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Abstract
The cryptocurrency market is volatile, non-stationary and non-continuous. Together 
with liquid derivatives markets, this poses a unique opportunity to study risk man-
agement, especially the hedging of options, in a turbulent market. We study the 
hedge behaviour and effectiveness for the class of affine jump diffusion models and 
infinite activity Lévy processes. First, market data is calibrated to stochastic volatil-
ity inspired-implied volatility surfaces to price options. To cover a wide range of 
market dynamics, we generate Monte Carlo price paths using an stochastic volatil-
ity with correlated jumps model, a close-to-actual-market GARCH-filtered kernel 
density estimation as well as a historical backtest. In all three settings, options are 
dynamically hedged with Delta, Delta–Gamma, Delta–Vega and Minimum Variance 
strategies. Including a wide range of market models allows to understand the trade-
off in the hedge performance between complete, but overly parsimonious models, 
and more complex, but incomplete models. The calibration results reveal a strong 
indication for stochastic volatility, low jump frequency and evidence of infinite 
activity. Short-dated options are less sensitive to volatility or Gamma hedges. For 
longer-dated options, tail risk is consistently reduced by multiple-instrument hedges, 
in particular by employing complete market models with stochastic volatility.

Keywords Cryptocurrency options · Hedging · Bitcoin · Digital finance · Volatile 
markets

JEL Classification G11 · G13 · G32

1 Introduction

Consider the problem of hedging contingent claims written on cryptocurrencies (CC). 
The dynamics of this new expanding market is characterized by high volatility, as is 
evident from the Cryptocurrency volatility index ����� (see Kim et al., 2021) and large 
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price jumps (Scaillet et al., 2018). We approach hedging options written on ������� 
(BTC) with models from the class of affine jump diffusion models and infinite activity 
Lévy processes. Similarly to Branger et al. (2012), we assess the hedge performance 
of implausible, yet complete as well as plausible, but incomplete asset pricing models. 
Since April 2019, contingent claims written on BTC and �������� (ETH) have been 
actively traded on ������� ( ���.�������.��� ). The Chicago Merchantile Exchange 
(CME) introduced options on BTC futures in January 2020. In contrast to traditional 
asset classes such as equity or fixed income, the market for CC options has only recently 
emerged and is still gaining liquidity, see e.g. (Trimborn & Härdle, 2018) for an early 
description of the market. Cryptocurrency markets are known to exhibit high volatility 
and frequent jumps, see e.g. market crashes on 12 March 2020, 19 May 2021, 17 June 
2022, posing challenges to valuation and risk management. This erratic price behaviour 
may be attributed to the lack of a fundamental value, see e.g. Biais et al. (2022), Athey 
et al. (2016) and Makarov and Schoar (2020).

As the option market is still immature and illiquid, in the sense that quotes for 
many specific strikes or maturities are not directly observable or may be stale, we 
derive options prices by interpolating prices from stochastic volatility inspired (SVI) 
parametrized implied volatility (IV) surfaces (Gatheral, 2004).

Aside from conducting a historical backtest, and in order to capture a variety of 
market dynamics, the BTC market is imitated with two different Monte Carlo simu-
lation approaches. In a parametric price path generation approach, we assume that 
the data-generating process is described by a SVCJ model. The second scenario gen-
eration method is based on GARCH-filtered Kernel-density estimation (GARCH-
KDE), which can be thought of as a smooth historical simulation taking into account 
the historical volatility dynamics, and which is therefore close to actual market 
dynamics.

Under each of the two different market simulation methods, options are hedged 
by a hedger employing models of different complexity. This deliberately includes 
models that are “misspecified” in the sense that relevant risk factors may be omitted 
(Branger et al., 2012). On the other hand, those models are possibly parsimonious 
enough to yield a complete market. It is known that, when comparing the hedge 
performance to a more realistic, albeit incomplete market model, the simpler model 
may outperform the complex model (Detering & Packham, 2015). In our context, a 
model is “misspecified” if it contains fewer or different parameters than the SVCJ 
model. Specifically, as models included in the class of SVCJ models, we consider 
the Black and Scholes (1973) (BS) model, the Merton (1976) jump-diffusion model 
(JD), the Heston (1993) stochastic volatility model (SV), the stochastic volatility 
with jumps model (SVJ) (Bates, 1996) and the SVCJ model itself. Infinite activ-
ity Lévy hedge models under consideration are the Variance-Gamma (VG) model 
(Madan et al., 1998) and the CGMY model (Carr et al., 2002). Options are hedged 
dynamically with the following hedge strategies: Delta ( Δ ), Delta–Gamma ( Δ–Γ ), 
Delta–Vega ( Δ–V  ) and minimum variance strategies (MV).

To gain further insights, we separate the full time period, ranging from April 
2019 to June 2020, into 3 different market scenarios with a bullish market behavior, 
calm circumstances with low volatility and a stressed scenario during the SARS-
COV-2 crisis. In addition to evaluating the hedge performance, we aim to identify 
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BTC risk-drivers such as jumps. This contributes to the understanding of what actu-
ally drives fluctuations on this market. A historical backtest of the hedge perfor-
mance, in the spirit of Detering and Packham (2016) and Ting and Ewald (2013), 
completes and confirms the findings of the SVCJ- and GARCH-KDE approaches.

A number of papers investigate the still young market of CC options. Trimborn 
and Härdle (2018) describe the CC market dynamics via the cryptocurrency index 
���� . Madan et al. (2019) price BTC options and calibrate parameters for a number 
of option pricing models, including the Black-Scholes, stochastic volatility and infi-
nite activity models. Hou et al. (2020) price ���� options under the assumption that 
the dynamics of the underlying are driven by the (SVCJ) model introduced in Duffie 
et al. (2000) and Eraker et al. (2003). The literature on the aspects of risk manage-
ment in CC markets is scarce but growing. Dyhrberg (2016), Bouri et al. (2017) and 
Selmi et al. (2018) investigate the role of BTC as a hedge instrument on traditional 
markets. Sebastião and Godinho (2020) and Alexander et  al. (2021) investigate the 
hedge effectiveness of BTC futures, while Nekhili and Sultan (2021) hedge BTC risk 
with conventional assets. To the best of our knowledge, hedging of CC options has not 
yet been investigated in this depth and detail. The aspect of risk management and the 
understanding of the dynamics of CCs is therefore a central contribution of this study.

The remainder of the paper is structured as follows: Sect. 2 describes the method-
ology, decomposed into market scenario generation, option valuation and hedge rou-
tine. The hedge routine presents the hedge models and explains the model param-
eter calibration and hedge strategy choices. In Sect. 3, we present and evaluate the 
results of the hedge routine and in Sect. 4, we conclude. The code is available as 
quantlets, accessible through under the name hedging_cc (https:// github. com/ Quant 
let/ hedgi ng_ cc).

2  Methodology

In this section, we introduce the methodology, comprising market scenario genera-
tion, option valuation and hedging. We take an option seller’s perspective and sell 
1- and 3-months (M) contingent claims. The choice is justified by the total trading 
volume of BTC options. Nearly 80% of the trading volume consists of options expir-
ing in at most 1 month. Almost all remaining options expire in 3 months or less 
(Alexander & Imeraj, 2022).

2.1  Synthetic market data generation

We describe how to generate synthetic market data, which serves as the input for 
the main analysis. The principal goal of synthetic scenario generation is to imi-
tate the BTC market behavior, especially retaining its statistical properties, with 
the added flexibility of Monte Carlo simulation to create a large amount of plau-
sible scenarios. In addition, we consider two simulation methods capturing differ-
ent statistical properties. They represent a trade-off between a parametric model 
with valuable and traceable risk-factor information and a flexible semi-parametric 

https://github.com/QuantLet/hedging_cc
https://github.com/QuantLet/hedging_cc
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closer-to-actual-market approach. The parametric model is simulated under the risk 
neutral measure ℚ with a forward looking perspective. The semi-parametric simula-
tion relates to the past market behavior performed under the physical measure ℙ . 
The time frame under consideration is from 1st April 2019 to 30th June 2020. The 
BTC market behavior in this time period is time-varying. This makes it convenient 
to segregate the time frame into three disjoint market segments from April to Sep-
tember 2019 (bullish), October 2019 to February 2020 (calm) and March to June 
2020 (covid), respectively. Bearing in mind that we are going to hedge 1-month and 
3-month options, the minimal segment length is chosen to exceed three months. A 
graphical representation of the BTC closing price trajectory is illustrated in Fig. 1 
with the corresponding summary statistics in Table 1. The first interval is labeled as 
the bullish segment, because, to a great extent, the market behaves upward-trending. 
The second period is labeled as the calm period. With an overall standard deviation 
of �̂ = 756.55 , price movements are more stagnant compared to the bullish segment.

The last segment is the Corona crisis or stressed scenario, where financial mar-
kets, especially CC markets, experienced high volatility. A notable mention is the 
behavior of BTC on 12th March 2020, where its price dropped by nearly 50%.

We now turn to a formal mathematical framework. Let the BTC market be a contin-
uous-time, frictionless financial market. Borrowing and short-selling are permitted. 
The constant risk-free interest rate r ≥ 0 and the time horizon T < ∞ are fixed. On a 
filtered probability space 

(

Ω,F,
(

Ft

)

t∈[0,T]
,ℙ

)

 , the asset price process and the risk-free 
asset are defined by adapted semimartingales (St)t≥0 and 

(

Bt

)

t≥0 , where B0 = 1 and 

Fig. 1  BTC closing price from 1st April 2019 to 30th June 2020, where the blue trajectory represents 
the bullish market behavior, the black path the calm period and red path the stressed scenario during the 
Corona crisis (Color figure online)

Table 1  Summary statistics of the bullish, calm and covid market log returns Rt

Behavior �̂ �̂ min q25 q50 q75 Max

Bullish 0.0038 0.0428 −0.1518 −0.0157 0.0050 0.0227 0.1600
Calm 0.0009 0.0290 −0.0723 −0.0162 −0.0015 0.0098 0.1448
Covid 0.0012 0.0490 −0.4647 −0.0107 0.0009 0.0162 0.1671
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Bt = ert, t ≥ 0 , respectively. The filtration is assumed to satisfy the usual conditions 
(e.g. Protter, 2005). To ensure the absence of arbitrage, we assume the existence of a 
risk-neutral measure ℚ . We consider an option writer’s perspective and short a Euro-
pean call option. The price of the option with strike K and time-to-maturity (TTM) 
� = T − t at time t < T is C(t, �,K) . For multiple-instrument hedges, we further 
assume the existence of a liquidly traded call option C2(t, �,K2) , K2 ≠ K , suitable for 
hedging. The dynamic, self-finance hedging strategy � = (�0, �1) = (�0

t
, �1

t
))0≤t≤T is an 

Ft-predictable process, where �0
t
 and �1

t
 denote the amounts in the risk-free security and 

the asset, respectively. The resulting portfolio process Π = (Πt)t≥0 is admissible and 
self-financing. The evolution of the value process Π is reviewed in detail in Appendices 
A.1, A.2 and A.3.

For the Monte Carlo simulation, the finite time horizon is partitioned into daily 
steps of size �t = 1

365
 . The number of trajectories of the asset price process is set to 

n = 100, 000.

2.1.1  SVCJ model

The parametric scenario generation approach assumes that the dynamics of the asset 
price process (St)t≥0 and the volatility process (Vt)t≥0 are described by the SVCJ model 
introduced in Duffie et al. (2000). This particular choice is motivated by the methodol-
ogy in Hou et al. (2020), where the model is applied to pricing options on the ���� . A 
high degree of free parameters enables to model various market dynamics. More spe-
cifically, the risk-neutral model dynamics are (Broadie & Kaya, 2005)

where W (1)
t ,W

(2)
t  are two independent standard Wiener processes. The scale of Vt is 

given by �v , the mean reversion speed is denoted by � and � is the mean reversion 
level. The model allows for simultaneous arrivals of jumps in returns and jumps 
in volatility governed by the Poisson process (Nt)t≥0 with constant intensity � . The 
jump sizes in volatility Zv

t
 are exponentially distributed Zv

t
∼ �(�v) and the jump 

sizes of the asset price are conditionally normally distributed

where �s is the conditional mean jump size in the asset price given by

In detail, �s denotes the jump size standard deviation. The unconditional 
mean is denoted by �s , which is related to the jump compensator ��∗ by 
�s = log

[

(1 + �∗)
(

1 − �j�v
)]

−
1

2
(�s)2 . The correlation parameter �j governs the 

correlations between jump sizes. From an empirical point of view, in most markets, 

(1)
dSt = (r − 𝜆�̄�)Stdt +

√

VtSt

�

𝜌dW (1)
t +

√

1 − 𝜌2dW (2)
t

�

+ Zs
t
dNt

dVt = 𝜅
�

𝜃 − Vt

�

dt + 𝜎v
√

VtdW
(1)
t + Zv

t
dNt

(2)Ξ
def
=Zs

t
|Zv

t
∼ N

(

�s
+ �jZv

t
, (�s)2

)

�s =
exp

{

�s +
(�s)2

2

}

1 − �j�v
− 1
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jumps occur seldomly and are difficult to detect, which, as a consequence, makes 
the calibration of �j unreliable (Broadie et al., 2007). Chernov et al. (2003), Broadie 
et  al. (2007), Eraker et  al. (2003), Eraker (2004) and Branger et  al. (2009) there-
fore recommend to set �j = 0 . In fact, this finding extends to the BTC market, see 
Hou et al. (2020), who find that "the jump correlation �j is negative but statistically 
insignificant...". Our main results are therefore calculated assuming �j = 0 . Nonethe-
less, we add some insights into calibrating �j and hedging with the calibrated param-
eter in Sect. 3.5.1. Note that despite a correlation of zero, the SVCJ model does not 
reduce to an SVJ model, as it still features jumps in the volatility.

The resulting paths are simulated according to the Euler-Maruyama discretization 
of (1) suggested in Belaygorod (2005). The corresponding model parameters are re-
calibrated on a daily basis according to the methodology described in Sect. 2.3.2.

2.1.2  GARCH‑KDE approach

Compared to the empirical price process, the SVCJ may appear quite restrictive: 
aside from being an incomplete market model, the price dynamics are limited by 
the specification of the stochastic volatility component as well as the jump inten-
sity and size. The semi-parametric method loosens the assumptions by generating 
scenarios using GARCH-filtered kernel density estimation (GARCH-KDE) as in 
e.g. McNeil and Frey (2000). Let (Rt)t≥0 denote BTC log-returns and (�̂t)t≥0 the esti-
mated GARCH(1,1) volatility, (Bollerslev, 1986). The kernel density estimation is 
performed on "de-garched" residuals

The rationale is to capture the time-variation of volatility by the GARCH filter and 
perform kernel density estimation on standardised residuals. The estimated density 
function is

where �∗(⋅) denotes the Gaussian Kernel. The resulting generated paths are 
(S(0, i),… , S(T , i)) , i = 1,… , n , with1

Throughout the paper, the parametric and the semi-parametric method are referred 
to as the SVCJ and GARCH-KDE framework, respectively.

(3)ẑt =
Rt

�̂t
.

(4)f̂ h(z) =
1

nh

n
∑

t=1

�
∗

(

ẑt − z

h

)

,

(5)S(t, i) = S(0) exp

[

t
∑

k=1

�̂kẑk

]

, t = 0,… , T .

1 The simulated, discretised prices are denoted by S(t, i) are opposed to St , which refers to the continu-
ous-time process.
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2.2  Valuation

This section describes how option prices are derived from the implied volatility sur-
face. As the market for CC claims, during the time period of our dataset, is still rela-
tively immature with only a limited number of actively traded options on ������� 
and the Chicago Mercantile Exchange, arbitrage-free option prices are derived 
through the stochastic volatility inspired (SVI) parameterization of the volatility 
surface of Gatheral and Jacquier (2014). Let �BS(k, �) denote the BS IV with log-
moneyness k = ln

(

K∕S0
)

 and total implied variance w(k, �) = {�BS(k, �)}2� . For a 
fixed � , the raw SVI parameterization of a total implied variance smile, as initially 
presented in Gatheral (2004), is

In the parameter set �R = {a, b, �SVI ,m, �SVI} , a ∈ ℝ governs the general level of 
variance, b ≥ 0 regulates the slopes of the wings, �SVI ∈ [−1, 1] controls the skew, 
m ∈ ℝ enables horizontal smile shifts and 𝜎SVI > 0 is the ATM curvature of the 
smile (Gatheral & Jacquier, 2014). For each maturity, the smile is recalibrated daily. 
The implied volatility is obtained by a simple root-finding procedure, whereas the 
parameters �R are calibrated according to the optimization technique explained in 
Sect. 2.3.2. In addition, the calibration is subject to non-linear constraints prescribed 
in Gatheral and Jacquier (2014). These constraints ensure convexity of the option 
price, which rules out butterfly arbitrage. Calendar spread arbitrage is avoided by 
penalizing fitted smiles, which induce a decrease in the level of the total implied 
variance for a given strike level. For interpolation, the at-the-money (ATM) total 
implied variance �SVI

T
= w(0, T) is interpolated for t1 < T < t2 as in Gatheral and 

Jacquier (2014), where t1, t2 refer to time points at which implied volatilities are 
observed. The resulting option price is the convex combination

where �T =

√

�SVIt2
−

√

�SVI
T

√

�SVIt2
−
√

�SVIt1

∈ [0, 1].

2.3  Hedge routine

This section describes the models selected to hedge BTC options as well as the 
model parameter calibration procedure. Given these model classes, hedge strategies 
are chosen for the hedge routine.

2.3.1  Hedge models

For hedging purposes, the choice of a hedge model faces the trade-off between 
sufficient complexity to describe the actual market dynamics and market 

(6)w(k,�R) = a + b

{

�SVI(k − m) +

√

(k − m)2 +
(

�SVI
)2

}

.

(7)C(T ,K) = �TC(t1,K) +
(

1 − �T
)

C(t2,K),
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completeness (Detering & Packham, 2015). In practice, a trader may for instance 
initiate hedging with an evidently wrong but simple model, such as the complete 
BS option pricing model. A lower number of parameters provides a parsimonious 
setup with potentially manageable explanatory power. In our setting, a European 
option is hedged employing models of increasing complexity. In the following, 
the model granularity is gradually extended by the addition of risk-factors such as 
local volatility, jumps, stochastic volatility and others. This covers the empirical 
finding of the previous literature on CC’s, e.g. (Kim et al., 2021; Scaillet et al., 
2018). Accordingly, the hedge models selected encompass affine jump diffusion 
models and infinite activity Levy processes.

The class of affine jump diffusion models covers well-known models nested 
in (1). Due to its popularity in the financial world, the simple but complete BS 
option pricing is selected as one of the hedge models. The volatility is constant 
with Vt = � and there are no discontinuities from jumps Nt = 0 . A slightly more 
complex model is the JD model. It assumes constant volatility with Vt = � , �v = 0 
and extends the BS model by allowing for jumps in returns. The jump size is 
log� ∼ N

(

�s, (�s)2
)

 distributed.
Evidence for stochastic volatility motivates the choice of the SV model. The 

jump component is excluded with � = 0 and Nt = 0 . We also examine the SVCJ 
model itself as a model used for hedging. It serves as the most general model and 
its hedge performance provides a meaningful insight for the comparison of the 
SVCJ and GARCH-KDE framework, while in the SVCJ framework, it provides 
“anticipated” hedge results (cf. Branger et al. (2012)). Due to the jump scarcity 
and latent nature of the variance process Vt , we also consider the SVJ model for 
hedging. In difference to the SVCJ model, this model has jumps in returns but no 
jumps in volatility.

In contrast to affine jump processes, there exists a well-established class of 
processes that do not entail a continuous martingale component. Instead, the 
dynamics are captured by a right-continuous pure jump process, such as the Vari-
ance Gamma (VG) model (Madan et al., 1998). The underlying St evolves as

with the characteristic function of the VG-process XVG
t

 given by

where r is the risk-free rate, Wt is a Wiener process and Gt is a Gamma process. The 
overall volatility level is represented by �VG ; �VG governs the symmetry of the distri-
bution and therefore controls the implied volatility skew; � controls for tails, kurtosis 
and thus regulates the shape of the volatility surface. An alternative representation 
of the VG process appealing for practical interpretation is given by the characteristic 
function

(8)
dSt = rSt−dt + St−dX

VG
t

XVG
t

= �VGGt + �VGWGt
,

(9)�VG(u;�
VG, �, �VG) =

(

1 − iu�VG� +
1

2

(

�VG
)2
�u2

)−1∕�

,
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where C, G, M > 0 . The detailed link between (9) and (10) is described in Appen-
dix A.4. An increase in G (M) increases the size of upward jumps (downward 
jumps). Accordingly, �VG , M and G account for the skewness of the distribution. 
An increase in C widens the Lévy-measure. An extension of the VG model is the 
CGMY model by Carr et al. (2002). On a finite time interval, the additional param-
eter Y permits infinite variation as well as finite or infinite activity. Formally, in (8) 
the source of randomness is replaced by a CGMY process XCGMY

t
 with the character-

istic function

The XVG
t

-process in the representation in Equation (9) is a special case of the CGMY 
process for Y = 1 . On a finite time interval, the behavior of the path depends on 
Y. For Y < 0 , there is a finite number of jumps, else infinite activity. In case of 
Y ∈ (1, 2] , there is also infinite variation.

2.3.2  Calibration routine

The model parameters are calibrated following the FFT option pricing technique of 
Carr and Madan (1999). The price of a European-style option C(T, K) is given by

where �T is the characteristic function of the �-damped option price 
cT [ln(K)] = e𝛼 lnKC(T ,K), 𝛼 > 0 . The ill-posed nature of calibration can lead to 
extreme values of the model parameters. This is avoided by employing a Tikhonov 
L2-regularization (Tikhonov et al., 2011). At the cost of accepting some bias, this 
penalizes unrealistic values of the model parameters by giving preference to param-
eters with smaller norms. Calibration is performed by the optimizer

where IVModel(⋅), IVMarket(⋅) describe model and market implied volatilities for matu-
rity and strike Ti,Ki . Γ is a diagonal positive semi-definite matrix. It corresponds to 
the Tikhonov L2-regularization, which gives preference to parameters with smaller 
norms. The entries in the matrix Γ are chosen individually for each parameter to 
ensure that they maintain the same reasonable order of magnitude.

(10)�VG(u;C,G,M) =

(

GM

GM + (M − G)iu + u2

)C

,

(11)
�CGMY(u;C,G,M, Y) = exp

[

CtΓ(−Y)
{

(M − iu)Y −MY + (G + iu)Y − GY
}]

.

(12)
C(T ,K) =

1

�
e−� lnK ∫

∞

0

e−iv lnK�T (v)dv, with

�T (v) =
exp−rT �T (v − (� + 1)i)

�2 + � − v2 + i(2� + 1)v
,

(13)

𝜃∗ = argmin
𝜃∈Θ

R(𝜃)

R(𝜃) =

√

1

n

∑

i

{

IVModel(Ti,Ki, 𝜃) − IVMarket((Ti,Ki))
}2

+ 𝜃⊤Γ𝜃,
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The parameter space Θ ⊂ ℝd of each model in scope is subject to linear ine-
quality constraints. Given that the objective is not necessarily convex, it may 
have multiple local minima. In order to explore the entire parameter space, 
simplex-based algorithms are more appropriate than local gradient-based tech-
niques. In our case, we employ the Sequential Least Squares Programming opti-
mization (Kraft, 1988) routine. We adjust for time effects by calibrating param-
eters on the IV surface instead of option prices.

We impose liquidity and moneyness cut-offs. Claims must have a positive 
trading volume and an absolute BS Delta in [0.25, 0.75]. This filters options that 
are close to ATM as is custom in FX trading, see Clark (2011).

2.3.3  Hedging strategies

Any hedging strategy’s target is to protect against market movements and to 
minimize Profit-and-Loss (P &L) of the hedged position. Hedges either reduce 

risk by eliminating market-risk-related sensitivities (Δ,Γ,V) =
(

�C
�S

,
�2C

�2S
,
�C
��

)

 

or by minimising a risk measures, such as a hedged position’s variance. Broadly, 
hedging strategies are split into single- and multiple instrument hedges. Single 
instrument hedges incorporate the Δ - and MV-hedging. Föllmer and Sonder-
mann (1986)’s MV hedge aims to find the strategy that minimizes the mean-
squared error under ℚ

Under the assumption of symmetric losses and gains, the minimizing strategy 
is denoted by �MV

t
 . The Δ-hedge targets to protect the position against first-order 

changes in the underlying (St)t≤T.
In addition to hedging Δ , multiple instrument hedges eliminate higher-order 

sensitivities or sensitivities of risk factors other than the underlying, e.g. � . To 
achieve Δ-Γ - or Δ-V-neutrality, an additional liquid option C2(S(t), T ,K1) with 
strike K1 ≠ K  is priced from the SVI parameterized IV surface, as explained 
in Sect.  2.2. For performance comparison of linear and non-linear effects, the 
dynamic Δ - and Δ-Γ-hedging strategies are applied to all hedge models. The 
Δ-V-hedge is only considered for affine jump diffusion models. The technical 
aspects of the dynamic hedging strategies are described in Appendices A.2 and 
A.3. The calibrated model parameters are used to compute hedging strategies 
(�t)0≤t≤T for each model. Table  2 summarizes the hedging strategies applied to 
the respective hedge models.

The methods for computing sensitivities depend on the model. Where pos-
sible, analytic formulas are used (e.g. BS-model). In cases where not analytic 
formulas are available, e.g. the VG-model, finite differences are applied to FFT-
generated option prices.

(14)
(

Π0, �
MV
t

)

= argmin
Π0,�

1
t

�ℚ

[

(

CT − Π0 − ∫
T

0

�1
u
dSu

)2
]

.
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2.3.4  Backtesting hedges on historical data

In addition to evaluating the hedges in Monte Carlo simulations, the hedging 
strategies are backtested on the historical BTC price path. The principal idea is 
to write an at-the-money option with fixed expiry (2 months in our setting) each 
day. Each option is hedged by a self-financing hedging strategy with daily rebal-
ancing. At expiry, the P &L is recorded. This gives a sample of P &L’s on real 
data. Details of the self-financing strategy are given in Appendix A.1. The choice 
of 2-month expiry allows to construct P &L samples of size 60 for each market 
regime (bullish, calm, Covid).

This setup follows the empirical study in Detering and Packham (2016). A 
similar type of backtest, recording daily P &L instead of terminal P &L is con-
ducted in Ting and Ewald (2013). Daily P &L, however, depends on the option 
price and is therefore model-dependent.

2.3.5  Hedge performance measures

Each model’s hedge performance is evaluated by indicators derived from the rela-
tive P &L

In a perfect hedge in a complete market, we have ΠT = 0 , and therefore �rel = 0 . 
However, in practice, due to model incompleteness, discretization and model uncer-
tainty, �rel ≠ 0 . We evaluate the hedge performance with the relative hedge error 
�hedge as applied in e.g. Poulsen et al. (2009), defined as

The rationale behind �hedge is that standard deviation represents a measure of uncer-
tainty. A sophisticated hedge strategy reduces or ideally eliminates uncertainty 
(Branger et al., 2012). The tail behavior is captured by the expected shortfall

(15)�rel = e−rT
ΠT

C(T ,K)
.

(16)�hedge = 100

√

Var
(

�rel
)

.

Table 2  Hedge strategy 
summary applied to the hedge 
models described in Sect. 2.3.1

Model Strategies applied

BS ΔBS , Δ-ΓBS , Δ-VBS

SV Δ-VSV , ΔSV , Δ-ΓSV , MV
JD ΔJD , Δ-ΓJD , Δ-VJD , MV
SVJ ΔSVJ , Δ-ΓSVJ , Δ-VSVJ , MV
SVCJ ΔSVCJ , Δ-ΓSVCJ Δ-VSVCJ , MV
VG ΔVG , Δ-ΓVG , MV
CGMY ΔCGMY , Δ-ΓVG , MV
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where F(−1)

�rel
(�) denotes an �-quantile. In the empirical part, these measures are esti-

mated via the empirical distributions from Monte Carlo, resp. historical simulation.

3  Empirical results

3.1  Data

The models are calibrated on the market prices of European-style ������� options 
written on BTC futures. The number of liquidly traded instruments varies signifi-
cantly with maturity. Therefore, the data is filtered with liquidity cut-offs.

3.2  Option pricing

Option prices are obtained on every day of the hedging period. This is necessary 
for the calculation of the initial value of the hedging portfolio and to perform multi-
asset dynamic hedging. Each option is priced according to the IV surface on the 
given day. If the option is not traded for the given strike or maturity, the SVI para-
metrized IV surface is interpolated in an arbitrage-free way. For illustration, we take 
a look at CC option prices at the beginning of each market period. Figure 2 displays 

(17)ES𝛼 = �

[

𝜋rel ∣ 𝜋rel > F
(−1)

𝜋rel
(𝛽)

]

,

Table 3  Interpolated 1-month 
and 3-months ATM option 
prices

F(0) denotes the price of the underlying at t = 0

F0 1 M 3 M

BULLISH 4088.16 206.38 417.87
CALM 8367.51 838.01 1449.82
COVID 9804.85 610.36 1201.46

(a) bullish (b) calm (c) covid

Fig. 2  Market IVs in red and interpolated IV surface in blue on (a) 1st April 2019 (b) 1st October 2019 
(c) 1st February 2020. Fitted smiles with very short maturities less than 1 week are excluded from plots, 
because they are not relevant for the hedging routine. Calibrated SVI parameters of shorter maturities are 
given in Table 15
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the SVI parametrized interpolated IV surfaces for SVI parameters listed in Table 15. 
The resulting option prices used in the hedging routine are displayed in Table 3.

Recall that for a given IV surface the SVI parameters related by the formula (6) 
are calibrated for each TTM. The temporal dynamics of the SVI parameters pro-
vide the following insights: parameter a increases with TTM, which aligns with the 
increase of the ATM total variance as TTM rises. Parameter �SVI decreases with 
TTM, indicating decrease of the ATM curvature. Increasing values of parameter b 
indicate higher slopes of the wings as TTM increases. Skewness, expressed in terms 
of the parameter �SVI , varies across market segments. Usually negative values of �SVI 
indicate a preference for OTM puts over OTM calls. In the bullish period, skewness 
is close to zero across most maturities.

3.3  Scenario generation results

For the GARCH-KDE approach, the estimated residual distributions f̂ h(z) from (4) 
are displayed in Fig. 3. The empirical moments and quantiles are listed in Table 4. 
Figure 12 illustrates the GARCH(1, 1) volatility estimates of BTC returns and the 
7-day historical BTC volatility. As a consequence of de-garching, all three distri-
butions are roughly symmetric and mean-zero. Deviations are direct results from 
market moves: the upward-moving market behavior in the bullish period leads to a 
left-skewed residual distribution. High drops in the stressed period result in a nega-
tively skewed distribution.

To demonstrate that the GARCH-KDE method is an appropriate method of sam-
pling "close-to-actual-market" paths, the boxplots in Fig. 4 illustrate the distributions 
of one simulated GARCH-KDE path and the corresponding historical distribution. 

Table 4  Summary statistics of 
estimated historical densities ẑt 
defined in (3) for a respective 
scenario

Period Mean Std Skew Kurt q25 q50 q75

BULLISH 0.13 0.99 0.17 0.87 − 0.44 0.15 0.66
CALM − 0.02 0.74 0.34 0.12 − 0.51 − 0.06 0.38
COVID 0.05 0.70 − 0.04 0.23 − 0.34 0.04 0.47

Fig. 3  Estimated residual den-
sity f̂ h(z) in (4) during bullish 
market behavior, calm period 
and the stressed scenario during 
the Corona crisis for h = 0.2
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The strength of the GARCH-KDE approach, of course, lies in the fact that through 
Monte Carlo simulation, the analysis is not restricted to one path.

SVCJ paths are simulated with daily re-calibrated parameters, which are summa-
rized in Appendix Table 6. Selected statistical properties of both scenario generation 
approaches are given in Table 14. We observe differences in tails, extreme values 
and standard deviation. Discrepancies in �̂ are natural consequences from differ-
ent methodological assumptions. The SVCJ approach assumes volatility to be sto-
chastic, whereas GARCH-KDE models �t with GARCH(1,1). Discrepancies in path 
extremes result from the SVCJ model assumptions on return jump size Ξ in (2). In 
the calibration routine, the L2-regularization is applied to control extreme parameter 
values. Yet, estimated return jump sizes can be very large. Resulting Euler discre-
tized paths contain trajectories with extreme moves of the underlying. These are e.g. 
extremely low and high prices during the calm and stressed scenario displayed in 
Table 14. The sometimes erratic BTC price evolution suggests that such price moves 
are entirely implausible (Tables 5, 6).

3.4  Calibration results

In each period, calibration is performed daily using instruments satisfying the 
liquidity and moneyness requirements specified in Sect.  2.3.2. For an overview, 
average numbers of options per maturity range used for calibration are summarized 
in Table  7. As a consequence of the moneyness requirement, more longer-dated 
options are selected. The average parameter values per period are summarized in 
Table  6. Sections  3.4.1 and 3.4.2 provide a detailed perspective on the dynamics 
of the calibrated parameters. Calibration is carried out on the market’s mid IVs. Of 
course, ignoring bid-ask spreads and the possibility of stale prices may produce arbi-
trage opportunities as well as spikes in parameters and calibration errors. However, 

(a) bullish (b) calm (c) covid

Fig. 4  Distributions of one-sampled GARCH-KDE path and historical returns

Table 5  Summary statistics of 
calibrated SVCJ jump size Ξ per 
market segment

Segment �̂ �̂ Min q1 q50 q99 Max

Bullish − 0.03 0.18 − 0.39 − 0.37 − 0.00 0.46 0.61
Calm − 0.23 0.24 − 0.44 − 0.43 − 0.34 0.53 0.58
Covid − 0.28 0.17 − 0.49 − 0.48 − 0.33 0.11 0.67
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this is considered a minor issue and ignored. RMSEs for the models are illustrated 
in Appendix C.3. Naturally, the model fit improves with increasing model complex-
ity. Hence, the BS model has the highest RMSE values on average while the SVCJ 
model has the lowest.

3.4.1  Affine jump diffusion models

The calibrated parameter �BS provides meaningful insights into market expecta-
tions. Levels vary in the range �BS ∈ [50 %, 175 %] , with summary statistics for 

Table 6  Average calibrated SVCJ parameters with market segments

period � � V0 � � � �y �y �v

BSbullish – – – – 0.84 – – – –
BScalm – – – – 0.68 – – – –
BScovid – – – – 0.78 – – – –
Mertonbullish – – – – 0.17 0.11 0.0 0.82 –
Mertoncalm – – – – 0.42 0.72 0.0 0.55 –
Mertoncovid – – – 0.48 0.40 0.0 0.69 –
SVbullish 0.75 0.16 0.76 0.42 0.82 – – – –
SVcalm 1.60 0.17 0.35 1.10 0.68 – – – –
SVcovid 1.43 0.01 0.63 0.95 0.56 – – – –
SVJbullish 0.72 0.15 0.75 0.42 0.80 0.16 0.01 0.0 –
SVJcalm 1.28 0.18 0.33 1.05 0.68 0.37 0.01 0.0 –
SVJcovid 0.98 0.14 0.50 0.74 0.72 0.86 − 0.15 0.0 -
SVCJbullish 0.51 0.14 0.74 0.09 0.88 0.31 − 0.04 0.0 0.45
SVCJcalm 0.75 0.28 0.30 0.38 0.83 0.85 − 0.30 0.0 0.99
SVCJcovid 0.61 0.22 0.52 0.18 0.89 1.04 − 0.35 0.0 0.54

Table 7  Overview of average maturity counts of all options in a daily IV surface fullfiling the liquidity 
and moneyness requirements (Sect. 2.3.2)

Segment/maturity ≤ 1 W (1 W, 2 W] (2 W, 3 M] (3 M, 6 M] (6 M, 9 M]

Bullish 2.77 1.72 4.61 7.14 2.53
Calm 2.53 2.24 3.75 4.28 3.18
Crisis 3.00 3.03 4.44 5.58 5.33

Table 8  Summary statistics of 
daily �BS calibration

Behavior Mean Std. dev. Min q25 q50 q75 Max

Bullish 0.84 0.16 0.50 0.72 0.85 0.97 1.20
Calm 0.68 0.06 0.61 0.64 0.66 0.70 0.89
Stressed 0.78 0.21 0.57 0.63 0.73 0.87 1.75
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this parameter provided in Table 8. Due to the volatile nature of the CC markets, 
levels of �BS are generally higher than in traditional markets (Madan et al., 2019). 
In comparison, the VIX index in the time period 1990–2021 ranges between 9.5% 
and 60%, with the 95%-quantile at 33.5%. Figure 5 shows the dynamics of �BS over 
the entire time frame. In the bullish period, volatility levels rise up to 120% . In the 
calm period, as expected, the levels are lower than in the other two periods with 
�BS ∈ [0.61, 0.91].

Figure 6 plots the calibrated parameters �JD and �JD of the JD model over time. In 
general, levels of �JD are lower than �BS , clearly visible during the calm and stressed 
scenario. As the JD model is an extension of the BS model, higher levels of �BS are 

Fig. 5  Daily calibration �BS segregated by market segment in chronological order. Volatility levels are 
very high compared to equities or indices such as S & P 500

Fig. 6  Interplay between �JD and �JD segregated by market segment in chronological order. Mostly, for 
high levels of �JD we observe low levels of �JD and vice versa
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partially compensated by the jump component. On many days, �JD is close to �BS . The 
reason for this are generally low values of the annual jump intensity �JD and jump size 
�y . On average, the JD model expects less than one jump in returns per year.

The evolution of �JD is compared to the jump intensities of extended models �SVJ 
and �SVCJ in Appendix Fig.  13. Throughout, annualised jump intensities are low 
with mostly �SV(C)J ≤ 2.5 . Overall, the conclusion is that jumps are infrequent. We 
observe contrasting levels of �SVCJ and �JD . They are not directly comparable, as 
the jump intensity �SVCJ contributes to simultaneous jumps in returns and stochastic 
volatility, while �JD and �SVJ corresponds solely to jumps in returns. For example, 
levels of �SVCJ in the calm period are high whereas �SVJ is close to zero.

The plausibility of the stochastic volatility assumption is analyzed by the evolution 
and levels of �v . In most periods, levels of �v are higher compared to traditional mar-
kets. In the broad picture, the evolution of �v does not depend on model choice a shown 
in Appendix Fig. 14. Table 16 summarizes statistical properties of this parameter by 
model and market segment. In the bullish and calm period, the indication for stochas-
tic volatility is strong with vol-of-vol levels at q50 ≥ 80% and q50 ≥ 75% , respectively. 
In the stressed period, levels of �v in SV,SVJ,SVCJ remain high at q50 ≥ 73%.

Empirical evidence suggests that in traditional markets the correlation parameter 
�SV(CJ) is usually negative. Specifically, when prices fall, volatility increases. How-
ever, across all three market segments and models, �SV(CJ) is mainly positive and 
close to zero as illustrated in Appendix Fig. 15. Hou et al. (2020) name this phenom-
enon the inverse leverage effect in CC markets, that was previous reported on com-
modity markets by Schwartz and Trolle (2009).

This relationship in the CC markets is also supported by the correlation between 
the ���� and the ����� under the physical measure ℙ . Pearson’s correlation coef-
ficient is �pearson = 0.51 in the bullish and �pearson = 0.64 in the calm period, respec-
tively. In the stressed segment, correlation is negative with �pearson = −0.73.

3.4.2  VG and CGMY

The prospect of infinite variation is evaluated by the calibration of the CGMY 
model with average calibrated parameters in Table 9. Precisely, we are interested in 
the evolution of the infinite activity parameter YCGMY portrayed in Fig. 7. As in each 
market segment we mostly have YCGMY > 0 , there is evidence for infinite activity. 
In the bullish period, there is also evidence of infinite variation, as we mostly have 
YCGMY ∈ (1, 2] (Carr et al., 2002).

The bullish period catches high magnitudes of jump size direction increase 
parameters GCGMY and MCGMY , reflecting the nature of this market segment. 

Table 9  Average calibrated 
parameters of the CGMY model 
segregated by market segment

Market segment C G M Y

CGMYbullish 4.24 22.21 24.79 1.20
CGMYcalm 10.37 7.67 9.30 0.14
CGMYcovid 7.94 11.38 17.24 0.68



108 J. L. Matic et al.

1 3

Similarly, the increase in decreased jump size parameter MCGMY is mainly higher in 
the stressed scenario. A graphical illustration is given in Appendix Fig. 17. The VG 
is calibrated under representation (9). Overall, volatility levels of �VG are compara-
ble to �BS , as illustrated in Appendix Fig. 16.

3.5  Hedge results

At the beginning of each market period, we short 1- and 3-months ATM options 
with option premiums listed in Table 3. As outlined earlier, the price process is sim-
ulated in both SVCJ and the GARCH-KDE setting. The exposure in each option 
is dynamically hedged using the strategies summarized in Table 2. The hedge per-
formance is evaluated in terms of the hedge error �rel and tail measures ES5% and 
ES95% . The hedge results are shown in Tables 10 and 11. For a concise graphical 
representation, the best performing hedge strategies across models are compared in 
boxplots displayed in Figs. 8 and 9. For each model, the best performing strategy 
is selected according to ES5% , as this provides a trade-off between an extreme, yet 
plausible tail summary.

These are the main findings: First, with some exceptions, using multiple instru-
ments for hedging, i.e., Delta–Gamma and Delta–Vega hedges, when compared to 
a simple Delta-hedge lead to a substantial reduction in tail risk. Hence, whenever 
liquidly traded options are available for hedging, they should be used.

Exceptions are the calm and COVID periods in the GARCH-KDE approach for 
the short-maturity option as well as the calm period and GARCH-KDE approach for 
the long-date option—here, no significant improvement is achieved by including a 
second hedge instrument. In any case, no deterioration takes place when using a sec-
ond security for hedging. Contrary to the SVCJ approach, which models several risk 
factors (jumps, stochastic volatility) explicitly, the GARCH-KDE approach, with a 

Fig. 7  Daily YCGMY calibration segregated by market segment. Often, we observe YCGMY > 0 . This pro-
vides indication for infinite activity. As YCGMY ∈ (1, 2] in the bullish segment, there is evidence for infi-
nite variation
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smooth KDE density, exhibits less sensitivity to concrete risk factors (e.g. Vega) in 
the calm period, even despite the GARCH filter, see Fig. 12.

Second, for short-dated options, no substantial differences occur in the optimal hedg-
ing strategies across models. The sole exception is worse performance of the VG- and 
CGMY-models in the calm period when price paths are generated in the SVCJ model.

Third, turning to the long-dated option, although not always best perform-
ing, it can be said that stochastic volatility models perform consistently well. 
Amongst the stochastic volatility models, the SV model as the simplest model, 
does not underperform and sometimes even is the best-performing model. For 
the choice of a SV hedge model, the ΔSV-VSV hedge is a replicating strategy 
(Kurpiel & Roncalli, 1999) and performs often better than other models under 
the same or different strategies. As calibrated jump intensities �SVJ and �SVCJ are 
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(a) GARCH-KDE bullish (b) SVCJ bullish

(c) GARCH-KDE calm (d) SVCJ calm

(e) GARCH-KDE Covid (f) SVCJ Covid

Fig. 8  1-month option hedge performance boxplots of �rel under (a), (c), (e) GARCH-KDE and (b), (d), 
(f) SVCJ market simulation for different market segments. For illustrative purposes �rel is truncated at q5 
and q95 . The vertical axis portrays ΔBS hedge results compared each model’s best performing strategy. 
This best performing strategy is selected according to the minimal ES5%
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Table 10  1-month ATM hedge performances with the  worst (bold values) and best (italic) performing 
strategy. The table corresponds to results in Fig. 8

Bullish

GARCH-KDE ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-VSVJ Δ-VSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 3.35 − 2.58 − 2.62 − 2.48 −  2.63 − 2.59 − 2.51 − 2.53

ES5% − 1.75 − 1.34 − 1.32 − 1.21 − 1.32 − 1.27 − 1.24 − 1.27

ES95% 1.17 1.49 1.51 1.65 1.5 1.57 1.64 1.61

Max 3.31 5.32 5.29 5.33 5.28 5.35 4.77 5.05
�rel 63.14 59.55 59.39 60.43 59.40 59.75 60.97 60.87
SVCJ ΔBS Δ-VBS Δ-VSV Δ-ΓJD Δ-VSVJ Δ-VSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 11.35 − 9.46 − 9.65 − 9.69 − 9.65 − 9.58 − 8.13 − 8.07

ES5% − 1.48 − 1.16 − 1.16 − 1.06 − 1.16 − 1.12 − 1.08 − 1.10

ES95% 1.02 0.98 0.98 1.11 0.98 1.04 1.12 1.10

Max 18.69 20.15 20.46 20.51 20.46 20.58 22.56 24.47
�rel 56.12 50.7 50.2 51.36 49.86 50.37 52.32 52.56

Calm

GARCH-KDE ΔBS ΔBS MVSV ΔJD MVSVJ MVSVCJ ΔVG ΔCGMY

Min − 0.94 − 0.94 − 1.01 − 1.07 − 1.03 − 1.1 − 1.16 − 1.18
ES5% − 0.16 − 0.16 − 0.17 − 0.19 − 0.15 − 0.15 − 0.2 − 0.20

ES95% 1.04 1.04 1.05 1.03 1.07 1.09 1.08 1.08

Max 1.77 1.77 1.81 1.80 1.91 1.86 1.80 1.81
�rel 25.44 25.44 25.52 25.97 25.78 26.01 26.80 26.87
SVCJ ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-VSVJ Δ-VSVCJ Δ-ΓVG Δ-ΓCGMY

Min −8.07 −4.45 −4.45 −5.07 −4.45 -4.46 −5.04 −6.24

ES
5% −2.20 −1.01 −1.01 −1.01 −0.96 −1.01 −1.19 −1.14

ES
95% 1.13 1.12 1.12 1.13 1.09 1.13 1.15 1.17

Max 8.81 8.86 8.86 12.07 8.88 9.69 8.73 9.95
�rel 67.72 43.78 43.78 44.58 42.29 44.34 48.69 48.24

Covid

GARCH-KDE ΔBS ΔBS MVSV ΔJD MVSVJ MVSVCJ ΔVG ΔCGMY

Min -1.39 -1.39 −1.28 −1.38 −1.29 −1.23 −1.39 −1.39
ES5% − 0.49 − 0.49 − 0.46 − 0.55 − 0.51 − 0.39 − 0.48 − 0.48

ES95% 0.88 0.88 0.89 0.83 0.87 0.96 0.88 0.88

Max 1.37 1.37 1.39 1.33 1.38 1.54 1.44 1.43
�rel 30.21 30.21 29.52 30.3 30.08 30.78 29.62 29.56
SVCJ ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-ΓSVJ Δ-ΓSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 16.51 − 10.93 − 10.88 − 14.36 − 14.92 − 29.05 − 24.66 − 17.07

ES5% − 3.13 − 1.64 − 1.72 − 1.76 − 1.76 − 1.84 − 1.85 − 1.75

ES95% 1.08 0.98 1.01 1.09 1.08 1.11 1.00 1.06

Max 7.74 8.92 7.00 21.48 14.13 20.24 11.11 11.54
�rel 88.09 56.03 57.62 60.19 60.53 63.85 61.3 58.33
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low, the SVJ or SVCJ are often similar to the SV leading to comparable hedge 
results (Table 12).

The simulated hedge results are confirmed in the historical hedge backtest. As 
before, with expections (calm period), hedges involving multiple hedge instru-
ments consistently achieve desirable variance and tail risk reduction. For exam-
ple, in the bullish period, the Δ-VSV strategy strikingly outperforms other best 
performing strategies.
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Fig. 9  Three month option hedge performance boxplots of �rel under (a), (c), (e) GARCH-KDE and (b), 
(d), (f) SVCJ market simulation for different market segments. For illustrative purposes �rel is truncated 
at q5 and q95 . The vertical axis portrays ΔBS hedge results compared each model’s best performing strat-
egy. This best performing strategy is selected according to the minimal ES5%
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Table 11  3-month ATM hedge performance with the worst  (bold values) and  best (italic values) per-
forming strategy. The table corresponds to results in Fig. 9
Bullish

GARCH KDE ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-VSVJ Δ-VSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 6.55 − 6.36 − 6.35 − 6.32 − 6.35 − 6.34 − 6.36 − 6.37

ES5% − 2.38 − 1.99 − 1.95 − 1.96 − 1.97 − 1.95 − 1.98 − 1.99

ES95% 2.43 2.83 2.8 2.85 2.81 2.81 2.83 2.83

Max 11.46 11.73 11.74 11.76 11.00 11.73 11.72 11.71

�rel 101.91 101.76 100.30 101.77 101.02 100.72 101.75 101.75

SVCJ ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-VSVJ Δ-VSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 14.67 − 11.58 − 11.57 − 11.51 − 11.55 − 9.30 − 11.6 − 11.6

ES5% − 1.10 − 0.64 − 0.63 − 0.62 − 0.63 − 0.62 − 0.63 − 0.63

ES95% 0.84 0.64 0.62 0.66 0.62 0.64 0.65 0.65

Max 10.14 11.42 11.29 11.34 11.26 9.02 11.27 11.27

�rel 44.14 26.5 25.86 26.45 25.89 25.26 26.55 26.39

Calm

GARCH-KDE ΔBS ΔBS MVSV ΔJD MVSVJ ΔSVCJ ΔVG ΔCGMY

Min − 0.29 − 0.29 − 0.27 − 0.28 − 0.25 − 0.25 − 0.28 − 0.28

ES5% 0.18 0.18 0.20 0.15 0.19 0.20 0.19 0.19

ES95% 0.76 0.76 0.76 0.73 0.77 0.75 0.75 0.75

Max 1.04 1.04 1.06 1.05 1.12 1.07 1.12 1.12

�rel 13.59 13.59 13.11 13.53 13.82 12.82 13.18 13.18

SVCJ ΔBS Δ-ΓBS Δ-VSV Δ-VJD Δ-VSVJ Δ-VSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 12.63 − 8.68 − 12.75 − 6.32 − 7.79 − 12.75 − 12.73 − 12.74

ES5% − 1.56 − 0.85 − 0.71 − 0.79 − 0.78 − 0.89 − 0.96 − 0.97

ES95% 0.88 0.82 0.69 0.77 0.79 0.88 0.89 0.90

Max 7.74 5.19 7.79 4.15 7.78 8.99 8.97 9.25

�rel 53.39 33.36 28.28 31.01 31.26 36.05 38.82 39.09

Covid

GARCH-KDE ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-ΓSVJ Δ-ΓSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 4.36 − 2.69 − 2.64 − 2.64 − 2.44 − 2.58 − 2.7 − 2.71

ES5% − 1.56 − 0.8 − 0.76 − 0.77 − 0.70 − 0.78 − 0.83 − 0.84

ES95% 0.6 0.93 0.9 0.97 1.11 1.00 0.91 0.9

Max 3.88 3.33 3.32 4.52 4.57 4.45 4.49 4.55

�rel 50.06 34.48 33.09 34.57 40.02 37.4 34.63 34.67

SVCJ ΔBS Δ-ΓBS Δ-VSV Δ-ΓJD Δ-ΓSVJ Δ-ΓSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 13.53 − 7.89 − 7.9 − 14.3 − 11.76 − 11.75 − 20.99 − 11.72

ES5% − 2.77 − 1.18 − 1.26 − 1.34 − 1.36 − 1.39 − 1.26 − 1.25

ES95% 0.87 0.71 0.68 0.78 0.94 0.93 0.73 0.73

Max 13.48 10.78 10.77 13.60 13.66 13.6 13.67 13.65

�rel 88.42 38.24 39.34 43.95 48. 49.06 42.99 41.27

Bold values are denotes the worst performing valuesa and italic values are denotes the best performing 
values
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Fig. 10  Historical backtest (a) bullish, (b) calm and (c) covid hedge performance; �rel for 2-months ATM 
options. For illustrative purposes �rel is truncated at q5 and q95 . The vertical axis portrays ΔBS hedge 
results compared each model’s best performing strategy. This best performing strategy is selected accord-
ing to the minimal ES5%
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Table 12  Backtest of hedging 2-month ATM options with the worst  (bold values) and best (italic values) 
performing strategies. The table corresponds to results in Fig. 10

Bullish
Backtest ΔBS Δ-ΓBS Δ-V

SV
Δ-V

JD
Δ-ΓSVJ Δ-V

SVCJ
Δ-ΓVG Δ-ΓCGMY

Min − 4.34 − 3.85 − 1.35 − 3.85 − 3.85 − 2.27 − 3.86 − 3.86

ES5% − 4.34 − 2.5  − 1.13 − 2.5 − 2.5 − 1.66 − 2.51 − 2.51

ES95% 1.75 2.20 2.09 2.20 2.09 2.08 2.19 2.19

Max 2.11 2.56 2.56 2.56 2.56 2.55 2.55 2.55
�rel 98.75 101.15 73.56 101.25 96.69 81.22 101.13 101.09

Calm
Backtest ΔBS Δ-V

BS
Δ-V

SV
ΔJD MVSVJ ΔSVCJ ΔVG ΔCGMY

Min − 0.20  − 0.48 − 0.16 − 0.15 − 0.15 − 0.13 − 0.15 − 0.15

ES5% − 0.05 − 0.36 − 0.05 − 0.02 − 0.08 − 0.06 − 0.12 − 0.1

ES95% 0.62 0.32 0.62 0.6 0.58 0.62 0.68 0.67

Max 0.82 0.41 0.84 0.75 0.78 0.82 0.88 0.90
�rel 14.31 13.22 14.37 13.48 14.43 14.52 16.53 16.30

Covid
Backtest ΔBS Δ-ΓBS Δ-ΓSV Δ-ΓJD Δ-V

SVJ
Δ-ΓSVCJ Δ-ΓVG Δ-ΓCGMY

Min − 1.96 − 1.33 − 1.23 − 1.19 − 1.32 − 1.36 − 1.27 − 1.26

ES5% − 1.37 − 0.77 − 0.70 − 0.66 − 0.81 − 0.87 − 0.75 − 0.75

ES95% 0.70 0.51 0.56 0.58 0.56 0.50 0.52 0.51

Max 0.78 0.69 0.82 0.91 0.72 0.70 0.76 0.76
�rel 49.47 27.68 27.34 27.62 29.97 30.45 27.10 27.11

Fig. 11  Distribution of daily calibrated �j , where most values lie close to �j = 0

Table 13  Summary statistics of 
daily �j calibration

Segment Mean Std. dev. Min q25 q50 q75 Max

Bullish 0.01 0.07 − 0.27 − 0.01 0.00 0.02 0.50
Calm 0.03 0.07 − 0.09 − 0.01 0.01 0.06 0.34
Covid 0.04 0.13 − 0.12 − 0.01 0.00 0.07 0.84
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3.5.1  Hedges with jump size correlation

The hedges above (Sect. 3.5) are performed under the assumption that the jump size 
correlation parameter �j is zero. This assumption is particularly well-founded on the 
BTC market, because jump size correlation �j is reportedly insignificant (Hou et al., 
2020). Nevertheless, we investigate whether �j ≠ 0 impacts hedging and look for 
differences to the main hedge results from Sect. 3.5. Therefore, the hedge routines 
are repeated for a daily calibrated �j and for fixed parameter values �j ∈ {−0.5, 0.5} . 
For comparison, we look at selected examples. Note that changes to �j ≠ 0 impact 
the SVCJ Monte Carlo simulation and the SVCJ hedge strategies (Table 2).

The calibration results from Fig. 11 and Table 13 show that most calibrated val-
ues lie close to �j = 0 . As such, the SVCJ’s hedge performance results are similar.  
This is visible in the SVCJ’s hedge performance comparisons in the historical back-
test in Table 17 to Table 19.

Appendix B, Table  20 shows hedge results, when bumping the correlation to 
�j = 0.5 , resp. �j = −0.5 . Return jump sizes (2) depend on �j . Unsurprisingly, large 
correlation changes have a significant impact on the hedge performance.

4  Conclusion

From a risk management perspective, CC markets are a highly interesting new asset 
class: on the one hand CC prices are subject to extreme moves, jumps and high vola-
tility, while on the other hand, derivatives are actively traded—and have been for 
several years—on several exchanges. This paper presents an in-depth comparison of 
different hedging methods, providing concise answers to the trade-off between hedg-
ing in a complete, albeit oversimplified model and hedging in a more appropriate, 
albeit incomplete market model.

As a central part of the methodology, we simulate price paths given the Bit-
coin price history in two different ways: First, a semi-parametric approach (under 
the physical measures ℙ ) combines GARCH volatilities with KDE estimates of the 
GARCH residuals. These paths are statistically close to the actual market behaviour. 
Second, paths are generated (under the risk-neutral measure ℚ ) in the parametric 
SVCJ model, where the SVCJ model parameters include valuable information on 
the contributing risk factors such as jumps. The time period under consideration fea-
tures diverse market behaviour, and as such, lends itself to being partitioned into 
“bullish”, “calm” and “Covid-19” periods.

We hedge options with maturities of one and three months. If not directly quoted on 
the BTC market, option prices are interpolated from an arbitrage-free SVI-parametri-
zation of the volatility surface. The options are then hedged assuming risk managers 
use market models from the classes of affine jump diffusion and infinite activity Lévy 
models, which feature risk factors such as jumps and stochastic volatility. The calibra-
tion of these models strongly support the following risk factors: stochastic volatility, 
infrequent jumps, some indication for infinite activity and inverse leverage effects on 
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the market. Under GARCH-KDE and SVCJ, options are hedged with dynamic Delta, 
Delta–Gamma, Delta–Vega and minimum variance hedging strategies.

For longer-dated options, multiple-instrument hedges lead to considerable tail risk 
reduction. For the short-dated option, using multiple hedging instruments did not sig-
nificantly outperform a single-instrument hedge. This is in-line with traditional markets, 
where even in highly volatile market periods, short-dated options are less sensitive to 
volatility or Gamma effects. For longer-dated options, multiple-instrument hedges con-
sistently improve the hedge quality. Hence, if several liquidly traded options are available 
for hedging, they should be used. Among all models, persistently good hedge results are 
achieved by hedging with stochastic volatility models. This demonstrates that complete 
market models with stochastic volatility perform well, while models allowing for jump 
risk, although more realistic, do not produce better hedges due to the associated market 
incompleteness. These findings are confirmed for a historical backtest, where a 2-month 
option is written every day, generating a series of daily P &L’s from hedging at expiry.

Appendix A: Hedging details

A.1: Hedge routine

We illustrate the dynamic hedging routine on a single instrument self-financed hedging 
strategy � and apply it analogously for all other hedging strategies considered in this 
study. The simulated, discretised prices are denoted by S(t, i) are opposed to St , which 
refers to the continuous-time process.

At time t = 0 and for B(0) = B0,i = 1 the value of the portfolio for the self-financed 
strategy � is

where B(t) is a risk-free asset and M(t) the money market account vector. The value 
of the portfolio at time t > 0 is

At maturity T, the final PnL distribution vector is

(18)
Π(0) = C(0, S(0)) = �(0)S(0) + {C(0, S(0)) − �(0)S(0)}B(0)

M(0) = C(0, S(0)) − �(0)S(0)

(19)

M(t) = M(t − dt) + {�(t − dt) − �(t)}
S(t)

B(t)

Π(t) = �(t − dt)S(t) +M(t − dt)B(t − dt)erdt = �(t)S(t) +
Π(t) − �(t)S(t)

B(t)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=M(t)

B(t)

(20)Π(T) = �(T − dt)S(t) +M(T − dt)B(t)
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A.2: Dynamic delta‑hedging

The option writer shorts the call C(t), longs the underlying S(t) and sends the remainder 
to a money market account B(t) for which

At time t, the value of portfolio Π(t) is

The changes evolve through

A.3: Dynamic multiple‑instrument‑hedging

We will explain the Δ − V hedge in detail. The Δ − Γ - hedge is performed accord-
ingly. This strategy eliminates the sensitivity to changes in the underlying and changes 
in volatility. The option writer shorts the call option C, takes the position Δ in the asset 
and Λ in the second contingent claim. At time t, the value of the portfolio is

with the change in the portfolio Π(t)

That is

For the choice of

the portfolio is Δ − V  hedged. Analogously, for the choice of

dB(t) = rB(t)dt

(21)Π(t) = −C(t) + Δ(t)S(t) +
{C(t) − Δ(t)S(t)}

B(t)
B(t)

(22)dΠ(t) = −dC(t) + Δ(t)dS(t) + {C(t) − Δ(t)S(t)}rdt

(23)Π(t) = −C(t) + ΛC1(t) + ΔS(t)

(24)dΠ(t) = Δ(t)dS +
{

C(t) − ΔS(t) − ΛC2(t)
}

rdt − dC(t) + ΛdC2(t)

(25)

dΠ(t) =
(

C(S,V , t) − ΔS(t) − ΛC2(S,V , t)
)

rdt

−

(

�C
�t

+
1

2

�2C

�S2
VS2 +

1

2

�2C

�V2

2

V +
�2C
�V�S

�VS

)

dt

+ Λ

(

�C2

�t
+

1

2

�2C2

�S2
VS2 +

1

2

�2C2

�V2

2

V +
�2C2

�V�S
�VS

)

dt

+

(

Λ
�C2

�S
−

�C
�S

+ Δ

)

dS +

(

Λ
�C2

�V
−

�C
�V

)

dV

Δ =
�C
�S

− Λ
�C2

�S

Λ =
�C∕�v

�C2∕�v
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this is a Δ − Γ hedge. For comparison, these hedges are applied to all models in the 
class of affine jump diffusion models.

A.4: Alternative representation of the VG process

The alternative representation of the VG process has the characteristic function

where C,G,M > 0 with

An increase in G increases the size of upward jumps, while an increase in M 
increases the size of downward jumps. Accordingly, �VG , M and G account for the 
skewness of the distribution. C governs the Levy-measure by widening it with its 
increase and narrowing it with its decrease.

Appendix B: Tables

See Tables 14, 15, 16, 17, 18, 19 and 20.

Δ =
�C
�S

− Λ
�C2

�S

Λ =
�2C

�2S

(26)�VG(u;C,G,M) =

(

GM

GM + (M − G)iu + u2

)C

(27)

C = 1∕�

G =

(
√

1

4

(

�VG
)2
�2 +

1

2

(

�VG
)2
� −

1

2
�VG�

)−1

M =

(
√

1

4

(

�VG
)2
v2 +

1

2

(

�VG
)2
� +

1

2
�VG�

)−1
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Table 14  Summary statistics of scenario generations framework per market segment and maturity

framework �̂ �̂ min q1 q50 q99 max

SVCJBULLISH30
4087.32 343.05 1352.90 3411.83 4065.04 5177.02 15819.48

SVCJCALM30
8369.33 1650.21 646.68 3475.29 8367.51 13092.95 26271.20

SVCJCOVID30
9800.32 1269.66 1435.49 5406.93 9804.85 13341.72 41464.61

KDEBULLISH30
4393.95 606.01 2089.55 3237.62 4277.65 6248.48 10209.30

KDECALM30
8359.21 746.38 4545.46 6608.25 8349.06 10524.45 15611.32

KDECOVID30
9933.81 836.48 5579.96 8007.32 9848.62 12365.51 16863.17

SVCJBULLISH90
4087.50 657.29 419.77 2961.11 4001.56 6336.31 56189.20

SVCJCALM90
8367.54 2982.34 37.40 2488.41 8124.74 18415.20 118249.15

SVCJCOVID90
9796.71 2456.05 119.85 3620.50 9682.93 17545.53 115020.35

KDEBULLISH90
5116.43 1419.86 1325.30 3038.41 4762.11 9988.82 28593.53

KDECALM90
8345.58 1407.72 3034.41 5341.07 8274.30 12590.88 22406.78

KDECOVID90
10718.15 3457.73 1560.16 4729.19 10007.73 23519.87 81081.55

Table 15  Calibrated SVI 
parameters at the beginning of 
the bullish, calm and stressed 
segment

TTM a b �SVI m �SVI Penalty

0.01 0.17 0.10 0.00 0.00 1.00 24.53
0.03 0.003 0.01 0.15 0.01 0.17 0.00001
0.07 0.01 0.04 0.00 − 0.01 0.08 0.000004
0.24 0.02 0.10 − 0.11 − 0.01 0.45 0.001
0.49 0.01 0.17 − 0.02 0.04 0.77 0.002
0.74 0.14 0.09 0.00 0.01 0.93 0.03
0.01 0.001 0.05 − 0.13 0.02 0.08 0.09
0.03 0.01 0.05 − 0.39 0.01 0.16 0.01
0.07 0.01 0.10 − 0.02 0.12 0.32 0.02
0.16 0.06 0.15 − 0.50 − 0.17 0.54 0.01
0.24 0.04 0.19 − 0.27 − 0.10 0.76 0.03
0.49 0.18 0.21 0.23 0.38 1.00 0.01
0.02 0.004 0.02 0.50 0.02 0.01 0.03
0.04 0.003 0.05 − 0.07 − 0.03 0.11 0.01
0.07 0.01 0.08 − 0.09 − 0.05 0.15 0.02
0.15 0.02 0.13 0.19 0.07 0.29 0.04
0.40 0.06 0.20 − 0.15 − 0.21 0.56 0.01
0.65 0.14 0.18 0.16 − 0.12 0.88 0.02
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Table 16  Summary statistics of 
�v for all 3 market segments and 
models

SV SVJ SVCJ

�̂� 0.82 0.78 0.87
�̂� 0.32 0.33 0.35
Min 0.00 0.00 0.00
q25 0.62 0.62 0.69

q50 0.84 0.81 0.92

q75 1.04 0.99 1.06
Max 1.49 1.57 2.43
�̂� 0.68 0.72 0.90
�̂� 0.30 0.36 0.37
Min 0.00 0.00 0.00
q25 0.50 0.56 0.70

q50 0.75 0.79 1.02

q75 0.90 0.95 1.19
Max 1.43 1.40 1.44
�̂� 0.56 0.72 0.84
�̂� 0.49 0.66 0.45
Min 0.00 0.00 0.00
q25 0.27 0.29 0.61

q50 0.50 0.73 0.88

q75 0.78 1.01 1.04
Max 3.83 6.33 3.83

Table 17  Historical hedge backtest performance comparison for the SVCJ hedge strategies (Table  2) 
when the jump size correlation parameter �j is calibrated to the market �j = ’market’ versus �j = 0 during 
the bullish period

�j Measure Δ Δ-Γ Δ-V MV

0 ES5% − 2.97 − 2.50 − 1.66 − 2.99

Market ES5% − 2.99 − 2.49 − 2.49 − 2.97

0 �rel 95.68 100.77 64.79 95.96
Market �rel 97.07 101.51 102.65 96.93
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Table 18  Historical hedge backtest performance comparison for the SVCJ hedge strategies (Table  2) 
when the jump size correlation parameter �j is calibrated to the market �j = ’market’ vs. �j = 0 during the 
calm period

�j Measure Δ Δ-Γ Δ-V MV

0 ES5% − 0.06 − 0.33 − 0.35 − 0.07

Market ES5% − 0.07 − 0.33 − 0.32 − 0.06

0 �rel 2.07 1.63 1.91 2.36
Market �rel 2.03 1.79 1.75 2.02

Table 19  Historical hedge backtest performance comparison for the SVCJ hedge strategies (Table  2) 
when the jump size correlation parameter �j is calibrated to the market �j = ’market’ versus �j = 0 during 
the covid period

�j Measure Δ Δ-Γ Δ-V MV

0 ES5% − 1.38 − 0.87 − 0.89 − 1.52

Market ES5% − 1.41 − 0.69 − 0.73 − 1.41

0 �rel 25.66 9.12 9.43 37.59
Market �rel 25.60 7.83 8.17 25.51
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Table 20  Comparison of SVCJ hedge performance for different values of �j during the calm period. We 
observe consistently worse hedge performances for �j ∈ {−0.5, 0.5}

Calm
Approach Maturity �j Measure Δ Δ-Γ Δ-V MV

SVCJ 1M 0 ES5% − 2.31 − 1.01 − 1.01 − 2.37

SVCJ 1M 0.5 ES5% − 2.50 − 1.09 − 1.09 − 2.50

SVCJ 1M − 0.5 ES5% − 6.33 − 1.17 − 1.17 − 6.46

SVCJ 1 M 0 �rel 49.52 19.72 19.66 51.48
SVCJ 1 M 0.5 �rel 129.27 85.27 83.75 128.77
SVCJ 1 M − 0.5 �rel 399.69 23.99 23.50 408.91
SVCJ 3 M 0 ES5% − 1.59 − 0.89 − 0.89 − 1.61

SVCJ 3 M 0.5 ES5% − 3.77 − 1.35 − 1.21 − 3.69

SVCJ 3 M − 0.5 ES5% − 6.71 − 0.97 − 0.96 − 6.85

SVCJ 3 M 0 �rel 29.86 13.32 12.99 31.20
SVCJ 3 M 0.5 �rel 307.47 284.2 119.3 303.13
SVCJ 3 M − 0.5 �rel 445.28 16.03 16.04 457.92
GARCH-KDE 1 M 0 ES5% − 0.16 − 0.49 − 0.48 − 0.15

GARCH-KDE 1 M 0.5 ES5% − 0.25 − 0.49 − 0.49 − 0.24

GARCH-KDE 1 M − 0.5 ES5% − 0.15 − 0.48 − 0.48 − 0.14

GARCH-KDE 1 M 0 �rel 6.6 5.32 5.3 6.77
GARCH-KDE 1 M 0.5 �rel 7.84 5.36 5.34 7.82
GARCH-KDE 1 M − 0.5 �rel 6.90 5.32 5.31 7.18
GARCH-KDE 3 M 0 ES5% 0.20 − 0.20 − 0.20 0.20

GARCH-KDE 3 M 0.50 ES5% − 0.28 − 0.31 − 0.31 − 0.27

GARCH-KDE 3 M − 0.5 ES5% 0.13 − 0.18 − 0.18 0.09

GARCH-KDE 3 M 0 �rel 1.64 0.79 0.79 2.0
GARCH-KDE 3 M 0.5 �rel 12.20 1.88 1.86 12.17
GARCH-KDE 3 M − 0.5 �rel 2.81 0.81 0.81 3.46
Backtest 2 M 0 ES5% − 0.06 − 0.33 − 0.35 − 0.07

Backtest 2 M 0.5 ES5% − 0.83 − 1.47 − 1.32 − 0.87

Backtest 2 M 0.5 ES5% − 1.53 − 0.95 − 0.97 − 1.68

Backtest 2 M 0 �rel 2.07 1.63 1.91 2.36
Backtest 2 M 0.5 �rel 61.87 54.43 51.02 64.12
Backtest 2 M − 0.5 �rel 32.61 10.06 10.51 46.97

Appendix C: Additional plots

C.1: GARCH(1,1) model

See Fig. 12.
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Fig. 12  Estimated GARCH(1,1) volatility �̂t during bullish market behavior, calm period and stressed 
scenario and the 7-day close-to-close historical volatility

C.2: Calibration

See Figs. 13, 14, 15, 16 and 17.
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Fig. 13  Daily calibrated jump intensity �JD , �SVJ and �SVCJ segregated chronologically by market seg-
ment. In each market segments, annual jump intensity is generally � ≤ 2
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Fig. 14  Daily calibrated volatility of volatility �v (SV), �v (SVJ) and �v (SVCJ) plotted in chronological 
order by market segment. For illustrative purposes, extremes are disregarded. Information about extremes 
is provided in Table 16. Regardless of the model choice, levels of �v are high. This provides strong indi-
cation for stochastic volatility
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Fig. 15  Daily calibrated correlation parameter �SV , �SVJ and �SVCJ plotted in chronological order by mar-
ket segment. For illustrative purposes, extremes are disregarded. As generally 𝜌 > 0 , there is an indica-
tion for an inverse leverage effect as reported in Hou et al. (2020)
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Fig. 16  Daily calibration of �VG plotted against �BS . Both models capture comparable volatility levels

(a) downward jumps M

(b) upward jumps G

Fig. 17  (a) Evolution of GCGMY and (b) MCGMY segregated by market segment. High magnitudes for 
both parameter values are observed during the bullish and stressed scenario. For illustrative purposes, 
extremes are excluded from this graph
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C.3: RMSE

See Figs. 18, 19 and 20.

(a) BS

(b) JD

(c) SV

Fig. 18  RMSE with 95%-confidence interval of the (a) BS, (b) JD and (c) SV model
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(a) SVJ

(b) SVCJ

Fig. 19  RMSE with 95%-confidence interval of the (a) SVJ, (b) SVCJ, (c) VG and (d) CGMY model
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Fig. 20  RMSE with 95%-confidence interval of the (a) VG and (b) CGMY model
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