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Abstract
In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production
downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due
to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the
causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine
log data from production monitoring. Within this process, we define a set of transformation rules to extract independent
and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and
a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with
domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world
dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data
entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in
operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production
stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production
stops based on experience.

Keywords Causal structure learning · Log data · Causal inference · Manufacturing industry

Introduction

Production downtime is one of the most significant contribu-
tors to production inefficiency (Liu et al., 2012), resulting in
lost profit. While planned production downtime occurs, for
example, for scheduled maintenance based on regular sched-
ules or predictive models (Boudjelida, 2019; Khatab, 2018;
Liu et al., 2019; Sipos et al., 2014), unforeseen production
stops are a result of failures in the production process, e.g.,
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misconfiguration of a machine, intervention of a worker, or
defective raw material. In the case of an unforeseen produc-
tion stop, direct action fromproductionworkers is required to
resolve the issue promptly and limit the financial loss (Mob-
ley, 2002). Therefore, knowing the reason for the production
stop and understanding the root cause supports resolving the
issue effectively. Furthermore, the corresponding knowledge
about the causal structures supports the machine operator to
take useful precautionary measures to avoid future produc-
tion stops.

Modern discrete manufacturing companies aim for
increased product quality, diversified products, reduced cost,
and lower manufacturing time, while at the same time
being faced by shortened product life-cycles and global
competition (Chen & Huang, 2006; Liang et al., 2004;
Wuest et al., 2014). These goals are reflected in production
machines that provide hundreds of configuration parame-
ters. The introduced complexity in the machine’s operation
becomes challenging for the human operator to handle.
The complexity rises further as, driven by the Internet of
Things (IoT), an increasing amount of data is generated
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during production (Marazopoulou et al., 2016; Qin et al.,
2020), e.g., coming from shop floor systems, production
machinery, robots, or sensors. This information is com-
monly stored while monitoring the production process and
the product quality to detect defects. Harnessing this log data
vault beyond monitoring opens the opportunity for a data-
driven examination of predictive maintenance or automatic
Root Cause Analysis (RCA), e.g., for increasing production
efficiency, reducing defects, or decreasing unforeseen pro-
duction downtime (Davis et al., 2015; Gutschi et al., 2019;
Li et al., 2020; Nikula et al., 2019; Rodríguez et al., 2019;
Sipos et al., 2014; Sun et al., 2021; Wang et al., 2017;Wuest
et al., 2016). In this context, random forests are used to derive
models for predicting general machine breakdown (Gutschi
et al., 2019; Wang et al., 2017), or they are used to select
possible causes of faults within a manufacturing process
(Chien & Chuang, 2014). Other approaches, based on neu-
ral networks (Du et al., 2012; Nikula et al., 2019) or deep
belief networks (Li et al., 2020), focus on predicting spe-
cific mechanical issues within machines as an indicator for
required maintenance. Clustering techniques are a way to
diagnose faults in mechanical systems to retain productivity
(Rodríguez et al., 2019) or to find fault-generating combina-
tions of machines (Rokach & Hutter, 2012).

Usually most methods used for predictive maintenance
and automatic RCA rely on associational patterns within
the observational data of the production process (e Oliveira
et al., 2022). In recent years, the emergence of methods
for causal reasoning enable a data-driven examination of
causal structures and causal effects beyond associational pat-
terns within observational data (Hernán & Robins, 2020;
Pearl, 2009b; Peters et al., 2017; Spirtes et al., 2000). In
this context, a causal graphical model depicts the respective
causal structures and is the basis for causal effect estimation.
Understanding the causal structures in complex manufac-
turing settings supports to find root causes of faults, which
in practice allows machine operators to address unforeseen
production stops effectively, e.g., see Kühnert and Beyerer
(2014), Marazopoulou et al. (2016), Ye (2017), or Huegle et
al. (2020). Moreover, the causal effect estimation based on
learned causal structures points the machine operator to rel-
evant adjustments or repairs within the production process,
e.g., see Sun et al. (2021) or e Oliveira et al. (2021). For a
detailed overview on recent advances and methods used for
automatic RCA we refer to e Oliveira (2022). In their work,
e Oliveira (2022) point out the need to consider methods
that allow causal conclusions and do not rely on associa-
tional patterns within the observational data. In this context,
they mention the challenges of a data-driven examination of
causal structures or causal effects and state a research gap
that focuses on the application of these methods on RCA in
manufacturing processes.

In our work, we close this research gap and apply causal
structure learning and causal effect estimation on log data
within a real-world scenario and data from a globally oper-
ating precision mechanical engineering company. The com-
pany produces large manufacturing machines and supports
the customers who operate the machinery. We focused our
running example on a single machine for simplicity, yet we
discovered the same patterns based on the data from similar
machines of the precision mechanical engineering company.

Challenges in log data-driven causal structure
learning

Within the scenario at hand, we find three relevant challenges
to log data-driven causal structure learning that are com-
mon in practice (Malinsky & Danks, 2018). A machine logs
its configuration parameters, internal state based on sensor
readings, and error messages during production. Thus, the
machine contains millions of entries with several thousand
different types, resulting in high-dimensional data (Chal-
lenge I). High-dimensional data leads to long execution
times, hindering the application of causal structure learning
in practice (Le et al., 2019). Further, it increases the poten-
tial for statistical error (Maathuis et al., 2018). The data is
recorded at different time intervals and eventually stored in
a semi-structured log format. The semi-structured machine
data needs to be preprocessed (Wuest et al., 2016) before
the application of causal structure learning to extract the
independent and identically distributed (i.i.d) observational
data (Spirtes & Zhang, 2016) (Challenge II). Further, the
machine log data contains a mixture of continuous variables,
such as sensor measurements, and discrete variables, such as
configuration parameters or error messages. While recently
developed methods for causal structure learning work on
mixed data with continuous and discrete variables (Huegle,
2021), they are often not considered in practice due to high
computational requirements (Challenge III).

Contribution

Wepropose a process to learn causal structures frommachine
log data, addressing the challenges mentioned above. The
process consists of three steps, a preprocessing procedure, a
procedure to learn the causal structures, and optional causal
effect estimation. Within the preprocessing procedure, we
define a set of transformation rules as a preprocessing step to
obtain independent and identically distributed (i.i.d.) obser-
vations (cf. Challenge II).We integrate additional processing
steps into the causal structure learning procedure to handle
the mixed and high-dimensional data incorporating domain
expertise (cf. Challenges I and III). Despite these additions,
the causal structure learning procedure follows common
constraint-based methods that leverage conditional indepen-
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dence information for learning the structure. Further, we
define rules for edge orientation based on process-specific
and engineering-specific knowledge. Our contributions can
be summarized as follows:

1. Considering a real-world production use case, we show
how the causes of unforeseen production downtimes can
be revealed using causal structure learning.

2. We demonstrate causal effect estimation’s applicability
and effectiveness in an experimental regime using the
learned causal structures from log data.

3. The concepts used within the proposed process are
domain-independent and general enough to apply to other
manufacturing industries.

The remainder of the paper is structured as follows. In
Sect. 2, we discuss related work. In Sect. 3, we provide the
theoretical background on causal reasoning. The real-world
scenario of unforeseen production stops and the correspond-
ing machine log data utilized in our work are described in
Sect. 4. Section 5 explains the transformation rules applied to
the machine log data and our proposed algorithmic approach
to learning causal structures based on the extracted data. We
demonstrate each process step for our real-world example,
including applying methods of causal inference based on the
learned causal structures. We conclude our work in Sect. 6.

Causal reasoning in themanufacturing
domain

Several studies have considered the application of causal
structure learning for causal reasoning in specific use cases
in the manufacturing domain (Huegle et al., 2020; Kühnert
& Beyerer, 2014; Li & Shi, 2007; Marazopoulou et al., 2016;
Ye, 2017). Each work focuses on improvements concerning
the particular use case, input data, or application. Some work
incorporates preprocessing of the raw manufacturing data
and utilizes domain-specific background knowledge. For an
overview comparing the existing literature, see Table 1. To
the best of our knowledge, there is no overall approach for
causal reasoning in the manufacturing domain, which starts
with raw log data from production monitoring and includes
the application of causal inference. For general best practices
for causal discovery on real-world data, we refer toMalinsky
& Danks (2018).

Li and Shi (2007) focus on the identification of causal
structures in a rolling process. They use product quality
and process data to derive causal relationships to facilitate
process control. Their work proposes adaptions to the PC
algorithm, an algorithm for constraint-based causal struc-
ture learning based on domain knowledge. In particular, they

suggest a feature selection to relevant variables for a given
causal objective to reduce dimensionality. They include tem-
poral order information to reduce the search space. Further,
they utilize engineering knowledge to discretize continuous
variables from sensors and fix causal relationships that have
to exist. In contrast, our study focuses on preprocessing of
raw machine log data to obtain observational data first, e.g.,
by applying transformation rules. Next, we include addi-
tional rules derived from domain knowledge during edge
orientation. Further, we aim to apply general techniques for
discretization when faced with a mixture of data. Lastly, we
apply causal inference based on the learned causal graphical
model.

Kühnert and Beyerer (2014) discuss techniques to detect
causal structures for root cause analysis in process technol-
ogy using the example of a simulated chemical stirred-tank
reactor. The work focuses on handling time series of the
process data, which differs from our approach and under-
lying assumptions. Yet, with changed assumptions, a time
series-based approach might yield interesting results for the
machine log data of our study as well.

Marazopoulou et al. (2016) focus on root cause analysis in
an assembly line for injectors. Their study is based on sensor
readings obtained from the assembly line. In a data prepro-
cessing step, variables that contain unique keys orwhich have
zero variance in their data are removed. The resulting set of
variables is assumed to be continuous, and the PC algorithm
is applied to learn the causal relationships. Within this step,
domain knowledge, in the form of temporal order informa-
tion, is applied during edge orientation. Further, they tune
the significance level alpha using the effect strength, based
on the assumption that weak dependencies are of no interest
to the domain experts and cluster highly correlated variables
into medoids to reduce the feature space. In contrast, in our
study, we have a stronger focus on data preprocessing, incor-
porate discretization techniques to handle mixed data during
causal structure learning, and we utilize the learned causal
relationships in the causal inference step to understand key
relationships.

Ye (2017) proposes a reverse engineering algorithm to
identify the underlying causal structures in manufacturing
systems. The proposed approach focuses on variables with
binary data only. In an evaluation, the approach outperforms
several Bayesian network learning techniques. In contrast,
our work is more general and not restricted to learning causal
structures from binary data.

Huegle et al. (2020) demonstrate how causal structure
knowledge can extend existing monitoring tools in the auto-
motive body shop assembly lines. They use the learned
causal relationships between failure occurrences and quality
measures of car bodies to support technical staff in time-
critical failure situations highlighting potential root causes
and predicting future failures. The authors mention data
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Table 1 Comparison of existing work on causal reasoning in the manufacturing domain focuses on steps included in the suggested processes, from
use case and input data via preprocessing and domain knowledge integration to the application of causal structures

Paper and use case Input data Preprocessing Domain knowledge Application

Li and Shi (2007) rolling
process control

Product quality and
process data

– Causal objective,
temporal order,
engineering
knowledge

Identify causal
structures

Kühnert and Beyerer (2014)
chemical stirred-tank reactor

Time series of process
data

– – Root cause analysis

Marazopoulou et al. (2016)
assembly line for injectors

Sensor readings Remove variables:
unique keys, zero
variance

Temporal order Root cause analysis

Ye (2017) manufacturing
systems

Binary manufacturing
data

– – Identify causal
structures

Huegle et al. (2020) automotive
body shop assembly line

Failure occurrences and
Quality measures of
car bodies

Not specified Not specified Failure prediction

preprocessing and domain knowledge inclusion but do not
specify any concrete approaches. The learned causal model
from the manufacturing machine in our work could be
applied similarly. Furthermore, in our work, we elucidate
data preprocessing and the application of domain knowledge
during the causal structure learning process.

Beyond causal structure learning, several research works
investigate the use of log data for predictive maintenance
(Gutschi et al., 2019; Sipos et al., 2014; Wang et al., 2017).
In this context, the preprocessing of log data follows simi-
lar steps to aggregate data within time windows and select
relevant features for model creation. In general, predictive
maintenance aims to avoid unexpected equipment failure to
reduce downtime. In contrast to these predictions, the learned
causal structures support understanding the root cause and
allow for a causal effect estimation in an experimental set-
ting applying the do-operator.

Theoretical background on causal reasoning

In this section, we provide a brief overview of concepts for
causal reasoning. We introduce the Causal Graphical Model
(CGM) (Pearl, 2009b) as a representation of causal rela-
tionships within a system of variables. We explain causal
structure learning, a method to estimate the CGM from
observational data, and causal inference, a formalization that
allows calculating causal effects based on the estimatedCGM
and observational data.

Causal graphical models

In the context of causal reasoning, we follow the formal con-
cepts of Pearl (2009b) and consider a CGM as a graph G
defined as

G = (V,E) with V = (V1, . . . , VN ) and E ⊆ V × V,

(1)

whereV is a finite random set of N vertices andE an edge set.
Each vertex Vi , i = 1, . . . , N is equivalent to an observed
variables. Throughout the paper we use both terms synony-
mously. Further, an edge is defined as

(Vi , Vj ) ∈ E with i, j = 1, . . . , N and j �= i . (2)

Hence, a directed edge is denoted by

Vi → Vj if (Vi , Vj ) ∈ E and (Vj , Vi ) /∈ E, (3)

and an undirected edge is denoted by

Vi − Vj if (Vi , Vj ) ∈ E and (Vj , Vi ) ∈ E. (4)

ThisCGMG is assumed to be acyclic, i.e., we do not allow for
feedback loops. Moreover, we do not allow for unmeasured
confounding variables. Together with these assumptions, the
CGM provides a coherent mathematical basis for causal
reasoning (Pearl, 1995). The graphical d-separation crite-
rion enables deriving conditional independence relationships
through the global Markov property (Pearl, 2009b). If two
vertices Vi , Vj ∈ V are not connected through an edge
in G, then they are d-separated in G by a subset S of the
remaining vertices, called separation set. Hence, variables
Vi ∈ V and Vj ∈ V are conditionally independent given a
set S ⊂ V \ {Vi , Vj }, denoted by Vi ⊥⊥ Vj | S. A joint dis-
tribution over the variable set {V1, . . . , VN } that satisfies the
above condition is called faithful.
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Causal structure learning

In most cases, the CGM G is unknown such that the chal-
lenge is to learn the CGM G from observational data. Under
the assumptionof the faithfulness of the distribution, theCon-
ditional Independence (CI) information from observational
data is used to reverse-engineer the CGM G that generated
the observed data. It is well known, that several CGMs can
describe exactly the same CI information and form aMarkov
equivalence class (Andersson et al., 1997;Chickering, 2002).
Note, twoMarkov equivalent CGMs have the same skeleton
C, defined as

C = (V, Ẽ) where ∀ (Vi , Vj ) ∈ E (Vi , Vj ), (Vj , Vi ) ∈ Ẽ, (5)

and the same v-structures. V-structures are triples denoted by

(Vi , Vj , Vk)

with Vi , Vj , Vk ∈ V; i, j, k = 1, . . . , N ; i �= j �= k

and Vi → Vj , Vk → Vj , (Vi , Vk) /∈ E .

(6)

The focus lies on the estimation of the equivalence class of the
CGM G based on the corresponding probability distribution.
Under Markov and faithfulness assumptions, two vertices Vi
and Vj are connected through an edge in G if and only if they
are conditionally dependent given all subsets V \ {Vi , Vj }.
This is the basis of constraint-based causal structure learning
methods, e.g., the PC Algorithm, that uses CI tests to first
estimate the skeleton C (5) and then determine the orientation
of asmany edges as possible, e.g., seeColombo andMaathuis
(2014), Spirtes (2010), Spirtes et al. (2000), or Kalisch and
Bühlmann (2007).

Causal inference

The presented properties of the CGM together with structural
assignments (Peters et al., 2017; Spirtes et al., 2000) are the
key to the formalization of causal inference. Traditionally,
examining how a variable Vj is causally influenced by its
parent Vi in G is built upon randomized experiments or inter-
ventions into the system under observation. Hence, observed
changes in Vj cannot be associated with changes of other
variables but are solely implied through Vi → Vj by the cor-
responding changes in Vi . An intervention on Vi changes Vi
to a fixed value v′

i , which graphically matches the deletion
of all incoming edges of Vi in G transforming the observa-
tional to an experimental setup (Pearl, 2009a). This concept
is formalized through Pearl’s do-operator denoted by

do(Vi = v′
i ) with Vi ∈ V (7)

as a notion to distinguish the observational conditional prob-
ability denoted by

P(Vj = v j |Vi = v′
i ) with Vi , Vj ∈ V, (8)

from the conditional interventional probability denoted by

P(Vj = v j |do(Vi = v′
i )) with Vi , Vj ∈ V. (9)

The conditional probability P(Vj = v j |Vi = v′
i ) describes

the probability of Vj to be v j given that Vi = v′
i is observed.

In contrast, the conditional interventional probability depicts
the probability distribution of Vj when Vi has been set to
v′
i (Pearl, 2009b). Hence, under further identifiability con-
straints, the CGM together with the notion for causal infer-
ence, enables to estimate causal effects through the exami-
nation of post-interventional probability distributions of Vj

given Vi = v′
i from purely observational data (Pearl, 1993).

Description of a real-world production stop
scenario

This section describes a real-world scenario of production
stops within the production process of machines that pro-
duce different products with a precision in the micrometer
range twenty-four hours a day, seven days a week (Sect. 4.1).
Further, we explain the data that is logged while monitor-
ing the operation of the machines (Sect. 4.2). We relate the
three introduced challenges in log data-driven causal struc-
ture learning to the production process and the machine data.
Further, we mention assumptions and relaxations relevant to
our model concerning the production scenario (Sect. 4.3).
We want to note that specific components are not described
in detail due to confidential reasons. However, these details
are not necessary for the overall understanding of the use
case. Instead, the more general description explicitly leaves
the door open for other similar applications.

Production process

The machines subject in this study manufacture different
products operating on a two-step production process. Upon
receiving a newmanufacturing task, themachine startsmanu-
facturing the products, first in a ramp-up phase. The machine
is calibrated during the ramp-up phase, in which manu-
factured products are discarded due to low quality. Once
the quality of manufactured products exceeds a threshold,
the machine switches into the manufacturing phase. The
specified number of products as defined in the current man-
ufacturing task is manufactured during the manufacturing
phase. After finishing the current manufacturing task, the
machine continues with the next manufacturing task. The
entire process is monitored, e.g., to determine the quality
of the products to switch from ramp-up to manufacturing
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phase, and log messages are obtained and stored. The pro-
duction process is interrupted when unforeseen production
stops occur.

Manufacturing tasks

T denotes the set of all manufacturing tasks. A new manu-
facturing task t ∈ T is issued for each product change with a
set of specified configuration parameters. A task is split into
two separate phases. First, the task enters its ramp-up phase
tc to calibrate the configuration parameters and assure the
quality of the product. During this phase, both the machine
operator and themachine itself optimize themachine settings
to adjust for an accurate manufacturing result. Second, upon
successful execution of the ramp-up phase, the task enters
its manufacturing phase te, which executes the defined task
and manufactures the predefined number of corresponding
products from the provided input material. Accordingly, the
set of tasks T can be split into subsets for the ramp-up and
manufacturing phases.

Logmessages

During operation, internalmachine parameters are constantly
monitored within different machine subsystems during the
ramp-up andmanufacturingphases.Duringmonitoring,mes-
sages are logged and stored in a single event log for all
machine parameters. We denote the set of all messages with
M . Logging occurs continuously and event-based (Challenge
II). Measurements provided through sensors are continu-
ously logged at a sampling frequency of multiple values
per second. Furthermore, event-based logging occurs either
in the case that a predefined threshold is violated or in the
case that a machine operator interacts with the machine. The
majority of the messages are interactions of the machine
operator with the machine, or non-critical issues, such as low
oil level. There also exist messages which indicate changes
in a task’s phase. In particular, we distinguish between mes-
sages for the beginning of the ramp-up phase, the beginning
of the manufacturing phase, and the end of the manufactur-
ing phase. Hence, we define the following disjoint subsets
of the messages M . The set of messages Mbc ⊂ M contains
all messages indicating the starts of the ramp-up phases, the
set of messages Mbe ⊂ M contains all messages indicating
the starts of the manufacturing phases, which also represents
the ends of the ramp-up phases. Further, the set of messages
Mee ⊂ M contains all messages indicating the ends of the
manufacturing phases.All remainingmessages are contained
in Mk ⊂ M .

Production stops

A threshold violation with a respective message directly
results in an unforeseen production stop for several parame-

class LogMessage:
def __init__(self, time, sub_id, msg_id,

location=None, param=None, msg_desc=None):
self.time = time
self.message_id = msg_id
self.location = loc
self.parameter_value = param
self.message_description = msg_desc

Fig. 1 Representation of a log message object with its defined manda-
tory and optional fields. Optional fields are marked with =None in the
__init__ function

ters. While this informs a machine operator on a production
stop and its direct trigger, it does not inform the machine
operator of any causes that lead to the threshold violation.

Description of machine data

The machine data logged for monitoring is semi-structured.
Individual log data entries, called log message, vary in their
structure.We define the following jointmodel for all logmes-
sages as shown in the class description for a LogMessage
in Fig. 1, which specifies mandatory and optional fields. The
twomandatory fields, t ime, andmessage_id occur in all log
messages and are inevitable for the transformation to obser-
vational data. The t ime field contains a timestampof themes-
sage’s occurrence, and the message_id contains a unique
identifier of the message type. Together both fields uniquely
identify each logmessage instance.Optionally, a logmessage
contains the three fields location, parameter_value and
message_description. The location contains machine-
specific location information, for example, describing the
position within the machine according to components.
The parameter_value contains a value from a contin-
uous or discrete domain (Challenge III), which is sent
for certain message types such as sensor readings. The
message_description provides additional detail for a mes-
sage. Note that both parameter_value and message_
description have varying formats, depending on the
machine’s component and implementation.

In our example, we focus on a single machine, which
logged over 40 million entries within one year. Based on
the set of logged messages M , we reconstruct 25 729 tasks,
cf. T , and determine over 6000 unforeseen production stops.
Further, the logged messages contain 2330 distinct message
types, i.e., uniquemessage_ids.Within the context of aCGM,
see (1), we will map unique message_ids to variables V.
The large number of according variables constitutes to Chal-
lenge I. Message types can be classified into four distinct
classes based on domain knowledge. This classification sup-
ports the transformation to observational data, particularly
formanymessage types, as handling themmanually becomes
too time-consuming. The four classes are task configuration
parameters C , non-critical operational messages O , pro-
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Fig. 2 Outline of the process to learn causal structures from machine
log data. Rectangles with rounded corners depict process steps, while
rectangles with a folded corner depict data structures. Data structures
marked with DK represent a list of information provided by a domain

expert. Bold list elements are required; other list elements are optional.
Providing optional information avoids defaults and improves the quality
and interpretability of results.

duction stop messages S and continuous measurements Q.
The configuration parameters C subsume all message types
that refer to product specifications defined for a manufac-
turing task. The class of non-critical operational messages
O contains all message types that signal standard produc-
tion process flow, such as the message types for changes in
the task’s phases or message types indicating rotation of the
product. The class of production stopmessages S contains all
message types that signal an unplanned production stop dur-
ing the production process, e.g., due to issueswith amounts of
material picked up by subsystems of the machine. Lastly, the
continuous measurements Q subsume all message types that
relate to continuously obtained measurements, such as sen-
sor readings.We utilize this classification schema throughout
the paper, e.g., when naming distinct messages, respectively
variables. Note, the messages for changes in the task’s phase
are classified as non-critical operational messages.

Assumptions and relaxations

Following the theoretical background on causal reasoning
(cf. Sect. 3) with the assumption of the CGM G to be acyclic,
we limit the production stop scenario to exclude feedback
cycles, i.e., messages cannot mutually influence each other.
Further, we assume that the set of messages contains all rele-
vant information for the production process such that wemay
conclude that there exist no uncollected confounding vari-
ables in the CGM. Thus, we also cannot account for outside
influences such as temperature. Concerning the production
process itself, we assume that the underlying mechanisms
logging the data do not change within the available time
period, e.g., due to software updates or hardware changes.We
require this assumption to avoid violation of the independent
and identically distributed (i.i.d.) requirement for observa-
tions in causal reasoning. Hence, we do not cover drift in
the underlying model, respectively the CGM G. Similarly,

when generalizing the results to other machines of the pre-
cision mechanical engineering company, we assume that the
same operations and processes occur. Otherwise, the causal
structures have to be learned for each machine individually.

Frommachine log data to causal insights

In the following section, we detail our fairly general pro-
cess to learn the causal structures from machine log data,
as shown in Fig. 2, and apply methods of causal inference
based upon the learned causal graphical model. Note, while
we will explain and apply this process in the context of our
use case described in Sect. 4, we would like to highlight that
the process’ components and concepts to be used are of gen-
eral type, i.e., they are not limited to our use case and can
also be adapted to analyze the log data of other applications.
In particular, the information provided by the domain expert
marked with DK in Fig. 2 requires adaption to correspond
to the considered application. While some domain knowl-
edge is required, see bold elements in DK data structures
in Fig. 2, other domain-specific information is optional. If
optional information is not provided, the process resorts to
defaults, affecting the quality and interpretability of results.

In Step 1, the logged machine data is preprocessed, map-
ping the log messages to individual observations, to obtain
observational data, addressing Challenge II (cf. Sect. 5.1).
This step requires the domain experts’ input of a causal objec-
tive, which guides the mapping approach. Optionally, the
domain expert can classify the obtained variables from the
log data and assign an aggregation function to each class
of variables to improve the mapping step. The observational
data is input for Step 2, the causal structure learning proce-
dure (cf. Sect. 5.2). In this step, algorithms are applied to
learn the underlying causal structures. Given the real-world
data characteristics, we incorporate a variable selection and
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data discretization into the causal structure learning proce-
dure, addressing Challenge I and III. Furthermore, providing
process and engineering-specific knowledge in the form of
relations between classes of variables allows extending exist-
ing orientation rules to reflect domain knowledge. In the
optional Step 3 causal inference to understand key relation-
ships (cf. Sect. 5.3), the learned causal structures are input
to methods of causal inference, which finally allow reveal-
ing key relationships in the considered production use case.
Naturally, the findings should be validated, e.g., based on the
feedback of domain experts, and general limitations have to
be taken into account (cf. Sect. 5.4).

Step 1: Preprocessing: mapmachine log data to
observational data

In this subsection, we first provide detail on our transforma-
tion procedure,whichmapsmachine logdata to observations,
tackling Challenge II (Sect. 5.1.1). Within our transforma-
tion procedure, we define time windows based on the context
of a domain-specific causal objective. We map the machine
log messages into the time windows to extract the set of
relevant variables for the CGM G and to transform the log
messages within a timewindow into one observation through
the application of three defined transformation rules. Second,
we apply this transformation procedure to obtain the obser-
vations within our production stop scenario (Sect. 5.1.2). As
a result, we obtain 25729 observations with 1903 variables.

Transformations to derive observational data frommachine
log data

The transformation toderiveobservational data frommachine
log data requires the input of a causal objective based on
domain knowledge. Further, optional inputs are a variable
classification and specific aggregation functions. The trans-
formation procedure uses the context of the causal objective
to define time windows for individual observations. Next, all
machine logmessages aremapped into a timewindow. These
mapped machine log messages are used to extract the set of
N variablesV = (V1, . . . , VN ) corresponding to the vertices
of the CGM G, see (1). Finally, through the definition and
application of three transformation rules, the log messages
within each time window are processed together with the set
of variables to determine the observations. Note, if provided,
variable classification and aggregation functions can replace
defaults within the transformation rules. In the production
process at hand, the objective to understand production stops
is defined in the context of the set of manufacturing tasks
T (cf. Sect. 4.1). Each manufacturing task comprises of a
ramp-up phase tc and manufacturing phase te. Accordingly,

the following three time windows are defined for each man-
ufacturing task.

Definition of time windows A time window δt is defined for
a task t ∈ T . A second time window δct represents the task’s
ramp-up phase, while a third time window δet is defined for
the task’s manufacturing phase. The calculation of the time
windows is based upon the timestamp t ime of the corre-
sponding messages drawn from the sets Mbc, Mbe, Mee for
the task t , as shown in (10). The function t ime() retrieves
the timestamp from the selected message. Note, that for each
task t , there exists exactly one message mbc

t ∈ Mbc, one
message mbe

t ∈ Mbe, and one message mee
t ∈ Mee. Hence,

we let

δt := t ime(mbc
t ) until time(mee

t )

δct := t ime(mbc
t ) until time(mbe

t )

δet := t ime(mbe
t ) until time(mee

t ).

(10)

Lastly, we denote the set of all time windows δt for all tasks
T as �.

Mapping messages to time windows The time windows δt , δct
or δet , see (10), for each task t are used to map all messages
mk ∈ Mk to the task’s ramp-up phase tc or to the task’s
manufacturing phase te. Therefore, for eachmessagemk first,
its timestamp t ime from the log message object is selected.
Next,whilemk is notmapped to a task t all timewindows δt ∈
� are iterated and it is checked if t ime ofmk iswithin δt .Once
the condition is met, it is specified whether the t ime is within
the corresponding time windows δct or δet . Accordingly, the
log message mk is mapped to task t corresponding to δt and
specifically to either tc or te. Note that messages outside
these time windows, e.g., during general maintenance, are
ignored. As a result, two lists of log message objects for
each task t are returned. One list contains all messages mk

corresponding to tc, while the other list contains all messages
mk one corresponding to te.
Extracting variables frommessagesThedistinctmessage_ids
of all log message objects make up the potential set of vari-
ablesV = (V1, . . . , VN ) corresponding to the vertices of the
CGM G. Yet, given the previous transformation steps, we
limit the set of variables. Therefore, we consider variables
for which a message_id occurred within any time windows
δt . Further, we distinguish for each message_id whether it
occurred within the ramp-up or manufacturing phase. Note
the same unique message_id is used in both phases. There-
fore, we search the two lists of log message objects for each
task t and extract the distinct message_ids annotated per
phase. The resulting set of message_ids defines the set of
variables V = (V1, . . . , VN ) for each observation.
Transformation rules Based on the set of variables V for all
observations, we define the following three Transformation
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rules to transform the mapped log messages per time win-
dow to independent and identically distributed observations.
Hence, the three rules are applied for each task t ∈ T and its
corresponding time window δt ∈ �, respectively δct and δet .

Transformation rule 1 For each variable Vi ∈ V, i =
1, . . . , N , for which there exists only a single message in
Mk within the time windows δct or δet , the value of Vi is set
for the corresponding task t in the following way. If the log
message object contains a parameter, the parameter’s value
is used as a value for Vi . Otherwise, Vi is set to 1.

Transformation rule 2 For each variable Vi ∈ V, i =
1, . . . , N , for which there exists no message in Mk within
the time windows δct or δet , the value of Vi is set to be 0.

Transformation rule 3 For each variable Vi ∈ V, i =
1, . . . , N , with multiple occurrences of a messageMk within
the time windows δct or δ

e
t , an aggregation function is applied

to calculate the value for Vi .
For each variable Vi ∈ V a different aggregation function

may be specified. If the message Mk contains a parameter,
well-known aggregation functions, such as average, mini-
mum, maximum, or last value, can be chosen. Otherwise,
if the messages Mk contain no parameter, the choice of
aggregation function is limited to counting occurrences or
one-hot encoding the occurrence. The transformation rule
three resorts to default functions, i.e., average, if themessages
contain a parameter and counting if the messages contain no
parameter. Yet, the defaults are overwritten if domain experts
provide the optional list of aggregation functions for vari-
ables. Furthermore, in the case of a high number of variables,
specifying an aggregation function for each variable becomes
cumbersome. Therefore, we allow for aggregation functions
to be specified for classes of variables if a variable classifi-
cation is provided as input by the domain expert. Note that
the choice of the aggregation function depends on the causal
objective and influences the interpretability of the subsequent
process steps. Hence, domain expertise is invaluable to the
choice of a suitable aggregation function.

Transformation results in the production stop scenario

In the production stop scenario of the machine manufacturer,
the transformation procedure frommachine log data to obser-
vations results in 1903 variables with 25, 729 observations,
corresponding to individualmanufacturing tasks T . The vari-
ables stem from both the ramp-up andmanufacturing phases.
Out of the 2330 distinct message types 427 did not occur in
any timewindow δt ∈ �.With close to 2000 variables choos-
ing an aggregation function for each variable is infeasible for
a domain expert. Therefore, domain experts provided aggre-
gation functions together with a variable classification. The
variable classification follows the four classes as defined in
Sect. 4.2. In detail, the last value is used for configuration
parameters C . The occurrences are counted for non-critical

operational messages O . Production stop messages S are
always binary, indicating whether a stop occurred or not.
Lastly, continuous measurements Q use the mean parame-
ter value from all messages that occurred within the current
task’s phase. An exemplary excerpt is shown in Table 2.

Step 2: Apply causal structure learning procedure

In this subsection, we outline the application of the causal
structure learning procedure the second step of our process to
learn causal structures frommachine log data. First, we intro-
duce the procedure tailored to the manufacturing domain and
highlight steps that address Challenge I and III (Sect. 5.2.1).
The procedure takes the observational data as input to output
the learned causal graphical model. Furthermore, structured
information on the process and engineering knowledge is
required from the domain expert to facilitate the learning pro-
cedure. Optionally, the domain expert can specify a subset
of variables to limit the size of the causal graphical model.
Second, we report the learned causal structures within the
production stop scenario in two settings (Sect. 5.2.2): (i) on
the entire variable set and (ii) on a subset of variables selected
by a domain expert.

The causal structure learning procedure

Within our work, we propose a causal structure learn-
ing procedure, see Fig. 3, based on the well-known PC
algorithm (Spirtes et al., 2000), cf. Sect. 3. The proce-
dure incorporates two steps that address the manufacturing
domain-relevant Challenges I and III and augments the edge
orientation step of the PC algorithm using domain knowl-
edge.

The procedure starts with the Select Variables step
addressing Challenge I. This step extracts a subset of vari-
ables from the observational data specified by a domain
expert. Next, in the Discretize Data step, the observational
data of the selected variables is discretized, addressing
Challenge III. The skeleton graph C is estimated from the
discretized observational data in the Learn Skeleton step. The
resulting undirected edges, see (4), in the skeleton graph C,
see (5), are oriented using common rules of the PC algorithm
and domain knowledge within the last step Orient Edges
using Domain Knowledge.
Select variables In the first step of the procedure, a domain
expert can select a subset of variables denoted by VS ⊆ V
that is relevant for the given causal objective. The vari-
able selection step has two goals. First, considering only a
subset of variables can effectively reduce the search space
within the Learn Skeleton step, resulting in faster execu-
tion times and poses a solution for Challenge I. Second,
this step allows removing variables having similar meaning
or variables known to have no relevant impact (Spirtes &
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Table 2 Excerpt of the derived observational data after applying the
transformation procedure from machine log data to observations. Each
row marks one observational entry. Each of the columns 2–12 marks

one variable. Observational data from a selection of eleven variables is
presented. Note for better readability, the table header and task id are
added

Task id Cx Cy Cz O1 O2 S1 S2 Q{e}
speed Q{c}

speed Q{e}
number Q{c}

number

1 1020 710 11 0 0 0 1 9833 11,000 1 101

2 890 641 11 0 0 0 0 14,000 12,000 412 3

3 915 640 19 0 1 0 0 6825 13,000 172 101

... ... ... ... ... ... ... ... ... ... ... ...

25,729 1020 710 14 3 0 1 0 13,000 7800 1 404

Fig. 3 Steps of the procedure to learn the causal structures, which con-
sists of the two steps Select Variables and Discretize Data that address
manufacturing domain-relevant challenges and two steps of thePCalgo-

rithm Learn Skeleton and Orient Edges using Domain Knowledge, see
Section 5.2.1. Note that in this procedure the edge orientation from the
PC algorithm is augmented with domain knowledge.

Scheines, 2004), which reduces the effects of noise within
the dataset. The selection requires expert knowledge, as no
common rule, i.e., for removing semantically dependent vari-
ables, exists (Woodward, 2016). Further, selecting variables
requires caution to avoid violation of the causal sufficiency
assumption. The subset of variablesVS is said to be causally
sufficient if VS incorporates all common causes or con-
founders that causally influence more than one variable in
VS (Spirtes, 2010).
Discretize data In the second step of the procedure, the obser-
vational data of variables V ∈ VS with continuous data is
discretized. Hence, as a result of this step, the observational
data for all variables V ∈ VS is assumed to be discrete.While
discretization results in loss of information (Dougherty et al.,
1995 , Malinsky & Danks, 2018) it allows to handle datasets
with a mixture of continuous and discrete variables, address-
ing Challenge III. This discretization is particularly relevant
for higher-dimensional datasets, where the alternative to use
CI tests for mixed data (Huegle, 2021) becomes infeasi-
ble due to their long runtimes. There exist approaches that
consider domain-specific discretization (Liang et al., 2004).
Yet, with a larger number of variables, such an approach
becomes tedious and time-consuming for any domain expert
and thus infeasible in our case. Therefore, general discretiza-
tion techniques, such as clustering, e.g., k-means clustering,
or binning, e.g., equal-width binning, must be considered.
These approaches are applied to each variable and assign the
observational data of the variable to one of k representatives.
The choice of k directly impacts the amount of information
loss, with smaller values of k reducing the significance of the
information flow (Jin et al., 2007). Yet, for large values of k,
the degree of freedom within the CI test increases, demand-
ing a higher number of observations or leading to poorer
quality of the learned causal structures (Deckert & Kummer-

feld, 2019). Therefore, a careful choice of the parameter k is
required.
Learn skeleton In the third step of the procedure, the discrete
observational data for the subset of variables VS is input to
the first phase of the PC algorithm, referred to as skeleton dis-
covery. Through the repeated application of an appropriate
CI tests, which is directly determined by the underlying data
distribution (Dawid, 1979), the undirected skeleton graph C,
see (5), of the CGM is learned. For the discrete observational
data, this step applies Pearson’s χ2 test (Pearson, 1900) as
the CI test. Further, to handle high-dimensional datasets effi-
ciently on modern hardware, this step utilizes an existing
parallel implementation (Hagedorn&Huegle, 2021, Schmidt
et al, 2019, Scutari, 2017).
Orient edges using domain knowledge In the final step of the
procedure, the undirected edges, see (4), of the skeleton graph
C, see (5), are oriented to derive the final CGM G, see (1).
This step first applies standard orientation rules of the PC
algorithm, see Colombo and Maathuis (2014), Kalisch and
Bühlman (2007), or Spirtes (2010), before the application
of domain knowledge according to an approach by Meek
(1995). In this context, domain knowledge DK also called
background knowledge, is defined as a pair DK = (F, R),
where F ∈ E is a set of forbidden directed edges and R ∈ E
is a set of required directed edges (Meek, 1995). The original
algorithm byMeek (1995) fails if the learned CGM based on
the application of the standard orientation rules of the PC
algorithm is not consistent with the DK , i.e., learned ori-
ented edges violate edges in R or F . We propose to relax
this consistency constraint and consider DK as recommen-
dations, i.e., we consider R as recommended edges, and
further exclude any forbidden directed edges, i.e., F = ∅.
We process DK , respectively R, as follows. For each edge
E = (Vi , Vj ) ∈ R check if E /∈ E of G . If the edge
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E does not exist in G add E ∈ R to a list of edge viola-
tions. Otherwise, if the edge E exists in G and there exists
an edge E ′ ∈ E of G with E ′ = (Vj , Vi ), i.e., we have an
undirected edge in G, remove E ′ from G and close orienta-
tions (Meek, 1995) following the edge orientation rules of the
PC algorithm. The list of violations is returned and allows for
further investigation by the domain expert. Thus, the returned
list of violations introduces a feedback loop into the causal
structure learning procedure, which accounts for erroneous
assumptions in the variable selection, i.e., due to violations of
the semantic independence of variables (Malinsky & Danks,
2018), or erroneous assumptions in the data discretization.

Instead of relying on input from a domain expert for indi-
vidual edges to define the set of recommended edges R, we
define domain-specific rules to determine R. Generally, these
rules can be based on temporal ordering, engineering details,
or process knowledge (Liang et al., 2004). For the production
process in our case study, we utilize process and engineer-
ing knowledge that is passed as input to the causal structure
learning procedure to define the following rules.

Rule 1: For each variable Vi ∈ V, with Vi stemming from
the ramp-up phase and Vj ∈ V \ {Vi }, with Vj stemming
from the manufacturing phase and i, j = 1, . . . , N , if there
exists an edge between Vi − Vj in C, add a recommended
directed edge Vi → Vj into R.

Rule 2: For each variable Vi ∈ V, with Vi stemming from
a configuration parameter c and Vj ∈ V \ {Vi }, with Vj

stemming from either a non-critical operational message o,
a production stop message s or a continuous measurementm
and i, j = 1, . . . , N , if there exists an edge between Vi −Vj

in C, add a recommended directed edge Vi → Vj into R.
Rule 1 considers process knowledge based on the context

of the causal objective, recommending to orient all existing
edges between variables from the ramp-up phase and vari-
ables in the productionphase to orient towards the variables in
the production phase. Rule 2 considers engineering-specific
information, stating that variables representing configuration
parameters should not be influenced by any variables repre-
senting information obtained during the production process,
regardless of the task’s phase. Hence, the edge is oriented
away from the configuration parameter. Note there is no par-
ticular rule covering temporal ordering.

Application of causal structure learning procedure and
examination of results in the production stop scenario

The following analysis has two goals. First, we want to
illustrate the application and value of learning the causal
structures to understand unforeseen production downtimes
in manufacturing. Second, we aim to validate our proposed
process to determine accurate causal structures frommachine
log data. Therefore, we consider two different settings in the
production stop scenario. First, in Case (i) Application, we

take the entire set of variables V skipping the variable selec-
tion. Here, we demonstrate the applicability of our proposed
process to derive causal structures from log data. Since val-
idation of the process’ results on the entire set of variables
with over 3 million possible causal relationships is infeasible
for domain experts, we consider a second case. In Case (ii)
Validation, we let a domain expert select a validated subset
VS containing 11 variables. Within this subset of variables,
the domain experts fully understand the mechanisms and can
judge if our process correctly learned the structures, detected
false positives or is missing any relevant structures. Besides,
we use the resulting causal structures from VS as input for
methods of causal inference, to keep this illustrative example
simple.

In both cases (i and ii), we discretized the sets of variables.
We considered a standard equal-width binning and k-means
clustering for the discretization step. We could not find a sig-
nificant difference in the resulting learned causal graphs. Yet,
binning showed amarginally improved result on the validated
subset. Hence, for both cases, we consider the results using
equal-width binning. Further, through parameter tuning, we
determined a value of k = 5 (for equal-width binning, cf.
part Discretize Data, Sect. 5.2.1) to produce the best results
on the validated subset VS , which is also used as a parame-
ter for the case of learning on the entire set of variables V.
In the subsequent skeleton learning step, we set the decision
threshold for each CI test α to 0.01, which is common in
practice (Colombo & Maathuis, 2014).
Case (i) Application: causal structure learning on the entire
set of variables In the following, we consider the learned
causal structures on the complete dataset from the globally
operating machine manufacturer, omitting the step to select
variables based on domain knowledge. Given the larger num-
ber of variables and a missing gold standard, a validation by
a domain expert becomes infeasible, and we cannot report
overall accuracy metrics for the entire set of variables. Yet,
we report the accuracy of the domain knowledge-based edge
orientation. Further, to understand the learned causal model,
we report metrics common to describe graphical models.
Besides the number of variables and learned edges corre-
sponding to the causal relationships, we report each node’s
maximum and average in- and outdegree. The indegree is the
number of incoming edges, whereas the outdegree describes
the number of outgoing edges. Thus, the maximum and aver-
age in- and outdegree over the entire graph allow getting an
understanding of the complexity of the learned causal model.
For example, a low average in- and outdegree describe sparse
graphical models. The parameters characterizing the learned
causal relationships on the entire dataset are shown inTable 3.

The nodes in the learned graph represent the 1903 vari-
ables, which are connected by 550 edges, counting both
directed, see (3), and undirected, see (4), edges. In total, 1068
nodes have no edges, meaning no causal relationship to any
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Table 3 Parameters describing the learned causal model on the entire
machine dataset. The parameters consist of the number of variables N ,
the number of learned edges |E|, the average indegree avg(deg−(V)),

the maximum indegree �−(V), the average outdegree avg(deg+(V))

and the maximum outdegree �+(V)

Parameter N |E| avg(deg−(V)) �−(V) avg(deg+(V)) �+(V)

Value 1903 550 1.21 4 1.12 4

other node. The maximum indegree �−(V) and maximum
outdegree �+(V) are both four and the average indegree
avg(deg−(V)) is slightly higher than the average outdegree
avg(deg+(V)) with a factor of 1.21 compared to 1.12.

Concerning the domain knowledge-based edge orienta-
tion, we found that nine edges of the 550 edges have a wrong
orientation according to the set R. The edges in R stem
entirely from Rule 1. Hence, there is no violation of Rule 2.
Further, four of these edges have been oriented following the
approach ofMeek (1995). Regarding the unforeseen produc-
tion stops, 11 unique production stop messages, respectively
variables, exist in the data. For seven of these variables, a
total of eight causal relationships have been identified.

While there is little error according to the domain
knowledge-based edge orientation, full validation of all exist-
ing and non-existing edges is out of scope for any domain
expert. Additionally, we assume thatmany nodeswithout any
causal relationship indicate that several variables obtained
from the log data have little relevance to the production pro-
cess. Yet, these variables might introduce additional noise to
the model, impacting its overall quality. Hence, fully rely-
ing on the learned causal structures within the entire set of
variables is not advisable. Thus, the identified causal relation-
ships for the production stop messages should only be con-
sidered an indication for further investigation of root causes,
for example, through a careful selection of relevant variables
by a domain expert, including the identified variables.
Case (ii) Validation: causal structure learning on a domain-
specific variable selection For the second case, a domain
expert selected a subset VS of 11 variables for which the
underlying causalmechanisms are known. In this context, the
goal is to derive a relevant and comprehensible sub-problem
that can be evaluated through domain expertise. The vari-
ables’ classification, data type, and description are provided
in Table 4.

The 11 variables represent three task configuration param-
eters, two non-critical operational messages, two different
production stop messages, and four continuous measure-
ments. Note, the two variables for the measurements, shown
in Table 4 have a realization during the ramp-up phase
Qc

X and the manufacturing phase Qe
X , with X being either

number or speed. Overall, the variables cover three data
types: categorical, binary, or discretized. Note that dis-
cretized means a continuous variable has been discretized
using binning. The categorical variables of the product

S2

O1

S1

O2

Cz

Qc
speed

Qe
speed

Qe
number

Fig. 4 The learned causal graphical model, resulting from the appli-
cation of process steps 1 and 2. Note, that a subset of 11 variables
was selected from the entire machine dataset and that the phase of the
measurements, ramp-up (c) or execution (e) is added at the end of the
variable

dimensions Cx , Cy , Cz have between two to five different
categories. The binary variables are either zero or one. A
zero indicates that the operationalmessage or production stop
did not occur in the corresponding observation. In contrast,
one indicates that the operational message or production stop
happened in the corresponding observation.

The resulting causal graphical model is shown in Fig. 4.
Note, Cx and Cy are causally dependent on each other and
have, similar to Qc

number , no relationship to any other vari-
able. Therefore, they are omitted in Fig. 4. Further, the
learned causal relationships suggest an influence of the oper-
ational messages O1, O2, as well as Cz on the unforeseen
production stops S1, S2. Both product rotations within the
machine and thematerial’s and product’s thickness can cause
internal machine subsystems to pick up the wrong amount
of material for the finishing step. Thus, causing a production
stop due to no material or too much material in the finishing
step. In this case, the relationship between the two production
stops is plausible, too. The causal relationship of the product
thickness Cz between the machine speeds Q{e/c}

speed , as well as
the relationship of the number of produced products Qe

number
to the manufacturing speed Qe

speed , is also confirmed. The
domain expert questions only the causal relationship of the
machine speed during manufacturing Qe

speed to the machine
speed during the ramp-up phase Qc

speed . This particular edge
ismarked by the algorithm as a violation ofRule 1 and is con-
sidered to be a wrongly detected edge. We believe the wrong
direction to be caused by the discretization of the measure-
ments. Overall, the solution obtained was confirmed by the
experts.
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Table 4 The 11 variables contained in the validated dataset, including their classification, their type and a description of its meaning. Note that the
bottom two variables Qspeed and Qnumber have two representations one in each task’s phase, ramp-up (c) and execution (e)

Variable Classification Type Description

Cx Configuration parameter Categorical Product length

Cy Configuration parameter Categorical Product width

Cz Configuration parameter Categorical Product thickness

O1 Non-critical operational message Binary Product rotated clockwise

O2 Non-critical operational message Binary Product rotated anti-clockwise

S1 Production stop Binary No material in finishing step

S2 Production stop Binary too much material in finishing step

Q{e/c}
speed Measurement Discretized Machine speed

Q{e/c}
number Measurement Discretized Number of produced products

The validated learned CGM is a starting point to sup-
port a machine operator to identify causes for the production
stops S1, S2, e.g., rotations of the product during production
O1, O2 or the product thicknessCz . In contrast to commonly
applied classification methods where the most relevant vari-
ables are used for root cause analysis, e.g., see Chien and
Chuang (2014) or Oliveira et al. (2022), the knowledge about
causal structures not only provides the opportunity to detect
sequences of root causes but also distinguishes between asso-
ciative and causal variables (Pearl, 1995). For example, the
product thickness Cz as a common confounder induces an
associative dependence of themachine speed Qc

speed and pro-
duction stops S1. Hence, the relevance of Qc

speed is increased
within the classification approach, although there exists no
causal effect of Qe

speed on S1.
Due to the restrictive selection of variables, sequences of

influences beyond the subgraph cannot be identified, e.g.,
causes for O1 or O2, such that domain experts should con-
sider a larger set of relevant variables in practice to investigate
also influences for O1, O2.

Step 3: Apply causal inference to understand key
relationships

The framework of CGMs together with the do-operator
(cf. (7)) allows for an estimation of causal effects in an exper-
imental regime on the basis of observational data (Peters
et al., 2017). The application of the do-operator provides
answers to questions, such as,What is the impact of amachine
change?, whichmight not be affordable in real-world settings
due to production process interruption or unavailability of an
experimental setup.

Furthermore, an examination of the causal relationships
avoids wrong assumptions and decisions based on condi-
tional probabilities. For example, consider the following
scenario of a domain expert investigating the causes of the
production stop S1, i.e., S1 = 1. In this setting, a domain

expert aims to decrease the probability P(S1 = 1), by chang-
ing values of possible causes. Let us assume the machine
operator considers that the machine speed during manufac-
turing Qe

speed impacts the occurrence of production stop S1
as indicated by a classification approach (see Case (ii) of
Sect. 5.2.2). In this setting, the machine operator consults
the data, inspecting conditional probabilities of S1 = 1 given
any of the five categories of Qe

speed during manufacturing,
following (8), as displayed in Table 5. The data indicates that
using a machine speed within the range represented by cate-
gory k = 1 yields the lowest probability of an occurrence of
the production stop S1 = 1.

In this example, the do-operator enables to calculate
the post-interventional conditional probabilities of S1, i.e.,
P(S1 = 1|do(Qe

speed = k)), following (9), to examine
the causal effect of an intervention on Qe

speed to 1. Based
on the result, the machine operator could judge if chang-
ing the machine speed results in the desired reduction in
the occurrence of the production stop S1 = 1. To calculate
the respective probabilities, we utilize the R-package causal-
effect (Tikka & Karvanen, 2017), which applies rules to
determine a formula to calculate the respective probabilities
under a given intervention. Note, the causal.effect function
operates on a Directed Acyclic Graph (DAG). Hence, for
the learned graph depicted in Fig. 4, we select one of the
two represented DAGs. For the case of S1 = 1 the condi-
tional probability given an intervention on Sespeed is given by
P(S1 = 1|do(Qe

speed = 1)). Applying the formula deter-
mined by the R-package causaleffect when intervening on
Qe

speed = 1 coincides with the unconditioned probability of
P(S1 = 1) = 13.4%. Thus, for our example, changes to
the machine speed Qe

speed do not influence S1 and based on
this assumption, the machine operator would have applied
impractical changes to the machine setting. Affirmatively,
the learned causal graphical model does not contain any
causal relationship between the two variables Qe

speed and
S1.
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Table 5 The conditional probabilities for the occurrence of the unique
stopper S1 = 1, when either selecting a distinct machine speed during
execution Qe

speed = k or not selecting any, represented by uncondi-

tioned. The machine speed was discretized into five categories k =
0, 1, . . . , 4 using equal-width binning

Unconditioned k = 0 k = 1 k = 2 k = 3 k = 4

P(S1 = 1|Qe
speed = k) 13.4% 10.6% 8.6% 15.3% 13.3% 13.3%

Discussion, validation, and limitations

In the following discussion, we point out necessary consider-
ations concerning generalizability and limitations that need
to be mentioned.

Discussion and validation

We analyzed a real-world use case from a globally operat-
ing precision mechanical engineering company to show the
applicability of our customized process for causal structure
learning and causal inference based on machine log data.
The results verified that the proposed process to learn causal
structures from log data could support machine operators to,
e.g., identify the root causes of unexpected production down-
times. In particular, the machine operator consults the causal
structures to determine the variables,which have edges point-
ing to the production stop message monitored at production
downtime. Thus, the search space to remove the production
stop is reduced, and time is saved. Note, as the time of expe-
rienced machine operators is valuable and limited such kind
of automated data-driven support can be highly beneficial.

Application in practice

For an efficient integration into the workflow of a machine
operator, we suggest an integration of the learned causal
structures into an existing monitoring solution, see Huegle
et al. (2020). Based on the two learned causal models (cf.
Sect. 5.2.2), we suggest a careful selection of variables when
using causal structure learning in practice.On theonehand, to
avoid noise, i.e., when using all variables, on the other hand,
to avoid missing influences, i.e., when selecting to restric-
tive. Further, we suggest visually presenting only the relevant
selection of the causal model for the occurring production
stop to provide a focus for the machine operator. Extend-
ing this monitoring solution with the capability for causal
inference further strengthens the support for the machine
operator. The integration of causal inference is beneficial for
inexperienced machine operators, as it avoids drawing false
conclusions (cf. Sect. 5.3).

Transferability to other domains

We see the potential to apply the proposed process in simi-
lar production settings, e.g., automotive production. In these
production settings, monitoring systems are in place, and

similar messages are logged. Further, using domain knowl-
edge to specify a causal objective in combinationwith a set of
definitions, similar to the ones defined in Sect. 5.1, e.g., based
on time or location constraints, e.g., by utilizing the location
information of a LogMessage, allows applying the transfor-
mation rules to derive sound observational data. To sketch a
concrete example from automotive production, consider the
causal objective to understand the reasons for defective cars
in the context of the car assembly. The car is worked on in
different assembly stations within the car assembly at spe-
cific points in time (Huegle et al., 2020). Thus, analogously
to our proposed process, time windows can be detected for
the car’s presence in each station, and all monitoring logmes-
sages are mapped accordingly. Hence, the observations can
be constructed using the same set of transformation rules,
and causal structures can be learned following our proposed
process.

Yet, it remains to investigate if the generalized approaches
to apply the same aggregation function for a category of mes-
sages or a single discretization approach yield acceptable
results in these settings. In the context of discretization, we
see the potential for an automatic selection of themost appro-
priate discretization technique for each continuous variable.
Such a step requires a validated subset to determine the
impact on the learned causal structures and a generaliza-
tion to the remaining variables, e.g., based on the variable
categories. Further, it remains to investigate if the transforma-
tion rules remain applicable in domains in which constraints
other than the time dimension are used to derive sound obser-
vational data. The applicability of the transformation rules
may become a limiting factor for the transferability to other
domains.

Methodological limitations

While the proposed process yields appropriate results in our
use case, it is worth examining methodological limitations
that need to be considered when applying causal structure
learning and causal inference. First, note that the assumptions
of methods for causal structure learning are quite restrictive.
In this context, it is important to check whether the particular
dataset satisfies the required preconditions such as causal suf-
ficiency, i.e., no latent confounding variables. Note that there
exist a variety of extensions to the PC algorithm that allow
the application of causal structure learning under weakened
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assumptions, e.g., theFCI algorithm in case of violated causal
sufficiency (Spirtes, 2010). In this context, it is worth men-
tioning that our approach may serve as the basis to capture
time-dependent causal effects through the implementation of
the methodological extensions for time-related causal graph-
ical models with respective algorithms.

Second, besides the theoretical restrictions on the dataset,
the accuracy of our approach is strongly influenced by the
trustworthiness of the incorporated domain knowledge. In
particular, incorrect domain knowledge within the process
of causal structure learning from machine log data, see
Fig. 2, may yield not only unreliable observational data but
also wrong causal structures and hence an incorrect causal
inference. Moreover, while discretization improves the inter-
pretability of both causal structures and causal effects, a
wrong technique may preserve relevant causal relationships.

Third, while adequate within our use case, data quality is
a well-known problem in practice and requires an additional
step for data cleaning, e.g., the imputation of missing values.
In the context of machine log data, changes of both the log-
ging technique and systematic changes within the machine,
such as modifications during the observation period, may
yield changes within the underlying causal mechanism and
hence inconsistent learned causal structures.

Therefore, both the implementation of the proposed pro-
cess for causal structure learning and the interpretation of
the results should be made carefully. For more information
on challenges of causal structure learning in practice, see the
practical guide of Malinsky and Danks (2018).

Conclusion

We proposed a process to learn causal structures in the con-
text of a discrete manufacturing production process, which
comes with domain-specific challenges. The causal relation-
ships are learned based on data logged for monitoring the
manufacturing machines during operation. Using real-world
data from a globally operating machine manufacturer, we
showed how to apply all single process steps to derive the
causal graphical model, which we utilize to estimate causal
effects in an experimental regime. Our example showed how
to provide data-driven decision support to assist domain
experts in avoiding wrongly assumed influences of unfore-
seen production stops.

Our proposed process integrates domain knowledge at dif-
ferent steps to increase the quality and interpretability of
the results. First, transformation rules are defined to extract
sound observations from the log data (cf. Challenge II).
Second, domain experts are encouraged to select relevant
variables to reduce the search space and noise in high-
dimensional settings (cf. Challenge I). To handle mixed data,
we suggest discretizing the data (cf. Challenge III) before

applying parallel constraint-based causal structure learning
algorithms. Further, we extend the rules commonly applied
during the algorithm’s edge orientation. Note this procedure
and the basic methods applied in our approach could also
address the causal reasoning from machine log data in simi-
lar applications. In this context, we point out limitations and
constraints for generalizability that need to be considered.

In future work, the methodological limitations can be
addressed, by considering causal structure learning methods
with weaker assumptions, e.g., the FCI algorithm (Spirtes,
2010), through detailed studies on the impact of discretiza-
tion (Deckert&Kummerfeld, 2019), and investigatingmodel
drift concerning systematic changes within machines. Addi-
tionally, future work needs to develop a sophisticated val-
idation method to verify entire learned causal models with
domain experts. This validation method allows receiving a
quantifiable judgment of the correctness of the applied tech-
niques in the given context of the machine log data.
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