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Abstract
Deep neural network (DNN) architectures such as recurrent neural networks and transformers
display outstanding performance in modeling sequential unstructured data. However, little
is known about their merit to model customer churn with time-varying data. The paper pro-
vides a comprehensive evaluation of the ability of recurrent neural networks and transformers
for customer churn prediction (CCP) using time-varying behavioral features in the form of
recency, frequency, and monetary value (RFM). RFM variables are the backbone of CCP
and, more generally, customer behavior forecasting. We examine alternative strategies for
integrating time-varying and non-variant customer features in one network architecture. In
this scope, we also assess hybrid approaches that incorporate the outputs of DNNs in con-
ventional CCP models. Using a comprehensive panel data set from a large financial services
company, we find recurrent neural networks to outperform transformer architectures when
focusing on time-varying RFM features. This finding is confirmed when time-invariant cus-
tomer features are included, independent of the specific form of feature integration. Finally,
wefindno statistical evidence that hybrid approaches (based on regularized logistic regression
and extreme gradient boosting) improve predictive performance—highlighting that DNNs
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and especially recurrent neural networks are suitable standalone classifiers for CCP using
time-varying RFM measures.

Keywords Financial services · Customer churn · Deep learning · Panel data · Time-varying
features · RFM · Recurrent neural networks · Transformers · Attention · GRU · LSTM

1 Introduction

Customers are a critical asset for every company operating in a contractual setting. The ability
to retain profitable customers is a significant determinant of customer equity, i.e., the total
lifetime value of a company’s customers (McCarthy et al., 2017). Consequently, customer
retention is a strategic imperative (Rust et al., 2004) and customer churn prediction (CCP)
models are a crucial tool for data-driven customer relationshipmanagement (Wu et al., 2022).

CCP models exploit data at the individual level (e.g., demographic, socio-economic,
behavioral data, etc.) to predict whether customers will terminate an existing business rela-
tionship within a future time window. These models help companies anticipate and remedy
decreases in the stream of cash flows associated with customer churn.Moreover, CCPmodels
can help uncover the underlying drivers of churn or decaying customer loyalty. Such insights
are useful to revisit business processes and service offerings and raise customer equity in
the long run. Further applications include the estimation of customer lifetime value, which
relies on high-quality estimates of customer retention (Schweidel et al., 2014). Finally, CCP
models can be deployed to govern the targeting of retention campaigns, either as standalone
solutions or as a component of (causal) uplift models (Janssens et al., 2022).

The increasing availability of customer data combinedwith lower costs of data storage and
computational infrastructure fostered the use of supervised machine learning (ML) models
to predict customer churn over the past decades (Verbeke et al., 2012). The ability to scale
well with high-dimensional data (e.g., an increasing number of customers and/or customer
features) and to capture complex, non-linear dependencies between features and the churn
eventmakeMLmodels the tool of choice forCCP in both, industry and academic applications.

The temporal aspects of features have an impact on the performance of customer churn
prediction models. Risselada et al. (2010) observed how the predictive performance of dif-
ferent types of CCP models deteriorates quickly over time and suggest the development of
dynamic models. To make models more generalizable, Gattermann-Itschert and Thonemann
(2021) suggest multi-slicing, an approach for training CCP models on data that is composed
of different parts covering different time horizons. This paper takes an orthogonal approach.
We develop dynamicCCPmodels that incorporate time-varying behavioral customer features
in the form of recency, frequency, and monetary value (RFM).

The marketing literature emphasizes the predictive power of RFM features (Zhang et al.,
2015) and many prior studies on CCP have considered corresponding predictors (Janssens
et al., 2022). However, conventional statistical or ML classifiers such as logistic regression
or tree-based models do not readily accommodate time-varying features. They assume that
observations are independently and identically distributed. This collides with the nature of
customer-level time-series data. Hence, the processing of time-varying data requires a non-
trivial effort of manual feature engineering or aggregation, which potentially hinders the
predictive performance of ML models. The process of mapping time series data to a fixed-
length feature vector is not only labor intensive, but it also results almost always in a loss of
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information. Recent developments in deep neural networks (DNN) architectures for sequen-
tial data have the potential to overcome the problems inherent to shallow ML models to
exploit time-varying data. Given a comprehensive space of architectural choices, the design
of a DNN-based CCP model that accommodates both, time-varying and time-invariant fea-
tures is not straightforward.Moreover, recent empirical evidence in related classification tasks
in the financial industry suggests that deep learning models might not outperform simpler
alternatives based on gradient boosting models (Gunnarsson et al., 2021). Transferring cor-
responding results to the CCP setting, it is important to examine whether purely DNN-based
models are effective and whether the respective merits of DNNs to handle time-varying fea-
tures and conventional (e.g., gradient-boosting-based) classifiers can be integrated to obtain
a hybrid—best-of-breed—solution.

This paper contributes to the literature by empirically testing the potential of DNNs to
predict customer churn using time-varying RFM features in the financial services industry.
We systematically explore the vast option space ofmodel architectures at the interface of deep
vs. shallow and static vs. dynamic churn models and their different forms of integration. This
offers churn analysts valuable guidance on how to capitalize on available customer data with
both, time-varying and time-invariant features. Our experiments are based on a unique data
set from a European financial service provider that encompasses anonymized information of
480 thousand customers collected over 48 months. We find that recurrent neural networks
outperform transformer models for CCP using time-varying RFM measures. This finding
is confirmed when other, time-invariant customer features enter a CCP model, independent
of how different sets of features are integrated. Finally, we find no statistical evidence that
hybrid approaches, which integrate DNN predictions in conventional classifiers (based on
regularized logistic regression and extreme gradient boosting) improve performance fur-
ther—highlighting that DNNs are suitable standalone classifiers for predicting churn using
time-varying RFM measures.

The paper is organized as follows. Section 2 provides a review of related work on classic,
ML based-models, and deep learning approaches to predict customer churn. Sections 3 and 4
describe the data and experimental design, respectively.We report empirical results in Sect. 5
and conclude thereafter.

2 Related literature

A large body of CCP literature comprises different fields of study including operations
research, marketing, statistics, and computer science. The promise of increased predictive
accuracy and the requirements of operational churn management to handle data sets with
a vast number of customer characteristics, multi-collinearity problems, and noisy features
have raised a considerable amount of interest in ML-based churn prediction (Janssens et al.,
2022; Qi et al., 2009; Wu et al., 2022). Our paper contributes to the existing CCP literature
by exploring the beneficial impact of using time-varying over static customer characteristics
and investigating the potential of DNN.

To date, the majority of CCP literature employs models for large-scale cross-sectional and
static data. Verbeke et al. (2012) provide a comprehensive comparison of the performance of
ML models, which highlights that most previous studies focus on cross-sectional data. More
recently, Janssens et al. (2022) propose a novel expected maximum profit measure for B2B
churn prediction to directly incorporate the heterogeneity of customer values and profit con-
cerns of the company using gradient boosting on a large cross-sectional data set from a North
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American B2B beverage retailer. Another recent exemplary study proposes combining PCA
analysis with AdaBoost to deliver an enhanced andmore stable churn prediction performance
in a cross-sectional e-commerce context (Wu et al., 2022). As an exception, Chen et al. (2012)
extend the support vector machinemodel to accommodate time-varying variables and predict
customer churn without prior feature aggregation. More generally, the incorporation of static
features from time-varying information requires the use of heuristic aggregation procedures
such as moving or weighted averages or augmenting the set of features with time-lagged
observations of these time-varying variables. These techniques are well-established in the
telco-industry (Wei & Chiu, 2002) and e-commerce (Koehn et al., 2020) to predict customer
behavior based on call-detail records and click-stream data, respectively. This motivates us
to investigate the merit of directly modeling customer churn using time-varying features and
DNNs.

DNNs havewitnessed rising popularity in theCCP literature to leverage novel data sources
like social-network features (Óskarsdóttir et al., 2017) or text data (De Caigny et al., 2020).
On the contrary, the use of DNN to extract information from time-varying (RFM) features is
sparsely explored in prior work. Table 1 summarizes related work that has used time-varying
features and DNN in a CCP context.

Closely related to our work, several studies have experimented with time-varying features
and deep learning, but none of these studies include time-varying RFM variables. Tan et al.
(2018) and Zhou et al. (2019) obtain a churn model by combining convolutional (CNN)
and long short-term memory (LSTM) neural networks. Both studies report that their models
outperform benchmarks that do not use time-varying information. Both papers distinguish
between static and time-varying features, yet they do not study how to best combine the
two types of features in a prediction model. Results in Wangperawong et al. (2016) and
Zaratiegui et al. (2015) from applying CNNs for churn prediction provide further empirical

Table 1 Prior work on churn prediction using time-varying features and DNN

Study Model Data set size
(number of
customers)

Industry Time-varying
features

Liu et al. (2018) Dynamic embeddings 4 × 104 Mobile
gaming

Opens, closes,
installs, and
uninstalls

Tan et al. (2018) LSTM + CNN 12 × 104

and 15.6
× 104

MOOC,
online
services

Subscription
characteristics

Wangperawong
et al. (2016)

CNN 100 × 104 Telecom Data, voice,
sms usage

Yang et al.
(2018)

LSTM + k-means 100 × 104 Social
network

Daily data
usage

Zaratiegui et al.
(2015)

CNN 13.2 × 104 Telecom Call record,
Topup

Zhou et al.
(2019)

LSTM + CNN 100 × 104 Music
stream-
ing

Transaction and
log activity

This study GRU/LSTM/attention/transformer 4820 × 104 Fin.
services

RFM variables
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evidence regarding themerit of deep learning-based churnmodels and the use of time-varying
features. Results in these studies, however, are based on a limited number of variables from
a relatively short, few-month timeframe. Wangperawong et al. (2016) also consider time-
varying features alonewhilemost real-worldCCPapplications involve both, time-varying and
invariant features. Further applications that combine supervised and unsupervised approaches
for churn prediction in dynamic contexts include Liu et al. (2018) and Yang et al. (2018).
Liu et al. (2018) combine time-varying and static features but do not distinguish between the
two types of features. They also consider a relatively short time frame of four months for
their time-varying features. Yang et al. (2018) consider an even shorter time window of two
weeks.

In conclusion, our study is the first to examine the potential of behavioral time-varying
variables to predict churn using DNN in the financial services industry. Compared to existing
work, our study relies on a much longer period of time-varying features from multiple years.
Unlike prior work, in which temporal data is represented by some application-specific data,
RFM variables are a well-established, widely used, and generic class of features in marketing
decision-support (Zhang et al., 2015). Moreover, our thorough assessment of DNN and
RFM variables contributes original empirical evidence on which architectures obtain better
performance for CCP. For instance, transformer networks, a state-of-the-art deep learning
approach, are, to our best knowledge, for the first time tested in a CCP context in this paper.
Further, we propose modeling frameworks that can be combined with existing customer
churn prediction, and we investigate different options on how to best combine static and
time-varying features. Based on the analysis of prior literature, we intend to answer the
following research questions:

RQ1: what is the most effective DNN architecture for CCP using time-varying RFM
measures?

RQ2:what is themost effectiveDNNarchitecture for CCPusingmixed data (time-varying
RFM measures and static customer variables)?

RQ3: can the performance of a mixed-feature DNN model be improved further by
hybridizing it with a conventional CCP classifier?

3 Methodology

The methodology described in this study is graphically depicted in Fig. 1. The models we
compare differ on two dimensions: (1) the features on which they are trained and (2) the
algorithms deployed to train classifiers. First, we explain the difference between time-varying
and static features in Sect. 3.1. Next, in Sect. 3.2.1, we introduce DNNs that can handle time-
varying input, followed by strategies to combine static and time-varying inputs in these
DNNs. Last, we introduce hybrid approaches that incorporate the output of the DNNs in
traditional classifiers in Sect. 3.2.2.

3.1 Static and time-varying features

Our methods presume two categories of features exist. The first category involves static
customer variables, which remain constant over time (e.g. demographic characteristics). The
second category includes time-varyingmeasures of recency, frequency, and monetary value.
These time-varying RFM variables are available on a monthly level and are derived from
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Fig. 1 Visual representation of variable sets and classifiers considered in this study

ongoing product contracts. In line with existing research, we calculate recency as the number
of days that have passed since the last new product was subscribed, frequency as the number
of open contracts on a given date, and monetary value as the total monthly value associated
with a customer’s open product portfolio. Figure 2 provides an example of the calculation
and the time-varying aspect of RFM variables. Note how, after a contract is opened or closed,
or if time passes by, the values of recency, frequency, and monetary value, are modified.

Fig. 2 Example of the outcome and RFM calculation for a fictitious customer
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3.2 Classification algorithms

3.2.1 Deep neural networks

We consider recurrent models, with or without attention mechanisms, and transformer-type
neural network architectures. In this subsection, we sketch the intuition behind these models
while emphasizing the decisions required to model time-varying and static variables.

Recurrent neural networks are, by design, well-suited for time-varying input variables.
Consider a vanilla recurrent neural network (RNN) and assume that we observe, for each
customer i, a sequence of features X1,…,X t of fixed length T . Note that this architecture
depends on the current value of the variables Xt and is dynamic since the hidden state ht
depends on its past value, which, in turn, incorporates information extracted from previous
realizations of the variables, e.g., ht−1Xt−1. Each hidden state ht processes the information
for time step t. The hidden state for period t, with t � 1,…,T is given by:

ht � tanh(Wx Xt +Whht−1) (1)

with tanh() as the hyperbolic tangent function.1 To predict the probability of churn, we add a
dense layer with a sigmoid activation function. This allows for estimating the free parameters,
that is the connection weight matrices Wx and Wh , by computing the gradient of the loss L ,
defined by the binary cross-entropy function, over N customers:

L �
N∑

i�1

[−yi log
(
ŷi

) − (1 − yi ) log
(
1 − ŷi

)]
(2)

For notational convenience, the rest of the paper uses the symbol W to refer to a properly
shaped matrix of all the weights in the network. For the estimation of the weights W , the
hidden state for the first period is usually set to zero to proceed with the estimation (h0 � 0).
We refer to Goodfellow et al. (2016) for an overview of the backpropagation algorithm and
optimization-specific details.

The vanilla RNN may suffer from the exploding or vanishing gradient problem, which in
turn degrades the ability of RNNs to learn long-term dependencies. Gated Recurrent Unit
(GRU) (Cho et al., 2014) andLongShort-TermMemory (Hochreiter andSchmidhuber 1997)2

neural networks address these issues. Both architectures introduce gating mechanisms that
facilitate a different flow of information in the network. There is empirical evidence that both,
the GRU and LSTM architecture, offer comparable performance and that both perform better
in sequence modeling compared to the vanilla RNN (Chung et al., 2014). Thus, we focus on
these models. Formally, the GRU architecture is given by the following components:

rt � σ
(
Wr Xt +Whrh(t−1)

)
, nt � tanh

(
WnXt + rt

(
Whnh(t−1)

))

zt � σ
(
WzXt +Whzh(t−1)

)
, ht � (1 − zt )nt + zt h(t−1)

where rt , zt , and nt are three elements that represent the reset, update, and new information
gates.3 Note how the reset and update gates are similar to the structure of the vanilla recurrent
network except for the use of a sigmoid function instead of the hyperbolic tangent. Similarly,
the new information gate nt resembles the vanilla recurrent network with the extra charac-
teristic that the reset gate multiplies the previous hidden state. Despite these similarities, the

1 Subscript i is suppressed to ease the presentation.
2 Several variants of theGRUandLSTMmodel exist in the literature.We base our explanation on the canonical
models for LSTM and GRU.
3 We do not display the associated bias terms in the gates to ease the presentation.
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hidden state ht in the GRU model is computed as a weighted average of the previous hidden
state ht−1 and the new information nt where the weight, in turn, depends on zt—a function
of the original inputs Xt and ht−1.

Consider as an alternative the LSTM architecture given in Eq. (4):

it � σ
(
Wii Xt +Whih(t−1)

)
, gt � tanh

(
WigXt +Whgh(t−1)

)

ft � σ
(
Wi f Xt +Whf h(t−1)

)
, ct � ft c(t−1) + it gt

ot � σ
(
WioXt +Whoh(t−1)

)
, ht � ot tanh(ct )

(4)

This architecture uses a cell state represented by ct and a weight given by the output gate
ot to compute the hidden state ht . The cell state is a weighted sum of the cell state in the
previous period ct−1 and an updated cell state proposal denoted by gt , where the weights are
given by the input and forget gates it , and ft .

Weconsider variations ofDNNs for sequential data in termsof (1) using the entire sequence
of hidden states ht or just a subset, (2) using bidirectional models, (3) using separate input
layers for static and time-varying data, and the consideration of attention mechanisms.

First, in RNN, the hidden state ht for time step t summarizes all the information up to
that point of the sequence. Hence, we can extract information from the entire sequence using
only the last hidden state. Alternatively, we can use the entire sequence of hidden states to
estimate churn, which could improve the quality of the estimated probabilities at the cost of
adding parameters in the final layer.

Next, RNNs allow for reversing the order of the sequence of X1,…,X t which facilitates
bidirectionalmodeling. This is relevant in our context because a bidirectionalmodel can better
capture differences between the customers that arise earlier in time. Again, it is possible to
consider the entire sequence of bidirectional hidden states ht or just the latest one to compute
probabilities.

Last, the inclusion of static variables in the model is not straightforward. First, we could
merge the sequential and static variables and include them together in the Xt matrix. We
call this approach Merging in our experiments. We thus merge the static data with the time-
varying data at the input level, having at each timepoint a value of the static feature, similar
to the time-varying variables. This implies that the dimension of the weights W increases
considerably as the sequence also consists of static features. Moreover, given that static
features by definition do not change over time, the static features might preclude the model
from fully exploiting the sequential patterns in the data. As a second alternative to consider
static and time-varying data, we could divide the features into two subsets and use DNNs
designed for each type of data. We refer to this approach as Concatenation and consider
RNN only with the subset of sequential variables, and concatenate the hidden states from
this model with the hidden states from a feedforward neural network for the static data.4 In
other words, such an approach concatenates the hidden representations of the time-varying
features at point T , with the static features. In theory, such an approach would allow the
architecture to specialize and better exploit the two types of variables. As a final variation,
we consider the use of attention mechanisms with the concatenation approach. Attention
allows the architecture to weight different points in the sequence to make the predictions
such that the final hidden state is not the only component summarizing the sequence. The
literature offers several alternatives to introduce attention mechanisms (Chaudhari et al.,
2021; Galassi et al., 2021). We focus on a global attention type as described in Luong et al.
(2015). Compared to local attention, global attention is more expensive since it considers

4 This is similar in spirit to a sequence-to-sequence architecture (Sutskever et al., 2014) except that we use a
feedforward model instead of a recurrent model in the decoder.
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all hidden states of the encoder when deriving the context vector instead of only a subset of
hidden states. However, if sequences are relatively short, as in the focal study, global attention
is relatively easy to train and offers good performance in natural language processing tasks.
We refer to this model variation as Attention.

The transformer architecture is a different kind of DNN to model sequential data. It is
designed to overcome the computational burden of RNNs by relying only on the attention
mechanism. RNNs generate a sequence of hidden states, ht as a function of previous hidden
states, ht−1, and the input to the hidden state at position t (Vaswani et al., 2017).As sequences
become longer, the inherently sequential nature of RNNs precludes parallelization with a
major impact on the computation time. The transformer architecture relies on encoder- and
decoder stacks that embed the input and output sequences. The attentionmechanism is applied
within the layers of the encoder- and decoder stacks. An attention function basically maps
a query vector and a set of key-value pairs vectors to an output vector. Explaining the inner
works of the transformer model is beyond the scope of this paper and we refer instead to
the original implementation in Vaswani et al. (2017), and the notes in Rush (2018). For the
objective of this paper, it is sufficient to understand that the self-attention mechanism in the
transformer model allows us to encode the sequential data. Like recurrent models, we can
incorporate static variables using merge or concatenation approaches.

3.2.2 Hybrid approaches

In addition to evaluating the potential of standalone deep neural networks and comparing
alternative architectures, we assess the potential of hybrid approaches, combining DNN and
MLmodels. Specifically, similar to earlier approaches (De Caigny et al., 2020), we construct
ML classifiers that incorporate DNN predictions as features. This approach investigates
the interest in deploying DNNs that are purpose-built to accommodate time-varying RFM
features into existing CCP models. We focus on two ML models with a proven track record
in the CCP literature: (1) the regularized (lasso) logistic regression, and (2) the tree-based
extreme gradient boosting. The regularized logistic regression is the industry standard model
and serves as our benchmark. It can handle high-dimensional data (Hastie et al., 2009) and
is easier to interpret compared to other ML models due to its linear form. The regularized
logisticmodel requiresmanually specifying the interaction terms in themodel aswell as other
transformations to deal with non-linearities. Tree-based gradient boosting models overcome
these limitations and offer a strong benchmark. Moreover, previous research for related
classification tasks in the financial industry suggests that tree-based gradient boostingmodels
are not outperformed by neural networks (Gunnarsson et al., 2021). In short, the model relies
on constructing an ensemble of decision trees sequentially. We refer to Chen and Guestrin
(2016) for details on the model estimation.

4 Experimental configuration

4.1 Data set

We obtained a data set through a partnership with a major French provider of financial ser-
vices for our experiments, containing monthly client records. The provided sample consists
of customers for whom the focal company is their primary financial services provider to

123



774 Annals of Operations Research (2024) 339:765–787

Fig. 3 Evolution over time of mean RFM variables by churn status

ensure the high quality of the behavioral data. The database contains variables that are fre-
quently used to predict churn, like demographic characteristics and behavioral information
to compute sequential RFM variables. The time-varying RFM measures are engineered as
described in Sect. 3. Figure 3 visualizes how average frequency, recency, and monetary val-
ues differ between churners and non-churners over time. In line with the literature, churners
are relatively new (lower recency) and have consistently fewer products (lower frequency),
and are less valuable (lower monetary value).

Table 2 provides definitions of all the variable categories other than RFM that we use in
the experiments. The three categories (i.e. demographic, behavior, and customer-company
interaction) group 37 variables, which are frequently used in CCP (De Caigny et al., 2020).

In line with the CCP literature, our main target variable is a dichotomous indicator that
equals one if the customer cancels all the contracts with the company within a fixed obser-
vation window of 12 months, which in our sample starts on April 1st, 2018. Moreover, the
churn definition is aligned with the company’s current business processes.

4.2 Data preprocessing and experimental setup

Our data preprocessing and experimental setup are based on conventional practices in recent
CCP studies. First, we standardize the features and obtain the parameters for the standard-
ization from the training data. Next, we treat our training samples for the presence of class

123



Annals of Operations Research (2024) 339:765–787 775

Table 2 Overview of static customer variables in our data set

Variable category Contents Nbr. of
variables

Customer demographics Standard socio-economic variables: age, gender, income,
marital status, etc

14

Customer behavior Variables that summarize the consumption behavior of
customers within the portfolio of the focal company. These
variables indicate the possession of specific products,
length of the relationship, loan, and mortgage-related
information, etc

18

Customer–company
interactions

Includes information related to online connections to the
company’s website or mobile application, e-mail and
telephone contacts, and face-to-face contacts with the
advisor

5

imbalance because it can negatively impact the predictive performance. To train the model,
we apply an under-sampling approach in line with De Caigny et al. (2018). To focus on our
core contributions, exploring alternative sampling approaches is out of the scope of the focal
study.

We base the results on holdout test sets on fivefold cross-validation, which is common
practice inCPP (VanNguyen et al., 2020). To tune the hyper-parameters of themodels,we rely
on a grid search of hyper-parameters and a nested cross-validation procedure. The grid search
helps to reduce the variability thatwould arise froma random search of hyper-parameters. The
nested cross-validation provides a clearer picture of the models’ performance and stability
compared to a single split. Table 3 provides an overview of the considered parameter settings.

Table 3 Overview of the hyper-parameter settings

Classifier Hyper-parameter Candidate settings

DNN only—RNN Sequential variable encoder [LSTM, GRU]

Number of hidden states [8,16,32,64,128,256,512]

Batch size [8,16,32,64]

Additional layer after input [Yes, No]

Last hidden state from RNN [Yes, No]

DNN only—transformer Number of layers [4,8]

Hybrid—logistic regression Regularization terms λ 50 consecutive terms

Hybrid—XGBoost Proportion of variables sampled [0.5,0.7,0.8,0.9,1]

Minimum loss reduction tree partition [1,3,5,8]

Learning rate [0.05,0.1,0.2,0.3]

Number of boosting rounds [1,6,…,46,51]

Maximum depth tree [1,2,4,8,16,32,64]
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4.3 Evaluationmetrics

To evaluate the performance of the models, we report the area under the receiver operating
curve (AUC), the top-decile lift (TDL), and the expected maximum profit criterion (EMPC).
The AUC assesses a model’s performance independent of the decision threshold to con-
vert estimated churn probabilities into dichotomous class labels of churn and non-churn.
Decision-makers can easily interpret this metric because it captures the probability that a
randomly selected non-churner has a lower predicted churn probability than a randomly
selected churner. Next, TDL allows evaluating the performance of a model within the top ten
percent of customers with the highest predicted probability of churn compared to a random
selection. Hence, this metric describes how much better the classifier can predict churners
compared to randomly selecting churners. The top-decile lift expresses the increase in the
number of churners in the top-decile relative to the overall churn rate. The EMPC facilitates
assessing a model from a profit perspective and finding the most profitable set of customers
to target by making assumptions around the expected future revenues and the distribution
of misclassification costs (Verbraken et al., 2013). The assumptions for expected future rev-
enues (CLV) and costs (retention offer and contacting costs) are based on De Caigny et al.
(2020), who detail this for the financial services industry. We use the default options of the
empChurn R package for the distribution of the misclassification costs, as often done in prior
churn prediction studies (e.g. Verbraken et al., 2013).

4.4 Statistical testing

Our experimental setup results in five performance estimates per model and for each evalua-
tion metric. To statistically compare model performance measures, we rely on the corrected
repeated k-fold cv test suggested by Bouckaert and Frank (2004) appropriate for pairwise
comparisons of classifiers with multiple performance measures based on experimental cross-
validation of an arbitrary number of replications and folds, and on a single data set. The
t-statistic they suggest for this purpose is given by:

t �
1
kr

∑k
i�1

∑r
j�1 xi, j√(

1
kr +

n2
n1

)
σ̂ 2

(5)

where n1 is the number of customers used for training models, n2 is the number of customers
in the test set, r is the number of experimental repetitions, k is the number of folds, xi, j is
the measured difference in predictive performance for fold i and replication j, and finally, σ̂ 2

is the variance of the k · r performance differences. In comparisons that involve more than
two classifiers, we deploy Li’s procedure (Li, 2008) to correct p-values and protect against
an elevation of the family-wise error.

5 Results

This section discusses the observed results. Table 4 presents the detailed average performance
levels of the various models considered in the study, measured in terms of AUC, TDL, and
EMPC. The analyses are structured along the research questions introduced above.

RQ1:what is themost effectiveDNNarchitecture forCCPusing repeatedRFMmeasures?
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Table 5 Pairwise comparison between the RNN and transformer models estimated on time-varying RFM
measures

Algorithm
comparison

Metric

AUC TDL EMPC

t-value p value t value p value t value p value

RNN versus
trans-
former

3.3592 0.0142** 4.3466 0.0061*** 3.5307 0.0121**

Significant differences at the 90%, 95%, and 99% levels are indicated by *, **, and ***, respectively

The first research question is dedicated to a comparison of alternative DNN architectures
for accommodating time-varying RFMmeasures. Table 5 presents the results of the statistical
tests comparing RNN and Transformer models estimated on time-varying RFM measures,
which clearly indicate that RNNs dominate a transformer model for handling time-varying
RFM measures. This holds for all three performance metrics under consideration.

RQ2: what is the most effective DNN architecture for CCP using mixed data (repeated
RFM measures and static customer variables)?

Next, we extend the feature set by including static customer variables alongside
time-varying RFM measures. Section 3.2.1 presented alternative network architectures to
accommodate these additional features in RNN and transformer models. Table 6 presents the
results of pairwise model comparisons.

As can be seen in the first column of Table 6, comparisons are grouped into three parts.
The first set involves a comparison of the three RNN architecture variants: merged, con-
catenation, and attention. The second set compares network architectures in the Transformer
category: merged, concatenation, attention, and finally, multi-head attention. A final compar-
ison involves a test that compares the best RNN variant versus the best Transformer variant.
From the results presented in Table 6, the following conclusions emerge. First, among RNN
architectures, concatenation exhibits the best performance in absolute terms. Statistical tests
demonstrate its superiority over the merged variant, but not over the architecture based on
attention. Second, among transformer variants, none of the architectures is dominant, at least
not in statistical terms. The highest performance can be observed for the architectures with
multi-head attention. Finally, a comparison of the best variant of both architecture families
reveals that RNN with concatenation significantly outperforms the best transformer vari-
ant, i.e. a transformer network with multi-head attention. In summary, the results identify
recurrent neural networks with concatenation as the most promising DNN architecture for
accommodating a mixed set of variables (Table 6).

Table 7 presents the results of a comparison between RNN and transformer networks
based solely on time-varying RFM features, and their best-in-class counterparts based on
mixed data. From these tests, unsurprisingly, it is clear that the performance for all metrics
significantly improves when models are trained on a mix of time-varying RFM features and
static customer variables. This shows that the added complexity of these network variants is
justified by increased predictive performance. The observed result also supports the argument
expressed in Sect. 2 that predicting customer churn using time-varying features alone does
not offer a fully-comprehensive picture of the merits of DNNs.
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Table 7 Pairwise comparisonbetweenRNNandTransformermodels estimatedon time-varyingRFMmeasures
vs. best-in-class RNN and Transformer architectures estimated on mixed data (time-varying RFM measures
with static customer variables)

Algorithm comparison Metric

AUC TDL EMPC

t value p value t value p value t value p value

RNN versus RNN
(Concatenation)

3.3592 0.0142** 4.3466 0.0061*** 4.6503 0.0048***

Transformer versus
Transformer
(Multihead attention)

4.0873 0.0075*** 2.8628 0.0229** 4.6503 0.0048***

Significant differences at the 90%, 95%, and 99% levels are indicated by *, **, and ***, respectively. The
strongest performing classifier in every comparison is shown in boldface

RQ3: can the performance of a mixed-feature DNN model be improved further by
hybridizing it with a conventional CCP classifier?

Finally, the potential of hybridized approaches is tested. Specifically, we examine whether
incorporatingDNN-model predictions in conventionalMLclassifiers raises predictive perfor-
mance. Table 8 presents the results of three comparisons. The best overall DNN architecture,
i.e. RNN with concatenation, is compared to (1) a regularized logistic regression model, and
(2) extreme gradient boosting, both incorporating the predictions of RNNwith Concatenation
as an additional feature. In addition, both hybrid variants are compared.

The statistical testing results in Table 8 indicate that the interest in hybridizing models
depends on the ML learner that serves as a host. In the regularized logistic regression with
RNN predictions, the performance is not significantly improved over a standalone RNN
model. However, when RNN predictions are embedded in an extreme gradient boosting
model, the performance is found to significantly improve over a standalone RNNmodel. This
holds for all three performance measures. Finally, we observe the overall best performance
for the hybrid extreme gradient boosting model that incorporates RNN predictions since it
outperforms the hybrid regularized logistic regression. Differences are statistically significant
for all three performance criteria.

To conclude, Table 9 reports the set of selected hyper-parameters by outer fold for the
models with the best performance based on AUCouter. For the regularized logistic model
there is a broad range of selected regularization terms λ and there is no clear tendency for
the model to perform worse in the outer test folds. Results for the gradient boosting show no
variability regarding the learning rate. They also suggest using a larger number of boosting
rounds and sample randomly half of all the available variables. TheRNNconcatenationmodel
performed better on average when using a GRU encoder of time-varying variables, using a
unidirectional version, and only taking into account the last hidden state of the sequence.
Regarding the transformer model, there is no clear stable pattern of the hyper-parameters
except for the number of layers (8).

123



Annals of Operations Research (2024) 339:765–787 781

Ta
bl
e
8
Pa
ir
w
is
e
co
m
pa
ri
so
ns

of
th
e
R
N
N

(C
on

ca
te
na
tio

n)
an
d
hy
br
id

m
od

el
s
in
te
gr
at
in
g
pr
ed
ic
tio

ns
pr
od

uc
ed

by
R
N
N

(C
on

ca
te
na
tio

n)
in

(1
)
re
gu

la
ri
ze
d
lo
gi
st
ic

re
gr
es
si
on

an
d
(2
)
ex
tr
em

e
gr
ad
ie
nt

bo
os
tin

g

A
lg
or
ith

m
co
m
pa
ri
so
n

M
et
ri
c

A
U
C

T
D
L

E
M
PC

t
va
lu
e

p
va
lu
e

t
va
lu
e

p
va
lu
e

t
va
lu
e

p
va
lu
e

R
N
N
(C

on
ca
te
na
tio

n)
ve
rs
us

hy
br
id

re
gu

la
ri
ze
d
lo
gi
st
ic
re
gr
es
si
on

-R
N
N

(C
on

ca
te
na

ti
on

)
m
od

el

−
0.
50

73
0

0.
31

93
−

0.
28

44
0.
39

51
0.
28

15
0.
39

62

R
N
N
(C

on
ca
te
na
tio

n)
ve
rs
us

hy
br
id

ex
tr
em

e
gr
ad

ie
nt

bo
os
ti
ng

-R
N
N

(C
on

ca
te
na

ti
on

m
od

el

−
5.
81

11
0.
00

22
**

*
−

2.
52

55
0.
03

05
**

−
4.
44

57
0.
00

56
**

*

hy
br
id

re
gu
la
ri
ze
d
lo
gi
st
ic
re
gr
es
si
on
-R
N
N

(C
on

ca
te
na
tio

n)
m
od

el
ve
rs
us

hy
br
id

ex
tr
em

e
gr
ad

ie
nt

bo
os
ti
ng

-R
N
N

(c
on

ca
te
na

ti
on

m
od

el
−

2.
82

44
0.
02

38
**

−
2.
60

26
0.
02

99
4*

*
−

3.
43

28
0.
01

32
**

Si
gn

ifi
ca
nt
di
ff
er
en
ce
s
at
th
e
90

%
,9
5%

,a
nd

99
%

le
ve
ls
ar
e
in
di
ca
te
d
by

*,
**

,a
nd

**
*,
re
sp
ec
tiv

el
y.
T
he

st
ro
ng

es
tp
er
fo
rm

in
g
cl
as
si
fie

ri
n
ev
er
y
co
m
pa
ri
so
n
is
sh
ow

n
in
bo

ld
fa
ce

123



782 Annals of Operations Research (2024) 339:765–787

Table 9 Optimal hyperparameter values per cross-validation fold

Classifier Parameter Outer cross-validation fold index

1 2 3 4 5

Regularized logistic
regression

Regularization parameter
λ

0.41 0.015 0.1 0.126 0.012

Extreme gradient
boosting

Prop. Sampled variables 0.5 0.5 0.5 0.5 0.7

Learning rate 0.1 0.1 0.1 0.1 0.1

Regularization parameter
γ

3 5 8 1 5

Max tree depth 32 32 32 8 8

Number of rounds 46 41 41 46 46

Recurrent neural
networks

RNN type LSTM GRU GRU GRU GRU

(concatenation) Bidirectional True False False False False

Extended True False True False False

Last hidden only True True True True True

Number of hidden units 256 64 256 32 32

Batch size 16 16 32 8 8

Transformer Number of layers 4 8 8 8 8

(Multihead attention) Extended False False False False False

Number of hidden units 512 8 16 16 32

Batch size 16 8 16 16 32

6 Discussion

Having provided empirical answers to our core research questions, we next discuss the
implications of the observed results and reconcile our findings.

First, we find RNN-type networks to provide a more suitable framework for extracting
information from time-varying RFM variables than transformer networks. Much literature
advocates the advantages of transformers. They have virtually replaced RNNs in language-
related problems and become increasingly popular for computer vision tasks. Our findings
oppose this trend of the transformer becoming the lingua franca of deep learning. Scalability
resulting from the ease of parallelizing computations is a major advantage of the transformer.
This advantage facilitates pretraining transformer networks on very large data sets, which
would be impossible with RNNs. Large pretrained networks lead to the superiority of the
transformer in tasks like language or image processing where enormous amounts of data for
pretraining are easily available. Marketing applications like CCP do not involve the same
masses of data. Moreover, it is not at all clear whether concepts like pretraining and transfer
learning are applicable in marketing and/or whether this would be successful. Therefore,
scalability advantages, which enable transformers to benefit from richer pretraining in other
domains, do not translate into higher performance in the CCP context studied here. Given that
we do not consider transfer learning but train our networks from scratch, which is probably
the standard setting in many marketing applications, the strict sequentially of hidden state
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updates, the computational bottleneckwithin theRNN framework,might be the reason for the
RNN to extract more useful information from the time-varying RFMvariables and, therefore,
predicting customer churn more accurately than transformers (as confirmed by Table 4). In
the same vein, the observed results shed some light on the sequential dependency structure
in RFM variables. Transformers are much credited for their ability to capture long-term
dependencies in sequential data. The superiority of RNNs as observed in Table 4 indicates
that churn patterns in the focal data set are mainly driven by near- or short-term effects. This
is notable because switching costs in the financial services industry are higher compared to
many other service businesses. Relatively higher switching costs suggest the willingness to
churn to build up over time and some lead time before finally canceling a service. In this
regard, finding the RNN to excel in an industry with high switching costs, where one would
expect long-term dependencies between RFM data and the churn event, could indicate that
RNNs will also outperform transformer networks in other domains where changing service
provides is easier than in the financial services.

Second, many customer behavior forecasting settings including CCP require processing
static and time-varying covariates. Neural networks facilitate the processing of alternative
types of data in a single network architecture. Results associated with RQ2 clarify alternative
options for integrating demographic (static) and RFM (time-varying) customer features in
a CCP model. Consistent with expectations, we find a simple pooling of static and time-
varying features in the input vector to perform less well than multi-modal architectures in
which task-specific subnetworks take care of processing static and dynamic inputs, respec-
tively, and subsequent layers concatenate the derived latent representations of each type
before producing predictions. Attention mechanisms offer yet another approach to integrat-
ing static and time-varying features.Multi-head attention is the key component of transformer
networks. Our results echo this characteristic in that transformer networks perform best with
multi-head attention. For RNNs, our results warrant recommending marketing analysts to
use the concatenation approach when devising a CCP model.

Third, we find further evidence for the power of the gradient boosting framework to aid
customer-centric decision tasks. When comparing CCP models derived from a single DNN
to hybrid classifiers, in which DNN outputs are transferred to a second-stage classifier, the
combination of RNN and gradient boosting facilitates developing the most accurate churn
model overall. Much empirical work highlights the outstanding performance of gradient
boosting. A recent study in the related field of credit scoring (Gunnarsson et al., 2021), for
example, suggests that gradient boosting outperforms DNN in credit scoring. Our results
mirror the unmatched performance of gradient boosting and suggest that the combination of
RNN for extracting information from time-varying features and a gradient boosting-based
post-processor for integrating observed and latent customer characteristics gives a highly
powerful CCP model. In appraising this recommendation, it is only fair to mention several
previous studies that have applied ML algorithms including gradient boosting to heteroge-
neous data sets including both, static and time-varying features. Corresponding work uses a
range of feature transformations to aggregate the latter before applying an ML-based predic-
tion model (e.g., Koehn et al., 2020). To maintain a clear focus on the research questions that
inspired this study, we did not report empirical results from comparing DNN-based models
to purely static CCP models with feature aggregations. However, these results are available
for the interested reader as supplementary material5 and confirm the superiority of sequence
learning over feature aggregation when using RNNs, whereby the aggregated time-varying

5 The URL to the supplementary material will appear here should the paper be accepted for publication.
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RFM features (across different transformations) have been processed by a regularized logistic
regression and an extreme gradient boosting classifier.

7 Conclusion

ML has become an increasingly important tool to support decision-making in marketing.
Corresponding decision models forecast customer behavior using transactional data related
to the recency, frequency, and monetary value of client transactions. Such RFM variables
are naturally dynamic and time-evolving. Their incorporation into predictive ML models
is nontrivial and offers considerable degrees of freedom. Focusing on the prominent use
case of customer churn prediction (CCP), the paper has studied the potential of recently
introduced deep learning approaches for sequential data modeling in a CCP context. We
have examined the space of modeling options comprising different network architectures for
sequence prediction, pooling strategies for blending dynamic and static customer features,
and approaches to obtain an overall churn prediction in a single stage CCP model versus a
hybrid strategy, which incorporates DNN-based churn predictions into a conventional CCP
model.

The empirical results observed in a multi-factorial experiment related to customer churn
in the financial services industry provide original insights into the interplay of alternative
modeling options and suggestmarketing analysts a principled routine of how to integrate time-
varying RFMvariables into CCP and, more generally, customer behavior forecastingmodels.
In practice, the developed tool could inform business decision-makers about customers’ risk
of churning. Our experiments present several modeling options that allow financial services
providers to create better churn prediction models using sequential data. First, the hybrid
approaches serve as a fairly easy way to extend existing customer churn prediction models
with sequential data. As our results demonstrate, such an approach could already significantly
improve churn prediction models that do not integrate time-varying data. Next, we present a
pure DNN-based approach that integrates various types of data. Such an approach could be
extended with other data sources that were not included in this experiment.

Our study exhibits limitations, which pave the way for future research. Most impor-
tantly, we employ a data set from the financial service industry. Feature-rich, real-world
data comprising time-varying and static customer characteristics for customer behavior and
specifically churn prediction is not easily available in the public domain. Access to the pro-
prietary data set has been, therefore, a key asset facilitating this research. However, we cannot
claim external validity of the observed results beyond the employed data and welcome future
work to revisit the observed results, DNN architectures, and CCP models using different
data sets. Another limitation concerns the focus on correlational models to predict churn as
opposed to causal models predicting retention uplift. When the primary goal of CCP is to
target retention campaigns, decision-makers should use uplift models. However, in apprais-
ing the limitation of not using uplift modeling, it is important to note that campaign targeting
is not the only objective of CCP and that many uplift modeling strategies such as the S-, T-,
or X-learner employ conventional (i.e., correlational) ML models as a building block. In this
regard, our results are immediately relevant to uplift modeling and inform campaign targeting
decisions whenever an uplift model processes time-varying features. Next, we acknowledge
that another important goal of CCP beyond campaign targeting is to understand the drivers
of customer churn. DNNmodels are black-boxes and require additional (xAI) tools to reveal
the behavioral patterns derived from transactional customer data. While model-agnostic and
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DNN-specific xAI tools exist, we see the largest need for future work in this direction, namely
building and testing xAI tools that support both, time-varying and time-invariant features.
Mixed data is common in CCP andmany other applications in marketing and beyond. Having
clarified how to leverage corresponding data for CCP in this study, the next necessary step
is to develop tools for interpreting the DNN-based prediction approaches we find to excel.
Finally, our study provides insights into the impact of time-varying features on churn, but
there could also be external influences on the features. An important example is covariate
shift, for which more research is needed in the customer churn prediction domain.
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