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Abstract
Measuring mental workload at the workplace using (psycho-) physiological measurement techniques seems desirable
but is difficult to implement. Conventional analysis techniques are designed to cover longer measurement durations,
neglecting the demands of modern work places: high worker flexibility and constantly fluctuating mental workload. As
an alternative analysis approach, measurement (resp. analysis) duration can be shortened and event-based pattern analysis
of various physiological parameters can be performed. The effects of such approaches are demonstrated by experimental
examples. Furthermore, an event-timestamp independent framework is presented. Focusing on occasionally occurring peaks
and longer lasting plateaus in mental workload trajectories, an automatized analysis of workload during work processes
becomes possible.
Practical relevance: With steadily increasing cognitive demands at work the risk of mental fatigue increases too. Mental
workload is not directly observable at the workplace and the objective measurement and interpretation is complicated.
Improving the overall assessment and analysis strategies for (physiological) mental workload indicators can benefit the
quality of risk assessments of workplaces and processes as well as enable the possibility of demand-orientated control of
(informational) assistance systems to prevent mental overload and resulting health constraints.

Keywords Cognitive ergonomics · Complexity · Mental workload · Eye tracking · ECG

Musteranalyse physiologischer Parameter zur Bestimmungmentaler Beanspruchung

Zusammenfassung
Die arbeitsplatznahe objektive Erfassung und Analyse mentaler Beanspruchung mittels physiologischer Parameter und
Messmethoden erscheint erstrebenswert, gestaltet sich praktisch jedoch schwierig. Herkömmliche Analyseverfahren sind
darauf ausgelegt, über längere Zeiträume hinweg zu mitteln, ignorieren dadurch aber die wachsende Flexibilität von Arbeits-
abläufen und damit einhergehende schnelle Beanspruchungswechsel. Eine Alternative zur herkömmlichen Erfassung und
Auswertung von Beanspruchungsdaten könnte darin liegen, die gemessenen Zeitintervalle zu verkürzen und unterschied-
liche Verlaufsmuster einzelner Parameter eventbezogen abzubilden. Die Auswirkungen solcher Ansätze werden anhand
experimenteller Beispiele demonstriert. Darüber hinaus wird ein erweitertes Konzept erörtert, das unabhängig von aktiv
gesetzten Referenzzeitpunkten arbeiten kann. Es basiert auf der (automatisierten) Analyse von unregelmäßig auftretenden
Peaks und Plateaus von Beanspruchung während des Arbeitsprozesses.
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Praktische Relevanz: Die kognitive Beanspruchung bei der Arbeit nimmt stetig zu und vergrößert die Gefahr zunehmender
geistiger Erschöpfung. Kognitive Beanspruchung ist am Arbeitsplatz nicht direkt beobachtbar und deren Erfassung und
Interpretation ist kompliziert. Von einer Verbesserung der Genauigkeit bei der Erfassung mentaler Beanspruchung im
Arbeitsprozess kann nicht nur die Qualität der Gefährdungsbeurteilung von Arbeitsplätzen und -prozessen profitieren,
sondern es besteht z.B. auch die Möglichkeit der bedarfsgerechten Steuerung von (informatorischen) Assistenzsystemen
zur Vorbeugung von Fehlbeanspruchungen.

Schlüsselwörter Kognitive Ergonomie · Komplexität · Mentale Beanspruchung · Eye Tracking · EKG

1 Changing work conditions, physiological
measurement possibilities, and possible
statistical consequences

Competitive pressure, digitization, and constant technologi-
cal progress are contributing to the increasing informational
load of work processes, especially in areas where formerly
standardized and routine-heavy processes were dominant
(e.g. manual assembly). These changing work conditions
do not only impact the individual worker’s (mental) work-
load but also necessary ergonomic countermeasures. A clear
tendency away from the classical biomechanically influ-
enced ergonomic view towards a more mentally and infor-
mation processing focused neuroergonomic perspective is
already evident. This trend is supported by advancements
in the area of psycho- and neurophysiological measurement
equipment. It becomes more mobile, cheaper due to an in-
creasing customer market, more precise (e.g. through in-
creasing sampling frequency or better temporal or spatial
resolutions), and thus overall more applicable at the con-
crete workplace and not only in laboratory settings.

Using physiological measurements to derive ergonomic
countermeasures from these data requires special statistical
methods. Following the established methods of mean com-
parisons over longer lasting time frames and/or groups of
workers undermines the opportunities temporally high re-
sulted data offers. The final aim using such data should be
to objectively assess mental workload (MWL) outside the
lab at real work places and to improve (or restructure) work
processes in a way that keeps workers in a productive and
efficient range of MWL.

Taking neurological methods as a model, this paper will
discuss new approaches to analyze physiological data dur-
ing work processes, highlighting the chances of increasingly
finer differentiation and temporal resolution. While those
methods are already common for EEG, fMRT, or fNIRS
data, ECG, GSR and Eye Tracking data are still mainly
processed in a different way. Several analysis approaches to
analyze individual as well as group data will be discussed.
Differences between event-related and block (or work pro-
cess) based mean comparison approaches will be shown
as well as the usage of event-related pattern analysis (on
an individual as well as group level). Finally, a theoretical

framework for pattern-based analysis of physiological data
will be presented coupling theoretical assumptions and ma-
chine learning possibilities. Measuring, documenting, and
analyzing physiological based MWL data during work pro-
cesses can help to keep workers healthy for a longer period
of time, and will also provide the basis for workload adap-
tive (informational) work assistance systems.

2 Measuring mental workload at the work
place

Physiological states constantly undergo fluctuational
changes. Some changes occur via natural organismic pro-
cesses (breathing, heat compensation), while others are
the result of confrontations with changing or unexpected
(work) stimuli. In ergonomic research, such cue- or event-
related arousal changes are of great interest, as these
changes are seen as indicators of increasing or decreasing
workload. Using physiological measurement techniques,
a non-interruptive observation of these (mental or physical)
load patterns becomes possible.

2.1 Defining and operationalizingmental workload

While there was and is little dissensus in ergonomics that
the study of MWL is fundamental to the understanding of
functions and limitations of the human information pro-
cessing system (Wickens 2017), measurement and analy-
sis strategies as well as operationalization of MWL remain
highly discussed topics (Van Acker et al. 2018; Dehais et al.
2020). MWL has a long history in human factors research.
Physiological activation was connected to the prediction of
task performance. Later the concept of this relationship was
extended, associating it with the idea of a finite informa-
tion processing capacity which is confronted with variable
cognitive demands. Thus, the first central proposition pos-
tulates a fit or a misfit between external demands and inter-
nal capacitively limited resources. The second proposition
concerns the problem of an occurring misfit and if there is
a possibility to dynamically cope with it in order to com-
pensate and avoid states of longer lasting (hypo- or hyper-)
stress and discomfort (Selye 1974). Both propositions are
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the basis of a dynamic adaptive approach, which assumes
that in general, but especially in the case of misfit, the or-
ganism is seeking for a balanced state of homeostasis and
cognitive comfort (Hancock and Warm 1989; Dehais et al.
2020). Finally, there is the assumption that misfits of longer
duration should be ergonomically countermeasured.

While these basic assumptions are commonly shared be-
tween most researchers, the topics of concrete operational-
ization and measurement are widely discussed and applied
methodologies vary greatly. Different approaches exist to
measure MWL using either subjective ratings, more objec-
tive performance or observational data, or measuring a wide
range of neuro- and psychophysiological indicators. All
those methods have in common that they assume to be able
to record the individual workers changes of MWL at the
work place. A wide range of studies was conducted prov-
ing in either laboratory or field settings that those indicators
are able to differentiate between levels of MWL (Myrtek
et al. 1994; Marquart et al. 2015; Delliaux et al. 2019; Ja-
fari et al. 2020), assembly products of different complexity
(Bläsing and Bornewasser 2020, 2021), or even to detect
potential mental overload (Hoover et al. 2012). Regarding
the measurement of MWL the most discussable points seem
to be which indicator to choose, how to analyze it, and if all
those indicators are measuring the same aspect of MWL or
if it is a rather multidimensional construct (Matthews et al.
2015a).

To a large extent, measuring MWL is a rather practi-
cal problem. The operationalization of MWL, on the other
hand, is a more theoretical concern. While the concept of
the existence of a limited (cognitive) resource that is nec-
essary to cope with external demands is intuitive and easy
to understand, theories tend to remain on a rather abstract
and descriptive level. Using neurophysiological measure-
ments, it becomes possible to begin to better understand
the basic processes of attention and behavior (Parasuraman
2011), but a unified theory of MWL, that merges theoretical
aspects from neuroscience, human factors and ergonomics,
as well as basic physiology is still missing (Dehais et al.
2020).

Sufficient digital models for mental workload (MWL)
and adaptational processes (especially concerning states of
over- and underload) do not yet exist. Digital process and
strain models probably offer a better chance for a meaning-
ful integration of the measured parameters into some kind
of a cognitive overload risk analysis. In a more ergonomi-
cal direction, an indicator of this kind could even become
the basis for automated workload-matched adaptations for
e.g. information assistance systems. However, this approach
implies that we are able to measure workload in real time,
that we can assess the real amount of event related workload
in absolute values, and that we can define redlines, which
dynamically separate e.g. regions of reserve capacity and

regions of overload from a region of comfort (Young et al.
2015). Until now, none of these implications is completely
fulfilled.

2.2 Approaches to mental workloadmeasurement

MWL arises in the area of tension between task-related re-
quirements and personal resources, experiences, and com-
petencies, and thus represents a dynamic and highly in-
terindividual different phenomenon. Being able to validly
assess MWL at the work place has to become the basis
of ergonomical countermeasures. Thus, a deeper consid-
eration of the different measurement possibilities (subjec-
tive, performance related, observational, and physiological;
Chen et al. 2016; Longo 2018) becomes necessary. Most
use cases and laboratory settings are using a combination
of different indicators to compensate for their individual
weaknesses and combine their strengths. The combination
of physiological measurements and observational data en-
ables to control the analysis for non-work-related distrac-
tions or focus on concrete event-related changes. However,
psychometric analysis casts doubt on the assumption that
the combination of different MWL indicators might always
be sufficient. Matthews et al. (2015b) showed that single
indicator approaches were sensitive but occasionally con-
tradictory. To avoid such dissociative results, the used ap-
proaches have to be precisely coordinated.

Subjective ratings and similar methods might not be
suited for just-in-time detection of MWL changes. Auto-
matically (mechanically) recorded performance parameters,
as well as observational data (e.g. in the form of timestamps
from machines and assistance systems) have to be focused
and combined with objectively measurable physiological
changes to fully cover work process related MWL changes.

Improved and miniaturized sensor technologies, result-
ing in the possibility to most widely measure continuous,
mobile, and non-interruptive directly at the work place,
have led to an increase in reception for such measurements
in recent years (Charles and Nixon 2019). Products origi-
nally coming from the consumer market have received in-
creasing interest in human factors and ergonomics research,
and have accelerated technological improvement even for
more professional equipment. As a consequence, mobile
devices are not only increasing in resolution (resp. sam-
pling frequency), but also decreasing in acquisitional costs.
At the same time, individuals become more used to wear-
ing them and open-minded to quantify themselves (Swan
2012). These effects pave the way for a broader use in field
research. Where procedures such as electrocardiography
(ECG) (Mulder 1992; Sammito et al. 2015) and the mea-
surement of muscle activity (EMG) (Kluth et al. 2013) have
been already widely used, entirely new possibilities are now
opening up, e.g., via mobile eye-tracking and mobile elec-
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troencephalography (EEG) solutions (Wascher et al. 2020),
allowing for broader objective insights into the processes
of workers MWL.

The basic assumption of those rather psychophysiologi-
cal measurement methods is that the activation of resources
to cope with changing work stimuli leads to a measurable
change in the activity of the autonomous nervous system
(ANS) (Oken et al. 2006; McEwen and Gianaros 2011; Jar-
czok et al. 2013). While this can be either seen as a more
homeostatic process to keep the individuum in a balanced
state (Ramsay and Woods 2014), or just a reaction of the
bottlenecked information processing in the working mem-
ory (Baddeley 2003; Chen et al. 2016), the change of the
measured indicators is always interpreted as a momentarily,
simultaneously occurring change in MWL.

Neuroergonomics focus more on the usage of modern
imaging techniques like functional infrared spectroscopy
(fNIRS) or functional magnet resonance imaging (fMRI).
Those techniques enable a deeper understanding of concrete
neurophysiological brain reactions to concrete work stimuli
using an improved spatial and temporal resolution. The idea
of resources as the main point for MWL is displaced in
favor of an idea of concrete neurophysiological markers and
degraded mental states. MWL becomes a measurable brain
state. These techniques represent an attempt to open the
former black box of MWL and to predict which neuronal
and metabolic states lead to decreased performance.

This paradigm shift contrasts classical psychophysio-
logical approaches (Backs and Boucsein 2000), where re-
searchers are rather focused on peripheral correlates of un-
known central, neuronal, or metabolic processes. Of course,
brain activity and heart rate both are not identical to MWL,
but where a neuroergonomist believes he is already inside
or closest to the brain and can directly observe brain func-
tions, a psychophysiologist still believes he is outside but
has a better chance to take a rough look on information
processes and MWL. Inherently, both perspectives assume
to validly measure the true amount of MWL.

In this article the focus will be on some of the most
widely used (and easiest to apply) psychophysiological
measurements. Using heart rate (HR) and different heart
rate variability (HRV) indicators as ECG derivates, it
becomes possible to relate changing MWL and chang-
ing cardiovascular activity to each other. The used HRV
indicators are mostly time-based which, due to their math-
ematical basis, makes them easier to calculate and assess in
a dynamic, and, perceptively, just-in-time manner. HR and
HRV have already been proven to be able to differentiate
between levels of MWL (Myrtek et al. 1994; Delliaux et al.
2019), even using first machine learning approaches to
quantify those changes (Hoover et al. 2012). Furthermore,
gaze and pupil related parameters like pupillary response
(PR), fixation duration (FD), or saccadic peak velocity

(SPV) derived from eye tracking measurement are able to
show physiological changes with a direct relationship to
information processing resp. changing informational load
(Di Stasi et al. 2010; Marquart et al. 2015; Di Nocera et al.
2016; Herten et al. 2017; Mathôt 2018).

Although there are different positions, research agrees
that it is possible to detect meaningful changes of MWL
during work processes using either neuro- or psychophysi-
ological measurement techniques. To interpret changes e.g.
of heart rate as changes in MWL, the high complexity
and the dynamics of MWL distribution in the working
process need to be assessed (exemplarily in Bläsing and
Bornewasser 2020). During working processes under real
life conditions, the amount of information to be processed
is constantly changing and so is the resulting MWL. Thus,
continuously changing MWL becomes an elementary part
of each working process, fluctuating in dependent on the
current informational load. For a better understanding of
such processes, it is necessary to develop an analysis frame-
work, which not only takes these special conditions into
account, but even actively highlights them.

3 Analyzing mental workload

Traditionally, MWL research focuses on longer analysis
durations to investigate effects of work on an individuals
perceived work load. For example, complete assembly pro-
cesses or sections lasting several minutes are compared with
each other or are used to create progress profiles (Nardolillo
et al. 2017; Bläsing and Bornewasser 2021). The advantage
of such an approach is that for analysis, mostly aggregated
and cleaned data can be used, which are less susceptible
to measurement errors, spontaneous and non-task related
variations, and general noise. Stress periods of short dura-
tion are neglected, as are continuous, slow increases, which
might indicate increasing fatigue (Marandi et al. 2018). As
a result, analysis protocols are produced that show the dis-
tribution of MWL aggregated over different subjects and
over sections of different time lengths.

3.1 Multimodal physiological MWL
measurement—timeframe and analysis level
dependency

Physiological indicators of MWL vary in their respective
latency until changing conditions will be observable. While
HR changes rather slowly with a latency up to 30s (com-
prising multiple cardiac cycles), PR changes in parts of
seconds. Using a multimodal measurement approach might
therefore help to identify different aspects of MWL. But
alone the choice of a multimodal approach will not auto-
matically help to get the most information from a given sit-
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Table 1 Comparison of physiological based MWL parameters taking the reference period into account
Tab. 1 Physiologische Indikatoren mentaler Beanspruchung im Vergleich unter Berücksichtigung des Referenzzeitraums

HR rrHRV SDNN Pup Resp Fix Dur SPV

Mean 99.67 (14.71) 2.86 (1.15) 46.67 (14.77) 3.45 (0.39) 232.96 (21.73) 177.48 (23.93)

Step 1 100.43 (17.08) 3.00 (1.42) 42.22 (19.40) 3.37 (0.42) 226.16 (29.22) 182.09 (30.39)

Step 2 100.57 (15.04) 2.82 (1.34) 37.57 (17.25) 3.40 (0.38) 231.92 (31.77) 177.10 (29.93)

Step 3 99.03 (15.48) 3.04 (1.34) 40.45 (19.11) 3.42 (0.41) 230.25 (30.39) 174.77 (30.75)

mean mean during whole assembly time with medium complexity, step X mean during information intake of process step x
Mean Mittelwert Montage mittlerer Komplexität, Step X Mittelwert während der Informationsaufnahme durch die Präsentation des x-ten
Arbeitsschrittes

uation. Using the standard analysis strategy of mean value
comparison over longer periods might neglect the influence
of short durations of higher MWL. But those time points are
the most valuable ones from an ergonomic point of view,
because they offer the chance for adaptation and improve-
ment. Readjusting the timeframe by increasing the timewise
granularity (shorter durations) to be analyzed can be a first
step to get a better insight into work process related effects
on workers MWL.

Table 1 reports mean values and standard deviations for
various psychophysiological indicators with a close relation
to MWL. Data was gathered during an experiment where
participants had to assemble a miniaturized truck support
framework (Bläsing and Bornewasser 2020). The assembly
instruction consisted of three steps, during which partici-
pants had only a limited time frame to memorize all neces-
sary information, thus leading to an increase of MWL. The
presented data are aggregated from 39 participants. The to-
tal assembly value represents the mean value during the

Fig. 1 Trajectories of physio-
logically based mental workload
parameters during the manual
assembly of a truck support
framework

Abb. 1 Schwankungen physio-
logischer Indikatoren mentaler
Beanspruchung während der
manuellen Montage eines LKW-
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whole assembly process, neglecting individual differences
in execution and speed. Step 1 to step 3 where standard-
ized with 20s analysis intervals. Taking a closer look at
these data, some differences can be shown (e.g. HRV indi-
cators rrHRV and SDNN or eye-tracking and gaze behavior
related fixation duration and saccadic peak velocity). How-
ever, with this procedure, it is still not possible to draw
conclusions about the distribution of possible short peaks
or longer lasting changes (towards more or less MWL).
In addition, it can be seen that standard deviation for all
parameters was higher during the shorter analysis periods,
thus indicating higher interindividual differences. Analy-
sis of MWL therefore becomes not only dependent on the
used time duration, but also of the analysis level—group or
individuum based.

Fig. 1 shows the occurring fluctuations of different psy-
chophysiological parameters on an individual level. It is
possible to see the ECG derivates HR (solid line) and rrHRV
(dotted line), as well as PR, and the gaze related parameters
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FD (solid line) and SPV (dotted line) during the assembly
of one truck support framework. Black vertical lines indi-
cate interactions with an assembly assistance system, which
provided new assembly instructions. Clear fluctuations can
be spotted for all parameters with for example beats per
minute varying between 70 and 87. A closer look at the
HR trajectory reveals that there is not a clear increasing
and declining tendency, but various short peaks of different
length and height, even though the total assembly duration
is only seven minutes.

Increasing timewise granularity (zooming in) while be-
ing able to perform analysis on a group level requires accu-
rate time stamps for points of interest during the measure-
ment. Compared to a standardized laboratory task, where
the analysis time can be adjusted to the duration of the
stimulus presentation, field measurements require the pre-
cise acquisition of timestamps for each participant. Tak-
ing an assembly task for an example, dependent on prior
knowledge, individual competencies, and work strategies,
participants will reach the same assembly step at different
times. To analyze and compare the data of this assembly
step over all participants, a (preferably automated) time-
stamp is required. But even with an automated timestamp,
not only interindividual differences in competencies will
lead to different levels of MWL, also different physiologi-
cal prerequisites will lead to different (possible) reactions.
Taking HR and HRV as examples, they are both highly
dependent on numerous factors like fitness, age, and sub-
stance consumption (Sammito and Böckelmann 2016) and
thus even the physiologically possible variance (the steep-
ness of an in- or decrease) differs between them. Additional
improvements have to be made to boost the amount of in-
formation one can get from the data.

Fig. 2 Differences between
block and event design using the
example of HR
Abb. 2 Event- und Block De-
sign im Vergleich am Beispiel
der Herzfrequenz
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3.2 Event vs. block analysis

Neurological research differentiates the analysis and study
design for physiological measurement series (e.g. fMRI
studies) in either event or block-based designs (Buckner
et al. 1996). Both analysis paths are able to be performed
on an individual or groupwise base. The main differences
are in the phenomena to be captured (time-sensitive or not-
time-sensitive) and the controllability of the participant. All
studies where the participant is able to trigger the response
(participant is in full control of the situation) are event-
based, while a design where all stimuli are controlled from
the study itself is block-based. Applying this differentiation
to a field resp. work setting, event-based might be a rather
unstandardized assembly process at a mixed model assem-
bly station with higher degrees of freedom for the worker
vs. clocked assembly line work where the work process de-
fines at what time the worker needs to interact with a new
stimulus (block-based).

From an ergonomic and MWL point of view, the chance
that event-based scenarios will lead to an increase of MWL
are enhanced due to their higher unpredictability and higher
need of adaptation. In such unstandardized situations, more
information needs to be processed and neither skill nor rule
based behavior can be shown (Rasmussen 1983). Advan-
tages of a block-based design with externally specified time-
frames lie in eased group comparisons and increased sta-
bility against artefact, noise, and shorter unimportant phys-
iological changes.

Fig. 2 illustrates an individual HR course over five min-
utes. Using a block analysis strategy, mean HR would be
76.66 and rrHRV 3.87. During this five-minute section, two
peaks with HR levels over 90 beats per minute (bpm) can be
seen, as well as a short period below 70bpm. Using a block
design with a 300s duration would ignore both phenomena,
potentially leaving at least two process steps left that could
have been optimized. Conversely, an event-based approach
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might be able to identify those short increases as well as the
phase below the mean, if a tracked event took place around
this time.

3.3 Multidimensional approach using an event-
based group comparison

Most work processes have at least some repetitive aspects.
Searching assembly parts, screening a monitor, or interact-
ing with a user interface can be seen as such a repetitive
task that should always create similar MWL reactions, and
thus physiological response pattern. If there is a clear, dis-
tinguishable, and time-wise delimitable event, event-related
responses can be further analyzed by using selective averag-
ing either on an individual or group level. Fig. 3 illustrates
such an approach for several similar events for one per-
son and the resp. HR and PR pattern. The solid dark-grey
lines indicate the moving averages over all events and show
clearly visible patterns, indicating an increase in arousal (or
MWL) shortly after (HR) or before (PR) the event (solid
vertical black line) took place. To increase compatibility
and ease the interpretability, as well as the possibility to
use this method for a groupwise comparison, all data in
the one-minute time window where min-max-transformed
to offer the chance to indicate (and calculate as well) local
max- and minima. For statistical analysis, repeated mea-
sures ANOVAs could be used to identify differences pre-,
during, and post the relevant event.
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Fig. 3 Selective averaging for event-related responses (HR a, PR b)
Abb. 3 Selektive Mittelwertbildung für eventbasierte Reaktionsmuster (Herzfrequenz a, Pupillenausdehnung b)

The similarity of the events used in Fig. 3 was high
enough to result in nearly identical reaction patterns. Some
shifts along the time-axis occurred mainly due to unprecise
event time stamp recording or irregularly occurring mea-
surement disturbances. Fig. 4 highlights the importance
of such a similarity for a meaningful interpretation of
the results. Solid dark-grey lines show the average means
over all three interactions with the assembly system during
the assembly of six truck support frameworks of different
complexity (overall n= 702). For the dark-grey lines, only
changes for FD and PR are clearly apparent, the remaining
physiological parameters are only meandering around the
overall mean. Refocusing on the different assembly steps
revealed clearly distinguishable patterns for most indicators
(grey lines in the background). Taking a closer look at the
three assembly steps, differences in informational load of
each step could have been identified, leading to different
MWL reaction patterns (Bläsing and Bornewasser 2020).

In summary, multimodal physiological measurements
are a useful approach to gain insight into an individual’s
MWL. When using such methods, it is necessary to de-
cide which analysis strategy fits the given situation best.
Laboratory approaches cannot be adopted to field settings
one-to-one. The described methods all have in common
that they are highly dependent on exactly measured time-
stamps and that the work events of interest are already
known. Block-wise analysis approaches can be used mean-
ingfully if concrete processes (of equal length if possible)
have to be compared, while event-based analysis can help
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Fig. 4 Standardized physiolog-
ical reaction patterns during
first-time confrontation with
new stimuli (vertical-black
line) during manual assem-
bly of a truck support frame-
work (dark-grey= mean over
all assembly steps, light-grey-
solid= step 1, light-grey-dot-
ted= step 2, light-grey-dots-
and-lines= step 3). (For more
information see Bläsing and
Bornewasser 2020)
Abb. 4 Standardisierte phy-
siologische Reaktionsmuster
während der erstmaligen Kon-
frontation mit neuen Stimu-
li (schwarze-vertikale Linie)
im Rahmen der manuellen
Montage eines LKW-Hilfs-
rahmens (grau=Mittelwert
über alle Montageschritte, hell-
grau= Schritt 1, hellgrau (Punk-
te)= Schritt 2, hellgrau (Punkte
und Striche)= Schritt 3). (Mehr
Informationen in Bläsing and
Bornewasser 2020)
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to identify concrete problematic process parts and design
ergonomic countermeasures. For a comprehensive (cogni-
tive) risk analysis, a mixture of both approaches becomes
the best solution. While block-wise approaches are able
to identify critical processes based on the experience of
multiple workers, event-based approaches focus more on
case-analysis and the individual’s experience.

4 Real-time workload classification using
peaks and plateaus as an alternative
analysis approach

The approaches described above primarily focus on the
usage and availability of event-related timestamps. Today,
such timestamps are often missing or only available with
lower temporal resolution (e.g. on the level of entire as-
sembly models, but not on the level of process steps). Eye
tracking and gaze behavioral data can be used as bridg-
ing technologies to post-hoc estimate the interaction time,
but on the long run, data from linked machines (Internet of
Things) are necessary. Connecting those automatically gen-

erated timestamps with relevant physiological data enables
the identification of ANS based arousal changes, which are
interpreted as changes in MWL. Thus, additional analysis
strategies have to be considered to validly connect the ups
and downs of MWL amidst occurring changes in the work
process.

4.1 Of peaks, plateaus, and noise

Missing timestamps therefore complicate the interpretation
of physiological reaction patterns. Coming from the field
of signal detection theory, a continuous data flow might in-
clude relevant signal parts (e.g. reactions to concrete events)
and additional noise. In terms of physiological measure-
ments and MWL, noise would indicate phases without sig-
nificant changes, mainly characterized by naturally occur-
ring fluctuations and minimal changes in a corridor one
might describe as the same workload level. Classical anal-
ysis techniques with fixed analysis durations include a lot of
noise and therefore highlight MWL on a long-term and sur-
face level. The following framework is based on three typi-
cal occurring phenomena or reaction patterns during physi-
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Fig. 5 Characterization of MWL states (d1,2= predefined time values, t=duration, a= amplitude, at= predefined amplitudal threshold). Trajectories
are generated using the Python NeurKit2 toolbox. (Makowski et al. 2021)
Abb. 5 Charakterisierung potenzieller MWL Zustände (d1,2= vordefinierte Zeitwerte, t=Dauer, a=Amplitude, at= vordefinierter Amplituden-
schwellwert). Die Verläufe wurden mit der auf Python basierten NeurKit2 Toolbox erstellt. (Makowski et al. 2021)

ological data assessment: undefined/noise, short peaks, and
longer lasting plateaus. It is assumed that each course of
MWL can be either classified as noise or as an interplay of
peaks and plateau phases.

Fig. 5 visualizes all three possible outcomes. Noise char-
acterizes parts with no additional information. The dura-
tion (d) of those parts is without interest, as long as the total
amplitudal changes (a) during this period stays in a prede-
fined range. If an amplitudal change greater than the defined
threshold is detected within a noisy part, it has to be either
a peak or a plateau. The excess of the threshold adds infor-

mation to the former part of noise. Due to the significant
measured change, the noisy part can become a plateau, and
serve as a new baseline. Thus, noise can be seen as some
kind of plateau without added informational value. With-
out at least a peak or another plateau, it is not possible to
characterize the MWL during a noisy phase. It can only be
stated, that MWL underwent no significant changes during
this period.

Conversely, peaks and plateaus contain informational
value. Both indicate MWL changes over a specific time.
A peak is characterized by a comparatively short time span

K



Z. Arb. Wiss. (2022) 76:146–157 155

(t< d1) and a high amplitude (a) with even abruptly occur-
ring changes. In- and decrease have to appear in a given
timeframe (d1). An exception can be a peak at the end
of a measurement period, where the decrease might not be
a necessary prerequisite. A peak has not necessarily to be an
amplitudal change in a positive direction, decreases (drops)
exceeding the same amplitudal threshold (|a|> at) can also
be classified as peaks. Amplitude-wise plateaus have similar
prerequisites. The main difference is their temporal exten-
sion.

Peaks, plateaus, and noise arise through the interaction
of an individual worker with steadily changing work con-
ditions and can be used to better quantify this highly inter-
active process between internal resources and external de-
mands. Results of those analysis are still dependent on some
settings. A plateau can contain some peaks, and a different
granularity level might reveal plateaus where before just
noise was detectable. In addition, manipulating amplitude
threshold (at) and duration values will change the results.
Necessary characterization values for peaks and plateau
detection (duration and amplitudal threshold) are i.a. de-
pendent on the chosen parameter’s latency (the time until
changes are noticeable), adaptability, and possible range of
measurable differences.

4.2 Detailed peak and plateau analysis: frequency,
amplitude, and duration

If peak and plateau detection is automatized, the character-
ization of those phenomena can add additional information
to the analysis and even have implications for ergonomi-
cal countermeasures. Peaks and Plateaus may vary in their
number of occurrences in a given time (frequency), their
total amplitude, duration, or the ratio of amplitude and du-
ration (see bottom part of Fig. 5). All those analysis strate-
gies should improve the understanding of MWL changes
in a process orientated approach. Those characterizations
can be used to compare different work processes or even
workers. The appearance of high frequent peaks, peaks of
higher amplitude, or especially longer plateaus of higher
MWL can indicate that the process needs improvement or
the worker needs support.

4.3 Pattern analysis andmachine learning

We are living in the age of data with large amounts of
data gathered every day. Especially when using physiologi-
cal measurement devices with continuous data streams, the
amount of information becomes too large to manually han-
dle. Methods from data science, machine learning, and arti-
ficial intelligence can and should be used to get the most out
of the gathered data. Increased processing power, improved
algorithms, and mobile data collection will enable the au-

tomatized and MWL based control of, for example, adaptive
informational assistance systems (Bläsing and Bornewasser
2019). First promising approaches using HR to (live) de-
tect MWL changes have existed for years (Hoover et al.
2012), so in the near future, a better understanding of work
processes and live adjustments on the job will be possible
based on individual MWL data.

When using machine learning in MWL research and
practical application, the full range of available algorithm
classes will be needed. With the main aim of either detect-
ing deviating behavior or classifying momentary physiolog-
ical patterns as a specific subset of MWL, unsupervised as
well as supervised algorithms are needed. To identify more
complex relationships between physiological and machine
data deep learning approaches might help. Yet, it has to be
stated that not all algorithms can cope with physiological
data, especially with the problem of simultaneously mea-
sured channels of different devices (e.g. ECG, eye tracking,
EEG) and their meaningful interaction (Barua et al. 2015,
2020). Furthermore, the varied latencies of the used parame-
ters complicate the application. Future research is necessary
to overcome these limitations and enable an appropriate use
and meaningful interpretation of machine learning in MWL
research and practice.

5 Conclusion

The strategies and framework described above represent at-
tempts to connect theoretical MWL constructs with a vari-
ety of physiological indicators to make MWL a more tangi-
ble phenomenon. For a better understanding, and to be able
to react in an ergonomical meaningful way, an interpreta-
tion of individual physiological trajectories is only possible
amid the presence of a concrete event. Events can either
be analyzed using predefined timestamps or using modern
machine learning and data science approaches to post-hoc
connect prominent reaction patterns with machine data.

Within the present framework, several research questions
can be derived. For example, future research might investi-
gate what patterns of psychophysiological reactions indicate
MWL stability and which should be stated as remarkable
changes. In addition, borders of MWL (like Young et al.
(2015) propose them), as well as the number of different
MWL levels should be discussed. Furthermore, the topic
of distinguishability between physical, mental, and even
emotional load at the work place should be addressed. Es-
pecially physical load can lead to masking effects using HR
or HRV as indicators of MWL, due to the bigger impacts
of physical work on the cardiovascular system (Backs et al.
1994). A combination of different indicators might repre-
sent a solution, as long as these indicators can be connected
in a consistent and theoretically derived way.
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While the combination of different physiological param-
eters to one MWL indicator offers some advantages, it is
still unclear if different parameters, for example HR and
PR, might only be representative for special subtasks dur-
ing human information processing. Accordingly, changes in
HR and PR might only correlate with those tasks. Sensory
and decision-making processes might be linked to different
indicators and might be represented by different patterns in
duration and amplitude. Machine learning approaches can
help to combine the information from different indicators,
without losing the information of single indicators.

Using in-depth analysis of physiological data to classify
MWL (and MWL changes), there seems to be a fine line be-
tween differences that are detectible and differences that are
significant in content. A statistically significant difference
does not necessarily lead to meaningful conclusions, as well
as the absence of such differences does allow the conclu-
sion that the work process is not ergonomically improvable.
The final decision should always be left to a human being.
Machine learning and pattern analysis should be seen as
useful but fallible tools.

Even with theoretical hurdles still existing and chal-
lenges that need to be overcome, especially concerning
alignment of multimodal data, movement artefacts, and fur-
ther measurement deficiencies, in-depth analysis of contin-
uous physiological data might be an important intermediate
step between the state of the art in ergonomic research and
the prospective application of machine learning algorithms
to automatically and just-in-time classify MWL.
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