
Lanz, Andreas; Reich, Gregor; Wilms, Ole

Article — Published Version

Adaptive grids for the estimation of dynamic models

Quantitative Marketing and Economics

Provided in Cooperation with:
Springer Nature

Suggested Citation: Lanz, Andreas; Reich, Gregor; Wilms, Ole (2022) : Adaptive grids for the
estimation of dynamic models, Quantitative Marketing and Economics, ISSN 1573-711X, Springer
US, New York, NY, Vol. 20, Iss. 2, pp. 179-238,
https://doi.org/10.1007/s11129-022-09252-7

This Version is available at:
https://hdl.handle.net/10419/313165

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s11129-022-09252-7%0A
https://hdl.handle.net/10419/313165
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

https://doi.org/10.1007/s11129-022-09252-7

1 3

Adaptive grids for the estimation of dynamic models

Andreas Lanz1 · Gregor Reich2 · Ole Wilms3,4

Received: 24 June 2021 / Accepted: 4 January 2022 /
© The Author(s) 2022

Abstract
This paper develops a method to flexibly adapt interpolation grids of value
function approximations in the estimation of dynamic models using either
NFXP (Rust, Econometrica: Journal of the Econometric Society, 55, 999–
1033, 1987) or MPEC (Su & Judd, Econometrica: Journal of the Econometric
Society, 80, 2213–2230, 2012). Since MPEC requires the grid structure for the
value function approximation to be hard-coded into the constraints, one can-
not apply iterative node insertion for grid refinement; for NFXP, grid adaption
by (iteratively) inserting new grid nodes will generally lead to discontinuous
likelihood functions. Therefore, we show how to continuously adapt the grid by
moving the nodes, a technique referred to as r-adaption. We demonstrate how
to obtain optimal grids based on the balanced error principle, and implement
this approach by including additional constraints to the likelihood maximiza-
tion problem. The method is applied to two models: (i) the bus engine replace-
ment model (Rust, 1987), modified to feature a continuous mileage state, and
(ii) to a dynamic model of content consumption using original data from one
of the world’s leading user-generated content networks in the domain of music.

Keywords  Numerical dynamic programming · Mathematical programming with
equilibrium constraints · r-adaptive grid refinement · Equi-oscillation

JEL Classification  C25 · C63

We are heavily indebted to Karl Schmedders and Ken Judd for their support for this project. We
also thank Philipp Renner, Simon Scheidegger, Che-Lin Su, and participants at the “2014 Institute
on Computational Economics” at the Hoover Institution, Stanford, and the “2015 Econometric
Society World Congress” at McGill University, Montreal, for helpful comments. A special thanks
goes to Joris Gillis and Philipp Müller their for support regarding CasADi. Gregor Reich gratefully
acknowledges financial support from the Forschungskredit of the University of Zurich under
grant no. K-33142-02. Ole Wilms gratefully acknowledges the financial support of the Zürcher
Unversitätsverein.

 *	 Ole Wilms
	 ole.wilms@uni-hamburg.de

Extended author information available on the last page of the article

Published online: 30 June 2022

Quantitative Marketing and Economics (2022) 20:179–238

http://crossmark.crossref.org/dialog/?doi=10.1007/s11129-022-09252-7&domain=pdf

1 3

1  Introduction

This paper develops a method to flexibly adapt interpolation grids of value func-
tion approximation in dynamic programming models, such as dynamic discrete
choice models, when the estimation is either carried out using the nested fixed
point algorithm of Rust (1987), or using constrained optimization—namely, the
MPEC approach of Su and Judd (2012). Introducing grid adaption by (iterative)
node insertion into NFXP will generally produce discontinuous likelihood func-
tions and thus make their maximization potentially very difficult. On the other
hand, the MPEC approach needs the structure of the value function approxima-
tion to be hard-coded into the constraints of the likelihood optimization problem;
as a consequence, one cannot use iteratively adaptive procedures for grid refine-
ment in every iteration of the optimization. In this paper, we show how to adapt
the interpolation grid by moving the nodes, a technique referred to as r-adaptive
refinement. We demonstrate how to obtain optimal grids (given a fixed number
of nodes), and show how to integrate this approach into the likelihood maximiza-
tion problem using the equioscillation principle. The method is applied to the bus
engine replacement model of Rust (1987), modified to feature a continuous mile-
age state as well as a serially correlated, unobserved utility component.

Many models in modern applications of structural estimation assume the
agents to behave in a dynamically optimal manner. A popular example is the lit-
erature on dynamic discrete choice models (DDCM), pioneered by the seminal
work of Rust (1987) and Rust (1988); for recent surveys on the estimation of
DDCMs, see Aguirregabiria and Mira (2010), Keane et al. (2011), and Arcidiac-
ono and Ellickson (2011). In these applications, data on the decisions of an agent
in a particular dynamic problem are observed, along with other state variables
that enter the agent’s optimization. Using this data, the structural parameters of
the model—such as the parameters of the utility functions or of the law of motion
of the state variables—are estimated, for example by the method of maximum
likelihood or Bayesian approaches.

The estimation of dynamic programming models is challenging both methodo-
logically and computationally, as—in principle—the dynamic optimization prob-
lem and the likelihood maximization problem have to be solved simultaneously.
While there exist methods that avoid solving the model by estimating the condi-
tional choice probabilities directly from the data and go back to the work of Hotz
and Miller (1993), and methods that avoid explicitly maximizing the likelihood
by using Bayesian approaches with Markov chain Monte Carlo simulation (Imai
et al., 2009; Norets, 2009), many of the widely used workhorse algorithms still
rely on solving both problems simultaneously, thus showing excellent numerical
and statistical efficiency.

In particular, the nested fixed point (NFXP) algorithm of Rust (1987) and the
constrained optimization approach (mathematical programming with equilibrium
constraints (MPEC)) of Su and Judd (2012) are among the most used algorithms.
In NFXP, the dynamic problem is solved iteratively within an “inner loop”, and
its solution is used to obtain the choice probability to compute the likelihood

180 A. Lanz et al.

1 3

function for a particular parameter value, which is itself maximized in an “outer
loop”. The methodological separation of the two steps makes this algorithm a
robust and efficient choice for many applications, as the very special structure
of the two problems can be exploited; in particular, this includes the contraction
mapping property of the underlying dynamic problem, and structure of likelihood
maximization problems, where the Hessian can be computed as the outer product
of the gradients. On the other hand, the MPEC approach tries to avoid computing
the full solution of the dynamic problem throughout the likelihood optimization,
except at the optimal parameter vector itself. This can potentially be achieved by
inserting the optimality conditions of the underlying dynamic problem as nonlin-
ear constraints into the likelihood maximization, and solving the resulting prob-
lem using constrained optimization techniques. The fact that the solution of the
model is not computed at every iteration of the optimization is conceptually very
attractive as such computation often accounts for most of the computation time,
but solutions other than at the optimal parameter vector rarely have any relevance.
Therefore, MPEC has shown excellent numerical efficiency in many applications.

When solving dynamic programming models with continuous state spaces, most
methods for approximating the value function require the researcher to specify a grid
over the domain of approximation. Depending on the approximation scheme in use,
the nodes of this grid serve as interpolation or collocation points, and potentially
as breakpoints if the approximation is assembled from piecewise basis functions.
Popular grids include the uniform grid and the Chebyshev grid. While these choices
might be good “ex ante” without much knowledge about the approximated function,
they are generally suboptimal once the function—or an approximation thereof—is
known. Consequently, a popular approach to grid creation is iterative refinement:
given the grid from the last iteration (or starting from a uniform grid), the unknown
function is approximated, and—based on some approximation error criterion—a
new grid is created by inserting additional nodes in regions of high approximation
error; this procedure is repeated until the maximum approximation error is below
some threshold. Iterative grid refinement methods have successfully been applied
to dynamic programming problems with continuous state variables in economics;
see, for example, Grüne and Semmler (2004), Brumm and Scheidegger (2017), and
Reich (2018).

As we will demonstrate, the integration of iterative grid adaption into both NFXP
and MPEC is a delicate task. First, while iterative refinement can formally be inte-
grated into NFXP, as it is agnostic about the function approximation algorithm used
in the model solution step, it will create a discontinuous likelihood function;1 since
the likelihood function optimization process is generally a non-trivial task anyway,
introducing such a difficulty on top of this non-triviality is definitely undesirable.

1  Since most node insertion algorithms add nodes once a certain approximation error threshold is
exceeded, even when traversing the parameter space in search for the optimal likelihood value using very
small steps, the approximation error threshold for the value function will be reached “suddenly”, poten-
tially causing a shift in the value function—and thus the likelihood function value as well—after insert-
ing a new node; consequently, since the size of this shift is not related to the size of the step size taken in
parameter space, it will result in an artificial discontinuity in the likelihood function.

181Adaptive grids for the estimation of dynamic models

1 3

Second, the integration of iterative refinement into MPEC is not obvious for two
reasons: One the one hand, inserting an interpolation or collocation node into the
grid corresponds to inserting a constraint into the likelihood optimization problem
while the optimizer runs, which generally leads to instability. On the other hand,
since MPEC gives no guarantee that the dynamic problem is solved at any point
of the optimization except for the solution, no valid value function approximation
exists on which a criterion governing the choice of where to actually insert the nodes
can be based. Therefore, the integration of MPEC with flexible grids calls for a dif-
ferent methodology.

An alternative to grid refinement by node insertion is adaption by node move-
ment: instead of inserting a new node in a region of high approximation error, an
existing node is moved there from a region of low approximation error, keeping the
total number of nodes in the grid fixed. Obviously, finding a good (or optimal) grid
is more difficult, as moving a node does not only affect the approximation in the
region where the node is moved to, but also does so where that node has been moved
from. While not being as popular as the iterative schemes, grid adaption by node
movement has attracted attention for example in the literature on free-knot splines
for curve fitting (see, for example, Schumaker, 2007 and the literature cited therein),
and in the solution of partial differential equations with moving meshes (see, for
example, Huang & Russell, 2011 and the literature cited therein).

A particular difference between node insertion and node movement is the adap-
tion criterion. In the case of insertion, this criterion is usually binary, as nodes are
inserted at pre-specified locations if the approximation error locally exceeds some
threshold, otherwise not. In contrast, node movement is a continuous operation,
as—for each node—the position on the refined grid (or the direction of movement)
must be specified; this information is either obtained from conditions on the node
positions based on the approximated function (for example, equidistributed over the
function’s values or over its arc length), or from the solution of a minimization prob-
lem over the approximation error; see Baines (1998) for a comparison of these two
criteria.

The method we develop in this paper is based on approximation error minimiza-
tion. However, directly integrating this optimization problem into an estimation pro-
cedure results in a bi-level optimization problem, where the likelihood maximization
is “wrapped around” the approximation error minimization, which makes the result-
ing combined problem difficult to solve. A common approach to bi-level optimiza-
tion is to replace the lower-level problem by its first-order optimality constraints—
in the case of inequality constraint lower-level problems the Karush–Kuhn–Tucker
(KKT) conditions—and solve the resulting problem using constrained optimization
techniques. However, solving bi-level problems using first-order necessary condi-
tions is known to cause numerical issues, such as difficult to handle complementa-
rity constraints that violate the constraint qualifications of the first-order conditions
of the combined problem; for a discussion of this issue, see, for example, Colson
et al. (2007) and Fletcher et al. (2006).

Nevertheless, our method also replaces the lower-level approximation mini-
mization problem by a set of optimality constraints using (in)equalities only, and
thus allows the problem to be solved by standard constrained optimization solvers.

182 A. Lanz et al.

1 3

However, instead of relying on generic conditions such as KKT, the structure of our
problem makes it possible to use a classical result from numerical analysis to derive
an alternative set of conditions, which is actually even sufficient for optimality. The
“equioscillation” theorem for polynomial approximation and its generalizations to
other functional forms state that if an approximation of a continuous function has
“balanced and alternating errors”, it is uniform (best approximation in the L∞ norm).
Geometrically speaking, best polynomial approximations have errors that (i) oscil-
late—and therefore have “alternating” signs—, and (ii) their amplitude is equal to
the maximum absolute error, i.e. they “balance the error” over the whole domain.
Conversely, it has been shown that “balanced errors” (BE) alone form a sufficient
condition for a (locally) optimal node placement under quite general conditions (see,
e.g., Lawson, 1964): If the approximation errors between two neighboring nodes are
pairwise equal, then the overall approximation error, i.e. the maximum of the errors
over the individual intervals, is (locally) minimal.

Using the balanced error principle, we show that it is straightforward to derive a
set of (in)equalities that form optimality conditions for the approximation error min-
imization, which we finally integrate into the estimation procedures. In the case of
NFXP, this resolves the continuity issue of iterative grid adaption if (i) the optimal
grid continuously depends on the value function and if (ii) the value function itself
continuously depends on the model parameters.2 In the MPEC case, we demonstrate
how to simultaneously solve the grid optimization and the likelihood maximization
problems using standard constrained optimization. In summary, we derive a proce-
dure for integrating grid adaption by node movement into the estimation of dynamic
programming models, resulting in value function approximations that are optimal
in the L∞ norm, given their functional form and the total number of grid nodes. To
the best of our knowledge, we are the first to solve dynamic programming models
and the grid adaption problem simultaneously by using node movement based on
error balancing; this allows us to incorporate our method into MPEC-type estima-
tion algorithms, where—additionally—the estimation problem is solved at the same
time.

In the second part of this paper, we present a series of examples and applica-
tions in order to verify our method, and demonstrate its mechanics and performance
advantages.

In Section 3.1, we apply approximation with BE conditions to a standard function
interpolation example, leaving aside the estimation of any model parameters. We do
this in order to further illustrate the principle of equioscillation and its application
to grid adaption, and—moreover—to verify our method by situating it in relation to
other approaches and theoretical results: First, the function approximation example
is computed both using BE conditions and by direct minimization of the approxima-
tion error measured by the L∞ norm; in this way, we also experimentally confirm
the equivalence of the two problems. Interestingly, while we find the solutions to be

2  If the value function is approximated by a projection method—as it is always the case in this paper—a
necessary condition for it to be continuous in the model parameters is that the Jacobian of the system of
projection equations has full rank; see Borkovsky et al. (2010).

183Adaptive grids for the estimation of dynamic models

1 3

identical as expected, the BE variant appears to be numerically much more efficient
than direct minimization.3

In our experiments (some of which are deferred to the appendix), we approximate
different polynomials and the exponential function, using polynomial interpolation
on Chebyshev nodes, and piecewise linear and piecewise quadratic interpolation on
uniform grids, and compare their accuracy to the respective approximations over
flexible grids obtained from BE conditions. We find that in all cases the flexible
grid allows for more accurate approximation given the same number of interpolation
nodes (except for the closed-form benchmark, which has identical accuracy).

In Section 3.2 we apply our method to two versions of the bus engine replace-
ment model of Rust (1987), both of which we modify to feature a continuous mile-
age state.4 While the first version is identical to the original except for the continu-
ous nature of the state variable, the second version features a serially correlated,
unobserved utility component, thus resulting in a two-dimensional value function
approximation problem.

Apart from the fact that we have to specify a continuous mileage transition pro-
cess, the computation deviates from the original model in two ways: first, the expec-
tation over the one-period ahead values in the Bellman equation is continuous and
thus has to be approximated using numerical quadrature. second, the expected value
function becomes two-dimensional in the serial correlation case, which raises the
need to adapt the balanced error criterion. Similar to the function approximation
examples, we first approximate the expected value function for a fixed parameter
vector; we do this in order to verify the method by comparing it to a benchmark
solution, which is computed using a very fine grid, as well as to demonstrate the
potential efficiency gains from node movement in a particular application. We find
that even in this simplified problem our method uses significantly fewer nodes to
attain a pre-specified level of accuracy, compared to a uniform grid.

In Section 3.2.3 we estimate the cost parameters of the model using both
nested fixed point (NFXP) and constrained optimization (MPEC) with grid
adaption by node movement. In order to obtain a measure of the variation of the
estimates and the corresponding errors, we carry out a Monte Carlo study with
100 artificial datasets. In the case of the original model, we find that the com-
parative advantage compared to a uniform grid in terms of accuracy and com-
putational efficiency is substantial, even in this simple one-dimensional applica-
tion: the mean squared error of a uniform grid is an order of magnitude higher
compared to a grid of equally many flexible nodes; conversely, estimating the
model using a uniform grid that is fine enough to achieve the same accuracy as

3  In the appendix, we relate our approach to a theoretical result on static node choice—the Chebyshev
nodes. As we argue in detail in Appendix A.1.2, a grid composed from Chebyshev nodes cannot be better
than a grid obtained from equioscillation. However, we present a (non-trivial) numerical example that is
constructed such that the two solutions must coincide; consequently, we can provide a closed-form solu-
tion benchmark against which to verify our method and its implementation.
4  Similarly, Kristensen and Schjerning (2014) estimate the bus engine replacement model of Rust (1987)
with continuous mileage; their aim is to quantify approximation errors from various sources such as the
discretization of naturally continuous state variables.

184 A. Lanz et al.

1 3

its flexible counterpart results in roughly 1.5 times longer computation times.
The case of the model with a serially correlated, unobserved utility component
requires us (i) to approximate the expected value as a function of a two-dimen-
sional state variable, and (ii) to integrate out the random shock when computing
the likelihood function; we do the latter by applying the recursive likelihood
integration method (RLI; Reich, 2018; Lanz, 2021). Our findings regarding the
efficiency of the balanced error approach compared to fixed and uniform grids in
the two-dimensional case are comparable, but given the longer absolute comput-
ing times, the absolute gains are even more significant.

Finally, in Section 4 we demonstrate the applicability of the proposed method
by utilizing data from one of the world’s leading user-generated content net-
works in the domain of music. More specifically, we apply the proposed method
to a dynamic model of content consumption and consider the consumers’ inher-
ent trade-off between exploration and exploitation in their decisions: To counter
the gradual decrease of satisfaction while listening to the same artists over and
over again, the consumer has to search for a new artist but, at the same time,
is faced with uncertainty regarding the degree of positive spillovers from this
new artist on the current stock. Hence, while exploring, the potential increase
in satisfaction is contrasted with the search costs of finding a new artist. The
estimated model—covering 1,171 consumers who altogether played 3,094,418
songs—allows us to understand whether consumers enjoy the process of search-
ing for new artists itself, or if consumers attach costs to the search process
and obtain utility from consuming their current stock of artists. This question
is inherently linked to the efficiency of the platform’s recommender system for
which we find supportive evidence that additional features do not create signifi-
cant additional value in terms of search cost reduction potential. In our analy-
sis we do not find supportive evidence that recommender systems—beyond the
features that have been in place when the data collection took place—do create
significant additional value in terms of search cost reduction potential.

The remainder of this paper is structured as follows: Section 2 will motivate
the problem of estimating dynamic programming models and present solution
algorithms, motivate the use of grid adaption and introduce different approaches,
derive sufficient conditions for uniform approximation, and finally integrate the
conditions with the NFXP and MPEC estimation procedures. In order to both
verify and illustrate our method, Section 3 first applies the uniform approxima-
tion conditions to standard interpolation problems and to the solution of the
model of Rust (1987) for fixed parameter vectors, and then applies the method to
the cost parameter estimation problem. Section 4 demonstrates the applicability
of the proposed method and Section 5 concludes and states the agenda for future
research. Appendix A.1 gives a very short introduction to function approxima-
tion using polynomial approximation, piecewise polynomial approximation, and
splines, mainly to ensure precise nomenclature throughout the paper, and states
an interesting benchmark case for the grid adaption problem using Chebyshev
polynomials; moreover, different grid structures for the two-dimensional case
are discussed.

185Adaptive grids for the estimation of dynamic models

1 3

2 � Parameter estimation with flexible grids

This part of the paper develops a method for the use of flexible grids within the
maximum likelihood estimation of dynamic programming models. To keep the
discussion of our method generic, we will not specify a concrete type of model or
application in this part of the paper; in the second part, we will demonstrate the
method by applying it to the bus engine replacement model of Rust (1987), which
is a well-known model from the dynamic discrete choice literature.

2.1 � Estimation of dynamic programming models

In this subsection, we will state the formal problem of estimating dynamic pro-
gramming models by maximum likelihood, and will present methods for solv-
ing the dynamic problem and the likelihood maximization, and the motivation for
using adaptive grid methods in this context.

2.1.1 � Problem statement

We begin with the formal statement of the problem we attempt to solve. Con-
sider the following discrete time, continuous (or mixed discrete-continuous) state
dynamic optimization problem:

where y is the control variable, which is at all times required to be in the feasible set
of controls D ⊆ D , given state x ∈ S ; U is a policy function that maps each state
x to a dynamically optimal response y; π is the instantaneous payoff function; β
< 1 is the discount factor; H ≤ ∞ is the time horizon; the distribution over future
values of the state x′ conditional on current values of state and control is given by
Pr(x�|x, y;�) , which we also call the law of motion of the state variables; 𝜃 is an
m-dimensional, real-valued parameter vector acting on the payoff function π ∈ and
the law of motion, Pr(x�|x, y;�) . (W.l.o.g., we assume the problem to be of an infinite
time horizon and to be time stationary, and thus can drop all time indices.)

As shown by Bellman (1952), the following functional equation constitutes a
necessary optimality condition to problem Eq. DP:

where V� ∶ S → ℝ is referred to as the value function, which implicitly depends
on 𝜃 through the payoff function and the law of motion. In the following, we will
address the dynamic problem solely in terms of its Bellman Eq. 1.

(DP)V�(x0) = max
{Ut(xt)}

H
t=0

�

[
H∑

t=0

� t�(xt, yt;�)

]
s.t. yt ∈ D(xt), t = 0,… ,H,

(1)V�(x) = max
y∈D(x)

{�(x, y) + ��[V�(x
�)|x, y]} ≡ T[V](x)

186 A. Lanz et al.

1 3

Suppose we do not only want to solve Eq. DP, but rather, given a dataset consist-
ing of (partial) data on state and control realizations D = {x̃t, yt}

T
t=1

 , x̃ ∈ S̃
5, we want

to identify the parameter, 𝜃, of the payoff function π and the law of motion of states
Pr(x�|x, y;�) that maximizes the likelihood of the data, given the dynamic problem
is solved at the solution of the maximum likelihood estimation (MLE) problem.
This problem frequently arises in different fields of econometrics, for example in
dynamic discrete choice modelling (DDCM); see, for example, Aguirregabiria and
Mira (2010), Keane et al. (2011), and Arcidiacono and Ellickson (2011) for surveys
on DDCMs and their estimation. Formally, we attempt to solve the following two
problems simultaneously:

The two problems are connected in the following way: The link between like-
lihood function and the model is through the parameter vector, which enters the
payoff and the law of motion of the states. In the other direction, the value func-
tion for a given parameter value enters the likelihood function through the prob-
abilities or density functions for the choice variables and the observable states in
the data, Pr

(
D;�,V�

)
 , out of which the likelihood function is composed. Variables

of the model for which no data is observed will be integrated out in the likelihood
computation.

2.1.2 � The projection method for solving Eq. DP

We now turn to the description of solution techniques for the stand-alone dynamic
problem in terms of its Bellman Eq. 1, which is a topic well covered by the literature
(see, for example, Cai & Judd, 2013; Judd, 1998; Rust, 1996). Projection methods
are a popular family of solution methods, out of which we choose the collocation
method; see (Judd, 1992; 1998).6 The reason for this particular choice will become
apparent at a later stage, when deriving a set of optimality conditions for the value
function approximation. We now briefly describe the collocation method and some
technical details, but only to the extent necessary for the derivation of our adaptive
grid method.

Finding a function V (⋅) that solves the functional Eq. 1 is an infinite-dimensional
problem, as functions are generally infinite-dimensional objects (even if the domain

(MLDP)
�∗ = argmax

�
L(�;V� ,D) ≡ Pr

(
D;�,V�

)

V�(x) = max
y∈D(x)

{�(x, y;�) + ��[V�(x
�)|x, y;�]}|�=�∗

}

5  As common in the literature on estimating dynamic programming models, we distinguish states that
are observable to both the agent and the econometrician from states that are only observable to the agent
(if any), and thus have to be “integrated out” by the econometrician when computing the value of the
likelihood function; formally, we write S ≡ S̄ × S̃ , where S̃ refers to the fully observable part of the state
space. However, since the agent always observes xt ∈ S , the approximation of the value function will
always happen in the full state space S.
6  Some authors argue that collocation is not a particular case of a projection method, as the Dirac func-
tions, which are the test functions the residuals are projected to in the collocation method, are not square
integrable; see, for example, Silvester and Ferrari (1996).

187Adaptive grids for the estimation of dynamic models

1 3

of the function is finite-dimensional). However, many functions can be approxi-
mated well by (sums of) basis functions with finite-dimensional representations.7
For example, approximations using polynomials of finite degree can be represented
by a finite-dimensional vector of coefficients. Projection methods replace the true
function V (⋅) in Eq. 1 by its approximation V̂(⋅;�) parametrized by a vector a. Obvi-
ously, the Bellman equation will only be approximately satisfied, and the different
kinds of projection methods are all ways to “make this error small”. Formally, we
define the residual as

The projection methods differ in the way they project the residual function against
different test functions (including the residual itself, which results in a least squares
approximation); these projections are then minimized or set equal to zero. The collocation
method ensures that the residual function is zero at a chosen vector of n collocation nodes,
� ∈ S

n . Note that this is equivalent to interpolation if the function to be approximated can
be evaluated directly. In order to solve the dynamic problem using collocation together
with polynomial approximation of degree n − 1, we need n nodes to identify the coef-
ficients of the polynomial (or the “degrees of freedom”, as they are often referred to in
the literature), and solve a (generally nonlinear) system of equations with the coefficients
being the variables, and one equation for each collocation node (using more/fewer col-
location nodes will result in an over-/under-identified system of equations, with generally
no/infinitely many solutions, respectively)

If the value function is approximated using piecewise polynomial approximation or
splines, a vector of breakpoints has to be chosen as well. In the case of piecewise lin-
ear approximation, or splines of any order, the number of breakpoints equals the number
of collocation nodes, and it is natural to choose them such that they are identical. How-
ever, if higher-order piecewise polynomial approximation is used without imposing addi-
tional smoothness constraints, more collocation nodes are needed in order to identify the
degrees of freedom. In the remainder of this paper, we either use approximation methods
that allow us to treat the collocation nodes and the breakpoints as one single set of nodes,
or we simply distribute the additional collocation nodes uniformly between the break-
points without making it explicit in the collocation Eq. CO, to not complicate the notation
without adding any more insight to our approach.

2.1.3 � Maximum likelihood estimation of dynamic programming models

Having argued that the continuous state dynamic program Eq. DP can be repre-
sented and solved approximately as a nonlinear system of equations CO, we now

(2)RV̂ (x;�) ≡ V̂(x;�) − T[V̂](x;�).

(CO)RV̂ (xi;�) = 0,∀xi ∈ �.

7  We give a very short introduction to function approximation using polynomial approximation, piece-
wise polynomial approximation, and splines in the appendix, mainly to ensure precise nomenclature
throughout the paper.

188 A. Lanz et al.

1 3

turn to the solution of the full estimation problem Eq. MLDP. We will describe the
two most popular approaches to the estimation of dynamic programming models:
the nested fixed point (NFXP) approach of Rust (1987), and the constrained opti-
mization approach (or mathematical programming with equilibrium constraints
(MPEC)) approach of Su and Judd (2012); we proceed in chronological order.

The nested fixed point algorithm of Rust (1987) addresses problem Eq. MLDP by
completely solving the dynamic problem not only at the maximum of the likelihood
function, but for every guess of the parameter vector 𝜃; see Algorithm 1.

It is important to note that the evaluation of the likelihood function is completely
agnostic about the value function approximation step, as long as it is provided a
function that can be evaluated over the whole state space. This not only allows for
a wide variety of algorithms (and combinations thereof) for solving the dynamic
problem, it also also allows us to make use of important properties of the problem,
such as the contraction mapping property; moreover, the fact that the function to be
maximized is a likelihood function can be exploited, for example when computing
its Hessian matrix.

In contrast, the MPEC approach of Su and Judd (2012) interprets problem
Eq. MLDP as a bi-level optimization problem, where the lower-level problem is
replaced by some optimality (or equilibrium) constraints, in our case the Bellman
Eq. 1, hence its name. As argued above, the Bellman equation has to be replaced
by a finite-dimensional approximation, in our case the collocation system Eq. CO,
yielding

Conceptually, the motivation for MPEC is to avoid solving the dynamic prob-
lem for every parameter value on the trajectory of the likelihood maximization, but
rather to increase feasibility (here: accuracy of the solution to the dynamic problem)
and optimality (here: the likelihood function value) simultaneously. Of course, since
the solution of the dynamic problem depends on the actual value of the parameter
vector, this is a potentially difficult nonlinear constrained optimization problem.

Whether to use NFXP or MPEC to estimate the parameters of dynamic program-
ming models using MLE is an active field of research, and might turn out to be
highly problem dependent. While it is argued that MPEC might be more efficient

(3a)max
𝜃,�

L(𝜃;V̂𝜃(⋅, �),D)

(CO)s.t. RV̂𝜃
(xi;�) = 0,∀xi ∈ �.

189Adaptive grids for the estimation of dynamic models

1 3

because it does not require solving the dynamic programming model in each itera-
tion, it clearly cannot—in contrast to NXFP—make use of the contraction mapping
property, which might cause MPEC to use more iterations to solve the likelihood
problem (or even to fail to converge). Also, the memory needs are very different, as
both algorithms can use the sparsity of the problem in the Jacobian of the colloca-
tion system (if present), but the Hessian of the MPEC problem is much larger than
that in NFXP, and is—moreover—generally not sparse. In this paper, we make no
attempt to contribute any evidence in favour of either MPEC or NFXP. Rather, we
assume that the researcher we address has made his or her choice of one of the two,
and is looking for a way to make the grid creation more efficient.

We now turn to the discussion of the core issues of the integration of grid adap-
tion in estimation procedures.

A particular difference between MPEC and NFXP is the way approximations of con-
tinuous value functions are handled: In NFXP as defined in Algorithm 1, the procedure
for obtaining an approximation to the value function is technically independent of the
likelihood maximization, as long as the optimizer is fed with a valid approximation of
the value function (given a particular value for the parameter vector) in order to evalu-
ate the likelihood. In particular, this algorithm is formally suitable for the application of
any iterative refinement scheme for the grid over state variables of the dynamic prob-
lem. Algorithm 2 conceptually extends NFXP with iterative grid updating (for every
parameter value), as proposed by Reich (2018). However, if the refinement step in line
6 of Algorithm 2 is discrete (as it is in grid adaption by node insertion), the likelihood
function L, which itself depends on the approximation of the value function—and thus
on its grid, will generally become discontinuous, as the change of the underlying value
function grid is discontinuous itself. Since many optimization algorithms require the
objective function to be at least continuous (if not smooth), avoiding this artificially
introduced discontinuity is highly desirable.

In contrast to NFXP, the application of grid adaption techniques is not obvious
in the MPEC approach: if, for example, the value function is obtained by projection
using collocation, for each collocation node the corresponding equality constraint

190 A. Lanz et al.

1 3

has to be specified in the MPEC problem. Iterative refinement by insertion (or dele-
tion) of nodes in the way it is done in Algorithm 2 is not directly applicable for
two reasons: first, inserting a collocation node corresponds to inserting a constraint,
which generally cannot be done while the optimization runs;8 second, since MPEC
gives no guarantee that the dynamic problem is solved at any point of the optimi-
zation except for the solution to the MLE problem, no straightforward criterion of
where to actually insert or delete nodes can be derived. Consequently, the applica-
tion of grid adaption to MPEC raises the need for grid adaption schemes other than
the popular iterative methods, as the structure of the function approximation prob-
lem is “hard-coded” into the optimization problem.

2.1.4 � Types of grid adaption

As we have pointed out, integrating grid adaption with the estimation of dynamic
programming models is not straightforward, because there are continuity issues with
NFXP, and because MPEC requires the function approximation structure to be hard-
coded into the constraints, both of which points rule out adaption by node insertion.
To better motivate our approach, we first give an overview over the two main con-
cepts of grid adaption, and argue why they might be suited to our purpose, or why
they are not.

The refinement of function approximations has been studied widely in the litera-
ture, and has been successfully applied to the solution of dynamic problems with
continuous state variables in economics (see, for example, Grüne & Semmler, 2004,
Brumm & Scheidegger, 2017; Reich, 2018). Following (Huang and Russell, 2011),
we classify these methods as follows—9

h-adaptive refinement:	� The most popular refinement method is adaption by node
insertion. Based on some criterion such as the residual
function, additional nodes are inserted at places where
the approximation quality is “poor” (or deleted at loca-
tions where they are not needed), and the approximation
problem is re-solved using the refined grid, with the inter-
polation or collocation conditions Eq. CO being enforced
also at the new nodes. The resulting grid data structure
usually forms a hierarchy of grids of different refinement
levels. While this approach is intuitive and relatively easy

8  One way to “insert” or “remove” constraints while the optimizer runs is to use so-called on/off con-
straints, where an additional binary variable is multiplied against the corresponding constraints. How-
ever, such an approach would increase the complexity of the optimization problem significantly, and is
not pursued in the paper.
9  There exists third, less popular refinement approach referred to as p-adaptive refinement, which essen-
tially locally increases the degree of the approximating polynomials, in order to better capture local cur-
vature features. Since the additional degrees of freedom must be identified, e.g. by inserting more inter-
polation nodes, this method cannot be integrated with MPEC or NFXP either, for the same reasons as for
the h-adaption.

191Adaptive grids for the estimation of dynamic models

1 3

to implement, it is intrinsically iterative in the sense that
it needs a temporary solution of the problem in order the
compute the next, refined solution; as already pointed
out, this rules out its integration into MPEC, and causes
continuity issues with NFXP.

r-adaptive refinement:	� In contrast to h-adaption, r-adaption does not change the
structure of a particular grid, but rather moves its nodes
such that local features of the approximated function are
well covered. Consequently, the total number of nodes
and their (dimension-wise) ordering is preserved.

	� More formally, r-adaptive grid adaption can be seen as a continuous,
monotone and usually smooth function, mapping between the original,
more structured (maybe even uniform) grid over the unit hypercube—
often referred to as the “computational domain”—to the adapted grid
defined over the domain of approximation, often referred to as the “physi-
cal domain”. Depending on the problem, this mapping function takes into
account various properties of the original function to be approximated,
such as the size of its gradients, the curvature, or the approximation error
induced by a specific approximation method. Moreover, the mapping
function (or a proxy thereof) is either explicitly known from the physical
problem, or it is solved for simultaneously with the function approxima-
tion problem itself. The later case further distinguishes between an explicit
approximation of the mapping function, which continuously maps every
point in the “computational domain” to a point in the “physical domain”
(even if there is no grid node at this point), and the implicit representation
which implies (in-)equality conditions on the node locations. As we will
employ the very last approach only in a very self-contained manner below,
we refer the reader interested in more background to Baines (1998). In all
cases, a popular criterion of where to actually place the nodes is equidis-
tribution, which uniformly distributes nodes for example according to the
gradient of the approximated function, or on its arc length. Alternatively,
if the function of interest (or an approximation thereof) can be evalu-
ated, a direct minimization problem over the approximation error can be
solved; see again Baines (1998) for an in-depth comparison of the differ-
ent criteria.10

10  More recently, attempts have been made to unify the two approaches, in the sense that the approxima-
tion error directly enters the criterion function on which equidistribution is imposed, the so-called moni-
tor function; in particular, see Huang and Russell (2011). However, the theoretical results on convergence
toward approximation error minimizing solutions are still lacking.

192 A. Lanz et al.

1 3

	� Since the r-adaption of a grid is done without changing the functional
form of the approximation, this idea can potentially be integrated with
MPEC; similarly, since the grid adaption is continuous for many types of
functions, this approach is well suited for integration with NFXP.

In this paper, we develop a method with r-adaptive grids that is based on approxi-
mation errors rather than equidistribution; the reason for this choice of founda-
tion is twofold: first, equidistribution generally requires either that the gradient of
the approximated function can be evaluated as well, or that its arc length can be
computed, which is not always possible in value function approximation; second,
depending on the type of interpolation, placing nodes at regions of high curvature
might be even more accurate than placing them in regions of steep gradients.

In summary, we have stated the problem of estimating dynamic programming
models using maximum likelihood, presented the collocation method for solving
the stand-alone dynamic problem, and shown how two popular approaches—namely
NFXP and MPEC, integrate collocation to estimate the model. Furthermore, we
have argued it is not obvious how to rigorously integrate grid adaption with either
NFXP or MPEC, as node insertion can cause the likelihood function to be discon-
tinuous, and the structure of the function approximation has to be hard-coded into
the optimization problem in the MPEC case. In the next section, we turn to uniform
function approximation as well as optimal breakpoint and collocation node distribu-
tion, which we finally show how to integrate with each estimation algorithm.

2.2 � Uniform approximation and the balanced error property

In this section, we briefly introduce the concepts of uniform approximation, equios-
cillation, and “balanced errors”, which are then applied to form a criterion for node
placement in r-adaption within NFXP and MPEC in the subsequent section.

2.2.1 � Uniform approximation and node placement

Recall that we defined the residual function Eq. 2 as the difference between the
unknown function and its approximation; the closer the residual approaches zero
over the whole domain, the better our approximation will be. A formalization of
this is the uniform approximation problem, which minimizes the maximum absolute
error between the unknown function and its finite-dimensional approximation with
generic parameter vector p:

(4)min
�
‖RV̂ (x;�)‖∞ ≡ max

x∈S
�RV̂ (x;�)�.

193Adaptive grids for the estimation of dynamic models

1 3

It is important to note that there is no explicit notion of nodes in problem Eq. 4
yet. (Consequently, there are no collocation constraints either.)

As we pointed out earlier, we assume the breakpoints of a piecewise polynomial
approximation and the collocation nodes to coincide. Suppose we approximate the
solution to the Bellman equation using one of these methods, and further suppose
we interpret one part of vector p ≡ (x,a) as nodes x that serve as both collocation
and breakpoints, and the other part as the corresponding coefficients a. While most
approaches to function approximation assume the nodes to be fixed, we treat them as
variables of the following uniform approximation problem:

where I = {1,… , n + 1} is the set of grid cell indices in one dimension.11 Besides
adding the node variables, we also added two sets of constraints: First, the grid
validity conditions Eq. 5b ensure that the structure of the grid, including neighbor-
ship relations, is preserved; in the one-dimensional case, the set of all valid grids
over the state space is defined by Xn ≡ {� ∈ S

n ∶ xi ≤ xi+1} . Second, the collocation
constraints Eq. CO are added. Note that none of these constraints is conceptually
necessary at this point. However, we include them for a reason: the grid validity
constraints rule out a great number of local solutions to the approximation problem
with different orderings of nodes; adding the collocation constraint cannot improve
the quality of the approximation problem, but it is mandatory for our optimality cri-
terion, which we will shortly derive as applicable.

If the vector of breakpoints and collocation nodes is fixed, the coefficients
of the approximation problem are identified solely by the constraints, and thus
no explicit minimization is necessary (or possible). While we treat the nodes
as variables in this paper, we still want to mention a popular approach to static
node choice in the case of (non-piecewise) polynomial approximation—the
Chebyshev nodes. Suppose that the function f we approximate is k ≥ 1 times
continuously differentiable. Suppose qn− 1 is a polynomial interpolant of degree
n − 1 that interpolates f at the n roots of the degree n Chebyshev polynomial.
Then, qn− 1 minimizes the tightest known error bound for polynomial inter-
polation that can be minimized over the nodes independently of f: The idea
behind this error bound is to split it up into a contribution from the function
itself—which cannot be reduced by any choice of nodes interpolation nodes
(n fixed) and which is usually expressed as the variation in some higher order

(5a)min
�,�

‖RV̂ (x;�, �)‖∞ ≡ min
i∈I

max
xi≤x<xi+1�RV̂ (x;�, �)

(CO)s.t. RV̂ (xi;�, �) = 0,∀xi ∈ �

(5b)� ∈ X
n,

11  We assume the boundary of the grid to be fixed, and do not include it in the node count; this is
w.l.o.g., but allows for a more consistent notation. Whether or not collocation is enforced at the boundary
depends on the approximation scheme in use (enforced for piecewise polynomial; not enforced for poly-
nomial approximation).

194 A. Lanz et al.

1 3

derivative—, and a contribution solely from node choice, but independent of
the concrete function to be approximated. For a detailed description of Che-
byshev nodes and the optimization problem they solve, we refer the reader to
Appendix A.1.2. While this is unquestionably a strong result with significant
practical implications, we show in numerical examples below that Chebyshev
nodes are generally not optimal given a specific f. Also, Chebyshev nodes have
no direct application in the context of breakpoint choice for the piecewise inter-
polation schemes, which are our methods of choice.

2.2.2 � Equioscillation and balanced errors

While problem Eq. (5) can, in principle, be solved directly using nonlinear con-
strained optimization techniques, we now reformulate it as a set of optimality
conditions, in order to easily integrate it as constraints with the original estima-
tion problem using MPEC. (Moreover, as we demonstrate in the numerical part
of the paper, the direct minimization approach is much less efficient in practice
compared to directly solving the optimality conditions derived below.)

To derive our approach to optimal node placement, we restate an important result
from polynomial approximation theory, the equioscillation theorem (restated from
Judd, 1998, p. 212): define the L∞ error of the best approximation of a (one-dimen-
sional) function f ∈ C

k, k ≥ 0 by a polynomial of degree n − 1 or less, q∗ ∈ P
n−1 , as

Then, we can state the following theorem:

Theorem 1 (equioscillation)  If f ∈ C[a, b] , then there is a unique polynomial of
degree n − 1, q∗

n−1
(x) , such that ‖f − q∗

n−1
‖∞ = �n−1(f) . The polynomial q∗

n−1
 is also

the unique polynomial for which there are at least n + 1 points a ≤ y0 < ⋯ < yn ≤ b
such that for m = 1 or m = − 1,

From the equioscillation theorem we know that the best polynomial approxima-
tion of the continuous function f will have “balanced and alternating errors”. More
precisely, if xi, i ∈ {1,… , k} are the k ≥ n zeros of f(x) − q(x), and x0 = a, xk+ 1 = b,
we refer to the errors as balanced if

where c is a constant, and as alternating if, for m = 1 or m = − 1,

As an illustration, we include Fig. 1 where the absolute value function is uni-
formly approximated by a polynomial, depicting both the function and its approxi-
mation in the left panel, and the approximation error in the right panel; as predicted

(6)�n−1(f) ≡ inf
{q∈Pn−1∶deg(q)≤n−1}‖f − q‖∞.

(7)f (yj) − q∗
n−1

(yj) = m(−1)j�n−1(f), j = 0,… , n.

(BE)max
xi≤x≤xi+1|f (x) − q(x)| = c, i = 0,… , k,

(8)sign(f (x) − q(x)) = m(−1)i, xi < x < xi+1, i = 0,… , k.

195Adaptive grids for the estimation of dynamic models

1 3

by the equioscillation theorem, the errors of the L∞-minimizing polynomial approxi-
mation are balanced and n times alternating.

It is important to note that Theorem 1 states a sufficient condition for opti-
mality: since the unique best approximating polynomial of degree n − 1 or less
exists for every continuous function, and since it is also the unique polynomial
with n times equioscillating errors, we can conclude that a polynomial with n
times equioscillating errors is the best approximation of f (of degree n − 1 or
less) in the sense of definition Eq. 6. An iterative procedure for obtaining best
polynomial approximations of functions of one variable based on equioscilla-
tion is the Remez algorithm (see, for example, Fraser, 1965).

So far, we have only considered polynomial approximation, where the interpo-
lation or collocation nodes are determined implicitly by the zeros of f(x) − q(x).
However, when using piecewise polynomial approximation or splines, the choice of
breakpoints (and possibly also of interpolation nodes if not identical) is explicitly
required from the user.

Therefore, sufficient optimality conditions based on balanced errors have been
derived for the specific piecewise schemes as well. The idea behind these proves is
to show that if the single segments of a piecewise polynomial interpolant are locally
error minimizing (implying that they are equioscillating within the segment by The-
orem 1), balancing the error among the segments through breakpoint movement will
serve as a sufficient optimality condition: Suppose two neighboring segments do
not have the same local approximation error; then, moving the breakpoint towards
the segment with the higher local approximation error will reduce the higher error,
while increasing the smaller one, until they equate (always assuming that both errors
are minimized within the segment, in particular after they have been “moved”);
consequently, the overall error after balancing the local errors must be lower than
before.

This procedure can be formalized and extended to more than two segments
by induction. In particular, Lawson (1964) proves for piecewise polynomials
that if all segments are locally minimizing the maximum approximation error,
then a set of breakpoints balancing these “min-max” errors over all segments
exists and is, moreover, a sufficient condition for optimal breakpoint choice.
(For the formal results, which require a substantially more general notation that
is, however, not necessary for algorithm construction, we refer the reader to
Lawson (1964) in particular Theorem 2 and Lemma 6 for details). An impor-
tant difference between the equioscillation as in Theorem 1 and the results of

196 A. Lanz et al.

1 3

Lawson (1964) is that optimal piecewise interpolants—while having balanced
errors and being optimal—do not generally have alternating errors at the break-
points. In fact, only for special cases are these interpolants continuous at all.
Therefore, we impose continuity by requiring the breakpoints to be interpola-
tion points at the same time (also see Appendix A.1.4 for the relation between
breakpoints and interpolation nodes).1213

2.2.3 � Imposing balanced error and collocation constraints

In this paper, we present an approach to optimal node placement based on balanc-
ing the maximum approximation errors of the segments, which is partially moti-
vated by the optimality criterion of Lawson (1964). However, instead of identify-
ing the coefficients by explicit segment-wise error minimization, we impose the
collocation constraints Eq. CO at the breakpoints, which is—together with conti-
nuity—sufficient to identify the parameters of a piecewise linear approximation;

Fig. 1   Approximation of f(x) = |x − 0.5| Using the Best Degree 10 Polynomial Approximation. Approxi-
mation of f(x) = |x − 0.5| using the best degree 10 polynomial on the interval [− 1,1]. Left—the blue line
shows the true function f(x) and the green line shows the best polynomial approximation f̂ (x) . Right—the
black line shows the approximation error f (x) − f̂ (x)

12  Imposing this constraint obviously increases best attainable approximation error. However, it can
be shown for the piecewise linear approximation case of convex/concave functions that the error with
interpolating breakpoints is bounded by two times the error without that requirement; see (Imamoto and
Tang, 2008).
13  For the case of splines, i.e. approximators with higher order smoothness constraints at the break-
points, (Schumaker, 1968) shows that a result similar to Theorem 1 can be established. However, the
properties of piecewise polynomials over flexible grids have been well studied also for higher dimensions
in the finite element literature (see, for example, (Ciarlet, 2002)), which is not generally true for splines
(see (Thompson et al., 2010)). As our goal is to eventually generalize our method to the case of higher-
dimensional state spaces, we will not pursue the splines approach here.

197Adaptive grids for the estimation of dynamic models

1 3

if higher-order piecewise polynomials are fitted, additional collocation nodes
have to be inserted in the interior of the segments. Consequently, in order to find
a solution to the uniform approximation and collocation problem with explicit
node choice, Eq. (5), we need to find a vector of nodes and coefficients such that
the constraints of Eq. (5) are satisfied, and the errors of the approximation are
balanced.

In particular, let us introduce a slack variable for the cell-wise error

Then, (approximate) BE with tolerance 𝜖z can either be imposed by the n + 1
Eq. BE, or—as we found it to be numerically more efficient—by pairwise com-
parison of all cell-wise errors

Note that Eq. 10 can be reformulated as a linear constraint (see below). Thus,
imposing BE yields a system of n + 1 nonlinear equality constraints for the slack
variables zi, and 2n(n + 1) linear inequality constraints for the actual comparisons.

Combining the BE constraints for optimal node placement, Eqs. 9 and 10,
with the constraints of Eq. (5), the following system of equations in the variables
(a,x,z) identifies a solution to Eq. (5):

where Eqs. 11c and 11d are the reformulated linear BE conditions, and Eq. 11e is
the grid validity constraint, which additionally enforces some minimum distance 𝜖x
between grid nodes.

In summary, this section derived a sufficient optimality criterion of the distribu-
tion of breakpoints and collocation nodes, which will be integrated with both the
NFXP and the MPEC algorithms in the next section. We conclude this section on
balanced errors and its application of uniform approximation and collocation prob-
lems with a remark: In the context of node choice, the mechanics behind equios-
cillation as an optimality criterion are actually very intuitive. Suppose the global
maximum approximation error lies in the interval [xi,xi+ 1]. Then, slightly shifting
the interpolation node xi to the right (assuming that f and q are not intersecting in the

(9)zi = max
xi≤x<xi+1|RV̂ (x;�, �)| ∀i ∈ I.

(10)
|zi − zj|

zi
≤ �� ∀(i, j) ∈ I × I, i ≠ j.

(11a)RV̂ (xi;�, �) = 0, ∀xi ∈ �

(11b)zi = maxxi≤x<xi+1 |RV̂ (x;�, �)| ∀i ∈ I

(11c)(1 − ��)zi − zj ≤ 0 ∀(i, j) ∈ I × I, i ≠ j

(11d)(−1 − ��)zi + zj ≤ 0 ∀(i, j) ∈ I × I, i ≠ j

(11e)xi + �� ≤ xi+1 ∀xi, xi+1 ∈ �,

198 A. Lanz et al.

1 3

interior of (xi,xi+ 1)) will decrease the maximum error, while increasing the error of
the cell to the left of xi; thus the L∞ norm of the approximation will decrease. Thus,
q cannot be optimal until the errors in all cells are balanced.

2.3 � Parameter estimation with flexible grids

In this section, we will demonstrate how to integrate grid adaption by node move-
ment into parameter estimation for dynamic programming models, using both NFXP
and MPEC.

2.3.1 � NFXP with flexible grids

As we have argued above, the integration of grid adaption into NFXP is—for-
mally—straightforward, as the algorithm is agnostic about the value function
approximation step. Therefore, since we modelled the value function approximation
and the adaption of its grid as a simultaneous problem in Eq. (5), we can state the
NFXP algorithm with grid adaption by node movement by Algorithm 3.

We have two important remarks. First, note that in contrast to Algorithm 2, the con-
tinuity of the likelihood function is not affected by the application of grid adaption if
two conditions hold: (i) the optimal grid depends continuously on the value function,
and (ii) the value function itself depends continuously on the model parameters.14 Sec-
ond, while Algorithm 3 is in principle agnostic about how to solve problem Eq. (5), we
found that—in our examples—it was most efficient and stable to solve the set of suf-
ficient optimality conditions Eq. (11) (examples are given below).

2.3.2 � MPEC with flexible grids

We now turn to the question of how to integrate (optimal) node placement with the
MPEC approach of estimation of dynamic programming models. First, note that if
RV̂ is the residual of the functional equation determining the value function of inter-
est, the optimization problem Eq. (5) fully determines our function approximation, with

14  While the second condition is implicitly used in many NFXP-type applications, it is not obvious that
for general function spaces the mapping between the functions and their respective optimal grid is con-
tinuous. However, in none of our examples did we encounter continuity issues, and it might well be pos-
sible to formalize this finding for important subclasses of function spaces with sufficient smoothness and
shape requirements, which value functions often belong to.

199Adaptive grids for the estimation of dynamic models

1 3

degrees of freedom being the coefficients of the polynomials and the nodes themselves.
Thus, we replace the collocation constraints in the original MPEC problem Eq. (3) with
problem Eq. (5) to obtain our new bi-level optimization problem

However, it is not obvious how to obtain a solution to Eq. (12). While there is a large
literature on how to solve this kind of bi-level optimization problem (see, for example, Col-
son et al. (2007) and Fletcher et al. (2006)), they remain “notoriously difficult” to solve for
the following reason: if we want to avoid solving the system of constraints in every iteration
of the solution process (which would then constitute an NFXP approach with an r-adaptive
grid using direct minimization), the lower-level minimization problem Eqs. 12b, 12c has to
be replaced by something that can be handled by a constrained optimization solver, which is
usually systems of equalities and inequalities. One approach is to replace the lower-level opti-
mization problem by its first-order constraints, which are the KKT conditions in the case of
inequality constrained lower-level problems. However, this procedure will establish comple-
mentarity constraints in the new single-level problem, which cause severe problems for most
algorithms currently available for constrained optimization (see, for example, Colson et al.
(2007) and Fletcher et al. (2006)), thus giving rise to a very active field of research in optimi-
zation. Instead, in the following we will use the system of (in-) equalities that constitutes a set
of sufficient optimality conditions for our node placement problem based on balanced errors,
Eq. (11), without introducing complementarity constraints into the estimation problem.

Replacing the lower-level optimization problem in Eq. (12) by the set of sufficient
conditions Eq. (11), we finally solve the following optimization problem in order to
obtain a maximum likelihood estimate of the parameter vector 𝜃 using MPEC:

The statement of problem Eq. 13 concludes the general description of the method.
In the next section, we turn to numerical examples and applications.

3 � Numerical examples and applications

In this section, we first present a concrete numerical example to demonstrate the idea
of flexible grids and show the equivalence of minimizing the L∞ norm and impos-
ing the balanced error (BE) constraints. Second, we apply the adaptive grid method
to the estimation of the well-known bus engine replacement model of Rust (1987),
which is modified to feature a continuous mileage state; furthermore, we solve and

(12a)max
𝜃,�,�

L(𝜃;V̂𝜃(⋅, �),D)

(12b)s.t. (�, �) = argmin
�,�

‖RV̂𝜃
(y;�, �)‖∞

(12c)s.t. (CO), (5b) hold.

(13)
max
𝜃,�,�,�

L(𝜃;V̂𝜃(⋅, �, �),D)

s.t. (11) holds.

200 A. Lanz et al.

1 3

estimate a version of the Rust (1987) model that features a serially correlated, unob-
served utility component.

3.1 � Function interpolation with flexible grids—A numerical example

In the following example, we assume that the function we are approximating is
known and can be evaluated directly. Consequently, we can write the residual func-
tion Eq. 2 as

and hence we are facing a standard function approximation problem (see Appendix
A.1 for a short introduction to function approximation).

For the function approximation problem in this section, we will compare three
cases: First, we consider the case of standard interpolation where the residual func-
tion is set equal to zero at all the nodes of a fixed grid; this corresponds to solving
the system of equations given by Eq. CO, which is linear for standard function inter-
polation problems. Second, we directly minimize the L∞ norm of the residual func-
tion, but at the same time impose the interpolation property as constraints; the cor-
responding constrained optimization problem is described by problem Eq. (5). Last,
we impose the BE constraints on the residual function to obtain the optimal grid
by solving the nonlinear system Eq. (11). This procedure allows us to (i) compare
the results of the flexible-grid method to standard interpolation over fixed grids, (ii)
demonstrate the equivalence of direct minimization and balanced error conditions,
and (iii) compare the different approaches with regard to accuracy and computation
time.

To assess the quantitative aspects, our example demonstrates the advantages of
balanced errors using piecewise linear approximations. We show that optimal grids
produce significantly smaller approximation errors compared to uniform grids with
the same number of nodes. This example is of particular interest as we are going
to use piecewise linear approximations for the full parameter estimation problem in
Section 3.2.

In the appendix, we also argue how Chebyshev polynomials (using the well-
known Chebyshev nodes as interpolation locations) relate to our approach; see
Appendix A.1.3. Moreover, we demonstrate the use of higher order piecewise poly-
nomials, which works essentially the same as piecewise linear approximations; see
Appendix A.

For the example in this subsection, we use the following parametrizations: The mini-
mum difference between the flexible nodes it set to 𝜖x = 0.01 (none of the grid validity
constraints are binding though). For the error tolerance of the BE constraints we use 𝜖z
= 0, which proves to be the most stable from a computational point of view; we con-
jecture that this is because otherwise a continuum of solutions would exist. In order to
compute the cell-wise maximum error, we use a grid search with 100 uniformly distrib-
uted nodes. To initialize the algorithm, we first compute an optimal solution with regard
to the L1 norm, which we then use as an initial guess for the solution in the L∞ norm;
this approach increases both numerical efficiency and stability. All computation times

Rf̂ (x;�, �) = f (x) − f̂ (x;�, �)

201Adaptive grids for the estimation of dynamic models

1 3

are reported including the initialization phase. We use Gauss–Legendre quadrature with
10 nodes in each interval to compute the corresponding integrals for the L1 norm (see
Judd, 1998, for a detailed description of different quadrature methods). All examples
are computed in Matlab 2017a (Version 9.2) using the “fmincon” solver with the “sqp”
and “interior point” algorithms, and default settings otherwise. In those examples where
we approximate polynomials, their coefficients are randomly generated and reported
along with the results. We use AMD Opteron 6380 (“Abu Dhabi”) hardware clocked at
2.5GHz, and all reported runtimes are serialized (i.e. core time, not wall clock time).

The function we approximate is a degree 9 ordinary polynomial by a piecewise
linear approximation with six nodes, of which four are potentially flexible.15 We use
a uniform grid for the fixed grid piecewise linear approximation.

Figure 2 plots the results; the corresponding approximation errors and computa-
tion times are stated in Table 1. We find that the standard piecewise linear interpola-
tion over a fixed uniform grid produces large approximation errors, especially in the
areas where the approximated function has high curvature, as is the case between the
first and second node for example. Consequently, the flexible-grid solutions demon-
strate how the approximation error can be reduced by shifting the nodes toward this
area. Looking at the residuals f (x) − f̂ (x;�, �) we find that for both the direct mini-
mization and the BE solution the errors are balanced, while the error for the uni-
form-grid interpolation strongly varies among the intervals. Note that this example
demonstrates the difference between balanced errors, alternating errors, and equi-
oscillation: while the errors of the optimal solutions are obviously balanced—the
maximum absolute error is the same for each interval [xi,xi+ 1]—they are not alter-
nating (and hence not equioscillating) as the residual does not change sign at all its
zeros (including the breakpoints).

Table 1 further confirms these findings: the L∞ norm decreases by an order of
magnitude from 11.8250 to 1.5649 for the optimal flexible grid compared to the
uniform-grid approximation. Again, we find that imposing the BE constraints yields
the same solution as direct minimization, but computation times and the number of
iterations are significantly lower for the BE approach.

3.2 � Parameter estimation with flexible grids—numerical results

In this section, we apply our balanced error grid adaption method to the estimation
of the well-known bus engine replacement model of Rust (1987), first with a contin-
uous mileage state variable, but in its original for otherwise, and second extended to
feature a serially correlated, unobserved utility component, thus resulting in a two-
dimensional value function approximation problem.

In both cases, we begin with a brief description of the model, and then compare the
fixed- and flexible-grid approaches in two steps: First, we present results for fixed model
parameters in order to demonstrate the potential advantages of flexible grids for solving
dynamic programming models; this is similar to the interpolation examples in Section 3.1,

15  We impose the constraints that x1 = xmin and xn = xmax, where xmin and xmax are the minimum and
maximum values of the approximation interval, respectively. This restriction is w.l.o.g. as can be seen in
Example 1; in terms of the notation used in Section 2, it corresponds to n = 4.

202 A. Lanz et al.

1 3

except that the function to be approximated can not be evaluated directly. Second, we
solve the complete maximum likelihood estimation problem for the cost parameters of the
model, using MPEC and NFXP (as we obtain qualitatively similar results for NFXP and
MPEC, we only report results for both algorithms for the original specification and focus
on MPEC thereafter); therefore, we set up a Monte Carlo experiment with 100 artificial
datasets to study and compare the results of the fixed- and flexible-grid solutions with
regards to accuracy and efficiency.

Fig. 2   Approximation of a Degree 9 Polynomial Using Piecewise Linear Approximation. Approxima-
tion of a degree 9 ordinary polynomial on the interval [− 1,1] by a piecewise linear approximation with
six nodes, of which four are potentially flexible. The blue line corresponds to the true function, whereas
the green line represents the fitted piecewise linear approximation. Turquoise diamonds and red circles
depict the fixed uniform nodes, and the optimized approximation nodes obtained from imposing the BE
conditions or direct minimization, respectively. The plots in the right panel show corresponding residuals
f (x) − f̂ (x;�, �) . From the top to the bottom, the figure shows piecewise linear interpolation using uni-
formly distributed nodes, flexible nodes with direct minimization of the L∞ norm, and flexible nodes with
BE constraints. The coefficients of the true polynomial function f are given by α = [​4.1​239​,2.​795​6,5​.086
2,− 1.2933,7.8788,− 7.8582,9.9192,− 2.8339,3.4032,− 9.9500]

203Adaptive grids for the estimation of dynamic models

1 3

3.2.1 � The bus engine replacement model of Rust (1987)

In the bus engine replacement model of Rust (1987), a manager of a fleet of buses
repeatedly decides whether or not to replace the engine of each of the buses. The
manager’s decision is based on the observation of the current mileage state, and
on choice of bus and the consequent bus-specific utility shock. The manager’s per-
period utility function for one single bus is given by

Hence, the manager faces the decision trade-off of replacing the engine at a high
fixed cost of RC (decision i = 1), or just paying the maintenance costs c(xt,𝜃1) (deci-
sion i = 0), which increase with the mileage state xt and depend on the maintenance
cost parameter 𝜃1. εt(i) is the choice-specific shock to utility that is observed by the
manager, but not by the econometrician. Assuming that the manager behaves in a
dynamically optimal manner, his or her value function is given by

where β is the time discount factor and the subscript 𝜃 denotes the dependence of the
value function on the parameters RC and 𝜃1. The conditional expected continuation
value in Eq. 15 is given by

Even though the observed mileage state xt has a continuous support in reality, it is a
common approach to discretize the state space into a finite number of “bins” (see, for
example, (Su and Judd, 2012; Rust, 1987). We, however, do not make this assumption as
our solution method is designed for continuous state spaces. Consequently, while the law
of motion for discrete Markov states is a matrix, we need a probability density function
for the continuous model. As proposed in (Rust, 1987) we use the exponential function,
so Δxt+1

= xt+1 − xt is exponentially distributed with the rate parameter 𝜃2. We follow

(14)u�(i, xt) + �t(i), u�(i, xt) =

{
−RC if i = 1

−c(xt, �1) if i = 0.

(15)V�(xt, �t) = max
i∈{0,1}

{u(i, xt, �1) + �t(i) + �E[V�(xt+1, �t+1)|i, xt, �t]},

(16)
EV�(i, xt, �t) ≡ E[V�(xt+1, �t+1)|i, xt, �t]

= ∫ V�(xt+1, �t+1)Pr(xt+1, �t+1|i, xt, �t, �)d(xt+1, �t+1).

Table 1   Comparison
of Approximation
Errors—Piecewise Linear
Approximation

 Approximation errors and computation times of the approximation
of a degree 9 polynomial by piecewise linear interpolation, over a
fixed uniform grid, a flexible grid obtained from direct minimization
of the L∞ norm (“Direct Min.”), and a flexible grid obtained from
the BE constraints (“Balanced Errors”); the example corresponds to
Fig. 2

Uniform Grid Direct Min. Balanced Errors

L∞ 11.8250 1.5649 1.5649
Time in Sec. − 1.56 0.58
Iterations − 76 18

204 A. Lanz et al.

1 3

(Rust, 1987) by assuming that (i) the utility shock εt(i) is extreme value type I iid. distrib-
uted, �t(i) ∼ EV1 iid , and (ii) x and ε are conditionally independent. Under this assump-
tion, closed form solutions for the integral over the unobserved state variables exist, and
the EV function for the continuous problem is given by

where i′ denotes the decision in the next period and h�2(Δx) is the probability density
function of the exponential distribution with the rate parameter 𝜃2. We approximate
the integral over the observed state by Gauss–Laguerre quadrature, which is a natu-
ral choice as it is optimized for the integration over exponential kernels (see Judd
1998). Finally the log-likelihood function for the full sample of M buses reads

3.2.2 � Approximating the EV function for fixed 𝜃

In this subsection, we assume that the model parameters 𝜃 are fixed; consequently,
we only have to solve the dynamic problem Eq. 17. This allows us to compare the
solutions for a fixed uniform grid and the flexible grid with BE constraints in a sim-
ple and demonstrative context.

In particular, we use the following parametrisations of the model and the algo-
rithm: For the model parameter vector 𝜃, we use the original estimates from Rust
(1987), given by RC = 11.7257, 𝜃1 = 2.4569, and β = 0.99, and assume 𝜃2 = 1.5. For
the utility function, we use the standard linear costs given by

Additionally, we also consider a cubic cost function to introduce more nonlin-
earities into the problem, and hence make the approximation problem of the EV
function more interesting

For the mileage state, we assume that the maximum mileage is given by xmax
= 400 (similar to Rust 1987). For the EV function, we use a piecewise linear
approximation. We use the same algorithm parametrisation as in Section 3.1.

In our analysis, we consider four different approximations for each of the cost func-
tions: a benchmark case using 400 uniformly distributed nodes; the BE solution with
five nodes, of which three are flexible; a uniform fixed grid with as many nodes as the

(17)EV� (i, x) = ∫
∞

0

log

(
∑

i�∈{0,1}

exp
(
u� (i

� , (1 − i)x + Δx) + �EV� (i
� , (1 − i)x + Δx)

)
)
h�2 (Δx)dΔx ,

(18)
L(�;EV�(⋅), {x

j

t, i
j

t}
T ,M

t=1,j=1
) =

M∑
j=1

T∑
t=1

log

�
exp

�
u�(i

j
t ,x

j
t)+�EV� (i

j
t ,x

j
t)
�

∑
i∈{0,1} exp

�
u� (i,x

j
t)+�EV�(i,x

j
t)
�

�

+
M∑
j=1

T∑
t=1

log h�2(Δx
j
t
).

(19)c(xt, �1) = 10−3 ⋅ �1xt.

(20)c(xt, �1) = 10−5 ⋅ �1x
3
t
.

205Adaptive grids for the estimation of dynamic models

1 3

flexible grid; and a uniform grid where the number of nodes is chosen such that the
two grids have roughly the same accuracy in terms of the L∞ norm.

Table 2 lists approximation errors, computation times, and iteration counts for all
approximations. The upper panel shows the results for the linear cost function Eq. 19.
We find that for the benchmark case with 400 nodes the approximation errors are small
with a L∞ error of 1.7e − 4. The BE solution with five nodes has an error of 0.0441,
while the error with a uniform grid with equally many nodes is more than twice as
large. To obtain the same accuracy with the uniform grid, 10 nodes are needed in this
example. Comparing computation times, we find that the uniform-grid solution with
10 nodes is still significantly faster compared to the BE grid solution. Hence, in this
example it appears to be more efficient to simply increase the number of nodes of the
uniform grid instead of using the flexible-grid method.

The results turn in favour of the BE solutions when we solve the model with the cubic
cost function Eq. 20: In this case, 40 uniformly distributed nodes are needed to obtain
the same accuracy as with the BE grid with five nodes. Comparing computation times,
we find that it actually takes longer to compute the fixed-grid solution (0.5201 seconds)
compared to the flexible grid (0.4391 seconds). Figures 3 and 4 depict the four different
approximations of the EV functions for the linear and the cubic cost functions, respec-
tively, and illustrate why this is the case: Using the cubic cost function, we find that most
curvature is massed at the low mileage states, while it is almost linear or even constant
otherwise. This makes the approximation of the EV function by piecewise linear seg-
ments over a uniform grid very inefficient, as the nodes should be placed in regions of
high curvature. Conversely, the BE grid efficiently moves the nodes to the critical area
of high curvature, and therefore achieves much higher accuracy using an equal amount
of nodes. Hence, even in such a simple example, and in particular isolated from the full

Table 2   Approximation of the EV Function of the (Rust, 1987) Model

 Approximation errors, computation times, and iteration counts of the approximation of the EV function
Eq. 17 for a fixed parameter vector 𝜃. The upper panel and lower panel list the results for the linear cost
function Eq. 19 and the lower panel the results for the cubic cost function Eq. 20. Besides the bench-
mark solution with a uniform grid of 400 nodes, the tables list the BE solution with five nodes, of which
three are flexible (“Balanced Errors”); a uniform-grid solution with five nodes (“Uniform Grid 1”); and
a uniform-grid solution where the number of nodes is chosen to roughly match the L∞ norm of the BE
solution (“Uniform Grid 2”)

Benchmark Uniform Grid 1 Uniform Grid 2 Balanced Errors

Linear Cost Function
L∞ 0.0002 0.1054 0.0436 0.0441
Relative Time − 25% 50% 100%
Iterations 8 8 7 13
Nodes 400 5 10 5
Cubic Cost Function
L∞ 0.0022 4.3390 0.1151 0.1120
Relative Time − 14% 119% 100%
Iterations 6 4 6 17
Nodes 400 5 40 5

206 A. Lanz et al.

1 3

estimation problem, the flexible-grid solution can be more efficient compared to approxi-
mation over uniform grids.

So far, we have assumed that the parameter vector 𝜃 is fixed, and thus only the
dynamic programming model needs to be solved. The next subsection addresses
the complete parameter estimation problem using simulated data.

We conclude this example with a note on approximation errors and their potential
implications on the estimation error in the maximum likelihood process: Figures 3
and 4 imply that much of the error from approximation over coarser grids comes from
a wrong level of value. This is actually very natural: Recall that in contrast to the inter-
polation examples above, the true level of the value function is not explicitly given;

Fig. 3   EV as a Function of x for the Linear Cost Function Eq. 19. EV as a function of mileage state x for
fixed 𝜃 and linear cost function Eq. 19

Fig. 4   EV as a Function x for the Cubic Cost Function Eq. 20. EV as a function of mileage state x for
fixed 𝜃 and cubic cost function Eq. 20

207Adaptive grids for the estimation of dynamic models

1 3

rather, the value function as defined in Eq. DP is the discounted sum of future expected
values, forming the fixed-point Eq. 1. Therefore, if future value is overestimated, the
present value will be overestimated, too. Since the value function in this example is
convex, every linear interpolation will overestimate the value, which becomes particu-
larly apparent if the grid is coarse, such as in the example with the uniform grid with 5
nodes. (Of course, this effect cannot be corrected by shifting the value function down-
wards, as in general the true level of the value function is unknown.)

With regard to the maximum likelihood estimation and in particular the parameter
estimation error, it is important to note that the error in the level of the value function—
which serves as a natural quality measure in the present context of function approxima-
tion—does not matter anymore. Rather, the likelihood function computes the probability
(or density function value) of value differences for different choices, which is more related
to the gradient of the value function. While we can see from the pictures that these differ-
ences will also be dampened by linear approximations (i.e. underestimated when compar-
ing high- to low-mileage states), their quantitative effect cannot be easily anticipated given
(i) the non-linearities induced by the density functions of the random variables forming
the likelihood function, (ii) and the potentially highly non-uniform “weighting” induced
by the data. Therefore, the fact that approximation over balanced error grid roughly pro-
duces the same approximation error as the uniform grid with 10 nodes does not imply
that the two configurations will also result in similar estimation errors. As a consequence,
the fact that the balanced error grid is less efficient in approximating the value function
implied by a linear cost function compared to a uniform grid with more nodes, does not
imply that it is also less efficient when assessing the parameter estimation error; actually,
as we will show shortly, the opposite is true in this model.

3.2.3 � Monte Carlo study for the parameter estimation problem

In this subsection, we estimate the parameters of the bus engine replacement model
of Rust (1987) using the flexible-grid approach and compare it to the standard fixed-
grid solution by solving problem Eq. (3). In the first example with a linear cost func-
tion, we demonstrate the applicability and efficiency of the flexible-grid approach
for both MPEC and NFXP. To limit the number of examples, we concentrate on the
MPEC implementations for the additional examples thereafter.

In order to obtain a measurement of variation, we simulate 100 datasets with
500 buses each running for 150 periods. For the simulation of the data, we use the
same parameters as in the previous example, given by β = 0.99, RC = 11.7257, 𝜃1
= 2.4569, and 𝜃2 = 1.5; furthermore, we use a linear cost function as in Eq. 19 as
well as a cubic cost function as in Eq. 20. For each dataset, we use three starting
points for 𝜃, given by (RC, �1) ∈ {(2, 1), (10, 3), (17, 5)} (one significantly smaller,
one close to, and one significantly larger than the true parameters). Also, as in the
original model, the parameter of the mileage state transition, 𝜃2 = 1.5, can be esti-
mated independently, which is why we focus on the estimation of the cost param-
eters RC and 𝜃1.16 To compute the one-period-ahead value expectations in Eq. 17,

16  To avoid the multicolinearity issue pointed out by (Rust, 1987), we also assume β to be fixed.

208 A. Lanz et al.

1 3

we use 10-node Gauss–Laguerre quadrature rules. For the maximum value of the
approximation interval we use 1.5 times the maximum value of the mileage state
obtained from the simulated data.

As in the previous section, we use four different approximations of the expected
value function: a benchmark solution using 400 uniformly distributed nodes; the BE
solution with five nodes, of which three are flexible; a uniform fixed grid with as many
nodes as the flexible grid; and a uniform grid where the number of nodes is chosen to
roughly match the relative root mean squared error (rRMSE)17 of the BE grid.

Table 3 lists parameter estimates, errors with respect to the benchmark solution
(rRMSE) and computation times for all approximations for the estimation using MPEC.
We find that for the 5-node uniform grid, the estimates dramatically differ from the
benchmark solution, and are not even within four standard deviations; the error of the
5-node uniform grid is large given an rRMSE of 0.1101. The BE solution with five
nodes, of which three are flexible, produces much more accurate results, with an rRMSE
of 0.0264. To obtain the same level of accuracy, a uniform grid with 17 nodes is needed.
Comparing efficiency, we find that the BE solution is about 1.6 times faster than the uni-
form solution with the same accuracy. Also, we find that for all approximation methods
all runs converged, which indicates that the BE method is also sufficiently stable. The
results for the estimations using NFXP are reported in Table 4; we find them to be very
similar to the MPEC case, and draw the same qualitative conclusions.18

In Table 5 we show the corresponding results for the cubic cost function Eq. 20.
For this, we slightly recalibrate the model and use 𝜃2 = 0.075 instead of 𝜃2 = 1.5.
For 𝜃2 = 1.5, the realizations of the mileage state of the Monte Carlo runs are not in
the area of the EV function with a significant amount of curvature (see left panel of
Fig. 5). Hence, a flexible grid method can not show its full potential. For 𝜃2 = 0.075,
the situation changes and more realizations of the mileage state are within the part of
the EV function with high curvature. Therefore, we use this calibration to show the
methods potential instead.

Table 5 shows that a uniform grid with 26 nodes is required to match the accuracy
of the BE solution with 5 nodes. This in turn requires a computation time 1.7 times as
long as for the BE method. Hence, the efficiency gain is even larger than for the linear
cost function.

17  We define the rRMSE as

where J is the number of datasets, K is the number of initial guesses per dataset, R̂Cj,k and 𝜃̂j,k
1

 are the
parameter estimates for dataset j and initial guess k, respectively, and the subscript B denotes the bench-
mark solution.

(21)rRMSE =

√√√√√1

J

1

K

J∑

j=1

K∑

k=1

(
R̂C

j,k
− R̂C

j,k

B

R̂C
j,k

B

)2

+

(
𝜃̂
j,k

1
− 𝜃̂

j,k

1,B

𝜃̂
j,k

1,B

)2

,

18  Note that we always initialize the flexible-grid method from a feasible starting point. Therefore, we
first compute the uniform-grid solution with equally many nodes to obtain estimates 𝜃 . Second, we solve
the BE constraints problem to obtain a feasible grid for 𝜃 . All reported computation times include this
initialization.

209Adaptive grids for the estimation of dynamic models

1 3

We conclude the discussion of the results by noting that by using flexible grids
with BE constraints in the context of both NFXP and MPEC estimation of dynamic
programming models, one can potentially harvest significant gains in efficiency,
compared to standard uniform-grid approximations.

3.2.4 � Discontinuities in the likelihood functions caused by node insertion

In the previous section, we have demonstrated that the balanced error approach for
grid adaption enables the use of flexible interpolation grids in MPEC type estima-
tion algorithms, which can be highly beneficial in terms of computational efficiency.
However, we also argued that its application in the context of NFXP type methods
can be beneficial, too, because it avoids the discontinuities induced by node inser-
tion type grid adaption. In the next few paragraphs, we illustrate how these discon-
tinuities can arise and what trouble they can cause for optimizers, using the bus
engine replacement example from the previous section.

An important difference to the analysis above is that the effect of discontinuities
caused by node insertion is extremely difficult to quantify. This is because we would
need to interpret actual solver behavior, which can only be observed through a set
of possible symptoms, such as early termination (throwing an error), wrong conver-
gence (without error), very slow or even no convergence at all, etc. However, link-
ing these effects causally to the discontinuities is very hard, if not impossible, and
highly speculative, too. Moreover, the presence and severeness of problems caused
by these discontinuities depends on many factors (and their interactions), such as
the solver’s algorithm and its implementation, the concrete grid node insertion and

Table 3   Results for the MPEC Estimation of the (Rust, 1987) Model with a Linear Cost Function

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 300 Monte Carlo runs. The
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 400
nodes, the table lists the BE solution with five nodes, of which three are flexible (“Balanced Errors”); a
uniform-grid solution with five nodes (“Uniform Grid 1”); and a uniform-grid solution where the number
of nodes is chosen to roughly match the rRMSE of the BE solution (“Uniform Grid 2”). The cumulative
serialized computation times are shown in minutes

Benchmark Solution Uniform Grid 1 Uniform Grid 2 Balanced Errors

RC 11.7643 11.0023 11.6297 11.5806
(0.3835) (0.2916) (0.3678) (0.3601)

𝜃1 2.4750 2.2571 2.4099 2.5152
(0.1352) (0.1131) (0.1289) (0.1363)

rRMSE − 0.1101 0.0287 0.0264
Absolute time 1495 12 39 24
Relative time − 49% 163% 100%
Nodes 400 5 17 5
Runs converged 100% 100% 100% 100%

210 A. Lanz et al.

1 3

deletion mechanism (of which many fundamentally different variants exist), the con-
crete model, and even the starting points of the likelihood optimization.

Hence, our approach to addressing this issue is purely qualitative. In the follow-
ing, we work with two fixed grids: a uniform “original” grid, and the “adapted” grid,

Table 4   Results for the NFXP Estimation of the (Rust, 1987) Model with a Linear Cost Function

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 300 Monte Carlo runs. The
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 400
nodes, the table lists the BE solution with five nodes, of which three are flexible (“Balanced Errors”); a
uniform-grid solution with five nodes (“Uniform Grid 1”); and a uniform-grid solution where the number
of nodes is chosen to roughly match the rRMSE of the BE solution (“Uniform Grid 2”). The cumulative
serialized computation times are shown in minutes

Benchmark Solution Uniform Grid 1 Uniform Grid 2 Balanced Errors

RC 11.7428 10.9879 11.6115 11.5445
(0.3922) (0.2973) (0.3765) (0.3749)

𝜃1 2.4664 2.2511 2.4031 2.4972
(0.1379) (0.1146) (0.1317) (0.1380)

rRMSE − 0.1093 0.0280 0.0265
Absolute time 581 22 64 47
Relative time − 46% 137% 100%
Nodes 400 5 17 5
Runs converged 100% 100% 100% 100%

Table 5   Results for the MPEC Estimation of the (Rust, 1987) Model with a Cubic Cost Function

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 300 Monte Carlo runs. The
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 400
nodes, the table lists the BE solution with five nodes, of which three are flexible (“Balanced Errors”); a
uniform-grid solution with five nodes (“Uniform Grid 1”); and a uniform-grid solution where the number
of nodes is chosen to roughly match the rRMSE of the BE solution (“Uniform Grid 2”). The cumulative
serialized computation times are shown in minutes

Benchmark Solution Uniform Grid 1 Uniform Grid 2 Balanced Errors

RC 11.7224 10.5201 11.5708 11.5575
(0.1335) (0.8962) (0.1450) (0.1418)

𝜃1 2.4538 2.3156 2.4406 2.4539
(0.0317) (0.2110) (0.0336) (0.0343)

rRMSE − 0.1614 0.0142 0.0143
Absolute time 1316 11 50 29
Relative time − 38% 170% 100%
Nodes 400 5 26 5
Runs converged 100% 99.3% 100% 97.3%

211Adaptive grids for the estimation of dynamic models

1 3

where one node has been deleted in a region with low curvature, and inserted in a
region with high curvature; Figure 6 depicts the EV function approximation over
both grids for two different parameters RC; for expositional purposes, we ignore all
other parameters in this section. One can think of these two grids as one step within
an algorithm for grid adaption by node insertion.

Most node insertion algorithms have an approximation error threshold, which—
once reached—triggers the insertion (and possibly deletion) of one or several
nodes. In this example, we assume that somewhere between RC = 10.2257 and RC
= 11.7257, say at RC0, some criterion triggers the insertion of one node (for example
a function estimating the relative improvement in approximation error from adding
a particular node). Consequently, if we approximate the EV function for a sequence
of values of RC—which is what the likelihood maximization process will eventually
do—, the sequence of corresponding EV approximations is discontinuous at RC0,
because of the change of the underlying grid.

Consider the two likelihood functions for the Rust (1987) model as in the pre-
vious sections depicted in Fig. 7; note that both likelihood functions represent the
same model and data set, but use choice probabilities based on approximations of
the EV functions over the two different grids. We choose an arbitrary value of RC0,
and denote the intersection of the two likelihood functions by RC*. Then, it becomes
apparent that of for every potential solver step from RCi to RCi+ 1, where RCi < RC0
and RC0 < RCi+ 1 < RC*, the active grid for the EV approximations changes from the
“original” to the “adapted” grid (by definition of RC0), and therefore the “relevant”
likelihood function switches discontinuously, too. Consequently, the solver might
find that the objective function value has decreased (while maximizing), which is,
however, and artifact of changing the underlying grid adaption. As a consequence,
many solvers will reduce the step or trust region size and try until they find a search
direction and step size which yields an improvement. If in this process, the solver

Fig. 5   Comparison of EV Functions for Different Values of 𝜃2. The figure shows the true EV function for
the 1D bus replacement problem with a cubic cost function. The left panel depicts the case with 𝜃2 = 1.5
and the right panel with 𝜃2 = 0.075. All other model parameters are choosen as described in the begin-
ning of Section 3.2.3. The figures also show the histrograms for the mileage state from the 300 Monte
Carlo runs (right y-axis)

212 A. Lanz et al.

1 3

iterates to a point where RCi ≈ RC0, it might stop prematurely because no local
improvement is possible from this point.

We conclude this analysis by noting again that it is neither complete nor able
to capture any of the effects quantitatively; however, it still gives an idea of the
numerical problems that might cause trouble even for high-quality solvers. There-
fore, we argue that also when using NFXP for estimating dynamic programming
models, where the implementation of grid adaption by node insertion is techni-
cally possible, one might want to adapt our approach of continuous grid adaption
by node movement, solely to avoid the artificial discontinuities node insertion
creates even for smooth and well-defined problems.

3.2.5 � The Rust (1987) model with a serially correlated unobserved utility compo-
nent

In this section we show, that our grid adaption approach can also lead to large
efficiency gains for higher dimensional models. For this, we extend the bus
engine replacement model of Rust (1987) to feature a serially correlated error
component, similar to Reich (2018), but keeping the usual EV1 iid. error compo-
nent intact. We assume that the additional utility shock ηt follows an AR(1) pro-
cess; the modified utility function becomes

where �t = ��t−1 + Δ�t
 with Δ�t

∼ N(0, �) . The serially correlated utility shock can
be thought of as a persistent damage or problem with a particular bus.

(22)u�(i, xt, �t) + �t(i), u�(i, xt) =

{
−RC if i = 1

−c(xt, �1) + �t if i = 0.

Fig. 6   Comparison of EV Function Approximations over Two Different Grids for Different Values of
RC. The figure shows the true EV function as well as two approximations over different grids for the
1D bus engine replacement model with a linear cost function. The left panel depicts the case with RC
= 10.2257 and the right panel with RC = 11.7257. The true EV function is depicted by the thin black
dashed line; the red and the blue lines depict the two approximations over different grids (red: uniform
grid, blue: one node inserted, one node deleted to/from uniform grid)

213Adaptive grids for the estimation of dynamic models

1 3

Due to the serial dependence of the utility shock, the EV function features an
additional state and thus re-writes as

where ϕσ(Δη) is the probability density function of the normal distribution with
mean zero and standard deviation σ. Note that the main difficulty arising from a
utility specification with serially correlated unobserved states as in Eq. 22 is not
the approximation of the EV function Eq. 23 which increases in dimensionality by
the dimension of the state variable, but rather the computation of the corresponding
likelihood function, as the serially correlated unobserved states have to be integrated
out. This leads to a numerical integration problem of dimensionality proportional to
the time horizon, which can be very large. Therefore, we apply the recursive likeli-
hood function integration method of Reich (2018) in the maximum likelihood esti-
mation of the extended model in the next two sections.

3.2.6 � Approximating the EV function for fixed 𝜃

Analogously to the analysis of the one-dimensional model, we first demonstrate
the approximation of the expected value function Eq. 23 for a fixed parameter
value 𝜃, whereas the estimation of the model is deferred to the next subsection.

(23)

EV�(i, x, �) = ∫ ∞

−∞
∫ ∞

0
log

�
∑

i�∈{0,1}

exp
�
u�(i

�, (1 − i)x + Δx, (1 − i)(�� + Δ�))

+�EV�(i
�, (1 − i)x + Δx, (1 − i)(�� + Δ�)

��
h�2(Δx)��(Δ�)dΔxdΔ�

Fig. 7   Comparison of the Likelihood Function using Two Different Grids to Compute Choice Probabili-
ties. The left figure shows the likelihood functions for the 1D bus engine replacement model with a linear
cost function, for the true EV function as well as approximations thereof over two different grids. The
likelihood function using the true EV function is depicted by the thin black dashed line; the red and the
blue lines depict the likelihood functions using the two approximations on different grids (red: uniform
grid, blue: one node inserted, one node deleted to/from uniform grid). The right figure depicts the single
likelihood function as a solver can evaluate it, given it switches the active grid at RC0

214 A. Lanz et al.

1 3

As mentioned in the previous section, the key difference between the expected
value function of the model with a serially correlated unobserved utility compo-
nent, in contrast to the one without it, is that EV is now a function of two con-
tinuous variables, x and η (leaving aside the binary choice variable i for readabil-
ity), since both values are observed by the agent and thus influence his decisions.
However, the application of balanced errors and grid adaption by node movement
is not a direct extension of our results from the previous sections: As we argue in
detail in Appendix A.2, going to dimensions higher than one, there is generally
a mismatch between the number of grid cells on which error comparisons can be
carried out (serving as a basis for error balancing), and the number of degrees of
freedom to actually move the nodes; as a consequence, the set of equations from
balanced errors will be non-square, potentially causing several sorts of numerical
issues of under- or over-determination.

Consequently, we will limit our attention to an extension of our method which
performs grid adaption in one dimension only: If one thinks about each node as a
vector of two components each and thus the whole grid as a matrix of vectors (i.e.
an (m,n,2)-tensor), � ≡ (xi, �j)

m,n

i=1,j=1
 , we allow only one of the two components to

be adapted. At the same time, the maximum error within each “cell block” (i.e. all
cells for which the adapted component’s indices are either i or i + 1) is computed,
and balanced across cell blocks; more formally, if for example the grid is flexible
in the x dimension, the maximum error within each cell block is—analogously to
Eq. 11b—given by:

 where the error maximization now explicitly involves η. Otherwise, the balanced
error system is identical to the one-dimensional system Eq. (11).

In Fig. 8, we plot the expected value function Eq. 23 and the corresponding two-
dimensional grid for a particular parametrization; in particular, we set 𝜃, we use RC
= 30, 𝜃1 = 7, β = 0.99, ρ = 0.65, σ = 2 and 𝜃2 = 0.05.19 For the utility function, we
use the standard linear function Eq. 19. For the mileage state, we assume that the
maximum mileage is given by xmax = 2000 and for ηt we use an approximation inter-
val of ± 4 standard deviations around its unconditional mean.

For the algorithm, we use the same parametrization, software and hardware as in
Section 3.1 (except that the “fmincon” algorithm option is “interior point”). Analo-
gously to Section 3.2.2, we consider four different approximations for each of the
cost functions: a benchmark case using 900 uniformly distributed nodes (30 in each
dimension); the BE solution with four nodes in the mileage dimension, of which two
are flexible; a uniform fixed grid with as many nodes as the flexible grid; and a uni-
form grid where the number of nodes is chosen such that the two grids have roughly
the same accuracy in terms of the L∞ norm. For the η-dimension, we use eight nodes.

zi = max
xi≤x<xi+1,𝜂|RV̂ (x, 𝜂;�, �)| ∀i ∈ I

19  The parameters are chosen to stay as close as possible to the one-dimensional example; however, the
order of magnitude of the cost parameters needs to be adapted to accommodate for the additional utility
component and is therefore chosen similar to the results of Reich (2018).

215Adaptive grids for the estimation of dynamic models

1 3

Table 6 lists the quantitative results; similar to the one-dimensional case (cf.
Table 2), we see that for the EV problem alone with linear cost functions, the over-
head of the larger system involving error balancing dominates the efficiency gains
from having less grid nodes. As we will see in the next section, the efficiency gais
for the estimation of the full problem are nevertheless large and significant. Figure 9
depicts “cuts” through the EV function for three different values of η in order to
allow for visual comparison of the various configurations and their approximation
errors, which qualitatively yield the same result as in the one-dimensional case.

3.2.7 � Monte Carlo study for the parameter estimation problem

In this subsection, we estimate the parameters of the bus engine replacement model of
Rust (1987) with a serially correlated unobserved utility component. For this, we simulate
30 datasets each containing 3000 engine replacements. For the simulation of the data, we
use the same parameters as in the previous subsection, given by RC = 30, 𝜃1 = 7, β = 0.99,
ρ = 0.65, σ = 2 and 𝜃2 = 0.05, together with the linear cost function Eq. 19. For each data-
set, we start the estimation procedure from three different starting points for 𝜃, given by
(RC, �1) ∈ {(25, 5), (30, 7), (35, 9)} (one larger, one equal to, and one smaller than the
true parameters). Also, as in the original model, the parameter of the mileage state transi-
tion, 𝜃2 = 0.05, can be estimated independently, which is why we focus on the estima-
tion of the cost parameters RC and 𝜃1. We use 3-node Gauss–Laguerre quadrature rules
to compute the one-period-ahead value expectations in Eq. 23 for the mileage state and
3-node Gauss–Hermite quadrature rules to compute the one-period-ahead value expecta-
tions for the η-state. For the maximum value of the approximation interval of the mileage
state, we use 1.5 times the maximum value obtained from the simulated data. For the
η-state we use ± 4 standard deviations around its unconditional mean.

Table 7 lists parameter estimates, errors with respect to the benchmark solution
(rRMSE) and computation times for the estimation using MPEC. We find that the uni-
form solution with only 4 x-nodes produces a large rRMSE and the parameter esti-
mates significantly differ from the benchmark solution. By allowing two out of the
four nodes to be flexible, the RMSE can be improved significantly (from 0.5139 to
0.1448) and the parameter estimates become much closer to the benchmark values. To
achieve about the same accuracy in terms of the rRMSE, a fixed grid solution with 8
nodes in the x-dimension is required.20 This in turn significantly increases computa-
tion times. We observe that the BE solution that matches the accuracy of the fixed grid
solution is 1.74 times faster. In absolute values the computation time can be reduced
from 7595 to 4365 minutes—a reduction by more than 53 hours. Also, we find that for
all approximation methods all runs converged, which indicates that the BE method is
also sufficiently stable.

20  In fact, with 8 nodes, the fixed grid solution has a slightly smaller rRMSE than the BE solution
(0.1275 compared to 0.1448). However, for a fixed grid solution with only 7 nodes, the rRMSE increases
to 0.1840 and is hence significantly larger than the error for the BE solution which is why we compare
the BE grid to the fixed grid with 8 nodes. But the BE solution is also 1.49 times faster than the fixed
grid solution with 7 nodes as Table 7 shows.

216 A. Lanz et al.

1 3

4 � Empirical application

To demonstrate the applicability of the proposed method, we utilize data from
one of the world’s leading user-generated content networks in the domain of
music. Inspired by the pioneering work by Erdem and Keane (1996), in our dem-
onstration we consider the consumers’ inherent trade-off between exploration and
exploitation in their consumption decisions: When consumers enter a market,
they sample products to gather information, an activity that eventually becomes
somewhat routinized. However, since products evolve over time and new ones are
introduced, this routine is continuously disrupted forcing consumers to resume
their sampling activity.

Fig. 8   Balanced Error Grid and EV Function for the Rust (1987) Model with a Serially Correlated Unob-
served Utility Component. The figure shows the balanced error grid (left) as well as the corresponding
EV function (right) for the Rust (1987) model with a serially correlated unobserved utility component,
obtained from the approximation of the two-dimensional EV function Eq. 23 for a fixed parameter vector
𝜃 

Table 6   Approximation of the EV Function of the (Rust, 1987) Model with a Serially Correlated Unob-
served Utility Component and Linear Cost Function

 Approximation errors, computation times, and iteration counts of the approximation of the two-dimen-
sional EV function Eq. 23 for a fixed parameter vector 𝜃. Besides the benchmark solution with a uniform
grid of 30 nodes for each dimension, the tables list the BE solution with four nodes in x-dimension, of
which two are flexible (“Balanced Errors”); a uniform-grid solution with four nodes (“Uniform Grid 1”);
and a uniform-grid solution where the number of nodes is chosen to roughly match the L∞ norm of the
BE solution (“Uniform Grid 2”). For the η-dimension we use eight nodes

Benchmark Uniform Grid 1 Uniform Grid 2 Balanced Errors

L∞ 0.4348 5.6425 3.0581 2.8302
Relative Time − 11% 67% 100%
Iterations 13 10 11 13
Nodes (x) 30 4 10 4
Nodes (η) 30 8 8 8

217Adaptive grids for the estimation of dynamic models

1 3

We postulate that platform users face a similar trade-off: When signing up, con-
sumers are exposed to a variety of music artists in the form of ”trending playlists”
from each genre. This allows the consumers to explore new music artists and their
songs. Following this initial sampling activity, they may listen to the same artists
again (exploitation) or explore new ones (exploration).

In this section, our objective is to specify a model to understand this trade-off between
exploration and exploitation. We assume that there is an inherent satisfaction with the

Fig. 9   EV as a Function of x for the Rust (1987) Model with a Serially Correlated Unobserved Util-
ity Component. EV as a function of mileage state x and a linear cost function Eq. 19 obtained from the
approximation of the 2 dimensional EV function Eq. 23 for a fixed parameter vector 𝜃. The three panels
show the cases where ηt is 4 standard deviations below its unconditional mean (left), at its unconditional
mean (center) and 4 standard deviations above its unconditional mean (right)

Table 7   Results for the MPEC Estimation of the Rust (1987) Model with a Serially Correlated Unob-
served Utility Component

 Mean and standard deviation estimates of the parameters RC and 𝜃1 from 90 Monte Carlo runs. The
relative root mean square error (rRMSE) is reported as a measure of variation of the estimates from the
benchmark solution. Also reported are computation times relative to the BE solution, the number of grid
nodes, and the number of runs converged. Besides the benchmark solution with a uniform grid of 484
nodes (22 in each dimension), the table lists the BE solution with four nodes in the mileage dimension,
of which two are flexible (“Balanced Errors”); a uniform-grid solution with four nodes in the mileage
dimension (“Uniform 1”); and two uniform-grid solution where the number of nodes is chosen to roughly
match the rRMSE of the BE solution: As with 7 nodes in the mileage dimension, the rRMSE is still
significantly larger compared to the BE solution while it is slightly smaller for 8 nodes, both cases are
reported (“Uniform 2a” and “Uniform 2b”). For the η-dimension we use eight nodes. The cumulative
serialized computation times are shown in minutes

Benchmark Uniform 1 Uniform 2a Uniform 2b Balanced Errors

RC 30.2555 18.3569 26.5310 27.5313 26.4230
(0.6551) (0.6622) (0.8936) (0.6808) (0.5608)

𝜃1 8.5024 5.6935 7.3652 7.7407 8.6745
(0.2359) (0.1069) (0.3131) (0.2334) (0.4797)

rRMSE − 0.5139 0.1840 0.1275 0.1448
Absolute time 101619 2719 6496 7595 4365
Relative time − 62% 149% 174% 100%
Nodes (x) 22 4 7 8 4
Nodes (η) 22 8 8 8 8
Runs converged 100% 100% 100% 100% 100%

218 A. Lanz et al.

1 3

consumed content, i.e., the previously listened artists on the platform. The satisfaction with
this ”stock of artists,” however, is subject to depreciation: If a consumer engages in exploi-
tation by listening to the same artists over and over again, then satisfaction decreases gradu-
ally. To counter, one can engage in exploration, which involves risk: The consumer has to
search for a new artist but, at the same time, is faced with uncertainty regarding the degree
of positive spillovers from this new artist on the current stock. Hence, while exploring, the
potential increase in satisfaction is contrasted with the search costs of finding a new artist.

We estimate this model, which allows us to understand the trade-off between
exploration and exploitation, with MPEC (Su & Judd, 2012) including grid adaption
as proposed in the previous section. The estimated model allows us to understand
whether consumers enjoy the process of searching for new artists itself, or if con-
sumers attach costs to the search process and obtain utility from consuming their
current stock of artists. This question is inherently linked to the efficiency of the
platform’s recommender system. The main premise of such a system is to facilitate
the exploration of new content and therefore decrease search costs (see Ricci et al.,
2011 for an overview). Along these lines, our objective is to uncover the sign as well
as magnitude of these search costs of a set of active platform users.

In the following we introduce the model specification, followed by the descrip-
tion of the data as well as the model estimation and results.

4.1 � Model

We refer to exploration as listening to a song from a new music artist, i.e., from someone
who a given consumer has never played a song during his or her tenure on the platform.
Correspondingly, exploitation is the instance in which a given consumer listens to a song
from a familiar artist. Once a consumer signs up to the platform, s/he has not played any
song yet and therefore the continuous satisfaction state x is zero, and can reach at maxi-
mum one once this consumer starts browsing the platform. Hence, zero reflects a totally
unsatisfied and one a totally satisfied consumer.

The choice between exploration and exploitation yields the following instantaneous
pay-offs: On the one hand, discovering an appealing new artist is associated with explor-
ing and then finding this artist. We assume that searching for new artists induces costs
(i.e., time) which—net of an average utility obtained from listening to a song from a new
artist21—is denoted 𝜃NSC, where NSC stands for net search costs. Note that this utility is
independent of the satisfaction state with the current stock of artists.

On the other hand, exploitation delivers a utility that depends on the satisfaction
state with current stock of artists, formally modelled by a function of the satisfaction
state U(x;𝜃U), which is parametrized by 𝜃U. Note that we impose U(0;𝜃U) = 0 to give
the sign of utility and the net search costs a natural interpretation. Adding extreme
value type 1 random utility component to both choices, i.e., exploration and exploi-
tation, we can summarize the instantaneous pay-offs as follows:

21  This setup does not allow for the differentiation between search costs and the utility from listening to a
song from a new artist due to identification limitations.

219Adaptive grids for the estimation of dynamic models

1 3

Exploitation results in depreciation of the satisfaction state with the current stock of
artists, i.e., xt = xt− 1 * 𝜃exploit, whereas exploration follows a continuous probability den-
sity distribution with the following properties (see Appendix A.3 for details): Given xt, all
higher satisfaction states have positive density—with a shape parametrized by (a vector)
𝜃explore—, except at the satisfaction maximum 1, which has zero density.

If we assume that consumers behave dynamically optimal—i.e., they maximize
their expected discounted utility from future content consumption—the specification
of the model gives rise to a standard Bellman equation, where the decision probabil-
ities are the well-known logit decision probabilities. Denoting the discount factor of
the dynamic optimization problem by β, the vector of structural parameters consists
of 𝜃 ≡ (𝜃NSC,𝜃U,β,𝜃explore,𝜃exploit).

4.2 � Data

We utilize data from one of the world’s leading user-generated content networks in the
domain of music, where music artists can build their career by interacting with their
fans (see, e.g. Lanz 2019). Hence, this platform consists of two types of users: music
artists and fans. We focus on the latter type as our goal is to understand the trade-off
between exploration and exploitation from a consumer perspective.

On the platform, consumers can listen to songs from music artists uploaded on
the artists’ profiles, where some of these songs also get featured in the trending
playlists published on the front page. Therefore, for new sign-ups, these playlists
provide the first opportunity to explore new music artists. Following the initial
sampling activity, they may listen to further songs by the same artist when brows-
ing the respective profile.

Within the scope of our research collaboration with the platform, we received a
data sample on sign-ups covering their listening activity on a consumer level over four
years. This individual-level panel reveals for each consumer what song by which music
artist s/he played at which moment in time. This allows us to determine whether, over
time, a consumer engaged in exploration or exploitation, i.e., listened to the same artists
again or explored a new one.

For our analysis we rely on a set of sufficiently active platform users and therefore consider
consumers in the top 20% in terms of song plays. The resulting sample consists of a total of
1,171 consumers who altogether played 3,094,418 songs (mean= 2,642.54; sd= 4,316.98).
On average, they explored in every fourth song play a new artist (mean=.28; sd=.13). Since
there is considerable heterogeneity in the exploration activity, for the estimation we form 20
dataset-buckets, each capturing five percents along the distribution, which we then compare.
Table 8 shows further summary statistics on our sample, including the distribution of the
consumers’ song plays and proportion of exploration as well as exploitation. It also contains
the distribution concerning the longest sequence of exploration as well as exploitation on the
consumer level.

(24)�(x, i;�) + �(i) =

{
�NSC + �(1) if explore,

U(x;�U) + �(0) if exploit.

220 A. Lanz et al.

1 3

4.3 � Estimation with unobserved states

To estimate this model we apply—utilizing the platform data—maximum likelihood
estimation using MPEC (Su & Judd, 2012) including grid adaption. In our context in
which the consumer’s satisfaction with the consumed content is unobserved, the likeli-
hood is not straightforward to compute, because it forms an integral over the unob-
served states. To cope with this condition, we apply recursive likelihood integration
(RLI; Reich 2018; Lanz et al., 2021). The model and the estimation method are imple-
mented in MATLAB using CasADi (Andersson et al., 2019); the MPEC problem is
solved using the KNITRO constrained optimization solver.

4.4 � Results

Table 9 exhibits the estimation results of all parameters across all dataset-buckets, where
each bucket captures five percents along the distribution of exploration activity. First and
foremost, we find that the net search costs 𝜃NSC are always negative. Recall that nega-
tive search costs mean, in fact, positive utility obtained from listening to a song from a
new artist. Considering the estimate, it seems that consumers associate a positive attitude
towards exploring and finding new artists—even in those buckets pooling consumers with
a low exploration activity.

Furthermore, we find not only the net search costs 𝜃NSC to be quite stable across
dataset-buckets, but also all other utility parameters. Regarding the discount factor
β, we find considerable variation in the estimates across all dataset-buckets, and thus
the degree of dynamic behavior underlying the observed decisions, ranging from
zero to significant, though rather low values. This is consistent with the finding that
consumers obtain utility from searching itself, hence they are not necessarily as for-
ward-looking to achieve reasonable utility levels.

Note that since of the formed 20 dataset-buckets 18 converged, we excluded two buck-
ets in the summary statistics in Table 9, i.e., the two covering the bottom ten percents of
the exploration activity distribution. Also note that we report estimates for linear explora-
tion utility; other functional forms yielded qualitative similar results.

We conclude that we do not find supportive evidence that recommender sys-
tems—beyond the features that have been in place when the data collection took
place—do create significant additional value in terms of search cost reduction poten-
tial. This is in line with the conjecture that platform users tend to like exploring new
music artists and therefore self-select into our sample by signing up to the platform.

5 � Conclusion

In this paper we show how to integrate flexible interpolation grids with the estima-
tion of dynamic programming models using both the NFXP of Rust (1987) and the
MPEC approach of Su and Judd (2012). We derive a set of conditions to enforce
balanced errors (BE), which we argue to be sufficient for optimality for functions in
one dimension. In particular we make use of the equioscillation theorem to obtain

221Adaptive grids for the estimation of dynamic models

1 3

value function approximations that are optimal in the L∞ norm, given their func-
tional form and the total number of grid nodes.

We demonstrate the equivalence of minimizing the L∞ norm directly using non-
linear optimization and imposing BE constraints in several numerical experiments.
We observe that in all cases considered, computations using the BE constraints are
significantly faster than direct minimization. This finding suggests that our approach,
integrated with NFXP or MPEC might be a fast and efficient way of obtaining pre-
cise parameter estimates using optimal grids.

We apply our method to the well-known bus engine replacement model of Rust
(1987)—modified to feature a continuous mileage state—and compare our results
to standard uniform-grid approximations with regard to accuracy and efficiency:
first, using fixed model parameters we find that the BE grid can significantly reduce
approximation errors compared to a uniform grid with equally many nodes. Fur-
thermore, we show that if the approximated function is of sufficient complexity,
our solution method also has better efficiency; conversely, a fixed-grid solution that
achieves the same level of accuracy as the flexible grid requires considerably longer
computation time.

Second, we compute solutions for the full maximum likelihood estimation prob-
lem for the cost parameters of the bus engine replacement model on simulated data
using NFXP and MPEC with flexible grids. We find that the parameter estimates of
the BE grid approach are significantly closer to the true parameter estimates com-
pared to those of the fixed-grid solution with equally many approximation nodes.
Moreover, a uniform-grid solution where the number of nodes is chosen to match
the accuracy of the flexible grid requires considerably longer computation time.
Consequently, we conclude that using the BE grid approach developed in this paper
to estimate dynamic programming models using NFXP or MPEC with flexible grids
can lead to significant gains in efficiency and accuracy compared to the commonly
used fixed-grid approaches.

Lastly, we extend the model of Rust (1987) to feature a serially correlated, unob-
served utility component, thus resulting in a two-dimensional value function approx-
imation problem. We show how the balanced error criterion can be applied in multi-
dimensional setups, and find that the corresponding relative efficiency gains are
as substantial as in the one-dimensional case; since the absolute timings are much
higher in the two-dimensional case, the absolute gains from grid adaption are even
more significant. The development of a generic approach to adjust node positions
by a single system of equations to augment the constraint optimization approach is
subject to ongoing research.

We conclude this section with a discussion of the limitations of our approach: We
have demonstrated the efficiency gains in examples of one-dimensional state spaces,
as well as two-dimensional state spaces where nodes are only adapted along one
dimensions. In Appendix A.2, we argue that freeing up nodes in two dimensions
comes with problems, as the degrees of freedom do no longer match the number of
BE constraints and thus induce potential problems with over- or under-specification
of the constraint system. While full adaptability of the nodes would be desirable,
the development of more general grid topologies with well-specified BE constraints
under full node flexibility is subject to further research. Meanwhile, we argue (and

222 A. Lanz et al.

1 3

demonstrate) that partial adaption of grid nodes, i.e., the movement of nodes along
one dimension only, can still be a valuable improvement in terms of computational
efficiency—at least in low- to moderate-dimensional state spaces, and in particular
if some of the dimensions are discrete (and thus have, in some sense, fixed “nodes”
anyway). To which extent these gains persist in even higher-dimensional setups is
also still an open question. Finally, the adoption of our approach of course comes at
increased complexity for the researcher, who has to set up a more complex MPEC
estimation problem. We try to alleviate this by providing an exemplary implementa-
tion for the main model of this paper, and encourage researchers to try our method
in particular in situations with little or no prior knowledge about the shape and the
complexity of the (expected) value function as well as its sensitivity to the model
parameters.

Appendix: A

A.1 Function Approximation

Suppose an unknown function f ∶ ℝ ⊇ D → ℝ is to be represented on a computer.
While there are many functions for which a finite-dimensional representation exists,
this is generally an infinite-dimensional problem; also, even if such a representation
exists, it might be unknown, and thus one might need to approximate the function
from a finite number of evaluations. There are several popular approaches to func-
tion approximation, of which we will briefly introduce polynomial approximation,

Table 8   Summary Statistics on Consumer Sample

Min. 10th Perc. Median Mean 90th Perc. Max. Std. Dev.

Song Plays 418 501 1,224 2,643 5,704 58,564 4,317
Exploration .0101 .1336 .2562 .2750 .4334 .8651 .1253
Exploitation .1349 .5666 .7438 .7250 .8664 .9899 .1253
Longest Explor. Seq. 1 15 30 37 65 222 25
Longest Exploit. Seq. 11 47 116 184 358 6,790 279

Table 9   Summary Statistics on Estimates

Min. 10th Perc. Median Mean 90th Perc. Max. Std. Dev.

𝜃NSC − 4.50 − 4.24 − 2.06 − 2.68 − 1.76 − 1.63 1.03
𝜃U 486.52 508.28 558.74 559.49 618.89 647.15 41.34
β .000001 .000045 .044217 .059716 .155460 .175930 .056147
𝜃explore 952.05 980.82 1207.40 1303.40 1526.40 2965.00 449.45
𝜃exploit .94 .95 .96 .96 .98 .98 .01

223Adaptive grids for the estimation of dynamic models

1 3

piecewise polynomial approximation, and splines, mainly to define the nomencla-
ture used in the paper.

A.1.1: Polynomial Approximation

In many function approximation schemes, the approximating function f̂ (⋅;�) is
composed as a weighted sum of basis functions Φn ≡ {�i}

n
i=0

 , with weight vector
� ≡ (ai)

n
i=1

The task of approximating f is thus twofold: first, a suitable set of basis function
has to be identified, and second, the parameters of the function approximation—
in our case the weights on the basis functions—have to be identified, such that the
approximation is “as close as possible” to the approximated function.

In polynomial approximation, the basis functions used to form f̂ are polyno-
mials of degree n or less, and thus the approximation is itself an element of the
space of all polynomials of degree n or less, f̂ ∈ P

n . Consequently, the set of
basis functions used to form Eq. 25 is often chosen to form an orthogonal basis
of Pn ; popular choices are the Chebyshev, the Hermite, or the Laguerre polyno-
mials (see, for example, Judd, 1998 p. 204). Of course, a naive approach is to set
Φn equal to the set of all monomials of degree n or less; however, this can lead to
serious numerical problems when computing the weights a.

The second problem is to find parameters such that the quality of approxima-
tion is “good”. The most widely used approaches are based on one of two con-
cepts—least squares minimization or interpolation.

Define the residual

The least squares approach minimizes the weighted squared errors over the
domain of approximation

where w is a non-negative weighting function, imposing “priorities” on the domain
of approximation. Depending on the algorithm in use, different variants of comput-
ing the integral in Eq. 27, and different weighting functions w, can be applied.

On the other hand, interpolation ensures that the approximation equals the
function at a specific set of interpolation nodes � ≡ (xi)

n
i=1

Here, the parameters a are the solution to the linear system of 28, which is
square if |a| = |x| = n. While the interpolation approach is easy and intuitive, its

(25)f̂ (x;�) ≡
n∑

i=0

ai𝜑i(x).

(26)Rf̂ (x;�) ≡ f (x) − f̂ (x;�).

(27)min
� ∫ D

Rf̂ (x;�)
2w(x)dx,

(28)f̂ (xi;�) = f (xi),∀xi ∈ �.

224 A. Lanz et al.

1 3

result is not as rigorous as the least squares approximation error minimization; a
way to combine the two is the Chebyshev regression approach (see Judd, 1998, p.
223).

A.1.2: Chebyshev Nodes

An important special case of interpolation node choice for polynomial approxima-
tion is the Chebyshev nodes. Suppose a function f on [− 1, 1] is interpolated at n
nodes � ≡ (xi)

n
i=1

 by f̂ ∈ P
n−1 such that Eq. 28 holds. Then, one can show that the

residual as defined by Eq. 26 is (see, for example, Judd, 1998, Theorem 6.7.1)

for some ξ(x) ∈ [− 1, 1], and where Ψ(x;�) ≡ ∏n

i=1
(x − xi).

Consequently, a natural approach to (static) node choice is

since it is independent of the function f to be approximated. Note that Ψ(x; x) is
monic. If we choose the xis to be the roots of the degree n Chebyshev polynomial,

Ψ(x;�̃) can be shown to be the L∞ minimizing polynomial among all monic poly-
nomials of degree n, and therefore constitutes a solution to problem Eq. 30; thus,
�∗ = �̃ . Moreover (see, for example, Judd, 1998, Theorem 6.7.2)

Consequently, using Chebyshev nodes bounds the interpolation error from above
by22

This result has great practical implications, as the interpolation nodes can be
computed independently of f. Furthermore, if f is sufficiently smooth, one can show
that the approximation f̂ converges as the number of Chebyshev interpolation nodes
is increased (see, for example, Judd, 1998, Theorem 6.7.3), which is not necessarily
true for general grid choices (such as uniform grids) in conjunction with polynomial
approximation.

(29)Rf̂ (x;�) =
f (n)(𝜉(x))

n!
Ψ(x;�)

(30)�∗ = argmin
�
‖Ψ(x;�)‖∞,

(31)x̃i ≡ cos

(
(2i − 1)𝜋

2n

)
,

(32)‖Ψ(x;�̃)‖∞ = 21−n.

(33)‖Rf̂‖∞ ≤ ‖f (n)‖∞
n!

21−n.

22  In order for bound Eq. 33 to be well defined, the function f must be n times continuously differenti-
able. Other bounds for less smooth functions exist; see, for example, Judd (1998), Equation 6.7.5.

225Adaptive grids for the estimation of dynamic models

1 3

It is important to note that Chebyshev nodes do not necessarily minimize the
actual interpolation error; rather, they minimize the portion of the error that is inde-
pendent of the function to be approximated. However, we would like to highlight
two interesting special cases: First, suppose the f is such that its n th derivative
is constant. Then, the residual Eq. 29 is constant in ξ, and thus x* minimizes the
total maximum absolute interpolation error. For example, if f ∈ P

n and f̂ ∈ P
n−1 ,

and thus if we approximate a degree n polynomial by a degree n − 1 interpolating
polynomial, using Chebyshev nodes minimizes the L∞ norm of the residual and
thus results in a uniform approximation. Second, for any function with f(n) = 0, the
approximation is exact, independent of the node choice; this includes, for example,
any f ∈ P

k, k ≤ n − 1.
In the next section, we will present a concrete numerical example.

A.1.3: Numerical Example—Function Approximation with Chebyshev Polynomials

In this example, we approximate three different functions using polynomial approxi-
mation on Chebyshev grids and on optimal flexible grids. In particular, we verify
our grid adaption by ensuring that the solutions are compatible with properties we
can derive from theory: first, the BE solution must always be at least as good or
better than that obtained using a fixed Chebyshev grid; second, there are special
cases where the Chebyshev grid actually produces a uniform approximation—for
a detailed discussion of these properties, see Appendix A.1.2. Consequently, the
results from this example are of a qualitative nature, as they serve as benchmarks for
our verification analysis.

In this example, we approximate degree 5 and 6 ordinary polynomials and the
function f (x) = exp(x2) by a degree 4 Chebyshev polynomial. The purpose of this
example is to show that the method produces results that are in line with results
from interpolation theory: As stated in Section 2.2.1 and Appendix A.1.2, using
Chebyshev nodes for polynomial approximation minimizes the tightest known error
bound that can be optimized over the nodes independently of f. This is a very strong
result as it holds for any continuous function. However, Chebyshev nodes only put
an upper bound on the L∞ norm of the residual, and they are not generally optimal.
Hence, we demonstrate that the BE grid yields approximations that are at least as
good as, and in many cases better than, the polynomial interpolation using Cheby-
shev nodes. As a special case, we present one example for which we know the Che-
byshev nodes to be optimal; this example serves as an important benchmark, as it
provides a non-trivial closed form solution for our method to replicate.

Figures 10 and 11 show the results for the degree 5 and degree 6 polynomial
approximations, respectively, and Fig. 12 shows the results for f (x) = exp(x2) ;
Table 10 lists the corresponding error measures and computation times. First, note
that for all three functions, imposing the BE constraints and directly minimizing the
L∞ norm yield the same solution. However, comparing computation times and the
number of iterations, we find that the BE solution converges significantly faster. We
conjecture that this is because by imposing the BE constraints, the solver accom-
modates for the approximation error in each individual cell of the grid, and thus
has more detailed information about how the approximation error over the whole

226 A. Lanz et al.

1 3

domain is composed, and how it is affected by a potential node movement. On the
other hand, this information is mostly lost when minimizing the aggregate value (the
maximum over all cell-wise errors) as in the direct minimization. This observation
will be confirmed in the following examples and suggests that imposing the BE con-
straints might be a fast and efficient approach to obtaining optimal grids.

For the degree 5 polynomial (Fig. 11), we find that the flexible-grid solutions
exactly replicate the Chebyshev nodes (the red optimized nodes coincide with the
turquoise Chebyshev nodes). In Appendix A.1.2, we argue why Chebyshev nodes
are optimal in the L∞ norm for any degree n polynomial interpolated by a degree
n − 1 polynomial. Consequently, this result implies that the optimal grid solu-
tion (obtained either by direct minimization or by imposing the BE constraints) is
correct.

In the case of the degree 6 polynomial (Fig. 11), we observe that the nodes of
the optimal grid do not coincide with the Chebyshev nodes in this particular exam-
ple; conversely, the interpolation over the Chebyshev grid does not exhibit the BE
property. And indeed, the maximum absolute approximation error is significantly
smaller for the optimal grid compared to the Chebyshev grid. As mentioned above,
this result is in line with the theory, as Chebyshev nodes only put an upper bound on
the approximation error.

Similarly, Fig. 12 confirms the findings for the approximation of f (x) = exp(x2).

A.1.4: Piecewise Polynomial Approximation and Splines

If the approximating polynomial has full support over D, features of the approxi-
mated function in one region can have a substantial impact on the approximation
quality also in other regions. A well-known example is the fact that regions of steep
gradients can cause polynomial approximations to oscillate more in all parts of the
approximated function.

A popular way of addressing this issue is piecewise polynomial approximation:
instead of a polynomial with full support, the domain of approximation is subdivided
by a grid � ≡ (yi)

m
i=1

 , and lower-degree polynomials with support only over the respec-
tive grid cell (and sometimes its neighbors) are fitted, using interpolation for example.
Formally, the interpolant is composed as

Note that if the breakpoints of the approximation are used as interpolation
nodes—thus if x = y—the approximation will automatically be continuous, but not
smooth in general.

As with polynomial approximation, the user is faced with two problems—namely,
what degree of basis function polynomial to use, and how to identify the degrees
of freedom (the coefficients). However, with piecewise methods these problems
are slightly more interconnected: if only the breakpoints are used as interpolation
nodes, only |y| = m equations exist to identify the coefficients in Eq. 34. However,

(34)f̂ (x;�, �) ≡
n∑

i=0

aij𝜑i(x), x ∈ [yj, yj+1).

227Adaptive grids for the estimation of dynamic models

1 3

this limits the degree of the local polynomials to one if no additional constraints are
imposed. Thus, the approximation is a combination of piecewise linear segments.
While this is straightforward to handle and does not add any additional complica-
tions to the identification of a, one usually needs a large number of break and inter-
polation points even for smooth functions.

Two popular approaches exist for applying higher-order polynomials: First, addi-
tional interpolation nodes can be inserted in the interior of the cells. This procedure
generates additional equations for the approximation problem, which in turn identify
the coefficients of the higher-order polynomial terms in Eq. 34. For simplicity, we

Fig. 10   Approximation of a Degree 5 Polynomial Using a Degree 4 Polynomial. Approximation of a
degree 5 ordinary polynomial using a degree 4 Chebyshev polynomial on the interval [− 1,1]. The blue
line corresponds to the true function, whereas the green line represents the fitted polynomial approx-
imation. Turquoise diamonds and red circles depict the Chebyshev nodes on the interval [− 1,1], and
the optimized approximation nodes obtained from imposing the BE conditions or direct minimization,
respectively. The plots in the right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the top to
the bottom, the figure shows interpolation using Chebyshev nodes, a flexible grid with direct minimiza-
tion of the L∞ norm, and a flexible grid with BE constraints. The coefficients of the true polynomial
function f are given by α = [0.2164,− 5.9189,− 7.1890,− 5.9051,0.5161,− 6.9019]

228 A. Lanz et al.

1 3

distribute the additional interpolation nodes uniformly between the breakpoints of
the piecewise polynomial, without making this explicit in the collocation Eq. CO in
order not to overload the notation. Thus, the set of breakpoints is a strict subset of
the set of interpolation nodes.

Second, additional constraints can be imposed on the derivatives of the approxi-
mation, since its functional form (and thus its derivatives) is known. Usually, the
constraints impose equality of the derivatives at the breakpoints, in order to ensure
smooth approximating functions. This form of approximation is called splines. For-
mally, the parameters of a polynomial spline of order k are obtained by solving the
following linear system of equations:

Fig. 11   Approximation of a Degree 6 Polynomial Using a Degree 4 Polynomial. Approximation of a
degree 6 ordinary polynomial using a degree 4 Chebyshev polynomial on the interval [− 1,1]. The blue
line corresponds to the true function, whereas the green line represents the fitted polynomial approxima-
tion. Turquoise diamonds and red circles depict the Chebyshev nodes on the interval [− 1,1], and the
optimized approximation nodes obtained from imposing the equioscillation conditions or direct minimi-
zation, respectively. The plots in the right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the
top to the bottom, the figure shows interpolation using Chebyshev nodes, a flexible grid with direct mini-
mization of the L∞ norm, and a flexible grid with BE constraints. The coefficients of the true polynomial
function f are given by α = [6.2356,9.2929,− 9.2861,3.3064,− 0.9446,− 5.5323,1.8073]

229Adaptive grids for the estimation of dynamic models

1 3

where f̂j(x;�, �) =
∑n

i=0
aij𝜑i(x) is the j th segment of the spline, and Eq. 35c is a

generic boundary condition necessary for identifying all degrees of freedom. Note
that

(35a)f (xi) = f̂ (xi;�, �),∀xi ∈ � ≡ �

(35b)f̂
(h)

i
(xi+1;�, �) = f̂

(h)

i+1
(xi+1;�, �), h = 1,… , k − 2, i = 1,… , n − 2

(35c)f̂ (⋅) = 0|𝜕D,

Fig. 12   Approximation of f (x) = exp(x2) Using a Degree 4 Polynomial. Approximation of
f (x) = exp(x2) using a degree 4 Chebyshev polynomial on the interval [0,2]. The blue line corresponds
to the true function, whereas the green line represents the fitted polynomial approximation. Turquoise
diamonds and red circles depict the Chebyshev nodes on the interval [− 1,1], and the optimized approxi-
mation nodes obtained from imposing the equioscillation conditions or direct minimization, respectively.
The plots in the right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the top to the bottom,
the figure shows interpolation using Chebyshev nodes, a flexible grid with direct minimization of the L∞
norm, and a flexible grid with BE constraints

230 A. Lanz et al.

1 3

and thus that a spline of order k is k − 2 times continuously differentiable. A differ-
ent approach to spline approximations, which relates to the idea of composing an
approximation from an orthogonal basis, is that of B-splines, which form a basis of
the space of all order k splines; for details, see de Boor (2001).

A.1.5: Numerical Example—Higher Order Piecewise Polynomial Approximation

In this example, we show that the previously obtained results also hold for higher
order piecewise polynomial approximations. For this purpose, we approximate the
same function as in Example 2, but by a piecewise quadratic polynomial approxima-
tion with four nodes, two of which are flexible. Note, that for simplicity, we distrib-
ute the additional interpolation nodes necessary to identify all degrees of freedom
uniformly between the breakpoints (see Appendix A.1.4 for details).

Figure 13 plots the corresponding results; the corresponding approximation
errors and computation times are stated in Table 11. We find that in this example,
the uniform-grid piecewise polynomial approximation shows large approxima-
tion errors between the first two nodes. By allocating the nodes more efficiently,
the approximation errors can be decreased significantly. In particular, the maximum
absolute error decreases from 5.3260 for the standard interpolation to 1.2731 for the
flexible grid. Again, we find that imposing the BE constraints yields the same solu-
tion as direct minimization, but computation times and the number of iterations are
significantly lower for the BE approach.

(36)f̂ (⋅;�, �) ∈ C
k−2

Table 10   Comparison of
Approximation Errors—
Polynomial Approximation

 Approximation errors and computation times for the approximation
of a degree 5 polynomial, a degree 6 polynomial, and exp(x2) by a
degree 4 polynomial, using interpolation over a Chebyshev grid, a
flexible grid obtained from direct minimization of the L∞ norm
(“Direct Min.”), and a flexible grid obtained from the BE constraints
(“Balanced Errors”); the examples correspond to Figs. 10–12

Chebyshev Grid Direct Min. Balanced Errors

Approximating a degree 5 polynomial with a degree 4 polynomial
L∞ 0.4314 0.4314 0.4314
Time in Sec. − 3.77 0.35
Iterations − 136 10
Approximating a degree 6 polynomial with a degree 4 polynomial
L∞ 0.4587 0.3548 0.3548
Time in Sec. − 2.31 0.38
Iterations − 83 12
Approximating exp(x2) with a degree 4 polynomial
L∞ 2.2058 1.2303 1.2303
Time in Sec. − 33.37 0.40
Iterations − 1143 13

231Adaptive grids for the estimation of dynamic models

1 3

A.2: Grid Creation and Balanced Errors in Two Dimensions

While grid creation is trivial in one dimension — a set of grid nodes
a = x0 < x1 < … < xn+1 = b suffices to uniquely define a grid over a domain [a,b]
— grid creation the two dimensions is generally non-unique, even if the same set of
nodes � = (xi)

(n+1)2

i=0
, xi ∈ ℝ

2 is used. One reason is that a grid cell in one dimension,
an interval, can be thought of as a 1-hypercube, which would generalize to a quad-
rilateral grid in two dimensions, or it can be though of as a 1-simplex, which would
generalize to a triangulation in two dimensions. Figure 14 depicts different grid vari-
ants in two dimensions; in particular, Fig. 14a and b demonstrate how an identical
set of grid nodes can be interpreted differently, depending on the imposed grid cell
geometry.

Closely related, and highly relevant to the implementation of balanced errors
over a two-dimensional grid, is the relation between number of degrees of free-
dom (the coordinates of the variable grid nodes in the balanced error system)
and the number of BE conditions: While in the one-dimensional case, the num-
ber of variable grid nodes matches the number of error comparisons across inter-
vals exactly (n flexible nodes yield n + 1 intervals and thus n error comparisons),
these numbers are generally not matching in higher dimensions. In fact, we were
not able to construct any grid with equally many degrees of freedom as balanced
error constraints;23 Table 12 summarizes this mismatch for the grid depicted in
Fig. 14. Consequently, imposing balanced errors leads either to an over- or an
underspecified system, depending on the grid topology. As the former will gener-
ally have no solution, we opt for underspecification, either by choosing a topol-
ogy with less BE constraints than degrees of freedom, or by reducing the number
of BE constraints.

Moreover, not all the grid topologies and the corresponding interpolation formats
allow for continuous interpolant on grids with moving nodes. For example, moving
grid nodes of a quadrilateral grid as in Fig. 14a, together with bilinear interpolation
or tensor product splines, will generally lead to a discontinuous interpolant. There-
fore, we restrict ourselves to piecewise linear interpolation over each simplex — and
therefore to simplicial grids —, which is guaranteed to be continuous under mild
regularity conditions. Since all simplicial grids in Fig. 14 lead to overspecified BE
systems, we use a grid as in Fig. 14b, but impose BE constraints on the pairwise
maximum of each cell neighbors forming a quadrilateral only, yielding an under-
specified BE system, where — technically speaking — half of the BE conditions are
turned into implicitly enforced inequality constraints.

We conclude this short discussion on grid creation and balanced errors in two
dimensions by adding two remarks: First, due to the underspecification of the BE sys-
tem, we cannot expect the solution to be unique. Moreover, not only can we expect
several isolated solutions for optimal grids with potentially different (but always bal-
anced) errors, but there might even be continua of solutions; obviously, the appearance

23  We always restrict the grid outermost grid nodes to lie on the boundary, and, moreover, do not move
the corner nodes of the domain at all.

232 A. Lanz et al.

1 3

of the later would annihilate the BE criterion as a sufficient optimality condition. Sec-
ond, and closely related, the numerical solution of the non-square BE system turns out
to be much more difficult; the reasons for this are manifold, such as non-square nature
of the BE system and the potential existence of continua of solutions (yielding rank
deficient Jacobian matrices), or the reduction of the over-specified BE system which
implicitly imposes additional inequality constraints.

Fig. 13   Approximation of a Degree 9 Polynomial Using Piecewise Quadric Approximation. Approxi-
mation of a degree 9 ordinary polynomial on the interval [− 1,1] by a piecewise quadratic polynomial
approximation with 4 nodes, out of which 2 nodes are potentially flexible. The blue line corresponds
to the true function, whereas the green line represents the fitted piecewise polynomial approximation.
Turquoise diamonds and red circles depict the fixed uniform nodes, and the optimized approximation
nodes obtained from imposing the BE conditions or direct minimization, respectively. The plots in the
right panel show corresponding residuals f (x) − f̂ (x;�, �) . From the top to the bottom, the figure shows
piecewise polynomial approximation using uniformly distributed nodes, flexible nodes with direct mini-
mization of the L∞ norm, and flexible nodes with BE constraints. The coefficients of the true polynomial
function f are given by α = [​4.1​239​,2.​795​6,5​.0862,− 1.2933,7.8788,− 7.8582,9.9192,− 2.8339,3.4032,− 
9.9500]

233Adaptive grids for the estimation of dynamic models

1 3

Table 11   Comparison of
Approximation Errors—
Piecewise Quadratic
Approximation

 Approximation errors and computation times of the approxima-
tion of a degree 9 polynomial by a piecewise quadratic polynomial
approximation, over a fixed uniform grid, a flexible grid obtained
from direct minimization of the L∞ norm (“Direct Min.”), and a flex-
ible grid obtained from the BE constraints (“Balanced Errors”); the
example corresponds to Fig. 13

Uniform Grid Direct Min. Balanced Errors

L∞ 5.3260 1.2731 1.2731
Time in Sec. − 1.08 0.66
Iterations − 151 14

Fig. 14   Different Types of Grids in Two Dimensions. The figure shows different types of two-dimen-
sional grids: Panel (a) shows a regular quadrilateral grid with 16 cells; Panel (b) shows a regular sim-
plex grid with 32 cells; Panel (c) shows another regular simplex grid with 64 cells; Panel (d) shows an
unstructured simplex grid with 32 cells

234 A. Lanz et al.

1 3

An Easy‑to‑Integrate Distribution With Compact Support and Special Properties

In the following we define a distribution density over the interval [0, 1]—-or any
interval [a,b]—-which has the following features:

•	 The right end point of the support interval can never be reached;
•	 The expecrtation of a function of the corresponding random variable can be eas-

ily integrated numerically.

For example, this allows us to model a “shooting” process where one stands at a and
shoots towars b without ever reaching it.

Formally, let us consider a random variable X with the parametrized probability
density function q̃(⋅;𝜆) that has compact support, where the expected value of the
continuous function f of the random variable is defined as

where the second equation is a simple, linear change of variables, x = s(b − a) + a,
to normalize the domain.

Applying a change of variable � ∶ [0,∞] → [0, 1] , we can rewrite Eq. 37 as

(37)E(f (x)) = ∫ b

a
f (x)q̃(x;𝜆)dx

(38)= (b − a)∫ 1

0
f (s(b − a) + a)q̃(s(b − a) + a;𝜆)ds,

Table 12   Properties of Different Types of Grids in Two Dimensions

 The table list the number of grid nodes per dimension (if applicable), the total number of grid nodes, the
total number of grid cells, the number of balanced error constraints for pairwise comparison, the number
of degrees of freedom (coordinates of variable grid nodes) and the mismatch between the number of BE
constraints and the number of degrees of freedom, for each grid in Fig. 14

Quadr. Grid Fig. (14a) Simpl. Grid 1 Fig. (14b)
#nodes per dimension n + 2 = 5 n + 2 = 5
#nodes total (n + 2)2 = 25 (n + 2)2 = 25
#cells (n + 1)2 = 16 2(n + 1)2 = 32
#BE constraints (n + 1)2 − 1 = 15 2(n + 1)2 − 1 = 31
#degrees of freedom 2n2 + 4n = 30 2n2 + 4n = 30
mismatch (BE − DoG) − 15 1

Simpl. Grid 2 Fig. (14c) Unstr. Grid Fig. (14d)
#nodes per dimension — —
#nodes total 31 25
#cells 64 32
#BE constraints 63 31
#degrees of freedom 62 30
mismatch (BE − DoG) 1 1

235Adaptive grids for the estimation of dynamic models

1 3

We assume T ∼ exp(�) and x = �(t) =
t

t+1
 . Denoting by q(⋅; λ) the density of the

exponential distribution with parameter λ, q̃(⋅;𝜆) is implicitly defined by the
equation

as

This set-up allows us to apply Gauss–Laguerre quadrature to approximate the
expectation

where N is the degree of the quadrature rule, and (ti,ωi) are the respective nodes and
weights, which are readily tabulated or can be precomputed.

(39)E(f (x)) = (b − a)∫
𝜙−1(1)=∞

𝜙−1(0)=0

f (𝜙(t)(b − a) + a)q̃(𝜙(t)(b − a) + a;𝜆)𝜙�(t)dt.

(40)(b − a)q̃(𝜙(t)(b − a) + a;𝜆)𝜙�(t) = q(t;𝜆)

(41)q̃(x;𝜆) =
q
(
𝜙−1

(
x−a

b−a

)
;𝜆
)

(b − a)𝜙�

(
𝜙−1

(
x−a

b−a

)) .

(42)E(f (x)) = ∫ ∞

0
f (�(t)(b − a) + a)q(t;�)dt

(43)≈
N∑
i=1

f (�(ti∕�)(b − a) + a)�i,

Fig. 15   Distributions Given λ 

236 A. Lanz et al.

1 3

For example, using 21 nodes (λ = 1), the expectation of X can be computed up
to 6 digits of precision. Figure 15 depicts the distribution for various levels of λ,
including λ = 1 (violet curve).

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Aguirregabiria, V., & Mira, P. (2010). Dynamic discrete choice structural models: a survey. Journal of
Econometrics, 156, 38–67.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi: a software framework
for nonlinear optimization and optimal control. Mathematical Programming Computation, 11, 1–36.

Arcidiacono, P., & Ellickson, P. B. (2011). Practical methods for estimation of dynamic discrete choice mod-
els. Annual Review of Economics, 3, 363–394.

Baines, M. J. (1998). Grid adaptation via node movement. Applied Numerical Mathematics, 26, 77–96.
Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National Academy of Sci-

ences of the United States of America, 38, 716–719.
Borkovsky, R. N., Doraszelski, U., & Kryukov, Y. (2010). A user’s guide to solving dynamic stochastic

games using the homotopy method. Operations Research, 58, 1116–1132.
Brumm, J., & Scheidegger, S. (2017). Using adaptive sparse grids to solve High-Dimensional dynamic mod-

els. Econometrica: Journal of the Econometric Society, 85, 1575–1612.
Cai, Y. , & Judd, K. L. (2013). Advances in Numerical Dynamic Programming and New Applications. In

K. Schmedders K. L. Judd (Eds.) Handbook of Computational Economics (pp. 479–516). Amsterdam:
Newnes.

Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems, SIAM.
Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations

Research, 153, 235–256.
de Boor, C. (2001). A Practical Guide to Splines. Springer.
Erdem, T., & Keane, M. P. (1996). Decision-Making Under uncertainty: Capturing dynamic brand choice

processes in turbulent consumer goods markets. Marketing Science, 15, 1–20.
Fletcher, R., Leyffer, S., Ralph, D., & Scholtes, S. (2006). Local convergence of SQP methods for mathemati-

cal programs with equilibrium constraints. SIAM Journal on Optimization, 17, 259–286.
Fraser, W. (1965). A survey of methods of computing minimax and Near-Minimax polynomial approxima-

tions for functions of a single independent variable. Journal of the ACM, 12, 295–314.
Grüne, L., & Semmler, W. (2004). Using Dynamic Programming with Adaptive Grid Scheme for Optimal

Control Problems in Economics. Journal of Economic Dynamics and Control, 28, 2427–2456.
Hotz, V. J., & Miller, R. A. (1993). Conditional choice probabilities and the estimation of dynamic models.

The Review of Economic Studies, 60, 497–529.
Huang, W., & Russell, R. D. (2011). Adaptive Moving Mesh Methods, Springer.
Imai, S., Jain, N., & Ching, A. (2009). Bayesian estimation of dynamic discrete choice models. Economet-

rica: Journal of the Econometric Society, 77, 1865–1899.
Imamoto, A., & Tang, B. (2008). A recursive descent algorithm for finding the optimal minimax piecewise linear

approximation of convex functions. In Advances in Electrical and Electronics Engineering - IAENG Spe-
cial Edition of the World Congress on Engineering and Computer Science (WCECS), IEEE (pp. 287–293).

237Adaptive grids for the estimation of dynamic models

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Judd, K. L. (1992). Projection methods for solving aggregate growth models. Journal of Economic Theory,
58, 410–452.

Judd, K. L. (1998). Numerical Methods in Economics. Cambridge: The MIT Press.
Keane, M. P., Todd, P. E., & Wolpin, K. I. (2011). The Structural Estimation of Behavioral Models: Discrete

Choice Dynamic Programming Methods and Applications. In O. Ashenfelter D. Card (Eds.) Handbook
of Labor Economics (pp. 331–461). Elsevier.

Kristensen, D., & Schjerning, B. (2014). Implementation and Estimation of Discrete Markov Decision Mod-
els by Sieve Approximation, Tech. rep.

Lanz, A., Goldenberg, J., Shapira, D., & Stahl, F. (2019). Climb or Jump: Status-based Seeding in User-
Generated Content Networks. Journal of Marketing Research, 56, 361–378.

Lanz, A., Mueller, P., Reich, G., & Wilms, O. (2021). Small data: Efficient inference with occasionally
observed states. Available at SSRN 3638618.

Lawson, C. L. (1964). Characteristic properties of the segmented rational minimax approximation problem.
Numerische Mathematik, 6, 293–301.

Norets, A. (2009). Inference in dynamic discrete choice models with serially correlated unobserved state var-
iables. Econometrica: Journal of the Econometric Society, 77, 1665–1682.

Reich, G. (2018). Divide and conquer: Recursive likelihood function integration for hidden markov models
with continuous latent variables. Operations Research, 66, 1457–1470.

Ricci, F., Rokach, L. , & Shapira, B. (2011). Recommender Systems Handbook. Springer.
Rust, J. (1987). Optimal replacement of GMC bus engines: an empirical model of harold zurcher. Economet-

rica: Journal of the Econometric Society, 55, 999–1033.
Rust, J. (1988). Maximum likelihood estimation of discrete control processes. SIAM Journal on Control and

Optimization, 26, 1006–1024.
Rust, J. (1996). Numerical dynamic programming in economics. In H. M. Amman, D. A. Kendrick, & J.

Rust (Eds.) Handbook of Computational Economics (pp. 619–729). Elsevier.
Schumaker, L. (1968). Uniform approximation by chebyshev spline functions. II: Free knots. SIAM Journal

on Numerical Analysis, 5, 647–656.
Schumaker, L. (2007). Spline functions: Basic theory. Cambridge University Press.
Silvester, P. P., & Ferrari, R. L. (1996). Finite Elements for Electrical Engineers. Cambridge University Press.
Su, C. -L., & Judd, K. L. (2012). Constrained optimization approaches to estimation of structural models.

Econometrica: Journal of the Econometric Society, 80, 2213–2230.
Thompson, J. F., Soni, B. K., & Weatherill, N. P. (2010). Handbook of Grid Generation. CRC Press.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Andreas Lanz1 · Gregor Reich2 · Ole Wilms3,4

	 Andreas Lanz
	 lanz@hec.fr

	 Gregor Reich
	 gregor.reich@tsumcor.ch

1	 HEC Paris, Jouy‑en‑Josas, France
2	 Tsumcor Research AG, Schwerzenbach, Switzerland
3	 University of Hamburg, Hamburg, Germany
4	 Tilburg University, Tilburg, the Netherlands

238 A. Lanz et al.

	Adaptive grids for the estimation of dynamic models
	Abstract
	1 Introduction
	2 Parameter estimation with flexible grids
	2.1 Estimation of dynamic programming models
	2.1.1 Problem statement
	2.1.2 The projection method for solving Eq. DP
	2.1.3 Maximum likelihood estimation of dynamic programming models
	2.1.4 Types of grid adaption

	2.2 Uniform approximation and the balanced error property
	2.2.1 Uniform approximation and node placement
	2.2.2 Equioscillation and balanced errors
	2.2.3 Imposing balanced error and collocation constraints

	2.3 Parameter estimation with flexible grids
	2.3.1 NFXP with flexible grids
	2.3.2 MPEC with flexible grids

	3 Numerical examples and applications
	3.1 Function interpolation with flexible grids—A numerical example
	3.2 Parameter estimation with flexible grids—numerical results
	3.2.1 The bus engine replacement model of Rust (1987)
	3.2.2 Approximating the EV function for fixed 𝜃
	3.2.3 Monte Carlo study for the parameter estimation problem
	3.2.4 Discontinuities in the likelihood functions caused by node insertion
	3.2.5 The Rust (1987) model with a serially correlated unobserved utility component
	3.2.6 Approximating the EV function for fixed 𝜃
	3.2.7 Monte Carlo study for the parameter estimation problem

	4 Empirical application
	4.1 Model
	4.2 Data
	4.3 Estimation with unobserved states
	4.4 Results

	5 Conclusion
	References

