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Abstract
The Fixed Set Search (FSS) is a novel metaheuristic that adds a learning mechanism to
the Greedy Randomized Adaptive Search Procedure (GRASP). In recent publications,
its efficiency has been shown on different types of combinatorial optimization prob-
lems like routing, machine scheduling and covering. In this paper the FSS is adapted to
multi-objective problems for finding Pareto Front approximations. This adaptation is
illustrated for the bi-objective MinimumWeighted Vertex Cover Problem (MWVCP).
In this work, a simple and effective bi-objective GRASP algorithm for the MWVCP
is developed in the first stage. One important characteristic of the proposed GRASP
is that it avoids the use of weighted sums of objective functions in the local search
and the greedy algorithm. In the second stage, the bi-objective GRASP is extended
to the FSS by adding a learning mechanism adapted to multi-objective problems. The
conducted computational experiments show that the proposed FSS and GRASP algo-
rithm significantly outperforms existing methods for the bi-objective MWVCP. To
fully evaluate the learning mechanism of the FSS, it is compared to the underlying
GRASP algorithm on a wide range of performance indicators related to convergence,
distribution, spread and cardinality.
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1 Introduction

The Fixed Set Search (FSS) is a novel metaheuristic that has previously been success-
fully applied to solve the traveling salesman problem (Jovanovic et al. 2019), the power
dominating set problem (Jovanovic and Voss 2020), machine scheduling (Jovanovic
and Voß 2021) and the minimum weighted vertex cover problem (Jovanovic and Voß
2019). Quite some research has shown that the performance of population-basedmeta-
heuristics can be significantly improved by adding a local search. The design of the FSS
starts from the premise that it includes a local search. In practical terms the FSS adds a
learning mechanism to theGreedy Randomized Adaptive Search Procedure (GRASP)
metaheuristic. GRASP iteratively generates solutions for the problem of interest using
a Randomized Greedy Algorithm (RGA) and applies a local search to each of those
solutions (Feo and Resende 1995). The popularity of the GRASP comes from the sim-
plicity of its implementation which still manages to have a performance comparable
to more complex population-based metaheuristics that do not use a local search. One
of the most effective improvements of the GRASP method is the use of path relinking
(Resende and Ribeiro 2005; Díaz and Luna 2018; Marzo and Ribeiro 2020).

The FSS exploits the fact that high-quality solutions, for a specific problem instance,
often have many of the same elements in common. The idea of the FSS is to use such
elements in generating new solutions. Practically, this means that a set of such ele-
ments, called the fixed set, is included in the solutions that will be generated and the
computational effort is dedicated to fill the partial solution or, in other words, “fill-
ing in the gaps.” The concept of using elements of high-quality solutions is based on
earlier notions of chunking (Voß and Gutenschwager 1998; Woodruff 1998), vocab-
ulary building and consistent chains (Sondergeld and Voß 1999) as they have been
used, e.g., in relation to tabu search. In those notions one relates given solutions of
an optimization problem as being composed of parts (or chunks). Similar ideas are
even found in the matheuristic POPMUSIC paradigm (Taillard and Voß 2002). The
basic steps of the FSS are similar to the GRASP in the sense that new solutions are
generated using a RGA and a local search is applied to them. The difference is that
there is a set of elements which are pre-selected in the solution generated by using
the RGA, which is the fixed set. The learning mechanism consists of generating such
fixed sets based on experience gained from previously generated solutions.

1.1 Multi-objective methods

In this paper, the FSS is extended to solve multi-objective discrete combinatorial opti-
mization problems. Solving multi-objective problems has generally a much higher
computational cost than single-objective ones, since the goal is to find the Pareto
Front (PF) instead of a single optimal solution value. The PF can be obtained using
Mixed-Integer Programs (MIP) with the ε-constraint method (Mavrotas 2009), the
weighted sum method (Marler and Arora 2010) and similar approaches. In case these
methods are used, it is necessary to solve multiple single-objective problems. In gen-
eral, solving single-objective optimization problems using MIP may come at a high
computational effort. This becomes even more significant in case of multi-objective
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ones, since many such problems need to be solved. It should be noted that in some
practical applications of multi-objective problems, the decision maker provides a set
of a priori preferences, and needs the solutions evaluated against these preferences. For
this type of application, goal programming (Tamiz et al. 1995) seems most suitable.

To address this drawback, there has been a notable effort in adapting standard
metaheuristics (tabu search, simulated annealing, genetic algorithms, particle swarm
optimization, etc.), to solve multi-objective combinatorial optimization problems, for
which an extensive recent review can be found in Liu et al. (2020). Themost commonly
usedmulti-objectivemetaheuristic isNSGA-II (Debet al. 2002),which is an adaptation
of genetic algorithms. One of the main issues that many metaheuristics for multi-
objective problems face is the need for a ranking between the generated solutions. This
is frequently done using non-dominated sorting which, in its basic form, has a high
computational complexity. The popularity of NSGA-II is partly due to its introduction
of an efficient procedure for this task having a computational complexity of O(MN 2)

and storage requirements of O(N 2), where N is the population size and M is the
number of objective functions. Another issue in using standard metaheuristics is the
increase in implementation complexity. One of the main reasons for the widespread
use of the NSGA-II is the existence of a MatLab toolbox, and other libraries, that
render its usage as a black box possible. On the other hand, it is possible to improve
the quality of solutions using different types of local searches. The use of local searches
has proven to be a powerful tool in finding approximations to the PF, for which an
extensive review can be found in Blot et al. (2018).

In case of multi-objective optimization problems, the GRASP has managed to
maintain its popularity due to the preserved simplicity in its implementation. In general,
the only adaptations that are needed, compared to the single-objective GRASP, are
the selection of the objective function used to construct solutions and improve them at
each iteration of the GRASP algorithm. An overview of approaches for this selection
procedure is provided inMartí et al. (2015). Some examples of successful applications
of a multi-objective GRASP are, among others, focusing on the knapsack problem
(Vianna and Arroyo 2004), the waste collection problem (López-Sánchez et al. 2018),
partial classification (Reynolds andDe la Iglesia 2009), multi-row facility layout (Wan
et al. 2022), and dynamic cache resources placement (Ben-Ammar and Hadjadj-Aoul
2020). An interesting method for improving the basic multi-objective GRASP is its
hybridization with the variable neighborhood descent (López-Sánchez et al. 2018). It
should be noted that the extensions of theGRASPwith path relinking and its variations
have successfully been applied to several multi-objective problems (Martí et al. 2015;
Rezki and Aghezzaf 2018; Sánchez-Oro et al. 2021).

An issue with the multi-objective GRASP is that the more solutions are generated,
the less likely it becomes that new elements of the PF are generated. To be more
precise, in the early iterations of the GRASP, non-dominated solutions are frequently
generated, since there is a small number of previously generated solutions that can
potentially dominate them. In the later iterations of theGRASP, it becomes increasingly
more probable that a newly generated solution is dominated by at least one of the
solutions obtained in the previous iterations. This is due to the fact that the quality
of generated solutions in the GRASP algorithm is independent of the number of
performed iterations.
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Other metaheuristics avoid this issue by including different types of learning mech-
anisms. As we will show, the FSS manages to add an experience-based learning
mechanism to the GRASP, while maintaining the simplicity of the method even in
case of multi-objective problems. It should be noted that previous research has shown
that the FSS is improving the performance of the underlying GRASP significantly
especially in case of mediocre local searches. Consequently, the need for developing
a complex highly efficient local search can be avoided for many applications.

1.2 Related work

The Minimum Vertex Cover Problem (MVCP) is one of the standard combinatorial
optimization problems with its decision version being one of Karp’s 21 NP-complete
problems (Karp 1972). The MVCP and its variations have proven to be very suitable
for representing many real-world problems (Wang et al. 2017; Pullan 2009; Hu et al.
2018). Because of this, there has been an extensive amount of research dedicated to
developingmethods for solving this problem. Awide range of different metaheuristics
has been applied to this problem like genetic algorithms (Singh and Gupta 2006), ant
colony optimization (Jovanovic and Tuba 2011) and many others (Bouamama et al.
2012; Voß and Fink 2012). Because of this, the MVCP and its variations are very
suitable for evaluating the performance of new algorithmic concepts.

The MVCP is defined for a graph G = (V , E), where V is a set of vertices and
E is a set of edges. A vertex set S ⊂ V is called a vertex cover if for every edge
{u, v} ∈ E at least one of the vertices u or v is an element of S. The objective of
the MVCP is to find a vertex cover S that has minimum cardinality. In the Minimum
Weighted Vertex Cover Problem (MWVCP) there is a corresponding weight w(u) for
each vertex u ∈ V . The objective in the MWVCP is to find a vertex cover having
minimum total weight. In an m-objective MWVCP (m-MWVCP) each vertex u ∈ V
hasm weightswi (u), i = 0, . . . ,m−1, assigned to it. Each of theweights corresponds
to an objective function having the following form.

minimize F(S) = ( f0(S), . . . , fm−1(S)) (1)

fi (S) =
∑

u∈S
wi (u) (2)

In Eq. (1), the goal is to minimize the value of each objective fi , where i = 0, . . . ,m−
1, for a vertex cover S. The goal in them-MWVCP is not to find a single best solution
but the set of all non-dominated solutions. The term dominate is used for the following
relation between solutions. Solution S′ dominates solution S (for a minimum multi-
objective problem), if for each objective fi (S′) ≤ fi (S) is satisfied, and there exists
at least one objective f j such that f j (S′) < f j (S). The notation S′ ≺ S is used to
indicate that solution S′ dominates solution S. The set of all non-dominated solutions,
i.e., those solutions that are not dominated by any other solution, is called the Pareto
Set or the Pareto Front (PF).

The m-MWVCP has been introduced in the work of Rollon and Larrosa (2009).
Many real-world systems are well represented in this way. An example can be the
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optimal positioning of electrical vehicle (EV) charging stations. In this type of model,
the instance graph is generated based on map data. The edge-covering constraint is
related to the availability of chargers to potential EV drivers within some maximal
distance. The two objectives, corresponding to the two weight functions, are related
to the needs of the charging station operators and the convenience of EV drivers. For
instance, the first set of weights could represent location costs. The second set of
weights could represent the average distance travelled by each EV to reach the station,
pre-calculated based on population densities.

It is interesting that, although the MWVCP is one of the most researched com-
binatorial optimization problems, very limited research has been dedicated to its
multi-objective version. In Rollon and Larrosa (2009), an analysis of the PF is done
through a comparison of PFs obtained by the ε-method and the multi-objective mini-
bucket elimination algorithm. In the work of Marinescu (2010), the effectiveness of
the best-first search in a multi-objective branch-and-bound algorithm is illustrated
on the multi-objective MWVCP. Recently, an approach incorporating a local search
has been applied to the problem of interest, using the multi-objective neighborhood
search algorithm based on decomposition (MONSD) (Hu et al. 2019). The MONSD
uses a population-based approach. Each population member solves a different single-
objective problem. To bemore precise, each objective is equal to a weighted sum of the
objectives of the original multi-objective problem. In addition, an interesting mixed
score function is introduced based on the problem features, to make the initialization
procedure and the neighborhood search more effective.

1.3 Contribution

In this paper, the FSS is applied to solve the bi-objective MWVCP as a prototype of
multi-objective combinatorial optimization problems. This is done by extending the
FSS algorithm previously developed for the MWVCP (Jovanovic and Voß 2019) to
a multi-objective setting (with a focus on two objectives). This extension consists of
several steps. Firstly, in the GRASP algorithm from Jovanovic and Voß (2019) the
randomization of the RGA and the use of local search are adapted to the bi-objective
setting. In the randomization step a novel method for selecting the heuristic function
used at each iteration of the RGA is proposed. It provides a good distribution of newly
generated solutions close to the entire area of the PF. In the extension of the FSS, the
method for generating the fixed sets has been adapted to use only solutions that are
part of the current PF approximation. In this way, the multi-objective FSS avoids the
need for non-dominated sorting.

An extensive analysis of the performance of the FSS is done on instances from
the literature which are used in the conducted computational experiments. To be more
precise, the comparison is done on theMONSD (Hu et al. 2019). The results show that
the proposed GRASP and FSS manage to greatly outperform MONSD for the multi-
objectiveMWVCP.Tobe able to better understand the effect of the learningmechanism
of the FSS, the comparison with the GRASP algorithm is performed on a wide range
of indicators. The selected indicators are related to convergence, distribution, spread
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and cardinality as suggested by Audet et al. (2021). In addition, the convergence speed
and the effect of method parameters of the FSS are evaluated.

The paper is organized as follows. The next section provides details on the proposed
multi-objective GRASP. Section 3 is dedicated to the adaptation of the FSS to the
multi-objective MWVCP. The following section provides details of the performed
computational experiments. The paper is finalized with concluding remarks.

2 GRASP

In this section, the GRASP algorithm for the 2-MWVCP is presented. Firstly, the
standard greedy algorithm for the MWVCP is adapted to the 2-MWVCP. Next, the
new adaptation of the greedy algorithm is randomized. The goal of randomization of
the greedy algorithm within a single-objective GRASP is to make it possible to find a
single optimal solution, by generating solutions in promising regions of the solution
space. On the other hand, in case of a multi-objective setting, the objective of the
randomized greedy algorithm is to generate solutions in a way that they can be used
to approximate as many points of the PF as possible. In the later parts of this section,
the applied local search is presented and details are given on how it is used within the
GRASP algorithm.

2.1 Greedy algorithm

In this section, the standard greedy constructive algorithm for the MWVCP is adapted
to abi-objective setting. In case of the single-objectiveMWVCP, themethod starts from
an empty solution S = ∅ and at each step it is expanded with a vertex that has the most
desirable properties based on a heuristic function h. The heuristic function considers
expanding a solution Swith a vertex u that covers a large number of non-covered edges
and has the minimal weight w(u). In case of the 2-MWVCP, two separate heuristic
functions hi , defined for i = 0, 1, are used for each of the weights wi . The used
heuristic function has been introduced by Chvatal (1979) for the set covering problem
and has been extensively used for the MWVCP. For the notion of heuristic functions
and heuristic measure in general, the reader is referred to, e.g., Rayward-Smith and
Clare (1986) and Voß et al. (2005). Formally, the heuristic functions for a partial
solution S and a vertex u have the following form.

Cov(u, S) = {{u, v} | ({u, v} ∈ E) ∧ (v /∈ S)} (3)

hi (u, S) = |Cov(u, S)|
wi (u)

(4)

In Eq. (3),Cov(u, S) is the set of edges in E that contain vertex u but are not already
covered by S. An edge is covered if at least one of its vertices is in S. The notation
|X | is used for the cardinality of the set X . A heuristic function hi , defined in Eq. (4),
is proportional to the number of elements of Cov(S, u), and inversely proportional to
the corresponding weight wi (u) of the vertex u.
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The standard approach to randomize a greedy algorithm is the use of a restricted
candidate list (RCL). Let us define R ⊂ V \ S as the set of elements that are not in
the solution that have the largest value of the heuristic function h(v, S). The partial
solution is expanded with a random element of set R. In this case, the size of the RCL
is equal to |R|. This idea can be directly extended to the 2-MWVCP by creating a
RCL based on each of the heuristic functions hi .

The goal is to integrate this type of randomized greedy algorithm (RGA) into
a GRASP method which is applied to a bi-objective problem. In such a case, the
fact that the RGA only considers one objective function at a time becomes an issue.
This concept needs to be adapted in a way to produce solutions that can be used for
approximating the entire PF. The solutions with the minimal values of the objective
functions fi (in a minimization problem) are of special importance for specifying the
PF. Because of this, additional effort should be dedicated to find them. This can easily
be achieved by using a greedy constructive algorithm that only uses one of the heuristic
functions hi .

On the other hand, a greedy algorithm also needs to explore the part of the PF
between the extreme values. One approach that is commonly used is defining a
weighted heuristic function hw(u, S) = γ h0(u, S) + (1 − γ )h1(u, S) that jointly
considers both objectives. Note that γ represents the weight given to objective func-
tion h0. One of the drawbacks of this approach is the necessity of selecting the weight
parameter γ . This generally includes some type of normalization based on the heuris-
tic functions hi and some analysis on the range of the objective functions fi . In the
proposed method, this is avoided in the following way. A randomized heuristic func-
tion hα is defined that selects one of the heuristic functions with probability α ∈ [0, 1]
as follows:

hα(u, S) =
{
h1(u, S) β ≤ α

h0(u, S) β > α
(5)

In Eq. (5), β is a random variable with a uniform distribution from the interval
(0, 1). The heuristic hα(u, S) selects one of the heuristics hi based on the value of β.

Algorithm 1 Pseudocode for the randomized greedy algorithm with parameter-
dependent heuristic selection (RGAα) for the 2-MWVCP.
function RGAα

S ← ∅
while Not all edges covered do

Generate RCL based on hα and S
Select random element n ∈ RCL
S ← S ∪ n

end while
return S

end function

The heuristic function hα can be used to define the randomized greedy constructive
algorithm used in the 2-MWVCP, as it can be seen in Algorithm 1. In it, the partial

123



488 R. Jovanovic et al.

solution S is initially set to an empty set. At each iteration, S is expanded with a
random element from the RCL based on hα . This is repeated until all the edges in E
are covered. The proposed RGAα has a computational complexity of |S||V |, where
S is the generated solution.

2.2 Local search

In this section, a local search based on a correction procedure is presented. The pro-
posed local search uses the concept of swapping elements of a solution Swith elements
of V \ S that produce a vertex cover of higher quality. A similar swap operator has
been used in Voß and Fink (2012); Li et al. (2016); Jovanovic and Voß (2019) for the
single-objective MWVCP. The swap operator has also been extended with success for
element pairs (Jovanovic andVoß2019).A solution S for the single-objectiveMWVCP
is improved to a new solution S′ if f (S′) < f (S). In case of the 2-MWVCP additional
considerations are needed. As it is discussed in Martí et al. (2015), improvements to a
solution S in a local search can be observed in several ways in the context of the PF. In
this paper, similar concepts are considered and defined. In a pure improvement for a
solution S, the focus is on one objective function fi (S′) and it is allowed to deteriorate
the second one f j (S′). Another option is to use a new weighted objective function
f w(S) = Θ f0(S) + (1 − Θ) f1(S) with Θ ∈ [0, 1]; in this case an improvement is
achieved if the value of f w(S′) has decreased. Note that this can result in a deteriora-
tion of the objective functions fi (S′) and f j (S′). In constraint improvement, a single
objective is considered at a time. A solution S′ improves a solution S if fi (S′) < fi (S)

and f j (S′) ≤ f j (S). In the proposed method, the local search only uses the constraint
improvement for which details are given in the following subsection.

2.2.1 Element swap

In this subsection, details of the swap operator are presented. This operator is used
to define a neighborhood used in the local search. From now on, it is assumed that a
solution S is to be improved. If S is a vertex cover of G, for each edge {u, v} at least
one of the nodes u or v is an element of S. Let us define UniqueCover(v, S), for a
solution S and vertex v ∈ S, as the set of vertices that correspond to edges that are
uniquely covered by vertex v as

UniqueCover(v, S) = {u | u /∈ S ∧ {u, v} ∈ E} (6)

It is clear that if vertex v is removed from S and all of the elements of
UniqueCover(v, S) are added to S, a new vertex cover is created. For simplicity
of notation let us define the swap operator for a vertex v as

Swap(v, S) = (S ∪UniqueCover(v, S)) \ {v} (7)

The effect of a swap operator, for a vertex v, on the value of each objective function
can be defined as
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Changei (v, S) = wi (v) −
∑

u∈UniqueCover(v,S)

wi (u) (8)

In Eq. (8), Changei (v, S) gives the change in the objective function value fi when
v ∈ S is swapped. Note that i is equal to 0 or 1 depending on the selected objective
function.More precisely, it is equal to the difference between theweight of the removed
vertex (wi (v)) and the sum of the weights of all the added vertices. Now, we can define
Impi (S) as the set of all vertices of S for which a swap operator produces a constraint
improvement for objective fi :

Impi (S) = {v | v ∈ S ∧ Changei (v, S) > 0 ∧ Change j (v, S) ≥ 0} (9)

In Eq. (9) i is running through the set of weights for which an improvement is tested,
hence i is equal to 0 or 1. In the same equation, j is used for the remaining weight set.
This equation states that swapping vertex v ∈ S produces a constraint improvement for
objective function fi , if the value of Changei (v, S) is greater than zero ( fi decreases)
and the value of Change j (v, S) is greater or equal to zero ( f j does not increase).
Impi (S) is the set of all such vertices.

2.2.2 Implementation

Now, the constraint local search for objective function fi , based on the element swap
operator, can be specified as in the pseudocode in Algorithm 2.

Algorithm 2 Pseudocode for the constraint local search based on swap operator.
function LocalSearch(S,i)

j ← (i + 1) mod 2
repeat

Imp ← Impi (S)

if Imp = ∅ then
Imp ← Imp j (S)

end if
if Imp �= ∅ then

Select random v ∈ Imp
S ← Swap(v, S)

end if
until (Imp = ∅)

return S
end function

In Algorithm 2, the inputs are a solution S and the index of the objective function
fi whose improvement is preferred. The solution is iteratively improved based on
element swap neighborhoods.At each iteration, a constraint improvement for objective
i is tested using the function Impi (S). In case such an improvement exists, a random
element v ∈ Impi (S) is selected and swapped from the solution. In case this is not
possible, the second objective f j is tested using the function Imp j (S). In case an
improvement is possible, Imp j (S) �= ∅, a random element v ∈ Imp j (S) is selected
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and swapped with an element from the solution. The main loop is repeated until no
further improvement exists. Note that due to the sole use of constraint improvements,
cycles between improving solutions are not possible.

2.3 GRASP implementation

This subsection details how the proposedRGAand local search are used in theGRASP
metaheuristic for the 2-MWVCP. There are several aspects that need to be considered.
Firstly, the selection of the RGA that is used in each iteration, or more precisely, how
the value of α is selected; and secondly, which objective function fi must be applied
for a solution obtained using the RGAα .

The selection of α at each iteration impacts the area of the PF to which a generated
solution RGAα is close to. As previously stated, additional effort should be dedicated
to finding the extreme points of the PF. This effort is controlled with an additional
parameter δ ∈ (0, 0.5). The selection of the value α is done based on a random variable
θ in the following way.

α =
⎧
⎨

⎩

1 θ ≤ δ

0 θ ≥ 1 − δ

random(0, 1) otherwise
(10)

In Eq. (10) the notation random(0, 1) is used for a random variable having a uniform
distribution on the interval (0, 1). In case of δ = 0.5, all the effort is dedicated to
finding the extreme points of the PF. In case δ = 0, no additional effort is dedicated
to this task.

The next step is defining the procedure for selecting the local search that is used for
a specific value of α. This selection is based on the following logic. In case the solution
is generated using only one of the objective functions (α = 0, 1), the objective is to
generate solutions near the extreme points of the PF. Consequently, it is natural that
the objective function used for the local search is the same as for the greedy algorithm.
On the other hand, for 0 < α < 1 it is not evident to which part of the PF the solution
obtained by RGAα will be close to, so there is no preference for a specific local search
and the objective function fi can be randomly selected. The selection of the objective
function fi based on the value of α is given in the following equation.

i =
⎧
⎨

⎩

1 α = 1
0 α = 0
random({0, 1}) otherwise

(11)

In Eq. (11) the notation random({0, 1}) is used for a randomvariable having a uniform
distribution within the set {0, 1}.

The GRASP algorithm can now be fully specified as in Algorithm 3. In it, N
solutions are iteratively generated. Note, in GRASP algorithms other stopping criteria
are frequently used, for instance a time limit. In each iteration, thefirst step is generating
a solution S ← RGAα based on a selected value of α using Eq. (11). Based on the
value of α, the objective function fi used for the constraint local search is selected
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Algorithm 3 Pseudocode for the bi-objective GRASP for the 2-MWVCP.
i ← 0
while i < N do

Select α based on (10)
S ← RGAα

Select i based on (11)
S ← LocalSearch(S, i)
Update the Pareto Front for S
i ← i + 1

end while

and the local search is applied to S. The final step is updating the PF based on the
improved solution S. In practice, if no solution in the PF dominates S, it is added to
the PF and all the solutions in the PF that are dominated by S are removed.

3 Fixed set search

The fixed set search (FSS) is a novel metaheuristic that adds a learning mechanism
to the GRASP. It has been successfully applied to several different types of single-
objective combinatorial optimization problems (Jovanovic et al. 2019; Jovanovic and
Voss 2020; Jovanovic and Voß 2021; Jovanovic and Voß 2019). The main idea of the
FSS is to focus on elements that frequently appear in high-quality solutions. Such
frequently occurring elements are used to steer the exploration of the solution space.
One of the main positive traits of the FSS is its simplicity of implementation. In
this section, an adaptation of the FSS for finding an approximation of the PF in bi-
objective problems is presented and the proposal is illustrated to solve the 2-MWVCP.
As it will be seen, only very few changes to the single-objective FSS are needed;
consequently the simplicity of the method is maintained. In addition, except for track-
ing the elements of the PF, there is no additional computational cost. It should be
noted that many metaheuristics significantly grow in complexity when extended to
multi-objective problems. Due to the general use of elitist solutions in population-
based metaheuristics, there is a need for non-dominated sorting, as in NSGA-II, at
a relatively high computational cost which is not the case in the FSS. Next, details
are given on how the FSS is applied to solve the 2-MWVCP. The differences to the
single-objective FSS will be emphasized and the reasons for them. A more detailed
explanation of the concepts used in the FSS can be found in Jovanovic et al. (2019).

The inspiration for the FSS comes from the observation that many high-quality
solutions for a combinatorial optimization problem contain some common elements.
With the FSS we propose an approach to exploit these elements and to direct the
search of the solution space. The single-objective FSS achieves this by forcing such
elements into newly generated solutions and by dedicating computational effort to
finding optimal or near-optimal solutions in the corresponding subset of the solution
space. The goal of the bi-objective FSS is to use the same concept to find solutions
that well approximate the PF.

In the FSS the set of selected common elements is called the fixed set and sub-
sequently it is denoted as F . The goal is to find the additional elements to complete
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the partial solution, corresponding to the fixed set, or in other words to “fill in the
gaps." This is done by concentrating the search around such fixed sets. To achieve
this, several tasks need to be achieved. Firstly, a method for generating fixed sets must
be specified. The RGA, used in the corresponding GRASP, needs to be adapted in a
way to be able to use a pre-selected set of elements. In case of the multi-objective FSS,
it is also necessary to consider the use of the different local searches. Finally, there
is a need to define the learning mechanism which gains experience from previously
generated solutions.

3.1 Fixed set

In this subsection, the methods for generating random fixed sets are presented. The
difference between the single-objective FSS and the bi-objective one lies in the set of
solutions that are used for generating the fixed set. The necessary requirement for a
problem allowing to apply the FSS is to be able to present the solution in the form of a
set. In practice this means that a solution S has elements in some set W , i.e., S ⊂ W .
In case of the MWVCP and the 2-MWVCP, the set of elements is simply the set of
vertices V , as S ⊂ V .

As it has been previously stated, the fixed set should have elements that frequently
appear in high-quality solutions. In case of the single-objective FSS, the set of n
solutions having the best quality from all the solutions generated in the previous
iterations of the algorithm is used. This idea can be directly extended to the multi-
objective FSS using non-dominated ranking. Our initial tests have shown that this
is not necessary, since it is sufficient to use only the solutions in the PF. The tests
have shown that the use of solutions not included in the PF can even degrade the
performance of the method. From now on, the notation P is used for the Pareto Set.
It is expected that the reason for this is that the solutions in P provide a high enough
diversity in solutions and contain sufficient information about the quality of elements.

The FSS learning mechanism needs to be able to control the size of a generated
fixed set |F |. Further, such fixed sets need to be able to produce high-quality feasible
solutions. In the proposedmethod this is accomplished by using a base solution B ∈ P .
If the fixed set satisfies F ⊂ B, it can be used to generate solutions having the desired
properties. Such a fixed set F can be used to generate a feasible solution with a quality
at least as good as solution B. The question is which elements of B should be contained
in the fixed set F . It is preferable for F to contain elements that frequently occur in
some set of solutions in the PF. Let us use the notation Pk as the set of k randomly
selected solutions from the PF, P . In case the PF,P , does not have k elements,Pk will
be equal to P .

Let us now define a function Fix(B,Pk, Size) that generates a fixed set F ⊂ B
that consists of Size elements of the base solution B = {v1, ...vl} that most frequently
occur in Pk = {S1, .., Sk}. Let C(v, S) be a function, defined for an element v ∈ V
and a solution S ⊂ V , be equal to 1 if v ∈ S and 0 otherwise. Therefore, the function
O(v,Pk) counts the number of occurrences of element v in the elements of the set Pk

using the function C(v, S) as follows.
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Fig. 1 Illustration of generating a fixed set. The input is Pk (top left), a set of four randomly selected
solutions from the six solutions in the PF, and a base solution B (left bottom). The value on a node of B
represents the number of occurrences of that node in elements of Pk . The nodes on the right-hand side
present the corresponding fixed set of size four

O(v,Pk) =
∑

S∈Pk

C(v, S) (12)

With this, we can define Fix(B,Pk, Size) as the set of Size elements v ∈ B that
have the largest value of O(v,Pk). In the proposed method, ties between elements are
broken randomly. A graphical illustration of the method for generating a fixed set can
be seen in Fig. 1.

3.2 Learningmechanism

The learning mechanism in the FSS is implemented through the use of fixed sets.
The first step consists of adapting the RGA used in the GRASP in a way to have
some pre-selected elements. To be more precise, the adaptation must guarantee that a
newly generated solution contains the pre-selected elements. In case of the 2-MWVCP
the RGA also needs to consider different heuristic functions. Let us use the notation
RGA(F) for the solution generated using the corresponding RGAwith a pre-selected
(fixed) set of elements F . In case of the MWVCP the adaptation is simple, the initial
partial solution S is set to the fixed set F instead of an empty set. In case of the FSS
for the 2-MWVCP, the same initialization is used.

The next question is how to select the heuristic that is used at each iteration of
the RGAα(F). The notation RGAα(F) is used for the extension of the RGAα given
in Algorithm 1 to use a fixed set F . In the proposed method, one of the heuristics
hi is randomly selected and used in all the iterations. The reasoning for this is that
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the random selection of the heuristic function at each iteration is used to distribute
the solutions over the whole area of the PF. When the fixed set is used, this is not
necessary. This is achieved by the use of the randomly selected base solution B.
The conducted computational experiments have indicated that using a single heuristic
function generally produces solutions closer to the PF. The next step is improving the
generated solution S = RGAα(F) by applying the local search based on the same
objective function related to the weight function wα .

Once the method for generating fixed sets and the adaptation of the RGA have
been presented, the details of the learning mechanism can be given. The first step is to
perform an initial exploration of the solution space and finding an approximation of
the PF, P . This is achieved by performing N iterations of the presented bi-objective
GRASPalgorithm.As in the case of theGRASP, the FSS iteratively generates solutions
and applies local searches to them. At each iteration, the fixed set of some size Size is
generated based on P , as previously described. The fixed set F is used to generate a
new solution S = RGAα(F) and the local search is applied to it. The PF is updated for
the newly generated solution S′. This procedure is repeated until no changes are made
to the PF for Stag generated solutions, or, in other words, until stagnation occurs. In
case of stagnation, the size of the fixed set is increased. In case the maximal allowed
size of the fixed set is reached, the size of the fixed set is reset to the minimal allowed
value. This procedure is repeated until a total of M solutions are generated.

To fully specify the FSS, the array of allowed fixed set sizes needs to be specified.
It is related to the portion of the solution that is to be fixed. The commonly used array
of portions is the following:

Portions[ j] =
(
1 − 1

2 j

)
(13)

The size of the used fixed sets is proportional to the used base solution B. More
precisely, at the j-th level it is equal to |B| · Portions[ j].

The details of the FSS for the 2-MWVCP are given in the form of pseudocode in
Algorithm 4. The first step is generating the portions of fixed sets using (13). The
initial portion of the fixed set Portion is set to the smallest value. The next step is
generating the initial PF by performing N iterations of the GRASP algorithm given in
Algorithm 3. The main loop of the FSS consists of the following steps. Firstly, Pk is
set to k random elements of the PF,P . Secondly, a random solution B ⊂ P is selected.
Based on Pk and B, a fixed set F is generated, F = Fix(B,Pk, |B|Portion). Next, a
random objective function α is selected that is used for the RGAα and the local search
for generating the next solution S.

The PF, P , is updated for potential changes for the new solutions S. In case stag-
nation of the PF occurs, the value of Portion is set to the next value in Portions.
In our implementation of the proposed algorithm for the 2-MWVCP, the criterion for
stagnation is that no solution has been added to the PF in the last Stag iterations. Let
us note that the next Portion is the next larger element of the array Portions. In case
Portion is already the largest value, we select the smallest element in Portions. This
procedure is repeated until a total of M solutions have been generated. Note that an
alternative termination criterion can be used, for instance a time limit.
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Algorithm 4 Pseudocode for the Fixed Set Search for the 2-MWVCP.
Initialize Portions
Portion = Portions.Next
Generate PF P using GRASP(N )

i ← 0
while i < M − N do

Set Pk to random k elements of P
Set B to a random solution in P
F = Fix(B,Pk , |B|Portion)

Select α randomly from {0, 1}
S = RGAα(F)

S = LocalSearchα(S)

Update P with S
if Stagnant P then

Portion = Portions.Next
end if
i ← i + 1

end while

4 Results

In this section, details of the performed computational experiments are presented. The
aim is to compare the solutions obtained by the FSS to the ones of the GRASP and
the MONSD algorithms with reference to a set of performance indicators (evaluation
metrics). Note that MONSD has been developed by Hu et al. (2019) providing the
currently best-known results for the 2-MWVCP, to the best of the authors’ knowledge.
The selectedperformance indicators are theC-metric, hypervolume,Γ metric, spacing,
cardinality and convergence speed. All of these indicators are explained in detail in
the later parts of this section.

The analysis of the proposed methods is divided into three parts. Firstly, a com-
parison of the proposed FSS and GRASP algorithms is made comparing them with
the MONSD. Next, the effect of the learning mechanism of the FSS is extensively
evaluated based on a set of performance indicators, for which a review can be found
in Audet et al. (2021). Finally, in the third part, the convergence speed of the proposed
approaches is evaluated. In addition, the effects of different values of the parameters
of the FSS are shown.

The comparison is performed on the test instances used to evaluate MONSD (Hu
et al. 2019). These instances are based on the ones introduced in Shyu et al. (2004),
which have also been used in Bouamama et al. (2012); Zhou et al. (2016); Li et al.
(2016); Jovanovic and Voß (2019). The instances are extended with a second set of
vertex weights which are used for the second objective function. The test instances
have between 100 and 1000 nodes, and between 100 to 20000 edges. Each test instance
is specified as a pair (|V |, |E |)with |V | and |E | being the number of vertices and edges,
respectively.

The used parameters for the FSS are the following: k = 20 random solutions are
selected from the PF P for generating the set of solutions Pk . The size of the initial
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population is N = 100 or, in other words, the number of initial solutions generated
by the GRASP. The stagnation criterion is that there have been no changes (no new
solution is added) to the PF in the last Stag = 100 iterations for the current fixed set
size. The value of the parameter Stag has a minor effect on the performance of the
FSS, since its main purpose is to render the passing through different sizes of the fixed
set possible. In case only a small number of solutions can be generated, it is beneficial
to use a smaller value of Stag to render the use of a large fixed set possible at an early
stage of the search. Note that for large fixed sets the method focuses on exploitation.
The used size of the RCL in the RGA is 10. The value of parameter δ used to specify
the amount of effort dedicated to finding the extreme points of the PF is 0.15. The value
of this parameter has been determined empirically. The other parameter values used
in the FSS and the GRASP are the same as in case of the single-objective MWVCP.
An extensive analysis of their effect on the algorithm performance can be found in
Jovanovic and Voß (2019). The FSS and GRASP have been implemented in C# using
Microsoft Visual Studio 2019. The calculations have been done on a machine with
Intel(R) Core(TM) i7-8550U CPU@ 1.80 Ghz, 16GB of DDR3-1333 RAM, running
on Microsoft Windows 10 Enterprise 64-bit.

4.1 Comparison to existingmethods

In this subsection, a comparison with the MONSD is presented. It should be noted
that the MONSD significantly outperforms NSGA-II on the 2-MWVCP (Hu et al.
2019). The MONSD has a high level of similarity to GRASP algorithms, in the sense
that multiple solutions are generated and a local search is applied to them. Detailed
results (Pareto Sets) for all instances from Hu et al. (2019) were not available. The
comparison is done on six graph instances with varying sizes and densities, for which
a graphical presentation of the PF is provided in the corresponding paper. The PFs for
the MONSD, GRASP and FSS can be seen in Fig. 2 for these instances. In case of
the MONSD the stopping criterion was that 500 and 1000 seconds have passed for
small/medium and large instances, respectively. In case of the FSS and GRASP we
have used the termination criterion that M = 10000 solutions have been generated,
which takes around 400 seconds in case of the FSS and close to 1000 seconds in case
of the GRASP. A more detailed analysis of the computational cost of the FSS for the
single-objective MWVCP can be found in Jovanovic and Voß (2019) which has a very
similar behavior as in the case of the 2-MWVCP.

From these results, the first thing that can be observed is that for the small instance
having 100 nodes all three methods have a very similar performance. It is expected
that this is due to all of themmanaging to find approximations that are very close to the
true PF. In case of all the larger instances, from 200 to 1000 nodes, the advantage of the
FSS and the GRASP algorithms becomes evident. Both methods find approximations
to the PF whose elements completely dominate the PF found by the MONSD. One
of the main reasons for this is the use of a more powerful local search. To be more
precise, the local search ofMONSD is based on directly swapping a single vertex from
the cover with one outside of it, or on the removal of a single vertex from the solution.
It has previously been shown that the local search, used in the proposed methods,
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(a) VC100100 (b) VC2002000

(c) VC250500 (d) VC500500

(e) VC800500 (f) VC10001000

Fig. 2 Approximations of Pareto fronts obtained by the MONSD, GRASP and FSS for different problem
instances

based on the more advanced swap operator, where a vertex in the cover is substituted
with the unique set of vertices outside of it that result in a new vertex cover, produces
significantly better results and is commonly used (Voß and Fink 2012; Li et al. 2016;
Jovanovic and Voß 2019).

As it can be seen in Fig. 2, the FSS finds a slightly better approximation to the
PF than the GRASP in case of the instance having 200 nodes. The advantage of the
FSS becomes more significant on graphs with a larger size. The FSS generates similar
extreme points of the PF as the GRASP. The FSS finds notably better quality solutions
in the inner part of the PF, and these solutions generally dominate all the solutions
found by the GRASP in the same region. It should be noted that for the GRASP, it is
possible to slightly improve the performance, in the sense of finding a higher quality
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PF, by adapting the size of the RCL, for differently sized problem instances. The PFs
acquired in this way are still significantly worse than the ones acquired by the FSS.
On the other hand, the effect of the size of the RCL has a very small effect on the
performance of the FSS.

4.2 Performance indicators for the GRASP and FSS

In this section a more extensive comparison between the GRASP and the FSS algo-
rithms is presented. The comparison is done on the 47 graphs with a varying number
of nodes and densities used in Hu et al. (2019). As it is discussed in Audet et al.
(2021), comparing the performance of algorithms for finding approximations to the
PF is significantly more complex than in the case of single-objective functions. There
is a wide range of indicators that can be used for this task. In Audet et al. (2021), a
general classification of such methods is given through the analysis of convergence,
distribution, spread and cardinality. Some of these indicators are suitable for judging
if “one method is better than another” in the sense of the quality of the PF approxi-
mation. Others can provide a better insight on the properties of the generated PFs. In
the following text, a brief description of the used indicators is given.

With the goal of evaluating the effectiveness of the learning mechanism of the FSS
in comparison to the basic GRASP, the following indicators are used. The first one is
the C-metric. It provides information on how many solutions in the PF generated by
method B are dominated by at least one solution in the PF generated using method
A. Subsequently, A and B denote the set of efficient solutions in the PF obtained by
methodsA andB, respectively. Formally, the C-metric is presented using the following
formula.

C(A,B) = |{b | (b ∈ B) ∧ (∃a ∈ A)(a ≺ b)}|
|B| (14)

The second commonly used metric for comparing the performance of multi-
objective optimization algorithms is the hypervolume indicator (IH ). It compares the
area of the solution space that is dominated by the generated PF. This indicator is
best understood by observing its graphical representation, given in Fig. 3. As it can
be seen, the hypervolume indicator depends on the selected reference point. In the
conducted comparison, its selection is done as suggested in Ishibuchi et al. (2017).
Firstly, all the elements of the solutions in the PFs are normalized based on the extreme
solutions found by both algorithms. Next, the reference point R = (r , r) is set using
the following formula.

r = 1 + 1

Max(|A|, |B|) − 1
(15)

In Eq. (15), the reference point is related to the cardinality of the PFs A or B that has
the larger number of elements.

The C-metric and the hypervolume indicator are very good for analyzing which
method provides a PF approximation that is closer to the actual one. The next two
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Reference point

Non-dominated points
IH

Fig. 3 Illustration of the hypervolume indicator. The value of the indicator is equal to the area of the dotted
region

indicators are used to give more information on the distribution of solutions in the
generated PFs. The first one is the spacing indicator. It provides information on the
distance between neighboring points in the PF, A. It is defined using the following
equations.

di = min
(Si ,S j )∈A,Si �=S j

|F(Si ) − F(S j )|1 (16)

d̃ = 1

|A|
|A|∑

i=1

di (17)

SP(A) =
√√√√ 1

|A|
|A|∑

i=1

(d̃ − di )
2 (18)

In Eq. (16), di is equal to theminimal distance, using the L1 norm (| . . . |1) for solutions
based on the objective function values. The value of the spacing indicator for a PF,A,
provides information about the change in the minimal distance between solutions. In
case of equidistant solutions, SP(A) = 0 is satisfied.

The spacing indicator and similar ones only consider the minimal distance between
a solution in the PF and its neighbors. Because of this, it provides very limited informa-
tion when some solutions are clearly separated but spread into groups. The Γ metric
proposed in Custódio et al. (2011) can be used to complement the spacing indicator.
This metric focuses on the size of the holes within the PF,A. This is achieved by using
the following procedure. All the solutions in the PF are indexed from 0 to |A| + 1 in
a way that the following is satisfied for all objective functions f j .

f j (S0) ≤ f j (S1) · · · ≤ f j (Sm) (19)
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In relation, let us define the distance for objective j between neighboring nodes i and
i + 1 as δi j = f j (Si+1) − f j (Si ). Now, the largest distance between neighboring
solutions in a PF, A, can be defined as the following Γ function.

Γ (A) = max
i=0..m−1

max
j=1..N

δi j (20)

The first set of results related to the C-metric and the hypervolume indicator can
be seen in Tables 1 and 2 for small/medium and large problem instances, respectively.
The first thing that can be observed from the results in Table 1 is that for the smallest
graph sizes having 100 and 150 nodes, the FSS and the GRASP have a very similar
performance when the size of the PF hypervolume is compared, with the FSS being
slightly better. Themain reason for this is that theGRASPhas a very good performance
on instances of this size and there is not a significant need for a learning mechanism.
A similar behavior has been observed in case of the single-objective MWVCP, where
the GRASP algorithm manages to find solutions of almost the same quality as more
advanced metaheuristics (Jovanovic and Voß 2019). The comparison of the C-metric
indicates that, although the FSS and GRASP find hypervolumes of similar size, many
of the solutions of the PF obtained by GRASP are dominated by at least one of the
solutions in the PF obtained by the FSS. In case of medium-sized instances (200-300
nodes; see Table 1), this difference becomes more significant, and in the majority of
them more than 50% of the solutions in the PF obtained by the GRASP are dominated
by at least one solution of the PF obtained by the FSS. In case of medium-sized
instances, the hypervolume obtained by the FSS is larger than the one obtained by
GRASP for all but two graph sizes. Overall, in only one case, the PF obtained by
the GRASP has dominated more solutions, or has a larger hypervolume, of the PF
obtained by the FSS.

The improvement in performance provided by the learning mechanism of the FSS
further increases in case of large graphs, which can be seen from Table 2. In 13 out of
15 of such instances more than 90% of the GRASP solutions are dominated by some
solution obtained by the FSS. The average size of the hypervolume of the GRASP is
0.65, while for the FSS it is 0.85. In addition, the FSS has a larger hypervolume for
all the large instances.

The comparison of the distribution-related indicators (cardinality, spacing and Γ -
metric) can be seen in Tables 3 and 4 for small/medium and large graphs, respectively.
As previously stated, these indicators are not themost suitable for evaluating how good
the approximations to the PF are but give more insight about its properties. The first
thing that can be observed is that the FSS manages to find PFs having a significantly
greater cardinality than the GRASP. The average size of the PF generated by the FSS
compared to the GRASP is around 50% and 200% larger for small/medium and large
problem instances, respectively. In addition, the FSS manages to decrease the average
spacing between solutions and the size of the holes in the PF when compared to the
GRASP for both small/medium and large graphs. This can be seen from the values of
the SP and Γ metrics. It should be noted that although the average values for these
metrics are lower for the FSS, this is not true for all the graph sizes.
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Table 1 Comparison of the
GRASP and the FSS methods
for small/medium-sized
instances for convergence using
convergence-related indicators

Instance C Metric IH

C(F ,G) C(G,F) GRASP FSS

100×100 0.00 0.00 0.82 0.82

100×250 0.03 0.00 0.89 0.89

100×500 0.10 0.00 0.66 0.66

100×750 0.00 0.00 0.83 0.83

100×1000 0.00 0.00 0.91 0.91

100×2000 0.00 0.00 1.09 1.09

150×150 0.25 0.00 0.75 0.76

150×250 0.24 0.00 0.86 0.87

150×500 0.24 0.03 0.81 0.81

150×750 0.00 0.00 0.85 0.85

150×1000 0.08 0.00 0.76 0.76

150×2000 0.19 0.00 0.71 0.73

150×3000 0.00 0.00 1.10 1.10

200×250 0.73 0.00 0.69 0.74

200×500 0.93 0.00 0.68 0.75

200×750 0.72 0.00 0.80 0.85

200×1000 0.63 0.00 0.72 0.75

200×2000 0.28 0.02 0.86 0.88

200×3000 0.04 0.10 0.72 0.73

250×250 0.52 0.00 0.73 0.76

250×500 0.89 0.00 0.83 0.89

250×750 0.70 0.07 0.72 0.78

250×1000 0.63 0.06 0.81 0.87

250×2000 0.57 0.03 0.82 0.87

250×3000 0.55 0.00 0.71 0.76

300×300 1.00 0.00 0.74 0.83

300×500 0.90 0.00 0.57 0.71

300×750 0.91 0.03 0.72 0.80

300×1000 0.83 0.06 0.68 0.73

300×2000 0.44 0.00 0.68 0.74

300×3000 0.92 0.00 0.65 0.75

300×5000 0.06 0.35 0.93 0.91

Average 0.42 0.02 0.78 0.82

In the case of theC-metric,G represents the PF obtained by theGRASP
and F the PF obtained by the FSS. The better values are underlined
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Table 2 Comparison of the
GRASP and the FSS methods
for large instances for
convergence using
convergence-related indicators

Instance C Metric IH

C(F ,G) C(G,F) GRASP FSS

500×500 0.96 0.00 0.78 0.87

500×1000 0.89 0.01 0.72 0.84

500×2000 0.97 0.00 0.70 0.80

500×5000 0.92 0.00 0.63 0.81

500×10000 0.67 0.10 0.65 0.71

800×500 0.95 0.01 0.70 0.83

800×1000 0.98 0.00 0.71 0.84

800×2000 1.00 0.00 0.67 0.83

800×5000 0.97 0.00 0.70 0.90

800×10000 1.00 0.00 0.64 0.82

1000×1000 1.00 0.00 0.66 0.78

1000×5000 0.96 0.00 0.55 0.84

1000×10000 1.00 0.00 0.49 0.90

1000×15000 1.00 0.00 0.63 0.89

1000×20000 1.00 0.00 0.58 0.85

Average 0.95 0.01 0.65 0.83

In the case of theC-metric,G represents the PF obtained by theGRASP
and F the PF obtained by the FSS. The better values are underlined

In the last group of computational experiments, the convergence speed of the FSS
and the GRASP are compared (see Fig. 4). This has been done by evaluating the size
of the hypervolume by each of the methods after N solutions have been generated. It
should be noted that, as in the case of the single-objective MWVCP, the FSS has a
lower computational time than theGRASP for the same number of generated solutions.
This is due to the fact that when a fixed set is used, the randomized greedy algorithm
needs less iterations to generate a feasible solution that is of higher quality. It should
be noted that this does not asymptotically effect the computational time but it can
frequently decrease the computational cost by 50%. A maximum of 10000 solutions
are generated for each of the methods.

In case of the hypervolume, the reference point has been calculated based on the
extreme solutions and cardinality of PFs obtained at the last iteration for all the meth-
ods. In these experiments, the effect of the parameters of the FSS are also illustrated.
To be specific, values from 100 to 2000 initial solutions (N ) are used in the FSS, and
from 5 to 50 solutions are used to generate the fixed set. The graphical illustration of
this comparison can be seen in Fig. 4, for three representative graph instances.

The first thing that can be observed from these figures, is that from the iteration
in which the learning mechanism of the FSS is used, there is a drastic increase in
the convergence speed compared to GRASP. It is interesting that generating only 100
initial solutions is sufficient for an initial exploration of the solution space for the FSS
to be effective. This is also true in the case of the use of the FSS for the single-objective
MWVCP. The size of the hypervolume obtained by FSS with different sizes of initial
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Table 3 Comparison of distribution-related indicators for the GRASP and the FSS methods for
small/medium-sized instances

Instance |X | SP(X) Γ (X)

GRASP FSS GRASP FSS GRASP FSS

100×100 33 33 223.1 93.3 224.0 71.0

100×250 33 35 302.3 107.8 317.0 51.0

100×500 20 21 177.7 176.2 101.0 101.0

100×750 18 19 205.0 193.1 179.0 179.0

100×1000 12 12 156.3 156.3 115.0 115.0

100×2000 5 5 131.0 131.0 127.0 127.0

150×150 57 65 190.5 198.5 128.0 128.0

150×250 37 43 532.7 106.7 408.0 92.0

150×500 34 33 153.2 171.1 85.0 98.0

150×750 25 25 282.9 283.5 212.0 212.0

150×1000 38 38 189.3 189.9 140.0 140.0

150×2000 21 26 313.1 151.6 271.0 125.0

150×3000 7 7 250.1 250.1 320.0 320.0

200×250 45 56 152.6 101.1 95.0 52.0

200×500 28 72 166.0 72.6 90.0 46.0

200×750 29 40 194.3 181.0 124.0 124.0

200×1000 30 30 216.1 152.7 144.0 113.0

200×2000 32 43 308.9 291.0 273.0 273.0

200×3000 26 29 309.8 280.7 263.0 263.0

250×250 62 96 238.2 193.7 143.0 143.0

250×500 38 68 250.3 221.1 208.0 133.0

250×750 46 86 327.5 250.3 179.0 81.0

250×1000 27 53 256.0 317.6 150.0 169.0

250×2000 14 37 306.1 289.1 254.0 215.0

250×3000 29 49 249.1 213.4 180.0 142.0

300×300 39 115 303.3 186.3 201.0 98.0

300×500 52 89 288.5 205.2 127.0 122.0

300×750 44 59 250.0 283.8 160.0 202.0

300×1000 35 113 343.5 271.9 193.0 177.0

300×2000 25 47 311.0 182.9 267.0 124.0

300×3000 25 46 383.5 223.8 177.0 121.0

300×5000 16 23 290.7 288.7 228.0 225.0

Average 30.7 47.3 257.9 200.5 190.1 143.2
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Table 4 Comparison of distribution-related indicators for the GRASP and the FSS methods for large
instances

Instance |X | SP(X) Γ (X)

GRASP FSS GRASP FSS GRASP FSS

500×500 54 171 563.7 624.9 326.0 420.0

500×1000 36 97 480.1 567.1 349.0 343.0

500×2000 39 117 461.2 518.5 264.0 458.0

500×5000 26 60 495.3 331.2 235.0 241.0

500×10000 18 29 297.3 386.0 174.0 211.0

800×500 74 135 456.1 491.2 184.0 289.0

800×1000 64 171 679.9 331.8 356.0 119.0

800×2000 49 142 449.9 770.0 271.0 420.0

800×5000 32 91 1278.5 652.4 997.0 410.0

800×10000 15 85 1036.5 555.3 730.0 362.0

1000×1000 58 176 660.4 543.0 371.0 289.0

1000×5000 26 80 1056.9 943.6 583.0 709.0

1000×10000 11 57 485.5 526.8 508.0 482.0

1000×15000 20 31 739.0 493.6 372.0 273.0

1000×20000 14 63 931.1 474.5 607.0 279.0

Average 35.7 100.3 671.4 547.3 421.8 353.7

populations N is very similar for N taking values between 100 and 2000. The main
difference is that a higher number of initial solutions results in a later increase in
convergence speed due to the use of the learning mechanism.

Different values of parameter k of the FSS have the following effect. For all the
tested values (5-50) the FSS had a significantly better performance than the GRASP.
Overall, the size of the hypervolume of the PF is very similar for all the values of k after
10000 iterations. In case of the smallest value of k = 5, the size of the hypervolume
was slightly worse than for the higher values. On the other hand, the smaller value
of k results in a higher initial speed of convergence. For higher values of k (20 and
50) the convergence speed can be interpreted as being more stepwise, in the sense
of having periods of fast increase in the hypervolume. Overall, the proposed FSS
algorithm is highly robust in the sense that it has a good performance for a wide range
of its parameters N and k.

5 Conclusion

In this paper, an efficient method for finding an approximation of the Pareto front of
the bi-objectiveMWVCP has been presented. This has been done by firstly developing
a multi-objective GRASP algorithm. A novel part of this algorithm is the technique
of using heuristics related to different objective functions during the construction of
a single solution in the randomized greedy algorithm. Further, the fixed set search
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(a) VC300300 k=20 (b) VC100100 N=100

(c) VC500800 k=20 (d) VC500800 N=100

(e) VC10005000 k=20 (f) VC10005000 N=100

Fig. 4 Illustration of the convergence speed of the GRASP and FSS algorithms. The convergence is shown
based on the number of generated solutions and the value of the hypervolume indicator. The convergence
speed is shown for different values of the FSS parameters

metaheuristic has been adapted to a multi-objective setting. To be more specific, a
learning mechanism has been added to the proposed GRASP algorithm. The FSS has
been extended to a multi-objective setting without increasing the complexity of the
implementation. Moreover, it is important to point out that the learning mechanism
of the FSS only uses solutions in the PF. In this way it avoids the need for ranking
solutions which is often a computationally expensive task in case of multi-objective
functions.

The computational experiments have shown that the proposed GRASP and FSS
algorithms significantly outperform existing methods. In case of the comparison to
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the MONSD, its PF is completely dominated by the ones obtained by the GRASP and
the FSS for larger instances. It should be noted that, in general, metaheuristics are
developed for large-scale instances since exact methods, e.g. based on mixed-integer
programming, cannot efficiently be applied to them.

The performed computational experiments have shown that the use of the FSS
learning mechanism provides a substantial improvement to the basic GRASP. Firstly,
indicators related to the quality of the approximation, the C-metric and the hypervol-
ume indicator, show that FSS leads to an approximation that is significantly closer to
the true PF than the one of the GRASP. Further, the obtained PF has more desirable
properties of the PF like a better distribution and spread of solutions in addition to a
higher cardinality. Except for the quality of the PF, the FSS has a significant advantage
in the convergence speed as it achieves such approximations at a lower computational
cost. Finally, the multi-objective FSS is highly robust in the sense that it has a good
performance for a wide range of parameter values.

One direction for future research is to extend the application of the FSS to other
multi-objective problems. One example is the practical problem of analyzing the rela-
tion between e-bus battery capacity, charging speeds, and fleet size with reference to
a public transport timetable. Similarly, one may investigate multi-objective settings
in integrated vehicle and crew scheduling, etc.; see, e.g., the problem settings in Xie
et al. (2017); Durán-Micco and Vansteenwegen (2021); Ge et al. (2022). In addition,
a detailed analysis of the application of randomization, local search and the learning
mechanism in the FSS for problems that have more than two objectives should be per-
formed. Another avenue of research is adapting the FSS to continuous optimization
problems and new families of discrete combinatorial optimization problems.
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