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Abstract
Optimization in machine learning typically deals with the minimization of empiri-
cal objectives defined by training data. The ultimate goal of learning, however, is to 
minimize the error on future data (test error), for which the training data provides 
only partial information. In this view, the optimization problems that are practically 
feasible are based on inexact quantities that are stochastic in nature. In this paper, we 
show how probabilistic results, specifically gradient concentration, can be combined 
with results from inexact optimization to derive sharp test error guarantees. By con-
sidering unconstrained objectives, we highlight the implicit regularization properties 
of optimization for learning.

Keywords Implicit regularization · Kernel methods · Statistical learning

1 Introduction

Optimization plays a key role in modern machine learning, and is typically used 
to define estimators by minimizing empirical objective functions [1]. These objec-
tives are based on a data fit term, suitably penalized, or constrained, to induce an 
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inductive bias in the learning process [2]. The idea is that the empirical objectives 
should provide an approximation to the error on future data (the test error) which is 
the quantity that one wishes to minimize in learning. The quality of such an approxi-
mation error is typically deferred to a statistical analysis. In this view, optimization 
and statistical aspects are tackled separately.

Recently, a new perspective has emerged in machine learning showing that opti-
mization itself can in fact directly be used to search for a solution with small test 
error. Interestingly, no explicit penalties/constraints are needed, since a bias in the 
search for a solution is implicitly enforced during the optimization process. This 
phenomenon has been called implicit regularization and it has been shown to pos-
sibly play a role in explaining the learning curves observed in deep learning, see for 
instance [3, 4] and the references therein. Further, implicit regularization has been 
advocated as a way to improve the efficiency of learning methods by tackling sta-
tistical and optimization aspects at once [5–8]. As it turns out, implicit regulariza-
tion is closely related to the notion of iterative regularization with a long history in 
inverse problems [9].

The basic example of implicit regularization is gradient descent for linear least 
squares, which is well known to converge to the minimum norm least squares solu-
tion [10, 11]. The learning properties of gradient descent for least squares are now 
quite well understood [11, 12], including the extensions to non-linear kernelized 
models [13, 14], stochastic gradients [15–17], accelerated methods [18, 19] and dis-
tributed approaches [20–22]. Much less is known when other norms or loss func-
tions are considered. Implicit regularization biased to more general norms has been 
considered for example in [23, 24]. Implicit regularization for loss functions other 
than the square loss has been considered in a limited number of works. There is 
a vast literature on stochastic gradient techniques, see e.g. [17] and the references 
therein, but these analyses do not apply when (batch) training error gradients are 
used, which is the focus in this work. The logistic loss function for classification 
has recently been considered both for linear and non-linear models, see for example 
[25, 26]. Implicit regularization for general convex Lipschitz loss with linear and 
kernel models have been first considered in [27] for subgradient methods and in [28] 
for stochastic gradient methods but only with suboptimal rates. Improved rates have 
been provided in [6] for strongly convex losses and more recently in [29] with a gen-
eral but complex analysis. A stability based approach, in the sense of [30], is studied 
in [31].

In this paper, we further push this line of work considering implicit regulariza-
tion for linear models with convex, Lipschitz and smooth loss functions based on 
gradient descent. Indeed, for this setting we derive sharp rates considering both 
the last and the average iterate. Our approach highlights a proof technique which 
is less common in learning and is directly based on a combination of optimization 
and statistical results. The usual approach in learning theory is to derive optimiza-
tion results for empirical objectives and then use statistical arguments to assess to 
which extent the empirical objectives approximate the test error that one ideally 
wished to minimize, see e.g. [2]. Instead, we view the empirical gradient iteration 
as the inexact version of the gradient iteration for the test error. This allows to apply 
results from inexact optimization, see e.g. [32, 33], and requires using statistical/
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probabilistic arguments to assess the quality of the gradient approximations (rather 
than that of the objective functions). For this latter purpose, we utilize recent con-
centration of measure results for vector valued variables to establish gradient con-
centration [34]. While the idea of combining inexact optimization and concentration 
results has been considered before [35], here, we illustrate it in a prominent way to 
highlight its usefulness. Indeed, we show that this approach leads to sharp results for 
a specific but important setting and we provide some simple numerical results that 
illustrate and corroborate our findings. By highlighting the key ideas in the proof 
techniques, we hope to encourage further results combining statistics and optimiza-
tion, for example considering other forms of gradient approximation or optimization 
other than the basic gradient descent.

The remainder of the paper is structured as follows: In Sect. 2, we collect some 
structural assumptions for our setting. In Sect. 3, we formulate the assumptions we 
put on the loss function and state and discuss the main results of the paper as well as 
the novel aspects of our approach. Section 4 presents the more technical aspects of 
the analysis. In particular, we explain in detail how results from inexact optimization 
and concentration of measure can be combined to come up with a new proof tech-
nique for learning rates. Finally, Sect. 5 illustrates the key features of our theoretical 
results with numerical experiments.

2  Learning with gradient methods and implicit regularization

Let (H, ‖ ⋅ ‖) be a real, separable Hilbert space and Y a subset of ℝ . We consider 
random variables (X, Y) on a probability space (Ω,F,ℙ) with values in H × Y and 
unknown distribution ℙ(X,Y) . The marginal distribution of X is denoted by ℙX . Addi-
tionally, we make the standard assumption that X is bounded. 

 (A1) (Bound): We assume ‖X‖ ≤ � almost surely for some � ∈ [1,∞).

Based on the observation of n i.i.d. copies (X1, Y1),…(Xn, Yn) of (X, Y) , we want to 
learn a linear relationship between X and Y expressed as an element w ∈ H.1 For an 
individual observation (X, Y) and the choice w ∈ H , we suffer the loss �(Y , ⟨X,w⟩) , 
where � ∶ Y ×ℝ → [0,∞) is a product-measurable loss function. Our goal is to find 
w ∈ H such that the population risk L ∶ H → [0,∞) given by

is small. The observed data represent the training set, while the population risk can 
be interpreted as an abstraction of the concept of the test error.

In the following, we assume that a minimizer of L in H exists.

(1)L(w) ∶= 𝔼(X,Y)[�(Y , ⟨X,w⟩)] = ∫ �(y, ⟨x,w⟩)ℙ(X,Y)(d(x, y))

1 Note that this includes many settings as special instances. In particular, it includes the standard setting 
of kernel learning, see Appendix A in [5].
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 (A2) (Min): We assume there exists some w∗ ∈ H such that w∗ ∈ argminw∈HL(w).

Note that the argmin is taken only over H and not over all measurable functions. Under 
(Min), minimizing the population risk is equivalent to minimizing the excess risk 
L(w) − L(w∗) ≥ 0.

In this work, we are interested in bounding the excess risk, when our choice of w is 
based on applying gradient descent (GD) to the empirical risk L̂ ∶ H → [0,∞) with

computed from the training data. We consider a basic gradient iteration, which is 
well defined when the loss function is differentiable in the second argument with a 
product-measurable derivative �� ∶ Y ×ℝ → ℝ.

Definition 1 (Gradient descent algorithm) 

1. Choose v0 ∈ H and a sequence of step sizes (�t)t≥0.
2. For t = 0, 1, 2,… , define the GD-iteration 

3. For some T ≥ 1 , we consider both the last iterate vT and the averaged GD-iterate 
vT ∶=

1

T

∑T

t=1
vt.

Here, we focus on batch gradient, so that all training points are used in each itera-
tion. Unlike with stochastic gradient methods, the gradients at different iterations are 
not conditionally independent. Indeed, the analysis of batch gradient is quite different 
to that of stochastic gradient and could be a first step towards considering minibatching 
[17, 35, 36]. In our analysis, we always fix a constant step size 𝛾t = 𝛾 > 0 for all t ≥ 0 
and consider both the average and last iterate. Both choices are common in the opti-
mization literature [1] and have also been studied in the context of learning with least 
squares [14, 16, 17], see also our extended discussion in Sect. 3.2. In the following, we 
characterize the learning properties of the gradient iteration in Definition 1 in terms of 
the corresponding excess risk. In particular, we derive learning bounds matching the 
best known bounds for estimators obtained minimizing the penalized empirical risk. 
Next, we show that in the considered setting, learning bounds can be derived by study-
ing suitable bias and variance terms controlled by the iteration number and the step 
size.

(2)L̂(w) ∶=
1

n

n�

j=1

�(Yj, ⟨Xj,w⟩).

(3)vt+1 = vt − �t∇L̂(vt) = vt −
�t
n

n�

j=1

�
�(Yj, ⟨Xj, vt⟩)Xj.
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3  Main results and discussion

Before stating and discussing our main results, we introduce and comment on 
the basic assumptions needed in our analysis. We make the following additional 
assumptions on the loss function.

 (A3) (Conv): We assume � ∶ Y ×ℝ → [0,∞) is convex in the second argument.
 (A4) (Lip): We assume � to be L-Lipschitz, i.e. for some L > 0 , 

 (A5) (Smooth): We assume � to be M-smooth, i.e. � is differentiable in the second 
argument with product-measurable derivative �� ∶ Y ×ℝ → ℝ and for some 
M > 0 , 

 Note that Eq. (5) immediately implies that 

 see e.g. Lemma 3.4 in [37].
For notational convenience, we state the assumptions (Lip) and (Smooth) glob-
ally for all a, b ∈ ℝ . It should be noted, however, that this is not necessary.

Remark 1 (Local formulation of assumptions) In our analysis, we only apply 
(Lip) and (Smooth) for arguments of the form a = ⟨v, x⟩ , where ‖v‖ ≤ R for 
R = max{1, 3‖w∗‖} and ‖x‖ ≤ � with � from (Bound). Therefore, all of our 
results also apply to loss functions which satisfy the above assumptions for all 
a, b ∈ [−�R, �R] for constants L and M potentially depending on � and R.

In light of Remark 1, our analysis is applicable to many widely used loss func-
tions, see e.g. Chapter 2 in [38].

Example 1 (Loss functions satisfying the assumptions) 

(a) (Squared loss): If Y = [−b, b] for some b > 0 , then checking first and second 
derivatives yields that the loss Y × [−�R, �R] ∋ (y, a) ↦ (y − a)2 is convex, 
L-Lipschitz with constant L = 2(b + �R) and M-Smooth with constant M = 2.

(b) (Logistic loss for regression): If Y = ℝ , then, analogously, the loss 
Y ×ℝ ∋ (y, a) ↦ − log

(
4ey−a

(1+ey−a)2

)
 is convex, L-Lipschitz with constant L = 1 

and M-smooth with constant M = 1.
(c) (Logistic loss for classification): For classification problems with Y = {−1, 1} , 

analogously, the loss Y ×ℝ ∋ (y, a) ↦ log(1 + e−ya) is convex, L-Lipschitz with 
constant L = 1 and M-Smooth with constant M = 1∕4.

(4)|�(y, a) − �(y, b)| ≤ L|a − b| for all y ∈ Y, a, b ∈ ℝ.

(5)|��(y, a) − �
�(y, b)| ≤ M|a − b| for all y ∈ Y, a, b ∈ ℝ.

(6)�(y, b) ≤ �(y, a) + �
�(y, a)(b − a) +

M

2
|b − a|2 for all y ∈ Y, a, b ∈ ℝ,
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(d) (Exponential loss): For classification problems with Y = {−1, 1} , analogously, 
the loss Y × [−�R, �R] ∋ (y, a) ↦ e−ya is convex, L-Lipschitz with constant 
L = e�R and M-smooth also with M = e�R.

Under Assumption (Smooth), the empirical risk w ↦ L̂(w) is differentiable and 
we have

With Assumptions (Bound) and (Lip), via dominated convergence, the same is true 
for the population risk w ↦ L(w) and we have

Further, our assumptions on the loss directly translate into properties of the risks: 

 (A3’) (R-Conv): Under (Conv), both the population and the empirical risk are con-
vex.

 (A4’) (R-Lip): Under (Bound) and (Lip), both the population and the empirical risk 
are Lipschitz-continuous with constant �L.

 (A5’) (R-Smooth): Under (Bound) and (Smooth), the gradient of both the population 
and the empirical risk is Lipschitz-continuous with constant �2M.

The derivation, which is straightforward, is included in Lemma 8 in Appendix A.

3.1  Formulation of main results

A first key result shows that under the above assumptions, we can decompose the 
excess risk for the averaged GD-iterate vT as well as for the last iterate vT.

Proposition 1 (Decomposition of the excess risk) Suppose assumptions (Bound), 
(Conv) and (Smooth) are satisfied. Consider the GD-iteration from Definition  1 
with T ∈ ℕ and constant step size � ≤ 1∕(�2M) and let w ∈ H be arbitrary.

 (i) The risk of the averaged iterate vT satisfies

 (ii) The risk of the last iterate vT satisfies

(7)∇L̂(w) =
1

n

n�

j=1

�
�(Yj, ⟨Xj,w⟩)Xj.

(8)∇L(w) = ∫ �
�(y, ⟨x,w⟩)xℙ(X,Y)(d(x, y)).

L(vT ) − L(w) ≤ 1

T

T�

t=1

L(vt) − L(w)

≤ ‖v0 − w‖2

2�T
+

1

T

T�

t=1

⟨∇L(vt−1) − ∇L̂(vt−1), vt − w⟩.
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The proof of Proposition 1 can be found in Appendix A. The above decomposition 
is derived using ideas from inexact optimization, in particular results studying inexact 
gradients, see e.g. [32, 33]. Indeed, our descent procedure can be regarded as one in 
which the population gradients are perturbed by the gradient noise terms

We further develop this discussion in Sect. 4.1.
Note that the results above apply to any w ∈ H . Later, we will of course set 

w = w∗ from Assumption (Min). With this choice, Proposition 1 provides decompo-
sitions of the excess risk into a deterministic bias part

which can be seen as an optimization error, and a stochastic variance part, which is 
an average of the terms

Note that Proposition 1 (i) can be applied to the first sum on the right-hand side in 
(ii). In order to control the bias part, it is sufficient to choose �T  large enough. Con-
trolling the variance part is more subtle and requires some care. By Cauchy-Schwarz 
inequality,

A similar estimate holds for the terms ⟨−es−1, vs − vT−t⟩ , s = T − t + 1,…T  . This 
shows that in order to upper bound the excess risk of the gradient iteration, it is suf-
ficient to solve two problems: 

1. Bound the gradient noise terms et−1 = ∇L̂(vt−1) − ∇L(vt−1) in norm;
2. Bound the gradient path (vt)t≥0 in a ball around w∗.

Starting from this observation, in Proposition 5, we state a general gradient concen-
tration result which, for fixed R > 0 , allows to derive

L(vT ) − L(w) ≤ 1

T

T�

t=1

(L(vt) − L(w))

+

T−1�

t=1

1

t(t + 1)

T�

s=T−t+1

⟨∇L(vs−1) − ∇L̂(vs−1), vs − vT−t⟩.

(9)et ∶= ∇L̂(vt) − ∇L(vt), t = 1,… , T .

(10)
‖v0 − w∗‖2

2�T
,

(11)
⟨−et−1, vt − w∗⟩ and ⟨−es−1, vs − vT−t⟩,

t = 1,… , T , s = T − t + 1,…T .

(12)⟨−et−1, vt − w∗⟩ ≤ ‖et−1‖‖vt − w∗‖ for all t = 1,… , T .

(13)sup
‖v‖≤R

‖∇L(v) − ∇L̂(v)‖ ≤ 20�2R(L +M)

�
log(4∕�)

n
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with high probability in � when n is sufficiently large. If we could prove that the 
gradient path (vt)t≥0 stays bounded, this would allow to control the gradient noise 
terms. Interestingly, the result in Eq. (13) itself is enough to directly derive a bound 
for the gradient path. In Proposition  7, we show how gradient concentration can 
be used to inductively prove that with high probability, ‖vt − w∗‖ stays bounded by 
R = max{1, 3‖w∗‖} for t ≤ T  sufficiently large. Importantly, gradient concentration 
thereby allows to control the generalization error of the excess risk and the deviation 
of the gradient path at the same time. This makes this proof technique particularly 
appealing comparative to other approaches in the literature, see the discussion in 
Sects. 3.2 and 4. Taken together, the arguments above are sufficient to prove sharp 
rates for the excess risk.

Theorem 2 (Excess Risk) Suppose Assumptions (Bound), (Conv), (Lip), (Smooth) 
and (Min) are satisfied. Let v0 = 0 , T ≥ 3 and choose a constant step size 
� ≤ min{1∕(�2M), 1} in the GD-iteration from Definition 1. Then, for any � ∈ (0, 1] , 
such that

the average iterate vT and the last iterate vT satisfy with probability at least 1 − � 
that

In particular, setting �T =
√
n∕(90�2(1 + �L)(M + L)

√
log(4∕�)) yields

The proof of Theorem 2 is in Appendix A. To the best of our knowledge, it is 
not known if the above given rate of convergence is minimax optimal as there are 
no lower bounds so far in the literature for our set of assumptions on the class of 
loss functions. We emphasize, however, that the above bound for averaged GD 
with constant stepsize matches the minimax optimal rate for the least squares 
loss, see [14].

The gradient concentration inequality allows to derive an explicit estimate for the 
variance part. As expected, the latter improves as the number of samples increases, 
but interestingly it stays bounded, provided that �T  is not too large, see Eq. (14). 
Optimizing the choice of �T  leads to the final excess risk bound. The estimate is 
sharp in the sense that it matches the best available bounds for other estimation 
schemes based on empirical risk minimization with �2-penalties, see e.g. [2, 38] and 

(14)
√
n ≥ max{1, 90�T�2(1 + �L)(M + L)}

√
log(4∕�),

L(vT ) − L(w∗) ≤ ‖w∗‖2
2�T

+ 180max{1, ‖w∗‖2}�2(M + L)

�
log(4∕�)

n
,

L(vT ) − L(w∗) ≤ ‖w∗‖2
2�T

+ 425max{1, ‖w∗‖2}�2(M + L) log(T)

�
log(4∕�)

n
.

L(vT ) − L(w∗) ≤ 225max{1, ‖w∗‖2}�2(1 + �L)(M + L)

�
log(4∕�)

n
,

L(vT ) − L(w∗) ≤ 470max{1, ‖w∗‖2}�2(1 + �L)(M + L) log(T)

�
log(4∕�)

n
.
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the references therein. We note that the average and last iterates have essentially the 
same performance, up to constants and logarithmic terms.

A number of different choices for the stopping time T and the step size � are possi-
ble, as long as their product stays constant. Assuming that � from (Bound) is known, 
the user may choose the step size � a priori when M from (Smooth) is known, see 
Example  1 (a), (b), (c). When M depends on the bound R = max{1, 3‖w∗‖} , see 
Proposition 7, the choice of � must be adapted to the norm of the minimizer w∗ , see 
e.g. Example 1 (d) and the discussion in Remark 1. In this sense, it is indeed the 
product �T  that plays the role of a regularization parameter, see also the simulations 
in Sect. 5.

The excess risk bound in the Theorem 2 matches the best bound for least squares, 
obtained with an ad hoc analysis [11, 12]. The obtained bound improves the results 
obtained in [27] and matches the rates for SGD in Theorem 4 of [29]. These latter 
results are more general and allow to derive fast rates. The generality is payed for, 
however, in terms of a considerably more complex analysis. In particular, our analy-
sis allows to get explicit constants and keep the step size constant. More importantly, 
the proof we consider follows a different path, highlighting the connection to inexact 
optimization. We further develop this point of view next.

3.2  Discussion of related work

Comparison to the classical approach. In order to better locate our work in the 
machine learning and statistical literature, we compare it with the most important 
related line of research.

We contrast our approach with the one typically used to study learning with 
gradient descent and general loss functions. We briefly review this latter and more 
classical approach. The following decomposition is often considered to analyze the 
excess risk at vt:

see e.g. [2, 39]. The second term in the decomposition can be seen as an optimiza-
tion error and treated by deterministic results from “exact” optimization. The first 
and last terms are stochastic and are bounded using probabilistic tools. In particu-
lar, the first term, often called generalization error, needs some care. The two more 
common approaches are based on stability, see e.g. [30, 31], or empirical process 
theory [38, 40]. The latter is considered in [27, 29]. In this case, the key quantity is 
the empirical process defined as

Here, a main complication is that the iterates norm/path needs to be bounded, which 
is a delicate point, as discussed in detail in Sect. 4.2. In our approach, gradient con-
centration allows to find a sharp bound on the gradient path and at the same time to 

(15)
L(vt) − L(w∗) = L(vt) − L̂(vt)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=(I)

+ L̂(vt) − L̂(w∗)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=(II)

+ L̂(w∗) − L(w∗)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=(III)

,

(16)sup
‖v‖≤R

�L̂(v) − L(v)�.
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directly derive an excess risk bound, avoiding the decomposition in (15) and further 
empirical process bounds.

Inexact optimization and gradient concentration. We are not the first to 
employ tools from inexact optimization to treat learning problems, see [41] and 
[6]. A similar decomposition as in Proposition 1 together with a peeling argument 
instead of gradient concentration is used in [6]. There, the authors derive a bound 
for a “conditional excess risk”. More specifically, the risk is the conditional expec-
tation, conditioned on the covariates, and is thus still a random quantity. The mini-
mizer considered is the minimizer with respect to this random risk and therefore is 
a random quantity too. Additionally, their analysis requires strong convexity of the 
conditional risk with respect to the empirical norm. Our approach allows to over-
come these two restrictions.

Also gradient concentration has been considered before, see e.g. [42, 43]. In 
[42], an analysis is developed under the assumption that minimization of the risk 
is constrained over a closed, convex and bounded set W ⊂ ℝ

d , which effectively 
acts as an explicit regularization. During their gradient iteration, a projection step 
is considered to enforce this constraint. As a consequence, the dimension d and 
the diameter of W appear as key quantities that determine the error behavior of 
their algorithm. The same is essentially true for [43]. In comparison, our analy-
sis is dimension free. More importantly, we do not constrain the minimization 
problem. Hence, we consider implicit rather than explicit regularization. Also 
from a technical point of view, this is a key difference. As we discuss in Sect. 4.2, 
bounding the gradient path is required in the absence of explicit constraints. The 
main contribution of our paper, as we see it, is to show that the combination of 
optimization and concentration of measure techniques presented allow to seam-
lessly control the excess risk and the length of the gradient path at the same time, 
whereas in other analyses, e.g. [29], these two tasks have to be separated and are 
much more involved.

Finally, we discuss the results in [35], of which we had not been aware until after 
having finished this work. This paper also combines inexact optimization and gradi-
ent concentration, albeit in a different way. In Theorem G.1., the authors consider 
stochastic gradient descent for a convex and smooth objective function on ℝd , nota-
bly also on an unbounded domain. For their analysis, they introduce clipped ver-
sions of the stochastic gradients. They also borrow a decomposition of the excess 
risk from inexact optimization, although a different one. In particular, it is not 
straightforward that their decomposition would also yield results for the last gradient 
iteration. In a second step, they then use the conditional independence of gradient 
batches and a Bernstein-type inequality for Martingale differences to derive concen-
tration for several terms involving the gradient noise. In comparison, instead of con-
centration based on individual batches, we use the full empirical gradients together 
with a uniform concentration result based on Rademacher complexities of Hilbert 
space valued function classes, see Sect. 4.2. On the one hand, our setting is more 
general, since we consider a Hilbert space instead of ℝd . On the other hand, [35] are 
notably able to forgo property (R-Lip), i.e. their gradients can be unbounded. This 
is the main aspect of their analysis. As a consequence, their result is tailored to this 
setting and does not contain ours as a special case. With property (R-Lip), even on 
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ℝ
d , our result is much sharper. We avoid an additional log-factor and, more impor-

tantly, we are able to freely choose a large, fixed step size 𝛾 > 0 . In Theorem G.1. 
of [35], the step size has to depend both on the number of iterations and the high 
probability guarantee of the result. Further, our results in Theorem 2 are particularly 
sharp with explicit constants and one clear regularization parameter �T  that can, in 
principle, be chosen via sample splitting and early stopping. Conversely, in order to 
control the unbounded gradients, [35] have to introduce two additional hyperparam-
eters: the gradient clipping threshold � and the batch size m. In their analysis, both 
of these have to be chosen in dependence of the true minimizer. Notably, the clip-
ping threshold � de facto regularizes the problem based on a priori knowledge of the 
true solution, the same way a bounded domain would. Developing these observa-
tions further would be an interesting venue for future research.

Last iterate vs. averaged iterates convergence. We compare our results to other 
high probability bounds for gradient descent. High probability bounds for both last 
iterate and (tail-)averaged gradient descent with constant stepsize for least squares 
regression in Hilbert spaces are well established. Indeed, the former follows from 
[14, 44] as gradient descent belongs to the broader class of spectral regularization 
methods. This is well known in the context of inverse problems, see e.g. [10]. As 
observed in [17], also average gradient descent can be cast and analyzed in the spec-
tral filtering framework. Average and last iterates can be seen to share essentially 
the same excess risk bound. The proof, however, is heavily tailored to least squares. 
Compared to these results, for smooth losses, we establish a high probability bound 
of order O(1∕�T) for uniform averaging and O(log(T)∕�T) for last iterate GD, for 
any n sufficiently large, with constant stepsize, worsened only by a factor log(T) . 
We note that it was shown in [45] that the log(T) factor is in fact necessary for Lip-
schitz functions for last iterate SGD and GD with decaying stepsizes. The authors 
derive a sharp high probability bound of order O(log(T)∕

√
T) for last iterate (S)

GD, while uniform averaging achieves a faster rate of O(1∕
√
T) . Notably, this work 

even shows the stronger statement: Any convex combination of the last k iterates 
must incur a log(T∕k) factor. Finally, we note that [27] derive finite sample bounds 

Table 1  Comparison of high 
probability last iterate bounds 
for gradient descent

Loss Step size Excess risk Optimality

Least squares [14, 44] � = const.
O

(
1

�T

)
Yes

Lipschitz & strongly �
t
≃

1

t
O

(
log(T)

T

)
Yes

convex [45]
Lipschitz [45] �

t
≃

1

t
O

�
log(T)√

T

�
Yes

Convex [27] �
t
≃

1√
t

O

�
log(T3∕2)√

T

�
No

Convex & smooth [27] � = const.
O

�
1√
T

�
No

Convex & Lipschitz � = const.
O

(
log(T)

�T

)
Best known

& smooth (this work)
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for subgradient descent for convex losses considering the last iterate. In this work, 
early stopping gives a suboptimal rate with decaying stepsize and also an additional 
logarithmic factor. This vanishes under additional differentiability and smoothness 
for constant stepsize. We condense an overview about the rates of convergence for 
different variants of GD under specific assumptions in Tables 1 and 2.

4  From inexact optimization to learning

In this section, we further discuss the important elements of the proof. The alterna-
tive error decomposition we presented in Proposition 1 follows from taking the point 
of view of optimization with inexact gradients [32]. The idea is to consider an ideal 
GD-iteration subject to noise, i.e.

where, the (et)t≥0 are gradient noise terms. In Eq. (17), very general choices for et 
may be considered. Clearly, in our setting, we have

From this perspective, the empirical GD-iteration can be seen as performing gra-
dient descent directly on the population risk, where the gradient is corrupted with 
noise and convergence has to be balanced out with a control of the stability of the 
iterates. Next, we see how these ideas can be applied to the learning problem.

4.1  Inexact gradient descent

From the point of view discussed above, it becomes essential to relate both the risk 
and the norm of a fixed GD-iteration to the gradient noise. In the following, we pro-
vide two technical Lemmas which do exactly that. Both results could also be formu-
lated for general gradient noise terms (et)t≥0 . For the sake of simplicity, however, we 

(17)vt+1 = vt − �(∇L(vt) + et) t = 0, 1, 2,… ,

(18)et = ∇L̂(vt) − ∇L(vt) t = 0, 1, 2,… .

Table 2  Comparison of high 
probability bounds for averaged 
gradient descent

Loss Step size Excess risk Optimality

Least squares [17] � = const.
O

(
1

�T

)
Yes

Lipschitz & strongly �
t
≃

1

t
O

(
1

T

)
Yes

convex [45]
Lipschitz [45] �

t
≃

1

t
O

�
1√
T

�
Yes

Convex [27] �
t
≃

1√
t

O

(
log(T)

T1∕4

)
No

Convex & Lipschitz � = const.
O

(
1

�T

)
Best known

& smooth (this work)
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opt for the more explicit formulation in terms of the gradients. The proofs are based 
on entirely deterministic arguments and can be found in Appendix B.

Lemma 3 (Inexact gradient descent: Risk) Suppose assumptions (Bound), (Conv), 
and (Smooth) are satisfied. Consider the GD-iteration from Definition 1 with con-
stant step size � ≤ 1∕(�2M) and let w ∈ H . Then, for any t ≥ 1 , the risk of the iterate 
vt satisfies

Lemma 3 is the key component to obtain the decomposition of the excess risk 
in Proposition 1 for the averaged GD-iteration. This online to batch conversion 
easily follows by exploiting the convexity of the population risk (R-Conv).

The next Lemma is crucial in providing a high probability guarantee for the 
boundedness of the gradient path in Proposition 7, which is necessary to apply 
gradient concentration to the decomposition of the excess risk in Proposition 1.

Lemma 4 (Inexact gradient descent: Gradient path) Suppose assumptions (Bound), 
(Conv), (Lip), (Smooth) and (Min) are satisfied and choose a constant step size 
� ≤ min{1∕(�2M), 1} in Definition 1. Then, for any t ≥ 0 , the norm of the GD-iter-
ate vt+1 is recursively bounded by

Assuming that for some fixed R > 0 , ‖vs − w∗‖ ≤ R for all s ≤ t , Lemma  4 
guarantees that

which, in combination with gradient concentration, allows for an inductive bound on 
‖vt+1‖ . Summarizing, Lemmas 3 and 4 can be regarded as tools to study our learning 
problem using gradient concentration directly.

4.2  Gradient concentration

In this section, we discuss how the gradient concentration inequality in Eq. (13) 
is derived using results from [34]. We use a gradient concentration result which is 
expressed in terms of the Rademacher complexity of a function class defined by 
the gradients w ↦ ∇L(w) with

L(vt) − L(w) ≤ 1

2�
(‖vt−1 − w‖2 − ‖vt − w‖2) + ⟨∇L(vt−1) − ∇L̂(vt−1), vt − w⟩.

‖vt+1 − w∗‖2 ≤ ‖v0 − w∗‖2

+ 2�
t�

s=0

�
⟨∇L(vs) − ∇L̂(vs), vs − w∗⟩ + �L‖∇L(vs) − ∇L̂(vs)‖

�
.

(19)‖vt+1 − w∗‖2 ≤ ‖v0 − w∗‖2 + 2�(R + �L)
t�

s=1

‖∇L(vs) − ∇L̂(vs)‖,
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Since the gradients above are elements of the Hilbert space H , the notion of 
Rademacher complexities has to be stated for Hilbert space-valued function classes, 
see [46].

Definition 2 (Rademacher complexities) Let (H, ‖ ⋅ ‖) be a real, separable Hil-
bert space. Further, let G be a class of maps g ∶ Z → H and Z = (Z1,… , Zn) ∈ Z

n 
be a vector of i.i.d. random variables. We define the empirical and population 
Rademacher complexities of G by

respectively, where � = (�1, ..., �n) ∈ {−1,+1}n is a vector of i.i.d. Rademacher ran-
dom variables independent of Z.

In our setting, (Z1,… , Zn) = ((X1, Y1),… , (Xn, Yn)) . Fix some R > 0 and con-
sider the scalar function class

and more importantly, the H-valued, composite function class

Under (Bound) and (Lip), we have

where ‖ ⋅ ‖∞ denotes the ∞-norm on the underlying probability space (Ω,F,ℙ) . 
The gradient concentration result can now be formulated in terms of the empirical 
Rademacher complexity of GR.

Proposition 5 (Gradient concentration) Suppose assumption (Bound) (Lip) and 
(Smooth) are satisfied and let R > 0 . Then, for any 𝛿 > 0,

with probability at least 1 − � , where GR is defined in Eq. (24).

The proof of Proposition 5 is stated in Appendix B. To apply Proposition 5, we 
need to bound R̂n(GR) . This can be done via relating the empirical Rademacher 
complexity of the composite function class GR to the complexity of the scalar 
function class FR.

(20)∇L(w) = ∫ �
�(y, ⟨x,w⟩)xℙ(X,Y)(d(x, y)), w ∈ H.

(21)R̂n(G) ∶= ��

[
sup
g∈G

‖‖‖
1

n

n∑

j=1

�jg(Zj)
‖‖‖
]

and Rn(G) ∶= �Z

[
R̂(G)

]

(22)FR ∶= {fv = ⟨⋅, v⟩ ∶ ‖v‖ ≤ R} ⊂ L2(ℙX)

(23)GR ∶= ∇𝓁◦FR ∶= {Y ×H ∋ (x, y) ↦ 𝓁
�(y, f (x))x ∶ f ∈ FR}.

(24)GR ∶= sup
g∈GR

‖g‖∞ = sup
f∈FR

‖��(Y , f (X))X‖∞ ≤ �L,

sup
‖v‖≤R

‖∇L(v) − ∇L̂(v)‖ ≤ 4R̂n(GR) + GR

�
2 log(4∕�)

n
+ GR

4 log(4∕�)

n
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Lemma 6 (Bounds on the empirical Rademacher complexities) Fix R > 0 . 

 (i) Under (Bound), we have R̂(FR) ≤ �R√
n
.

 (ii) Under (Bound), (Lip) and (Smooth), we have

Note that since the bounds in Lemma  6 do not depend on the sample 
(X1, Y1),… , (Xn, Yn) , they also hold for the population Rademacher complexities. 
Lemma  6 (i) is a classic result, which we restate for completeness. Lemma  6 (ii) 
is more involved and requires combining a vector-contraction inequality from [46] 
with additional more classical contraction arguments to disentangle the concatena-
tion in the function class GR . The Proof of Lemma 6 is stated in Appendix B. Note 
that the arguments for both Proposition 5 and Lemma 6 are essentially contained in 
[34]. Here, we provide a self-contained derivation for our setting.

Together with Lemma 4, the gradient concentration result provides an immedi-
ate high probability guarantee for the gradient path not to diverge too far from the 
minimizer w∗.

Proposition 7 (Bounded gradient path) Suppose assumptions (Bound), (Conv), 
(Lip), (Smooth) and (Min) are satisfied, set v0 = 0 and choose a constant step size 
� ≤ min{1∕(�2M), 1} in Definition 1. Fix � ∈ (0, 1] such that

and R = max{1, 3‖w∗‖} . Then, on the gradient concentration event from Proposi-
tion 5 with probability at least 1 − � for the above choice of R, we have

The proof of Proposition 7 is stated in Appendix B. In a learning setting, bound-
ing the gradient path is essential to the analysis of gradient descent based estimation 
procedures. Either one has to guarantee its boundedness a priori, e.g. by project-
ing back onto a ball of known radius R > 0 or making highly restrictive additional 
assumptions, see [47], or one has to make usually involved arguments to guar-
antee its boundedness up to a sufficiently large iteration number, see e.g. [6, 29]. 
Our numerical illustrations in Sect. 5 show that from a practical perspective, such 
a boundedness result is indeed necessary to control the variance. Additionally, if 
the boundedness of the gradient path was already controlled by the optimization 
procedure for arbitrarily large iterations T, then the decomposition in Proposition 1 
together with our gradient concentration result in Proposition 5 would guarantee that 

R̂(GR) ≤ 2
√
2
�
�L√
n
+ �MR̂(FR)

� ≤ 2
√
2(�L + �2MR)

√
n

.

(25)
√
n ≥ max{1, 90�T�2(1 + �L)(M + L)}

√
log(4∕�)

‖vt‖ ≤ R and ‖vt − w∗‖ ≤ 2R

3
for all t = 1,… , T .
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for T → ∞ , the deterministic bias part ‖w∗‖2∕(2�T) vanishes completely, while the 
stochastic variance part

would remain of order 
√
log(4∕�)∕n independently of T. This would suggest that for 

large T, there is no tradeoff between reducing the bias of the estimation method and 
its variance anymore, which, in that form, should be surprising for learning, see the 
discussion in [48]. From this perspective, to analyze gradient descent for learning, it 
seems necessary to establish a result like Proposition 7.

As stated above, several other results rely on bounding the gradient path to obtain 
bounds on the excess risk. We compare our result in Proposition 7 with the tech-
niques used in [29], that are the most recent in the literature. Under the self-bound-
edness assumption

the authors relate the stochastic gradient descent iteration vt to the Tikhonov regular-
izer w� , whose norm can be controlled, and obtain a uniform bound over t = 1,… , T  
of the form

with high probability in � . Later, the risk quantities in Eq. (28) are related to the 
approximation error of a kernel space. Inductively, this guarantees that the stochas-
tic gradient path stays sufficiently bounded. For the bound in Eq. (28), the authors 
in [29] have to choose a decaying sequence of step sizes �t with 

∑T

t=1
𝛾2
t
< ∞ . In 

comparison, the result in Proposition  7 allows for a fixed step size 𝛾 > 0 . Since 
sharp rates essentially require that 

∑T

t=0
�t is of order 

√
n , we may therefore stop 

the algorithm earlier. In this regard, our result is slightly sharper. At the same time, 
the result in [29] is more general. Under a capacity condition, the authors adapt the 
bound in Eq. (28) to allow for fast rates. However, both the proof of Eq. (28) and 
its adaptation to the capacity dependent setting are complex and quite technical. In 
comparison, Proposition 7 is an immediate corollary of Proposition 5. In particular, 
if under additional assumptions, a sharper concentration result for the gradients is 
possible, our proof technique would immediately translate this to the bound on the 
gradient path that is needed to guarantee this sharper rate for the excess risk. Indeed, 
we think these ideas can be fruitfully developed to get new improved results.

(26)1

T

T�

t=1

⟨∇L(vt−1) − ∇L̂(vt−1), vt − w∗⟩

(27)|��(y, a)|2 ≲ �(y, a) + 1 for all y, a ∈ ℝ,

(28)‖vt+1‖2 ≲
t�

s=1

𝛾s max{0, �L(w𝜆) −
�L(vs)} + log(2T∕𝛿)(‖w𝜆‖2 + 1)



281

1 3

From inexact optimization to learning via gradient…

5  Numerics

In this section, we provide empirical illustrations of the effects described in Sects. 3 
and 4. In particular, we consider the logistic loss for regression from Example 1 
(b) and the exponential loss for classification Example 1 (d). We concentrate on 
two aspects: The (un)bounded gradient path for the averaged iterates and the inter-
play between step size and stopping time. Our experiments are conducted on syn-
thetic data with d = 100 dimensions, generated as follows: We set the covariance 
matrix Σ ∈ ℝ

d×d as a diagonal matrix with entries Σjj = j−2 , j = 1,… , d and choose 
w∗ = Σe , with e = (1,… , 1)⊤ ∈ ℝ

d . We generate ntrain = 1000 training data, where 
the covariates Xj are drawn from a Gaussian distribution with zero mean and covari-
ance Σ . For the logistic loss, the labels follow the model

with �j ∼ N(0, 5) i.i.d. For the exponential loss, it is a well known fact that the risk 
is minimized by half the conditional log-odds. Therefore, we choose the labels as 
independent observations of

such that Assumption (Min) is satisfied. Each experiment is repeated 1000 times 
and we report the average. The results are presented in Figs. 1 and 2.

Our first experiment illustrates the behavior of the path t ↦ ||vt − w∗|| for a fixed 
step size. We report the average path length together with the minimum and maxi-
mum path lengths. As Proposition 7 suggests, the path becomes unbounded when 
the number of iterations grows large.

In a second experiment, we choose a grid of step sizes � and stopping times T and 
report the average excess test risk with ntest = ⌈ntrain∕3⌉ test data. Note that the grid 

(29)Yj = ⟨Xj,w∗⟩ + �j, j = 1,… , n

(30)

Yj ∼ 2(Ber(pj) − 0.5), with log
( pj

1 − pj

)
= 2(Xw∗)j, j = 1,… , n

Fig. 1  Simulation results for the logistic loss



282 B. Stankewitz et al.

1 3

of step sizes is chosen differently for the individual loss functions, since larger val-
ues of the Lipschitz constant M of the gradient require smaller step sizes. As Theo-
rem  2 predicts, for fixed ntrain , the performance of averaged GD remains roughly 
constant as � ⋅ T  remains constant.

6  Conclusion

In this paper, we studied implicit/iterative regularization for possibly infinite dimen-
sional, linear models, where the error cost is a convex, differentiable loss function. 
Our main contribution is a sharp high probability bound on the excess risk of the 
averaged and last iterate of batch gradient descent. We derive these results combin-
ing ideas and results from optimization and statistics. Indeed, we show how it is 
possible to leverage results from inexact optimization together with concentration 
inequalities for vector valued functions. The theoretical results are illustrated to see 
how the step size and the iteration number control the bias and the stability of the 
solution.

A number of research directions can further be developed. In our study, we 
favored a simple analysis to illustrate the main ideas, and as a consequence our 
results are limited to a basic setting. It would be interesting to develop the analy-
sis we presented to get faster learning rates under further assumptions, for example 
considering capacity conditions or even finite dimensional models. Another possible 
research direction is to consider less regular loss functions, dropping the differentia-
bility assumption. Along similar lines it would be interesting to consider other forms 
of implicit bias or non linear models. Finally, other forms of optimization, including 
stochastic and accelerated methods, could be considered.

Fig. 2  Simulation results for the exponential loss



283

1 3

From inexact optimization to learning via gradient…

Appendix A: Proofs for Sect. 3

Lemma 8 (Properties of the risks) 

 (i) Under (Conv), the population risk is convex, i.e., for all v,w ∈ H , we have

 (ii) Under (Bound) and (Lip), the population risk is Lipschitz-continuous with 
constant �L , i.e., for all v,w ∈ H , we have

 (iii) Under (Bound) and (Smooth), the gradient of the population risk is Lipschitz-
continuous with constant �2M , i.e., for all v,w ∈ H , we have 

 Note that this implies that 

Moreover, (i), (ii) and (iii) also hold for the empirical risk L̂ with the same constants.
Proof 

 (i) This follows directly from (Conv) and the linearity of the expectation.
 (ii) For v,w ∈ H , we have 

 where the first inequality follows from (Lip) and Cauchy-Schwarz inequality 
and the second inequality follows from (Bound).

 (iii) For v,w ∈ H , we have 

 where the first and the third inequality follow from (Bound) and Cauchy-
Schwarz inequality and the second one follows from (Smooth).

  ◻

For the proof of the second part of Proposition 1, we need the following simple 
Lemma. A different version of this was put forward in a blog post by Francesco 
Orabona with a reference to the convergence proof of the last iterate of SGD in [27]. 
Since our version is different and for the sake of completeness, we give a full proof.

(A1)L(v) ≤ L(w) − ⟨∇L(v),w − v⟩.

(A2)�L(v) − L(w)� ≤ �L‖v − w‖

(A3)‖∇L(v) − ∇L(w)‖ ≤ �2M‖v − w‖.

(A4)L(w) ≤ L(v) + ⟨∇L(v),w − v⟩ + �2M

2
‖w − v‖2.

(A5)
�L(w) − L(v)� = ��(X,Y)[�(Y , ⟨X,w⟩)] − �(X,Y)[�(Y , ⟨X, v⟩)]�

≤ L�(X,Y)[‖X‖‖w − v‖] ≤ �L‖w − v‖,

(A6)

‖∇L(w) − ∇L(v)‖ = ‖�(X,Y)[�
�(Y , ⟨X,w⟩)X] − �(X,Y)[�

�(Y , ⟨X, v⟩)X]‖
≤ ���(X,Y)[�

�(Y , ⟨X,w⟩)] − �(X,Y)[�
�(Y , ⟨X, v⟩)]�

≤ �M��(X,Y)[⟨X,w − v⟩]� ≤ �2M‖w − v‖,
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Lemma 9 Let (qt)t=1,...,T be a sequence of real numbers. Then,

Proof Define

Then, any t ≤ T − 1 satisfies

which implies

Inductively applying (A9), we obtain

  ◻

Proof of Proposition 1 (Decomposition of the excess risk)

 (i) From (R-Conv) and Lemma 3, we obtain 

 where we have resolved the telescopic sum, to obtain the last inequality.
 (ii) Applying Lemma 9 with qt = L(vt) − L(w) , we find 

qT =
1

T

T∑

t=1

qt +

T−1∑

t=1

1

t(t + 1)

T∑

s=T−t+1

(qs − qT−t).

(A7)St ∶=
1

t

T∑

s=T−t+1

qs, t = 1,… , T .

(A8)

tSt = (t + 1)St+1 − qT−t = tSt+1 + St+1 − qT−t

= tSt+1 +
1

t + 1

T∑

s=T−t

(qs − qT−t),

(A9)St = St+1 +
1

t(t + 1)

T∑

s=T−t

(qs − qT−t).

(A10)

qT = S1 = ST +

T−1∑

t=1

1

t(t + 1)

T∑

s=T−t

(qs − qT−t).

=
1

T

T∑

t=1

qt +

T−1∑

t=1

1

t(t + 1)

T∑

s=T−t+1

(qs − qT−t).

(A11)

1

T

T�

t=1

L(vt) − L(w)

≤ 1

T

T�

t=1

‖vt−1 − w‖2 − ‖vt − w‖2

2�
+

1

T

T�

t=1

⟨∇L(vt−1) − ∇L̂(vt−1), vt − w⟩

≤ ‖v0 − w‖2

2�T
+

1

T

T�

t=1

⟨∇L(vt−1) − ∇L̂(vt−1), vt − w⟩,
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 We aim at bounding the last sum in the above equality. Summing the bound 
in Lemma 3 from T − t + 1 to T yields that for all v ∈ H , 

 Hence, setting v = vT−t yields 

 The result follows by plugging the last inequality into (A12).
  ◻

Proof of Theorem 2 (Excess risk) We initially consider the case of the averaged GD-
iterate. By convexity, Proposition 1 and an application of Cauchy-Schwarz inequal-
ity, we have

The assumptions of Theorem 2 are chosen exactly as in Proposition 7. Therefore, on 
the gradient concentration event with probability at least 1 − � from Proposition 5 
and the choice R as above, we have

(A12)

L(vT ) − L(w) =
1

T

T∑

t=1

(L(vt) − L(w))

+

T−1∑

t=1

1

t(t + 1)

T∑

s=T−t+1

(L(vs) − L(vT−t)).

(A13)

T�

s=T−t+1

(L(vs) − L(v)) ≤ 1

2�
‖vT−t − v‖2

+

T�

s=T−t+1

⟨∇L(vs−1) − ∇L̂(vs−1), vs − v⟩.

(A14)
T�

s=T−t+1

(L(vs) − L(vT−t)) ≤
T�

s=T−t+1

⟨∇L(vs−1) − ∇L̂(vs−1), vs − v⟩.

(A15)

L(vT ) − L(w∗) ≤ 1

T

T�

t=1

L(vt) − L(w)

≤ ‖w∗‖2
2�T

+
1

T

T�

t=1

⟨∇L(vt) − ∇L̂(vt), vt − w∗⟩

≤ ‖w∗‖2
2�T

+
1

T

T�

t=1

‖∇L(vt) − ∇L̂(vt)‖‖vt − w∗‖.

(A16)

‖vt − w∗‖ ≤ 2R

3
, ‖vt‖ ≤ R and

‖∇L(vt) − ∇L̂(vt)‖ ≤ 20�2R(L +M)

�
log(4∕�)

n

for all t = 0, 1,… , T ,
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where the last inequality is derived in exactly the same way as in the proof of Propo-
sition 7. Plugging this into the inequality in Eq. (A15), we obtain

For the last iterate, we set et ∶= ∇L̂(vt) − L̂(vt) , t = 1,… , T  to reduce the notation. 
Proposition 1 with an application of Cauchy-Schwarz yields

Now, by Propositions 5 and 7, if

we find with probability at least 1 − � for all t = 0,… , T  , that

In particular,

for any s = T − t + 1,…T , t = 1,… , T  . Hence, with probability at least 1 − �,

(A17)

L(vT ) − L(w∗) ≤ ‖w∗‖2
2�T

+ 20�2R2(M + L)

�
log(4∕�)

n
.

≤ ‖w∗‖2
2�T

+ 180max{1, ‖w∗‖2}�2(M + L)

�
log(4∕�)

n
.

(A18)

L(vT ) − L(w∗) ≤ 1

T

T�

t=1

(L(vt) − L(w∗)) +

T−1�

t=1

1

t(t + 1)

T�

s=T−t+1

⟨−es−1, vs − vT−t⟩

≤ ‖w∗‖2
2�T

+
1

T

T�

t=1

⟨−es−1, vs − vT−t⟩

+

T−1�

t=1

1

t(t + 1)

T�

s=T−t+1

⟨−es−1, vs − vT−t⟩

≤ ‖w∗‖2
2�T

+
1

T

T�

t=1

‖es‖‖vs − v∗‖

+

T−1�

t=1

1

t(t + 1)

T�

s=T−t+1

‖es‖‖vs − vT−t‖.

(A19)
√
n ≥ 90�T�2(1 + �L)(M + L)

√
log(4∕�),

(A20)‖w∗‖ ≤ 2R

3
≤ R, ‖vt‖ ≤ R,

(A21)‖et‖ ≤ sup
v∈FR

‖∇L(v) − ∇L̂(v)‖ ≤ 20�2R(L +M)

�
log(4∕�)

n
.

(A22)‖vs − vT−t‖ ≤ 4R

3
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Finally, since

we arrive at

Plugging in for R2 and simplifying the constant completes the proof.   ◻

Appendix B: Proofs for Sect. 4

Proof of Lemma  3 (Inexact gradient descent: Risk) By (R-Conv) (Eq. (A1)) and 
(R-Smooth) (Eq. (A4)), the population risk is convex and �2M-smooth. We have

where the last inequality uses the fact that � ≤ 1∕(�2M) . The statement now follows 
from

  ◻

Proof of Lemma  4 (Inexact gradient descent: Gradient path) For v,w ∈ H , the 
smoothness of the risk (R-Smooth) (Eq. (A3)) implies that

see e.g. Equation (3.6) in [37]. In particular, since ∇L(w∗) = 0 , we have

L(vT ) − L(w∗) ≤ ‖w∗‖2
2�T

+ 20�2R2(L +M)

�
log(4∕�)

n

+
80

3
�2R2(L +M)

�
log(4∕�)

n

� T−1�

t=1

1

t

�
.

(A23)
T−1∑

t=1

1

t
≤ log(T − 1) ≤ log T ,

(A24)L(vT ) − L(w∗) ≤ ‖w∗‖2
2�T

+
140

3
�2R2(L +M)

�
log(4∕�)

n
logT .

(B25)

L(vt) ≤ L(vt−1) + ⟨∇L(vt−1), vt − vt−1⟩ +
�2M

2
‖vt − vt−1‖2

≤ L(w) + ⟨∇L(vt−1), vt−1 − w⟩ + ⟨∇L(vt−1), vt − vt−1⟩ +
�2M

2
‖vt − vt−1‖2

≤ L(w) + ⟨∇L(vt−1), vt − w⟩ + 1

2�
‖vt − vt−1‖2,

(B26)‖vt − vt−1‖2 = ‖vt−1 − w‖2 − ‖vt − w‖2 − 2�⟨∇L̂(vt−1), vt − w⟩.

(B27)‖∇L(v) − ∇L(w)‖2 ≤ �2M⟨v − w,∇L(v) − ∇L(w)⟩,

(B28)‖∇L(v)‖2 ≤ �2M⟨v − w∗,∇L(v)⟩ for all v ∈ H.
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Setting es ∶= ∇L̂(vs) − ∇L(vs)
 , we obtain that for any s ≥ 0,

We treat the terms (I) and (II) separately: By Eq. (B27) and our choice of 
� ≤ 1∕(�2M) , we have

Further, by (R-Lip) (Eq. (A2)), Cauchy-Schwarz inequality and the fact that � ≤ 1,

Together, Eqs. (B30) and (B31) yield

Summing over s then yields the result.   ◻

Proof of Lemma  6  (Bounds on the empirical Rademacher complexities) The first 
statement of Lemma 6 is a classical result, see e.g. [49].

For the second statement, recall that for any w ∈ H , we have ‖w‖ = sup‖v‖=1⟨v,w⟩ , 
since H is assumed to be real. Thus, we may write

In order to bound the right-hand side in Eq. (B33), we apply Theorem 2 from [46], 
which states that for functions �i ∶ S → ℝ,�i ∶ S → �

2, i = 1,… , n, from a count-
able set S,

(B29)

‖vs+1 − w∗‖2 =‖vs − w∗‖2 − 2�⟨∇L̂(vs), vs − w∗⟩ + �2‖∇L̂(vs)‖2

=‖vs − w∗‖2 − 2�⟨es, vs − w∗⟩
−2�⟨∇L(vs), vs − w∗⟩ + �2‖∇L(vs)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=(I)

+�2‖∇L̂(vs)‖2 − �2‖∇L(vs)‖2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=(II)

.

(B30)
(I) = −2�⟨∇L(vs), vs − w∗⟩ + �2‖∇L(vs)‖2

≤ � −2�

�2M
+ �2

�
‖∇L(vs)‖2 ≤ 0.

(B31)
(II) = �2‖∇L̂(vs)‖2 − �2‖∇L(vs)‖2 = �2⟨∇L̂(vs) + ∇L(vs), et⟩

≤ �2‖∇L̂(vs) + ∇L(vs)‖‖es‖ ≤ 2��L‖es‖.

(B32)‖vs+1 − w∗‖2 − ‖vs − w∗‖2 ≤ −2�⟨vs − w∗, es⟩ + 2��L‖es‖.

(B33)

R̂n(GR) = ��

�
sup

∇𝓁◦f∈GR

���
1

n

n�

j=1

�j𝓁
�(Yj, f (Xj))Xj

���
�

= ��

�
sup
f∈FR

sup
‖v‖=1

1

n

n�

j=1

�j𝓁
�(Yj, f (Xj))⟨Xj, v⟩

�
.

(B34)��

�
sup
s∈S

n�

j=1

�j�j(s)
� ≤ √

2��

�
sup
s∈S

n�

j=1
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k=1

�jk�
(k)

j
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whenever it is satisfied that

Here, the (�j,k) are i.i.d. copies of the (�j).
Adopting the notation from this result, we may restrict the supremum in Eq. 

(B33) to a countable dense subset S of FR × {v ∈ H ∶ ‖v‖ ≤ 1} . Note that this is 
possible, since by (Smooth), we have that �′ is continuous in the second argument. 
Further, set

Then, for any j = 1,… , n , and (f , v), (g,w) ∈ S , we use that ‖��‖∞ ≤ L by (Lip), 
‖Xj‖ ≤ � by (Bound) and ‖w‖ ≤ 1 to obtain

where ‖ ⋅ ‖p,ℝ2 denotes the p-norm on ℝ2 . Equation (B37) shows that Theorem  2 
from [46] is in fact applicable, which yields

We proceed by bounding each term individually. By Jensen’s inequality,

(B35)��i(s
�) − �i(s)� ≤ ‖�i(s

�) − �i(s)‖�2 for all s, s� ∈ S.

(B36)

�j ∶ S → ℝ, �j(f , v) ∶= �
�(Yj, f (Xj))⟨Xj, v⟩;

�(1)

j
∶ S → ℝ, �(1)

j
(f , v) ∶= L⟨Xj, v⟩;

�(2)

j
∶ S → ℝ, �(2)

j
(f , v) ∶= ���(Yj, f (Xj));

�j ∶ S → ℝ
2, �j(f , v) =

�
�(1)

j
(f , v),�(2)

j
(f , v)

�
.

(B37)

��j(f , v) − �j(g,w)� = ���(Yj, f (Xj))⟨Xj, v⟩ − �
�(Yj, g(Xj))⟨Xj,w⟩�

≤ ���(Yj, f (Xj))⟨Xj, v − w⟩�
+ �(��(Yj, f (Xj)) − �

�(Yj, g(Xj)))⟨Xj,w⟩�
≤ �L⟨Xj, v⟩ − L⟨Xj,w⟩� + ����(Yj, f (Xj)) − ���(Yj, g(Xj))�
= ‖�j(f , v) − �j(g,w)‖1,ℝ2

≤ 2‖�j(f , v) − �j(g,w)‖2,ℝ2 ,

(B38)

R̂(GR) ≤ 2
√
2�� sup

f∈FR

sup
‖v‖=1

1

n

n�

j=1

�j�
(1)

j
(f , v)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶(I)

+ 2
√
2�� sup

f∈FR

sup
‖v‖=1

1

n

n�

j=1

�j�
(2)

j
(f , v)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶(II)
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where we have used again that ‖Xj‖ ≤ �.
For the second summand, Talagrand’s contraction principle, see e.g. Exercise 

6.7.7 in [50], together with the fact that by by (Smooth), �′ is M-Lipschitz yields the 
bound

due to the first part of this Lemma. Together, Eqs. (B39) and (B40) yield the result.  
 ◻

Proof of Proposition 5 (Gradient concentration) For (x, y) ∈ H × Y , f ∈ FR denote

Then gf ∈ GR . For any xj, x�j ∈ H and yj, y�j ∈ ℝ , j = 1,… , n , we have

Therefore, McDiarmid’s bounded difference inequality, see e.g. Corollary 2.21 in 
[51], yields that on an event with probability at least 1 − �,

The expectation above can now be bounded by the result in Lemma 4 from [34], 
which states that

on an event with probability at least 1 − � . A union bound finally yields

(B39)

(I) = 2
√
2L��

�
sup
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sup
‖v‖=1

1

n

n�

j=1

�j⟨Xj, v⟩
�
= 2

√
2L��

���
1

n

n�

j=1

�jXj
���

≤ 2
√
2L

n

����
n�

j=1

‖Xj‖2 ≤ 2
√
2�L

√
n

,

(B40)(II) ≤ 2
√
2�MR̂(F) ≤ 2

√
2�2MR
√
n

,

(B41)gf (x, y) = (∇𝓁◦f )(x, y) = 𝓁
�(y, f (x))x.

(B42)
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1
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(B43)
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on an event of at least probability 1 − � .   ◻

Proof of Proposition 7 (Bounded gradient path) Firstly, note that

Therefore, it suffices to prove that ‖vt − w∗‖ ≤ 2R∕3 on the gradient concentration 
event. We proceed via induction over t ≤ T  . For t = 0 , this is trivially satisfied, since 
‖v1 − w∗‖ = ‖w∗‖ ≤ R∕3 . Now, assume that the result is true for s = 0,… , t < T  . 
From Lemma 4, we have

where FR is defined in Eq. (22).
On the gradient concentration event from Proposition  5, by Lemma  6 (ii), we 

have the bound

where GR ≤ �L by Eq. (24). Equation (25) guarantees that

and hence with 1 ≤ √
log(4∕�) , on the gradient concentration event, we obtain that

Plugging the last bound into Eq. (B47) yields

(B45)
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‖∇L(f ) − ∇L̂(f )‖ ≤ 4R̂n(GR) + GR
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2 log(4∕�)

n
+ GR

4 log(4∕�)

n

(B46)‖vt‖ ≤ ‖vt − w∗‖ + ‖w∗‖ ≤ ‖vt − w∗‖ +
R

3
.

(B47)
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≤ ‖w∗‖2 + 2�
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s=0

�
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�

≤ R2

9
+ 2�

t�

s=0

(‖vs − w∗‖ + �L)‖∇L(vs) − ∇L̂(vs)‖

≤ R2

9
+ 2�T
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�
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(B48)
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Hence, we obtain our result when the second term above is smaller than 4R2∕9 , 
which is satisfied when

where we have used the fact that R ≥ 1 . This completes the proof.   ◻
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