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Abstract
This paper develops a method to flexibly adapt interpolation grids of value 
function approximations in the estimation of dynamic models using either 
NFXP (Rust, Econometrica:  Journal of the Econometric Society, 55, 999–
1033, 1987) or MPEC (Su & Judd, Econometrica: Journal of the Econometric 
Society, 80, 2213–2230, 2012). Since MPEC requires the grid structure for the 
value function approximation to be hard-coded into the constraints, one can-
not apply iterative node insertion for grid refinement; for NFXP, grid adaption 
by (iteratively) inserting new grid nodes will generally lead to discontinuous 
likelihood functions. Therefore, we show how to continuously adapt the grid by 
moving the nodes, a technique referred to as r-adaption. We demonstrate how 
to obtain optimal grids based on the balanced error principle, and implement 
this approach by including additional constraints to the likelihood maximiza-
tion problem. The method is applied to two models: (i) the bus engine replace-
ment model (Rust, 1987), modified to feature a continuous mileage state, and 
(ii) to a dynamic model of content consumption using original data from one 
of the world’s leading user-generated content networks in the domain of music.
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1  Introduction

This paper develops a method to flexibly adapt interpolation grids of value func-
tion approximation in dynamic programming models, such as dynamic discrete 
choice models, when the estimation is either carried out using the nested fixed 
point algorithm of Rust (1987), or using constrained optimization—namely, the 
MPEC approach of Su and Judd (2012). Introducing grid adaption by (iterative) 
node insertion into NFXP will generally produce discontinuous likelihood func-
tions and thus make their maximization potentially very difficult. On the other 
hand, the MPEC approach needs the structure of the value function approxima-
tion to be hard-coded into the constraints of the likelihood optimization problem; 
as a consequence, one cannot use iteratively adaptive procedures for grid refine-
ment in every iteration of the optimization. In this paper, we show how to adapt 
the interpolation grid by moving the nodes, a technique referred to as r-adaptive 
refinement. We demonstrate how to obtain optimal grids (given a fixed number 
of nodes), and show how to integrate this approach into the likelihood maximiza-
tion problem using the equioscillation principle. The method is applied to the bus 
engine replacement model of Rust (1987), modified to feature a continuous mile-
age state as well as a serially correlated, unobserved utility component.

Many models in modern applications of structural estimation assume the 
agents to behave in a dynamically optimal manner. A popular example is the lit-
erature on dynamic discrete choice models (DDCM), pioneered by the seminal 
work of Rust (1987) and Rust (1988); for recent surveys on the estimation of 
DDCMs, see Aguirregabiria and Mira (2010), Keane et al. (2011), and Arcidiac-
ono and Ellickson (2011). In these applications, data on the decisions of an agent 
in a particular dynamic problem are observed, along with other state variables 
that enter the agent’s optimization. Using this data, the structural parameters of 
the model—such as the parameters of the utility functions or of the law of motion 
of the state variables—are estimated, for example by the method of maximum 
likelihood or Bayesian approaches.

The estimation of dynamic programming models is challenging both methodo-
logically and computationally, as—in principle—the dynamic optimization prob-
lem and the likelihood maximization problem have to be solved simultaneously. 
While there exist methods that avoid solving the model by estimating the condi-
tional choice probabilities directly from the data and go back to the work of Hotz 
and Miller (1993), and methods that avoid explicitly maximizing the likelihood 
by using Bayesian approaches with Markov chain Monte Carlo simulation (Imai 
et  al., 2009; Norets, 2009), many of the widely used workhorse algorithms still 
rely on solving both problems simultaneously, thus showing excellent numerical 
and statistical efficiency.

In particular, the nested fixed point (NFXP) algorithm of Rust (1987) and the 
constrained optimization approach (mathematical programming with equilibrium 
constraints (MPEC)) of Su and Judd (2012) are among the most used algorithms. 
In NFXP, the dynamic problem is solved iteratively within an “inner loop”, and 
its solution is used to obtain the choice probability to compute the likelihood 
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function for a particular parameter value, which is itself maximized in an “outer 
loop”. The methodological separation of the two steps makes this algorithm a 
robust and efficient choice for many applications, as the very special structure 
of the two problems can be exploited; in particular, this includes the contraction 
mapping property of the underlying dynamic problem, and structure of likelihood 
maximization problems, where the Hessian can be computed as the outer product 
of the gradients. On the other hand, the MPEC approach tries to avoid computing 
the full solution of the dynamic problem throughout the likelihood optimization, 
except at the optimal parameter vector itself. This can potentially be achieved by 
inserting the optimality conditions of the underlying dynamic problem as nonlin-
ear constraints into the likelihood maximization, and solving the resulting prob-
lem using constrained optimization techniques. The fact that the solution of the 
model is not computed at every iteration of the optimization is conceptually very 
attractive as such computation often accounts for most of the computation time, 
but solutions other than at the optimal parameter vector rarely have any relevance. 
Therefore, MPEC has shown excellent numerical efficiency in many applications.

When solving dynamic programming models with continuous state spaces, most 
methods for approximating the value function require the researcher to specify a grid 
over the domain of approximation. Depending on the approximation scheme in use, 
the nodes of this grid serve as interpolation or collocation points, and potentially 
as breakpoints if the approximation is assembled from piecewise basis functions. 
Popular grids include the uniform grid and the Chebyshev grid. While these choices 
might be good “ex ante” without much knowledge about the approximated function, 
they are generally suboptimal once the function—or an approximation thereof—is 
known. Consequently, a popular approach to grid creation is iterative refinement: 
given the grid from the last iteration (or starting from a uniform grid), the unknown 
function is approximated, and—based on some approximation error criterion—a 
new grid is created by inserting additional nodes in regions of high approximation 
error; this procedure is repeated until the maximum approximation error is below 
some threshold. Iterative grid refinement methods have successfully been applied 
to dynamic programming problems with continuous state variables in economics; 
see, for example, Grüne and Semmler (2004), Brumm and Scheidegger (2017), and 
Reich (2018).

As we will demonstrate, the integration of iterative grid adaption into both NFXP 
and MPEC is a delicate task. First, while iterative refinement can formally be inte-
grated into NFXP, as it is agnostic about the function approximation algorithm used 
in the model solution step, it will create a discontinuous likelihood function;1 since 
the likelihood function optimization process is generally a non-trivial task anyway, 
introducing such a difficulty on top of this non-triviality is definitely undesirable. 

1  Since most node insertion algorithms add nodes once a certain approximation error threshold is 
exceeded, even when traversing the parameter space in search for the optimal likelihood value using very 
small steps, the approximation error threshold for the value function will be reached “suddenly”, poten-
tially causing a shift in the value function—and thus the likelihood function value as well—after insert-
ing a new node; consequently, since the size of this shift is not related to the size of the step size taken in 
parameter space, it will result in an artificial discontinuity in the likelihood function.
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Second, the integration of iterative refinement into MPEC is not obvious for two 
reasons: One the one hand, inserting an interpolation or collocation node into the 
grid corresponds to inserting a constraint into the likelihood optimization problem 
while the optimizer runs, which generally leads to instability. On the other hand, 
since MPEC gives no guarantee that the dynamic problem is solved at any point 
of the optimization except for the solution, no valid value function approximation 
exists on which a criterion governing the choice of where to actually insert the nodes 
can be based. Therefore, the integration of MPEC with flexible grids calls for a dif-
ferent methodology.

An alternative to grid refinement by node insertion is adaption by node move-
ment: instead of inserting a new node in a region of high approximation error, an 
existing node is moved there from a region of low approximation error, keeping the 
total number of nodes in the grid fixed. Obviously, finding a good (or optimal) grid 
is more difficult, as moving a node does not only affect the approximation in the 
region where the node is moved to, but also does so where that node has been moved 
from. While not being as popular as the iterative schemes, grid adaption by node 
movement has attracted attention for example in the literature on free-knot splines 
for curve fitting (see, for example, Schumaker, 2007 and the literature cited therein), 
and in the solution of partial differential equations with moving meshes (see, for 
example, Huang & Russell, 2011 and the literature cited therein).

A particular difference between node insertion and node movement is the adap-
tion criterion. In the case of insertion, this criterion is usually binary, as nodes are 
inserted at pre-specified locations if the approximation error locally exceeds some 
threshold, otherwise not. In contrast, node movement is a continuous operation, 
as—for each node—the position on the refined grid (or the direction of movement) 
must be specified; this information is either obtained from conditions on the node 
positions based on the approximated function (for example, equidistributed over the 
function’s values or over its arc length), or from the solution of a minimization prob-
lem over the approximation error; see Baines (1998) for a comparison of these two 
criteria.

The method we develop in this paper is based on approximation error minimiza-
tion. However, directly integrating this optimization problem into an estimation pro-
cedure results in a bi-level optimization problem, where the likelihood maximization 
is “wrapped around” the approximation error minimization, which makes the result-
ing combined problem difficult to solve. A common approach to bi-level optimiza-
tion is to replace the lower-level problem by its first-order optimality constraints—
in the case of inequality constraint lower-level problems the Karush–Kuhn–Tucker 
(KKT) conditions—and solve the resulting problem using constrained optimization 
techniques. However, solving bi-level problems using first-order necessary condi-
tions is known to cause numerical issues, such as difficult to handle complementa-
rity constraints that violate the constraint qualifications of the first-order conditions 
of the combined problem; for a discussion of this issue, see, for example, Colson 
et al. (2007) and Fletcher et al. (2006).

Nevertheless, our method also replaces the lower-level approximation mini-
mization problem by a set of optimality constraints using (in)equalities only, and 
thus allows the problem to be solved by standard constrained optimization solvers. 
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However, instead of relying on generic conditions such as KKT, the structure of our 
problem makes it possible to use a classical result from numerical analysis to derive 
an alternative set of conditions, which is actually even sufficient for optimality. The 
“equioscillation” theorem for polynomial approximation and its generalizations to 
other functional forms state that if an approximation of a continuous function has 
“balanced and alternating errors”, it is uniform (best approximation in the L∞ norm). 
Geometrically speaking, best polynomial approximations have errors that (i) oscil-
late—and therefore have “alternating” signs—, and (ii) their amplitude is equal to 
the maximum absolute error, i.e. they “balance the error” over the whole domain. 
Conversely, it has been shown that “balanced errors” (BE) alone form a sufficient 
condition for a (locally) optimal node placement under quite general conditions (see, 
e.g., Lawson, 1964): If the approximation errors between two neighboring nodes are 
pairwise equal, then the overall approximation error, i.e. the maximum of the errors 
over the individual intervals, is (locally) minimal.

Using the balanced error principle, we show that it is straightforward to derive a 
set of (in)equalities that form optimality conditions for the approximation error min-
imization, which we finally integrate into the estimation procedures. In the case of 
NFXP, this resolves the continuity issue of iterative grid adaption if (i) the optimal 
grid continuously depends on the value function and if (ii) the value function itself 
continuously depends on the model parameters.2 In the MPEC case, we demonstrate 
how to simultaneously solve the grid optimization and the likelihood maximization 
problems using standard constrained optimization. In summary, we derive a proce-
dure for integrating grid adaption by node movement into the estimation of dynamic 
programming models, resulting in value function approximations that are optimal 
in the L∞ norm, given their functional form and the total number of grid nodes. To 
the best of our knowledge, we are the first to solve dynamic programming models 
and the grid adaption problem simultaneously by using node movement based on 
error balancing; this allows us to incorporate our method into MPEC-type estima-
tion algorithms, where—additionally—the estimation problem is solved at the same 
time.

In the second part of this paper, we present a series of examples and applica-
tions in order to verify our method, and demonstrate its mechanics and performance 
advantages.

In Section 3.1, we apply approximation with BE conditions to a standard function 
interpolation example, leaving aside the estimation of any model parameters. We do 
this in order to further illustrate the principle of equioscillation and its application 
to grid adaption, and—moreover—to verify our method by situating it in relation to 
other approaches and theoretical results: First, the function approximation example 
is computed both using BE conditions and by direct minimization of the approxima-
tion error measured by the L∞ norm; in this way, we also experimentally confirm 
the equivalence of the two problems. Interestingly, while we find the solutions to be 

2  If the value function is approximated by a projection method—as it is always the case in this paper—a 
necessary condition for it to be continuous in the model parameters is that the Jacobian of the system of 
projection equations has full rank; see Borkovsky et al. (2010).
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identical as expected, the BE variant appears to be numerically much more efficient 
than direct minimization.3

In our experiments (some of which are deferred to the appendix), we approximate 
different polynomials and the exponential function, using polynomial interpolation 
on Chebyshev nodes, and piecewise linear and piecewise quadratic interpolation on 
uniform grids, and compare their accuracy to the respective approximations over 
flexible grids obtained from BE conditions. We find that in all cases the flexible 
grid allows for more accurate approximation given the same number of interpolation 
nodes (except for the closed-form benchmark, which has identical accuracy).

In Section 3.2 we apply our method to two versions of the bus engine replace-
ment model of Rust (1987), both of which we modify to feature a continuous mile-
age state.4 While the first version is identical to the original except for the continu-
ous nature of the state variable, the second version features a serially correlated, 
unobserved utility component, thus resulting in a two-dimensional value function 
approximation problem.

Apart from the fact that we have to specify a continuous mileage transition pro-
cess, the computation deviates from the original model in two ways: first, the expec-
tation over the one-period ahead values in the Bellman equation is continuous and 
thus has to be approximated using numerical quadrature. second, the expected value 
function becomes two-dimensional in the serial correlation case, which raises the 
need to adapt the balanced error criterion. Similar to the function approximation 
examples, we first approximate the expected value function for a fixed parameter 
vector; we do this in order to verify the method by comparing it to a benchmark 
solution, which is computed using a very fine grid, as well as to demonstrate the 
potential efficiency gains from node movement in a particular application. We find 
that even in this simplified problem our method uses significantly fewer nodes to 
attain a pre-specified level of accuracy, compared to a uniform grid.

In Section  3.2.3 we estimate the cost parameters of the model using both 
nested fixed point (NFXP) and constrained optimization (MPEC) with grid 
adaption by node movement. In order to obtain a measure of the variation of the 
estimates and the corresponding errors, we carry out a Monte Carlo study with 
100 artificial datasets. In the case of the original model, we find that the com-
parative advantage compared to a uniform grid in terms of accuracy and com-
putational efficiency is substantial, even in this simple one-dimensional applica-
tion: the mean squared error of a uniform grid is an order of magnitude higher 
compared to a grid of equally many flexible nodes; conversely, estimating the 
model using a uniform grid that is fine enough to achieve the same accuracy as 

3  In the appendix, we relate our approach to a theoretical result on static node choice—the Chebyshev 
nodes. As we argue in detail in Appendix A.1.2, a grid composed from Chebyshev nodes cannot be better 
than a grid obtained from equioscillation. However, we present a (non-trivial) numerical example that is 
constructed such that the two solutions must coincide; consequently, we can provide a closed-form solu-
tion benchmark against which to verify our method and its implementation.
4  Similarly, Kristensen and Schjerning (2014) estimate the bus engine replacement model of Rust (1987) 
with continuous mileage; their aim is to quantify approximation errors from various sources such as the 
discretization of naturally continuous state variables.
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its flexible counterpart results in roughly 1.5 times longer computation times. 
The case of the model with a serially correlated, unobserved utility component 
requires us (i) to approximate the expected value as a function of a two-dimen-
sional state variable, and (ii) to integrate out the random shock when computing 
the likelihood function; we do the latter by applying the recursive likelihood 
integration method (RLI; Reich, 2018; Lanz, 2021). Our findings regarding the 
efficiency of the balanced error approach compared to fixed and uniform grids in 
the two-dimensional case are comparable, but given the longer absolute comput-
ing times, the absolute gains are even more significant.

Finally, in Section 4 we demonstrate the applicability of the proposed method 
by utilizing data from one of the world’s leading user-generated content net-
works in the domain of music. More specifically, we apply the proposed method 
to a dynamic model of content consumption and consider the consumers’ inher-
ent trade-off between exploration and exploitation in their decisions: To counter 
the gradual decrease of satisfaction while listening to the same artists over and 
over again, the consumer has to search for a new artist but, at the same time, 
is faced with uncertainty regarding the degree of positive spillovers from this 
new artist on the current stock. Hence, while exploring, the potential increase 
in satisfaction is contrasted with the search costs of finding a new artist. The 
estimated model—covering 1,171 consumers who altogether played 3,094,418 
songs—allows us to understand whether consumers enjoy the process of search-
ing for new artists itself, or if consumers attach costs to the search process 
and obtain utility from consuming their current stock of artists. This question 
is inherently linked to the efficiency of the platform’s recommender system for 
which we find supportive evidence that additional features do not create signifi-
cant additional value in terms of search cost reduction potential. In our analy-
sis we do not find supportive evidence that recommender systems—beyond the 
features that have been in place when the data collection took place—do create 
significant additional value in terms of search cost reduction potential.

The remainder of this paper is structured as follows: Section 2 will motivate 
the problem of estimating dynamic programming models and present solution 
algorithms, motivate the use of grid adaption and introduce different approaches, 
derive sufficient conditions for uniform approximation, and finally integrate the 
conditions with the NFXP and MPEC estimation procedures. In order to both 
verify and illustrate our method, Section 3 first applies the uniform approxima-
tion conditions to standard interpolation problems and to the solution of the 
model of Rust (1987) for fixed parameter vectors, and then applies the method to 
the cost parameter estimation problem. Section 4 demonstrates the applicability 
of the proposed method and Section 5 concludes and states the agenda for future 
research. Appendix A.1 gives a very short introduction to function approxima-
tion using polynomial approximation, piecewise polynomial approximation, and 
splines, mainly to ensure precise nomenclature throughout the paper, and states 
an interesting benchmark case for the grid adaption problem using Chebyshev 
polynomials; moreover, different grid structures for the two-dimensional case 
are discussed.
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2 � Parameter estimation with flexible grids

This part of the paper develops a method for the use of flexible grids within the 
maximum likelihood estimation of dynamic programming models. To keep the 
discussion of our method generic, we will not specify a concrete type of model or 
application in this part of the paper; in the second part, we will demonstrate the 
method by applying it to the bus engine replacement model of Rust (1987), which 
is a well-known model from the dynamic discrete choice literature.

2.1 � Estimation of dynamic programming models

In this subsection, we will state the formal problem of estimating dynamic pro-
gramming models by maximum likelihood, and will present methods for solv-
ing the dynamic problem and the likelihood maximization, and the motivation for 
using adaptive grid methods in this context.

2.1.1 � Problem statement

We begin with the formal statement of the problem we attempt to solve. Con-
sider the following discrete time, continuous (or mixed discrete-continuous) state 
dynamic optimization problem:

where y is the control variable, which is at all times required to be in the feasible set 
of controls D ⊆ D , given state x ∈ S ; U is a policy function that maps each state 
x to a dynamically optimal response y; π is the instantaneous payoff function; β 
< 1 is the discount factor; H ≤ ∞ is the time horizon; the distribution over future 
values of the state x′ conditional on current values of state and control is given by 
Pr(x�|x, y;�) , which we also call the law of motion of the state variables; 𝜃 is an 
m-dimensional, real-valued parameter vector acting on the payoff function π ∈ and 
the law of motion, Pr(x�|x, y;�) . (W.l.o.g., we assume the problem to be of an infinite 
time horizon and to be time stationary, and thus can drop all time indices.)

As shown by Bellman (1952), the following functional equation constitutes a 
necessary optimality condition to problem Eq. DP:

where V� ∶ S → ℝ is referred to as the value function, which implicitly depends 
on 𝜃 through the payoff function and the law of motion. In the following, we will 
address the dynamic problem solely in terms of its Bellman Eq. 1.

(DP)V�(x0) = max
{Ut(xt)}

H
t=0

�

[
H∑

t=0

� t�(xt, yt;�)

]
s.t. yt ∈ D(xt), t = 0,… ,H,

(1)V�(x) = max
y∈D(x)

{�(x, y) + ��[V�(x
�)|x, y]} ≡ T[V](x)
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Suppose we do not only want to solve Eq. DP, but rather, given a dataset consist-
ing of (partial) data on state and control realizations D = {x̃t, yt}

T
t=1

 , x̃ ∈ S̃
5, we want 

to identify the parameter, 𝜃, of the payoff function π and the law of motion of states 
Pr(x�|x, y;�) that maximizes the likelihood of the data, given the dynamic problem 
is solved at the solution of the maximum likelihood estimation (MLE) problem. 
This problem frequently arises in different fields of econometrics, for example in 
dynamic discrete choice modelling (DDCM); see, for example, Aguirregabiria and 
Mira (2010), Keane et al. (2011), and Arcidiacono and Ellickson (2011) for surveys 
on DDCMs and their estimation. Formally, we attempt to solve the following two 
problems simultaneously:

The two problems are connected in the following way: The link between like-
lihood function and the model is through the parameter vector, which enters the 
payoff and the law of motion of the states. In the other direction, the value func-
tion for a given parameter value enters the likelihood function through the prob-
abilities or density functions for the choice variables and the observable states in 
the data, Pr

(
D;�,V�

)
 , out of which the likelihood function is composed. Variables 

of the model for which no data is observed will be integrated out in the likelihood 
computation.

2.1.2 � The projection method for solving Eq. DP

We now turn to the description of solution techniques for the stand-alone dynamic 
problem in terms of its Bellman Eq. 1, which is a topic well covered by the literature 
(see, for example, Cai & Judd, 2013; Judd, 1998; Rust, 1996). Projection methods 
are a popular family of solution methods, out of which we choose the collocation 
method; see (Judd, 1992; 1998).6 The reason for this particular choice will become 
apparent at a later stage, when deriving a set of optimality conditions for the value 
function approximation. We now briefly describe the collocation method and some 
technical details, but only to the extent necessary for the derivation of our adaptive 
grid method.

Finding a function V (⋅) that solves the functional Eq. 1 is an infinite-dimensional 
problem, as functions are generally infinite-dimensional objects (even if the domain 

(MLDP)
�∗ = argmax

�
L(�;V� ,D) ≡ Pr

(
D;�,V�

)

V�(x) = max
y∈D(x)

{�(x, y;�) + ��[V�(x
�)|x, y;�]}|�=�∗

}

5  As common in the literature on estimating dynamic programming models, we distinguish states that 
are observable to both the agent and the econometrician from states that are only observable to the agent 
(if any), and thus have to be “integrated out” by the econometrician when computing the value of the 
likelihood function; formally, we write S ≡ S̄ × S̃ , where S̃ refers to the fully observable part of the state 
space. However, since the agent always observes xt ∈ S , the approximation of the value function will 
always happen in the full state space S.
6  Some authors argue that collocation is not a particular case of a projection method, as the Dirac func-
tions, which are the test functions the residuals are projected to in the collocation method, are not square 
integrable; see, for example, Silvester and Ferrari (1996).
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of the function is finite-dimensional). However, many functions can be approxi-
mated well by (sums of) basis functions with finite-dimensional representations.7 
For example, approximations using polynomials of finite degree can be represented 
by a finite-dimensional vector of coefficients. Projection methods replace the true 
function V (⋅) in Eq. 1 by its approximation V̂(⋅;�) parametrized by a vector a. Obvi-
ously, the Bellman equation will only be approximately satisfied, and the different 
kinds of projection methods are all ways to “make this error small”. Formally, we 
define the residual as

The projection methods differ in the way they project the residual function against 
different test functions (including the residual itself, which results in a least squares 
approximation); these projections are then minimized or set equal to zero. The collocation 
method ensures that the residual function is zero at a chosen vector of n collocation nodes, 
� ∈ S

n . Note that this is equivalent to interpolation if the function to be approximated can 
be evaluated directly. In order to solve the dynamic problem using collocation together 
with polynomial approximation of degree n − 1, we need n nodes to identify the coef-
ficients of the polynomial (or the “degrees of freedom”, as they are often referred to in 
the literature), and solve a (generally nonlinear) system of equations with the coefficients 
being the variables, and one equation for each collocation node (using more/fewer col-
location nodes will result in an over-/under-identified system of equations, with generally 
no/infinitely many solutions, respectively)

If the value function is approximated using piecewise polynomial approximation or 
splines, a vector of breakpoints has to be chosen as well. In the case of piecewise lin-
ear approximation, or splines of any order, the number of breakpoints equals the number 
of collocation nodes, and it is natural to choose them such that they are identical. How-
ever, if higher-order piecewise polynomial approximation is used without imposing addi-
tional smoothness constraints, more collocation nodes are needed in order to identify the 
degrees of freedom. In the remainder of this paper, we either use approximation methods 
that allow us to treat the collocation nodes and the breakpoints as one single set of nodes, 
or we simply distribute the additional collocation nodes uniformly between the break-
points without making it explicit in the collocation Eq. CO, to not complicate the notation 
without adding any more insight to our approach.

2.1.3 � Maximum likelihood estimation of dynamic programming models

Having argued that the continuous state dynamic program Eq.  DP can be repre-
sented and solved approximately as a nonlinear system of  equations CO, we now 

(2)RV̂ (x;�) ≡ V̂(x;�) − T[V̂](x;�).

(CO)RV̂ (xi;�) = 0,∀xi ∈ �.

7  We give a very short introduction to function approximation using polynomial approximation, piece-
wise polynomial approximation, and splines in the appendix, mainly to ensure precise nomenclature 
throughout the paper.
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turn to the solution of the full estimation problem Eq. MLDP. We will describe the 
two most popular approaches to the estimation of dynamic programming models: 
the nested fixed point (NFXP) approach of Rust (1987), and the constrained opti-
mization approach (or mathematical programming with equilibrium constraints 
(MPEC)) approach of Su and Judd (2012); we proceed in chronological order.

The nested fixed point algorithm of Rust (1987) addresses problem Eq. MLDP by 
completely solving the dynamic problem not only at the maximum of the likelihood 
function, but for every guess of the parameter vector 𝜃; see Algorithm 1.

It is important to note that the evaluation of the likelihood function is completely 
agnostic about the value function approximation step, as long as it is provided a 
function that can be evaluated over the whole state space. This not only allows for 
a wide variety of algorithms (and combinations thereof) for solving the dynamic 
problem, it also also allows us to make use of important properties of the problem, 
such as the contraction mapping property; moreover, the fact that the function to be 
maximized is a likelihood function can be exploited, for example when computing 
its Hessian matrix.

In contrast, the MPEC approach of Su and Judd (2012) interprets problem 
Eq.  MLDP as a bi-level optimization problem, where the lower-level problem is 
replaced by some optimality (or equilibrium) constraints, in our case the Bellman 
Eq. 1, hence its name. As argued above, the Bellman equation has to be replaced 
by a finite-dimensional approximation, in our case the collocation system Eq. CO, 
yielding

Conceptually, the motivation for MPEC is to avoid solving the dynamic prob-
lem for every parameter value on the trajectory of the likelihood maximization, but 
rather to increase feasibility (here: accuracy of the solution to the dynamic problem) 
and optimality (here: the likelihood function value) simultaneously. Of course, since 
the solution of the dynamic problem depends on the actual value of the parameter 
vector, this is a potentially difficult nonlinear constrained optimization problem.

Whether to use NFXP or MPEC to estimate the parameters of dynamic program-
ming models using MLE is an active field of research, and might turn out to be 
highly problem dependent. While it is argued that MPEC might be more efficient 

(3a)max
𝜃,�

L(𝜃;V̂𝜃(⋅, �),D)

(CO)s.t. RV̂𝜃
(xi;�) = 0,∀xi ∈ �.

189Adaptive grids for the estimation of dynamic models



1 3

because it does not require solving the dynamic programming model in each itera-
tion, it clearly cannot—in contrast to NXFP—make use of the contraction mapping 
property, which might cause MPEC to use more iterations to solve the likelihood 
problem (or even to fail to converge). Also, the memory needs are very different, as 
both algorithms can use the sparsity of the problem in the Jacobian of the colloca-
tion system (if present), but the Hessian of the MPEC problem is much larger than 
that in NFXP, and is—moreover—generally not sparse. In this paper, we make no 
attempt to contribute any evidence in favour of either MPEC or NFXP. Rather, we 
assume that the researcher we address has made his or her choice of one of the two, 
and is looking for a way to make the grid creation more efficient.

We now turn to the discussion of the core issues of the integration of grid adap-
tion in estimation procedures.

A particular difference between MPEC and NFXP is the way approximations of con-
tinuous value functions are handled: In NFXP as defined in Algorithm 1, the procedure 
for obtaining an approximation to the value function is technically independent of the 
likelihood maximization, as long as the optimizer is fed with a valid approximation of 
the value function (given a particular value for the parameter vector) in order to evalu-
ate the likelihood. In particular, this algorithm is formally suitable for the application of 
any iterative refinement scheme for the grid over state variables of the dynamic prob-
lem. Algorithm 2 conceptually extends NFXP with iterative grid updating (for every 
parameter value), as proposed by Reich (2018). However, if the refinement step in line 
6 of Algorithm 2 is discrete (as it is in grid adaption by node insertion), the likelihood 
function L, which itself depends on the approximation of the value function—and thus 
on its grid, will generally become discontinuous, as the change of the underlying value 
function grid is discontinuous itself. Since many optimization algorithms require the 
objective function to be at least continuous (if not smooth), avoiding this artificially 
introduced discontinuity is highly desirable.

In contrast to NFXP, the application of grid adaption techniques is not obvious 
in the MPEC approach: if, for example, the value function is obtained by projection 
using collocation, for each collocation node the corresponding equality constraint 
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has to be specified in the MPEC problem. Iterative refinement by insertion (or dele-
tion) of nodes in the way it is done in Algorithm  2 is not directly applicable for 
two reasons: first, inserting a collocation node corresponds to inserting a constraint, 
which generally cannot be done while the optimization runs;8 second, since MPEC 
gives no guarantee that the dynamic problem is solved at any point of the optimi-
zation except for the solution to the MLE problem, no straightforward criterion of 
where to actually insert or delete nodes can be derived. Consequently, the applica-
tion of grid adaption to MPEC raises the need for grid adaption schemes other than 
the popular iterative methods, as the structure of the function approximation prob-
lem is “hard-coded” into the optimization problem.

2.1.4 � Types of grid adaption

As we have pointed out, integrating grid adaption with the estimation of dynamic 
programming models is not straightforward, because there are continuity issues with 
NFXP, and because MPEC requires the function approximation structure to be hard-
coded into the constraints, both of which points rule out adaption by node insertion. 
To better motivate our approach, we first give an overview over the two main con-
cepts of grid adaption, and argue why they might be suited to our purpose, or why 
they are not.

The refinement of function approximations has been studied widely in the litera-
ture, and has been successfully applied to the solution of dynamic problems with 
continuous state variables in economics (see, for example, Grüne & Semmler, 2004, 
Brumm & Scheidegger, 2017; Reich, 2018). Following (Huang and Russell, 2011), 
we classify these methods as follows—9

h-adaptive refinement:	� The most popular refinement method is adaption by node 
insertion. Based on some criterion such as the residual 
function, additional nodes are inserted at places where 
the approximation quality is “poor” (or deleted at loca-
tions where they are not needed), and the approximation 
problem is re-solved using the refined grid, with the inter-
polation or collocation conditions Eq. CO being enforced 
also at the new nodes. The resulting grid data structure 
usually forms a hierarchy of grids of different refinement 
levels. While this approach is intuitive and relatively easy 

8  One way to “insert” or “remove” constraints while the optimizer runs is to use so-called on/off con-
straints, where an additional binary variable is multiplied against the corresponding constraints. How-
ever, such an approach would increase the complexity of the optimization problem significantly, and is 
not pursued in the paper.
9  There exists third, less popular refinement approach referred to as p-adaptive refinement, which essen-
tially locally increases the degree of the approximating polynomials, in order to better capture local cur-
vature features. Since the additional degrees of freedom must be identified, e.g. by inserting more inter-
polation nodes, this method cannot be integrated with MPEC or NFXP either, for the same reasons as for 
the h-adaption.
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to implement, it is intrinsically iterative in the sense that 
it needs a temporary solution of the problem in order the 
compute the next, refined solution; as already pointed 
out, this rules out its integration into MPEC, and causes 
continuity issues with NFXP.

r-adaptive refinement:	� In contrast to h-adaption, r-adaption does not change the 
structure of a particular grid, but rather moves its nodes 
such that local features of the approximated function are 
well covered. Consequently, the total number of nodes 
and their (dimension-wise) ordering is preserved.

	� More formally, r-adaptive grid adaption can be seen as a continuous, 
monotone and usually smooth function, mapping between the original, 
more structured (maybe even uniform) grid over the unit hypercube—
often referred to as the “computational domain”—to the adapted grid 
defined over the domain of approximation, often referred to as the “physi-
cal domain”. Depending on the problem, this mapping function takes into 
account various properties of the original function to be approximated, 
such as the size of its gradients, the curvature, or the approximation error 
induced by a specific approximation method. Moreover, the mapping 
function (or a proxy thereof) is either explicitly known from the physical 
problem, or it is solved for simultaneously with the function approxima-
tion problem itself. The later case further distinguishes between an explicit 
approximation of the mapping function, which continuously maps every 
point in the “computational domain” to a point in the “physical domain” 
(even if there is no grid node at this point), and the implicit representation 
which implies (in-)equality conditions on the node locations. As we will 
employ the very last approach only in a very self-contained manner below, 
we refer the reader interested in more background to Baines (1998). In all 
cases, a popular criterion of where to actually place the nodes is equidis-
tribution, which uniformly distributes nodes for example according to the 
gradient of the approximated function, or on its arc length. Alternatively, 
if the function of interest (or an approximation thereof) can be evalu-
ated, a direct minimization problem over the approximation error can be 
solved; see again Baines (1998) for an in-depth comparison of the differ-
ent criteria.10

10  More recently, attempts have been made to unify the two approaches, in the sense that the approxima-
tion error directly enters the criterion function on which equidistribution is imposed, the so-called moni-
tor function; in particular, see Huang and Russell (2011). However, the theoretical results on convergence 
toward approximation error minimizing solutions are still lacking.
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	� Since the r-adaption of a grid is done without changing the functional 
form of the approximation, this idea can potentially be integrated with 
MPEC; similarly, since the grid adaption is continuous for many types of 
functions, this approach is well suited for integration with NFXP.

In this paper, we develop a method with r-adaptive grids that is based on approxi-
mation errors rather than equidistribution; the reason for this choice of founda-
tion is twofold: first, equidistribution generally requires either that the gradient of 
the approximated function can be evaluated as well, or that its arc length can be 
computed, which is not always possible in value function approximation; second, 
depending on the type of interpolation, placing nodes at regions of high curvature 
might be even more accurate than placing them in regions of steep gradients.

In summary, we have stated the problem of estimating dynamic programming 
models using maximum likelihood, presented the collocation method for solving 
the stand-alone dynamic problem, and shown how two popular approaches—namely 
NFXP and MPEC, integrate collocation to estimate the model. Furthermore, we 
have argued it is not obvious how to rigorously integrate grid adaption with either 
NFXP or MPEC, as node insertion can cause the likelihood function to be discon-
tinuous, and the structure of the function approximation has to be hard-coded into 
the optimization problem in the MPEC case. In the next section, we turn to uniform 
function approximation as well as optimal breakpoint and collocation node distribu-
tion, which we finally show how to integrate with each estimation algorithm.

2.2 � Uniform approximation and the balanced error property

In this section, we briefly introduce the concepts of uniform approximation, equios-
cillation, and “balanced errors”, which are then applied to form a criterion for node 
placement in r-adaption within NFXP and MPEC in the subsequent section.

2.2.1 � Uniform approximation and node placement

Recall that we defined the residual function Eq.  2 as the difference between the 
unknown function and its approximation; the closer the residual approaches zero 
over the whole domain, the better our approximation will be. A formalization of 
this is the uniform approximation problem, which minimizes the maximum absolute 
error between the unknown function and its finite-dimensional approximation with 
generic parameter vector p:

(4)min
�
‖RV̂ (x;�)‖∞ ≡ max

x∈S
�RV̂ (x;�)�.
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It is important to note that there is no explicit notion of nodes in problem Eq. 4 
yet. (Consequently, there are no collocation constraints either.)

As we pointed out earlier, we assume the breakpoints of a piecewise polynomial 
approximation and the collocation nodes to coincide. Suppose we approximate the 
solution to the Bellman equation using one of these methods, and further suppose 
we interpret one part of vector p ≡ (x,a) as nodes x that serve as both collocation 
and breakpoints, and the other part as the corresponding coefficients a. While most 
approaches to function approximation assume the nodes to be fixed, we treat them as 
variables of the following uniform approximation problem:

where I = {1,… , n + 1} is the set of grid cell indices in one dimension.11 Besides 
adding the node variables, we also added two sets of constraints: First, the grid 
validity conditions Eq. 5b ensure that the structure of the grid, including neighbor-
ship relations, is preserved; in the one-dimensional case, the set of all valid grids 
over the state space is defined by Xn ≡ {� ∈ S

n ∶ xi ≤ xi+1} . Second, the collocation 
constraints Eq. CO are added. Note that none of these constraints is conceptually 
necessary at this point. However, we include them for a reason: the grid validity 
constraints rule out a great number of local solutions to the approximation problem 
with different orderings of nodes; adding the collocation constraint cannot improve 
the quality of the approximation problem, but it is mandatory for our optimality cri-
terion, which we will shortly derive as applicable.

If the vector of breakpoints and collocation nodes is fixed, the coefficients 
of the approximation problem are identified solely by the constraints, and thus 
no explicit minimization is necessary (or possible). While we treat the nodes 
as variables in this paper, we still want to mention a popular approach to static 
node choice in the case of (non-piecewise) polynomial approximation—the 
Chebyshev nodes. Suppose that the function f we approximate is k ≥ 1 times 
continuously differentiable. Suppose qn− 1 is a polynomial interpolant of degree 
n − 1 that interpolates f at the n roots of the degree n Chebyshev polynomial. 
Then, qn− 1 minimizes the tightest known error bound for polynomial inter-
polation that can be minimized over the nodes independently of f: The idea 
behind this error bound is to split it up into a contribution from the function 
itself—which cannot be reduced by any choice of nodes interpolation nodes 
(n fixed) and which is usually expressed as the variation in some higher order 

(5a)min
�,�

‖RV̂ (x;�, �)‖∞ ≡ min
i∈I

max
xi≤x<xi+1�RV̂ (x;�, �)

(CO)s.t. RV̂ (xi;�, �) = 0,∀xi ∈ �

(5b)� ∈ X
n,

11  We assume the boundary of the grid to be fixed, and do not include it in the node count; this is 
w.l.o.g., but allows for a more consistent notation. Whether or not collocation is enforced at the boundary 
depends on the approximation scheme in use (enforced for piecewise polynomial; not enforced for poly-
nomial approximation).
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derivative—, and a contribution solely from node choice, but independent of 
the concrete function to be approximated. For a detailed description of Che-
byshev nodes and the optimization problem they solve, we refer the reader to 
Appendix A.1.2. While this is unquestionably a strong result with significant 
practical implications, we show in numerical examples below that Chebyshev 
nodes are generally not optimal given a specific f. Also, Chebyshev nodes have 
no direct application in the context of breakpoint choice for the piecewise inter-
polation schemes, which are our methods of choice.

2.2.2 � Equioscillation and balanced errors

While problem Eq. (5) can, in principle, be solved directly using nonlinear con-
strained optimization techniques, we now reformulate it as a set of optimality 
conditions, in order to easily integrate it as constraints with the original estima-
tion problem using MPEC. (Moreover, as we demonstrate in the numerical part 
of the paper, the direct minimization approach is much less efficient in practice 
compared to directly solving the optimality conditions derived below.)

To derive our approach to optimal node placement, we restate an important result 
from polynomial approximation theory, the equioscillation theorem (restated from 
Judd, 1998, p. 212): define the L∞ error of the best approximation of a (one-dimen-
sional) function f ∈ C

k, k ≥ 0 by a polynomial of degree n − 1 or less, q∗ ∈ P
n−1 , as

Then, we can state the following theorem:

Theorem  1 (equioscillation)  If f ∈ C[a, b] , then there is a unique polynomial of 
degree n − 1, q∗

n−1
(x) , such that ‖f − q∗

n−1
‖∞ = �n−1(f ) . The polynomial q∗

n−1
 is also 

the unique polynomial for which there are at least n + 1 points a ≤ y0 < ⋯ < yn ≤ b 
such that for m = 1 or m = − 1,

From the equioscillation theorem we know that the best polynomial approxima-
tion of the continuous function f will have “balanced and alternating errors”. More 
precisely, if xi, i ∈ {1,… , k} are the k ≥ n zeros of f(x) − q(x), and x0 = a, xk+ 1 = b, 
we refer to the errors as balanced if

where c is a constant, and as alternating if, for m = 1 or m = − 1,

As an illustration, we include Fig.  1 where the absolute value function is uni-
formly approximated by a polynomial, depicting both the function and its approxi-
mation in the left panel, and the approximation error in the right panel; as predicted 

(6)�n−1(f ) ≡ inf
{q∈Pn−1∶deg(q)≤n−1}‖f − q‖∞.

(7)f (yj) − q∗
n−1

(yj) = m(−1)j�n−1(f ), j = 0,… , n.

(BE)max
xi≤x≤xi+1|f (x) − q(x)| = c, i = 0,… , k,

(8)sign(f (x) − q(x)) = m(−1)i, xi < x < xi+1, i = 0,… , k.
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by the equioscillation theorem, the errors of the L∞-minimizing polynomial approxi-
mation are balanced and n times alternating.

It is important to note that Theorem 1 states a sufficient condition for opti-
mality: since the unique best approximating polynomial of degree n − 1 or less 
exists for every continuous function, and since it is also the unique polynomial 
with n times equioscillating errors, we can conclude that a polynomial with n 
times equioscillating errors is the best approximation of f (of degree n − 1 or 
less) in the sense of definition Eq. 6. An iterative procedure for obtaining best 
polynomial approximations of functions of one variable based on equioscilla-
tion is the Remez algorithm (see, for example, Fraser, 1965).

So far, we have only considered polynomial approximation, where the interpo-
lation or collocation nodes are determined implicitly by the zeros of f(x) − q(x). 
However, when using piecewise polynomial approximation or splines, the choice of 
breakpoints (and possibly also of interpolation nodes if not identical) is explicitly 
required from the user.

Therefore, sufficient optimality conditions based on balanced errors have been 
derived for the specific piecewise schemes as well. The idea behind these proves is 
to show that if the single segments of a piecewise polynomial interpolant are locally 
error minimizing (implying that they are equioscillating within the segment by The-
orem 1), balancing the error among the segments through breakpoint movement will 
serve as a sufficient optimality condition: Suppose two neighboring segments do 
not have the same local approximation error; then, moving the breakpoint towards 
the segment with the higher local approximation error will reduce the higher error, 
while increasing the smaller one, until they equate (always assuming that both errors 
are minimized within the segment, in particular after they have been “moved”); 
consequently, the overall error after balancing the local errors must be lower than 
before.

This procedure can be formalized and extended to more than two segments 
by induction. In particular, Lawson (1964) proves for piecewise polynomials 
that if all segments are locally minimizing the maximum approximation error, 
then a set of breakpoints balancing these “min-max” errors over all segments 
exists and is, moreover, a sufficient condition for optimal breakpoint choice. 
(For the formal results, which require a substantially more general notation that 
is, however, not necessary for algorithm construction, we refer the reader to 
Lawson (1964) in particular Theorem 2 and Lemma 6 for details). An impor-
tant difference between the equioscillation as in Theorem 1 and the results of 
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Lawson (1964) is that optimal piecewise interpolants—while having balanced 
errors and being optimal—do not generally have alternating errors at the break-
points. In fact, only for special cases are these interpolants continuous at all. 
Therefore, we impose continuity by requiring the breakpoints to be interpola-
tion points at the same time (also see Appendix A.1.4 for the relation between 
breakpoints and interpolation nodes).1213

2.2.3 � Imposing balanced error and collocation constraints

In this paper, we present an approach to optimal node placement based on balanc-
ing the maximum approximation errors of the segments, which is partially moti-
vated by the optimality criterion of Lawson (1964). However, instead of identify-
ing the coefficients by explicit segment-wise error minimization, we impose the 
collocation constraints Eq. CO at the breakpoints, which is—together with conti-
nuity—sufficient to identify the parameters of a piecewise linear approximation; 

Fig. 1   Approximation of f(x) = |x − 0.5| Using the Best Degree 10 Polynomial Approximation. Approxi-
mation of f(x) = |x − 0.5| using the best degree 10 polynomial on the interval [− 1,1]. Left—the blue line 
shows the true function f(x) and the green line shows the best polynomial approximation f̂ (x) . Right—the 
black line shows the approximation error f (x) − f̂ (x)

12  Imposing this constraint obviously increases best attainable approximation error. However, it can 
be shown for the piecewise linear approximation case of convex/concave functions that the error with 
interpolating breakpoints is bounded by two times the error without that requirement; see (Imamoto and 
Tang, 2008).
13  For the case of splines, i.e. approximators with higher order smoothness constraints at the break-
points, (Schumaker, 1968) shows that a result similar to Theorem  1 can be established. However, the 
properties of piecewise polynomials over flexible grids have been well studied also for higher dimensions 
in the finite element literature (see, for example, (Ciarlet, 2002)), which is not generally true for splines 
(see (Thompson et al., 2010)). As our goal is to eventually generalize our method to the case of higher-
dimensional state spaces, we will not pursue the splines approach here.
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if higher-order piecewise polynomials are fitted, additional collocation nodes 
have to be inserted in the interior of the segments. Consequently, in order to find 
a solution to the uniform approximation and collocation problem with explicit 
node choice, Eq. (5), we need to find a vector of nodes and coefficients such that 
the constraints of Eq. (5) are satisfied, and the errors of the approximation are 
balanced.

In particular, let us introduce a slack variable for the cell-wise error

Then, (approximate) BE with tolerance 𝜖z can either be imposed by the n + 1 
Eq. BE, or—as we found it to be numerically more efficient—by pairwise com-
parison of all cell-wise errors

Note that Eq. 10 can be reformulated as a linear constraint (see below). Thus, 
imposing BE yields a system of n + 1 nonlinear equality constraints for the slack 
variables zi, and 2n(n + 1) linear inequality constraints for the actual comparisons.

Combining the BE constraints for optimal node placement, Eqs.  9 and  10, 
with the constraints of Eq. (5), the following system of equations in the variables 
(a,x,z) identifies a solution to Eq. (5):

where Eqs. 11c and 11d are the reformulated linear BE conditions, and Eq. 11e is 
the grid validity constraint, which additionally enforces some minimum distance 𝜖x 
between grid nodes.

In summary, this section derived a sufficient optimality criterion of the distribu-
tion of breakpoints and collocation nodes, which will be integrated with both the 
NFXP and the MPEC algorithms in the next section. We conclude this section on 
balanced errors and its application of uniform approximation and collocation prob-
lems with a remark: In the context of node choice, the mechanics behind equios-
cillation as an optimality criterion are actually very intuitive. Suppose the global 
maximum approximation error lies in the interval [xi,xi+ 1]. Then, slightly shifting 
the interpolation node xi to the right (assuming that f and q are not intersecting in the 

(9)zi = max
xi≤x<xi+1|RV̂ (x;�, �)| ∀i ∈ I.

(10)
|zi − zj|

zi
≤ �� ∀(i, j) ∈ I × I, i ≠ j.

(11a)RV̂ (xi;�, �) = 0, ∀xi ∈ �

(11b)zi = maxxi≤x<xi+1 |RV̂ (x;�, �)| ∀i ∈ I

(11c)(1 − ��)zi − zj ≤ 0 ∀(i, j) ∈ I × I, i ≠ j

(11d)(−1 − ��)zi + zj ≤ 0 ∀(i, j) ∈ I × I, i ≠ j

(11e)xi + �� ≤ xi+1 ∀xi, xi+1 ∈ �,
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interior of (xi,xi+ 1)) will decrease the maximum error, while increasing the error of 
the cell to the left of xi; thus the L∞ norm of the approximation will decrease. Thus, 
q cannot be optimal until the errors in all cells are balanced.

2.3 � Parameter estimation with flexible grids

In this section, we will demonstrate how to integrate grid adaption by node move-
ment into parameter estimation for dynamic programming models, using both NFXP 
and MPEC.

2.3.1 � NFXP with flexible grids

As we have argued above, the integration of grid adaption into NFXP is—for-
mally—straightforward, as the algorithm is agnostic about the value function 
approximation step. Therefore, since we modelled the value function approximation 
and the adaption of its grid as a simultaneous problem in Eq. (5), we can state the 
NFXP algorithm with grid adaption by node movement by Algorithm 3.

We have two important remarks. First, note that in contrast to Algorithm 2, the con-
tinuity of the likelihood function is not affected by the application of grid adaption if 
two conditions hold: (i) the optimal grid depends continuously on the value function, 
and (ii) the value function itself depends continuously on the model parameters.14 Sec-
ond, while Algorithm 3 is in principle agnostic about how to solve problem Eq. (5), we 
found that—in our examples—it was most efficient and stable to solve the set of suf-
ficient optimality conditions Eq. (11) (examples are given below).

2.3.2 � MPEC with flexible grids

We now turn to the question of how to integrate (optimal) node placement with the 
MPEC approach of estimation of dynamic programming models. First, note that if 
RV̂ is the residual of the functional equation determining the value function of inter-
est, the optimization problem Eq. (5) fully determines our function approximation, with 

14  While the second condition is implicitly used in many NFXP-type applications, it is not obvious that 
for general function spaces the mapping between the functions and their respective optimal grid is con-
tinuous. However, in none of our examples did we encounter continuity issues, and it might well be pos-
sible to formalize this finding for important subclasses of function spaces with sufficient smoothness and 
shape requirements, which value functions often belong to.

199Adaptive grids for the estimation of dynamic models



1 3

degrees of freedom being the coefficients of the polynomials and the nodes themselves. 
Thus, we replace the collocation constraints in the original MPEC problem Eq. (3) with 
problem Eq. (5) to obtain our new bi-level optimization problem

However, it is not obvious how to obtain a solution to Eq. (12). While there is a large 
literature on how to solve this kind of bi-level optimization problem (see, for example, Col-
son et al. (2007) and Fletcher et al. (2006)), they remain “notoriously difficult” to solve for 
the following reason: if we want to avoid solving the system of constraints in every iteration 
of the solution process (which would then constitute an NFXP approach with an r-adaptive 
grid using direct minimization), the lower-level minimization problem Eqs. 12b, 12c has to 
be replaced by something that can be handled by a constrained optimization solver, which is 
usually systems of equalities and inequalities. One approach is to replace the lower-level opti-
mization problem by its first-order constraints, which are the KKT conditions in the case of 
inequality constrained lower-level problems. However, this procedure will establish comple-
mentarity constraints in the new single-level problem, which cause severe problems for most 
algorithms currently available for constrained optimization (see, for example, Colson et al. 
(2007) and Fletcher et al. (2006)), thus giving rise to a very active field of research in optimi-
zation. Instead, in the following we will use the system of (in-) equalities that constitutes a set 
of sufficient optimality conditions for our node placement problem based on balanced errors, 
Eq. (11), without introducing complementarity constraints into the estimation problem.

Replacing the lower-level optimization problem in Eq. (12) by the set of sufficient 
conditions Eq. (11), we finally solve the following optimization problem in order to 
obtain a maximum likelihood estimate of the parameter vector 𝜃 using MPEC:

The statement of problem Eq. 13 concludes the general description of the method. 
In the next section, we turn to numerical examples and applications.

3 � Numerical examples and applications

In this section, we first present a concrete numerical example to demonstrate the idea 
of flexible grids and show the equivalence of minimizing the L∞ norm and impos-
ing the balanced error (BE) constraints. Second, we apply the adaptive grid method 
to the estimation of the well-known bus engine replacement model of Rust (1987), 
which is modified to feature a continuous mileage state; furthermore, we solve and 

(12a)max
𝜃,�,�

L(𝜃;V̂𝜃(⋅, �),D)

(12b)s.t. (�, �) = argmin
�,�

‖RV̂𝜃
(y;�, �)‖∞

(12c)s.t. (CO), (5b) hold.

(13)
max
𝜃,�,�,�

L(𝜃;V̂𝜃(⋅, �, �),D)

s.t. (11) holds.
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estimate a version of the Rust (1987) model that features a serially correlated, unob-
served utility component.

3.1 � Function interpolation with flexible grids—A numerical example

In the following example, we assume that the function we are approximating is 
known and can be evaluated directly. Consequently, we can write the residual func-
tion Eq. 2 as

and hence we are facing a standard function approximation problem (see Appendix 
A.1 for a short introduction to function approximation).

For the function approximation problem in this section, we will compare three 
cases: First, we consider the case of standard interpolation where the residual func-
tion is set equal to zero at all the nodes of a fixed grid; this corresponds to solving 
the system of equations given by Eq. CO, which is linear for standard function inter-
polation problems. Second, we directly minimize the L∞ norm of the residual func-
tion, but at the same time impose the interpolation property as constraints; the cor-
responding constrained optimization problem is described by problem Eq. (5). Last, 
we impose the BE constraints on the residual function to obtain the optimal grid 
by solving the nonlinear system Eq. (11). This procedure allows us to (i) compare 
the results of the flexible-grid method to standard interpolation over fixed grids, (ii) 
demonstrate the equivalence of direct minimization and balanced error conditions, 
and (iii) compare the different approaches with regard to accuracy and computation 
time.

To assess the quantitative aspects, our example demonstrates the advantages of 
balanced errors using piecewise linear approximations. We show that optimal grids 
produce significantly smaller approximation errors compared to uniform grids with 
the same number of nodes. This example is of particular interest as we are going 
to use piecewise linear approximations for the full parameter estimation problem in 
Section 3.2.

In the appendix, we also argue how Chebyshev polynomials (using the well-
known Chebyshev nodes as interpolation locations) relate to our approach; see 
Appendix A.1.3. Moreover, we demonstrate the use of higher order piecewise poly-
nomials, which works essentially the same as piecewise linear approximations; see 
Appendix A.

For the example in this subsection, we use the following parametrizations: The mini-
mum difference between the flexible nodes it set to 𝜖x = 0.01 (none of the grid validity 
constraints are binding though). For the error tolerance of the BE constraints we use 𝜖z 
= 0, which proves to be the most stable from a computational point of view; we con-
jecture that this is because otherwise a continuum of solutions would exist. In order to 
compute the cell-wise maximum error, we use a grid search with 100 uniformly distrib-
uted nodes. To initialize the algorithm, we first compute an optimal solution with regard 
to the L1 norm, which we then use as an initial guess for the solution in the L∞ norm; 
this approach increases both numerical efficiency and stability. All computation times 

Rf̂ (x;�, �) = f (x) − f̂ (x;�, �)
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are reported including the initialization phase. We use Gauss–Legendre quadrature with 
10 nodes in each interval to compute the corresponding integrals for the L1 norm (see 
Judd, 1998, for a detailed description of different quadrature methods). All examples 
are computed in Matlab 2017a (Version 9.2) using the “fmincon” solver with the “sqp” 
and “interior point” algorithms, and default settings otherwise. In those examples where 
we approximate polynomials, their coefficients are randomly generated and reported 
along with the results. We use AMD Opteron 6380 (“Abu Dhabi”) hardware clocked at 
2.5GHz, and all reported runtimes are serialized (i.e. core time, not wall clock time).

The function we approximate is a degree 9 ordinary polynomial by a piecewise 
linear approximation with six nodes, of which four are potentially flexible.15 We use 
a uniform grid for the fixed grid piecewise linear approximation.

Figure 2 plots the results; the corresponding approximation errors and computa-
tion times are stated in Table 1. We find that the standard piecewise linear interpola-
tion over a fixed uniform grid produces large approximation errors, especially in the 
areas where the approximated function has high curvature, as is the case between the 
first and second node for example. Consequently, the flexible-grid solutions demon-
strate how the approximation error can be reduced by shifting the nodes toward this 
area. Looking at the residuals f (x) − f̂ (x;�, �) we find that for both the direct mini-
mization and the BE solution the errors are balanced, while the error for the uni-
form-grid interpolation strongly varies among the intervals. Note that this example 
demonstrates the difference between balanced errors, alternating errors, and equi-
oscillation: while the errors of the optimal solutions are obviously balanced—the 
maximum absolute error is the same for each interval [xi,xi+ 1]—they are not alter-
nating (and hence not equioscillating) as the residual does not change sign at all its 
zeros (including the breakpoints).

Table 1 further confirms these findings: the L∞ norm decreases by an order of 
magnitude from 11.8250 to 1.5649 for the optimal flexible grid compared to the 
uniform-grid approximation. Again, we find that imposing the BE constraints yields 
the same solution as direct minimization, but computation times and the number of 
iterations are significantly lower for the BE approach.

3.2 � Parameter estimation with flexible grids—numerical results

In this section, we apply our balanced error grid adaption method to the estimation 
of the well-known bus engine replacement model of Rust (1987), first with a contin-
uous mileage state variable, but in its original for otherwise, and second extended to 
feature a serially correlated, unobserved utility component, thus resulting in a two-
dimensional value function approximation problem.

In both cases, we begin with a brief description of the model, and then compare the 
fixed- and flexible-grid approaches in two steps: First, we present results for fixed model 
parameters in order to demonstrate the potential advantages of flexible grids for solving 
dynamic programming models; this is similar to the interpolation examples in Section 3.1, 

15  We impose the constraints that x1 = xmin and xn = xmax, where xmin and xmax are the minimum and 
maximum values of the approximation interval, respectively. This restriction is w.l.o.g. as can be seen in 
Example 1; in terms of the notation used in Section 2, it corresponds to n = 4.
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except that the function to be approximated can not be evaluated directly. Second, we 
solve the complete maximum likelihood estimation problem for the cost parameters of the 
model, using MPEC and NFXP (as we obtain qualitatively similar results for NFXP and 
MPEC, we only report results for both algorithms for the original specification and focus 
on MPEC thereafter); therefore, we set up a Monte Carlo experiment with 100 artificial 
datasets to study and compare the results of the fixed- and flexible-grid solutions with 
regards to accuracy and efficiency.

Fig. 2   Approximation of a Degree 9 Polynomial Using Piecewise Linear Approximation. Approxima-
tion of a degree 9 ordinary polynomial on the interval [− 1,1] by a piecewise linear approximation with 
six nodes, of which four are potentially flexible. The blue line corresponds to the true function, whereas 
the green line represents the fitted piecewise linear approximation. Turquoise diamonds and red circles 
depict the fixed uniform nodes, and the optimized approximation nodes obtained from imposing the BE 
conditions or direct minimization, respectively. The plots in the right panel show corresponding residuals 
f (x) − f̂ (x;�, �) . From the top to the bottom, the figure shows piecewise linear interpolation using uni-
formly distributed nodes, flexible nodes with direct minimization of the L∞ norm, and flexible nodes with 
BE constraints. The coefficients of the true polynomial function f are given by α = [​4.1​239​,2.​795​6,5​.086
2,− 1.2933,7.8788,− 7.8582,9.9192,− 2.8339,3.4032,− 9.9500]
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3.2.1 � The bus engine replacement model of Rust (1987)

In the bus engine replacement model of Rust (1987), a manager of a fleet of buses 
repeatedly decides whether or not to replace the engine of each of the buses. The 
manager’s decision is based on the observation of the current mileage state, and 
on choice of bus and the consequent bus-specific utility shock. The manager’s per-
period utility function for one single bus is given by

Hence, the manager faces the decision trade-off of replacing the engine at a high 
fixed cost of RC (decision i = 1), or just paying the maintenance costs c(xt,𝜃1) (deci-
sion i = 0), which increase with the mileage state xt and depend on the maintenance 
cost parameter 𝜃1. εt(i) is the choice-specific shock to utility that is observed by the 
manager, but not by the econometrician. Assuming that the manager behaves in a 
dynamically optimal manner, his or her value function is given by

where β is the time discount factor and the subscript 𝜃 denotes the dependence of the 
value function on the parameters RC and 𝜃1. The conditional expected continuation 
value in Eq. 15 is given by

Even though the observed mileage state xt has a continuous support in reality, it is a 
common approach to discretize the state space into a finite number of “bins” (see, for 
example, (Su and Judd, 2012; Rust, 1987). We, however, do not make this assumption as 
our solution method is designed for continuous state spaces. Consequently, while the law 
of motion for discrete Markov states is a matrix, we need a probability density function 
for the continuous model. As proposed in (Rust, 1987) we use the exponential function, 
so Δxt+1

= xt+1 − xt is exponentially distributed with the rate parameter 𝜃2. We follow 

(14)u�(i, xt) + �t(i), u�(i, xt) =

{
−RC if i = 1

−c(xt, �1) if i = 0.

(15)V�(xt, �t) = max
i∈{0,1}

{u(i, xt, �1) + �t(i) + �E[V�(xt+1, �t+1)|i, xt, �t]},

(16)
EV�(i, xt, �t) ≡ E[V�(xt+1, �t+1)|i, xt, �t]

= ∫ V�(xt+1, �t+1)Pr(xt+1, �t+1|i, xt, �t, �)d(xt+1, �t+1).

Table 1   Comparison 
of Approximation 
Errors—Piecewise Linear 
Approximation

 Approximation errors and computation times of the approximation 
of a degree 9 polynomial by piecewise linear interpolation, over a 
fixed uniform grid, a flexible grid obtained from direct minimization 
of the L∞ norm (“Direct Min.”), and a flexible grid obtained from 
the BE constraints (“Balanced Errors”); the example corresponds to 
Fig. 2

Uniform Grid Direct Min. Balanced Errors

L∞ 11.8250 1.5649 1.5649
Time in Sec. − 1.56 0.58
# Iterations − 76 18
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(Rust, 1987) by assuming that (i) the utility shock εt(i) is extreme value type I iid. distrib-
uted, �t(i) ∼ EV1 iid , and (ii) x and ε are conditionally independent. Under this assump-
tion, closed form solutions for the integral over the unobserved state variables exist, and 
the EV function for the continuous problem is given by

where i′ denotes the decision in the next period and h�2(Δx) is the probability density 
function of the exponential distribution with the rate parameter 𝜃2. We approximate 
the integral over the observed state by Gauss–Laguerre quadrature, which is a natu-
ral choice as it is optimized for the integration over exponential kernels (see Judd 
1998). Finally the log-likelihood function for the full sample of M buses reads

3.2.2 � Approximating the EV function for fixed 𝜃

In this subsection, we assume that the model parameters 𝜃 are fixed; consequently, 
we only have to solve the dynamic problem Eq. 17. This allows us to compare the 
solutions for a fixed uniform grid and the flexible grid with BE constraints in a sim-
ple and demonstrative context.

In particular, we use the following parametrisations of the model and the algo-
rithm: For the model parameter vector 𝜃, we use the original estimates from Rust 
(1987), given by RC = 11.7257, 𝜃1 = 2.4569, and β = 0.99, and assume 𝜃2 = 1.5. For 
the utility function, we use the standard linear costs given by

Additionally, we also consider a cubic cost function to introduce more nonlin-
earities into the problem, and hence make the approximation problem of the EV 
function more interesting

For the mileage state, we assume that the maximum mileage is given by xmax 
= 400 (similar to Rust 1987). For the EV function, we use a piecewise linear 
approximation. We use the same algorithm parametrisation as in Section 3.1.

In our analysis, we consider four different approximations for each of the cost func-
tions: a benchmark case using 400 uniformly distributed nodes; the BE solution with 
five nodes, of which three are flexible; a uniform fixed grid with as many nodes as the 

(17)EV� (i, x) = ∫
∞

0

log

(
∑

i�∈{0,1}

exp
(
u� (i

� , (1 − i)x + Δx) + �EV� (i
� , (1 − i)x + Δx)

)
)
h�2 (Δx)dΔx ,

(18)
L(�;EV�(⋅), {x

j
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j
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T ,M
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+
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).

(19)c(xt, �1) = 10−3 ⋅ �1xt.

(20)c(xt, �1) = 10−5 ⋅ �1x
3
t
.
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flexible grid; and a uniform grid where the number of nodes is chosen such that the 
two grids have roughly the same accuracy in terms of the L∞ norm.

Table 2 lists approximation errors, computation times, and iteration counts for all 
approximations. The upper panel shows the results for the linear cost function Eq. 19. 
We find that for the benchmark case with 400 nodes the approximation errors are small 
with a L∞ error of 1.7e − 4. The BE solution with five nodes has an error of 0.0441, 
while the error with a uniform grid with equally many nodes is more than twice as 
large. To obtain the same accuracy with the uniform grid, 10 nodes are needed in this 
example. Comparing computation times, we find that the uniform-grid solution with 
10 nodes is still significantly faster compared to the BE grid solution. Hence, in this 
example it appears to be more efficient to simply increase the number of nodes of the 
uniform grid instead of using the flexible-grid method.

The results turn in favour of the BE solutions when we solve the model with the cubic 
cost function Eq. 20: In this case, 40 uniformly distributed nodes are needed to obtain 
the same accuracy as with the BE grid with five nodes. Comparing computation times, 
we find that it actually takes longer to compute the fixed-grid solution (0.5201 seconds) 
compared to the flexible grid (0.4391 seconds). Figures 3 and 4 depict the four different 
approximations of the EV functions for the linear and the cubic cost functions, respec-
tively, and illustrate why this is the case: Using the cubic cost function, we find that most 
curvature is massed at the low mileage states, while it is almost linear or even constant 
otherwise. This makes the approximation of the EV function by piecewise linear seg-
ments over a uniform grid very inefficient, as the nodes should be placed in regions of 
high curvature. Conversely, the BE grid efficiently moves the nodes to the critical area 
of high curvature, and therefore achieves much higher accuracy using an equal amount 
of nodes. Hence, even in such a simple example, and in particular isolated from the full 

Table 2   Approximation of the EV Function of the (Rust, 1987) Model

 Approximation errors, computation times, and iteration counts of the approximation of the EV function 
Eq. 17 for a fixed parameter vector 𝜃. The upper panel and lower panel list the results for the linear cost 
function Eq. 19 and the lower panel the results for the cubic cost function Eq. 20. Besides the bench-
mark solution with a uniform grid of 400 nodes, the tables list the BE solution with five nodes, of which 
three are flexible (“Balanced Errors”); a uniform-grid solution with five nodes (“Uniform Grid 1”); and 
a uniform-grid solution where the number of nodes is chosen to roughly match the L∞ norm of the BE 
solution (“Uniform Grid 2”)

Benchmark Uniform Grid 1 Uniform Grid 2 Balanced Errors

Linear Cost Function
L∞ 0.0002 0.1054 0.0436 0.0441
Relative Time − 25% 50% 100%
# Iterations 8 8 7 13
# Nodes 400 5 10 5
Cubic Cost Function
L∞ 0.0022 4.3390 0.1151 0.1120
Relative Time − 14% 119% 100%
# Iterations 6 4 6 17
# Nodes 400 5 40 5
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estimation problem, the flexible-grid solution can be more efficient compared to approxi-
mation over uniform grids.

So far, we have assumed that the parameter vector 𝜃 is fixed, and thus only the 
dynamic programming model needs to be solved. The next subsection addresses 
the complete parameter estimation problem using simulated data.

We conclude this example with a note on approximation errors and their potential 
implications on the estimation error in the maximum likelihood process: Figures  3 
and 4 imply that much of the error from approximation over coarser grids comes from 
a wrong level of value. This is actually very natural: Recall that in contrast to the inter-
polation examples above, the true level of the value function is not explicitly given; 

Fig. 3   EV as a Function of x for the Linear Cost Function Eq. 19. EV as a function of mileage state x for 
fixed 𝜃 and linear cost function Eq. 19

Fig. 4   EV as a Function x for the Cubic Cost Function Eq. 20. EV as a function of mileage state x for 
fixed 𝜃 and cubic cost function Eq. 20
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rather, the value function as defined in Eq. DP is the discounted sum of future expected 
values, forming the fixed-point Eq. 1. Therefore, if future value is overestimated, the 
present value will be overestimated, too. Since the value function in this example is 
convex, every linear interpolation will overestimate the value, which becomes particu-
larly apparent if the grid is coarse, such as in the example with the uniform grid with 5 
nodes. (Of course, this effect cannot be corrected by shifting the value function down-
wards, as in general the true level of the value function is unknown.)

With regard to the maximum likelihood estimation and in particular the parameter 
estimation error, it is important to note that the error in the level of the value function—
which serves as a natural quality measure in the present context of function approxima-
tion—does not matter anymore. Rather, the likelihood function computes the probability 
(or density function value) of value differences for different choices, which is more related 
to the gradient of the value function. While we can see from the pictures that these differ-
ences will also be dampened by linear approximations (i.e. underestimated when compar-
ing high- to low-mileage states), their quantitative effect cannot be easily anticipated given 
(i) the non-linearities induced by the density functions of the random variables forming 
the likelihood function, (ii) and the potentially highly non-uniform “weighting” induced 
by the data. Therefore, the fact that approximation over balanced error grid roughly pro-
duces the same approximation error as the uniform grid with 10 nodes does not imply 
that the two configurations will also result in similar estimation errors. As a consequence, 
the fact that the balanced error grid is less efficient in approximating the value function 
implied by a linear cost function compared to a uniform grid with more nodes, does not 
imply that it is also less efficient when assessing the parameter estimation error; actually, 
as we will show shortly, the opposite is true in this model.

3.2.3 � Monte Carlo study for the parameter estimation problem

In this subsection, we estimate the parameters of the bus engine replacement model 
of Rust (1987) using the flexible-grid approach and compare it to the standard fixed-
grid solution by solving problem Eq. (3). In the first example with a linear cost func-
tion, we demonstrate the applicability and efficiency of the flexible-grid approach 
for both MPEC and NFXP. To limit the number of examples, we concentrate on the 
MPEC implementations for the additional examples thereafter.

In order to obtain a measurement of variation, we simulate 100 datasets with 
500 buses each running for 150 periods. For the simulation of the data, we use the 
same parameters as in the previous example, given by β = 0.99, RC = 11.7257, 𝜃1 
= 2.4569, and 𝜃2 = 1.5; furthermore, we use a linear cost function as in Eq. 19 as 
well as a cubic cost function as in Eq. 20. For each dataset, we use three starting 
points for 𝜃, given by (RC, �1) ∈ {(2, 1), (10, 3), (17, 5)} (one significantly smaller, 
one close to, and one significantly larger than the true parameters). Also, as in the 
original model, the parameter of the mileage state transition, 𝜃2 = 1.5, can be esti-
mated independently, which is why we focus on the estimation of the cost param-
eters RC and 𝜃1.16 To compute the one-period-ahead value expectations in Eq. 17, 

16  To avoid the multicolinearity issue pointed out by (Rust, 1987), we also assume β to be fixed.
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we use 10-node Gauss–Laguerre quadrature rules. For the maximum value of the 
approximation interval we use 1.5 times the maximum value of the mileage state 
obtained from the simulated data.

As in the previous section, we use four different approximations of the expected 
value function: a benchmark solution using 400 uniformly distributed nodes; the BE 
solution with five nodes, of which three are flexible; a uniform fixed grid with as many 
nodes as the flexible grid; and a uniform grid where the number of nodes is chosen to 
roughly match the relative root mean squared error (rRMSE)17 of the BE grid.

Table  3 lists parameter estimates, errors with respect to the benchmark solution 
(rRMSE) and computation times for all approximations for the estimation using MPEC. 
We find that for the 5-node uniform grid, the estimates dramatically differ from the 
benchmark solution, and are not even within four standard deviations; the error of the 
5-node uniform grid is large given an rRMSE of 0.1101. The BE solution with five 
nodes, of which three are flexible, produces much more accurate results, with an rRMSE 
of 0.0264. To obtain the same level of accuracy, a uniform grid with 17 nodes is needed. 
Comparing efficiency, we find that the BE solution is about 1.6 times faster than the uni-
form solution with the same accuracy. Also, we find that for all approximation methods 
all runs converged, which indicates that the BE method is also sufficiently stable. The 
results for the estimations using NFXP are reported in Table 4; we find them to be very 
similar to the MPEC case, and draw the same qualitative conclusions.18

In Table 5 we show the corresponding results for the cubic cost function Eq. 20. 
For this, we slightly recalibrate the model and use 𝜃2 = 0.075 instead of 𝜃2 = 1.5. 
For 𝜃2 = 1.5, the realizations of the mileage state of the Monte Carlo runs are not in 
the area of the EV function with a significant amount of curvature (see left panel of 
Fig. 5). Hence, a flexible grid method can not show its full potential. For 𝜃2 = 0.075, 
the situation changes and more realizations of the mileage state are within the part of 
the EV function with high curvature. Therefore, we use this calibration to show the 
methods potential instead.

Table 5 shows that a uniform grid with 26 nodes is required to match the accuracy 
of the BE solution with 5 nodes. This in turn requires a computation time 1.7 times as 
long as for the BE method. Hence, the efficiency gain is even larger than for the linear 
cost function.

17  We define the rRMSE as

where J is the number of datasets, K is the number of initial guesses per dataset, R̂Cj,k and 𝜃̂j,k
1

 are the 
parameter estimates for dataset j and initial guess k, respectively, and the subscript B denotes the bench-
mark solution.

(21)rRMSE =

√√√√√1
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+
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,

18  Note that we always initialize the flexible-grid method from a feasible starting point. Therefore, we 
first compute the uniform-grid solution with equally many nodes to obtain estimates 𝜃 . Second, we solve 
the BE constraints problem to obtain a feasible grid for 𝜃 . All reported computation times include this 
initialization.
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We conclude the discussion of the results by noting that by using flexible grids 
with BE constraints in the context of both NFXP and MPEC estimation of dynamic 
programming models, one can potentially harvest significant gains in efficiency, 
compared to standard uniform-grid approximations.

3.2.4 � Discontinuities in the likelihood functions caused by node insertion

In the previous section, we have demonstrated that the balanced error approach for 
grid adaption enables the use of flexible interpolation grids in MPEC type estima-
tion algorithms, which can be highly beneficial in terms of computational efficiency. 
However, we also argued that its application in the context of NFXP type methods 
can be beneficial, too, because it avoids the discontinuities induced by node inser-
tion type grid adaption. In the next few paragraphs, we illustrate how these discon-
tinuities can arise and what trouble they can cause for optimizers, using the bus 
engine replacement example from the previous section.

An important difference to the analysis above is that the effect of discontinuities 
caused by node insertion is extremely difficult to quantify. This is because we would 
need to interpret actual solver behavior, which can only be observed through a set 
of possible symptoms, such as early termination (throwing an error), wrong conver-
gence (without error), very slow or even no convergence at all, etc. However, link-
ing these effects causally to the discontinuities is very hard, if not impossible, and 
highly speculative, too. Moreover, the presence and severeness of problems caused 
by these discontinuities depends on many factors (and their interactions), such as 
the solver’s algorithm and its implementation, the concrete grid node insertion and 

Table 3   Results for the MPEC Estimation of the (Rust, 1987) Model with a Linear Cost Function

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 300 Monte Carlo runs. The 
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the 
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid 
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 400 
nodes, the table lists the BE solution with five nodes, of which three are flexible (“Balanced Errors”); a 
uniform-grid solution with five nodes (“Uniform Grid 1”); and a uniform-grid solution where the number 
of nodes is chosen to roughly match the rRMSE of the BE solution (“Uniform Grid 2”). The cumulative 
serialized computation times are shown in minutes

Benchmark Solution Uniform Grid 1 Uniform Grid 2 Balanced Errors

RC 11.7643 11.0023 11.6297 11.5806
(0.3835) (0.2916) (0.3678) (0.3601)

𝜃1 2.4750 2.2571 2.4099 2.5152
(0.1352) (0.1131) (0.1289) (0.1363)

rRMSE − 0.1101 0.0287 0.0264
Absolute time 1495 12 39 24
Relative time − 49% 163% 100%
# Nodes 400 5 17 5
Runs converged 100% 100% 100% 100%
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deletion mechanism (of which many fundamentally different variants exist), the con-
crete model, and even the starting points of the likelihood optimization.

Hence, our approach to addressing this issue is purely qualitative. In the follow-
ing, we work with two fixed grids: a uniform “original” grid, and the “adapted” grid, 

Table 4   Results for the NFXP Estimation of the (Rust, 1987) Model with a Linear Cost Function

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 300 Monte Carlo runs. The 
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the 
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid 
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 400 
nodes, the table lists the BE solution with five nodes, of which three are flexible (“Balanced Errors”); a 
uniform-grid solution with five nodes (“Uniform Grid 1”); and a uniform-grid solution where the number 
of nodes is chosen to roughly match the rRMSE of the BE solution (“Uniform Grid 2”). The cumulative 
serialized computation times are shown in minutes

Benchmark Solution Uniform Grid 1 Uniform Grid 2 Balanced Errors

RC 11.7428 10.9879 11.6115 11.5445
(0.3922) (0.2973) (0.3765) (0.3749)

𝜃1 2.4664 2.2511 2.4031 2.4972
(0.1379) (0.1146) (0.1317) (0.1380)

rRMSE − 0.1093 0.0280 0.0265
Absolute time 581 22 64 47
Relative time − 46% 137% 100%
# Nodes 400 5 17 5
Runs converged 100% 100% 100% 100%

Table 5   Results for the MPEC Estimation of the (Rust, 1987) Model with a Cubic Cost Function

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 300 Monte Carlo runs. The 
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the 
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid 
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 400 
nodes, the table lists the BE solution with five nodes, of which three are flexible (“Balanced Errors”); a 
uniform-grid solution with five nodes (“Uniform Grid 1”); and a uniform-grid solution where the number 
of nodes is chosen to roughly match the rRMSE of the BE solution (“Uniform Grid 2”). The cumulative 
serialized computation times are shown in minutes

Benchmark Solution Uniform Grid 1 Uniform Grid 2 Balanced Errors

RC 11.7224 10.5201 11.5708 11.5575
(0.1335) (0.8962) (0.1450) (0.1418)

𝜃1 2.4538 2.3156 2.4406 2.4539
(0.0317) (0.2110) (0.0336) (0.0343)

rRMSE − 0.1614 0.0142 0.0143
Absolute time 1316 11 50 29
Relative time − 38% 170% 100%
# Nodes 400 5 26 5
Runs converged 100% 99.3% 100% 97.3%
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where one node has been deleted in a region with low curvature, and inserted in a 
region with high curvature; Figure  6 depicts the EV function approximation over 
both grids for two different parameters RC; for expositional purposes, we ignore all 
other parameters in this section. One can think of these two grids as one step within 
an algorithm for grid adaption by node insertion.

Most node insertion algorithms have an approximation error threshold, which—
once reached—triggers the insertion (and possibly deletion) of one or several 
nodes. In this example, we assume that somewhere between RC = 10.2257 and RC 
= 11.7257, say at RC0, some criterion triggers the insertion of one node (for example 
a function estimating the relative improvement in approximation error from adding 
a particular node). Consequently, if we approximate the EV function for a sequence 
of values of RC—which is what the likelihood maximization process will eventually 
do—, the sequence of corresponding EV approximations is discontinuous at RC0, 
because of the change of the underlying grid.

Consider the two likelihood functions for the Rust (1987) model as in the pre-
vious sections depicted in Fig. 7; note that both likelihood functions represent the 
same model and data set, but use choice probabilities based on approximations of 
the EV functions over the two different grids. We choose an arbitrary value of RC0, 
and denote the intersection of the two likelihood functions by RC*. Then, it becomes 
apparent that of for every potential solver step from RCi to RCi+ 1, where RCi < RC0 
and RC0 < RCi+ 1 < RC*, the active grid for the EV approximations changes from the 
“original” to the “adapted” grid (by definition of RC0), and therefore the “relevant” 
likelihood function switches discontinuously, too. Consequently, the solver might 
find that the objective function value has decreased (while maximizing), which is, 
however, and artifact of changing the underlying grid adaption. As a consequence, 
many solvers will reduce the step or trust region size and try until they find a search 
direction and step size which yields an improvement. If in this process, the solver 

Fig. 5   Comparison of EV Functions for Different Values of 𝜃2. The figure shows the true EV function for 
the 1D bus replacement problem with a cubic cost function. The left panel depicts the case with 𝜃2 = 1.5 
and the right panel with 𝜃2 = 0.075. All other model parameters are choosen as described in the begin-
ning of Section 3.2.3. The figures also show the histrograms for the mileage state from the 300 Monte 
Carlo runs (right y-axis)
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iterates to a point where RCi ≈ RC0, it might stop prematurely because no local 
improvement is possible from this point.

We conclude this analysis by noting again that it is neither complete nor able 
to capture any of the effects quantitatively; however, it still gives an idea of the 
numerical problems that might cause trouble even for high-quality solvers. There-
fore, we argue that also when using NFXP for estimating dynamic programming 
models, where the implementation of grid adaption by node insertion is techni-
cally possible, one might want to adapt our approach of continuous grid adaption 
by node movement, solely to avoid the artificial discontinuities node insertion 
creates even for smooth and well-defined problems.

3.2.5 � The Rust (1987) model with a serially correlated unobserved utility compo-
nent

In this section we show, that our grid adaption approach can also lead to large 
efficiency gains for higher dimensional models. For this, we extend the bus 
engine replacement model of Rust (1987) to feature a serially correlated error 
component, similar to Reich (2018), but keeping the usual EV1 iid. error compo-
nent intact. We assume that the additional utility shock ηt follows an AR(1) pro-
cess; the modified utility function becomes

where �t = ��t−1 + Δ�t
 with Δ�t

∼ N(0, �) . The serially correlated utility shock can 
be thought of as a persistent damage or problem with a particular bus.

(22)u�(i, xt, �t) + �t(i), u�(i, xt) =

{
−RC if i = 1

−c(xt, �1) + �t if i = 0.

Fig. 6   Comparison of EV Function Approximations over Two Different Grids for Different Values of 
RC. The figure shows the true EV function as well as two approximations over different grids for the 
1D bus engine replacement model with a linear cost function. The left panel depicts the case with RC 
= 10.2257 and the right panel with RC = 11.7257. The true EV function is depicted by the thin black 
dashed line; the red and the blue lines depict the two approximations over different grids (red: uniform 
grid, blue: one node inserted, one node deleted to/from uniform grid)
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Due to the serial dependence of the utility shock, the EV function features an 
additional state and thus re-writes as

where ϕσ(Δη) is the probability density function of the normal distribution with 
mean zero and standard deviation σ. Note that the main difficulty arising from a 
utility specification with serially correlated unobserved states as in Eq.  22 is not 
the approximation of the EV function Eq. 23 which increases in dimensionality by 
the dimension of the state variable, but rather the computation of the corresponding 
likelihood function, as the serially correlated unobserved states have to be integrated 
out. This leads to a numerical integration problem of dimensionality proportional to 
the time horizon, which can be very large. Therefore, we apply the recursive likeli-
hood function integration method of Reich (2018) in the maximum likelihood esti-
mation of the extended model in the next two sections.

3.2.6 � Approximating the EV function for fixed 𝜃

Analogously to the analysis of the one-dimensional model, we first demonstrate 
the approximation of the expected value function Eq.  23 for a fixed parameter 
value 𝜃, whereas the estimation of the model is deferred to the next subsection.

(23)

EV�(i, x, �) = ∫ ∞

−∞
∫ ∞

0
log

�
∑

i�∈{0,1}

exp
�
u�(i

�, (1 − i)x + Δx, (1 − i)(�� + Δ�))

+�EV�(i
�, (1 − i)x + Δx, (1 − i)(�� + Δ�)

��
h�2(Δx)��(Δ�)dΔxdΔ�

Fig. 7   Comparison of the Likelihood Function using Two Different Grids to Compute Choice Probabili-
ties. The left figure shows the likelihood functions for the 1D bus engine replacement model with a linear 
cost function, for the true EV function as well as approximations thereof over two different grids. The 
likelihood function using the true EV function is depicted by the thin black dashed line; the red and the 
blue lines depict the likelihood functions using the two approximations on different grids (red: uniform 
grid, blue: one node inserted, one node deleted to/from uniform grid). The right figure depicts the single 
likelihood function as a solver can evaluate it, given it switches the active grid at RC0
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As mentioned in the previous section, the key difference between the expected 
value function of the model with a serially correlated unobserved utility compo-
nent, in contrast to the one without it, is that EV is now a function of two con-
tinuous variables, x and η (leaving aside the binary choice variable i for readabil-
ity), since both values are observed by the agent and thus influence his decisions. 
However, the application of balanced errors and grid adaption by node movement 
is not a direct extension of our results from the previous sections: As we argue in 
detail in Appendix A.2, going to dimensions higher than one, there is generally 
a mismatch between the number of grid cells on which error comparisons can be 
carried out (serving as a basis for error balancing), and the number of degrees of 
freedom to actually move the nodes; as a consequence, the set of equations from 
balanced errors will be non-square, potentially causing several sorts of numerical 
issues of under- or over-determination.

Consequently, we will limit our attention to an extension of our method which 
performs grid adaption in one dimension only: If one thinks about each node as a 
vector of two components each and thus the whole grid as a matrix of vectors (i.e. 
an (m,n,2)-tensor), � ≡ (xi, �j)

m,n

i=1,j=1
 , we allow only one of the two components to 

be adapted. At the same time, the maximum error within each “cell block” (i.e. all 
cells for which the adapted component’s indices are either i or i + 1) is computed, 
and balanced across cell blocks; more formally, if for example the grid is flexible 
in the x dimension, the maximum error within each cell block is—analogously to 
Eq. 11b—given by:

 where the error maximization now explicitly involves η. Otherwise, the balanced 
error system is identical to the one-dimensional system Eq. (11).

In Fig. 8, we plot the expected value function Eq. 23 and the corresponding two-
dimensional grid for a particular parametrization; in particular, we set 𝜃, we use RC 
= 30, 𝜃1 = 7, β = 0.99, ρ = 0.65, σ = 2 and 𝜃2 = 0.05.19 For the utility function, we 
use the standard linear function Eq. 19. For the mileage state, we assume that the 
maximum mileage is given by xmax = 2000 and for ηt we use an approximation inter-
val of ± 4 standard deviations around its unconditional mean.

For the algorithm, we use the same parametrization, software and hardware as in 
Section 3.1 (except that the “fmincon” algorithm option is “interior point”). Analo-
gously to Section  3.2.2, we consider four different approximations for each of the 
cost functions: a benchmark case using 900 uniformly distributed nodes (30 in each 
dimension); the BE solution with four nodes in the mileage dimension, of which two 
are flexible; a uniform fixed grid with as many nodes as the flexible grid; and a uni-
form grid where the number of nodes is chosen such that the two grids have roughly 
the same accuracy in terms of the L∞ norm. For the η-dimension, we use eight nodes.

zi = max
xi≤x<xi+1,𝜂|RV̂ (x, 𝜂;�, �)| ∀i ∈ I

19  The parameters are chosen to stay as close as possible to the one-dimensional example; however, the 
order of magnitude of the cost parameters needs to be adapted to accommodate for the additional utility 
component and is therefore chosen similar to the results of Reich (2018).
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Table  6 lists the quantitative results; similar to the one-dimensional case (cf. 
Table 2), we see that for the EV problem alone with linear cost functions, the over-
head of the larger system involving error balancing dominates the efficiency gains 
from having less grid nodes. As we will see in the next section, the efficiency gais 
for the estimation of the full problem are nevertheless large and significant. Figure 9 
depicts “cuts” through the EV function for three different values of η in order to 
allow for visual comparison of the various configurations and their approximation 
errors, which qualitatively yield the same result as in the one-dimensional case.

3.2.7 � Monte Carlo study for the parameter estimation problem

In this subsection, we estimate the parameters of the bus engine replacement model of 
Rust (1987) with a serially correlated unobserved utility component. For this, we simulate 
30 datasets each containing 3000 engine replacements. For the simulation of the data, we 
use the same parameters as in the previous subsection, given by RC = 30, 𝜃1 = 7, β = 0.99, 
ρ = 0.65, σ = 2 and 𝜃2 = 0.05, together with the linear cost function Eq. 19. For each data-
set, we start the estimation procedure from three different starting points for 𝜃, given by 
(RC, �1) ∈ {(25, 5), (30, 7), (35, 9)} (one larger, one equal to, and one smaller than the 
true parameters). Also, as in the original model, the parameter of the mileage state transi-
tion, 𝜃2 = 0.05, can be estimated independently, which is why we focus on the estima-
tion of the cost parameters RC and 𝜃1. We use 3-node Gauss–Laguerre quadrature rules 
to compute the one-period-ahead value expectations in Eq. 23 for the mileage state and 
3-node Gauss–Hermite quadrature rules to compute the one-period-ahead value expecta-
tions for the η-state. For the maximum value of the approximation interval of the mileage 
state, we use 1.5 times the maximum value obtained from the simulated data. For the 
η-state we use ± 4 standard deviations around its unconditional mean.

Table  7 lists parameter estimates, errors with respect to the benchmark solution 
(rRMSE) and computation times for the estimation using MPEC. We find that the uni-
form solution with only 4 x-nodes produces a large rRMSE and the parameter esti-
mates significantly differ from the benchmark solution. By allowing two out of the 
four nodes to be flexible, the RMSE can be improved significantly (from 0.5139 to 
0.1448) and the parameter estimates become much closer to the benchmark values. To 
achieve about the same accuracy in terms of the rRMSE, a fixed grid solution with 8 
nodes in the x-dimension is required.20 This in turn significantly increases computa-
tion times. We observe that the BE solution that matches the accuracy of the fixed grid 
solution is 1.74 times faster. In absolute values the computation time can be reduced 
from 7595 to 4365 minutes—a reduction by more than 53 hours. Also, we find that for 
all approximation methods all runs converged, which indicates that the BE method is 
also sufficiently stable.

20  In fact, with 8 nodes, the fixed grid solution has a slightly smaller rRMSE than the BE solution 
(0.1275 compared to 0.1448). However, for a fixed grid solution with only 7 nodes, the rRMSE increases 
to 0.1840 and is hence significantly larger than the error for the BE solution which is why we compare 
the BE grid to the fixed grid with 8 nodes. But the BE solution is also 1.49 times faster than the fixed 
grid solution with 7 nodes as Table 7 shows.
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4 � Empirical application

To demonstrate the applicability of the proposed method, we utilize data from 
one of the world’s leading user-generated content networks in the domain of 
music. Inspired by the pioneering work by Erdem and Keane (1996), in our dem-
onstration we consider the consumers’ inherent trade-off between exploration and 
exploitation in their consumption decisions: When consumers enter a market, 
they sample products to gather information, an activity that eventually becomes 
somewhat routinized. However, since products evolve over time and new ones are 
introduced, this routine is continuously disrupted forcing consumers to resume 
their sampling activity.

Fig. 8   Balanced Error Grid and EV Function for the Rust (1987) Model with a Serially Correlated Unob-
served Utility Component. The figure shows the balanced error grid (left) as well as the corresponding 
EV function (right) for the Rust (1987) model with a serially correlated unobserved utility component, 
obtained from the approximation of the two-dimensional EV function Eq. 23 for a fixed parameter vector 
𝜃 

Table 6   Approximation of the EV Function of the (Rust, 1987) Model with a Serially Correlated Unob-
served Utility Component and Linear Cost Function

 Approximation errors, computation times, and iteration counts of the approximation of the two-dimen-
sional EV function Eq. 23 for a fixed parameter vector 𝜃. Besides the benchmark solution with a uniform 
grid of 30 nodes for each dimension, the tables list the BE solution with four nodes in x-dimension, of 
which two are flexible (“Balanced Errors”); a uniform-grid solution with four nodes (“Uniform Grid 1”); 
and a uniform-grid solution where the number of nodes is chosen to roughly match the L∞ norm of the 
BE solution (“Uniform Grid 2”). For the η-dimension we use eight nodes

Benchmark Uniform Grid 1 Uniform Grid 2 Balanced Errors

L∞ 0.4348 5.6425 3.0581 2.8302
Relative Time − 11% 67% 100%
# Iterations 13 10 11 13
# Nodes (x) 30 4 10 4
# Nodes (η) 30 8 8 8
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We postulate that platform users face a similar trade-off: When signing up, con-
sumers are exposed to a variety of music artists in the form of ”trending playlists” 
from each genre. This allows the consumers to explore new music artists and their 
songs. Following this initial sampling activity, they may listen to the same artists 
again (exploitation) or explore new ones (exploration).

In this section, our objective is to specify a model to understand this trade-off between 
exploration and exploitation. We assume that there is an inherent satisfaction with the 

Fig. 9   EV as a Function of x for the Rust (1987) Model with a Serially Correlated Unobserved Util-
ity Component. EV as a function of mileage state x and a linear cost function Eq. 19 obtained from the 
approximation of the 2 dimensional EV function Eq. 23 for a fixed parameter vector 𝜃. The three panels 
show the cases where ηt is 4 standard deviations below its unconditional mean (left), at its unconditional 
mean (center) and 4 standard deviations above its unconditional mean (right)

Table 7   Results for the MPEC Estimation of the Rust (1987) Model with a Serially Correlated Unob-
served Utility Component

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 90 Monte Carlo runs. The 
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the 
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid 
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 484 
nodes (22 in each dimension), the table lists the BE solution with four nodes in the mileage dimension, 
of which two are flexible (“Balanced Errors”); a uniform-grid solution with four nodes in the mileage 
dimension (“Uniform 1”); and two uniform-grid solution where the number of nodes is chosen to roughly 
match the rRMSE of the BE solution: As with 7 nodes in the mileage dimension, the rRMSE is still 
significantly larger compared to the BE solution while it is slightly smaller for 8 nodes, both cases are 
reported (“Uniform 2a” and “Uniform 2b”). For the η-dimension we use eight nodes. The cumulative 
serialized computation times are shown in minutes

Benchmark Uniform 1 Uniform 2a Uniform 2b Balanced Errors

RC 30.2555 18.3569 26.5310 27.5313 26.4230
(0.6551) (0.6622) (0.8936) (0.6808) (0.5608)

𝜃1 8.5024 5.6935 7.3652 7.7407 8.6745
(0.2359) (0.1069) (0.3131) (0.2334) (0.4797)

rRMSE − 0.5139 0.1840 0.1275 0.1448
Absolute time 101619 2719 6496 7595 4365
Relative time − 62% 149% 174% 100%
# Nodes (x) 22 4 7 8 4
# Nodes (η) 22 8 8 8 8
Runs converged 100% 100% 100% 100% 100%
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consumed content, i.e., the previously listened artists on the platform. The satisfaction with 
this ”stock of artists,” however, is subject to depreciation: If a consumer engages in exploi-
tation by listening to the same artists over and over again, then satisfaction decreases gradu-
ally. To counter, one can engage in exploration, which involves risk: The consumer has to 
search for a new artist but, at the same time, is faced with uncertainty regarding the degree 
of positive spillovers from this new artist on the current stock. Hence, while exploring, the 
potential increase in satisfaction is contrasted with the search costs of finding a new artist.

We estimate this model, which allows us to understand the trade-off between 
exploration and exploitation, with MPEC (Su & Judd, 2012) including grid adaption 
as proposed in the previous section. The estimated model allows us to understand 
whether consumers enjoy the process of searching for new artists itself, or if con-
sumers attach costs to the search process and obtain utility from consuming their 
current stock of artists. This question is inherently linked to the efficiency of the 
platform’s recommender system. The main premise of such a system is to facilitate 
the exploration of new content and therefore decrease search costs (see Ricci et al., 
2011 for an overview). Along these lines, our objective is to uncover the sign as well 
as magnitude of these search costs of a set of active platform users.

In the following we introduce the model specification, followed by the descrip-
tion of the data as well as the model estimation and results.

4.1 � Model

We refer to exploration as listening to a song from a new music artist, i.e., from someone 
who a given consumer has never played a song during his or her tenure on the platform. 
Correspondingly, exploitation is the instance in which a given consumer listens to a song 
from a familiar artist. Once a consumer signs up to the platform, s/he has not played any 
song yet and therefore the continuous satisfaction state x is zero, and can reach at maxi-
mum one once this consumer starts browsing the platform. Hence, zero reflects a totally 
unsatisfied and one a totally satisfied consumer.

The choice between exploration and exploitation yields the following instantaneous 
pay-offs: On the one hand, discovering an appealing new artist is associated with explor-
ing and then finding this artist. We assume that searching for new artists induces costs 
(i.e., time) which—net of an average utility obtained from listening to a song from a new 
artist21—is denoted 𝜃NSC, where NSC stands for net search costs. Note that this utility is 
independent of the satisfaction state with the current stock of artists.

On the other hand, exploitation delivers a utility that depends on the satisfaction 
state with current stock of artists, formally modelled by a function of the satisfaction 
state U(x;𝜃U), which is parametrized by 𝜃U. Note that we impose U(0;𝜃U) = 0 to give 
the sign of utility and the net search costs a natural interpretation. Adding extreme 
value type 1 random utility component to both choices, i.e., exploration and exploi-
tation, we can summarize the instantaneous pay-offs as follows:

21  This setup does not allow for the differentiation between search costs and the utility from listening to a 
song from a new artist due to identification limitations.
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Exploitation results in depreciation of the satisfaction state with the current stock of 
artists, i.e., xt = xt− 1 * 𝜃exploit, whereas exploration follows a continuous probability den-
sity distribution with the following properties (see Appendix A.3 for details): Given xt, all 
higher satisfaction states have positive density—with a shape parametrized by (a vector) 
𝜃explore—, except at the satisfaction maximum 1, which has zero density.

If we assume that consumers behave dynamically optimal—i.e., they maximize 
their expected discounted utility from future content consumption—the specification 
of the model gives rise to a standard Bellman equation, where the decision probabil-
ities are the well-known logit decision probabilities. Denoting the discount factor of 
the dynamic optimization problem by β, the vector of structural parameters consists 
of 𝜃 ≡ (𝜃NSC,𝜃U,β,𝜃explore,𝜃exploit).

4.2 � Data

We utilize data from one of the world’s leading user-generated content networks in the 
domain of music, where music artists can build their career by interacting with their 
fans (see, e.g. Lanz 2019). Hence, this platform consists of two types of users: music 
artists and fans. We focus on the latter type as our goal is to understand the trade-off 
between exploration and exploitation from a consumer perspective.

On the platform, consumers can listen to songs from music artists uploaded on 
the artists’ profiles, where some of these songs also get featured in the trending 
playlists published on the front page. Therefore, for new sign-ups, these playlists 
provide the first opportunity to explore new music artists. Following the initial 
sampling activity, they may listen to further songs by the same artist when brows-
ing the respective profile.

Within the scope of our research collaboration with the platform, we received a 
data sample on sign-ups covering their listening activity on a consumer level over four 
years. This individual-level panel reveals for each consumer what song by which music 
artist s/he played at which moment in time. This allows us to determine whether, over 
time, a consumer engaged in exploration or exploitation, i.e., listened to the same artists 
again or explored a new one.

For our analysis we rely on a set of sufficiently active platform users and therefore consider 
consumers in the top 20% in terms of song plays. The resulting sample consists of a total of 
1,171 consumers who altogether played 3,094,418 songs (mean= 2,642.54; sd= 4,316.98). 
On average, they explored in every fourth song play a new artist (mean=.28; sd=.13). Since 
there is considerable heterogeneity in the exploration activity, for the estimation we form 20 
dataset-buckets, each capturing five percents along the distribution, which we then compare. 
Table 8 shows further summary statistics on our sample, including the distribution of the 
consumers’ song plays and proportion of exploration as well as exploitation. It also contains 
the distribution concerning the longest sequence of exploration as well as exploitation on the 
consumer level.

(24)�(x, i;�) + �(i) =

{
�NSC + �(1) if explore,

U(x;�U) + �(0) if exploit.
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4.3 � Estimation with unobserved states

To estimate this model we apply—utilizing the platform data—maximum likelihood 
estimation using MPEC (Su & Judd, 2012) including grid adaption. In our context in 
which the consumer’s satisfaction with the consumed content is unobserved, the likeli-
hood is not straightforward to compute, because it forms an integral over the unob-
served states. To cope with this condition, we apply recursive likelihood integration 
(RLI; Reich 2018; Lanz et al., 2021). The model and the estimation method are imple-
mented in MATLAB using CasADi (Andersson et al., 2019); the MPEC problem is 
solved using the KNITRO constrained optimization solver.

4.4 � Results

Table 9 exhibits the estimation results of all parameters across all dataset-buckets, where 
each bucket captures five percents along the distribution of exploration activity. First and 
foremost, we find that the net search costs 𝜃NSC are always negative. Recall that nega-
tive search costs mean, in fact, positive utility obtained from listening to a song from a 
new artist. Considering the estimate, it seems that consumers associate a positive attitude 
towards exploring and finding new artists—even in those buckets pooling consumers with 
a low exploration activity.

Furthermore, we find not only the net search costs 𝜃NSC to be quite stable across 
dataset-buckets, but also all other utility parameters. Regarding the discount factor 
β, we find considerable variation in the estimates across all dataset-buckets, and thus 
the degree of dynamic behavior underlying the observed decisions, ranging from 
zero to significant, though rather low values. This is consistent with the finding that 
consumers obtain utility from searching itself, hence they are not necessarily as for-
ward-looking to achieve reasonable utility levels.

Note that since of the formed 20 dataset-buckets 18 converged, we excluded two buck-
ets in the summary statistics in Table 9, i.e., the two covering the bottom ten percents of 
the exploration activity distribution. Also note that we report estimates for linear explora-
tion utility; other functional forms yielded qualitative similar results.

We conclude that we do not find supportive evidence that recommender sys-
tems—beyond the features that have been in place when the data collection took 
place—do create significant additional value in terms of search cost reduction poten-
tial. This is in line with the conjecture that platform users tend to like exploring new 
music artists and therefore self-select into our sample by signing up to the platform.

5 � Conclusion

In this paper we show how to integrate flexible interpolation grids with the estima-
tion of dynamic programming models using both the NFXP of Rust (1987) and the 
MPEC approach of Su and Judd (2012). We derive a set of conditions to enforce 
balanced errors (BE), which we argue to be sufficient for optimality for functions in 
one dimension. In particular we make use of the equioscillation theorem to obtain 

221Adaptive grids for the estimation of dynamic models



1 3

value function approximations that are optimal in the L∞ norm, given their func-
tional form and the total number of grid nodes.

We demonstrate the equivalence of minimizing the L∞ norm directly using non-
linear optimization and imposing BE constraints in several numerical experiments. 
We observe that in all cases considered, computations using the BE constraints are 
significantly faster than direct minimization. This finding suggests that our approach, 
integrated with NFXP or MPEC might be a fast and efficient way of obtaining pre-
cise parameter estimates using optimal grids.

We apply our method to the well-known bus engine replacement model of Rust 
(1987)—modified to feature a continuous mileage state—and compare our results 
to standard uniform-grid approximations with regard to accuracy and efficiency: 
first, using fixed model parameters we find that the BE grid can significantly reduce 
approximation errors compared to a uniform grid with equally many nodes. Fur-
thermore, we show that if the approximated function is of sufficient complexity, 
our solution method also has better efficiency; conversely, a fixed-grid solution that 
achieves the same level of accuracy as the flexible grid requires considerably longer 
computation time.

Second, we compute solutions for the full maximum likelihood estimation prob-
lem for the cost parameters of the bus engine replacement model on simulated data 
using NFXP and MPEC with flexible grids. We find that the parameter estimates of 
the BE grid approach are significantly closer to the true parameter estimates com-
pared to those of the fixed-grid solution with equally many approximation nodes. 
Moreover, a uniform-grid solution where the number of nodes is chosen to match 
the accuracy of the flexible grid requires considerably longer computation time. 
Consequently, we conclude that using the BE grid approach developed in this paper 
to estimate dynamic programming models using NFXP or MPEC with flexible grids 
can lead to significant gains in efficiency and accuracy compared to the commonly 
used fixed-grid approaches.

Lastly, we extend the model of Rust (1987) to feature a serially correlated, unob-
served utility component, thus resulting in a two-dimensional value function approx-
imation problem. We show how the balanced error criterion can be applied in multi-
dimensional setups, and find that the corresponding relative efficiency gains are 
as substantial as in the one-dimensional case; since the absolute timings are much 
higher in the two-dimensional case, the absolute gains from grid adaption are even 
more significant. The development of a generic approach to adjust node positions 
by a single system of equations to augment the constraint optimization approach is 
subject to ongoing research.

We conclude this section with a discussion of the limitations of our approach: We 
have demonstrated the efficiency gains in examples of one-dimensional state spaces, 
as well as two-dimensional state spaces where nodes are only adapted along one 
dimensions. In Appendix A.2, we argue that freeing up nodes in two dimensions 
comes with problems, as the degrees of freedom do no longer match the number of 
BE constraints and thus induce potential problems with over- or under-specification 
of the constraint system. While full adaptability of the nodes would be desirable, 
the development of more general grid topologies with well-specified BE constraints 
under full node flexibility is subject to further research. Meanwhile, we argue (and 
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demonstrate) that partial adaption of grid nodes, i.e., the movement of nodes along 
one dimension only, can still be a valuable improvement in terms of computational 
efficiency—at least in low- to moderate-dimensional state spaces, and in particular 
if some of the dimensions are discrete (and thus have, in some sense, fixed “nodes” 
anyway). To which extent these gains persist in even higher-dimensional setups is 
also still an open question. Finally, the adoption of our approach of course comes at 
increased complexity for the researcher, who has to set up a more complex MPEC 
estimation problem. We try to alleviate this by providing an exemplary implementa-
tion for the main model of this paper, and encourage researchers to try our method 
in particular in situations with little or no prior knowledge about the shape and the 
complexity of the (expected) value function as well as its sensitivity to the model 
parameters.

Appendix: A

A.1 Function Approximation

Suppose an unknown function f ∶ ℝ ⊇ D → ℝ is to be represented on a computer. 
While there are many functions for which a finite-dimensional representation exists, 
this is generally an infinite-dimensional problem; also, even if such a representation 
exists, it might be unknown, and thus one might need to approximate the function 
from a finite number of evaluations. There are several popular approaches to func-
tion approximation, of which we will briefly introduce polynomial approximation, 

Table 8   Summary Statistics on Consumer Sample

Min. 10th Perc. Median Mean 90th Perc. Max. Std. Dev.

Song Plays 418 501 1,224 2,643 5,704 58,564 4,317
Exploration .0101 .1336 .2562 .2750 .4334 .8651 .1253
Exploitation .1349 .5666 .7438 .7250 .8664 .9899 .1253
Longest Explor. Seq. 1 15 30 37 65 222 25
Longest Exploit. Seq. 11 47 116 184 358 6,790 279

Table 9   Summary Statistics on Estimates

Min. 10th Perc. Median Mean 90th Perc. Max. Std. Dev.

𝜃NSC − 4.50 − 4.24 − 2.06 − 2.68 − 1.76 − 1.63 1.03
𝜃U 486.52 508.28 558.74 559.49 618.89 647.15 41.34
β .000001 .000045 .044217 .059716 .155460 .175930 .056147
𝜃explore 952.05 980.82 1207.40 1303.40 1526.40 2965.00 449.45
𝜃exploit .94 .95 .96 .96 .98 .98 .01
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piecewise polynomial approximation, and splines, mainly to define the nomencla-
ture used in the paper.

A.1.1: Polynomial Approximation

In many function approximation schemes, the approximating function f̂ (⋅;�) is 
composed as a weighted sum of basis functions Φn ≡ {�i}

n
i=0

 , with weight vector 
� ≡ (ai)

n
i=1

The task of approximating f is thus twofold: first, a suitable set of basis function 
has to be identified, and second, the parameters of the function approximation—
in our case the weights on the basis functions—have to be identified, such that the 
approximation is “as close as possible” to the approximated function.

In polynomial approximation, the basis functions used to form f̂  are polyno-
mials of degree n or less, and thus the approximation is itself an element of the 
space of all polynomials of degree n or less, f̂ ∈ P

n . Consequently, the set of 
basis functions used to form Eq. 25 is often chosen to form an orthogonal basis 
of Pn ; popular choices are the Chebyshev, the Hermite, or the Laguerre polyno-
mials (see, for example, Judd, 1998 p. 204). Of course, a naive approach is to set 
Φn equal to the set of all monomials of degree n or less; however, this can lead to 
serious numerical problems when computing the weights a.

The second problem is to find parameters such that the quality of approxima-
tion is “good”. The most widely used approaches are based on one of two con-
cepts—least squares minimization or interpolation.

Define the residual

The least squares approach minimizes the weighted squared errors over the 
domain of approximation

where w is a non-negative weighting function, imposing “priorities” on the domain 
of approximation. Depending on the algorithm in use, different variants of comput-
ing the integral in Eq. 27, and different weighting functions w, can be applied.

On the other hand, interpolation ensures that the approximation equals the 
function at a specific set of interpolation nodes � ≡ (xi)

n
i=1

Here, the parameters a are the solution to the linear system of  28, which is 
square if |a| = |x| = n. While the interpolation approach is easy and intuitive, its 

(25)f̂ (x;�) ≡
n∑

i=0

ai𝜑i(x).

(26)Rf̂ (x;�) ≡ f (x) − f̂ (x;�).

(27)min
� ∫ D

Rf̂ (x;�)
2w(x)dx,

(28)f̂ (xi;�) = f (xi),∀xi ∈ �.
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result is not as rigorous as the least squares approximation error minimization; a 
way to combine the two is the Chebyshev regression approach (see Judd, 1998, p. 
223).

A.1.2: Chebyshev Nodes

An important special case of interpolation node choice for polynomial approxima-
tion is the Chebyshev nodes. Suppose a function f on [− 1, 1] is interpolated at n 
nodes � ≡ (xi)

n
i=1

 by f̂ ∈ P
n−1 such that Eq. 28 holds. Then, one can show that the 

residual as defined by Eq. 26 is (see, for example, Judd, 1998, Theorem 6.7.1)

for some ξ(x) ∈ [− 1, 1], and where Ψ(x;�) ≡ ∏n

i=1
(x − xi).

Consequently, a natural approach to (static) node choice is

since it is independent of the function f to be approximated. Note that Ψ(x; x) is 
monic. If we choose the xis to be the roots of the degree n Chebyshev polynomial,

Ψ(x;�̃) can be shown to be the L∞ minimizing polynomial among all monic poly-
nomials of degree n, and therefore constitutes a solution to problem Eq. 30; thus, 
�∗ = �̃ . Moreover (see, for example, Judd, 1998, Theorem 6.7.2)

Consequently, using Chebyshev nodes bounds the interpolation error from above 
by22

This result has great practical implications, as the interpolation nodes can be 
computed independently of f. Furthermore, if f is sufficiently smooth, one can show 
that the approximation f̂  converges as the number of Chebyshev interpolation nodes 
is increased (see, for example, Judd, 1998, Theorem 6.7.3), which is not necessarily 
true for general grid choices (such as uniform grids) in conjunction with polynomial 
approximation.

(29)Rf̂ (x;�) =
f (n)(𝜉(x))

n!
Ψ(x;�)

(30)�∗ = argmin
�
‖Ψ(x;�)‖∞,

(31)x̃i ≡ cos

(
(2i − 1)𝜋

2n

)
,

(32)‖Ψ(x;�̃)‖∞ = 21−n.

(33)‖Rf̂‖∞ ≤ ‖f (n)‖∞
n!

21−n.

22  In order for bound Eq. 33 to be well defined, the function f must be n times continuously differenti-
able. Other bounds for less smooth functions exist; see, for example, Judd (1998), Equation 6.7.5.
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It is important to note that Chebyshev nodes do not necessarily minimize the 
actual interpolation error; rather, they minimize the portion of the error that is inde-
pendent of the function to be approximated. However, we would like to highlight 
two interesting special cases: First, suppose the f is such that its n th derivative 
is constant. Then, the residual Eq.  29 is constant in ξ, and thus x* minimizes the 
total maximum absolute interpolation error. For example, if f ∈ P

n and f̂ ∈ P
n−1 , 

and thus if we approximate a degree n polynomial by a degree n − 1 interpolating 
polynomial, using Chebyshev nodes minimizes the L∞ norm of the residual and 
thus results in a uniform approximation. Second, for any function with f(n) = 0, the 
approximation is exact, independent of the node choice; this includes, for example, 
any f ∈ P

k, k ≤ n − 1.
In the next section, we will present a concrete numerical example.

A.1.3: Numerical Example—Function Approximation with Chebyshev Polynomials

In this example, we approximate three different functions using polynomial approxi-
mation on Chebyshev grids and on optimal flexible grids. In particular, we verify 
our grid adaption by ensuring that the solutions are compatible with properties we 
can derive from theory: first, the BE solution must always be at least as good or 
better than that obtained using a fixed Chebyshev grid; second, there are special 
cases where the Chebyshev grid actually produces a uniform approximation—for 
a detailed discussion of these properties, see Appendix A.1.2. Consequently, the 
results from this example are of a qualitative nature, as they serve as benchmarks for 
our verification analysis.

In this example, we approximate degree 5 and 6 ordinary polynomials and the 
function f (x) = exp(x2) by a degree 4 Chebyshev polynomial. The purpose of this 
example is to show that the method produces results that are in line with results 
from interpolation theory: As stated in Section  2.2.1 and Appendix A.1.2, using 
Chebyshev nodes for polynomial approximation minimizes the tightest known error 
bound that can be optimized over the nodes independently of f. This is a very strong 
result as it holds for any continuous function. However, Chebyshev nodes only put 
an upper bound on the L∞ norm of the residual, and they are not generally optimal. 
Hence, we demonstrate that the BE grid yields approximations that are at least as 
good as, and in many cases better than, the polynomial interpolation using Cheby-
shev nodes. As a special case, we present one example for which we know the Che-
byshev nodes to be optimal; this example serves as an important benchmark, as it 
provides a non-trivial closed form solution for our method to replicate.

Figures  10 and  11 show the results for the degree 5 and degree 6 polynomial 
approximations, respectively, and Fig.  12 shows the results for f (x) = exp(x2) ; 
Table 10 lists the corresponding error measures and computation times. First, note 
that for all three functions, imposing the BE constraints and directly minimizing the 
L∞ norm yield the same solution. However, comparing computation times and the 
number of iterations, we find that the BE solution converges significantly faster. We 
conjecture that this is because by imposing the BE constraints, the solver accom-
modates for the approximation error in each individual cell of the grid, and thus 
has more detailed information about how the approximation error over the whole 
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domain is composed, and how it is affected by a potential node movement. On the 
other hand, this information is mostly lost when minimizing the aggregate value (the 
maximum over all cell-wise errors) as in the direct minimization. This observation 
will be confirmed in the following examples and suggests that imposing the BE con-
straints might be a fast and efficient approach to obtaining optimal grids.

For the degree 5 polynomial (Fig.  11), we find that the flexible-grid solutions 
exactly replicate the Chebyshev nodes (the red optimized nodes coincide with the 
turquoise Chebyshev nodes). In Appendix A.1.2, we argue why Chebyshev nodes 
are optimal in the L∞ norm for any degree n polynomial interpolated by a degree 
n − 1 polynomial. Consequently, this result implies that the optimal grid solu-
tion (obtained either by direct minimization or by imposing the BE constraints) is 
correct.

In the case of the degree 6 polynomial (Fig. 11), we observe that the nodes of 
the optimal grid do not coincide with the Chebyshev nodes in this particular exam-
ple; conversely, the interpolation over the Chebyshev grid does not exhibit the BE 
property. And indeed, the maximum absolute approximation error is significantly 
smaller for the optimal grid compared to the Chebyshev grid. As mentioned above, 
this result is in line with the theory, as Chebyshev nodes only put an upper bound on 
the approximation error.

Similarly, Fig. 12 confirms the findings for the approximation of f (x) = exp(x2).

A.1.4: Piecewise Polynomial Approximation and Splines

If the approximating polynomial has full support over D, features of the approxi-
mated function in one region can have a substantial impact on the approximation 
quality also in other regions. A well-known example is the fact that regions of steep 
gradients can cause polynomial approximations to oscillate more in all parts of the 
approximated function.

A popular way of addressing this issue is piecewise polynomial approximation: 
instead of a polynomial with full support, the domain of approximation is subdivided 
by a grid � ≡ (yi)

m
i=1

 , and lower-degree polynomials with support only over the respec-
tive grid cell (and sometimes its neighbors) are fitted, using interpolation for example. 
Formally, the interpolant is composed as

Note that if the breakpoints of the approximation are used as interpolation 
nodes—thus if x = y—the approximation will automatically be continuous, but not 
smooth in general.

As with polynomial approximation, the user is faced with two problems—namely, 
what degree of basis function polynomial to use, and how to identify the degrees 
of freedom (the coefficients). However, with piecewise methods these problems 
are slightly more interconnected: if only the breakpoints are used as interpolation 
nodes, only |y| = m equations exist to identify the coefficients in Eq. 34. However, 

(34)f̂ (x;�, �) ≡
n∑

i=0

aij𝜑i(x), x ∈ [yj, yj+1).
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this limits the degree of the local polynomials to one if no additional constraints are 
imposed. Thus, the approximation is a combination of piecewise linear segments. 
While this is straightforward to handle and does not add any additional complica-
tions to the identification of a, one usually needs a large number of break and inter-
polation points even for smooth functions.

Two popular approaches exist for applying higher-order polynomials: First, addi-
tional interpolation nodes can be inserted in the interior of the cells. This procedure 
generates additional equations for the approximation problem, which in turn identify 
the coefficients of the higher-order polynomial terms in Eq. 34. For simplicity, we 

Fig. 10   Approximation of a Degree 5 Polynomial Using a Degree 4 Polynomial. Approximation of a 
degree 5 ordinary polynomial using a degree 4 Chebyshev polynomial on the interval [− 1,1]. The blue 
line corresponds to the true function, whereas the green line represents the fitted polynomial approx-
imation. Turquoise diamonds and red circles depict the Chebyshev nodes on the interval [− 1,1], and 
the optimized approximation nodes obtained from imposing the BE conditions or direct minimization, 
respectively. The plots in the right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the top to 
the bottom, the figure shows interpolation using Chebyshev nodes, a flexible grid with direct minimiza-
tion of the L∞ norm, and a flexible grid with BE constraints. The coefficients of the true polynomial 
function f are given by α = [0.2164,− 5.9189,− 7.1890,− 5.9051,0.5161,− 6.9019]
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distribute the additional interpolation nodes uniformly between the breakpoints of 
the piecewise polynomial, without making this explicit in the collocation Eq. CO in 
order not to overload the notation. Thus, the set of breakpoints is a strict subset of 
the set of interpolation nodes.

Second, additional constraints can be imposed on the derivatives of the approxi-
mation, since its functional form (and thus its derivatives) is known. Usually, the 
constraints impose equality of the derivatives at the breakpoints, in order to ensure 
smooth approximating functions. This form of approximation is called splines. For-
mally, the parameters of a polynomial spline of order k are obtained by solving the 
following linear system of equations:

Fig. 11   Approximation of a Degree 6 Polynomial Using a Degree 4 Polynomial. Approximation of a 
degree 6 ordinary polynomial using a degree 4 Chebyshev polynomial on the interval [− 1,1]. The blue 
line corresponds to the true function, whereas the green line represents the fitted polynomial approxima-
tion. Turquoise diamonds and red circles depict the Chebyshev nodes on the interval [− 1,1], and the 
optimized approximation nodes obtained from imposing the equioscillation conditions or direct minimi-
zation, respectively. The plots in the right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the 
top to the bottom, the figure shows interpolation using Chebyshev nodes, a flexible grid with direct mini-
mization of the L∞ norm, and a flexible grid with BE constraints. The coefficients of the true polynomial 
function f are given by α = [6.2356,9.2929,− 9.2861,3.3064,− 0.9446,− 5.5323,1.8073]
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where f̂j(x;�, �) =
∑n

i=0
aij𝜑i(x) is the j th segment of the spline, and Eq.  35c is a 

generic boundary condition necessary for identifying all degrees of freedom. Note 
that

(35a)f (xi) = f̂ (xi;�, �),∀xi ∈ � ≡ �

(35b)f̂
(h)

i
(xi+1;�, �) = f̂

(h)

i+1
(xi+1;�, �), h = 1,… , k − 2, i = 1,… , n − 2

(35c)f̂ (⋅) = 0|𝜕D,

Fig. 12   Approximation of f (x) = exp(x2) Using a Degree 4 Polynomial. Approximation of 
f (x) = exp(x2) using a degree 4 Chebyshev polynomial on the interval [0,2]. The blue line corresponds 
to the true function, whereas the green line represents the fitted polynomial approximation. Turquoise 
diamonds and red circles depict the Chebyshev nodes on the interval [− 1,1], and the optimized approxi-
mation nodes obtained from imposing the equioscillation conditions or direct minimization, respectively. 
The plots in the right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the top to the bottom, 
the figure shows interpolation using Chebyshev nodes, a flexible grid with direct minimization of the L∞ 
norm, and a flexible grid with BE constraints
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and thus that a spline of order k is k − 2 times continuously differentiable. A differ-
ent approach to spline approximations, which relates to the idea of composing an 
approximation from an orthogonal basis, is that of B-splines, which form a basis of 
the space of all order k splines; for details, see de Boor (2001).

A.1.5: Numerical Example—Higher Order Piecewise Polynomial Approximation

In this example, we show that the previously obtained results also hold for higher 
order piecewise polynomial approximations. For this purpose, we approximate the 
same function as in Example 2, but by a piecewise quadratic polynomial approxima-
tion with four nodes, two of which are flexible. Note, that for simplicity, we distrib-
ute the additional interpolation nodes necessary to identify all degrees of freedom 
uniformly between the breakpoints (see Appendix A.1.4 for details).

Figure  13 plots the corresponding results; the corresponding approximation 
errors and computation times are stated in Table 11. We find that in this example, 
the uniform-grid piecewise polynomial approximation shows large approxima-
tion errors between the first two nodes. By allocating the nodes more efficiently, 
the approximation errors can be decreased significantly. In particular, the maximum 
absolute error decreases from 5.3260 for the standard interpolation to 1.2731 for the 
flexible grid. Again, we find that imposing the BE constraints yields the same solu-
tion as direct minimization, but computation times and the number of iterations are 
significantly lower for the BE approach.

(36)f̂ (⋅;�, �) ∈ C
k−2

Table 10   Comparison of 
Approximation Errors—
Polynomial Approximation

 Approximation errors and computation times for the approximation 
of a degree 5 polynomial, a degree 6 polynomial, and exp(x2) by a 
degree 4 polynomial, using interpolation over a Chebyshev grid, a 
flexible grid obtained from direct minimization of the L∞ norm 
(“Direct Min.”), and a flexible grid obtained from the BE constraints 
(“Balanced Errors”); the examples correspond to Figs. 10–12

Chebyshev Grid Direct Min. Balanced Errors

Approximating a degree 5 polynomial with a degree 4 polynomial
L∞ 0.4314 0.4314 0.4314
Time in Sec. − 3.77 0.35
# Iterations − 136 10
Approximating a degree 6 polynomial with a degree 4 polynomial
L∞ 0.4587 0.3548 0.3548
Time in Sec. − 2.31 0.38
# Iterations − 83 12
Approximating exp(x2) with a degree 4 polynomial
L∞ 2.2058 1.2303 1.2303
Time in Sec. − 33.37 0.40
# Iterations − 1143 13
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A.2: Grid Creation and Balanced Errors in Two Dimensions

While grid creation is trivial in one dimension — a set of grid nodes 
a = x0 < x1 < … < xn+1 = b suffices to uniquely define a grid over a domain [a,b] 
— grid creation the two dimensions is generally non-unique, even if the same set of 
nodes � = (xi)

(n+1)2

i=0
, xi ∈ ℝ

2 is used. One reason is that a grid cell in one dimension, 
an interval, can be thought of as a 1-hypercube, which would generalize to a quad-
rilateral grid in two dimensions, or it can be though of as a 1-simplex, which would 
generalize to a triangulation in two dimensions. Figure 14 depicts different grid vari-
ants in two dimensions; in particular, Fig. 14a and b demonstrate how an identical 
set of grid nodes can be interpreted differently, depending on the imposed grid cell 
geometry.

Closely related, and highly relevant to the implementation of balanced errors 
over a two-dimensional grid, is the relation between number of degrees of free-
dom (the coordinates of the variable grid nodes in the balanced error system) 
and the number of BE conditions: While in the one-dimensional case, the num-
ber of variable grid nodes matches the number of error comparisons across inter-
vals exactly (n flexible nodes yield n + 1 intervals and thus n error comparisons), 
these numbers are generally not matching in higher dimensions. In fact, we were 
not able to construct any grid with equally many degrees of freedom as balanced 
error constraints;23 Table 12 summarizes this mismatch for the grid depicted in 
Fig.  14. Consequently, imposing balanced errors leads either to an over- or an 
underspecified system, depending on the grid topology. As the former will gener-
ally have no solution, we opt for underspecification, either by choosing a topol-
ogy with less BE constraints than degrees of freedom, or by reducing the number 
of BE constraints.

Moreover, not all the grid topologies and the corresponding interpolation formats 
allow for continuous interpolant on grids with moving nodes. For example, moving 
grid nodes of a quadrilateral grid as in Fig. 14a, together with bilinear interpolation 
or tensor product splines, will generally lead to a discontinuous interpolant. There-
fore, we restrict ourselves to piecewise linear interpolation over each simplex — and 
therefore to simplicial grids —, which is guaranteed to be continuous under mild 
regularity conditions. Since all simplicial grids in Fig. 14 lead to overspecified BE 
systems, we use a grid as in Fig. 14b, but impose BE constraints on the pairwise 
maximum of each cell neighbors forming a quadrilateral only, yielding an under-
specified BE system, where — technically speaking — half of the BE conditions are 
turned into implicitly enforced inequality constraints.

We conclude this short discussion on grid creation and balanced errors in two 
dimensions by adding two remarks: First, due to the underspecification of the BE sys-
tem, we cannot expect the solution to be unique. Moreover, not only can we expect 
several isolated solutions for optimal grids with potentially different (but always bal-
anced) errors, but there might even be continua of solutions; obviously, the appearance 

23  We always restrict the grid outermost grid nodes to lie on the boundary, and, moreover, do not move 
the corner nodes of the domain at all.
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of the later would annihilate the BE criterion as a sufficient optimality condition. Sec-
ond, and closely related, the numerical solution of the non-square BE system turns out 
to be much more difficult; the reasons for this are manifold, such as non-square nature 
of the BE system and the potential existence of continua of solutions (yielding rank 
deficient Jacobian matrices), or the reduction of the over-specified BE system which 
implicitly imposes additional inequality constraints.

Fig. 13   Approximation of a Degree 9 Polynomial Using Piecewise Quadric Approximation. Approxi-
mation of a degree 9 ordinary polynomial on the interval [− 1,1] by a piecewise quadratic polynomial 
approximation with 4 nodes, out of which 2 nodes are potentially flexible. The blue line corresponds 
to the true function, whereas the green line represents the fitted piecewise polynomial approximation. 
Turquoise diamonds and red circles depict the fixed uniform nodes, and the optimized approximation 
nodes obtained from imposing the BE conditions or direct minimization, respectively. The plots in the 
right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the top to the bottom, the figure shows 
piecewise polynomial approximation using uniformly distributed nodes, flexible nodes with direct mini-
mization of the L∞ norm, and flexible nodes with BE constraints. The coefficients of the true polynomial 
function f are given by α = [​4.1​239​,2.​795​6,5​.0862,− 1.2933,7.8788,− 7.8582,9.9192,− 2.8339,3.4032,− 
9.9500]
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Table 11   Comparison of 
Approximation Errors—
Piecewise Quadratic 
Approximation

 Approximation errors and computation times of the approxima-
tion of a degree 9 polynomial by a piecewise quadratic polynomial 
approximation, over a fixed uniform grid, a flexible grid obtained 
from direct minimization of the L∞ norm (“Direct Min.”), and a flex-
ible grid obtained from the BE constraints (“Balanced Errors”); the 
example corresponds to Fig. 13

Uniform Grid Direct Min. Balanced Errors

L∞ 5.3260 1.2731 1.2731
Time in Sec. − 1.08 0.66
# Iterations − 151 14

Fig. 14   Different Types of Grids in Two Dimensions. The figure shows different types of two-dimen-
sional grids: Panel (a) shows a regular quadrilateral grid with 16 cells; Panel (b) shows a regular sim-
plex grid with 32 cells; Panel (c) shows another regular simplex grid with 64 cells; Panel (d) shows an 
unstructured simplex grid with 32 cells
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An Easy‑to‑Integrate Distribution With Compact Support and Special Properties

In the following we define a distribution density over the interval [0, 1]—-or any 
interval [a,b]—-which has the following features:

•	 The right end point of the support interval can never be reached;
•	 The expecrtation of a function of the corresponding random variable can be eas-

ily integrated numerically.

For example, this allows us to model a “shooting” process where one stands at a and 
shoots towars b without ever reaching it.

Formally, let us consider a random variable X with the parametrized probability 
density function q̃(⋅;𝜆) that has compact support, where the expected value of the 
continuous function f of the random variable is defined as

where the second equation is a simple, linear change of variables, x = s(b − a) + a, 
to normalize the domain.

Applying a change of variable � ∶ [0,∞] → [0, 1] , we can rewrite Eq. 37 as

(37)E(f (x)) = ∫ b

a
f (x)q̃(x;𝜆)dx

(38)= (b − a)∫ 1

0
f (s(b − a) + a)q̃(s(b − a) + a;𝜆)ds,

Table 12   Properties of Different Types of Grids in Two Dimensions

 The table list the number of grid nodes per dimension (if applicable), the total number of grid nodes, the 
total number of grid cells, the number of balanced error constraints for pairwise comparison, the number 
of degrees of freedom (coordinates of variable grid nodes) and the mismatch between the number of BE 
constraints and the number of degrees of freedom, for each grid in Fig. 14

Quadr. Grid Fig. (14a) Simpl. Grid 1 Fig. (14b)
#nodes per dimension n + 2 = 5 n + 2 = 5
#nodes total (n + 2)2 = 25 (n + 2)2 = 25 
#cells (n + 1)2 = 16 2(n + 1)2 = 32 
#BE constraints (n + 1)2 − 1 = 15 2(n + 1)2 − 1 = 31
#degrees of freedom 2n2 + 4n = 30 2n2 + 4n = 30
mismatch (BE − DoG) − 15 1

Simpl. Grid 2 Fig. (14c) Unstr. Grid Fig. (14d)
#nodes per dimension — —
#nodes total 31 25
#cells 64 32
#BE constraints 63 31
#degrees of freedom 62 30
mismatch (BE − DoG) 1 1
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We assume T ∼ exp(�) and x = �(t) =
t

t+1
 . Denoting by q(⋅; λ) the density of the 

exponential distribution with parameter λ, q̃(⋅;𝜆) is implicitly defined by the 
equation

as

This set-up allows us to apply Gauss–Laguerre quadrature to approximate the 
expectation

where N is the degree of the quadrature rule, and (ti,ωi) are the respective nodes and 
weights, which are readily tabulated or can be precomputed.

(39)E(f (x)) = (b − a)∫
𝜙−1(1)=∞

𝜙−1(0)=0

f (𝜙(t)(b − a) + a)q̃(𝜙(t)(b − a) + a;𝜆)𝜙�(t)dt.

(40)(b − a)q̃(𝜙(t)(b − a) + a;𝜆)𝜙�(t) = q(t;𝜆)

(41)q̃(x;𝜆) =
q
(
𝜙−1

(
x−a

b−a

)
;𝜆
)

(b − a)𝜙�

(
𝜙−1

(
x−a

b−a

)) .

(42)E(f (x)) = ∫ ∞

0
f (�(t)(b − a) + a)q(t;�)dt

(43)≈
N∑
i=1

f (�(ti∕�)(b − a) + a)�i,

Fig. 15   Distributions Given λ 
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For example, using 21 nodes (λ = 1), the expectation of X can be computed up 
to 6 digits of precision. Figure  15 depicts the distribution for various levels of λ, 
including λ = 1 (violet curve).
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