of Results in Matrix Algebra

Define yj for j = h, ..., 1, 0, —1, ..., —k as the (T − k − h) × r matrix of stacked observations of

the 1× r vector y0t+j . Additionally, define the (T − k− h)× r(h+1) matrix Y ≡ (y0, ...,yh) ; the

(T−k−h)×r matrixX ≡ y0; the (T−k−h)×r(k−1)+1matrix Z ≡
¡
1(T−k−h)×1,y−1, ...,y−k+1

¢
16



and the (T − k− h)× (T − k− h) matrix Mz = IT−k−h−Z (Z 0Z)−1 Z0. Notice that the inclusion

of y0 in Y is a computational trick that has no other effect but to ensure that the first block of

coefficients is Ir, as is required for the minimum chi-square step. Using standard properties of

least-squares

cBT (0, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Y 0MzX] [X

0MzX]
−1 (27)

with an asymptotic variance-covariance matrix for bbT = vec(cBT (0, h)), that can be estimated
with bΩB = n[X 0MzX]

−1 ⊗ bΣvo. Properly speaking, the equations associated with B0 = Ir have
zero variance, however, we find it notationally more compact and mathematically equivalent to

calculate the residual variance-covariance matrix as bΣv = bΨB ³Ih+1 ⊗ bΣ²´ bΨ0B, and by extendingbΨB in (26) as

bΨB
r(h+1)×r(h+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r bB1 Ir ... 0r

...
...

... ...
...

0r bBh−1 bBh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

with bBj replacing Bj , bΣ² = cv10cv1
T−k−h ; cv1 =Mzy1 −Mzy0 bB1.

4 The Second Step: Minimum Chi-Square

We return now to deriving the statistical properties of the estimator resulting from minimization

of expression (16). The section begins by deriving consistency and asymptotic normality, it shows

how contemporaneous restrictions expand these basic results and then derives an overall test

17



of model misspecification based on overidentifying restrictions. The section concludes with a

summary of the main results for practitioners.

4.1 Consistency

Given an estimate of B (and hence b) from the first-stage described in the previous section, our

objective here is to estimate φ = {vec(Φ1) vec(Φ2)}0 by minimizing

min
φ

bQT (φ) = hSbbT − g ³bbT ;φ´i0cW h
SbbT − g ³bbT ;φ´i

where the reader is reminded that

S ≡ (R0 ⊗ S0)

g
³bbT ;φ´ ≡

n³
Ir1 ⊗ S1 bBTR´ ³

Ir1 ⊗ S2 bBTR´oφ
Let Q0(φ) denote the objective function at b0. The following theorem establishes the conditions

under which bφT , the solution of the minimization problem, is consistent for φ0.
Theorem 4 Given that bbT p→ b0, assume that

(i) cW p→W, a positive semidefinite matrix

(ii) Q0(φ) is uniquely maximized at φ0

(iii) The parameter space Θ is compact

(iv) Q0(φ) is continuous

(v) (h− 1) ¡r21 + r1r2¢ ≥ dim(φ)
Then

bφT p→ φ0

The proof is provided in the appendix and consists of showing that bQT (φ) p→ Q0 (φ) uniformly

and that bQT (φ) is stochastically equicontinuous. Next, we show that the minimum chi-square

estimator is asymptotically normal.

18



4.2 Asymptotic Normality

The proof of asymptotic normality in classical minimum-distance estimation — where, as an exam-

ple, bbT = g(φ), is a known, continuously differentiable function, and √T ³bbT − b0´ d→ N (0,ΩB)

— is rather straightforward. All that is required to obtain the distribution of bφT is Gφ = ∇φg (φ)

to conclude that
√
T
³bφT − φ

´
d→ N

µ
0,
³
G0φΩ

−1
B Gφ

´−1¶
, under mild regularity conditions.

Derivation of the distribution of PMD would be equivalent to the classical minimum-distance

proof if we had SbbT = g ³b0; bφT´ instead of SbbT = g ³bbT ; bφT´ . Although we know bbT p→ b0, bbT
is stochastic in finite samples and hence g

³bbT ; bφT´ is not, strictly speaking, a known function.
Thus, derivation of the asymptotic distribution of bφT requires that its asymptotic covariance

matrix appropriately reflect the additional uncertainty in g
³bbT ; bφT´ and that conditions exist so

that g
³bbT ; bφT´ p→ g

³
b0; bφT´ . These are the essential elements of theorem 5 below.

Theorem 5 Given the following conditions:

(i) cW p→W, a positive semidefinite matrix, where we choose W = (SΩBS
0)−1

(ii) bbT p→ b0 and bφT p→ φ0 from theorems 1 and 4.

(iii) b0 and φ0 are in the interior of their parameter spaces

(iv) g(bbT ;φ) is continuously differentiable in a neighborhood N of θ0, θ =
¡
b0 φ0

¢0
(v)
√
T
h
SbbT − g(b0;φ0)i d→ N(0, SΩBS

0).

(vi) There is a Gb and Gφ that are continuous at b0 and φ0 respectively and

sup
b,φ∈N

k∇bg(b;φ)−Gbk p→ 0

sup
b,φ∈N

k∇φg(b;φ)−Gφk p→ 0

(vii) For Gφ = Gφ(φ0), then G
0
φWGφ is invertible.

(viii) (h− 1) ¡r21 + r1r2¢ ≥ dim(φ)
Then:

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

where
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Ωφ =
¡
G0φWGφ

¢−1
+ (29)

¡
G0φWGφ

¢−1
G0φWGbΩBG

0
bWGφ

¡
G0φWGφ

¢−1 −
¡
G0φWGφ

¢−1 ¡
G0φWSΩBG

0
bWGφ

¢ ¡
G0φWGφ

¢−1 −
¡
G0φWGφ

¢−1 ¡
G0φWGbΩBS

0WGφ

¢ ¡
G0φWGφ

¢
The proof is provided in the appendix and essentially consists of applying the mean value theorem

to the first order conditions of the minimization problem. Several results deserve comment. First,

we derive the asymptotic covariance of bφT by using the optimal weighting matrix, which in this case
isW = (SΩBS

0)−1 . Alternative weighting matrices are permissible and the appendix provides the

general formula to calculate the appropriate asymptotic covariance matrix. Second, the expression

for Ωφ in (29) is the sum of four terms. The first is the expression of the asymptotic covariance

matrix in classical minimum-distance. The remaining terms reflect the contribution to the variance

of φ coming from the uncertainty of bbT in g(bbT ;φ).
The next section extends the weighted, quadratic, minimum-distance function to include the

contemporaneous parameter conditions (5) we have so far set aside to provide the general result.

4.3 Incorporating Contemporaneous Parameter Restrictions

Up to this point, the derivation of the two-step PMD estimator has set aside the set of conditions

P−11 = Φ00Ir1 +Φ
0
10− Φ02B1

0
11

where P1P 01 = Σ11 = E (ε1tε
0
1t) . Often, macroeconomic models specify Φ0 = Ir1 and we will

maintain this assumption in the discussion that follows to simplify our derivations, although we

expect the reader will have no problem in extending our results otherwise. These contemporaneous

conditions may be important in achieving identification in some models.

We can recast the previous expression to better match the stacked conditions in (12) by noticing

20



that P1 = R0PR where (Σε = PP 0) as follows

h
(R0PR)−1 − I

i
= (0BR S02BR)

⎛⎜⎜⎝ Φ1

Φ2

⎞⎟⎟⎠ (30)

where S02 is the selector matrix

S02 =
£
0r Ir 0r,r(h−1)

¤
Applying the vec operator to both sides of expression (30) and letting

q = vec(Q) ≡ vec ¡(R0PR)−1 − I¢ (31)

f
³bbT ;φ´ ≡ (Ir1 ⊗ (0BR S02BR))φ

then, the sample vector expression of (30) is

bqT = f ³bbT ;φ´
where P can be estimated from the Cholesky decomposition of the residual covariance matrix bΣε
to obtain bqT = vec

µ³
R0 bPTR´−1 − I¶. The expressions (31) allow us to recast the minimum-

distance of the second step in PMD as

⎡⎢⎢⎣ bqT
SbbT

⎤⎥⎥⎦ =
⎡⎢⎢⎣ f

³bbT ;φ´
g
³bbT ;φ´

⎤⎥⎥⎦
with the minimum-distance objective function

min
φ

bQT (φ) =
⎡⎢⎢⎣ bqT − f ³bbT ;φ´
SbbT − g ³bbT ;φ´

⎤⎥⎥⎦
0

cWq

⎡⎢⎢⎣ bqT − f ³bbT ;φ´
SbbT − g ³bbT ;φ´

⎤⎥⎥⎦
and where
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cWq =

⎡⎢⎢⎣ bΩ−1q 0

0
³
SbΩBS0´−1

⎤⎥⎥⎦
since we note that the covariance between the Cholesky decomposition of bΣε and the impulse
response function bBT is zero (see Lütkepohl, 1993). The following theorem establishes the asymp-
totic distribution of bφT for this extended estimator.
Theorem 6 Given the following conditions:

(i) cWq
p→ Wq, a positive semidefinite matrix, Wq =

∙
Ω−1q 0

0 (SΩBS
0)−1

¸
, where Ωq is the

variance of bqT
(ii) bqT p→ q0,bbT p→ b0 and bφT p→ φ0 where the first two conditions follow from Theorem 1 and

the second from Theorem 4.

(iii) q0, b0 and φ0 are in the interior of their parameter spaces

(iv) f(bbT ;φ) and g(bbT ;φ) are continuously differentiable in a neighborhood N of θ0, θ =
¡
b0 φ0

¢0
(v)
√
T (bqT − q0) d→ N (0,Ωq) ;

√
T
h
SbbT − g(b0;φ0)i d→ N(0, SΩBS

0) and E
³
(bqT − q0) ,³SbbT − g(b0;φ0)´´ =

0, which are a consequence of Theorem 3.

(vi) There is a Fb, Fφ, Gb and Gφ that are continuous at b0 and φ0 respectively and

sup
b,φ∈N

k∇bf(b;φ)− Fbk p→ 0

sup
b,φ∈N

k∇φf(b;φ)− Fφk p→ 0

sup
b,φ∈N

k∇bg(b;φ)−Gbk p→ 0

sup
b,φ∈N

k∇φg(b;φ)−Gφk p→ 0

(vii) For Hφ = (Fφ (φ0) Gφ(φ0))
0
, then H 0

φWqHφ is invertible.

(viii) h
¡
r21 + r1r2

¢ ≥ dim(φ)
Then

√
T
³bφT − φ0

´
d→ N (0, Vφ)

where
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Vφ =
¡
H 0
φWqHφ

¢−1
+

¡
H 0
φWqHφ

¢−1
H 0
φWqHbΩBH

0
bWqHφ

¡
H 0
φWqHφ

¢−1 −
¡
H 0
φWqHφ

¢−1
H 0
φWqSΩBH

0
bWqHφ

¡
H 0
φWqHφ

¢−1 −
¡
H 0
φWqHφ

¢−1
H 0
φWqHbΩBS

0WqHφ

¡
H 0
φWqHφ

¢−1
with Hφ = (Fφ (φ0) Gφ(φ0))

0
,Hb = (Fb (φ0) Gb (φ0))

0
. Specifically,

Hφ =

⎛⎜⎜⎝ Ir1 ⊗ (0BR S02BR)

Ir1 ⊗ (S1BR S2BR)

⎞⎟⎟⎠ ,

Hb = [(Φ01 Φ02)⊗ Ih]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0 ⊗ 0

R0 ⊗ S02

R0 ⊗ S1

R0 ⊗ S2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The proof is provided in the appendix and parallels the proof in theorem 5. For completeness, we

also report here the formula for Ωq which is shown in the appendix to be

Ωq = 2ΓD+
r (Σε ⊗ Σε)D+0

r Γ
0

Γ =
h
(RP 0R0)−1 ⊗ (R0PR)−1

i
[R⊗R0]L0r{Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1

were Lr is the elimination matrix such that, for any square, r × r matrix Σ then vech(Σ) =

Lrvec(Σ);Krr is the commutation matrix such that vec(Σ) = Krrvec(Σ0) andD+
r = (D

0
rDr)

−1Dr

where Dr is the duplication matrix such that vec(Σ) = Drvech(Σ).

4.4 Test of Overidentifying Restrictions

The second stage in PMD consists of minimizing a weighted quadratic distance to obtain estimates

of the parameter vector φ, which contains 2r21 elements. The identification conditions require that
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the impulse response horizon h be chosen to guarantee that there are at least as many moment

conditions as elements in φ.When the number of moment conditions coincides with the dimension

of φ, the quadratic function bQT (φ) obtains its lower bound of 0. However, when the number of
conditions is larger than the dimension of φ, the lower bound 0 is only achieved if the model is

correctly specified, as the sample size grows to infinity. This observation forms the basis of the

test for overidentifying restrictions (or J-test) in GMM and is a feature that can be exploited to

construct a similar test for PMD.

We begin by noting that under the conditions of theorems 5 and 6,

⎡⎢⎢⎣ bqT − f (b0)
SbbT − g (b0;φ0)

⎤⎥⎥⎦ d→ N

⎛⎜⎜⎝0,
⎡⎢⎢⎣ Ωq 0

0 SΩBS
0

⎤⎥⎥⎦
⎞⎟⎟⎠

so that the minimum-distance function bQT ³bφT´ evaluated at the optimum is a quadratic form

of standardized normally distributed random variables (since the optimal cWq is the inverse of

the variance in the previous expression) and therefore, distributed χ2 with degrees of freedom

h
¡
r21 + r1r2

¢− 2r21, or simply dim ∙³bqT SbbT´0¸− dim(bφT ).
4.5 PMD: A Summary for Practitioners

Consider an economy characterized by an r× 1 vector of variables yt = (y01t y02t)
0 where y1t and

y2t are sub-vectors of dimensions r1 and r2 respectively, with r = r1 + r2. A researcher specifies

a macroeconomic model for the variables in y1t whose Euler equations can be summarized as

y1t = Φ
0
1y1t−1 +Φ

0
2Ety1t+1 + u1t, E (u01tu1t) = I

The following steps summarize how PMD can be used to estimate the parameters in Φ1 and Φ2 :

First Stage: Local Projections

1. Construct Y = (y0, ...,yh)
0 ; X = y0; Z =

¡
1(T−k−h)×r,y−1, ...,y−k+1

¢
; Mz = I(T−k−h) −

Z (Z 0Z)−1 Z, where yj is the (T − k − h)× r matrix of observations for the vector yt+j .

24



2. Compute by least squares bbT = vec( bB(0, h)), where
bB(0, h) = [Y 0MzX] [X

0MzX]
−1

3. Calculate the covariance matrix of b as bΩB = n(X 0MzX)
−1 ⊗ bΣvo , where bΣv = bΨB ³Ih ⊗ bΣε´ bΨ0B

, bΨB is given by expression (28), and bΣε = (bv01bv1) / (T − k − h) ; with bv1 =Mzy1−Mzy0 bB1.
Second Stage: Minimum Chi-Square

4. Recall the definitions of SbbT ; bHφ; and cWq. An estimate of φ can be obtained with weighted

least-squares as

bφT = ³ bH 0
φ
cWq

bHφ

´−1 ³ bH 0
φ
cWqScbT´

5. The covariance matrix of bφT can be estimated as
bVφ =

³ bH 0
φ
cWq

bHφ

´−1
+³ bH 0

φ
cWq

bHφ

´−1 bH 0
φ
cWq

bHbbΩB bH 0
b
cWq

bHφ

³ bH 0
φ
cWq

bHφ

´−1
−³ bH 0

φ
cWq

bHφ

´−1 bH 0
φ
cWqSbΩB bH 0

b
cWq

bHφ

³ bH 0
φ
cWq

bHφ

´−1
−³ bH 0

φ
cWq

bHφ

´−1 bH 0
φ
cWq

bHbbΩBS0cWq
bHφ

³ bH 0
φ
cWq

bHφ

´−1
6. And a test of model misspecification can be constructed as

bQT ³bφT´ d→ χ2
h(r21+r1r2)−2r21

5 The Relation between GMM and PMD: An Example

PMD and GMM are both minimum distance methods. In this section we use a simple motivating

example to compare the advantages of PMD overGMM and will show thatGMM can be thought

of as a special case of PMD. To keep things simple, suppose the DGP is characterized by the

univariate backward/forward model:

yt = φ1yt−1 + φ2Etyt+1 + εt. (32)
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Instead, suppose the Euler condition from a proposed rational expectations model can be expressed

as

yt = ρEtyt+1 + ut, (33)

which is misspecified with respect to the DGP . Based on the economic model in (33), any yt−j ;

j > 1 would be considered a valid instrument for GMM estimation and hence, an estimate of ρ

would be found with the set of conditions

bρGMM =

Ã
1

T

TX
yt−jyt+1

!−1Ã
1

T

TX
yt−jyt

!
. (34)

It is easy to see that the probability limit of these conditions is

bρGMM
p→ φ2 + φ1

γj−1
γj+1

; j ≥ 1

where γj = COV (ytyt−j). Notice that the bias, φ1
γj−1
γj+1

, does not disappear by selecting longer

lags of yt−j as instruments, since although γj → 0 as j → ∞, γj−1
γj+1

is indeterminate as both

the numerator and the denominator are simultaneously going to zero. Meanwhile, as j →∞ the

correlation of the instrument with the regressor is exponentially decaying to zero — not only are

these instruments invalid, they are increasingly weak. The validity of the instruments obviously

depends on the dynamics of the DGP , not on the dynamics of the proposed economic model.

PMD takes on a more agnostic view on the dynamics of theDGP . The MA(∞) representation

of (32) is

yt =
∞X
j=0

bjεt−j

and hence, under the proposed model in (33), PMD would first estimate the bj by local projections

and then use the mapping between the bj and the ρ implied by the proposed model, which in this

simple case is:
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⎡⎢⎢⎢⎢⎢⎢⎣
b1

...

bh

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1

...

bh−1

⎤⎥⎥⎥⎥⎥⎥⎦ ρ (35)

Local projections for the bj are

bbj = Ã 1
T

TX
y0t−jMt−jyt−j

!−1Ã
1

T

TX
y0t−jMt−jyt

!
(36)

where Mt = 1− zt (z0tzt)−1 zt and zt = (1 yt−2 ...yt−k+1) . Notice that

bj = ρbj−1

for j ≥ 1 so that an estimate of ρ can be obtained directly from the local projections by noticing

that the common term
³
1
T

PT y0t−jMt−jyt−j
´−1

cancels out on both sides of expression (36) to

obtain

bρPMD =

Ã
1

T

TX
y0t−jMt−jyt+1

!−1Ã
1

T

TX
y0t−jMt−jyt

!
(37)

which is the PMD counterpart to expression (34). However, notice that although the proposed

model is misspecified with respect to the DGP , PMD delivers an unbiased estimate of the struc-

tural parameter of interest, that is

bρPMD
p→ φ2

In other words, PMD succeeds in consistently estimating the parameter ρ from the misspeci-

fied proposed economic model (33). What explains this surprising result? In practical terms and

for this simple example only, PMD turns out to be equivalent to pre-treating the candidate instru-

ments by conditioning either on past values of the variables and/or omitted variables (in a more

general case), so that only the marginal information left after conditioning is used to instrument.
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The first-stage local projections therefore serve to eliminate the sources of inconsistency in the

instruments, which then enter the second stage estimation weighted by the relative strength of the

conditional correlation with the instrumented variable. PMD resolves the appropriate asymptotic

theory associated with this pre-treatment in an indirect way. On the other hand, GMM relies on

finding valid instruments (in both the dynamic and the traditional sense) unconditionally in their

raw form. Unfortunately, the proposed economic model usually offers insufficient guidance as to

what these instruments might be.

6 Monte Carlo Experiments: Estimating ARMA(p,q) mod-
els with PMD

This section investigates the small sample properties of PMD. We take this opportunity to

further demonstrate the flexibility of our method by experimenting with univariate ARMA(1, 1)

specifications, which would typically require numerical optimization routines. However, we find

there is pedagogical value in discussing the more general V ARMA(1, 1) model so that the reader

can readily generalize the method to V ARMA(p, q) specifications. Accordingly, let yt be an r×1

vector that follows the following covariance-stationary process

yt = Π
0
1

r×r
yt−1 + εt + Θ

0
1

r×r
εt−1 (38)

with Wold decomposition,

yt =
∞X
j=0

B0jεt−j (39)

with B0 = Ir. Substituting (39) into (38) and equating terms in εt−j the same way we did in

section 2, we obtain the following conditions:

B01 = IrΠ
0
1 +Θ

0
1 (40)

B0j = B0j−1Π
0
1 for j > 1
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Consider now stacking the first h of these conditions. To that end, modify the definition of the

selector matrices introduced in section 2 as follows (the star serves to distinguish the definitions

from those in previous sections):

S∗0 = [0rh,r (Ih ⊗ Ir)] ; (41)

S∗1 = [(Ih ⊗ Ir) 0rh,r] ;

S∗2 =

⎡⎢⎢⎣ Ir 0r,rh

0r(h−1),r(h+1)

⎤⎥⎥⎦ .
Defining B =B(0, h) as in expression (7), then it should be clear that the conditions in (40) can

be expressed as

S∗0B =S
∗
1BΠ1 + S

∗
2BΘ1

so that the associated minimum-distance function is totally analogous to expression (14), specifi-

cally,

(Ir ⊗ S∗0)bbT − ³Ir ⊗ ³S∗1 bBT S∗2 bBT´´φ = (42)

S∗bbT − g∗(bbT ;φ)
where φ = vec (Π1 Θ1) and estimation consists in finding the solution to the problem

min
λ

cQ∗T (φ) = hS∗bbT − g∗ ³bbT ;φ´i0dW ∗ hS∗bbT − g∗ ³bbT ;φ´i
withdW ∗ = ³S∗bΩBS∗0´−1 . It should be immediately obvious that once one defines the new selector
matrices (41), estimation of the parameters of the model and calculation of the standard errors

can be done exactly as described in section 4.5.

The set-up of the Monte Carlo experiments is as follows. We investigate four different para-

meter pairs (π1, θ1) for the univariate ARMA(1,1) specification
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yt = π1yt−1 + εt + θ1εt−1.

Specifically: cases (i) and (ii) are two ARMA(1,1) models with parameters (0.25, 0.5) and (0.5,

0.25) respectively, and cases (iii) and (iv) are a pure MA(1) model with parameters (0, 0.5) and

a pure AR(1) model with parameters (0.5, 0), both estimated as general ARMA(1,1) models. In

addition, we generated data from two AR(2) models

yt = π1yt−1 + π2yt−2 + εt

with parameter pairs (π1,π2) given by (0.5, 0.25) and (0.25, 0.5). We use the AR(2) models as a

way to check the misspecification test based on the test of overidentifying restrictions. Thus, for

the models with θ1 = 0.5 (cases (i) and (iii)), we use the alternative (π1 = 0.25, π2 = 0.5) and

for the models with π1 = 0.5 (cases (ii) and (iv)), we use the alternative (π1 = 0.5,π2 = 0.25).

Clearly, the alternative model for cases (i) and (iii) has rather different dynamics than the original

model whereas the alternative model in cases (ii) and (iv) is very similar to the original model.

This design is meant to illustrate the relative power of the misspecification test.

Each simulation run has the following features. We use a burn-in of 500 observations that

we then disregard to avoid initialization problems. We experiment with practical sample sizes

T = 50, 100, and 400 observations. The lag-length of the first-stage PMD estimator is determined

automatically by AICc.2 For the second stage, we experimented with impulse response horizons

h = 2, 5, and 10. When h = 2, we have exact identification, otherwise, the model is overidentified.

Although the impulse responses for the models we simulate decay within two to three periods, we

experimented with h = 10 to examine the effects of including many additional conditions, that

would seem not to include any useful information for parameter estimation.

The models in each of cases (i)-(iv) is estimated by both maximum likelihood (MLE) and

2 AICc refers to the correction to AIC introduced in Hurvich and Tsai (1989), which is specifically designed for
autoregressive models. There were no significant differences when using SIC or the traditional AIC.
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PMD and we report Monte Carlo averages and standard errors of the parameter estimates, as

well as Monte Carlo averages of standard error estimates based on the MLE and PMD formulas.

The objective is to ensure that the coverage implied by the analytical formulas corresponds to the

Monte Carlo coverage. Finally, we report two chi-square tests. The first test, labeled χ2 − corr

is a test of overidentifying restrictions when the model is correctly specified as an ARMA(1,1)

under any of cases (i)-(iv). The second test is labeled χ2 − incorr and is a test of overidentifying

restrictions when the true model simulated is the AR(2) model described above but an ARMA(1,1)

is specified instead. The Monte Carlo average of the p-value of the first test offers some guidance

as to the size of the test whereas the Monte Carlo average of the p-value of the second test

speaks to the power of the test depending on which of the two AR(2) models is used to simulate

the alternative. Although a more comprehensive Monte Carlo on the properties of the test for

overidentification is desirable, we felt this test is subsidiary to the estimation strategy that is

the main thrust of the paper and leave for future research a more exhaustive exploration of its

properties. Finally, we used 500 replications for each experiment.

Tables 1-4 contain the results for each of cases (i)-(iv). Several results deserve comment. First,

PMD estimates converge to the true parameter values at roughly the same speed (sometimes

faster) as MLE estimates, with estimates being close to the true values even in samples of 50

observations. However, with 50 observations, we remark some deterioration of PMD parameter

estimates when h = 10, as would be expected by the loss of degrees of freedom. Second, PMD

has slightly wider analytic standard errors than MLE. Notice that PMD achieves the MLE

lower bound only asymptotically when h → ∞ as T → ∞. Hence when T = 400 and h = 10,

examples of PMD/MLE standard errors are: 0.075/0.072, 0.066/0.064, 0.075/0.066, 0.077/0.072,

0.090/0.088, 0.099/0.100 (we omit case (iii) since MLE estimates are for a pure MA(1) specification

instead). Third, we find that the analytical formula for the PMD standard errors provides similar

and correct coverage to the analytical formula for MLE, both relative to their Monte Carlo

standard errors. Fourth, the average p-value of the test of overidentifying restrictions when the
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model is correctly specified is approximately 0.50. In those cases where the true model is an AR(2)

with parameter pair (0.25, 0.5), we found the test to correctly detect the misspecification with

samples of 100 observations or more (with average p-values of 0.025 and below). The test had

more difficulty in distinguishing the AR(2) model with parameter pair (0.50, 0.25), which was

to be expected since this AR(2) model differs little from the ARMA(1,1) or case (ii) of the pure

AR(1) with coefficient 0.5 of case (iv). Even with a sample size of 400 observations, the average

p-value was still about 0.14.

Finally, we also remark that MLE estimates of the ARMA(1,1) specification for case (iii) in

table 3 failed to converge due to numerical instability — the likelihood is nonlinear in the parameters

and has to be optimized numerically. Hence, we report MLE results for a pure MA(1) specification.

We faced a similar problem for case (iv) in table 4 and with a sample size T = 50 where we had

to estimate pure AR(1) specifications. However, we had no problems for T = 100, and T = 400.

Naturally, PMD does not suffer from these numerical approximation issues and hence we reported

ARMA(1,1) specifications in all cases.

Summarizing, PMD performs very well in this set of experiments. We found that the optimal

weighting matrix does a good job at appropriately bringing in information from impulse responses

at long horizons that may be contaminated with significant sample variation. In our experiments,

parameter estimates are very stable to the choice of horizon h, the only consequence being an

expected reduction in standard errors. Naturally, this statement depends on the sample size and

hence the degrees of freedom available for the first-stage estimates. Finally, our experiments

indicate that the test of overidentifying restrictions is well behaved and can provide a suitable

metric of misspecification.

7 Application: Fuhrer and Olivei (2004) revisited

The popular New-Keynesian framework for monetary policy analysis combines mixed backward/forward-

looking, micro-founded, output (IS curve) and inflation (Phillips curve) Euler equations with a
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policy reaction function. This elementary three equation model is the cornerstone of an extensive

literature that investigates optimal monetary policy (see Taylor’s 1999 edited volume and Walsh’s

2003 textbook, chapter 11, and references therein). The stability of alternative policy designs

depends crucially on the relative weight of the backward and forward-looking elements and is an

issue that has to be determined empirically for central banking is foremost, a practical matter.

However, estimating these relationships empirically is complicated by the poor sample prop-

erties of popular estimators. Fuhrer and Olivei (2004) discuss the weak instrument problem that

characterizes GMM in this type of application and then propose a GMM variant where the dy-

namic constraints of the economic model are imposed on the instruments. They dub this procedure

“optimal instruments” GMM (OI − GMM) and explore its properties relative to conventional

GMM and MLE estimators.

We find it is useful to apply PMD to the same examples Fuhrer and Olivei (2004) analyze to

provide the reader a context of comparison for our method. The basic specification is (using the

same notation as in Fuhrer and Olivei, 2004):

zt = (1− µ) zt−1 + µEtzt+1 + γEtxt + εt (43)

In the output Euler equation, zt is a measure of the output gap, xt is a measure of the real interest

rate, and hence, γ < 0. In the inflation Euler version of (43), zt is a measure of inflation, xt is

a measure of the output gap, and γ > 0 signifying that a positive output gap exerts “demand

pressure” on inflation.

Fuhrer and Olivei (2004) experiment with a quarterly sample from 1966:Q1 to 2001:Q4 and use

the following measures for zt and xt. The output gap is measured, either by the log deviation of

real GDP from its Hodrick-Prescott (HP) trend or, from a segmented time trend (ST) with breaks

in 1974 and 1995. Real interest rates are measured by the difference of the federal funds rate

and next period’s inflation. Inflation is measured by the log change in the GDP, chain-weighted

price index. In addition, Fuhrer and Olivei (2004) experiment with real unit labor costs (RULC)
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instead of the output gap for the inflation Euler equation. Further details can be found in their

paper.

We begin by recasting expression (43) in terms of the set-up used in earlier sections and to

make the connections explicit. Hence, let yt = (zt xt)
0 so that

yt = Φ
0
1yt−1 +Φ

0
2Etyt+1 + ut

and in particular,

⎛⎜⎜⎝ zt

xt

⎞⎟⎟⎠ =

⎛⎜⎜⎝ φ111 φ121

φ112 φ122

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−1

xt−1

⎞⎟⎟⎠+
⎛⎜⎜⎝ φ211 φ221

φ212 φ222

⎞⎟⎟⎠
⎛⎜⎜⎝ Etzt+1

Etxt+1

⎞⎟⎟⎠+
⎛⎜⎜⎝ uzt

uxt

⎞⎟⎟⎠
in the notation of expression (1). Notice that expression (43) imposes the following parameter

constraints

φ111 = (1− µ) φ211 = µ

φ121 = 0 φ221 = γ

, (44)

leaving the parameters of the second equation unconstrained. Although one could estimate the

first equation in isolation, as Fuhrer and Olivei (2004) and many others do, we preferred to estimate

both equations jointly as a way to improve the quality of our estimates and the chances of passing

our specification test since this model is notoriously difficult to fit.

The parameter vector φ = vec(Φ1 Φ2) is therefore an 8×1 vector, with the first four elements

corresponding to the Euler conditions in expression (43) and the constraints in expression (44),

and where the second four elements correspond to the parameters of the expression for xt, which

are not of immediate interest. A simple way to implement the constraints in expression (44) is by

defining:
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C =

⎛⎜⎜⎝ 1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

⎞⎟⎟⎠ ; c =
⎛⎜⎜⎝ 1

0

⎞⎟⎟⎠
so that

Cφ = c (45)

imposes the constraints in (44).

In this univariate example, the contemporaneous parameter restrictions are very simple to

incorporate since Pz = σuz and hence

µ
1

σuz
− 1
¶
= φ211b

1
11 + φ221b

1
12,

where V
³

1
σuz
− 1
´
= 2. Theorem 6 in section 4.3 provides the necessary results to estimate the

model in (43) by PMD. Using the notation in that section and noticing that the linearity of the

problem means we can write

⎡⎢⎢⎣ f
³bbT ;φ´
g
³bbT ;φ´

⎤⎥⎥⎦ = Hφ

³bbT´φ = bHφφ,

then the minimum-distance problem subject to the constraints in (45) is

min
φ

h
SbbT − bHφφ

i0cWq

h
SbbT − bHφφ

i
s.t.

Cφ = c

where

cWq =

⎡⎢⎢⎣ 1/2 0

0 (SΩBS
0)−1

⎤⎥⎥⎦ .
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The solution of the Lagrangian of the constrained model is

bφc = bφT − ³ bH 0
φ
cWq

bHφ

´−1
C 0
∙
C
³ bH 0

φ
cWq

bHφ

´−1
C 0
¸−1 ³

CbφT − c´
where bφc denotes the constrained estimate of φ, and bφT denotes the unconstrained estimate. This
result should look very familiar as it is a generalization of the well-known restricted least-squares

result. Similarly, it is easy to show that the covariance matrix of the restricted estimates can be

calculated as

bΩbφc = ΞbΩbφΞ0
Ξ =

"
I −

³ bH 0
φ
cWq

bHφ

´−1
C 0
∙
C
³ bH 0

φ
cWq

bHφ

´−1
C0
¸−1

C

#

Since the second term in brackets is a positive definite matrix, it is easy to see that the variance

of the constrained estimator is smaller than the variance of the unconstrained estimator.

Table 5 and Figure 1 summarize the empirical estimates of the output Euler equation and

correspond to the results in Table 4 in Fuhrer and Olivei (2004), where as Tables 6 and 7 and

Figure 2 summarize the estimates of the inflation Euler equation and correspond to the results in

Table 5 in Fuhrer and Olivei (2004).

For each Euler equation, we report GMM, MLE, OI −GMM, estimates that replicate those

in Fuhrer and Olivei (2004). Next, we report PMD results based on h = 20. Figures 1 and 2

display the estimates of µ and γ in (43) as a function of h and the associated two-standard error

bands. Perhaps with the exception of γ in the RULC specification of Figure 2, the graphs show

that the parameter estimates vary very little with h even though the standard errors get somewhat

narrower. PMD results are reported for the constrained and unconstrained versions of the Euler

equation and we also report the overall specification test for the unconstrained model as a function

of h so as to stack the odds in favor of the null that the model is correctly specified.

We begin with a general overview of the results. Since the true model is unknowable, there
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is no definitive metric by which one method can be judged to offer closer estimates to the true

parameter values. However PMD estimates do not depart wildly from the estimates reported by

the alternative methods. In almost all the cases, we found the overall specification test rejects the

proposed Euler specification. PMD results are generally closer to values that would be expected

from economic theory (as much as this finding can be of comfort) and unconstrained estimates are

generally near the values for the constrained estimates so that the constraints are generally not

rejected by the data. Estimates that included the contemporaneous correlation restrictions where

virtually identical to estimates that excluded these conditions. Therefore and to make the results

more comparable to GMM, we report the results based on excluding these contemporaneous

conditions.

PMD estimates for γ in the output Euler equation in Table 5 (-0.15 and -0.20 for the HP

and ST specifications respectively) are two orders of magnitude larger than conventional estimates

(which are in the range 0.0024 to -0.0084) and of the correct sign. While statistically this coefficient

is not significant, the magnitude of the coefficient is economically plausible. The unconstrained

version of the parameter estimates suggest that γ may be even larger in magnitude (-0.54 to -0.64)

and statistically significant. The unconstrained estimates also suggest that the backward/forward

looking terms are approximately of the same magnitude (0.48 vs. 0.45 for HP; 0.42 vs. 0.46 for

ST) and they add up to 0.93/0.88 (HP/ST), very close to the canonical value of 1. However, these

estimates also suggest a possibly non-zero coefficient on the lagged value of the real interest rate

(0.46/0.47 for HP/ST). Unfortunately, the overall specification test strenuously rejects the model,

which makes difficult any forcible interpretation of the estimates.

PMD estimates of γ in the inflation Euler equation are very close to those estimated byMLE

or OI − GMM. In fact, estimates of µ and γ for the RULC model are virtually identical. The

unconstrained estimates suggest the ratio of backward/forward looking terms across specifications

is approximately 0.45/0.25 and adds up to about 0.70, somewhat further from the canonical value

of 1 but within statistical bounds. Unconstrained estimates of the lagged output gap term are
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close to zero (except for the RULC specification) and the coefficient of γ is estimated to be about

0.10 (but not statistically significant) for the HP and ST specifications and 0.21 (and significant)

for the RULC specification. The overall specification test rejects the model except at horizon 4

for all specifications and horizons 7 and 8 for the HP and ST specifications. Parameter estimates

at these horizons are very similar to the final estimates reported in Table 6 and hence are not

reported separately.

Summarizing, we find PMD provides estimates that are at times similar to estimates by other

methods, at times quite different but in directions that would be predicted by economic theory.

PMD estimates are more stable across specifications and with respect to the unconstrained ver-

sions of the model. The overall specification test rejects the Euler specifications most of the time

and although this makes comparisons across methods difficult, PMD appears to perform well.

An exhaustive comparative study across methods can only be done with extensive Monte Carlo

simulations, but this is beyond the scope of this paper. Despite the apparent inconclusiveness of

these results, we wish to point out that PMD has better theoretical properties than the alterna-

tive methods considered and PMD would allow further investigation with auxiliary conditioning

variables (in the form of a vector y2t in the notation of previous sections).

8 Conclusions

This paper introduces a disarmingly simple, two-step, minimum-distance method to estimate

dynamic systems of equations. The premise of the method is to remain agnostic with respect to

the dynamics and the variables that may have been omitted from the candidate model specified

with the objective of obtaining consistent parameter estimates nevertheless. The principle behind

the method consists in matching the impulse responses of the data estimated semi-parametrically

with the impulse responses implied by the candidate model specified — the dimension along which

most macroeconomic models are evaluated. Consequently, the method provides a simple chi-

square test that measures the distance between the data’s and the model’s impulse responses and
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which can be used as an omnibus misspecification test.

An important feature of the method is the first-stage, semi-parametric estimator of the impulse

response function. We show that this estimator is consistent and asymptotically normal and derive

the analytic covariance matrix of the impulse response coefficients across time and across variables.

On its own, we view this as an important contribution to empirical macroeconomic research: not

only it allows impulse responses to be estimated without a reference model, it provides simple

analytical results to do joint inference.

There are many research questions space constraints prevent us from exploring in this paper

and that we open as topics for future research. First, it is natural to extend PMD to nonlinear

models. Theorems 4-6 are derived for generic functions relating the impulse responses and the

structural parameters of interest and therefore immediately encompass nonlinear specifications.

However, depending on the nature of the nonlinearities, it seems natural to extend and estimate

the first-stage impulse responses flexibly along the lines in Jordà (2005). Second, it is desirable

to derive asymptotic results that offer guidance on the optimal rate at which h → ∞ with the

sample size and confirm with Monte Carlo experimentation, an appropriate practical rule-of-

thumb. Third, it is important to determine the power properties of the overall specification test in

light of the small sample deficiencies of its GMM cousin. The Monte Carlo results that we offer

here suggest the test has good properties but a more exhaustive investigation is needed. Fourth, we

hope PMD will be applied widely and as more applications are developed, a more comprehensive

investigation of the practical merits of PMD relative toMLE and GMM seems warranted. Fifth,

PMD appears well suited to estimate V ARMA(p, q) models, which are often difficult to estimate

because of numerical instabilities when maximizing the likelihood in large systems. Since PMD

involves two simple least-squares steps, we expect PMD to offer advantages in this dimension.

In addition, we expect that PMD can be extended to other less conventional time-series models,

such as multivariate GARCH specifications, that are also difficult to estimate in practice.
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9 Appendix

Proof. Theorem 1

Notice that

bA(k, h)−A(k, h) = bΓ01,k,hbΓ−1k −A(k, h)bΓkbΓ−1k =⎧⎨⎩(T − k − h)−1
∞X
j=k

vk,t+hX
0
t,k

⎫⎬⎭ bΓ−1k
where

vk,t+h =
∞X

j=k+1

Ahj yt−j + εt+h +
h−1X
j=1

Bjεt+h−j

Hence,

bA(k, h)−A(k, h) =

⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahj yt−j

⎞⎠X 0
t,k

⎫⎬⎭ bΓ−1k +

(
(T − k − h−1)

T−hX
t=k

εt+hX
0
t,k

)bΓ−1k +⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ hX
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭ bΓ−1k
Define the matrix norm kCk21 = supl6=0 l

0C0C0
l0l , that is, the largest eigenvalue of C 0C. When C is

symmetric, this is the square of the largest eigenvalue of C. Then

kABk2 ≤ kAk21 kBk2 and kABk2 ≤ kAk2 kBk21

Hence °°° bA(k, h)−A(k, h)°°° ≤ kU1Tk°°°bΓ−1k °°°
1
+ kU2T k

°°°bΓ−1k °°°
1
+ kU3T k

°°°bΓ−1k °°°
1

where

U1T =

⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ ∞X
j=k+1

Ahj yt−j

⎞⎠X 0
t,k

⎫⎬⎭
U2T =

(
(T − k − h−1)

T−hX
t=k

εt+hX
0
t,k

)

U3T =

⎧⎨⎩(T − k − h−1)
T−hX
t=k

⎛⎝ hX
j=1

Bjεt+h−j

⎞⎠X 0
t,k

⎫⎬⎭
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Lewis and Reinsel (1985) show that
°°°bΓ−1k °°°

1
is bounded, therefore, the next objective is to show

kU1T k p→ 0, kU2T k p→ 0, and kU3Tk p→ 0. We begin by showing kU2Tk p→ 0, which is easiest to

see since εt+h and X 0
t,k are independent, so that their covariance is zero. Formally and following

similar derivations in Lewis and Reinsel (1985)

E
³
kU2Tk2

´
= (T − k − h)−2

T−hX
t=k

E
¡
εt+hε

0
t+h

¢
E(X 0

t,kX
0
t,k)

by independence. Hence

E
³
kU2T k2

´
= (T − k − h)−1tr(Σ)k {tr [Γ(0)]}

Since k
T−k−h → 0 by assumption (ii), then E

³
kU2Tk2

´
p→ 0, and hence kU2T k p→ 0.

Next, consider kU3Tk p→ 0. The proof is very similar since εt+h−j, j = 1, ..., h− 1 and X 0
t,k are

independent. As long as kBjk2 < ∞ (which is true given that the Wold decomposition ensures

that
P∞
j=0 kBjk < ∞, then using the same arguments we used to show kU2Tk

p→ 0, it is easy to

see that kU3Tk p→ 0.

Finally, we show that kU1T k p→ 0. The objective here is to show that assumption (iii) implies

that

k1/2
∞X

j=k+1

°°Ahj °°→ 0, k, T → 0

because we will need this condition to hold to complete the proof later. Recall that

Ahj = Bh−1Aj +A
h−1
j+1 ; A

0
j+1 = 0; B0 = Ir; h, j ≥ 1, h finite

Hence

k1/2
∞X

j=k+1

°°Ahj °° = k1/2
⎧⎨⎩

∞X
j=k+1

kBh−1Aj +Bh−2Aj+1 + ...+B1Aj+h−2 +Aj+h−1k
⎫⎬⎭

by recursive substitution. Thus

k1/2
∞X

j=k+1

°°Ahj °° ≤ k1/2
⎧⎨⎩

∞X
j=k+1

kBh−1Ajk+ ...+ kB1Aj+h−2k+ kAj+h−1k
⎫⎬⎭
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Define λ as the max {kBh−1k , ..., kB1k} , then since
P∞
j=0 kBjk <∞ we know λ <∞ so that

k1/2
∞X

j=k+1

°°Ahj °° ≤ k1/2
⎧⎨⎩λ

∞X
j=k+1

kAjk+ ...+ λ
∞X

j=k+1

kAj+h−2k+
∞X

j=k+1

kAj+h−1k
⎫⎬⎭

By assumption (iii) and since λ <∞, then each of the elements in the sum goes to zero as T, k go

to infinity. Finally, to prove kU1Tk p→ 0 all that is required is to follow the same steps as in Lewis

and Reinsel (1985) but using the condition

k1/2
∞X

j=k+1

°°Ahj °°→ 0, k, T → 0

instead.

Proof. Theorem 2

We begin by showing thatW1T
p→ 0. Lewis and Reinsel (1985) show that under assumption (ii),

k1/2
°°°bΓ−1k − Γ−1k °°°

1

p→ 0 and E
³°°°k−1/2 (T − k − h)1/2 U1T°°°´ ≤ s (T − k − h)1/2P∞j=k+1 °°Ahj °° p→

0; k, T → ∞ from assumption (iii) and using similar derivations as in the proof of consistency

with s being a generic constant. Hence W1T
p→ 0.

Next, we show W2T
p→ 0. Notice that

|W2T | ≤ k1/2
°°°bΓ−1k − Γ−1k °°°

1

°°°k−1/2(T − k − h)1/2U∗2T°°°
As in the previous step, Lewis and Reinsel (1985) establish that k1/2

°°°bΓ−1k − Γ−1k °°°
1

p→ 0 and from

the proof of consistency, we know the second term is bounded in probability, which is all we need

to establish the result.

Lastly, we need to showW3T
p→ 0, however, the proof of this result is identical to that in Lewis

and Reinsel once one realizes that assumption (iii) implies that

(T − k − h)1/2
∞X

j=k+1

°°Ahj °° p→ 0

and substituting this result into their proof.

Proof. Theorem 3
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Follows directly from Lewis and Reinsel (1985) by redefining

ATm = (T − k − h)1/2 vec
⎡⎣⎧⎨⎩(T − k − h)−1

T−hX
t=k

⎛⎝εt+h +
h−1X
j=1

Bjεt+h−j

⎞⎠X 0
t,k(m)

⎫⎬⎭Γ−1k
⎤⎦

for m = 1, 2, ... and Xt,k(m) as defined in Lewis and Reinsel (1985).

Proof. Theorem 4

Recall

SbbT ≡ (R⊗ S0)bbT
and for notational convenience, define

g1

³bbT´ = (Ir ⊗ (S1BR S2BR))

Since bbT p→ b0, then

SbbT − g1 ³bbT´φ p→ Sb0 − g1 (b0)φ

by the continuous mapping theorem. Furthermore and given assumption (i)

bQT (φ) =
h
SbbT − g1 ³bbT´φi0cW h

SbbT − g1 ³bbT´φi p→

[Sb0 − g1 (b0)φ]0W [Sb0 − g1 (b0)φ] ≡ Q0 (φ)

which is a quadratic expression that is maximized at φ0. Assumption (v) provides a necessary

condition for identification of the parameters (i.e., that there be at least as many moment matching

conditions as parameters) that must be satisfied to establish uniqueness. As a quadratic function,

Q0(φ) is obviously a continuous function. The last thing to show is that

sup
φ∈Θ

¯̄̄ bQT (φ)−Q0(φ)¯̄̄ p→ 0

uniformly.
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For compact Θ and continuous Q0(φ), Lemma 2.8 in Newey and McFadden (1994) provides

that this condition holds if and only if bQT (φ) p→ Q0(φ) for all φ in Θ and bQT (φ) is stochasti-
cally equicontinuous. The former has already been established, so it remains to show stochastic

equicontinuity of bQT (φ).3 Notice that

¯̄̄ bQT (φ̃)− bQT (φ)¯̄̄ =
¯̄̄̄
¯̄̄̄ hSbbT − g1 ³bbT´ eφi0cW h

SbbT − g1 ³bbT´ eφi−h
SbbT − g1 ³bbT´φi0cW h

SbbT − g1 ³bbT´φi
¯̄̄̄
¯̄̄̄

=
¯̄̄
(φ̃− φ)0g1(bbT )0cWg1(bbT )(φ̃− φ) + (SbbT − g1(bbT )φ)0(cW +cW 0)g1(bbT )(φ̃− φ)

¯̄̄
≤
¯̄̄¯̄̄
g1(bbT )0cWg1(bbT )¯̄̄¯̄̄ ¯̄̄¯̄̄φ̃− φ

¯̄̄¯̄̄2
+
¯̄̄¯̄̄
(SbbT − g1(bbT )φ)0(cW +cW 0)g1(bbT )¯̄̄¯̄̄ ¯̄̄¯̄̄φ̃− φ

¯̄̄¯̄̄
.

Define

bRT ≡ ¯̄̄¯̄̄g1(bbT )0cWg1(bbT )¯̄̄¯̄̄+ ¯̄̄¯̄̄(SbbT − g1(bbT )φ)0(cW +cW 0)
¯̄̄¯̄̄

and

α =
argmax

δ ∈ {1, 2}
{
¯̄̄¯̄̄
φ̃− φ

¯̄̄¯̄̄δ
}.

Given bbT p→ b0 and (i) and since ||.|| is a continuous function, bRT = Op(1) and there exists an M
such that Prob( bRT > M) < η for all n large enough. Let

b∆T = ² bRT/M
N = {φ̃ :

¯̄̄¯̄̄
φ̃− φ

¯̄̄¯̄̄α
≤ ²/M}.

Then, Prob(|b∆T | > ²) = Prob(| bRT | > M) < η and for all φ̃,φ ∈ N , | bQT (φ̃)− bQT (θ)| ≤ R̂T ||φ̃−
φ||α ≤ b∆T .
Proof. Theorem 5

Under assumption (iii) b0 and φ0 are in the interior of their parameter spaces and by assumption

(ii) bbT p→ b0, bφT p→ φ0. Further, by assumption (iv), g(bbT ;φ) is continuously differentiable in a
3 Stochastic equicontinuity: For every ², η > 0 there exists a sequence of random variables ∆̂t and a sample

size t0 such that for t ≥ t0, Prob(|∆̂T | > ²) < η and for each φ there is an open set N containing φ with

supφ̃∈N
¯̄̄ bQT (φ̃)− bQT (φ)¯̄̄ ≤ ∆̂T , for t ≥ t0.
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neighborhood of b0 and φ0 and hence bφT solves the first order conditions of the minimum-distance
problem

min
φ

h
SbbT − g(bbT ;φ)i0cW h

SbbT − g(bbT ;φ)i
which are

−Gφ

³bbT ; bφT´0cW h
SbbT − g(bbT ; bφT )i = 0

By assumption (iv), these first order conditions can be expanded about φ0 in mean value expansion

g(bbT ; bφT ) = g(bbT ;φ0) +Gφ

³bbT ;φ´³bφT − φ0

´
where φ ∈ [bφT ,φ0]. Similarly, a mean value expansion of g(bbT ;φ0) around b0 is

g(bbT ;φ0) = g(b0;φ0) +Gb ¡b;φ0¢ ³bbT − b0´
Combining both mean value expansions and multiplying by

√
T, we have

√
Tg(bbT ; bφT ) =

√
Tg(b0;φ0) +Gφ

³bbT ;φ´√T ³bφT − φ0

´
+

Gb
¡
b;φ0

¢√
T
³bbT − b0´

Since b ∈ [bbT , b0], φ ∈ [bφT ,φ0] and bbT p→ b0, bφT p→ φ0 then, along with assumption (iv), we have

Gφ

³bbT ;φ´ p→ Gφ (b0;φ0) = Gφ

Gb
¡
b;φ0

¢ p→ Gb(b0;φ0) = Gb

and hence

√
Tg(bbT ; bφT ) = √Tg(b0;φ0) +Gφ

√
T
³bφT − φ0

´
+Gb

√
T
³bbT − b0´+ op(1)

In addition, by assumption (i) cW p→ W and notice that g (b0,φ0) = Sb0, which combined with

the first order conditions and the mean value expansions described above, allow us to write

−G0φW
h√
T
³
SbbT − nSb0 +Gφ

√
T
³bφT − φ0

´
+Gb

√
T
³bbT − b0´o´i = op(1)
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Since we know that

√
T
³bbT − b0´ d→ N (0,ΩB)

then

√
T
³bφT − φ0

´
d→ ¡
G0φWGφ

¢−1 ©
G0φWS +G

0
φWGb

ª√
T
³bbT − b0´

by assumption (vii) which ensures that G0φWGφ is invertible and assumption (viii) ensures iden-

tification. Therefore, from the previous expression we arrive at

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ =
¡
G0φWGφ

¢−1 ¡
G0φWSΩBS

0WGφ

¢ ¡
G0φWGφ

¢−1
+

¡
G0φWGφ

¢−1 ¡
G0φWGbΩBG

0
bWGφ

¢ ¡
G0φWGφ

¢−1 −
¡
G0φWGφ

¢−1 ¡
G0φWSΩBG

0
bWGφ

¢ ¡
G0φWGφ

¢−1 −
¡
G0φWGφ

¢−1 ¡
G0φWGbΩBS

0WGφ

¢ ¡
G0φWGφ

¢−1
By assumption (i), we choose the optimal weighting matrix W = (SΩBS

0)−1 and hence the

variance of bφT simplifies to the final expression in the theorem, that is
Ωφ =

¡
G0φWGφ

¢−1
+

¡
G0φWGφ

¢−1 ¡
G0φWGbΩBG

0
bWGφ

¢ ¡
G0φWGφ

¢−1 −
¡
G0φWGφ

¢−1 ¡
G0φWSΩBG

0
bWGφ

¢ ¡
G0φWGφ

¢−1 −
¡
G0φWGφ

¢−1 ¡
G0φWGbΩBS

0WGφ

¢ ¡
G0φWGφ

¢

Proof. Theorem 6

We begin by deriving the distribution of bQ = ³R0 bPR´−1−I where bP bP 0 = bΣε. The distribution
of vech(bΣε) is directly available in Lütkepohl (1993) and is

√
T
³
vech

³bΣε´− vech (Σε)´ d→ N (0,Ωσ)

Ωσ = 2D+
r (Σε ⊗ Σε)D+0

r
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where D+
r = (D

0
rDr)

−1
Dr and Dr is the duplication matrix such that for any square, r×r matrix

Σ, then vec(Σ) = Drvech(Σ). In addition, Lütkepohl (1993) also shows that

∂vec(P )

∂vech(Σε)
= L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1

where Lr is the elimination matrix such that for any square, r × r matrix Σ then vech(Σ) =

Lrvec(Σ) and Krr is the commutation matrix such that vec(Σ0) = Krrvec(Σ). All that remains

therefore is to derive ∂vec(Q)/∂vec(P ). Notice that

dQ = − (R0PR)−1R0dPR (R0PR)−1

and hence

dvecQ = −[(RP 0R0)−1 ⊗ (R0PR)−1]dvec (R0PR)

dvec(R0PR) = [R0 ⊗R] dvec(P )

Combining terms

dvec(Q) = −[(RP 0R0)−1 ⊗ (R0PR)−1] [R0 ⊗R] dvec(P )

which allows us to arrive at the final result that

Ωq = 2ΓD+
r (Σε ⊗ Σε)D+0

r Γ
0

Γ = [(RP 0R0)−1 ⊗ (R0PR)−1] [R0 ⊗R]L0r {Lr (Ir2 +Krr) (P ⊗ Ir)L0r}−1

Lütkepohl (1993) also shows that

√
T

⎛⎜⎜⎝ vec( bB1)− vec(B1)
vech(bΣε)− vech(Σε)

⎞⎟⎟⎠ d→ N

⎛⎜⎜⎝ 0

0

,

⎛⎜⎜⎝ ΩB1 0

0 Ωσ

⎞⎟⎟⎠
⎞⎟⎟⎠

from where it is easy to see the justification for assumption (v) that the covariance of bqT and bbT
is zero. With these results established, the proof of theorem 6 proceeds along the same lines as

the proof of theorem 5, that is, under the assumptions of theorem 6, bφT will be a solution to the
47



minimum-distance problem expanded to include the contemporaneous correlations. Then we take

a mean value expansion of the first order conditions and given that Wq is the optimal weighting

matrix, it is straightforward to derive the desired result.
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TABLE 1 – MONTE CARLO EXPERIMENTS: CASE (i) 
 
π1 = 0.25 θ1 = 0.5      T = 50 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.182 0.514 0.258 0.441 0.284 0.416 
 SE  0.223 0.206 0.214 0.197 0.216 0.190 
 SE (MC) 0.303 0.263 0.229 0.203 0.213 0.210 
 χ2-corr - 0.487 0.534 
 χ2-incorr - 0.118 0.168 
MLE Est. 0.209 0.537 0.225 0.528 0.212 0.525 
 SE 0.206 0.176 0.205 0.185 0.204 0.185 
 SE (MC) 0.292 0.263 0.301 0.256 0.285 0.252 
       T = 100 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.226 0.503 0.260 0.475 0.245 0.465 
 SE  0.151 0.140 0.149 0.134 0.153 0.136 
 SE (MC) 0.177 0.162 0.153 0.141 0.151 0.143 
 χ2-corr - 0.494 0.531 
 χ2-incorr - 0.020 0.034 
MLE Est. 0.237 0.510 0.248 0.503 0.237 0.502 
 SE 0.143 0.127 0.143 0.128 0.146 0.131 
 SE (MC) 0.152 0.138 0.156 0.145 0.148 0.139 
       T = 400 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.244 0.504 0.243 0.502 0.248 0.503 
 SE  0.075 0.069 0.075 0.066 0.075 0.066 
 SE (MC) 0.081 0.074 0.072 0.063 0.080 0.073 
 χ2-corr - 0.507 0.497 
 χ2-incorr - 0.000 0.000 
MLE Est. 0.248 0.508 0.241 0.508 0.249 0.503 
 SE 0.072 0.064 0.073 0.064 0.072 0.064 
 SE (MC) 0.078 0.071 0.071 0.064 0.077 0.071 
Notes: 500 Monte Carlo replications, 1st-stage regression lag length chosen automatically 
by AICc, SE refers to the standard error calculated with the PMD/MLE formula. SE (MC) 
refers to the Monte Carlo standard error based on the 500 estimates of the parameter. χ2-
corr. is the Monte Carlo average p-value of the overall misspecification test when the 
model is correctly specified. χ2-incorr. is the Monte Carlo average p-value of the overall 
misspecification test when the model generated is tttt uyyy ++= −− 21 50.025.0 . Notice 
that for h = 2 the model is exactly identified and hence the value of the test is exactly 0. 
500 burn-in observations disregarded when generating the data. 



 50

TABLE 2 – MONTE CARLO EXPERIMENTS: CASE (ii) 
 
π1 = 0.5 θ1 = 0.25      T = 50 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.469 0.208 0.463 0.221 0.473 0.179 
 SE  0.190 0.200 0.200 0.205 0.205 0.201 
 SE (MC) 0.239 0.224 0.203 0.191 0.195 0.208 
 χ2-corr - 0.549 0.622 
 χ2-incorr - 0.437 0.462 
MLE Est. 0.468 0.280 0.453 0.288 0.449 0.272 
 SE 0.192 0.200 0.195 0.206 0.195 0.206 
 SE (MC) 0.203 0.212 0.207 0.207 0.201 0.223 
       T = 100 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.488 0.255 0.494 0.233 0.479 0.263 
 SE  0.133 0.143 0.143 0.149 0.144 0.145 
 SE (MC) 0.148 0.159 0.145 0.157 0.142 0.155 
 χ2-corr - 0.544 0.569 
 χ2-incorr - 0.301 0.316 
MLE Est. 0.484 0.272 0.488 0.274 0.465 0.269 
 SE 0.132 0.143 0.134 0.145 0.133 0.144 
 SE (MC) 0.133 0.149 0.134 0.148 0.128 0.139 
       T = 400 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.498 0.251 0.490 0.251 0.483 0.263 
 SE  0.069 0.074 0.075 0.078 0.075 0.077 
 SE (MC) 0.072 0.076 0.078 0.076 0.076 0.077 
 χ2-corr - 0.490 0.452 
 χ2-incorr - 0.163 0.130 
MLE Est. 0.498 0.252 0.488 0.258 0.494 0.257 
 SE 0.065 0.073 0.066 0.073 0.066 0.072 
 SE (MC) 0.067 0.072 0.068 0.071 0.066 0.073 
Notes: 500 Monte Carlo replications, 1st-stage regression lag length chosen automatically 
by AICc, SE refers to the standard errors calculated with the PMD/MLE formula. SE 
(MC) refers to the Monte Carlo standard errors based on the 500 estimates of the 
parameter. χ2-corr. is the Monte Carlo average p-value of the overall misspecification test 
when the model is correctly specified. χ2-incorr. is the Monte Carlo average p-value of 
the overall misspecification test when the model generated is 

tttt uyyy ++= −− 21 25.05.0 . Notice that for h = 2 the model is exactly identified and 
therefore the test is exactly 0. 500 burn-in observations disregarded when generating the 
data. 
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TABLE 3 – MONTE CARLO EXPERIMENTS: CASE (iii) 
 
π1 = 0 θ1 = 0.5      T = 50 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. -0.072 0.561 0.056 0.393 0.120 0.312 
 SE  0.355 0.319 0.283 0.260 0.267 0.275 
 SE (MC) 0.858 0.801 0.279 0.265 0.229 0.238 
 χ2-corr - 0.453 0.538 
 χ2-incorr - 0.099 0.186 
MLE Est. - 0.481 - 0.478 - 0.487 
 SE - 0.126 - 0.126 - 0.125 
 SE (MC) - 0.143 - 0.154 - 0.138 
       T = 100 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. -0.044 0.511 0.024 0.459 0.046 0.441 
 SE  0.235 0.213 0.201 0.176 0.192 0.171 
 SE (MC) 0.292 0.262 0.194 0.182 0.188 0.189 
 χ2-corr - 0.461 0.513 
 χ2-incorr - 0.004 0.016 
MLE Est. - 0.483 - 0.490 - 0.497 
 SE - 0.088 - 0.088 - 0.088 
 SE (MC) - 0.089 - 0.087 - 0.091 
       T = 400 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. -0.008 0.507 -0.005 0.503 0.003 0.488 
 SE  0.113 0.102 0.100 0.086 0.099 0.087 
 SE (MC) 0.117 0.105 0.100 0.087 0.099 0.090 
 χ2-corr - 0.490 0.503 
 χ2-incorr - 0.000 0.000 
MLE Est. - 0.497 - 0.501 - 0.496 
 SE - 0.043 - 0.043 - 0.044 
 SE (MC) - 0.044 - 0.045 - 0.045 
Notes: 500 Monte Carlo replications, 1st-stage regression lag length chosen automatically 
by AICc, SE refers to the standard errors calculated with the PMD/MLE formula. SE 
(MC) refers to the Monte Carlo standard errors based on the 500 estimates of the 
parameter. MLE estimates for the ARMA(1,1) specification failed to converge. Hence we 
report estimates based on an ARMA(0,1) specification. χ2-corr. is the Monte Carlo 
average p-value of the overall misspecification test when the model is correctly specified. 
χ2-incorr. is the Monte Carlo average p-value of the overall misspecification test when 
the model generated is tttt uyyy ++= −− 21 50.025.0 . Notice that for h = 2 the model is 
exactly identified and hence the value of the test is exactly 0. 500 burn-in observations 
disregarded when generating the data. 
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TABLE 4 – MONTE CARLO EXPERIMENTS: CASE (iv) 
 
π1 = 0.5 Θ1 = 0      T = 50 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.424 0.069 0.420 0.052 0.412 0.045 
 SE  0.284 0.299 0.265 0.281 0.254 0.257 
 SE (MC) 0.432 0.423 0.261 0.245 0.237 0.231 
 χ2-corr - 0.537 0.594 
 χ2-incorr - 0.442 0.475 
MLE Est. 0.466 - 0.456 - 456 - 
 SE 0.126 - 0.126 - 0.126 - 
 SE (MC) 0.125 - 0.129 - 0.130 - 
       T = 100 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.482 0.009 0.461 0.040 0.465 0.011 
 SE  0.192 0.208 0.184 0.199 0.182 0.192 
 SE (MC) 0.217 0.222 0.177 0.176 0.173 0.172 
 χ2-corr - 0.550 0.562 
 χ2-incorr - 0.345 0.330 
MLE Est. 0.476 -0.009 0.461 -0.033 0.477 -0.016 
 SE 0.178 0.199 0.181 0.294 0.181 0.201 
 SE (MC) 0.193 0.212 0.184 0.211 0.192 0.203 
       T = 400 
  h = 2 h = 5 h = 10 
  π1 θ1 π1 θ1 π1 θ1 
PMD Est. 0.490 0.012 0.494 0.009 0.478 0.011 
 SE  0.091 0.101 0.091 0.100 0.090 0.099 
 SE (MC) 0.100 0.103 0.093 0.097 0.092 0.092 
 χ2-corr - 0.543 0.616 
 χ2-incorr - 0.163 0.121 
MLE Est. 0.490 -0.011 0.493 -0.011 0.488 -0.014 
 SE 0.088 0.100 0.087 0.099 0.088 0.100 
 SE (MC) 0.093 0.104 0.087 0.102 0.084 0.096 
Notes: 500 Monte Carlo replications, 1st-stage regression lag length chosen automatically 
by AICc, SE refers to the standard errors calculated with the PMD/MLE formula. SE 
(MC) refers to the Monte Carlo standard errors based on the 500 estimates of the 
parameter. For T = 50, MLE estimates for the ARMA(1,1) specification failed to 
converge. We report instead ARMA(1,0) estimates. χ2-corr. is the Monte Carlo average 
p-value of the overall misspecification test when the model is correctly specified. χ2-
incorr. is the Monte Carlo average p-value of the overall misspecification test when the 
model generated is tttt uyyy ++= −− 21 25.05.0 . Notice that for h = 2 the model is 
exactly identified and hence the value of the test is exactly 0. 500 burn-in observations 
disregarded when generating the data. 



 53

Table 5 – PMD, MLE, GMM and Optimal Instruments GMM: A Comparison 
 

Estimates of Output Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 

Method Specification µ (S.E.) γ (S.E.) 
GMM HP 0.52 (0.053) 0.0024 (0.0094) 
GMM ST 0.51 (0.049) 0.0029 (0.0093) 
MLE HP 0.47 (0.035) -0.0056 (0.0037) 
MLE ST 0.42 (0.052) -0.0084 (0.0055) 

OI-GMM HP 0.47 (0.062) -0.0010 (0.023) 
OI-GMM ST 0.41 (0.064) -0.0010 (0.022) 

PMD (h = 20) HP 0.54 (0.11) -0.15 (0.23) 
PMD (h = 20) ST 0.54 (0.11) -0.20 (0.21) 

 
Unconstrained PMD (h = 20) 

Coefficient HP 
Estimate (S.E.) 

ST 
Estimate (S.E.) 

zt-1 0.48 (0.15) 0.42 (0.15) 
xt-1 0.46 (0.28) 0.47 (0.27) 

Etzt+1 0.45 (0.12) 0.46 (0.12) 
Etxt+1 -0.54 (0.36) -0.64 (0.34) 

 
Overall Specification Test by Impulse Response Horizon 

HP ST 
Horizon p-value Horizon p-value 

4 0.000 4 0.000 
5 0.001 5 0.000 
6 0.001 6 0.001 

7-20 0.000 7-20 0.000 
 
 
Notes: zt is a measure of the output gap, xt is a measure of the real interest rate, and hence 
economic theory would predict γ < 0. GMM, MLE, and OI-GMM estimates correspond 
to estimates reported in Table 4 in Fuhrer and Olivei (2004). PMD estimates reported 
here are with impulse response horizon h = 20. HP refers to Hodrick-Prescott filtered log 
of real GDP, and ST refers to log of real GDP detrended by a deterministic segmented 
trend. The overall specification test is for the unconstrained model. 
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 Table 6 – PMD, MLE, GMM and Optimal Instruments GMM: A Comparison 
 

Estimates of Inflation Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 
 

Method Specification µ (S.E.) γ (S.E.) 
GMM HP 0.66 (0.13) -0.055 (0.072) 
GMM ST 0.63 (0.13) -0.030 (0.050) 
GMM RULC 0.60 (0.086) 0.053 (0.038) 
MLE HP 0.17 (0.037) 0.10 (0.042) 
MLE ST 0.18 (0.036) 0.074 (0.034) 
MLE RULC 0.47 (0.024) 0.050 (0.0081) 

OI-GMM HP 0.23 (0.093) 0.12 (0.042) 
OI-GMM ST 0.21 (0.11) 0.097 (0.039) 
OI-GMM RULC 0.45 (0.028) 0.054 (0.0081) 

PMD (h = 14) HP 0.49 (0.12) 0.050 (0.053) 
PMD (h = 14) ST 0.49 (0.12) 0.050 (0.046) 
PMD (h = 14) RULC 0.42 (0.15) 0.055 (0.057) 

 
Unconstrained PMD (h = 20) 

Coefficient HP 
Estimate (S.E.) 

ST 
Estimate (S.E.) 

RULC 
Estimate (S.E.) 

zt-1 0.48 (0.11) 0.48 (0.12) 0.38 (0.16) 
xt-1 -0.02 (0.11) -0.05 (0.12) -0.21 (0.12) 

Etzt+1 0.26 (0.19) 0.26 (0.18) 0.29 (0.20) 
Etxt+1 0.09 (0.09) 0.10 (0.10) 0.21 (0.12) 

 
Notes: zt is a measure of inflation, xt is a measure of the output gap, and hence economic 
theory would predict γ > 0. GMM, MLE and OI-GMM estimates correspond to estimates 
reported in Table 5 in Fuhrer and Olivei (2004). PMD estimates reported here are with 
impulse response horizon h = 20. HP refers to Hodrick-Prescott filtered log of real GDP, 
and ST refers to log of real GDP detrended by a deterministic segmented trend. RULC 
refers to real unit labor costs. 
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Table 7 – Overall Specification Tests of Inflation Euler Equation 
 

Estimates of Inflation Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 
 

 p-value of Overall Specification Test 
Horizon HP ST RULC 

4 0.772 0.771 0.987 
5 0.027 0.027 0.038 
6 0.031 0.043 0.005 
7 0.057 0.088 0.010 
8 0.065 0.099 0.017 
9 0.001 0.001 0.030 
10 0.001 0.001 0.038 
11 0.001 0.001 0.012 

12-19 0.000 0.000 0.000 
Notes: p-values of the overall specification test for the unconstrained model. 
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Figure 1 – Parameter Estimates of the Output Euler Equation as a Function of the 
Impulse Response Horizon used in the First Stage Estimation 
 

HP Detrended Ouput 

 
 

Segmented Trend Output 
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Figure 2 - Parameter Estimates of the Inflation Euler Equation as a Function of the 
Impulse Response Horizon used in the First Stage Estimation 
 
 
 

HP Detrended Output 

 
 
 
 
 

Segmented Trend Output 

 

Real Unit Labor Costs 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


