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 Sylvester Matrix and Common Factors in Polynomial Matrices 
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llwegge@ucdavis.edu  
 
ABSTRACT: With the coefficient matrices of the polynomial matrices replacing the scalar 
coefficients in the standard Sylvester matrix, common factors exist if and only if this 
(generalized) Sylvester matrix is singular and the coefficient matrices commute. If the coefficient 
matrices do not commute, a necessary and sufficient condition for a common factor to exist is that 
a submatrix of the ratio (transfer) coefficient matrices is of less than full row rank. Whether 
coefficient matrices commute or not, a nonsingular (generalized) Sylvester matrix is always a 
sufficient condition for no common factors to exist. These conditions hold whether common 
factors are unimodular or not unimodular. 

These results follow from requiring that in the potential alternative pair of polynomial 
matrices with the same matrix ratio, i.e. with the same transfer function, all coefficient matrices 
beyond the given integers  and  are null matrices. Algebraically these requirements take the 
form of linear equations in the coefficient matrices of the inverse of the potential common factor. 
Lower block triangular Toeplitz matrices appear in these equations and the sequential inverse of 
these matrices generates sequentially the coefficient matrices of the inverse of the common factor. 
The conclusions follow from the properties of infinite dimensional diagonally dominant matrices. 

p q

 
Abbreviated Title: Sylvester Matrix 
 
Subject Classification: 15A09, 15A06, 15A23, 15A27. 
 
Keywords. Sylvester matrix, common factor, polynomial matrix, transfer function, 

commutativity, Toeplitz matrix. 
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Sylvester Matrix and Common Factors in Polynomial Matrices 

  Leon L. Wegge, Economics, University of California Davis 
   One Shields Avenue, Davis, CA 95616 

llwegge@ucdavis.edu  
 
 With the coefficient matrices of the polynomial matrices replacing the scalar coefficients 
in the standard Sylvester matrix, common factors exist if and only if this generalized Sylvester 
matrix is singular and the coefficient matrices commute. If the coefficient matrices do not 
commute, a necessary and sufficient condition for a common factor to exist is that a submatrix of 
the ratio (transfer) coefficient matrices is of less than full row rank. Whether coefficient matrices 
commute or not, a nonsingular Sylvester matrix is always a sufficient condition for no common 
factors to exist. These conditions hold whether common factors are unimodular or not 
unimodular. 
 The paper is divided in ten short sections. The first three sections contain the definitions 
of polynomial matrix, common factor, truncated transfer functions and the Toeplitz matrices that 
generate the latter. Section 4 states the assumptions and the method of analysis. Theorem 1 is the 
main result. It is stated and proved in the longest Section 5. The Sylvester matrix for polynomial 
matrices is defined in Section 6 and its relevance in characterizing the common factor existence 
conditions is stated under Corollary 1 of Section 7. Alternative necessary and sufficient 
conditions for the existence of a common factor with finite degree inverse or of finite degree are 
obtained in Section 8. Examples with a singular Sylvester matrix but without a common factor are 
constructed in Section 9. A short comparison of our method of analysis with that existing in the 
linear system literature and a statement of the relevance of the polynomial matrix results for 
uniqueness conditions in time series Arma(p,q) models conclude the paper. 
 
 
1. Polynomial Matrices. 
 

With p  and q finite positive integers, consider the m × m  polynomial matrices 

(1) ,  Π(z, p) = Π(i)
i= 0

p

∑ zi Ψ(z,q) = Ψ(k)zk

k= 0

q

∑ , z ∈ C ,  Π(0) = Im ,  

of degrees p  and q respectively, where the coefficient matrices Π(i) ∈ ℜm×m , Ψ(k) ∈ ℜm×m , 
Π( p) and  not null. If originally Ψ(q) Π(0)  is nonsingular, the polynomial matrix Π(z, p)  is 
obtainable in the form (1) after post-multiplication by Π(0)  inverse. If originally Π(p) is 
nonsingular and Π  singular, obtain (1) after renumbering the coefficient matrices in the 
inverse order. 

(0)

 
2. Common Factor. 

The  polynomial matrix m × m Χ(z,∞) = Χ
j= 0

∞

∑ ( j)z j , Χ( j) ∈ ℜm×m , Χ(z,∞) ≠ Im , is a common 

factor if and only if there exist  polynomial matrices (m × m Π1(z, p), Ψ1(z,q))  such that 
 
(2) (Π(z, p), Ψ(z,q)) = Χ(z,∞) (Π1(z, p), Ψ1(z,q)) 
with 

(3) , Π1(z, p) = Π1(i)
i= 0

p

∑ zi Ψ1(z,q) = Ψ1(k)zk

k= 0

q

∑ . 
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A common factor is defined here as a common left divisor with (Π1(z, p), Ψ1(z,q))  having 
degrees not exceeding p  and , respectively. The concern is to find conditions under which more 
than one pair of polynomial matrices, each pair satisfying the degree requirements (

q
p,q) , has the 

same transfer function. It is understood that Χ(z,∞) = Im  is not commonly called a common 
factor.  
 
3. Truncated Transfer Function. 
 
  is the transfer function. The truncated transfer function is the 
polynomial matrix 

Τ(z,∞) = (Π(z, p)−1Ψ(z,q)

 
 (4) Τ(z,n) = Im + Τ(1)z + ...+ Τ(n)zn . 
  
Under (2) the pairs (Π(z, p), Ψ(z,q))  and (Π1(z, p), Ψ1(z,q))  share the same transfer and 
truncated transfer function. 
 In what follows we represent the system of equations to be satisfied by the coefficient 
matrices in ( , their relationship to the polynomial matrices in Π1(z, p), Ψ1(z,q))
(Π(z, p), Ψ(z,q))  and to the truncated transfer function through lower block triangular Toeplitz 
matrices. 
 Let  (Z)K

L  be the matrix of elements of a block matrix Z  in its row blocks indexed in K  
and its column blocks indexed in . Define the index set  L I(n,l) = {1,...,n − l} and its 
complement   II(n,l) = {n − l +1,...,n}. With these symbols also define the following block 
Toeplitz matrices and their partitions 
 

(5)     Pn =

Pn− p 0

(Pn )II (n,p )
I (n,p ) Pp

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

=

Im .. 0
.. .. .. 0

Π(n − p −1)zn− p−1 .. Im

Π(n − p)zn− p .. Π(1)z Im .. 0
.. .. .. .. .. ..

Π(n −1)zn−1 .. Π(p)z p Π(p −1)z p−1 .. Im

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

, 

  
where  for integer iΠ(i) = 0 ≠ [0, p], 
 

(6) Qn =

(Qn )I (n,p )
I (n,q ) (Qn )I (n,p )

II (n,q )

(Qn )II (n,p )
I (n,q ) (Qn )II (n,p )

II (n,q )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 =

Ψ(0) .. 0 0 .. 0
.. .. .. .. .. ..

Ψ(n − p −1)zn− p−1 .. Ψ(q − p)zq− p Ψ(q − p −1)zq− p−1 .. Ψ(−p)z− p

Ψ(n − p)zn− p .. Ψ(q − p +1)zq− p +1 Ψ(q − p)zq− p .. Ψ(1− p)z1− p

.. .. .. .. .. ..
Ψ(n −1)zn−1 .. Ψ(q)zq Ψ(q −1)zq−1 .. Ψ(0)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
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where , for integer i , Ψ(i) = 0 ≠ [0,q]
 
 

(7) Τn = Pn
−1Qn =

Τ(0) 0 0 .. 0
Τ(1)z Τ(0) 0 .. 0

Τ(2)z2 Τ(1)z Τ(0) .. 0
.. .. .. .. ..

Τ(n −1)zn−1 Τ(n − 2)zn−2 Τ(n − 3)zn−3 .. Τ(0)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

. 

⎟

 
Τn  is the matrix generating the coefficient matrices of the truncated transfer function. In writing 
(7) we used the property that the blocks in the first column block determine all the block matrices 
in lower triangular block Toeplitz matrices. 
 
4. The Assumption and the Analysis. 
  
 a) The transfer function exists as a sum of matrices Τ( j)z j , , that 
converges in a neighborhood of z . 

Τ( j) ∈ ℜm×m

= 0

 b) The common factor Χ(z,∞) = Χ
j= 0

∞

∑ ( j)z j , with Χ(0) = Im , has an inverse , 

with Η

Η( j)z j

j= 0

∞

∑
(0) = Im , in a neighborhood of z = 0. 

 c) From (2), the coefficient of  in ,z j Π1(z, p) = ( Η( j)z j

j= 0

n

∑ )Π(z, p) p < j , and in 

, Ψ1(z,q) = ( Η( j)z j

j= 0

n

∑ )Ψ(z,q) q < j , must be null matrices. This is the equation system 

 
(8)   Π1(n), ..., Π1(p +1), Ψ1(n), ..., Ψ1(q +1)( )= 0
 
that must hold for any finite ,  with n Max(p,q) < n  and for n → ∞. 
  
 The assumptions and the algebraic analysis are based on properties of diagonally 
dominant matrices when the number of equations tends to infinity, e.g. Theorem 5, p. 127 of [1]. 
With its emphasis on coprime polynomial matrices and unimodular common factors, this body of 
theory is not included in [2] as a potential source of algebraic manipulation.  Given the interest 
here in the existence of common factors, whether unimodular or not, the diagonally dominant 
matrix theory and the operations through lower block triangular Toeplitz matrices are compelling.  
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5. Theorem 1. 

 The polynomial matrix Χ(z,∞) = Χ
j= 0

∞

∑ ( j)z j , Χ(0) = Im , having inverse , 

with 

Η( j)z j

j= 0

∞

∑
Η(0) = Im , is a common factor of the pair of polynomial matrices (Π(z, p),Ψ(z,q))  if and 

only if  
 

(9) Η(p), ..., Η(1)( )
Im .. 0
.. .. ..

Π(p −1) .. Im

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ℑ(nq ) = Π1(p) − Π(p), ..., Π1(1) − Π(1)( )ℑ(nq ) = 0,  

 

where  ℑpm × pm2 (nq ) =
Τ(nq − p) ..Τ(q − p +1)

.. .. ..
Τ(nq −1) .. Τ(q)

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

, with nq = pm + q, Τ(i) = 0 for i .  < 0

 
 When the matrices Π , i(i) =1,..., p, Ψ( j), j =1,...,q, commute, Χ(z,∞)  is a common 
factor if and only if  

(10)    Η(p), ..., Η(1)( )
Im .. 0
.. .. ..

Π(p −1) .. Im

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ℑ( p + q) = Π1( p) − Π(p), ..., Π1(1) − Π(1)( )ℑ(p + q) = 0, 

where pm × pm  ℑ(p + q) =
Τ(q) .. Τ(q − p +1)

.. .. ..
Τ( p + q −1) .. Τ(q)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . 

 
Proof. 
 From (8) the matrices Η  must satisfy the linear equations ( j)z j

 

(11) 0 = Η(n)zn ,...,Η(p +1)z p +1, Η(p)z p ,...,Η(1)z( ) Pn− p (Qn )I (n,p )
I (n,q )

(Pn )II (n,p )
I (n,p ) (Qn )II (n,p )

I (n,q )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 Eliminating the top matrices, (11) is equivalent with the two subsets of equations 
 
(12)  Η(p)z p ,...,Η(1)z( )((Qn )II (n,p )

I (n,q ) − (Pn )II (n,p )
I (n,p ) Pn− p

−1 (Qn )I (n,p )
I (n,q ) )

 = Η(p)z p ,...,Η(1)z( )Pp G(z,n) ,  with G(z,n) =
Τ(n − p)zn− p .. Τ(q − p +1)zq− p +1

.. .. ..
Τ(n −1)zn−1 .. Τ(q)zq

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

, 

 = (Π1( p) − Π(p))z p,...,(Π1( p) − Π(p))z( )G(z,n) = 0, 
 
(13) Η(n)zn ,...,Η( p +1)z p +1( )Pn− p = − Η( p)z p,...,Η(1)z( )(Pn )II (n,p )

I (n ,p ) . 
 
 The first equality in (12) follows from the equality between the partitions 
  

         
(Τn )I (n,p )

I (n,q )

(Τn )II (n,p )
I (n,q )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

Pn− p 0
(Pn )II (n ,p )

I (n,p ) Pp

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
(Qn )I (n,p )

I (n,q )

(Qn )II (n,p )
I (n ,q )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

Pn− p
−1 (Qn )I (n ,p )

I (n ,q )

Pp
−1((Qn )II (n,p )

I (n ,q ) − (Pn )II (n ,p )
I (n,p ) Pn− p

−1 (Qn )I (n ,p )
I (n ,q )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   
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and the second equality follows from (2). The matrix (Η(p)z p ,...,Η(1)z)  is determined by the 
equations (12) only. 
 The matrix (Η(n)zn ,...,Η(p +1)z p +1) is determined in (13) and is different from a null 
matrix only if  is not a null matrix. A solution exists for all finite . 
Since

(Η(p)z p ,...,Η(1)z) n
Pn− p  is a block diagonally dominant matrix in a neighborhood of z = 0, the limit of this 

solution converges to the solution when n → ∞ [1]. Under this assumption (13) can always be 
satisfied. 
 To end the proof of the first part, observe the relation between the column blocks 
   

(14)  

Τ(q + t − p +1)
..

Τ(q + t −1)
Τ(q + t)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

= Jp

Τ(q + t − p)
..

Τ(q + t − 2)
Τ(q + t −1)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 
, , with t ≥1 Jp =

0 Im .. 0
.. .. .. ..
0 0 .. Im

−Π( p) −Π( p −1) .. −Π(1)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

. 
⎟

To see this, pre-multiply the first column block of Τq + t +1 = Pq + t +1
−1 Qq + t +1 by the bottom block row 

of Pq + t +1, the matrix (Π(q + t)zq + t ,...,Π(1)z,Im ), and verify the equation 
 
(15) Π(p)z pΤ(q + t − p)zq + t− p + ...+ Π(1)zΤ(q + t −1)zq + t−1 + Τ(q + t)zq + t = Ψ(q + t)zq + t . 
 
For a finite , evaluate (12) at  and let n z =1 ℑ(n) = G(n,1). By the Caley-Hamilton theorem, all 

 block equalities in (12) hold if the first  block equalities are satisfied. As a 
consequence, with , the matrix 
n − q pm

nq = mp + q ℑ(n)  can be replaced by ℑ(nq )  and the number of 
block equations is thereby reduced to the finite number nq − q = mp , independently of n → ∞ . 
 The second part of the Theorem follows from observing that when the coefficient 
matrices commute we have the relation 
 

(16) 
Τ(t − p +1)

..
Τ(t)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ =

Τ(t − p) .. Τ(t − 2 p +1)
.. .. ..

Τ(t −1) .. Τ(t − p)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

Π(1)
..

Π( p)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ , p + q ≤ t , 

 
and the matrix ℑ  in (9) can be replaced by its submatrix(nq ) ℑ( p + q). 
 
6. Sylvester Matrix.  
 
 The generalized Sylvester Matrix is the m(p + q) × m(p + q)  matrix 
 

(17) S(p,q) =

Im .. 0 Ψ(0) .. 0
.. .. .. .. .. ..

Π(q −1) .. Im Ψ(q −1) .. Ψ(q − p)
Π(q) .. Π(1) Ψ(q) .. Ψ(q − p +1)

.. .. .. .. .. ..
Π(p + q −1) .. Π( p) Ψ(q + p −1) .. Ψ(q)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

, 

 
  for i , Π(i) = 0 ∉ [0, p] Ψ( j) = 0 for j ∉ [0,q]. 
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A different generalized Sylvester matrix with the number of row blocks increasing with 
 is introduced in [3].  It is shown there that the two polynomial matrices are coprime if the 

Sylvester matrix, so generalized, is of full rank. Still another generalized Sylvester matrix of 
expanding dimensions is considered in  [4], [5]. They show that the null space of their matrix 
must contain the coefficients of the coprime polynomial matrices (

m

A(z,∞), B(z,∞)) that satisfy 
A(z,∞)Π(z, p) + B(z,∞)Ψ(z,q) = 0. These last equations imply that (Π(z, p), Ψ(z,q))  are 
coprime. In both publications the emphasis is on analyzing the connection between coprime 
polynomials and their chosen generalized Sylvester matrix. 

This paper’s definition (17) is the most natural generalization of the Sylvester matrix and 
with it one gets a simple interpretation of the common factor existence conditions of Theorem 1.  
 
7. Corollary 1. 

 The polynomial matrix Χ(z,∞) = Χ
j= 0

∞

∑ ( j)z j , Χ(0) = Im , having inverse , Η( j)z j

j= 0

∞

∑
Η(0) = Im , is a common factor of the pair of polynomial matrices (Π(z, p),Ψ(z,q)) only if  
 
(18) 0 = Η(p + q),...,Η(p +1), Η(p),...,Η(1)( )S(p,q) , 
 
If the coefficient matrices commute, (18) is also sufficient. 
 
Proof. 
 The requirements (11) for n = p + q and z =1 are the equations (18). Hence they are 
necessary. The conditions (18) are equivalent to the two subsystems 
 

(19a) 0 = Η(p + q),...,Η(p +1)( )
Im .. 0
.. .. ..

Π(q −1) .. Im

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ = − Η(p),...,Η(1)( )

Π(q) .. Π(1)
.. .. ..

Π(p + q −1) .. Π(p)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . 

(19b) (0 = Η(p),...,Η(1)( )
Ψ(q) ..Ψ(q − p +1)

.. .. ..
Ψ(p + q −1) .. Ψ(q)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟       

  −
Π(q) .. Π(1)

.. .. ..
Π(p + q −1) ..Π(p)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

Im .. 0
.. .. ..

Π(q −1) ..Im

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

−1
Ψ(0) .. 0

.. .. ..
Ψ(q −1) ..Ψ(q − p)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ) 

 

    = Η(p),...,Η(1)( )
Im .. 0
.. .. ..

Π(p −1) ..Im

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

Τ(q) ..Τ(q − p +1)
.. .. ..

Τ(p + q −1) .. Τ(q)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ , 

since by definition 
 

 
(Τp +q )I ( p +q,p )

I ( p +q,q )

(Τp +q )II ( p +q,p )
I ( p +q,q )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 

Pq 0
(Pp +q )II ( p +q,p )

I ( p +q,p ) Pp

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
(Qp +q )I ( p +q,p )

I ( p +q,q )

(Qp +q )II ( p +q,p )
I ( p +q,q )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 
(19a) is always satisfied and the condition (19b) is exactly the same as the condition (10) for the 
case when coefficient matrices commute. 
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 The result may be summarized as follows. 
 

The generalized Sylvester matrix S(p,q)  being nonsingular is a sufficient condition for 
two polynomial matrices not to have a common factor different from the unit matrix.  If S(p,q)  is 
singular a common factor different from the unit matrix always exists if the coefficient matrices 
commute. 
 
 By requiring that the coefficient matrices beyond p  and q be null matrices, the analysis 
above proves Sylvester’s result for the scalar case and the extension to polynomial matrices. 
 
 
8. Dual classes of common factors. 
 
 Theorem 1 characterized the existence conditions of a common factor of any degree. In 
this section alternative necessary and sufficient conditions are stated for the existence of special 
common factors. When the inverse of the common factor is of finite degree, or when the common 
factor itself is of finite degree, special conditions are derived in Theorems 2 and 3.  
 
Theorem 2. 

 The polynomial matrix Χ(z,∞) = (Im + H(1)z + ...+ H(s)zs)−1, H(s) ≠ 0 ,  finite, is a 
common factor of the pair of polynomial matrices 

s
(Π(z, p),Ψ(z,q)) if and only if  

 
(20) (H(s),...,H(2),H(1))W (s, p,q) = 0 , 
 
with  ms × 2ms

 W (s, p,q) =

Π( p) ..Π(−s + p + 2)Π(−s + p +1) Ψ(q) ..Ψ(−s + q + 2) Ψ(−s + q +1)
.. .. .. .. .. .. .. ..
0 .. Π( p) Π( p −1) 0 .. Ψ(q) Ψ(q −1)
0 .. 0 Π( p) 0 .. 0 Ψ(q)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
. 

 
Proof. If Χ  has an inverse of degree , from (2) the alternative coefficient matrices (z,∞) s Π1(i) , 
p + s < i , , Ψ1( j) q + s < j , are null matrices and it is a common factor because the remaining 

alternative matrix coefficients satisfy 
 (Π1(p + s),...,Π1(p +1),Ψ1(q + s),...,Ψ1(q +1)) = (H(s),...,H(2),H(1))W (s, p,q) = 0.  
 
Remarks. 
 
 I. For this class of common factors (20) implies (9). To see this, if s ≤ p the latter 
conditions require that for k = 0,...,mp −1 we have 

  

  

H( j) Π(i − j)T(q + k +1− i)
i= j

p

∑
j=1

s

∑

= H( j)(Ψ(q + k +1− j) − Π(i)T(q + k +1− j − i)
i= p− j +1

p

∑
j=1

s

∑ )

 . 
  

= H( j)Ψ(q + k +1− j) − ( H( j)Π(p − j + l)
j= l

s

∑
l=1

s

∑
j= k +1

s

∑ )T(q + k +1− p − l) = 0
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The first equality follows from (15) and the first term in the last equality is a null matrix for 
integer k ∉ [0,...,s −1]. Under (20) the first term and the coefficient of  T(q + k +1− p − l) are 
null matrices for all  and   , showing that (9) is satisfied. In the same way, (9) follows from the 

subset of the conditions (20) that involve (

k l

H(p),...,H(1)) when p < s.  
 

II. From (20) if the polynomial matrix (Im + H(1)z + ...+ H(s)zs)−1, H(s) ≠ 0 , is a 
common factor then (Im + H(2)z + ...+ H(s)zs−1)−1,…, (Im + H(s)z)−1 are common factors. The 
last polynomial is a common factor if and only if H(s)(Π(p),Ψ(q)) = 0. 

 
III. Common factors of coprime polynomial matrices are common factors with finite 

degree inverse and the condition on the end coefficient matrices (Π(p),Ψ(q)) is well known. 
Here it is shown that ρ(Π( p),Ψ(q)) < m  is the necessary and sufficient condition for a common 
factor of this class to exist, unimodular or not unimodular, Under this condition on the end 
coefficient matrices the Sylvester matrix is singular since these are the only non-null matrices in 
the last row block. 

 
IV. If (Im + H(1)z + ...+ H(s)zs)−1 is a common factor, (Im + G(1)z + ...+ G(s)zs)−1 is a 

common factor, where G(i) = FH(i)  with m × m  , F FH(s) ≠ 0. This follows from (20) being 
a system of linear homogeneous equations. 

 
V. With scalar polynomials this class of common factors is empty, since the condition 

requires that the end coefficients are zeros and therefore the degrees are less than  and . p q
 
 
Theorem 3. 

The polynomial matrix X(z,s) = Im + X(1)z + ...+ X(s)zs, X(s) ≠ 0, of finite degree  

and with inverse , 

s

H(i)zi

i= 0

∞

∑ H(0) = Im , is a common factor of the pair of polynomial matrices 

(Π(z, p),Ψ(z,q)) if and only if  
 
 (21) (X(s),...,X(2),X(1))W 1(s, p,q) = 0 , 
 
with  ms × 2ms
 

W 1(s, p,q) =
Π1( p) .. Π1(−s + p +1) Ψ1(q) .. Ψ1(−s + q +1)

.. .. .. .. .. ..
0 .. Π1(p) 0 .. Ψ1(q)

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
  

       =

H(k)Π(p − k)
k= 0

p

∑ .. H(k)Π(−s + p +1− k)
k= 0

p−s+1

∑ H(k)Ψ(q − k)
k= 0

q

∑ .. H(k)Ψ(−s + q +1− k)
k= 0

q−s+1

∑
.. .. .. .. .. ..

0 .. H(k)Π( p − k)
k= 0

p

∑ 0 .. H(k)Ψ(q − k)
k= 0

q

∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
 

. 

⎟
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Remarks. 
I. This class of finite degree common factors is dual to the class of common factors with 

finite degree inverse. The assumed and the alternative coefficient matrices are reversed. 
Condition (21) imposes on the alternative coefficient matrices the requirement that the given 
assumed matrices satisfy (Π(p + s),...,Π(p +1),Ψ(q + s),...,Ψ(q +1)) = 0. 

II. When , the equality s =1 X(1)(Π1(p), Ψ1(q)) = 0, with Π1(p) = (−Χ(1))k Π( p − k)
k= 0

p

∑  

and Ψ1(q) = (−Χ(1))k Ψ(q − k)
k= 0

q

∑  is the required condition. These matrices could be 

constructed in the Sylvester matrix S( p,q)  by adding together all its row blocks after pre-
multiplication of the  row block byi − th H(p + q − i) = (−X(1))p +q− i, i =1,..., p + q.  The 
product of X(1)  with the sum row block so constructed is 
X(1) (−Χ(1))q−1Π1( p), ..., Π1(p), (−Χ(1))p−1Ψ1(q), ..., Ψ1(q)( ). This is a null matrix under (21) 
and the Sylvester matrix is singular regardless of the rank of the assumed end coefficient matrices 
(Π(p), Ψ(q)). 

 
III. For general , the coefficient matrix W  could be constructed in the Sylvester 

matrix
s 1(s, p,q)

S(p,q)  by replacing  
 1) the bottom row block by the sum total of  the i − th  row block after pre-multiplication 
by H(p + q − i) , i =1,..., p + q, 
 2) the second to last row block by the sum total of the i − th  row block after pre-
multiplication by H(p + q −1− i), i =1,..., p + q −1,…, 
 s) the s − th  to last row block by the sum total of the i − th  row block after pre-
multiplication by H( p + q − s +1− i), i =1,..., p + q − s +1. 
 The bottom s row blocks so constructed are 

 Σ(s) =
Π1(p + q − s),...,Π1(p − s +1),Ψ1(q + p − s),...,Ψ1(q − s +1)

.... ..., ..., ..., ..., ...
Π1(p + q −1), ..., Π1(p), Ψ1(q + p −1), ..., Ψ1(q)

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
, 

since, with H(k) = 0 for  negative, we have constructed k

 H(k)
k= 0

p

∑ Π(i − k) = H(k + i − p)
k= 0

p

∑ Π(p − k) = Π1(i)   

and 

 H(k)
k= 0

q

∑ Ψ( j − k) = H(k + j − q)
k= 0

q

∑ Ψ(q − k) = Ψ1( j) . 

Also observe that the coefficient matrices of the inverse of the potential common factor satisfy 

. From this,  for 
  
H(k +1) = − X(l)

l=1

s

∑ H(k − l +1) i =1,...,q , conditions (21) imply sequentially 

 
  
0 =

l=1

s

∑ X(l)Π1(p − l + i) = ( X(l)
l=1

s

∑ H(k − l + i))Π(p − k)
k= 0

p

∑ = −Π1(p + i) , 

Repeating the same argument for the last  columns of p Σ(s)  find that under conditions (21) 
, Ψ1(q + j) = 0 j =1,..., p . Therefore, Σ(s)  has less than full row rank and the Sylvester matrix 

is singular regardless of the rank of the end coefficient matrices (Π(p), Ψ(q)).  

 10



As shown above, a common factor with finite degree inverse exists only if the Sylvester 
matrix is singular because its bottom block row has less than full row rank. Here it is shown that a 
common factor of finite degree exists only if the Sylvester matrix is singular because linear 
combinations of all its row blocks have less than full row rank. 
 
 
 
Illustration. Consider the matrix polynomials 
 
 (Π(z,2), Ψ(z,2)) = (Im + (X(1) + Π1(1))z + (X(1)Π1(1) + Π1(2))z2, 
    Im + (X(1) + Ψ1(1))z + (X(1)Ψ1(1) + Ψ1(2))z2) , X(1) ≠ 0, 
satisfying , with common factor X(1)(Π1(2),Ψ1(2)) = 0 Im + X(1)z and Sylvester matrix 

 S(2,2) =

Im 0 Im 0
X(1) + Π1(1) Im X(1) + Ψ1(1) Im

X(1)Π1(1) + Π1(2) X(1) + Π1(1) X(1)Ψ1(1) + Ψ1(2) X(1) + Ψ1(1)
0 X(1)Π1(1) + Π1(2) 0 X(1)Ψ1(1) + Ψ1(2)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

. 

 
Verify that (X(1)4,− X(1)3,X(1)2,− X(1))S(2,2) = 0, where the matrix of powers of X(1)  are 
the second to fifth terms in the expansion of (Im + X(1)z)−1. The common factor Im + X(1)z  is 
unique if the null space of S(2,2) contains only one set of  vectors with the i  vector 
consisting of the  rows of the four powers of 

m − th
i − th X(1) , i =1,...,m . In the scalar case 
 and the alternative is a pair Π1(2) = Ψ1(2) = 0 (Π1(z,1), Ψ1(z,1)) both of degree one. When  

 both the assumed and the alternative pair can be of the same degrees. m >1
This example illustrates the necessary condition (18) of Corollary 1 and the fact that 

Condition (21) is a system of nonlinear equations in the coefficient matrices of the inverse of the 
common factor. Unlike the common factors with finite degree inverses, Im + X(1)z  a common 
factor does not imply that Im + FX (1)z  with m × m  , is a common factor. The illustration also 
constructs the system of matrix equations to be solved in finding the common factor of finite 
degree of this example. 

F

Theorem 1 defines a general solution technique if the truncated transfer function T(z,n) 
is given. Theorems 2 and 3 define their solution techniques for given coefficient matrices of  the 
polynomial matrices (Π(z, p),Ψ(z,q)). Whereas linear equations are involved in Theorem 2, in 
general the solution techniques take the form of  nonlinear matrix equations. 
 
 
9. A singular Sylvester matrix without a common factor. 
 
 Simple examples with a singular Sylvester matrix, yet without a common factor can be 
constructed from a pair of polynomial matrices of degrees (p,q)  with p =1.  From Theorem 1 
the matrix 

 ℑ(m + q) = (−Π(1))m−1Τ(q),...,−Π(1)Τ(q),Τ(q)( ), Τ(q) = (−Π(1))i Ψ(q − i)
i= 0

q

∑  

is to have rank , whereas the determinant of the Sylvester matrix m S(1,q) = Τ(q)  is to be zero. 
In general the elements of  can be chosen in many ways, given the other matrices, to satisfy 
both 

Ψ(q)
ρ(ℑ(m + q)) = m  and Τ(q) = 0 , as long as in those choices Π(1)Τ(q) ≠ 0,  do 

not commute and 
(Π(1), Τ(q))

ρ(Π(1),Ψ(q)) = m .  
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 Observe that if  commute, (Π(1), Τ(q)) ℑ(m + q) = Τ(q)((−Π(1))m−1,...,−Π(1), Im ) , so 
that its rank cannot exceed that of Τ(q) and a common factor exists, confirming Corollary 1. 
Also verify that if there exists H(1) ≠ 0 such that H(1)(Π(1),Ψ(q)) = 0, then H(1)ℑ(m + q) = 0  
and  is a common factor, confirming Theorem 2. (Im + H(1)z)−1

 
 
 
 
10. Conclusion. 
  
 In the linear systems and time-series literature the problem of a common factor in the two 
polynomial matrices that after division generate a given transfer function has been analyzed under 
the restriction that potential common factors are unimodular. Polynomial matrix algebraic results 
such as developed in [6] have been utilized in this analysis. In this paper we followed the 
Sylvester tradition [7], in which the existence condition does not depend on whether the common 
factor is unimodular or not. Furthermore, Sylvester’s result does not depend on whether common 
factors are small or large. 
 From the algebraic point of view, the proof of the generalization of Sylvester’s result is 
based on defining the inverse of a polynomial matrix (Im + X(1)z + ...)−1 in a neighborhood of 
zero, as another infinite series Im + Η(1)z + ..., obtainable sequentially through diagonally 
dominant Toeplitz matrices [1] and not on the notion that an inverse is a matrix of ratios of 
determinants. The latter notion drives the concept of unimodular common factors, whereas the 
former permits the collection of terms with the same power in the vector product multiplications, 
regardless if the determinant of the common factor is a constant or not.  

The generalization of Sylvester’s criterion to polynomial matrices has not been studied in 
the literature and the results, some expected and some non-expected alike, are pure algebra 
results. From the applied perspective, they add to our understanding of problems of non-
uniqueness of representations in linear systems. The time series Arma(p,q) model literature 
considers the uniqueness problem for models in coprime form [8]. If it is desirable to transform a 
model not in coprime form to one in coprime form, the Sylvester criterion might help in 
discovering the common factors that are not unimodular. Interestingly, under the generalized 
Sylvester approach of this paper models need not be in coprime form. 
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