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Abstract
This article presents a model of the financial system as an inhomogeneous random financial
network (IRFN) with N nodes that represent different types of institutions such as banks or
funds and directedweighted edges that signify counterparty relationships between nodes. The
onset of a systemic crisis is triggered by a large exogenous shock to banks’ balance sheets.
Their behavioural response is modelled by a cascade mechanism that tracks the propagation
of damaging shocks and possible amplification of the crisis, and leads the system to a cascade
equilibrium. Themathematical properties of the stochastic framework are investigated for the
first time in a generalization of the Eisenberg–Noe solvency cascademechanism that accounts
for fractional bankruptcy charges. New results include verification of a “tree independent
cascade property” of the solvency cascade mechanism, and culminate in an explicit recursive
stochastic solvency cascade mapping conjectured to hold in the limit as the number of banks
N goes to infinity. It is shown how this cascade mapping can be computed numerically,
leading to a rich picture of the systemic crisis as it evolves toward the cascade equilibrium.

Keywords Systemic risk · Banking network · Random financial network · Cascade ·
Interbank exposure · Funding liquidity · Insolvency · Locally tree-like

Mathematics Subject Classification 05C80 · 91B74 · 91G40 · 91G50

1 Introduction

Systemic risk, the risk of large scale failure of the financial system as defined for example
in Schwarcz [34], has long been viewed by Kaufman [31] and others as cascades of diverse
types of contagious shocks including funding liquidity shocks, solvency shocks and indirect
shocks through asset fire sales and bank panics. These shocks are propagated through a diverse
network of financial institutions, including banks, funds and other entities. This diversity of
shocks and types of institutions points to the need for highly inhomogeneous models of the
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financial system. Moreover, incompleteness of information in financial systems implies our
models need to be stochastic.

The first aim of this article is to introduce inhomogeneous random financial networks
(IRFNs) as a stochasticmodelling framework for the balance sheets of a large, inhomogeneous
collection of financial institutions. At the core of financial network models, e.g. Gai and
Kapadia [21], Amini et al. [4], Detering et al. [17] and Hurd [27], is the choice of a random
graph distribution for the “skeleton” of N banks connected by directed edges that represent
interbank exposures pointing fromdebtor to creditor bank. In thosemodels, the skeleton graph
is taken to be a directed configuration graph, an important generalization of the Erdös-Renyi
randomgraph. Amini andMinca [3] andDetering et al. [17] have studied an alternative family
called directed inhomogeneous random graphs (DIRGs) that better capture the diversity of
bank sizes, connectivity and types. The IRFN framework proposed here continues in this
vein by assuming the skeleton graph to be a DIRG.

Given a suitable stochastic network model for banks with their balance sheets, another
critical issue for systemic risk is to determine how the default of any bank leads to solvency
shocks that hit other banks, creating cascades that may amplify within the financial system.
The above cited articles follow a common approach by investigating generic vulnerabilities of
banking systems when shocks derive from an assumedmechanistic behaviour of banks. Such
a solvency cascade mechanism is often analogous to the payment clearing conditions arising
in the EN 2001 model, the paradigmatic network model introduced by Eisenberg and Noe
[20]. The aim is then to characterize the crisis dynamics and crisis equilibrium that eventually
arise through iteration of the cascade mapping that encodes this cascade mechanism. For
analytical tractability, most contributions to the random financial network literature adopt
an over simple cascade mechanism such that the shocks generated by an insolvent bank are
a fixed loss-given-default fraction on its interbank debt. This type of discontinuous “hard
threshold” assumption excludes the continuous clearing mechanism of the EN 2001 model
that assumes zero bankruptcy costs, and many of its natural generalizations. A second goal
of the present article is to overcome this limitation, and analyze systemic risk when the
recovery fraction of a defaulted bank depends on its degree of insolvency and may take any
of a continuum of values. Accounting for such “soft threshold” features of transmitted shocks
is a substantial technical extension of systemic risk theory that encompasses more realistic
families of cascade mappings on any random financial network.

IRFNmodels for a finite number N of banks are agent basedmodels that can be explored by
pure simulation. Alternatively, as for directed configuration skeletons, sequences of DIRGs
parametrized by increasing size N have an important property often called locally tree-like
(LT). This property leads to important analytical results because the random graph sequence
is convergent as N → ∞ to a connected Galton-Watson random tree. This means that the
density of cycles of ant fixed length k in the random skeleton graph goes to zero as N
goes to infinity. Amini et al. [4] and Detering et al. [17] have used a theorem of Wormald
[39] to prove that certain solvency cascade mechanisms on LT sequences of random skeleton
graphs have large N asymptotics of the cascade equilibrium that are determined by an average
default probability defined as a fixed point of a scalar-valued function. Although theWormald
theorem is powerful, its combinatorial nature means it cannot easily handle the continuum
of bank solvency levels that arises from the EN 2001 cascade mechanism. The large N
asymptotic results continue to hold in a much broader context.

We shall identify an alternative tree independent cascade property that ensures that the
iterated cascade mapping can be solved recursively when the underlying skeleton graph is a
finite tree. Conjecturally, whenever a tree independent cascade mechanism acts on a locally
tree-like random skeleton, there will be an explicit recursive stochastic representation of
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the cascade mapping in the large N limit. Under this conjecture, iterations of the cascade
mapping converge to a collection of probability distributions representing a cascade equilib-
rium or fixed point of the cascade mapping. It has been observed in Melnik et al. [32] that
such fixed points and related asymptotic formulas often provide an “unreasonably effective
approximation” of finite sized systems studied by simulation. Moreover, subtle properties
of the modelled system, notably its resilience to large cascades, can be understood through
sensitivity analysis of the large N fixed point.

In summary, the main contributions of this article are:

1. Introduction of the inhomogeneous random financial network (IRFN) framework, closely
related to the modelling framework of Amini and Minca [3] and Detering et al. [17], that
provides a flexible and scalable architecture for modelling many of the complex network
characteristics thought to be relevant to systemic risk, specifically random node types,
balance sheets and exposures.

2. We present for the first time a stochastic cascade analysis for an economically important
family of solvency models with partial fractional recovery of defaulted interbank assets,
that includes the EN 2001 framework and an extension introduced by Glasserman and
Young [24]. Techniques are developed for insolvency level indicators of banks that take
a continuum of values in [0, 1], not simply the binary values {0, 1}.

3. We formulate and prove a tree independent cascade property for this family of solvency
cascade mechanisms. It is conjectured that cascade mechanisms with this property acting
on a “locally tree-like” random skeleton, should have analytically tractable large N
asymptotics.

4. Following up on the previous point, the large N asymptotics for solvency cascades in
IRFNmodels is developed, yielding explicit computable recursive probabilistic formulas
for the cascade equilibrium.

5. Finally, for the first time, we exhibit a numerical exploration of the large N cascade
equilibrium in models with a soft threshold solvency mechanism.

The IRFN construction, in common with Amini and Minca [3] and Detering et al. [17],
provides two specific benefits compared to the configuration graph RFN constructions of Gai
and Kapadia [21] and Amini et al. [4] and others. First, unlike the node degree, bank types
represent financial characteristics that do change only slowly over time, if at all. Allowing
an arbitrary finite number of bank types can encode an unlimited range of node characteris-
tics. Second, bank type makes good financial sense as a parsimonious conditioning random
variable. Thus, we shall assume that random balance sheets and exposures are independent,
conditionally on node types.

In addition to theworks cited above, the present article also relates to an impressive amount
of systemic risk research, for which extensive list of references are provided in reviews by
Benoit et al. [5], Capponi [11] and Jackson and Pernoud [30]. To list some of the important
recent work, Craig and von Peter [16] and Acemoglu et al. [1] follow up pioneering work by
Allen andGale [2] on the systemic effect of network topology.Approaches to bank resolution,
meaning the treatment of the recovery value for defaulted banks, is an input to this article
that has been studied from many points of view, including Rogers and Veraart [33], Chari
and Kehoe [13], Weber and Weske [37] and Bernard et al. [6]. Other channels of systemic
contagion have been studied: Duarte and Eisenbach [19], Capponi and Larsson [12], Cont
and Schaanning [15] and Bichuch and Feinstein [7] develop asset fire sales; Gai and Kapadia
[22] andHeider et al. [25] focus on funding liquidity contagion; Bookstaber et al. [9] provides
an agent-based model of multiple channels. Regulatory challenges and tools in systemic risk
have been reviewed in Galati and Moessner [23].
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This article is organized as follows. Section 2 generalizes the EN 2001 solvency cas-
cade to include a flexible family of default mechanisms. It then defines and proves the tree
independent cascade property of such solvency cascade mechanisms. Section 3 introduces
inhomogeneous randomfinancial networks (IRFNs) and explores the large N analytical prop-
erties of the degree and balance sheet distributions. It proves the first step of the stochastic
solvency cascade mapping in the N = ∞ limit for a single node type, and then provides a
non-rigorous derivation of this argument extended to multiple node types and valid for any
time step. Section 4 explores data, calibration and computation issues that arise when the
IRFN cascade method is applied to a real world network. Section 5 presents a numerical
implementation of the stochastic cascade mapping in a class of IRFN models with fractional
bankruptcy costs. Finally, a concluding section discusses next steps for better understanding
systemic risk in inhomogeneous random financial networks.
Notation: For a positive integer N , [N ] denotes the set of node labels {1, 2, . . . , N }. Random
variables X have cumulative distribution function (CDF), probability density function (PDF)
and characteristic function (CF) denoted by FX , ρX = F ′

X , and f̂ X respectively. The L2 norm
of a function f (x) on a domain D is defined to be ‖ f ‖L2(D) = ∫

D | f (x)|2 dx . For any event
A, 1(A) denotes the indicator random variable that takes binary values in {0, 1}. Landau’s
“big O” notation f (N ) = O(Nα) for some α ∈ R is used for a sequence f (N ), N = 1, 2, . . .
to mean that f (N )N−α is bounded by a constant as N → ∞.

2 Solvency cascades with bankruptcy costs

The financial system at any time will be a network of N banks labelled by v ∈ [N ]. Each
bank v will be connected to another bankw by a directed edge labelled by (vw) ∈ [N ]×[N ]
whenever there is a significant interbank debt exposure of w to v, i.e. when v owes w a
significant amount. The resultant directed random graph of credit relationships is called the
skeleton of the network.

Cascade mechanisms (CMs) encode the stylized behaviours that banks follow when a
financial crisis has been triggered. These non-linear behaviours reflect assumptions that in
a crisis, banks replace “business as usual” strategies by emergency or remedial actions,
and sometimes in extreme circumstances are taken over by a system regulator. We assume
healthy banks “do nothing but wait and see” during a crisis, while weak banks’ behaviour
is severely constrained by the regulatory structure. From a systemic perspective, cascades
can arise when weak banks’ behaviour negatively impacts other banks. Hurd [27, Chapter 2]
provides an overview of some of the important cascade channels that should be included in
models of systemic risk. For example, funding liquidity cascades arise as banks experience
withdrawals by depositors or wholesale lenders that lead them to tighten lending to other
banks in the system. The focus of the present article is on solvency cascades generated by
bank defaults. Defaulted banks transmit shocks to counterparties along edges. Since default
shock transmission is mathematically similar to funding liquidity contagion, the cascade
mechanisms proposed in this section have broad implications on systemic risk.

2.1 Balance sheets and solvency

The treatment of solvency cascades presented here follows the discussion ofHurd [27, Section
2.1], starting with balance sheets of banks viewed at the coarse-grained resolution shown in
Table 1.
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Table 1 A stylized bank balance
sheet

Assets Liabilities

Interbank assets Z̄ Interbank debt X̄

External assets Ȳ External debt D̄

Equity Ē, �̄

Prior to the onset of the crisis, a bank v has a balance sheet that consists of assets and
liabilities B̄v := [Z̄v, Ȳv, X̄v, D̄v, Ēv] labelled by bars, that represent the notional aggregated
values of contracts (also called book values or face values), valued as if all banks are solvent.
Assets (loans and securities) and liabilities (debts and equity) are separated into internal and
external quantities depending onwhether the counterparty is a bank or not. The internal assets
Z̄v and liabilities X̄v of bank v can be disaggregated into the collection of notional exposures
�̄vw to its counterparties w. Banks and institutions that are not part of the system under
analysis are deemed to be part of the exterior, and their exposures are included as part of the
external debts and assets. Finally, only a single category of external assets is considered.

Definition 1 The total notional value of assets TAv of bank v prior to the crisis consists
of the internal assets Z̄v and the external assets Ȳv . The total notional value of liabilities
TLv of the bank consists of the internal debt X̄v , the external debt D̄v and the bank’s equity
Ēv . The exposure of bank w to bank v is denoted by �̄vw . All components of B̄ and �̄ are
non-negative, and the accounting identities are satisfied:

Zv =
∑

w

�̄wv, X̄v =
∑

w

�̄vw,
∑

v

Z̄v =
∑

v

X̄v, �̄vv = 0 ,

TAv := Z̄v + Ȳv = X̄v + D̄v + Ēv =: TLv . (1)

The full notional balance sheet B̄v of bank v can be reconstructed from the collection of
variables �̄vw and Ȳv, Ēv .

Notional values are considered to be applicable to banks that are compliant with all
regulatory constraints, prior to the financial crisis. A shock to the system that is sufficient to
trigger a systemic risk event or crisis will be modelled as a large instantaneous change to the
collection of balance sheets.

Definition 2 A crisis trigger at a moment in time t = 0, occurs when a shock δB = [δY, δE]
to the balance sheets is sufficiently severe to put some banks into a stressed state where not
all of their post-trigger balance sheet entries B(0) := B̄ + δB are positive. For simplicity
in this article we assume interbank debts are not directly impacted by the trigger, that is
δ� = 0,�(0) = �̄.

To maintain the convention that balance sheet entries are never negative, we introduce
the solvency buffer �

(0)
v := Ēv + δEv that may now be negative, in which case the bank is

said to be insolvent or, equivalently, bankrupt. Superscripts (n) always indicate the state of
a variable at the end of day n. In our general systemic risk modelling paradigm, the cascade
that follows the crisis trigger will be viewed at the end of each day n ≥ 0 as the day-to-day
dynamics for the collection of balance sheets B(n)

v of the entire system as the system tries to
resolve these insolvent banks.
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2.2 Solvency cascademechanisms

We now want to study how the banks in a network will respond when a crisis trigger event
on day n = 0 leaves some banks insolvent. We consider a class of partial recovery models
extending EN 2001, the clearing model for defaulted debt of Eisenberg and Noe [20], to
account for bankruptcy costs paid when a firm defaults. To address bankruptcy costs and
the potential for dangerous contagion amplification, Rogers and Veraart [33] and Weber and
Weske [37] extend the EN 2001 model by assuming that bankruptcy costs given default
are dependent on both the endowment Y and the value of interbank assets Z. Their models
typically have hard thresholds, meaning the recovery value is discontinuous at the solvency
threshold, creating an effectively infinite shock amplification effect. An extreme version of
this assumption often studied in the systemic risk literature, for example Gai and Kapadia
[21], is that there is zero recovery on all defaulted interbank debt. In contrast to such models
with hard thresholds, here we assume the recovery fraction on defaulted interbank debt is an
increasing, possibly continuous, function of the balance sheet ratio �/X.

Assumption 1 (Fractional Recovery) External debt D is senior to interbank debt X and all
interbank debt is of equal seniority. The recovery on interbank debt Xv from any insolvent
bank v is fairly distributed amongst creditors by the formula

X̄v hv

(
�v

X̄v

)

(2)

Here the recovery function hv(x) : R → [0, 1] is upper semi-continuous, monotonically
increasing and has hv(x) = 1 for x ≥ 0.

Typical forms for the recovery function hv include:

1. h0(x) = 1(x ≥ 0): This is the zero-recovery assumption of Gai and Kapadia [21].
2. h1(x) = min

(
1,max(x + 1, 0)

)
: This is the case of zero bankruptcy costs assumed by

Eisenberg and Noe [20].
3. hλ(x) = min

(
1,max(x/λ + 1, 0)

)
for a fixed parameter λ ∈ (0, 1). This case was

introduced by Glasserman and Young [24] and follows from the assumption that total
bankruptcy costs for a defaulted bank are proportional to the negative part of its solvency
buffer.

We point out that methods to study the zero recovery model with h0(x) need only distinguish
solvent and insolvent banks, whereas the general case with hλ(x), λ > 0 discussed here must
account for a continuum of solvency levels.

It is shown in Hurd [27, Section 2.1.2] that under the fractional recovery assumption 2, the
cascade mechanism has a reduced form in terms of the solvency buffers. For each time step
n > 0 of the solvency cascade, the solvency buffers satisfy a recursive system of equations

S(n)
wv := �̄wv

(
1 − hw(�(n)

w /X̄w)
)

, (3)

�(n+1)
v = �(0)

v −
∑

w �=v

S(n)
wv (4)

that depends only on the initial collection of random variables {�(0)
v , �̄wv}. These recursive

equations specify how over time each insolvent bank w sends a growing shock S(n)
wv that

impacts the solvency buffers of their creditors v.
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2.3 Tree independent cascade property

AconnecteddirectedgraphGwith nodes [N ] anddirected edgesE will be called a directed tree
if its undirected counterpart is a tree. In this section, we consider only such directed trees. The
components of a directed tree have a natural partial order induced by the direction of links. As
we now explore, the solvency cascade mechanism just defined generates only “downstream”
shocks Swv that flow fromw to its creditors v. It follows that the solvency cascademechanism
has a specific tree independent cascade property: this new concept captures the notion that if
G is a directed tree, then the different shocks S(n)

wv hitting any node v from different debtorsw

are dependent on mutually disjoint collections of balance sheet variables. This property has
important implications for the statistical dependencies that arise for the solvency cascade on
random networks.

Every node and directed edge of the directed connected tree G = [N ] ∪ E is connected to
a fixed node w by a unique path, whose final edge is either into or out of w. Thus, for each
bank u ∈ [N ] and edge (wv) ∈ E we can define natural subsets:

1. M−
u : the subset of G not including u whose elements are each connected to u by a path

whose final edge is directed into u.
2. M−

w\v: the subset of G whose elements are each connected to w by a path not including
(wv) .

Note there is a disjoint union for each u ∈ [N ]:
M−

u = ∪w:(wu)∈E
(
M−

w\u ∪ {(wu)}
)

. (5)

Definition 3 A solvency cascade mechanism is said to have the tree independent cascade
property if whenever the interbank edges form a connected directed tree, then for all n ≥ 0
and (wv) ∈ E the transmitted shocks S(n)

wv depend only on balance sheet variables�,� taken
from M−

w\v ∪ {(wv)}.
The following proposition implies the solvency cascade mechanism has the tree indepen-

dent cascade property.

Proposition 1 (Tree independent property of the solvency cascade mechanism) Consider the
solvencymodel when the skeleton G = [N ]∪E is a connected directed tree. Then the solvency
cascade defined by (3), (4) is such that for all n ≥ 0 and (wv) ∈ E ,
1. �

(n)
v depends only on balance sheet variables taken from M−

v ∪ {v}.
2. S(n)

wv depends only on balance sheet variables taken from M−
w\v ∪ {(wv)}.

Proof of Proposition 1 Assume inductively that�(n)
v depends only onM−

v ∪{v} variables for
some n = k and all v. Then, using (3), (4) we find

1. for any (wv) ∈ E , S(k)
wv = �̄wv(1−hw(�

(k)
w /(X̄w\v +�̄wv)) depends onM−

w\v ∪{(wv)}
variables.

2. The sum over shocks in �
(k+1)
v = �

(0)
v − ∑

w �=v S
(k)
wv includes only shocks from edges

(wv) ∈ E that depend on M−
w\v ∪ {(wv)} ⊂ M−

v variables.

3. By (5), �(k+1)
v depends on M−

v ∪ {v} variables.
Finally, note also that the induction step is true for n = 0. These facts are enough to complete
the proof by induction on n of the statement for all n ≥ 0. ��
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Remark 1 The tree independent property of the solvency cascademechanism, combined with
(5), implies that conditioned on the skeleton being a connected directed tree G = [N ] ∪ E ,
the sum of shocks

∑
w:(wv)∈E S(n)

wv hitting any bank v for any n ≥ 0 is a sum of independent
random variables.

3 Solvency cascades on IRFNs

We now introduce the inhomogeneous random financial network (IRFN) as an extension
of the random network approach to systemic risk. An IRFN specifies a random network of
banks at a moment in time, with balance sheets as described in the previous section. The
framework has two levels of structure. The primary skeleton graph denotes the directed
random graph on N banks labelled by nodes v ∈ [N ] where each directed edge labelled by
(vw) ∈ [N ]×[N ] signifies a significant exposure of bankw to bank v. The secondary balance
sheet layer specifies the balance sheet random variables of banks, representing potential
interbank exposures, conditioned on knowledge of the skeleton graph.

3.1 IRFN structure

Inhomogeneity in the IRFN model arises through classifying banks by a finite number M
of types. The types (Tv)v∈[N ] specify the kinds of financial institutions in the model. Fur-
thermore, they are assumed to completely determine the dependence structure of the balance
sheet and exposure random variables. The IRFN framework is quite flexible: exactly the same
structure has been introduced to infectious disease modelling in Hurd [26].

The skeleton graph is modelled as a directed inhomogeneous random graph (DIRG),
generalizing Erdös-Renyi random graphs, in which directed edges are drawn independently
between ordered pairs of banks, not with equal likelihood but with likelihood that depends
on the bank types. This class, also called the stochastic block model, has its origins in Chung
and Lu [14] and Britton et al. [10] and has been studied in generality in Bollobáas et al.
[8] and the textbook van der Hofstad [35]. This class of random graph has been applied to
systemic risk by Amini and Minca [3] and Detering et al. [18]. The DIRG structure arises by
the assumption that directed edge indicators are Bernoulli random variables Ivw defined for
ordered pairs of banks (v,w), that are independent conditioned on the assignment of bank
types.

Assumption 2 (Skeleton Graph) The skeleton graph of an IRFN is a directed inhomogeneous
random graph G = [N ] ∪ E ∈ DIRG(P, κ, N ) with N nodes labelled by v ∈ [N ], defined by
two collections of random variables Tv, v ∈ [N ] and Ivw, v,w ∈ [N ].
1. Nodes: Each node of G represents a bank, and has type Tv ∈ [M] drawn independently

with probability P(T ) from a list of bank types [M] of cardinality M .
2. Edges: Directed edges of G represent the non-zero entries of the incidence matrix I . For

each pair v �= w ∈ [N ], the entry Ivw is the indicator for w to be exposed to v, which
is to say that v has borrowed from w. Conditioned on the type vector (Tv)v∈[N ], the
collection of edge indicators Ivw is an independent family of Bernoulli random variables
with probabilities

P[Ivw = 1 | Tv = T , Tw = T ′] = (N − 1)−1κ(T , T ′)1(v �= w) . (6)
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Here the type-probabilities sum to one
∑

T∈[M] P(T ) = 1. The probability mapping ker-
nel, κ : [M]2 → [0,∞), determines the likelihood that two banks v,w of the given types have
an exposure edge from v to w. The assumed N dependence is necessary to assure sparseness
of the graph for large N : for consistency we require that N − 1 ≥ maxT ,T ′ κ(T , T ′).

The initial balance sheets for all banks are derivable from a collection of multivariate
random variables that are conditionally independent depending on the information of types.

Assumption 3 (Balance Sheets and Exposures) The secondary layer of an IRFN, the collec-
tion of initial balance sheets and potential exposures B(0)

v , �̄vw at step n = 0, are mutually
independent random variables, also independent of I = (Ivw), conditioned on the vector of
bank types (Tv)v∈[N ].

1. For each bank v, the marginal CDF of B(0)
v = [Y(0)

v ,�
(0)
v ] conditioned on the type vector

is an increasing function of x = (x1, x2) ∈ R+ ×R taking values in [0, 1] and depending
only on Tv ∈ [M]:

FB(x1, x2 | T ) := P[Y(0)
v ≤ x1,�

(0)
v ≤ x2 | Tv = T ] . (7)

Note that Y(0)
v is a positive random variable whereas the solvency buffer �

(0)
v may be

negative. The initially insolvent banks are those with �
(0)
v < 0.

2. For each edge vw, the marginal CDF of �̄vw conditioned on the type vector is an increas-
ing function on R+ = [0,∞) depending only on Tv, Tw ∈ [M]:

F�(x | T , T ′) := P[�̄vw ≤ x | T = Tv, T
′ = Tw] , (8)

such that

F�(0 | T , T ′) = 0, lim
x→∞ F�(x | T , T ′) = 1 .

In summary, a finite IRFN representing the system after a crisis trigger amounts to a
collection of random variables (T , I ,B(0), �̄) satisfying Assumptions 1 and 2. Note that any
potential exposure �̄vw will be an actual exposure if and only if (vw) ∈ E , i.e. if Ivw = 1.
Note also that the solvency cascades of Sect. 2.2 depend only on the reduced set of variables
not including {Y(0)

v }.

3.2 Analytics of IRFNmodels

The IRFN framework just introduced specifies the joint distributions of the random variables
T , I ,B(0), �̄(0), thereby providing a compact stochastic representation of a given real world
network of N banks at the moment a financial crisis is triggered. The same distributional
data defines a sequence of random networks with varying N , and the aim of this section is to
investigate the analytical properties of this sequence in the limit N → ∞. The results we find
are important consequences of the locally tree-like property of the DIRG skeleton, meaning
the property that the density of cycles (closed loops) of any fixed length goes to zero in the
limit.

In the following, we shall make repeated use of the classical Lévy Continuity Theorem
(LCT). This theorem, proved in Williams [38], considers a sequence of random variables
X1, X2, . . . such that the corresponding sequence of characteristic functions converges point-
wise to a function φ. The LCT then states that this sequence converges in distribution to a
random variable X if and only if the function φ is a characteristic function. Moreover, under
this condition, φ is necessarily continuous and the characteristic function of X .
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3.2.1 Degree distribution of the skeleton graph

The distribution of the number of counterparties of nodes in DIRGs, in other words their in-
and out-degrees, has a natural Poisson mixture structure in the large N limit. To show this,
permutation symmetry amongst the nodes implies one only needs to consider bank1with arbi-
trary type T1 = T , whose in/out degree is defined as the pair (d−

1 , d+
1 ) = ∑N

w=2(Iw1, I1w), a
sumof conditionally IID (independent and identically distributed) bivariate Bernoulli random
variables. Here, each summand has the identical bivariate conditional characteristic function
(CF)

E
(N )[eik1 Iw1eik2 I1w | T1 = T ] =

∑

T ′∈[M]
P(T ′)

(
1 + (N − 1)−1κ(T ′, T )(eik1 − 1)

)

×
(
1 + (N − 1)−1κ(T , T ′)(eik2 − 1)

)
. (9)

The conditional CF of (d−
1 , d+

1 ) is the N − 1 power of this function:

E
(N )[eik1d−

1 +ik2d
+
1 | T ]

=
[

1 + 1

N − 1

∑

T ′
P(T ′)

(
κ(T ′, T )(eik1 − 1) + κ(T , T ′)(eik2 − 1)

)
+ O(N−2)

]N−1

(10)

It is elementary to show that this function converges pointwise for all (k1, k2) ∈ R
2 to

f̂ (k1, k2 | T ) = exp
[
λ−(T )(eik1 − 1) + λ+(T )(eik2 − 1)

]
, (11)

where λ−(T ) = ∑
T ′ P(T ′)κ(T ′, T ), λ+(T ) = ∑

T ′ P(T ′)κ(T , T ′). Finally, we can identify
f̂ as a product of characteristic functions of Poisson random variables, and therefore the LCT
implies the following result.

Proposition 2 The in/out degree sequence (d−
v , d+

v )(N ) of any type T bank v converges in
distribution as N → ∞ to a bivariate pair (d−

1 , d+
1 )of independentPoisson randomvariables

with parameters λ−(T ), λ+(T ).

Recall that a finite mixture of a collection of probability distribution functions is the
probability distribution formed by a convex combination. Thus for a finite type space [M],
the asymptotic unconditional bivariate in/out degree distribution of any bank is:

f̂ (k1, k2) =
∑

T∈[M]
P(T ) f̂ (k1, k2 | T ) . (12)

which is a finite mixture. Each mixture component has a product Poisson distribution with
Poisson parameters (∑

T ′
P(T ′)κ(T ′, T ),

∑

T ′
P(T ′)κ(T , T ′)

)
(13)

and the mixing variable is the bank-type T with mixing weight P(T ).

3.2.2 Distribution of interbank debt

The next result provides the N → ∞ limit in distribution of the interbank debt X̄(N )
1 =

∑N
w=2 �̄1w of a typical bank v = 1.
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Proposition 3 1. When bank 1 has type T , the sequence X̄(N )
1 converges in distribution to

a random variable X̄1 whose characteristic function is given by:

f̂X(k | T ) := exp

[
∑

T ′
P(T ′)κ(T , T ′)( f̂�̄(k | T ′, T ) − 1)

]

. (14)

2. When bank 1 has type T , the sequence X̄(N )
1\2 := ∑N

w=3 �̄1w converges in distribution to

a random variable X̄1\2 with the same characteristic function f̂X(k | T ).
3. Let A ∈ Z+ be a finite set of positive integers. Then the finite collection of interbank debt

random variables {X̄v, v ∈ A} is independent in the N → ∞ limit.

Proof of Proposition 3 For part (1), the conditional IID (independent, identically distributed)
property of the factors of eikX̄1 = ∏

w �=1 e
ik I1w�̄1w implies an exact formula valid for finite

N :

f̂ (N )
X (k | T ) = E

(N )

⎡

⎣
∏

w �=1

(
1 + I1w(eik�̄1w − 1)

)
| T

⎤

⎦

=
(

1 +
∑

T ′
P(T ′)κ(T , T ′)

N − 1

(
f̂�(k | T , T ′) − 1

)
)N−1

, (15)

where f̂� is the CF of the distribution given by (8). It is straightforward to show that this
sequence of functions converges pointwise for k ∈ R to the function f̂X(k | T ) given by
(14). Equation 14 can be rewritten

f̂ X (k | T ) = exp

[∫ ∞

0
[eiku − 1]μX (u | T )du

]

(16)

with μX (u | T ) = ∑
T ′ P(T ′) κ(T , T ′) ρ�(u | T , T ′), which can be identified as the

characteristic function of the positive compound Poisson random variable with finite jump
measure dμX (· | T ) on R

+. Thus the LCT implies the convergence in distribution of the
sequence to a compound Poisson random variable X. The proof of part (2) also follows by
the same method.

For part (3), the joint conditional CF of X̄1, X̄2 for two banks will be given by

E
(N )[eik1X̄1eik2X̄2 | T1, T2]
=

(

1 + κ(T1, T2)

N − 1

(
f̂�(k | T1, T2) − 1

)
) (

1 + κ(T2, T1)

N − 1

(
f̂�(k | T2, T1) − 1

)
)

×
∏

w �=1,2

∑

T ′
P(T ′)

(

1 + κ(T1, T ′)
N − 1

(
f̂�(k | T1, T ′) − 1

)
)

×
(

1 + κ(T2, T ′)
N − 1

(
f̂�(k | T2, T ′) − 1

)
)

The first two factors converge pointwise to 1 and the product is over N −2 identical functions
that converge pointwise to characteristic functions. Again, LCT applies to yield the stated
limit in distribution. Finally, note that the required asymptotic factorization can be proved
similarly for the joint conditional CF for any finite collection of banks. ��
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Remark 2 Note that unlike in multitype networks, for a network with only one type (M = 1),
the random variables {X̄v, v ∈ A} are strictly independent for finite N . Thus the proof of part
(3) of the Proposition also shows that dependence arises through the conditioning variables
(Tv). However, this dependence is weak in the sense it disappears in the N → ∞ limit.

3.3 Single type networks: the first cascade step

To understand the large N asymptotics of the solvency cascade defined for any finite N in
Sect. 2, we consider the first cascade step in the case of a single type, M = 1. In this setting,
the IRFN skeleton is a directed Erdös-Renyi random graph with a constant mean-degree
parameter κ > 0.

Consider for n = 0 the single shock transmitted from 2 to 1 for two typical banks 1, 2. We
write this as S(0)

21 = G(X , Y , I21Z) where the shock transmission function is G(x, y, z) :=
z(1−h(y/(x+z))with a continuous recovery function h as in equation (2). The three random
variables X = X̄2\1 := ∑

w �=1,2 I2w�̄2w, Y := min(�(0)
2 , 0), Z := �̄21 are independent for

finite N . Since eikG(X ,Y ,I21Z) = 1+ I21(eikG(X ,Y ,Z) − 1), the characteristic function of S(0)
21

is given for finite N by

E
(N )[eikS(0)

21 ] = 1 + κ

N − 1

∫ 0

−∞
ρ

(0)
� (y)E(N )[eikG(X̄2\1,y,�̄21) − 1] dy (17)

Note also that G(X , Y , Z) is a continuous function of a sequence of random vectors
(X , Y , Z) that converges in distribution. This implies it converges in distribution as N → ∞.

The total solvency shock transmitted to bank 1 in step 0 is a sum S(0)
1 := ∑

w �=1 S
(0)
w1

of identical shocks {S(0)
w1}w �=1 that, as observed in Remark 2 for the single type IRFN, are

independent for any N . Therefore,

E
(N )[eikS(0)

1 ] =
(
E

(N )[eikS(0)
21 ]

)N−1
. (18)

A simple continuity argument arising from the convergence in distribution of G(X , Y , Z),
shows that the characteristic function of the total solvency shock S(0)

1 = ∑
w �=1 S

(0)
w1 converges

pointwise for k ∈ R to

f̂ (0)
S (k) := exp

(

κ

∫ 0

−∞
ρ

(0)
� (y)R(k, y) dy

)

, (19)

where
R(k, y) := lim

N→∞E
(N )[eikG(X̄2\1,y,�̄21) − 1] . (20)

Thus theLCT implies that S(0)
1 converges in distribution to a randomvariablewithCF f̂ (0)

S (k).
Under regularity conditions such as an L2-condition, one can use the Parseval-Plancherel
identity in Fourier analysis and rewrite (19) as

f̂ (0)
S (k) := exp

(

κ

∫ ∞

−∞
f̂ (0)
� (k′)R̂(k,−k′) dk′

)

, (21)

where

R̂(k, k′) := 1

2π

∫ 0

−∞
eik

′y R(k, y) dy . (22)
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The impacted solvency buffer at the end of step 0 is �
(1)
1 = �

(0)
1 − S(0)

1 where S(0)
1

and �
(0)
1 share no common balance sheet random variables and are therefore independent.

From the multiplicative property of characteristic functions of sums of independent random
variables, the impacted solvency buffer �

(1)
1 has the product characteristic function

f̂ (1)
� (k) = f̂ (0)

� (k) f̂ (0)
S (−k) . (23)

We see that step 0 of the single type solvency cascade mapping takes the initial conditional
distributional data for the collection {Ivw, �̄vw,�

(0)
v }, combined with a conditional indepen-

dence assumption, and outputs univariate distributional data for the collection (�
(1)
v )v∈[N ].

3.4 Solvency cascade: multiple types

There are two reasons the rigorous N → ∞ argument just presenteddoes not easily generalize
to the IRFN framework with M > 1, or for subsequent cascade steps. First, at step n = 0
when M > 1, there is no longer strict conditional independence of the collection of random
variables S(0)

w1 , w �= 1. However, Part 3 of Proposition 3 indicates that the dependence is
weak, and goes to zero as N → ∞. It is therefore highly plausible that the total solvency
shock S(0)

1 converges in distribution to a random variable with CF conditioned on the type
T1 = T given by:

f̂ (0)
S (k | T ) := exp

(
∑

T ′
P(T ′)κ(T ′, T )

∫ 0

−∞
ρ

(0)
� (y | T ′)R(k, y | T , T ′) dy

)

(24)

where

R(k, y | T , T ′) + 1 := lim
N→∞E

(N )[eikG(X̄2\1,y,�̄21) | T1 = T , T2 = T ′] . (25)

Second, even in the single type setting, the collection {�(1)
v }v∈[N ] is no longer indepen-

dent, and thus the proof of the large N convergence for n = 0 does not extend to n > 0.
Nonetheless, the tree independent property of the solvency cascade mechanism proved in
Sect. 2.3, combined with the locally treelike property of the skeleton graph, provides justifi-
cation for conjecturing that the solvency cascade dynamics is given for all n by iterates of the
mapping from �(0) to �(1) defined by (24),(25) and the multitype extension of (23). Thus,
we conjecture that for any fixed bank v of type T and cascade step n ≥ 0, the sequence of
bivariate random variables (�

(n)
v , S(n)

v ) converges in distribution as N → ∞ to independent
random variables with CF given by the following recursive formulas:
Stochastic Solvency Cascade Mapping: Starting from the characteristic functions
f̂ (0)
� (k, T ) of the initial solvency buffers �(0), iterate the following two steps for n =

0, 1, 2, . . . :

1. Compute the univariate characteristic function f̂ (n)
S (k | T ) = E[eikS(n)

1 | T ] of the total
solvency shock S(n)

1 using (24) with ρ
(0)
� replaced by ρ

(n)
� :

f̂ (n)
S (k | T ) = exp

(
∑

T ′
P(T ′)κ(T ′, T )

∫ 0

−∞
ρ

(n)
� (y | T ′)R(k, y | T , T ′) dy

)

, (26)

where R(k, y | T , T ′) is given by (25).
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2. Compute the univariate distribution of the impacted solvency buffer�(n+1)
1 = �

(0)
1 −S(n)

1
using the formula (23):

f̂ (n+1)
� (k | T ) = f̂ (0)

� (k | T ) f̂ (n)
S (−k | T ) . (27)

Under suitable regularity conditions such as a finite L2 condition, the Parseval-Plancherel
identity applied to (26) implies that

f̂ (n)
S (k | T ) = exp

(
∑

T ′
P(T ′)κ(T ′, T )

∫ ∞

−∞
f̂ (n)
� (k′ | T ′) R(k, k′ | T , T ′) dk′

)

, (28)

where

R̂(k, k′ | T , T ′) := 1

2π

∫ 0

−∞
eik

′y R(k, y | T , T ′) dy . (29)

Cascade Equilibrium: When the N = ∞ has been specified by computing f̂ (0)
� (k, T ) and

R̂(k, k′ | T , T ′), the dynamic model can be computed by iteration of the main equation:

f̂ (n+1)
� (k |T )= f̂ (0)

� (k |T ) exp

(
∑

T ′
P(T ′)κ(T ′, T )

∫ ∞

−∞
f̂ (n)
� (k′ |T ′) R(k, k′ |T , T ′) dk′

)

.

(30)
Due to the monotonicity of the underlying finite N agent based model, one expects this
iteration scheme to converge to a fixed point f̂ (∗)

� (k | T ) of the equation:

f̂ (∗)
� (k | T )= f̂ (0)

� (k | T ) exp

(
∑

T ′
P(T ′)κ(T ′, T )

∫ ∞

−∞
f̂ (∗)
� (k′ | T ′) R(k, k′ | T , T ′) dk′

)

.

(31)
From f̂ (∗)

� (k | T ), one can easily derive important systemic risk measures, most notably
the fraction p∗(T ) of eventually defaulted firms of each type T given by

p∗(T ) =
∫

R

f̂ (∗)
� (k | T )dk . (32)

One can say that the network is “not resilient” if numerical explorations as in Sect. 5 show
that any small initial shock coded into f̂ (0)

� leads to a finite positive value p∗(T ).

4 Implementation

This section discusses issues to address in implementing the solvency cascade model on
IRFNs, and its generalizations, for a large real world network of N̂ banks. The first issue is to
construct a sequence of IRFNs of size N increasing to infinity, that is statistically consistent
with the real world pre-crisis financial network when N = N̂ . Then the statistical model for
N = ∞ can be subjected to crisis triggers with any distribution of initial shocks δB, and the
resultant solvency cascade analytics developed in Sect. 3 will yield measures of the resilience
of the real world network.

4.1 Ideal network data

The type of financial network data available to regulators varies widely from country to
country. Here we imagine a country that provides a minimal dataset for N̂ = ∑

T∈[M] N̂T
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banks classified into M types labelled by T ∈ [M], where N̂T denotes the number of banks
of type T . Suppose the interconnectivity, exposures and balance sheets of the network have
been observed monthly for the past Nm = 12 months. Bank type will be assumed not to
change, but the connectivity and balance sheets will fluctuate over the period. For any of
the monthly observations of the network, directed edges are drawn between any ordered
pair (v,w) of banks if the exposure of bank w to bank v exceeds a specified threshold (a
“significant exposure”). Let Ê = ∑

T ,T ′ ÊT ,T ′ be the total number of significant exposures
in the network identified in the Nm = 12 month historical database, decomposed into a sum
over the bank types involved. For each T → T ′ edge e ∈ [ÊT ,T ′ ] we observe the value �e;
For each v ∈ [Nm × N̂T ] we also observe samples Bv of the type T balance sheets. Our large
N IRFN will be calibrated to this data.

4.2 Calibrating the large Nmodel

The data described above leads to a natural calibration of the pre-trigger IRFN model for
any value of N ≥ N̂ (including N = ∞) at any time in the near future. A bank v randomly
selected from the empirical distribution will have type T with probability

P̂(T ) = N̂T

N̂
.

Conditioned on Tv = T , its balance sheet Bv = [Ȳv, �̄v]will be drawn from the distribution
whose empirical bivariate characteristic function is

f̂B(u1, u2 | T ) = 1

Nm × N̂T

Nm×N̂T∑

v=1

eiu1Yv+iu2�̄v (33)

as a function of u = (u1, u2) ∈ R
2.

A randomly selected pair of banks e = (v,w), v �= w with types T , T ′ respectively will
have a significant directed exposure, and hence a directed edge, with probability

κ̂(T , T ′)
N̂ − 1

= ÊT ,T ′

Nm N̂T (N̂T ′ − δT T ′)
.

where the matrix κ̂ is called the empirical connection kernel. Finally, for each ordered pair
T , T ′ we have ÊT ,T ′ observed significant exposures �e from a T bank to a T ′ bank, leading
to the empirical characteristic function

f̂�(u | T , T ′) = 1

ÊT ,T ′

ÊT ,T ′∑

e=1

eiu�e . (34)

The increasing sequence of random IRFN models based on these empirical probability
distributions is intended to capture essential aspects of systemic risk in our specific finite real
world network. We will need to check that the N = ∞ solvency cascade analytics are indeed
a reasonably accurate approximation to simulation results for finite N .

4.3 Parametrization issues

There are several issues that need to be considered and tested when implementing such a
scheme.
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1. Network sparsity: What is a reasonable threshold for defining “significant exposures”?
There is a tradeoff between increasing the connectivity (reducing sparseness) and the cost
of ignoring small exposures: It has been argued that only “large exposures” are important
in solvency. Computational burden is not sensitive to the exposure threshold.

2. How many types of banks is reasonable? Again, there is a tradeoff. Taking M suffi-
ciently large is important because this is the parameter that determines how realistically
the network correlation can be modelled. However, note that the computational burden
increases and the power of the statistical estimation decreases with the number of types.

3. How large must N be chosen so that the asymptotic analysis is a reasonable approxima-
tion? Likely, the accuracy of the large N approximation will deteriorate as the number
of types increases. How sensitive is the accuracy of the LTI approximation (which relies
to some extent on the sparsity of the network) to the choice of exposure threshold?

4. Where can one obtain the data required to calibrate IRFNmodels? Privacy issues typically
imply that exposure datawith identified counterparties is not publicly available. Currently
such data is often not available even to regulators. So finding real world network data is
an impediment to implementing any kind of financial network model.

5 Numerical experiments

Efficient computation of the solvency cascade mapping of Sect. 3.4 requires approximate
integration of equation (24). We demonstrate how this integral over R can be approximated
by a sum over a lattice of 2Nft points y ∈ δ∗(Z∩[−Nft,Nft−1])with a small discretization
parameter δ and large truncation value δNft. More efficiently, as developed in Hurd and
Gleeson [29], we can use Fast Fourier Transform identities to evaluate (33), (34) for k, k′ on
the dual lattice 2π

δNft {−Nft + 1/2,−Nft + 3/2, . . . ,Nft − 3/2,Nft − 1/2}.
Without loss of generality, in this section we choose Nft large and measure balance sheets

in integer units with δ = 1. For any time step n ≥ 0, and pair of banks v,w of types Tv, Tw ,
all relevant random variables are assumed to take only a finite number of possible values:

1. The randomvariables�
(n)
v , �wv, Xw\v are all required to takeNft possible integer values

for a sufficiently large integer Nft. We assume δ = 1 and that �
(n)
v takes values in

[−Nft/2,Nft/2) ∩ Z, while �wv, Xw\v take values in [0,Nft) ∩ Z.

2. For each possible negative value �
(n)
v = y ∈ [−Nft/2, 0) ∩ Z, the transmitted sol-

vency shock S(n)
wv = G(�wv, y, Xw\v) is rounded to an integer. For all types Tv, Tw ,

the characteristic function of S(n)
wv conditioned on y given by (20) is straightforward to

approximate for any functional form of G by Monte Carlo simulation of size Nmc of
pairs (� j , X j ) j∈[Nmc] for a sufficiently large Nmc:

R(k, y|Tv, Tw) + 1 ∼ 1

Nmc

∑

j∈[Nmc]
exp[ik round(G(� j , y, X j ))] .

This function needs to be computed for k taking values on the dual grid [−Nft/2,Nft/2)∩( 2π
NftZ

)
.

3. Finally R given by (25) for all types Tv, Tw can be treated as a four-dimensional array.
R̂ given by (29) is a Fast Fourier Transform of R in a single dimension.

To ensure that this scheme will generate meaningful results, one should pay attention to
several rules of thumb concerning the approximations made. First, we repeat that the choice
of unit grid spacing (i.e. taking the discretization parameter δ = 1) can be made without loss
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of generality because the underlying continuum model is invariant under joint rescalings of
the collection �

(n)
v , �wv, Xw\v . Second, one needs to choose the number of grid points Nft

sufficiently large so that the probabilities P(�
(n)
v ≤ −Nft/2),P(�

(n)
v ≥ Nft/2),P(Xw\v ≥

Nft) are always negligible. Finally, the rounding error for G should also be negligible.
These approximation schemes will now be demonstrated in the one-type setting, and will

be verified as meaningful by showing how results stabilize for different values of Nft and
δ. The extension to many bank types M > 1 presents no further conceptual difficulty, and
should provide tools for full explorations of highly heterogeneous model scenarios.

5.1 Numerical example: a one-type network

To illustrate the above computational procedure, we computed the solvency cascade using the
large N asymptotics for an IRFN network of a single node type. This means that the DIRG
skeleton is a directed Erdös-Renyi configuration graph, with the mean in and out degree
parameter κ . We chose an initial specification of random balance sheets that is similar, but
not identical, to the one-type banking model discussed in Hurd [27, Section 4.8]. Unlike that
model, exposures � and interbank assets Z are random not deterministic, with the detailed
parameter choices as follows: (1) All banks have the same non-random initial buffer size
�(0) = 16; (2) interbank exposures �̄ are discrete approximations of gamma-distributed
random variables with mean μ� = 80/κ and shape parameter k = 3; (3) buffers and default
shocks take Nft = 29 possible discrete values on the grid with δ = 0.25. Note that the mean
interbank asset μZ = 80 and the mean exposure and buffer are each scaled up by a factor 4
relative to the choices in Hurd [27, Section 4.8].

Solvency shocks are assumed to satisfy (3) with the recovery function hλ(x) =
max

(
1,min(x/λ + 1, 0)

)
. We determined the final fraction of defaults for a range of values

for the parameters λ ∈ (0, 1] and κ ∈ (0, 10]. Finally, the stylized financial crisis of each
scenario is triggered by an initial shock that changes the buffers of a small fraction d0 = 10−5

of banks to �(0) = −Nft/4, causing their default.
Figure 1 displays the results of cascade experiments on such networks for a range of

possible values of λ. As expected, the upper figure shows that the final fraction of defaulted
banks is monotonically decreasing in the λ parameter. Also, across the range of κ values, a
“resilient” network is observed when bankruptcy costs are small (λ ≥ 0.2). In common with
Figure 5.1 of Hurd [27, Section 4.8], the most striking feature of the upper figure is the non-
monotonic relationship between the final default fraction and the connectivity parameter κ ,
and in particular the sharp downward discontinuity as κ exceeds a certain level. This resiliency
discontinuity is observed in other network models (see Figure 5.1 of Hurd [27, Section 4.8]),
and was given a percolation theoretic explanation by Watts [36] as due to the number of
vulnerable nodes being reduced below a critical value as κ grows. The lower logarithmic plot
shows that in the intermediate non-resilient range of κ values, the exponential growth rate
observed early in the crisis decreases with λ and the system typically reaches its approximate
cascade equilibrium (maximal extent) in less than 50 days.

We have experimented further, and found that with the rules of thumb identified in the
previous subsection, the computational algorithm leads to conclusions and graphs that are
robust to varying implementation parameters Nft,Nmc, δ. Taking Nft smaller than 29 for the
Fast Fourier Transform was found to be insufficient, apparently leading to aliasing errors.
Taking Nmc as small as 1000 yielded reliable comparative statics, but with noisy dependence
on κ . The large value Nmc = 100000 was adequate to generate the smoothly κ-dependent
curves shown here.
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Fig. 1 The upper figure shows the final default fraction, as a function of the connectivity parameter κ . There
are clear transitions from “resilience” to “non-resilience” when κ exceeds 1. The lower figure shows the time
development of the crisis for the value κ = 3. Both figures show the following shock transmission parameter
values λ ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}, where λ = 0 is the zero-recovery case and λ = 1 is the
zero-bankruptcy cost case
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5.2 Cascade numerics: algorithmic complexity and runtimes

The numerical implementation of the general cascade mapping for M ≥ 1 types requires
computing the array R(k, k′ | T , T ′) := P(T ′)κ(T ′, T )R̂(k, k′ | T , T ′) only once for the
entire cascade. For a given FFT size Nft,R can be thought of as a square matrix with Nft×M
rows and columns. Given the solvency cascade kernelR, the algorithm for each cascade step
maps the Nft × M dimensional vector f̂ (n)

� to the exponential of a matrix product f̂ (n)
S =

exp[R ∗ f̂ (n)
� ], followed by a Hadamard (element-wise) product f̂ (n+1)

� = diag( f̂ (0)
� ) ∗ f̂ (n)

S .
Thus the solvency cascade mapping admits a very compact specification in terms of the
sequence of conditional characteristic functions, taken as vectors f̂ (n)

� := f̂ (n) ∈ C
Nft×M ,

namely:
f̂ (n+1) = C(f̂ (n)) := diag(f̂ (0)) ∗ exp[R ∗ f̂ (n)] . (35)

The nonlinear mapping C : C
Nft×M → C

Nft×M is parametrized by R and the solvency
buffer distribution f̂ (0), which, we can also note, must satisfy complex conjugation identities
R(k, k′ | T , T ′) = R(−k,−k′ | T , T ′) and f (0)(k | T ) = f (0)(−k | T ). A single cascade
step is thus of order O(Nft × M2) flops plus Nft × M ordinary exponentiations. In general,
a cascade equilibrium is a fixed point f̂∗ of the mapping,

f̂∗ = diag(f̂ (0)) ∗ exp[R ∗ f̂∗] . (36)

The total run time for the numerical experiment of Sect. 5.1, implemented in Matlab on
a desktop computer, with Nmc = 100000, Nft = 29, tmax = 40 days, and eight values of λ,
was about 1400 seconds.

6 Open questions

This article introduces IRFNs as a flexible, scalable analytical tool for understanding aspects
of systemic risk. A comparable inhomogeneous random network framework applied to infec-
tious disease modelling in Hurd [26] shows the robustness and adaptability of this type of
mathematics. As observed repeatedly in this article, the large N stochastic solvency cascade
mapping stated in Sect. 3.4 remains conjectural. Undoubtably the most important unfinished
task stemming from this article is to provide a rigorous derivation of the formulas provided
in Sect. 3.4: Success in this direction will be an important theoretical contribution to network
science. We end with a brief discussion of three other open questions to investigate.

The first question asks about the computational feasibility and accuracy for models of this
type. In Sect. 5 we have presented preliminary but promising results in this direction. By its
nature, the IRFN modelling framework scales to very complex specifications: our hope is
that the large N asymptotic formulas will prove to be an effective tool that accurately reflects
the systemic resilience of finite size complex networks.

A second line of inquiry focusses on calibrating IRFN models of this type to real world
financial systems. Here the critical issue is the availability of data along the lines discussed
in Sects. 4.1 and 4.2. Where a suitable representation of a real world network can be found,
it will then be of interest to investigate the multiple dimensions of vulnerability exhibited by
the calibrated solvency cascade model.

A third open question is how network models can be used as effective tools to explore
and understand further systemic risk effects. Examples of important effects worthy of study
include: the impact of exceptional nodes such as a central bank or central clearing party;
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overlapping contagion channels such as funding liquidity and solvency; more fine-grained
balance sheets and exposures; exploring different assumptions on resolution of failed banks;
more complex strategic behaviour of banks; more diverse types of nodes such as funds, firms
and other economic entities.
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