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Abstract
We study a small open economy with labor, capital accumulation, random death, taxa-
tion and a government budget balanced in the long run. We offer methods that provide
ordinary differential equations for means and analytical expressions for densities. The
latter is achieved by solving stochastic differential equations analytically and deriving
the density from this solution. Starting from any distribution, the aggregate distribu-
tion converges, both on a transition path towards a steady state and on a transition path
towards balanced growth, to a Pareto-distribution. We provide an intuitive economic
interpretation for a stationary long-run density with an infinite mean in an economy
on a balanced growth path. We also show how government tax policy can lead to
non-monotonic links between the equilibrium growth rate of the economy and risk
aversion of households.
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1 Introduction

Distributional analyses gain in importance in times when wealth or income appear to
become increasingly unequally distributed across individuals. An observed distribu-
tion that differs at two points in time can be understood in (at least) two ways. First,
by comparative static analysis of a stationary distribution or by studying the transition
process from the first realization of the distribution to the second. As the former is the
dominating approach in the literature and the latter is often performed numerically, we
focus on the latter from an analytical perspective for the case of a ‘perpetual youth’
model.

Wemodel the age process of representatives of a dynasty by a stochastic differential
equation. Wealth of the dynasty is derived from this age process while individuals are
alive. Newborns are endowed with a constant initial wealth level (and one unit of
labor supplied inelastically). This setup implies a stochastic differential equation for
the wealth process as well. We study dynasties in a small open economy framework
with free international capital flows. We investigate convergence properties towards a
steady state and a balanced growth path.
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We emphasize that our setup reflects the age process of a typical ‘perpetual youth’
Yaari-Blanchardmodel (Yaari 1965; Blanchard 1985). Thewealth process in our setup
is an alternative representation of the evolution of wealth in Jones (2014, 2015). An
endowment that is identical at birth reminds of Kasa and Lei (2018), among others (see
below for a detailed comparisonwith the literature). The density of the ’Steindl-model’
as presented in Gabaix et al. (2016, sect. 4.2.3) is a special case of our density (as
an example, we work with an arbitrary initial condition). The major difference of our
paper consists in our novel approach for deriving the density. Gabaix et al. (2016) do
not provide a derivation. Beare and Toda (2022) present new tools for understanding
the shape of stationary distributions in a discrete time setup (see Beare et al. 2022 for
a continuous time analysis). Our approach is less abstract and we focus on the shape
of distributions over time.

Our main contribution lies in the analysis of transition dynamics. The crucial
departure from the economic birth–death literature that enables this analysis lies in a
modelling choice. We represent the age process resulting from a birth–death process
by a stochastic differential equation (SDE). As a consequence, the wealth process in
our economy can also be represented by an SDE.

Our main results on the dynamics of distributions are obtained by steps that dif-
fer from the more popular Fokker–Planck equations (FPEs). We rather solve the
wealth SDE and derive distributions from these solutions. This approach has not been
followed—to the best of our knowledge—in economics before. We show that our
wealth process converges to a Pareto distribution in the limit.1 Starting from any arbi-
trary initial condition, the well-known link between an exponential age and a Pareto
wealth distribution is absent in transition. We characterize transitional dynamics of
the wealth distribution analytically and illustrate them graphically.

Our transitional analysis allows us to provide an intuitive economic interpretation
to a so far purely technical property of Pareto distributions. Pareto distributions with a
shape exponent smaller than 1 have a mean of infinity, i.e. a finite mean does not exist.
Nevertheless, the distribution exists and can be illustrated graphically in the standard
way. On a transition towards a balanced growth path, we observe a truncated Pareto
distribution with a finite mean. In the limit, the economy is on a balanced growth path
(with individual wealth constantly growing) and the Pareto distribution has (and needs
to have) an infinite mean.

We also obtain an interesting result concerning equilibrium growth rates. Risk aver-
sion plays a key role in the growth rate of our economy that is new to the endogenous
growth or optimal saving literature. The level of risk aversion determines the sign of
the growth rate (in a non-monotonic way) and not just the level. The effect is present
when the government balances its budget in the long run via the capital tax. This effect
is absent when the labor tax is employed for ensuring a balanced budget.

The next section briefly surveys the literature to which we relate our work. Sec-
tion 3 introduces the model. Section 4 provides the stochastic background of our
analysis. Section 5 provides findings on the evolution of expected individual wealth
and government wealth. Section 6 first derives conditions for a steady state versus a

1 The discussion paper version also proves many properties of the age process. Mean age always converges
to a constant, the age process converges to an exponential distribution in the long run, starting from an
arbitrary distribution. More details are in Birkner et al. (2021) or in an appendix available upon request.
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balanced growth path, illustrates the difference between time paths for expected values
and realizations and offers our analytical characterization of transitional dynamics of
distributions. The final section concludes.

2 Related literature

Stochastic differential equations Stochastic differential equations have been used in
economics at least sinceMerton (1971). Subsequently andmore recently, contributions
includeWälde (1999, 2005), He and Krishnamurthy (2011, 2013), Brunnermeier and
Sannikov (2014) or Di Tella (2017). We are not aware of analytical solutions to SDEs
in the economics literature that are employed to derive analytical expressions for the
evolution of densities over time.

Birth–death process We employ Poisson processes to model birth–death processes
as many other papers in the wealth-distribution literature (Cao and Luo 2017; Gabaix
et al. 2016; Kasa and Lei 2018; Aoki andNirei 2017).We share with others (Blanchard
1985; Benhabib et al. 2016; Benhabib and Bisin 2006; Gabaix et al. 2016; Kaymak
and Poschke 2016; Kasa and Lei 2018; Toda 2014; Benhabib et al. 2011; Aoki and
Nirei 2017; Benhabib et al. 2019; Itskhoki and Moll 2019) that death and birth rates
are identical. This differs from analyses that allow rates of birth and death to differ
leading to population growth (Jones 2014, 2015; Cao and Luo 2017). d’Albis (2007)
considers age-dependent death rates.

Identical initial endowment Newborns in ourmodel receive a constant initial endow-
ment. This captures the idea of equality of chances with respect to initial wealth.2 This
assumption is also made by Kasa and Lei (2018). Newborns born at the same point
in time receive identical endowments also in Jones (2015). This endowment can grow
over time, however. The literature employing insurance companies in finite-lifemodels
in the tradition of Yaari (1965) and Blanchard (1985) redistributes wealth intragener-
ationally. Both use insurance companies selling an annuity to a consumer who then
receives an income flow until the point of death. After that, the insurance company
dissolves the annuity and is relieved of any further payment Yaari (1965), or receives
the individual’s total wealth Blanchard (1985). In models in the Blanchard-tradition,
all individuals also have an identical initial wealth level (of zero).3

Kolmogorov backward equations Analysis of the mean is facilitated by employing
Kolmogorov backward equations. An introduction can be found in Stokey (2008, ch.
3.7). They are also applied in finance papers like Cox and Ross (1976), Aoki (1995),
Kawai (2009) or Eberlein and Glau (2014).

Kolmogorov forward/Fokker–Planck equations Fokker–Planck equations (FPEs)
became very popular recently andwe share the belief in their usefulnesswith Benhabib
et al. (2016), Achdou et al. (2020), Smith et al. (2013), Boucekkine et al. (2022), Jones

2 We ignore other determinants of equality of chances such as cognitive and non-cognitive skills or family
background. We also acknowledge a long literature studying alternative redistribution schemes. Recent
contributions include Cao and Luo (2017), Benhabib and Bisin (2006) and Benhabib et al. (2011, 2016).
3 Including an annuity in our model would lead to a different deterministic evolution of wealth over time.
It would not change our main points, however. Thus, we share the ideas of Jones (2014, 2015), Toda (2014,
p. 329), or Cao and Luo (2017) and omit insurance markets.
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and Kim (2017), Cao and Luo (2017), Aoki and Nirei (2017), Kaplan et al. (2018),
Nuño and Moll (2018) and Itskhoki and Moll (2019).4,5

Probability theoryGiven the nature of our project, we used textbooks on probability
theory. They includeØksendal (1998),Kallenberg (1997) or Privault (2018). In order to
understand stochastic integral equations, their solutions, and the infinitesimal generator
of Markov processes, Protter (1995) is helpful. Davis (1993b) establishes a theorem
on the evolution of an expected value as being entirely determined by a generator for
certain assumptions which is essential when analyzing the mean.

Poisson processes Going beyond the analysis of wealth distributions, we emphasize
that Poisson processes are ubiquitous in other parts of economics as well. Modelling
strategies to which our method of analyzing the mean could be applied include models
of R&D (Aghion et al. 2001; Grossman and Helpman 1991, 2005; Klette and Kor-
tum 2004; Aghion and Howitt 1992). Search and matching models in the tradition
of Diamond (1982), Mortensen (1982) and Pissarides (1985) also build on Poisson
processes, for instance Lee and Wang (2021), as do some business cycles models
(Brunnermeier and Sannikov 2014; Wälde 2005; He and Krishnamurthy 2011, 2013,
or Di Tella 2017) or the trade literature in the tradition of Melitz (2003).

Pareto and double-Pareto distributions Pareto distributions have become very pop-
ular recently (Piketty and Zucman 2015). They appeared in the analysis of top income
changes (Saez and Zucman 2016), income growth per person, population growth
Jones (2015), financial deregulation, (corporate) taxes (Cao and Luo 2017; Zhu 2019)
or bequests and saving rate inequality (Benhabib et al. 2019). Some models derive a
’double Pareto distribution’ for wealth. This can be achieved by introducing a diffu-
sion process in a model with exponentially distributed lifetimes (Reed 2001, 2003;
Toda 2012, 2014).6 Our focus is on analytical results for transitional dynamics of
distributions. We believe that they can also be applied to (appropriately modified)
double-Pareto structures.7,8

Analytical densities Some analyses in economics workwith analytical densities. An
early contribution is byMerton (1975) who obtains a steady-state density of per-capita
wealth in a Solow growth model with geometric Brownian motion for population size.

4 Achdou et al. (2014) provide an overview of partial differential equation models in macroeconomics.
Ahn et al. (2017) describe numerical methods for continuous time models.
5 (Bayer and Wälde 2015, p. 4) provide a short survey on the use of FPEs in economics prior to these
papers (see Benhabib and Bisin 2006, for an example). Bayer and Wälde (2010, Section 5) showed how to
derive FPEs for relatively general cases (using a Bewley-Huggett-Aiyagari model as example).
6 See also the analyses by Benhabib et al. (2016), Reed (2001) or Toda and Walsh (2015).
7 So far double-Pareto findings are built on a combination of Brownian motion and exponential age. Toda
(2014) writes that “the double Pareto property is robust in the sense that it depends only on multiplicative
growth and the geometric age distribution and not on the details of the stochastic process governing growth”.
Gabaix (1999) conjectures that the power law should hold even if the multiplicative process is time-varying.
Hence, obtaining double-Pareto findings employing Poisson processes only seems possible.
8 A paper very close to ours in spirit is Benhabib and Bisin (2006), as was kindly pointed out to us by
Jess Benhabib and Alberto Bisin after having completed our study. We share the optimal saving structure,
the death-birth process, the distributional nature of government activity and the intention to understand
transitional wealth dynamics. We differ from their analysis in inter alia our explicit use of SDEs (from
which we derive all of our findings), in our rigorous foundation in stochastics, in our more general treatment
of the government’s budget constraint (it is not balanced at each point in time leading to richer equilibrium
conditions) and in our analytical and graphical characterization of the wealth density over time.
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Gabaix et al. (2016) also present an analytical density in their studyof the distributionof
income. Their analysis builds on the Laplace transform (moment generating function)
of the density described by the Kolmogorov Forward Equation (i.e. Fokker–Planck
equation).Kasa andLei (2018) follow this approach and derive a stationary distribution
of wealth. Aoki and Nirei (2017) also provide a stationary distribution. We differ
from these approaches in that we offer a method by which the density can be derived
independently of partial differential equations:We propose an SDE and solve it. Based
on this solution, the density is presented.

Government debt and fiscal policy Government debt has been analyzed from many
different perspectives. Government deficit as opposed to tax income is central in the
Ricardian equivalence literature in the tradition of Barro (1974) and Weil (1989).
A stochastic analysis of government debt based on Brownian motion is in Benavie
et al. (1996) or Turnovsky (1997, 2000). A new perspective on optimal taxation also
taking optimal government debt into account is surveyed in Kocherlakota (2010). As
government debt per se is not the focus of our analysis here, we only point out that our
modelling choice of employing SDEs (and looking at long-run expected values) for
the government budget constraint is natural for models with birth–death processes.

What matters for our analysis is the tax choice how to balance the budget in the long
run and the effect of this choice, capital or labor tax, on the equilibrium growth rate
of the economy. Equilibrium growth rates are central to growth models. As Jaimovich
and Rebelo (2016) nicely put it, various growth models (Solow-type-models, human-
capital based models à la Lucas 1988, or semi-endogenous growth models in the
spirit of Jones 1999) predict long-run growth rates that are independent of tax policy.
By contrast, the presence of knowledge externalities in R&D based growth models
led to large discussion of the effect of taxes/R&D subsidies on long-run growth and
welfare (see e.g. Segerstrom2007 and the references therein).Obviously, a comparison
between the effect of labour taxes and capital (income) taxes in growth is not possible
in models where labour is the only factor of production. Such a comparison does
take place in sunspot models where tax rates influence the emergence of continua
of equilibria (Ben-Gad 2003; Park 2009).9 Our mechanism for long-run growth or a
steady-state equilibrium is (i) the difference between the after (wealth) tax interest
rate and the time preference rate at the individual level and (ii) the effect government
policy has on the wealth tax.

3 Themodel

The model presentation starts from small agents (one individual and one dynasty),
passes by a large agent (the government) and ends in equilibrium (of the small open
economy with two factors of production).

9 Romer-style models are also employed to study optimal tax policies (see Gross and Klein 2022 for a
recent contribution).
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3.1 The individual

Each individual is endowed with a time preference rate ρ̂ > 0 and has a finite
life that ends at a random point in time. This point T is exponentially distributed
with parameter δ, denoted death rate. The individual maximizes expected utility
Et

∫ T
t e−ρ̂[s−t]u (c (s)) ds, where expectations are formed with respect to T > t

given information up to t . Instantaneous utility is u (c (s)) and the individual chooses
the time path of consumption c (s). It is well-known from Blanchard-Yaari models
that this maximization problem is identical to maximizing a deterministic objective
function

U (t) =
∫ ∞

t
e−ρ[s−t]u (c (s)) ds, (1)

where discounting takes place at the rate ρ = ρ̂ + δ, i.e. adding the death rate δ to the
time preference rate. As the objective function shows, the individual cares about own
consumption only. They do not value bequests or utility of offsprings. Consumption
c (s) is therefore perceived to be deterministic. All bequests in our model will be
accidental.We consider a standard, constant relative risk aversion (henceforth CRRA),
instantaneous utility function

u (c (t)) = c1−σ − 1

1 − σ
. (2)

The budget constraint of our individual is deterministic as well and reads

ȧ (t) = (r − τa) a (t) + (1 − τw)w − c (t) . (3)

Wealth increases through net labor income (1 − τw)w and net interest (r − τa) on
individual current wealth a (t). Wealth and wage taxes are levied and collected by
the state.10 The gross wage and the interest rate are constant due to our small-open-
economy setup (see below). Consumption reduces wealth accumulation and the price
of the consumption good is normalized to one. The time derivative of wealth is denoted
by the usual ȧ (t) .

Whenwe solve the individual’s maximization problem, a guess and verify approach
yields optimal consumption in closed form (see Appendix A.1). Consumption (which
we require to be positive imposing a lower bound on wealth)

c (t) = φ [a (t) + W ] (4)

is a constant share

φ ≡ ρ − (1 − σ) (r − τa)

σ
(5)

10 The wealth tax τ turns into a capital income tax τc when we replace τ by rτc. The budget constraint (3)
would then read ȧ (t) = (1 − τc) ra (t) − c (t).
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out of wealth a (t) and the present value of net labor income,

W ≡ (1 − τw) w

r − τa
. (6)

Deriving this solution also shows that consumption grows at a rate

z ≡ r − τa − ρ

σ
. (7)

As long as the net interest rate r − τa exceeds the time preference rate ρ, wealth of
the individual increases over time.

Now imagine an individual is born at tB . Age of the individual is then t − tB .

Using (4), (3) and endowing the individual with some initial wealth a (tB), wealth is
a function of age and follows (see Appendix A.1.3)

a (t) = (a (tB) + W ) ez(t−tB ) − W . (8)

Thisfinding iswell-known frommanyclosed-formsolutions or steady-state properties:
Wealth growth is also driven by the constant exponential growth rate z.

3.2 The dynasty

Turning to a dynasty i, an offspring is born once an individual dies. A dynasty is
therefore characterized by a stochastic age process and a stochastic wealth process.We
describe both of them by stochastic differential equations driven by Poisson processes.
This is the key novelty of our paper from a methodological perspective.

3.2.1 Age

We start by specifying the age process. As emphasized above, our specification is
representative of age processes in many papers employing a birth–death framework
with constant population size. Our findings obtained below are possible as we model
this age process by a stochastic differential equation. It reads

d Xi (t) = bdt − Xi (t−) d Qδ
i (t) . (9)

Age of the currently alive individual of dynasty i at a point in time t is denoted by
Xi (t). It increases linearly and deterministically in time with slope b. When age and
time are measured in the same units, b equals one. Age drops to zero at random points
in time, i.e. when the increment d Qδ

i (t) of the Poisson process (Q(t))t≥0 equals one.
Poisson processes Qδ

i (t) are independent of each other.
The arrival rate of this Poisson process is the constant death rate introduced above

before (1). Age dropping to zero means that an individual that dies is replaced by a
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newly born offspring of age zero. Population size L therefore remains constant. We
denote the initial age of the currently alive individual of dynasty i by xi .

11

3.2.2 Wealth

We can now describe the wealth process of a dynasty i . While alive, an individual
accumulates wealth according to (8). When death hits according to (9), all wealth
of a dynasty goes to the state which, in turn, endows the newborn with some initial
endowment ā.12 This wealth accumulation process, based on (8) and (10), is captured
by (see Appendix A.1.4)

d Ai (Xi (t)) = z [Ai (Xi (t)) + W ] dt + [
ā − Ai (Xi (t−))

]
d Qδ

i (t) . (10)

Wealth Ai of dynasty i whose currently alive member has age Xi (t) at time t
changes according to a deterministic and a stochastic part. The deterministic part
describes optimal wealth accumulation (8) at the individual level as long as the indi-
vidual is alive. The stochastic part shows that in the case of death at t, wealth is
reduced by the wealth level Ai (Xi (t−)) at t−, i.e. an instant before death.13 Wealth
is increased by ā such that the newborn starts with this initial endowment.14

3.3 The government

Consider a government that levies taxes onwealth and labor income, collects all wealth
at the moment of death and endows all newborns with an initial constant amount of
wealth. We can express the change in government wealth based on one dynasty by the
following SDE15

dGi (Ai (t)) = (τa Ai (t) + τww) dt + [
Ai (t−) − ā

]
d Qδ

i (t) . (11)

The deterministic sources of income are given by tax revenues τa Ai (t) and τww.
A stochastic source is wealth Ai (t−) of individuals being transferred to the state
at the moment of death, i.e. when d Qδ

i (t) = 1. Government spending consists in
endowing the newborn with a constant amount of wealth ā. We do not impose a

11 Parameters of the process (9) could differ across dynasties. Concerning the age process, we only allow
for differences in initial age in this paper.
12 As discussed above, the absence of planned bequests and identical endowments of newborns is a common
assumption in the literature (Kasa and Lei 2018; Jones 2015, and models in the Blanchard 1985, tradition).
13 Moll et al. (2021) allow for “random dissipation shocks” that imply that households are left with zero
wealth after such a shock.
14 An obvious extension reduces the inheritance tax from 100% as in (10) to some 0 < τb < 1. The wealth
constraint would read d Ai (Xi (t)) = z

[
Ai (Xi (t)) + W

]
dt + [

ā − τb Ai (Xi (t−))
]

d Qδ
i (t) . Extend-

ing our analyses for the mean and aggregate equilibrium is straightforward. The analysis of distributional
dynamics is an order of magnitude more complex. We return to this issue once we have understood distri-
butional dynamics of wealth following (10).
15 Even though Ai (Xi (t)) more precisely describes the deterministic link between wealth and age than
Ai (t), we will employ the latter when appropriate.
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balanced government budget at each instant (as e.g. Benhabib and Bisin 2006, or
Benhabib et al. 2016). We rather allow the government to trade government bonds on
the international capital market.16

When we denote total government wealth by G (t) , its evolution follows from
summing over all L dynasties,

dG (t) = �L
i=1

{
(τa Ai (t) + τww) dt + [

Ai (t−) − ā
]

d Qδ
i (t)

}
. (12)

3.4 The small open economy

We study a small open economy. All of our distributional findings below concern-
ing wealth can therefore be understood as findings describing the population of a
small open economy.17 In this small open economy, international capital flows fix the
domestic interest rate r .

Concerning production processes, we employ a standard neoclassical technology
employing capital and labor as factors of production, Y = Y (K , L) .18 Profit maxi-
mization of firms joint with the fixed interest rate r fixes the domestic capital stock and
thereby also the gross wagew.19 Domestic production is constant as well. Households
can nevertheless grow richer and experience exponential consumption growth as they
accumulate wealth abroad.

4 Mathematical background: describing themean of a stochastic
process

This section discusses principles behind computing means in Sect. 4.1. Section 4.2
looks at a linear stochastic differential equation (SDE) that describes a stochastic
process. This section also computes the time derivative of the mean of this stochastic
process. We propose two approaches: a “fast and intuitive” approach and one that
follows a general rigorous approach from stochastic theory. Both approaches yield the
same results.20

4.1 Preliminaries

We are interested in a class of real-valued stochastic processes (X(t))t≥0. This class
can be described as solutions of an SDE driven by a Poisson process (Q(t))t≥0 with

16 This allows to study wealth of domestic dynasties and government wealth independently of each other.
17 This idea was employed previously in Bayer et al. (2019).
18 This extends the AK approach of e.g. Toda (2014). Our earlier version (Birkner et al. 2021) also followed
the AK approach.
19 In the presence of unemployment as in Bayer et al. (2019), the domestic capital stock would adjust
accordingly.
20 Readers interested in understanding means can go to Sect. 4.2 immediately. The analysis of the mean
can be understood without the rigorous background in Sect. 4.1.
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intensity λ > 0. Given suitable functions f , g : R → R, the SDE takes the form21

d X(t) = f (X(t))dt + g(X(t−))d Q(t), t ≥ 0. (13)

Intuitively, the dynamics of the solution to (13) is the following: The path (X(t))moves
along solution curves of the ordinary differential equation ẋ = f (x). Whenever the
Poisson process (Q(t)) jumps at a certain time, say τ , the process jumps from its
position X(τ−) immediately before τ to its new position X(τ ) = X(τ−) + g(X(τ−)).

For completeness, let us briefly discuss the generalmathematical set-up behind (13):

The process is defined on a filtered probability space22
(
	,F , P, F̃

)
where 	 is the

sample space,F is a σ−algebra and P is a probability measure onF and F̃ = (F̃t )t≥0
is a filtration of sub-σ -algebras of F . Strictly speaking, X : [0,∞) × 	 → R is then
a function of time and “randomness”, where X(t, ω) is the (random) value of the
process at time t ≥ 0 in the sample point ω. We will follow the usual approach and
suppress the dependence on ω in the notation, so X(t) denotes the real-valued random
variable which describes the state of the process at a fixed time t ≥ 0. We will write
(X(t)) ≡ (X(t))t≥0 to denote the (random) path of the process and sometimes simply
write X to denote the process when the context is clear. We will try to follow the
usual notational convention to denote random variables by capital letters and possible
(fixed) values by small letters. A Poisson process (Q(t))t≥0 with intensity λ > 0 on(
	,F , P, F̃

)
is a process with Q(0) = 0 which is constant between jumps of size

+1 with the property that Q(t) − Q(s) is independent of F̃s and Poisson distributed
with mean λ(t − s) for any 0 ≤ s < t .

Under suitable assumptions,23 it is known that (13) has a unique solution for any
starting value X(0) (which could itself be random) which is adapted to the filtra-
tion F̃ and has right-continuous paths. Furthermore, if X(0) has finite expectation
E[|X(0)|] < ∞, we have then E[|X(t)|] < ∞ for all t > 0 as well. The analogous
statement holds for second moments.

The solutions are semi-martingales and also (strong) Markov processes.24 This
allows to use tools both from stochastic analysis and from the theory of Markov
processes in order to analyze the behavior of the process (X(t)).

For the Markov process viewpoint, we need a family Px , x ∈ R of probability
measures on (	,F) where for given x ∈ R, Px describes the law when starting from
the fixed x = X(0), in particular Px (X(0) = x) = 1. We will write expectations with

21 As usual, we understand (13) to be a shorthand notation for the equation X(t) = X(0)+∫ t
0 f (X(s)) ds+

∫ t
0 g(X(s−)) d Q(s) with t ≥ 0.

22 We can andwill assume that the “usual conditions” are fulfilled, i.e., F̃ is right-continuous and complete,
see e.g., Garcia and Griego (1994, p. 338).
23 We will either assume that f is Lipschitz continuous, that is there exist c f < ∞ so that | f (x)− f (y)| ≤
c f |x − y| holds for all x, y ∈ R and that g is either Lipschitz continuous or bounded (see for example
García and Griego 1994, Theorem 6.2).
24 In fact, they belong to the class of piece-wise deterministic Markov processes: Between the jump times
of (Q(t)), (X(t)) follows a differentiable curve. Such processes are discussed in much greater detail in
Davis (1993a). See also Garcia and Griego (1994, p. 362) for the Markov property.
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respect to Px as Ex such that

Ex [h(X(t))] = E[h(X(t)) | X(0) = x], (14)

where h : R → R is (a suitable) test function.25 The transition semigroup26 is (Pt )t≥0
where Pt is defined via

Pt h(x) ≡ Ex [h(X(t))], x ∈ R. (15)

In an economic spirit, if the test function h : R → R, represented utility, Pt h(x) is the
expected value at time 0 of the random utility h(X(t)) at time t given that we know
X(0) = x .

The generator A of a (Feller) transition semigroup (Pt )t≥0 is defined as

Ah (x) = lim
t→0,t>0

Pt h(x) − h(x)

t
, x ∈ R (16)

for functions h in its domain D(A). By definition, D(A) consists of all functions
h ∈ C(R) for which the limit on the right-hand side of (16) exists (in the “strong”
sense of the supremum norm on C(R), i.e., uniformly in x). For a more probabilistic
interpretation of (16), we re-write this asAh (x) = limt→0,t>0

Ex [h(X(t))]−h(x)
t . Thus,

for a very small positive time t > 0 and a given starting point x , we have

Ex [h(X(t)] ≈ h(x) + tAh (x)

and, hence,Ah(x) describes approximately27 how the mean of h(X(t)) changes from
its initial value h(x) over a very short time interval.

The generator for the solution of (13) looks as follows28

Ah (x) = f (x)h′(x) + λ [h(x + g(x)) − h(x)] (17)

and D(A) contains all differentiable functions h ∈ C(R) such that the derivative
h′ ∈ C(R).
Let us briefly discuss why (17) holds. For an intuitive approach, consider h ∈ D(A),
X(0) = x , t > 0 very small. Then Px (Q(t) = 1) = λt + O(t2), Px (Q(t) = 0) =
1 − λt + O(t2), Px (Q(t) ≥ 2) = O(t2). On the event {Q(t) = 0} (no jump before

25 Suitable means that the expectation in (14) is well-defined. This is, for example, the case when h is
measurable and bounded or non-negative.
26 The semigroup property means Pt Ps = Pt+s , compare e.g. Protter (2004, p. 35). It is known that for
our examples (Pt )t≥0 is a so-called Feller transition semigroup, see e.g. (Davis 1993a, Theorem (27.6)),
that is Pt : C(R) → C(R) where C(R) denotes the set of continuous functions which vanish at ±∞. This
is mathematically convenient since it allows to work on the Banach space C(R).
27 A precise meaning of ≈ is here that in fact Ex [h(X(t)] = h(x) + tAh (x) + o(t) as t ↓ 0, where the
“error term” o(t) goes to 0 faster than linearly in t .
28 See, e.g., Garcia and Griego (1994, pp. 361–362).
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time t), we have, by linearizing the ODE, X(t) ≈ x + t f (x); on the event {Q(t) = 1}
we have X(t) ≈ x + g(x). Hence

Ex [h(X(t))] ≈ (1 − λt)h(x + t f (x)) + λth(x + g(x))

= h(x+t f (x))+λt [h(x+g(x))−h(x)]−λt [h(x+t f (x)) − h(x)] .

Subtracting h(x) on both sides, dividing by t and letting t ↓ 0 then yields (17) (use
the chain rule on d

dt h(x + t f (x)) and observe that λt
(
h(x + t f (x))−h(x)

) = O(t2)).
A rigorous argument goes as follows: Applying to (X(t))t≥0 the chain rule for paths

of bounded variation,29 we find

h(X(t)) = h(X(0)) +
∫ t

0
h′(X(s)) f (X(s)) ds

+
∫ t

0

(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)

d Q(s)

= h(X(0)) +
∫ t

0
h′(X(s)) f (X(s)) ds

+ λ

∫ t

0

(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)

ds

+
∫ t

0

(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)

d[Q(s) − λs].

By martingale properties of compensated Poisson processes (see, e.g. García and
Griego 1994, Thm. 5.3), the process

∫ t

0

(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)

d[Q(s) − λs], t ≥ 0

is a martingale, in particular its expectation equals 0. Thus, taking expectations with
respect to Px shows

Ex [h(X(t))] = h(x) + Ex

[∫ t

0
h′(X(s)) f (X(s)) ds

]

+ λEx

[∫ t

0

(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)

ds

]

= h(x) +
∫ t

0
Ex

[
h′(X(s)) f (X(s))

]
ds

+ λ

∫ t

0
Ex

[(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)]

ds,

29 See, e.g., Garcia and Griego (1994, p. 344).
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where we used Fubini’s theorem in the second equation. Thus

Ex [h(X(t))] − h(x)

t
= 1

t

∫ t

0
Ex

[
h′(X(s)) f (X(s))

]
ds

+ λ

t

∫ t

0
Ex

[(
h
(
X(s−) + g(X(s−))

) − h(X(s−))
)]

ds.

Using the fact that lims↓0 X(s) = lims↓0 X(s−) = X(0) because paths are right-
continuous, this shows (17) by taking t ↓ 0.

This a good place to highlight the difference between Kolmogorov backward
equations and Kolmogorov forward equations (aka Fokker–Planck equations). If dis-
tributional properties are to be understood, the forward equation is applied. If the
interest lies in the mean, the backward equation can be used (see for instance Kallen-
berg 1997, p. 192). For Markov processes the general Kolmogorov backward equation
reads (compare Davis 1993a, p.30, equation 14.11)

d

dt
Ex [h (X (t))] = Ex [(Ah) (X (t))] (18)

for all functions h ∈ D(A).30

We are particularly interested in computing the mean

μ(x, t) ≡ Ex [X(t)] (19)

for processes of the form (13). We will do this in the following section.

4.2 An example

We start by looking at a stochastic process X(t) described by a SDE,

d X (t) = −aX (t) dt + bd Q (t) (20)

with X (0) > 0 and a, b > 0. To connect (20) to (13), set f (x) = −ax and g(x) = b.
This implies that X (t) ≥ 0 ∀ t as the deterministic decay is exponential, i.e. X (t)
approaches zero asymptotically in the absence of jumps. The arrival rate of Q(t) is
given by the constant λ > 0. The support of X (t) is R∗+, i.e. neither zero nor infinity
are included, ]0,∞[. The support is infinitely large as in principle Q(t) can jump very
often relative to the speed of a. Figure 1 shows one possible realization of process
(20).

30 As further information, a brief and reader-friendly introduction is García and Griego (1994). Standard
texts include Davis (1993a), Protter (1995), Privault (2018), Kallenberg (1997) and Liggett (2010). In
particular, Liggett (2010, ch. 3) has a very readable introduction to Feller processes.

123



The dynamics of Pareto distributed wealth in a small open… 621

Fig. 1 One possible realization of the stochastic process (X(t))t≥0 in (20)

4.2.1 The mean (simple approach)

We will now derive the expected value Ex [X(t)] in a rather straightforward way. The
linearity of (20) helps in this respect.

In a first step, we express the SDE in (20) in its integral version. It reads X (t) −
X (0) = −a

∫ t
0 X (s) ds + b

∫ t
0 d Q (s) . When we apply the expectations operator Ex

from (14), we get

Ex [X (t)] − Ex [X (0)] = −a
∫ t

0
Ex [X (s)] ds + bEx

[∫ t

0
d Q (s)

]

= −a
∫ t

0
Ex [X (s)] ds + bλ

∫ t

0
ds. (21)

We can pull the expectations operator inside the integral as the appropriate version of
a Fubini theorem holds (see Philip 2004, p. 207 or Bichteler and Lin 1995, p. 277,
example 4.1 for more background). The second equality uses the martingale result of
Garcia and Griego (1994, theorem 5.3).

In a second step, we rewrite (21) employingμ (x, t) from (19) and obtainμ (x, t)−
μ (x, 0) = −a

∫ t
0 μ (x, s) ds+bλ

∫ t
0 ds.Computing the derivativewith respect to time

t gives

dμ (x, t)

dt
≡ μ̇ (x, t) = −aμ (x, t) + bλ. (22)

The Kolmogorov backward equation has thus turned into an ordinary differential
equation. It describes the change over time of the expected value of X (t) .Expectations
are formed from the perspective of the initial point of the process, here 0. The initial
condition for t = 0 is μ(x, 0) = x .

It would then be straightforward to study the properties of this ODE. As one can
easily verify, the mean converges to the fixpoint μ∗ = bλ/a from above and below.
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4.2.2 The mean (generic approach)

We now show how to derive the ODE for the mean in (22) in a way more closely
related to Sect. 4.1. The idea consists in using the identity function h(x) = x as a test
function and insert it into the corresponding Kolmogorov backward equation.

With h(x) = x , h′(x) = 1, (18) becomes

d

dt
Ex [X (t)] = Ex [(Ah) (X (t))] = Ex [−aX(t) + b] = −aEx [X(t)] + b.

Replacing Ex [X (t)] by μ(x, t) from (19) again, yields (22). Hence, we can either
work with the integral version of an SDE and form expectations as in Sect. 4.2 or we
use insights from Sect. 4.1 to obtain an ODE for the mean of our stochastic process.
The second approach also shows why the first approach works so nicely: We need that
for h(x) = x , Ah(x) is an affine function of x .

5 Mean dynamics for dynasties, the population and the government

We now apply the results of Sect. 4 to themodel from Sect. 3. There is no need to apply
our findings to an individual as an individual experiences a deterministic evolution
of age and wealth up to death. We therefore study expectations for dynasties, the
population and the government. The main part focuses on the analysis of expected
private and public wealth.31

5.1 Expected wealth

• A dynasty

Our main variable of interest is dynasty wealth. We define the expected level of
dynasty wealth, η (ai , t) , as

η (ai , t) = Ea (Ai (t)) ≡ E [Ai (t) |Ai (0) = ai ] . (23)

Following the intuitive description from above, we are at an initial point in time 0,
consider an individual with initial age Xi (0) and endow them with initial wealth
Ai (0) = ai . The mean η (ai , t) then provides the expected value of wealth for indi-
vidual i with initial wealth ai at a future point in time t .

Expectedwealth canbedescribedbya linear differential equation (seeAppendixA.2),

η̇ (ai , t) = zW + δā + (z − δ) η (ai , t) . (24)

Expected wealth depends on the death rate δ, on endowment ā of a newborn and on
the growth rate z of individual consumption and wealth from (7). Solving this equation

31 The analysis of expected age is very similar and is available in our discussion paper version Birkner
et al. (2021) or in an online appendix available upon request.

123



The dynamics of Pareto distributed wealth in a small open… 623

Fig. 2 Expected wealth as a function of parameters z and δ

yields

η (ai , t) = (
ai − η∗) e(z−δ)t + η∗, with η∗ ≡ − zW + δā

z − δ
. (25)

The solution shows that expected wealth can rise or fall over time. The convergence
or growth rate for expected wealth is z − δ = r−τa−ρ

σ
− δ, which can be positive or

negative, depending on all those five parameters.32 When z < δ, the long-run expected
wealth level η∗ is positive. The initial expected value is ai which can be of course larger
or smaller than η∗. As illustrated in the left panel of Fig. 2, any initial wealth level
converges to η∗ at the convergence rate z − δ, i.e. η∗ is a globally stable fix point.
This fix point is larger than the initial endowment ā as long as z < δ since death rate
δ ∈ (0, 1). Expected wealth falls when initial wealth ai is above the long-run expected
wealth level η∗, otherwise, it rises.

For the empirically more relevant case of z > δ, the stationary level η∗ is negative.
When the initial condition ai = η∗, which would require initial debt, the expected
wealth level always stays at η∗. For ai < η∗, expected wealth falls to minus infinity.
For ai > η∗, expected wealth rises without bound at the growth rate z − δ. Hence, η∗
is an unstable fix point.

• The population

Average wealth of the population at t is defined as the average over dynasty wealth
levels Ai (t) given constant population size L ,

Ā (t) ≡ �L
i=1Ai (t) /L . (26)

As dynasty wealth from (10) is stochastic, we need to form expectations for any point
in time t > 0 in order to be able to make any model predictions. We obtain

E Ā (t) = E
[
�L

i=1Ai (t) /L
]

= �L
i=1Ea [Ai (t)] /L . (27)

32 We do not study the case of δ = z as it is a special case which does not promise further insights. The
differential equation (24) would display a constant on the right-hand side and the solution (25) would be a
linear function of time.
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As we can pull the expectation operator into the sum, we end up with a
familiar expression, namely Ea [Ai (t)]. As Ea [Ai (t)] = η (ai , t) from (23), the
expected population mean equals the mean over expected dynasty means, E Ā (t) =
�L

i=1η (ai , t) /L . Employing the solution for expected dynasty wealth (25) yields

E Ā (t) =
(
�L

i=1ai/L − η∗) e(z−δ)t + η∗ (28)

where η∗ is the same expression as defined in (25) for expected dynasty wealth.
Here we need to distinguish the two cases of z−δ being positive or negative as well.

As z > δ is the empirically relevant case, we focus on this assumption. The long-run
average wealth level η∗ in our economy is then negative and an unstable fix point.
As the initial average wealth �L

i=1ai/L needs to be positive by empirical relevance,
expected average wealth increases at the exponential rate z − δ > 0.

If we assume that population size goes to infinity, i.e. L → ∞, the variance of
average wealth Ā (t) from (26), as a result of the law of large numbers,33 tends towards
0. Hence, in any practical sense averagewealth Ā (t) equals the expected value E Ā (t).

5.2 Expected government wealth

The government levies taxes and endows newborns with wealth. runs a tax scheme
based on inheritances. Is this scheme feasible for government wealth? Under which
conditions will the government exhibit a balanced budget in the long run? To start
answering these questions, we first study the evolution of expected government wealth
as an outcome of applying its tax scheme to one dynasty only. We then aggregate over
all dynasties. The full answer will be obtained when we study equilibrium in Sect. 6.1.

• Expected government wealth based on one dynasty

We define expected government wealth following (11) as

γ (ai , t) ≡ E [Gi (Ai (X (t))) |Ai (X (0)) = ai ] . (29)

The initial condition ai is the same as in (23). Following methods from above, the
mean γ (ai , t) follows (see Appendix A.3)

γ̇ (ai , t, τa, τw) = −δā + τww + (τa + δ) η (ai , t) . (30)

The dynamics can be easily understood when comparing this ODE with the ODE
for expected wealth of a dynasty in (24). Expected wealth of a dynasty rises in δ (via
a first channel) as the dynasty receives ā when an offspring is born. Expected wealth
of the government falls in δ as a new offspring is an expenditure for the government.
Expected wealth of a dynasty falls in δ (via a second channel) as the household loses

33 The summands in �N
i=1Ai (Xi (t)) are independent of each other as Ai (Xi (t)) is a deterministic

function of random age Xi and, given independence of Poisson processes in (9), random variables Xi are
independent of each other.
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expected wealth η (ai , t). By contrast, government wealth rises in this second channel
as the government receives this expected wealth. Expected wealth of the household
rises at the rate of z, resulting from the optimal consumption decision of the household.
Wealth of the government rises at τa and τw as these are the tax rates applied to wealth
of the dynasty and constant labor income, respectively.

While ODEs between the dynasty and government level have very similar interpre-
tations, the solution of (30) looks very different from the solution at the dynasty level.
This is not surprising as the right-hand side of the government’s expected wealth
(for this dynasty) contains expected wealth of the dynasty. Hence, (30) is not an
autonomous differential equation but needs to be solved by taking the solution of the
dynasty budget constraint (25) into account. The solution to (30) reads (see Appendix
A.5.2)

γ (ai , t, τa, τw) = Gi,0 + (
(τa + δ) η∗ − δā + τww

)
t

+ (τa + δ) (ai − η∗)
z − δ

(
e(z−δ)t − 1

)
, (31)

where Gi,0 describes the government wealth at the initial point in time 0 stemming
from dynasty i .

• Expected total government wealth

Similar to (12), expected total wealth of the government is simply the sum over
dynasty-specific means from (31),  (t, τa) = �L

i=1γ (ai , t) . After some steps (see
Appendix. A.3.3), we obtain an expression for expected government wealth per capita
that reads

 (t, τa, τw)

L
= G0

L
+ (

(τa + δ) η∗ − δā + τww
)

t

+ (τa + δ)
(

Ā (0) − η∗)

z − δ

(
e(z−δ)t − 1

)
. (32)

Juxtaposing this equation with (31) shows that initial wealth Gi,0 is replaced by G0/L
and dynasty initial wealth ai is replaced by average initial wealth Ā (0) defined as in
(26).34

Both the solution (31) and (32) show that expected government wealth from one
dynasty can rise or fall over time. Anticipating equilibrium analysis to some extent,
the exponential term clearly shows that one necessary condition for a steady state is
z < δ. This makes sure that the final term in (A.28) approaches a constant. A steady
state also requires that the term in front of t equals zero at each instant,

τaη∗ + τww = δ
[
ā − η∗] . (33)

If η∗ is larger in equilibrium than ā (which holds for z > 0 as shown in the discussion
of Fig. 2), this condition suggests either a negative wealth tax and/or labor income tax:

34 We can apply a law of large numbers for per capita government wealth in the same way as we did for
average individual wealth Ā (t) from (26).
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A positive government income per birth, η∗ > ā, implies subsidies to capital and/or
labor income, τa < 0 and/or τw. Based on (33), the government uses the wealth and a
labor income tax to ensure the budget is balanced in a long-run steady state. We will
return to this condition shortly.

6 Aggregate and distributional findings

We now characterize equilibrium in our small open economy. Subsequently, we
describe distributional properties of wealth. For analytical convenience, we first con-
sider the case of an economy with capital as the only factor of production (as e.g. in
Toda 2014; Benhabib et al. 2016 or Kasa and Lei 2018).We then study the neoclassical
economy with capital and labor.

6.1 Steady state and balanced growth path equilibrium for the AK case

Depending on parameter values, the model ends up in a stationary equilibrium or on
a growth path. We say that our economy is in a steady-state equilibrium when both
individual variables (e.g. dynasty wealth) and aggregate variables (e.g. government
wealth) converge to stationary values. The economy is in a growth equilibrium when
individual and aggregate variables converge to a balanced growth path where (most)
variables grow at identical rates. Interestingly, distributions can be stationary on a
balanced growth path.

6.1.1 Convergence to a general steady-state equilibrium

As the expected wealth analysis, summarized in Fig. 2, has shown, a partial stationary
equilibrium holds if z < δ, i.e. when the rate of wealth growth falls short to the death
rate δ. Expected wealth of a dynasty (25) as well as expected average wealth of the
population (28) converge to their long-run value η∗, where the latter is described by
(25). With constant wealth, consumption and utility are constant as well, where the
rate z is treated as exogenous by individuals.

In order to describe the general stationary equilibrium, however,we need to consider
the evolution of the government budget as well. For a steady-state equilibrium, we
require that government wealth approaches a long-run constant value. We now study
the corresponding conditions.

• A stationary government wealth implies an endogenous tax system

In a steady-state equilibrium, the term linear in time in (25) and (28) must vanish.
This is condition (33). In the AK case, w = 0 and (33) simplifies to

τaη∗ = δ
(
ā − η∗) , (34)

where η∗ from (25) now reads

η∗ = − δ

z − δ
ā. (35)
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If η∗ is larger in equilibrium than ā (which holds for z > 0 as shown in the discussion
of Fig. 2), this condition suggests a negative tax rate: A positive government income
per birth, η∗ > ā, implies subsidies to capital income, τa < 0.

In order to determine τa , we start from (34 ) and employ η∗ from (35). After some
steps (see Appendix A.4), the resulting tax rate reads

τa = r − ρ

1 − σ
. (36)

This constant tax rate balances the budget of the government in the long run. Short run
average wealth of the population or current government wealth do not matter. Given
this endogenous tax rate, the growth rate z from (7) adjusts. After some simple steps
(see Appendix B.7), the equilibrium wealth growth rate reads

z = r − ρ

σ − 1
. (37)

• Conditions for convergence to a steady-state equilibrium

So far, we obtained two necessary conditions for a steady-state equilibrium. First,
steady state requires z < δ as (i) expected household wealth then approaches a con-
stant and as (ii) the second term of the wealth expression for the government (32)
also approaches a constant. Second, steady state requires an endogenous tax rate, the
condition for τa in (36). This tax rate makes sure that government wealth approaches
a constant in the long run. The endogenous tax rate led to the new expression for z in
(37). A steady state for both the household and the government level therefore requires
that z < δ also holds for z from (37).

To understand when z < δ, consider Fig. 3. It plots z from (37) as a function of σ.

The left panel displays the case of r > ρ, the right panel of r < ρ. There is a pole
at σ = 1. We understand when z < δ by defining a threshold level σ ∗ that implies
z = δ. This threshold level is given by

σ ∗ ≡ r − ρ + δ

δ
(38)

and is also shown in both panels for an example of δ.

When r > ρ, the threshold level is σ ∗ > 1 for all positive δ. There is therefore
a steady state (where z < δ with endogenous τa from (36)) if and only if σ < 1 or
σ > σ ∗. For levels in-between, i.e. for 1 < σ < σ ∗, the economy is on a growth
path. When r < ρ (right panel) and δ < − (r − ρ) (as not drawn in the panel), the
threshold level is negative, σ ∗ < 0. There is a steady state if and only if σ > 1. For
σ < 1, the economy is on a growth path. By contrast, when r < ρ and δ > − (r − ρ)

(as drawn in the right panel), the threshold level is between zero and one, 0 < σ ∗ < 1.
There is a steady state if and only if σ < σ ∗ or σ > 1. For σ ∗ < σ < 1, the economy
is on a growth path. These conditions are summarized in the Table 1.
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Fig. 3 The steady-state condition for σ for r > ρ (left) and r < ρ (right)

Table 1 Parameter conditions
for steady state and growth path

• The importance of risk aversion for the equilibrium type

We would like to emphasize the importance of σ in determining the equilibrium
type. To the best of our knowledge, risk aversion never played this role in any models
of the optimal growth or new growth theory. Risk aversion (in optimal saving rules of
the type ċ/c = (r − ρ) /σ ) amplifies the growth rate, but does not have an effect on
the sign of the growth rate – whether the economy ends up in a steady state or on a
balanced growth path.

This importance of σ is illustrated in Fig. 4. The horizontal axis plots the difference
between r and ρ, the vertical axis plots risk aversion σ. Consider first the case of a
positive difference r − ρ. With a risk aversion below 1, the economy ends up in a
steady state. As z < 0, wealth falls over time. This holds in individual data but not
for empirical aggregate averages over the lifetime. This is therefore the empirically
less relevant steady state. A risk aversion equal to 1 (see Appendix B.9) or larger
than 1 but still below σ ∗ implies a balanced growth path. When σ rises further, we
return to a steady-state economy. For this region of σ > σ ∗, z is positive such that
expected dynasty wealth η (t, ai ) rises and approaches the steady state from below (as
illustrated by the trajectory starting at a1 in the left panel of Fig. 2).

When r − ρ is negative but still larger than −δ, an increase in σ also moves the
economy through three regimes. With risk aversion below σ ∗, the economy is in a
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Fig. 4 Steady state and balanced growth path regions

steady state with positive z. Wealth evolves as just illustrated by η (t, a1) in Fig. 2. A
higher σ brings us to a growth equilibrium and risk aversion above one leads to an
empirically non-convincing steady state with z < 0.

For r − ρ < −δ, the economy starts (at low σ ) in a growth equilibrium. Risk
aversion exceeding 1 yields the steady state just described.

Why does σ play this role here? The precise channel through which σ affects
growth rates is not the individual growth rate z from (7) but the equilibrium growth
rate z from (37). This hints to the crucial role of tax policy. In fact, when we analyze
the full model and study the effect of a labor tax in Sect. 6.2.1 below, we will see that
the equilibrium growth rate z falls monotonically in σ when the government employs
the labor tax to balance its budget. Hence, it is the effect of σ on the capital tax τa in
(37) through the balanced budget condition that leads to this new role of σ here.

What is the intuition behind this channel of σ? The parameter should be understood
here in its interpretation (of its inverse) as intertemporal elasticity of substitution (and
not in terms of risk aversion): the channel through which σ acts is through its effect
on the wealth growth rate z of an individual while alive, i.e. in the absence of any
risk. The higher 1/σ , the higher the individual (deterministic) growth rate z from (7)
(for r − τa − ρ > 0). This implies a higher average or expected wealth level η∗,
see (35) or the left panel of Fig. 2. When we write (34) as(τa + δ) η∗ = δā, we see
that the government can lower the tax on wealth when η∗ rises. Hence, σ affects the
individual growth rate z directly and indirectly through its effect on τa . This leads to
the sign-effect of σ on the equilibrium growth rate z in (37) beyond the standard level
effect.

An interpretation in the same spirit can be given for r falling short of ρ.
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Fig. 5 Realized wealth paths (red) versus expected wealth paths (black) of a dynasty

• Equilibrium convergence to a steady state

We can now summarize equilibrium dynamics ofmeans in our small open economy.
The economy starts with initial wealth levels ai for dynasties i . Expected dynasty
wealth converges to a steady state following (35). Average wealth in our economy
follows (28) altered accordingly. These paths are illustrated in the left panel of Fig. 2.

Expected government wealth under these conditions follows

 (t, τa)

L
= G0

L
+ (

Ā (0) − η∗) (
1 − e(z−δ)t

)
. (39)

It can rise or fall over time, depending onwhether initialwealth Ā (0)of households lies
above or below expected wealth η∗. Interestingly, the per-capita government wealth in
the steady state, G0/L + Ā (0)−η∗, displays two initial conditions. Usually (as e.g. in
dynasty wealth (25) or average wealth (28)), initial conditions vanish in the long run.
Here, they persist as (initial) government wealth is not directly owned by households
and therefore not subject to the death-birth process (as discussed after (11)).

Concerning realized consumption and wealth growth while alive, given the optimal
consumption share φ from (38) and τa from (36), consumption reads c (t) = ra (t) .

This illustrates that, if taxes are instantaneously chosen such that the long-term budget
is balanced, the optimal, utility-maximizing share of wealth consumed is equal to the
gross before-tax interest rate. From the budget constraint (3 ), wealth therefore falls at
the rate of τa . Remember that τa can be positive or negative, depending on parameter
values.

• Expected values versus realizations

Let us be explicit about the difference between an expected evolution and realiza-
tions in our model. To this end, Fig. 5 illustrates expected wealth dynamics versus
realized wealth while alive.

Equilibrium dynamics for expected wealth in a steady-state economy are shown in
black in the left panel of Fig. 5. In addition to Fig. 2, this panel also shows an example
of a realized wealth path in red. The corresponding paths for the growing economy
are in the right panel to which we turn later.

In a steady-state economy with a long-run balanced government budget, the link
between expected dynasty wealth η∗ and initial endowment ā from (35) adjusts due
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to the endogenous tax rate and the implied new accumulation rate z from (37). After
some steps (see Appendix B.7), expected dynasty wealth reads

η∗ = (1 − σ) δ

r − ρ + (1 − σ) δ
ā. (40)

Obviously, η∗ exceeds ā if r < ρ and falls short of it for r > ρ. The left panel shows
the case of a z < δ economy converging towards a steady state with r < ρ. When
we look at expected dynasty wealth η (ai , t) in black, it approaches η∗ irrespective
of initial conditions a1 or a3. By contrast, when we look at an example of a realized
growth path Ai (t) of a dynasty i from (10), given w and τw equal 0, in red, it starts at
the initial level a2 and grows at the constant rate z as long as the current representative
of the dynasty stays alive. Whenever the individual is replaced by an offspring, wealth
jumps to ā. The black curves also represent realized average wealth in the economy
as a whole, i.e. Ā (t) from (28).

6.1.2 Convergence towards a balanced growth path

Figure 4 shows parameter values for which the economy finds itself on a growth path.
On such a path, condition (33) making sure that the government wealth approaches a
constant is not required. It would be enough to think of government wealth (or debt)
as staying within a certain range of GDP or overall wealth (think of the Maastricht
criteria of the EU).

• Convergence of government wealth to a balanced growth path

In this vein, we divide government wealth (32) per capita by aggregate average
wealth (28) and obtain

 (t, τa) /L

E Ā (t)
= G0/L + ((τa + δ) η∗ − δā) t + τa+δ

z−δ

(
Ā (0) − η∗) (

e(z−δ)t − 1
)

(
Ā (0) − η∗) e(z−δ)t + η∗ .

(41)

When we now consider the long run, i.e. t → ∞, both the linear growth expression,
((τa + δ) η∗ − δā) t, and the exponential growth expression,

(
Ā (0) − η∗) e(z−δ)t ,

tend towards infinity. As the exponential term grows faster than linear or constant
terms, limit arguments yield

lim
t→∞

 (t, τa) /L

E Ā (t)
= lim

t→∞

G0/L+((τa+δ)η∗−δā)t
e(z−δ)t + τa+δ

z−δ

[
1 − 1

e(z−δ)t

] (
Ā (0) − η∗)

Ā (0) − η∗ + η∗
e(z−δ)t

= τa + δ

z − δ
. (42)

In the long run, government wealth relative to expected average wealth is constant.
The government budget is balanced asymptotically even though in absolute terms
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governmentwealth features linear and exponential growth. In the long run, government
wealth follows the same growth path as dynasty wealth—independently of the tax rate
τa .

Even though the government has one additional degree of freedom in a growing
economy as compared to an economy that converges to a steady state, the tax is subject
to one constraint: It must not be too large such that z > δ still holds. This is the case
as long as the tax does not exceed an upper bound (see Appendix B.7)

z > δ ⇔ τa < τ ∗
a ≡ r − ρ − δσ. (43)

If it did, individual returns to wealth would fall too much and wealth growth z would
become smaller than the death rate. The economy would return to a steady-state
equilibrium.35

• Equilibrium convergence to a balanced growth path

Equilibrium dynamics in our growing small open economy are as follows. Expected
wealth of a dynasty starts from an initial value and grows at a rate z − δ as described
in (25). Population average wealth follows (28). The debt to GDP ratio (41) in our
growing economy is potentially non-monotonic over time. It starts at t = 0 at G0/L

Ā(0)

and converges to τa+δ
z−δ

from (41).
Equilibrium dynamics for expected and realized wealth are shown in the right panel

of Fig. 5. (Remember that (40) only holds for the left panel.) As for the steady-state
economy, black curves show expected growth paths for dynasties, η (ai , t) , given
initial conditions a1 or a3. Both grow at the same rate and there is no convergence in
expectation. Realized wealth of subsequent representatives of one dynasty starting at
initial wealth a2 are shown by the red curve. Each offspring starts at ā and experiences
higher wealth growth than expected wealth growth. Given that average wealth Ā (t)
from (28) is again (as in the steady-state economy) also represented by the black
curves, each individual becomes richer over life relative to the population average.

6.2 The full model

Section 6.1 characterized equilibrium for the AK case. We now return to the model
with two factors of production. The government now also levies a labor tax.

6.2.1 Convergence to a steady-state equilibrium

Like in the AK case a necessary condition for a steady state is z < δ. If this holds,
expected wealth η∗ takes on a positive, constant value in the long run as shown in
(25). As in the AK case, a steady state also requires a balanced government budget
in the long run. In order to determine the corresponding tax rates, we start from the

35 If by accident τ takes on the expression (36), the linear component in (42) is removed. The debt-to-wealth
ratio still converges to the same constant in the limit.
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Fig. 6 Wealth growth z as a function of risk aversion σ for different wage levels

condition for a balanced budget in (33) and rewrite it as

f (τa, τw) = 0 where f (τa, τw) ≡ (τa + δ) η∗ + τww − δā. (44)

• The endogenous capital income tax τa

After quite some analysis (see Appendix A.5.1), one can show that there are two
tax rates τa that both yield a long-run balanced budget constraint. With the lower tax,
agents would experience a higher individual wealth growth rate z from (7), with the
higher tax, the economy would be in a low-growth regime. We focus on the high-
growth regime.

Interestingly, after some further steps, we find qualitatively very similar behaviour
to our AK findings. Risk aversion σ again crucially determines whether the economy
converges towards a steady state or towards a balanced growth path. Analytically,
equilibrium is described by three equations in three unknows. The growth rate
is z = (r − τa − ρ) /σ from (7), the tax is implicitly given by (τa + δ) η∗ −
δā + τww = 0 from (33) and expected long-run wealth amounts to η∗ =
−

(
z (1−τw)w

r−τa
+ δā

)
/ (z − δ) from (25) and (6). When we solve for the growth rate z

numerically and plot it as a function of σ, adjusting simultaneously for τa and η∗, we
obtain Fig. 6.

As in the left panel of Fig. 3 for r > ρ, Fig. 6 shows a pole at around σ ≈ 1.
This pole was at σ = 1 in Fig. 3. To the left of it, the individual wealth growth rate
z is smaller than the death rate—the economy converges to a steady state. Between
the pole and the threshold level σ ∗, the growth rate z exceeds the death rate and the
economy converges to a balanced growth rate. Interestingly, the threshold level σ ∗ is
the same as in the AK model in (38). When risk-aversion increases beyond σ ∗, z falls
and the economy eventually approaches a steady state again. These qualitative findings
hold for various levels of the wage. We therefore conclude that the basic economic
reasoning is the same as discussed after Fig. 4 for the AK case. We do not go into
details here for r < ρ. We now rather focus on the effects of the labor tax.

123



634 M. Birkner et al.

• The endogenous labor income tax τw

If we let the government balance its budget via the labor tax τw, finding the appro-
priate tax rate is much simpler. Starting from the budget condition (33) and noting that
expected wealth η∗ from (25) is linear in τw, this condition can easily be solved for a
budget-balancing τw. We expect this tax rate to be positive for τa = 0 as the labor tax
would then be the only source of government income to finance initial life-endowment
ā in addition to wealth transfers at death. When τa takes ever-increasing values, τw

would turn negative at some point, just as τa can take negative values.
In any case, the labor tax constitutes an additional instrument giving the government

a continuum of tax policies that all balance the budget in the long run. There is one
strong difference between employing labor taxes and wealth taxes. When the labor tax
is employed for balancing the budget, the growth rate z from (7) becomes independent
of the government policy τw as the growth rate z only displays the tax rate τa . When
we study the effect of a change in risk aversion on growth in the economy as we did in
Figs. 3, 4 and 6, the non-monotonicity of z in σ is the effect of changes in risk aversion
σ on the tax rate τa for capital. When the government employs the labour tax τw to
balance the budget, a change in σ has the usual monotonic effect on z. With low risk
aversion, the growth rate would be high, with high risk aversion, it would be low. Risk
aversion σ would no longer influence the sign of the growth rate but—as always in
standard optimal saving models—only the level. The choice of the policy instrument
by the government therefore clearly has important equilibrium effects.

6.2.2 Convergence towards a balanced growth path

Our analysis of convergence to the steady state has shown that an economy with
two factors of production behaves qualitatively identical to an AK economy. Our
discussion of the convergence of the two-factor economy towards a balanced growth
path is therefore short and follows the arguments of Sect. 6.1.2.

Government wealth per aggregate average wealth would now be given by the ratio
of government wealth (32) to aggregate average wealth in (28). This is very similar
to the AK expression (41) with the only difference of the addition term τww. The
argument from Sect. 6.1.2 persists that an exponential term grows faster than a linear
term. The wealth tax τa therefore again becomes a free policy instrument, subject to
the upper bound (43) such that z exceeds δ.

6.3 Distributional dynamics

How do our aggregate equilibrium dynamics square with transitional distributional
dynamics of wealth?We now present analytical findings on the dynamics of the wealth
distributions on the adjustment paths towards a steady state or towards the balanced
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growth path.36 We then explain how distributional dynamics and aggregate findings
fit together.

Before going into details, we would like to point out that well-understood links
between an exponential distribution of age and aPareto distribution ofwealth (e.g.Ben-
habib and Bisin, 2018, p. 1277) also exist in our framework—but only in the long run
when distributions are stationary. Applying the Edgeworth translation method means
computing the density of a fixed function (wealth as a function of age) of a random
variable (age). When we face an arbitrary (cross-section) distribution of age (e.g. on
the transition towards the stationary exponential distribution), we can still compute the
corresponding wealth distribution by the Edgeworth method, given an initial cross-
sectional distribution ofwealth. Aswill become clear, we derive thewealth distribution
independently of the age distribution, however.

6.3.1 The wealth distribution

We now describe the derivation of the wealth distribution in detail. We first under-
take the fundamental analytical steps. Subsequently, we illustrate the dynamics of the
wealth density for an initial mass point and for an initial (non-degenerate) distribution.

• Deriving distributional dynamics

Define the probability that realized dynasty wealth Ai (t) from (10) for an initial
wealth level of ai and at a point in time t lies within a certain range or set B ⊂ R by

π (ai , B, t) ≡ P (Ai (t) ∈ B|Ai (0) = ai ) . (45)

We introduce an indicator function I A (z) = 1 if z ∈ A and zero otherwise.
The essential step in translating this definition into informative expressions consists

in solving the SDE (10). Given the framework defined and discussed in Sect. 4.1 and
given an initial condition Ai (0) = ai ≥ 0, the unique solution (strong and weak
solutions coincide in this framework) to (10) reads (see Appendix A.6.1)

Ai (t) = I
Qδ

i (t)
(0) ai (t) +

(

1 − I
Qδ

i (t)
(0)

) (
(ā + W ) ez[t−T ] − W

)
. (46)

where we defined

ai (t) ≡ (ai + W ) ezt − W (47)

in the spirit of (8) as the wealth level at t that is held by an individual with initial wealth
ai . Also, T marks the most recent point in time before t where a jump of (Qδ

i (s))s≥0
occurred, i.e. where a member of dynasty i deceased for the last time.

36 We know from more abstract (probability-based) work by Bayer et al. (2019) that processes like our age
and the related wealth process are characterized by the existence of a unique long-term distribution which is
stable. The latter means that for all (meaningful) initial distributions, an initial distribution converges over
time to this unique and stable long-term distribution.
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The indicator function I
Qδ

i (t)
(0) equals 1 for Qδ

i (t) = 0 and zero otherwise. The

former represents the absence of death: the individual initially representing dynasty i
lives on to accumulate wealth based on the initial value of wealth ai , the present value
of labor income W and rate z. The latter describes the opposite, namely an individual
being born as a result of the previous individual’s death. Wealth initially starts with ā,

present value of labor income of the newborn W and then exponentially accumulates
over the time span between birth date T and today t at rate z.

We now specify the set B from (45) as B = [ā, x]. We also assume, to avoid
tedious case-by-case analyses, that ai > ā.We can then rewrite the probability in (45)
as π (ai , x, t) ≡ P (Ai (t) ≤ x |Ai (0) = ai ) . Building on the solution in (46), this
probability can be expressed by (see Appendix A.6.2)

π (ai , x, t) = e−δt I B (ai (t)) +
∫

B

δ

z

(ā + W )
δ
z

(v + W )
δ
z +1

I [ā,ā(t)] (v) dv, (48)

where we defined, in the same spirit as (47),

ā (t) ≡ (ā + W ) ezt − W . (49)

To understand the expression (48), consider three ranges for x . Initially, imagine x
is small, i.e. ā ≤ x < ā (t). Then I B (ai (t)) = 0 and I [ā,ā(t)] (x) = 1. The probability
(48) reads

π (ai , x, t) =
∫ x

ā

δ

z

(ā + W )
δ
z

(v + W )
δ
z +1

dv for ā < x < ā (t) . (50)

In the second range ā (t) < x < ai (t) , it still holds that I B (ai (t)) = 0. In addition,
the second indicator function is zero, I [ā,ā(t)] (v) = 0 for all v > ā (t). Hence, we can
replace the general set B by a lower bound ā and an upper bound ā (t) such that (48)
reads

π (ai , x, t) =
∫ ā(t)

ā

δ

z

(ā + W )
δ
z

(v + W )
δ
z +1

dv for ā (t) < x < ai (t) . (51)

Note that the integral in (51) is not a function of x but only of time t . For the third range
when x ≥ ai (t), the probability that Ai (t) is smaller than x is one, π (ai , x, t) = 1.

In simple words, whenwe are interested in the probability that wealth x is small (the
first range), this probability can only come from being reborn. Wealth of an individual
that lived as of 0 would be ai (t) and would be too high. Hence, we only consider the
range of wealth from endowment ā at birth to the wealth level x of interest, as shown in
(50). The integrand in (50 ) is the Pareto density with shape parameter δ/z. It follows
from the Pareto density in the general expression (48) which in turn is the outcome
of a simple parameter substitution (see Appendix A.6.2) starting from (46). Why do
we see the Pareto density in (50) from an intuitive perspective? First, when we are
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Fig. 7 Dynamics of the wealth density for an initially degenerate distribution (wealth path ā (t) from (49)
and ai (t) from (47))

interested in small wealth levels x, small levels would result from just being reborn.
When being young, wealth cannot be much larger than initial endowment ā. Second,
we obtain a Pareto distribution in the short run for the same reason that there are Pareto
distributions in the long run: There is exponentially distributed age. We can start our
analysis of the wealth distribution from any initial age or wealth distribution. As soon
as an individual is reborn, however, our age process (9) makes sure that age is back to
an exponential distribution. With exponential age distribution, it seems intuitive, that
we obtain a (truncated) Pareto distribution for wealth in the transition.

When our wealth level x of interest is a bit larger (second range), we integrate in
(51) over the entire range from ā to ā (t). When we think about its construction, we
integrate over the entire density apart from the probability of not having died. So the
integral in (51) equals 1 − e−δt where e−δt is the probability of still being alive at t .

• Illustration for an initial mass point

We have described the distribution function most generally in (48). Figure 7 illus-
trates this expression for an initial mass point. When we start from an initial condition
Ai (0) = ai , the probability to hold wealth ai in t = 0 equals one. At any point t , the
wealth distribution has a probability mass of e−δt at ai (t) where δ is again the death
rate from the age process (9). As long as the individuals do not die, they start with ai

and their present value of labor income W and then accumulate wealth at the rate of
z. The probability to survive until t is given by the probability mass e−δt .

Now imagine the individual is replaced by an offspring. Wealth jumps to ā. The
maximum wealth level that can be reached by an offspring is ā (t) . This requires
exactly one jump at t = 0. As offsprings can be replaced again, there is an expanding
support [ā, ā (t)] within which wealth is (truncated) Pareto distributed, as shown in
(50). Expressing the distribution by themore reader-friendly density (withmasspoint),
we obtain
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Fig. 8 Dynamics of the wealth density with an arbitrary initial wealth density (wealth path ā (t) from (49)
and bounds from (54))

f (Ai , t) =
⎧
⎨

⎩

e−δt

δ
z

ā
δ
z

A
δ
z +1
i

⎫
⎬

⎭
for Ai

{= ai (t)
∈ [ā, ā (t)]

}

. (52)

As the mass point loses mass over time at rate δ, the truncated Pareto density gains
in mass at rate δ. As we assume ai > ā, the mass point at ai (t) is always to the right
of the upper bound of the Pareto support. In the long run, the mass-point vanishes and
the support of the Pareto density is [ā,∞[ .

• Illustration for an initial distribution

Now consider Fig. 8 where the initial condition is given by an initial distribution
instead of a fixed parameter ai . We could think of this initial distribution as being
Pareto whose parameters follow from a certain tax policy being characterized by āold
and a tax rate τa,old translating into a zold. We could also allow for a δold. The support
would be given by [āold,∞[ if this tax policy had been going on forever. This initial
distribution would have a mass of 1 (see Appendix A.6.5) and reads f (Ai (0) , 0) =
κ [āold + W ]κ / (ai + W )κ+1 for ai ≥ āold and with shape parameter κ ≡ δold/zold.

One could also allow for an arbitrary initial distribution if the economy had been
subject to various shocks before changes in tax parameters. Assume the initial distri-
bution of our random variable can be described by a density f ini (Ai ) with support
]amin, amax[ which could run from minus to plus infinity. Following the steps of
Appendix A.6.3, the distribution of wealth can then most easily be described by its
density. When ā ≤ amin or ā ≥ amax, i.e. when the initial and the new (sub-) densities
are non-overlapping,37 the density reads

f (Ai , t) =
⎧
⎨

⎩

e−(z+δ)t f ini
(
(Ai + W ) e−zt − W

)

δ
z

(ā+W )
δ
z

(Ai +W )
δ
z +1

⎫
⎬

⎭
for Ai ∈

{
]amin (t) , amax (t)[

[ā, ā (t)]

}

,

(53)

37 If they do overlap, the sub-densities need to be added up in the respective ranges (see also appendix
A.6.3).
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where we defined the lower and the upper bound as

amin (t) ≡ (amin + W ) ezt − W , amax (t) ≡ (amax + W ) ezt − W . (54)

To understand this densitymost easily, assume amin > ā, as drawn in Fig. 8. As time
goes by, the support of the initial distributionmoves to the right. The bounds areamin (t)
and amax (t) which are defined in the same spirit as (47) and (49). This points to a
central property of the densities and their evolution over time. Fundamentally, wealth
and bounds of wealth change over time as determined by the consumption-saving
decision of households. The structure of (47), (49) and (54) are directly inherited from
wealth accumulation in (8) while alive. Hence, amin (t) and amax (t) simply describe
the evolution of wealth over time starting at amin and amax, respectively. The initial
density f ini (Ai ) also shifts to the right at rate z which is visible by the factor e−zt in its
argument. The factor e−(z+δ)t = e−zt e−δt in front of f ini (Ai ) serves two purposes.
First, the term e−zt makes sure that the right shift with rate z does not change the
overall probability mass of f ini (Ai ) over the expanding support ]amin (t) , amax (t)[ .
The term e−δt makes sure that the mass of the wealth distribution is e−δt , which
reflects the death process.

6.3.2 The link between the distribution and the mean

The analytical analysis of distributional dynamics in our growth equilibrium provides
a natural interpretation for a distribution with a non-existing mean. For our economy
converging to a steady state, it is not hard to imagine that mean wealth converging to
η∗ (left panel in Fig. 2) goes hand in hand with a density that converges to a stable
density (Figs. 7 or 8). But how does an exploding mean (right panel in Fig. 2), i.e.
wealth growing at a constant rate in our growing economy, square with a density that
is stationary in the long run?

The answer comes from the property that the Pareto distribution has an undefined
mean, i.e. a mean of infinity, for a shape parameter below one, i.e. for z > δ. Let
us compute the mean over a range [ā, a (t)], where in this case a (t) is a short-
cut for the upper bound ā (t) of our (truncated) Pareto density f trunc (Ai , t) ≡
δ
z (ā + W )

δ
z / (Ai + W )

δ
z +1 from the lower row in (53).We then obtain (see Appendix

A.6.4)
∫ a

ā Ai f trunc (Ai , t) d Ai = ωāω
[

a(t)1−ω−ā1−ω

1−ω

]
where ω ≡ δ/z is the shape

parameter. This mean approaches infinity for ω < 1 when the upper bound a (t)
becomes larger and larger. Hence, in the long run, our truncated Pareto density turns
into an untruncated Pareto density with a non-existing (i.e. infinitely large) mean.

This can be seen in Fig. 7. For any finite t,wehave a finitemean ofwealth.Yet,mean
wealth grows and approaches infinity as the long-run density is Pareto with z > δ and
a support [ā,∞[ and therefore an infinite mean. Average wealth of the economy grows
without bound, yet the distribution of wealth approaches a stationary distribution with
an infinite mean. A non-existing mean can therefore simply be understood as the mean
of individual wealth in a growing economy.
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6.3.3 A note on Fokker–Planck equations

Before concluding, we would like to point out the link to Fokker–Planck equations.
Following the usual steps (see the references in the literature section or AppendixA.7),
the FPE for dynasty wealth reads

∂ p (Ai , t)

∂t
= − (z + δ) p (Ai , t) − z [Ai + W ]

∂ p (Ai , t)

∂ Ai
.

The analytical solution and its illustration in the above figures lead to three obser-
vations. The transition from the original to the new distribution in Fig. 8 can best be
understood by a transfer of probability mass from one distribution to another. The
original density is characterized by a uniform loss of density at rate δ across its entire
range. This simply means that individuals of each wealth level die at the same rate.
It is also characterized by an exponential shift to the right driven by the growth of its
lower bound.

The new density is characterized by ∂ p(Ai ,t)
∂t = 0 at each point in time. The new

density gains probability mass by an increasing upper bound, not by rising values for
any given Ai . Third, the entire density is characterized by non-differentiability (with
respect to wealth) at āezt and amaxezt .

Approximating this evolution by a numerical solution to the FPE could easily miss
these points. We acknowledge that more complex models do not allow for analytical
solutions and solving FPEs is the only option to understand model properties. Yet,
features of the analytical structures idenepsied here are bound to be present in more
complex models as well.

6.3.4 Outlook: generalizing the tax scheme and closing the economy

Let us briefly return to the issue of extending the SDE on wealth (10) as discussed in
Footnote 14. The task is considerably more complex than above as can be seen from
the solution of the SDE (10) in (46). Our above solution is “simple” as the initial
wealth endowment after being reborn ā is irrespective of the previous wealth level
Ai (X (t−)) .38 Hence, the solution (46) displays one term only in addition to the case
of no jump.

When we allow for an inheritance tax lower than 100%, initial wealth after being
reborn is a functionofwealth of theprevious dynasty representative.Thegeneralization
of (10) leads to a generalized solution of (46) with a countable but infinite number of
terms. These terms consist of multiple integrals. Understanding their property is the
objective of future research.

Undertaking a general equilibrium analysis in the sense of closing the economy and
endogenizing the interest rate is conceptionally straightforward. Aggregate wealth
in a closed economy would be identical to the capital stock. In a sufficiently large
(as measured by population size L) economy, the capital stock would follow from

38 This differs from e.g. intentional bequest as studied, inter alia, by Citanna (2007) or Bossmann et al.
(2007).
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an equality between capital per capita and expected average wealth given in (28),
K (t) /L = E Ā (t) .When the latter changes, the capital stock and thereby the interest
rate would change over time. While closed-form solutions for consumption in (4) can
be generalized to time-varying interest rates, the linearity in (10 ) would get lost and
thereby the analytical solutions of densities on the transitional path.39

Other extensions that should preserve tractability include (unanticipated) shocks to
interest rates, discontinuous or branching lineages of dynasties and population growth.
We need to leave this for future work.

7 Conclusion

We studied a small open economy with two factors of production, finitely lived house-
holds and a government. We describe the death-birth process of members of dynasties
by a stochastic differential equation. This allows us to describe expected wealth of a
dynasty and expected government wealth by ordinary differential equations.

The economy approaches either a steady state or a balanced growth path, depending
on the interest rate, time preference rate, death rate and risk aversion. Especially the
latter is crucial for pinning down equilibrium properties when the government employs
a wealth tax to balance its budget. When the latter is achieved by a labor tax, the sign
of the equilibrium growth rate does not depend on risk aversion.

Solving our SDE for dynasty wealth, we can analytically describe the transition
of the wealth distribution from any initial distribution to its long-run Pareto distribu-
tion. These transitions are illustrated both for initial degenerate and for well-behaved
distributions. We explain how a balanced growth path at the aggregate level is con-
sistent with a stationary wealth distribution in the long run. The key is the mean of
a Pareto distribution that approaches infinity when the shape parameter is smaller
than one. This provides an economic interpretation of distributions with non-existent,
i.e. infinite means.
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