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A B S T R A C T

This study aims to examine the causal relationship between climate policy and spatial development inequality 
within cities. To this end, we leverage the temporal and spatial variations in the implementation of the low- 
carbon city pilot initiative (LCCPI) to perform a staggered difference-in-difference (DID) estimation. Our esti-
mated results demonstrate that the LCCPI is associated with an approximate 4.4 % reduction in the Gini coef-
ficient for nighttime light intensity. Our findings are robust to alternative measures and different specifications. 
Further mechanism analyses reveal that the LCCPI operates by narrowing the green innovation gap and 
improving the factor allocation. Notably, we observe a more pronounced decrease in spatial development 
inequality in resource-dependent and high-marketization cities.

1. Introduction

Inequality related to gender, income, and development remains 
widespread across the world. Inequality undermines socio-economic 
stability and hampers poverty reduction, which can, in turn, foster 
crime, economic stagnation, and environmental degradation (Gabaix 
et al., 2016). In this context, mitigating inequality is a critical objective 
within the framework of the Sustainable Development Goals (SDGs).1

Prior studies have devoted considerable attention to exploring strategies 
for curbing multidimensional inequality (Iammarino et al., 2019; Huang 
et al., 2020). For example, Derenoncourt and Montialoux (2021)
demonstrate that the minimum wage policy in the United States can 
explain >20 % of the reduction in the racial income gap. Nevertheless, 
there is an insufficient understanding of how to effectively address 
spatial development inequality within cities.

Combating climate change is integral to achieving the SDGs as well. 

While existing literature has investigated the relationship between 
climate policy and inequality from various perspectives, its effects on 
spatial development inequality remain largely unexplored. According to 
Stechemesser et al. (2024), climate policy refers to a comprehensive set 
of targeted strategies and regulatory frameworks explicitly designed to 
address climate change challenges, encompassing both mitigation and 
adaptation measures implemented at local, national, and international 
levels. In this study, our focus is on climate policy related to mitigation 
efforts initiated by the national government. Regarding legally binding 
climate policy, although carbon taxes may exacerbate inequality due to 
the income crowding-out effect on low-income households, the 
refunding of carbon tax revenues shows effectiveness in enhancing 
well-being and mitigating inequality (Budolfson et al., 2021; Rüb, 
2024). From a regulatory perspective, the emissions trading system 
(ETS) employs market mechanisms to optimize resource allocation, 
thereby contributing to reductions in income and emissions inequality, 
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as documented in previous studies (Grainger & Ruangmas, 2018; 
Känzig, 2023; Bettarelli et al., 2024). Generally, despite robust evidence 
that government-implemented mitigation strategies, such as carbon 
taxes and ETS, play an essential role in alleviating inequality, there is 
little literature on whether and how climate policy based on the target 
responsible system influences inequality, particularly development 
inequality within cities.

This study represents the first attempt to assess the effects of the low- 
carbon city pilot initiative (LCCPI) on spatial development inequality 
within cities. Efficiency and equity are two critical dimensions for 
evaluating the effectiveness of climate policy (Fried, 2018; Picciano 
et al., 2023). Prior literature has investigated extensively the effects of 
the LCCPI on efficiency including innovation, productivity, and emis-
sions abatement (Chen et al., 2022a; Pan et al., 2022; Wang et al., 2023; 
Sun et al., 2024). For instance, utilizing data from A-share listed en-
terprises, Chen et al. (2022a) reveal that the LCCPI significantly im-
proves corporate performance in mitigating GHG emissions. 
Furthermore, Pan et al. (2022) demonstrate that the LCCPI contributes 
positively to high-quality development by promoting low-carbon inno-
vation and boosting productivity. Nonetheless, it remains uncertain 
whether the LCCPI can alleviate inequality, particularly spatial devel-
opment inequality, while simultaneously enhancing efficiency.

Our attention to China provides a unique opportunity to investigate 
the aforementioned issues. First, the LCCPI, a climate policy with 
China’s characteristics, operates under the target responsibility system. 
Specifically, within the framework of the LCCPI, the central government 
mandates that provincial authorities establish GHG reduction targets for 
pilot cities (see Fig. 2). Driven by incentives for political promotion, 
local governments employ a range of measures to mitigate GHG emis-
sions, including adjusting industrial structures and promoting green 
innovation. Second, China is confronted with the dual pressures of 
reducing emissions and addressing inequality. In detail, China, as the 
world’s largest developing economy and leading carbon emitter, faces a 
considerable challenge in balancing emission reduction with economic 
growth (Lee et al., 2022). Furthermore, due to disparities in geographic 
location and resource endowments, spatial development inequality in 
China has been exacerbated. Third, in 2010, the Chinese government 
released the “Notification on Launching Pilot Initiatives in Low-Carbon 
Provinces, Regions, and Cities”, which initiated three rounds of the 
low-carbon city pilot initiative.2 Specifically, the launch of three rounds 
of the LCCPI occurred in the years 2010, 2012, and 2017, spanning six 
provinces, eighty municipalities, and one region. The spatial and tem-
poral variations in policy implementation enable us to employ a stag-
gered difference-in-difference (DID) method to obtain unbiased 
estimates.

We employ a staggered DID method to evaluate how the LCCPI af-
fects spatial development inequality based on city-level data spanning 
from 2000 to 2020. First, our estimated results imply that the LCCPI 
leads to an approximate 4.4 % reduction in spatial development 
inequality. Importantly, our estimated results remain robust when per-
forming a series of robustness checks. Second, mechanism analyses 
reveal that the green innovation gap and factor allocation are underlying 
channels through which the LCCPI influences spatial development 
inequality. Third, we also estimate the heterogeneous effects of the 
LCCPI on spatial development inequality across resource dependence 
and marketization levels. Specifically, we observe that spatial develop-
ment inequality experiences a more significant decrease in resource- 
dependent cities compared to non-resource-dependent cities. Addition-
ally, in high-marketization cities, the implementation of the LCCPI is 
associated with a 3.2 % reduction in spatial development inequality. 
However, such positive effects are not observed in low-marketization 
cities.

This paper contributes to several strands of existing literature. First, 
we propose a potential solution for developing countries to assess spatial 
developmental inequality in a timely, efficient, and cost-effective 
manner. Given that county-level GDP data in China is notably missing, 
we calculate spatial development inequality within cities based on 
county-level nighttime light data derived from open-access, high-reso-
lution satellite imagery. Specifically, we define spatial development 
inequality as the Gini coefficient for nighttime light intensity. The 
rationale lies in the strong correlation between nighttime light intensity 
and GDP, urbanization, and poverty (Jean et al., 2016; Jia et al., 2021). 
For instance, Jia et al. (2021) assess the economic growth at the town 
level by examining changes in nighttime light intensity.

Second, this study provides novel insights into inequality arising 
from climate policy. As emphasized by Jiang and Shi (2023), addressing 
development inequality within cities is crucial for achieving sustainable 
cities and societies. More specifically, coordinated development within 
cities can optimize the spatial allocation of factors, mitigate the spatial 
agglomeration of public goods, and thus contribute to sustainable eco-
nomic growth. While existing literature has investigated the relationship 
between climate policy and inequality from various perspectives (e.g., 
income and emissions inequality) (Känzig, 2023; Bettarelli et al., 2024), 
its effects on spatial development inequality within cities remain largely 
unexplored.

Third, this study elucidates the mechanism by which climate policy 
influences spatial development inequality in developing countries, 
which is crucial for designing targeted interventions and enhancing 
policy effectiveness. In detail, previous literature provides insights into 
the micro-level mechanisms of how climate policy impacts inequality 
(Budolfson et al., 2021; Bettarelli et al., 2024; Rüb, 2024), whereas this 
study identifies the potential macro-level mechanisms, namely the green 
innovation gap and factor allocation.

The remainder of the paper is structured as follows. Section 2 pre-
sents the background and theoretical mechanisms. Section 3 is our 
estimation framework. Section 4 reports the empirical findings 
including baseline regressions, robustness tests, mechanism analyses, 
and heterogeneous effects. Section 5 is our conclusions and policy 
implications.

2. Background and theoretical mechanisms

2.1. Low-carbon city pilot initiative in China

As China underwent rapid industrialization and urbanization, carbon 
reduction stress has reached alarming levels (Lee et al., 2022). In 2007, 
China emerged as the top global emitter of carbon dioxide, with its 
contributions amounting to 30 % of the total global carbon emissions by 
2020. Despite the sustained decrease in China’s energy intensity from 
2000 to 2020, it consistently surpasses both the corresponding global 
average and that of the European Union and the United States during the 
same timeframe (see Fig. 1). China’s commitment to address climate 
change dates back to its ratification of the United Nations Framework 
Convention on Climate Change (UNFCCC) in 1992. In 2009, China 
proclaimed ambitious objectives at the Copenhagen Climate Confer-
ence, targeting a reduction of 40–45 % in carbon emissions per unit of 
GDP by 2020 relative to the levels of 2005.

In this context, the National Development and Reform Commission 
(NDRC) initiated three rounds of low-carbon city pilot initiatives in 
2010, 2012, and 2017, involving 6 provinces, 80 cities, and 1 region. 
Fig. A1 in Appendix A illustrates the spatial distribution of the low- 
carbon city up to the year 2017. The LCCPI marks a pivotal step in 
China’s commitment to green development. Specifically, to achieve in-
dustrial restructuring, environmental services enhancement, and inno-
vation in low-carbon technologies, the initial LCCPI set up low-carbon 
industrial systems, promoted eco-friendly lifestyles with low carbon 
footprints, and enhanced systems for managing emission data. 
Regarding the second batch of pilots, the NDRC expanded the scope of 

2 Further details can be found at https://www.ndrc.gov.cn/xxgk/zcfb/tz 
/201008/t20100810_964674_ext.html (in Chinese).
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the LCCPI with the goal of constructing an eco-friendly China. With the 
positive outcomes of the initial two rounds of pilot initiatives, the third 
batch of pilot cities, emphasizing innovation, was launched in 2017. 
This signifies further investigation into low-carbon development within 
the policy context of the 13th Five-Year Plan for Controlling GHG 
Emissions and the National Climate Change Action Plan (2014–2020).

2.2. Theoretical mechanisms

The innovation gap and factor allocation are primary drivers of 
spatial development inequality. According to the classical growth the-
ory, factor inputs (e.g., labor and capital) determine economic growth 
(Acemoglu, 2012). Neoclassical growth theory further incorporates total 
factor productivity (TFP) into the production function and emphasizes 
its fundamental role in driving long-term economic growth (Herrendorf 
et al., 2014). In contrast, endogenous growth theory internalizes TFP, 
associating its improvement with technological innovation (Peretto, 
2018). Drawing on endogenous growth theory, previous studies have 
decomposed GDP to identify the key drivers of economic growth. For 
instance, according to estimates by Bosworth and Collins (2008), TFP 
accounts for approximately 20 %–30 % of China’s economic growth 
since the implementation of the reform and opening-up policy. Simi-
larly, Zhang et al. (2021) find that factor inputs and TFP contribute 63 % 
and 37 %, respectively, to economic growth in China. In general, factor 
inputs and innovation play an essential role in driving economic growth. 
That is, the development gap across regions can be attributed to the 
innovation gap and factor allocation.

The LCCPI can potentially mitigate the green innovation gap. As 
highlighted by induced innovation theory, technological progress is not 
an isolated event but a reflection of both internal and external condi-
tions in an economic system, especially driven by shifts in demand and 
resource constraints (Bloom et al., 2016). The LCCPI aims to reduce GHG 
emissions by establishing a low-carbon industrial system and lifestyle, 
which could potentially stimulate green innovation (Sun et al., 2024). 
Given the regional heterogeneity in industrial and energy structures, 
LCCPI-induced green innovation is likely to vary across regions. In 
detail, under the LCCPI framework, developing regions face more 
transition pressure than developed regions as a result of the greater 
proportion of high-emission industries in the former. Consequently, 
within the same city, the LCCPI has a more pronounced impact on green 
innovation in developing counties than in developed counties. Notably, 
Xu et al. (2021) and Pan et al. (2022) demonstrate that innovation ac-
tivities induced by climate policy are more pronounced in developing 
regions than in developed regions.

The LCCPI plays an essential role in improving factor allocation. As 
noted by Brandt et al. (2013) and Gopinath et al. (2017), cross-regional 

factor allocation is closely linked to the ecological environment and 
industrial structure. Specifically, the growth of low-carbon industries 
can reduce GHG emissions, while simultaneously lowering the release of 
toxic pollutants, such as PM2.5 and SO2, which serve as pull factors for 
population migration. According to Chen et al. (2022b), a 10 % decrease 
in PM2.5 corresponds to an increase in population of 2.7 per 100 in-
habitants due to migration. Additionally, unlike high-emission in-
dustries, low-carbon industries are capital-intensive and feature 
extended value chains, which can attract more investment and 
high-skilled labor (Consoli et al., 2016). Therefore, in contrast to 
developed regions that have completed industrial upgrading, the LCCPI 
creates opportunities for developing regions to advance low-carbon in-
dustries. That is, within the same city, the LCCPI is expected to foster 
factor agglomeration in developing counties, driven by the increased 
share of low-carbon industries, which would mitigate spatial disparities 
in factor allocation relative to developed regions.

Drawing from the theoretical analysis outlined above (visualized in 
Fig. 2), we present three primary hypotheses:

H1. The LCCPI can alleviate spatial development inequality.

H2. The green innovation gap is one channel through which the LCCPI 
influences spatial development inequality.

H3. Factor allocation is another channel through which the LCCPI 
impacts spatial development inequality.

3. Estimation framework

3.1. Econometric specification

In this paper, the implementation of the LCCPI varies across years 
and cities, which allows us to employ a staggered DID method. Our basic 
DID specification, incorporating two-way fixed effects, is expressed as 

Fig. 1. Evolution of energy intensity from 2000 to 2020. 
Notes: The figure shows the change in energy intensity for China, the World, the 
EU, and the USA from 2000 to 2020. Energy intensity is measured by CO2 
emissions per unit of GDP. Source: The World Bank (https://www.worldbank.or 
g/en/home) and authors’ calculations.

Fig. 2. The working mechanism of the LCCPI in China.
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follows: 

log
(
SDIi,t

)
= α0 + α1Treati × postt + Xi,tβ + γi + μt + εi,t (1) 

Where the subscripts t and i represent the year and city, respectively. The 
outcome variable, log (SDIi,t), is the log-transformed Gini coefficient for 
nighttime light intensity. Treati × postt equals 1 when city i was the 
LCCPI pilot in year t, and 0 otherwise. The key parameter of interest, α1, 
quantifies the causal relationship (interpreted as a percentage change) 
between the LCCPI and spatial development inequality. Xi,t is a vector 
that includes fiscal expenditure, population density, financial develop-
ment, fixed asset investment, and FDI, which are employed as control 
variables in this study. We incorporate Xi,t into our model to account for 
the potential correlation between these socio-economic conditions and 
both the LCCPI and the dependent variable. Failing to account for these 
variables would lead to the omitted variable bias issue (Chen et al., 
2022c). γi and μt denote city- and year-fixed effects, respectively. The 
former considers time-invariant characteristics that are specific to city i, 
while the latter controls for the annual common shocks faced by all 
cities.

Importantly, there is a prerequisite assumption for the validity of the 
DID method: both the treatment and the control groups should show the 
same time trend in the outcome variable before the LCCPI imple-
mentation. This condition, known as the parallel trend assumption, 
underpins the DID specification. Subsequently, we will assess this 
assumption through graphical and econometric tests. Finally, we also 
perform a series of robustness checks to assess the sensitivity of our 
baseline findings to alternative measures and different specifications.

3.2. Variable selection

Outcome variable. The outcome variable is the Gini coefficient for 
nighttime light intensity, used to quantify spatial development 
inequality at the city level. In line with the methodologies outlined by 
Alesina et al. (2016) and Lessmann and Seidel (2017), the Gini co-
efficients for nighttime light intensity and channel variables are calcu-
lated as follows: 

Ginii,t =
1
ni

[

ni +1 − 2
∑ni

j=1(ni + 1 − j)Lj,t
∑ni

j=1Lj,t

]

(2) 

Where Ginii,t is the Gini coefficient of city i in year t. ni represents the 
number of counties attributed to city i. Lj,t denotes the county-level in-
dicator, namely nighttime light intensity, the number of green patent 
applications, or the number of new firm registrations.

Channel variables. We identify two potential channels through 
which the LCCPI affects spatial development inequality: the green 
innovation gap and factor allocation. The green innovation gap is 
defined as the Gini coefficient for the number of green patent applica-
tions. Due to the unavailability of county-level data on employment and 
investment, we are unable to directly measure factor allocation at the 
city level. In this study, we define factor allocation as the Gini coefficient 
for new firm registrations. The underlying rationale is that enterprise 
registration activities can indirectly capture the spatial mobility of 
capital and labor.

Control variables. Based on prior studies associated with the LCCPI 
(Lee et al., 2022; Sun et al., 2024), the control variables used in this 
study include fiscal expenditure, population density, financial devel-
opment, fixed asset investment, and FDI. Specifically, fiscal expenditure 
is defined as government budget expenditure per capita. Population 
density is expressed in people per square kilometer. Financial develop-
ment refers to the ratio of outstanding loan balance to outstanding de-
posit balance at the end of the year. Fixed asset investment is fixed asset 
investment per capita. FDI represents foreign direct investment per 
capita.

3.3. Data sources and descriptive statistics

Raster-based data. Our primary data is the nighttime light intensity 
extracted from high-resolution satellite imagery. Particularly, the 
Operational Linescan System (OLS) of the United States Air Force De-
fense Meteorological Satellite Program (DMSP) provides consistent 
nighttime images of the Earth, taken between 20:00 and 21:30 local 
time. The annual composite measure is constructed by overlaying daily 
images collected throughout the year, with adjustments made for cloud 
cover and natural light sources. However, the DMSP records satellite 
imagery only from 1992 to 2013. After 2013, the data is sourced from 
the Visible Infrared Imaging Radiometer Suite (VIIRS). On the other 
hand, it is challenging to obtain time series data covering our sample 
period (i.e., 2000–2020) through integrating DMSP and VIIRS. In this 
case, Wu et al. (2021) developed an improved time-series DMSP-OLS--
like dataset (1992–2022) for China, which is available on Harvard 
Dataverse.3 Then, we integrate the annual satellite images with 
county-level administrative boundaries and acquire the luminosity 
measurement at the county level from 2000 to 2020.

Firm registration data. The National Administration for Industry and 
Commerce of China (NAIC) maintains extensive and detailed records of 
new firm registrations. As emphasized by Kong et al. (2021), this dataset 
is highly representative, encompassing registration information for over 
60 million enterprises in mainland China since 1949. The dataset is 
extensively utilized in previous empirical studies on entrepreneurship 
(Bu & Liao, 2022; Tian & Xu, 2022). Drawing on firm registration data 
by geographical location, we compile the annual number of new en-
terprise registrations at the county level.

Patent data. The data on patent applications is derived from the 
State Intellectual Property Office (SIPO) of China. The dataset reports 
extensive information associated with patent applications, such as 
application date, patent type, address of assignee, classification code, 
and more. According to the classification code, we further extract pat-
ents involving green technologies. Then, we aggregate these annual 
patent applications at the county level.

Yearbook data. We obtain socioeconomic variables from the China 
City Statistical Yearbook, covering the period from 2000 to 2020. The 
yearbook provides detailed city-level socioeconomic information on 
industrial structure, innovation, fiscal expenditure, population density, 
financial development, fixed asset investment, and FDI.

Fig. 3 depicts the distribution in the Gini coefficient for nighttime 
light intensity across years. Certainly, the kernel density curve for the 
year 2020 is shifted to the left in comparison to that for the year 2000. 
More specifically, there has been a notable reduction in spatial devel-
opment inequality, decreasing from 0.632 in 2000 to 0.506 in 2020. 
However, the level of spatial development inequality in 2020 still ex-
ceeds the cautionary Gini coefficient threshold of 0.4. Moreover, Table 1
provides descriptive summary statistics for the dependent variable, 
channel variables, and control variables used in this study.

4. Empirical findings

4.1. Baseline estimates

We start by examining whether the LCCPI yields positive effects on 
alleviating spatial development inequality. Specifically, in columns (1) 
and (2) of Table 2, the dependent variable is the logarithm of the Gini 
coefficient of nighttime light intensity, which measures city-level spatial 
development inequality in China. We also incorporate city- and year- 
fixed effects in the two columns. The city-fixed effect absorbs city- 
level time-invariant characteristics, while the year-fixed effect controls 
for the annual common shocks faced by all cities. Furthermore, in 

3 The dataset can be accessed at https://dataverse.harvard.edu/dataset.xht 
ml?persistentId=doi:10.7910/DVN/GIYGJU.

X. Zhu et al.                                                                                                                                                                                                                                      

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIYGJU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIYGJU


Sustainable Cities and Society 120 (2025) 106166

5

column (1) of Table 2, we also include a series of socioeconomic factors, 
such as fiscal expenditure, population density, financial development, 
fixed asset investment, and FDI. The specification accounts for potential 
correlations between these socioeconomic factors and both the LCCPI 

and the outcome variable. Therefore, our preferred specification is col-
umn (1) of Table 2.

The estimated effects of the LCCPI on spatial development inequality 
are reported in Table 2. The coefficient of the Treat × Post in column (1) 
is − 0.044 and is statistically significant at the 1 % level. More specif-
ically, the LCCPI contributes to a 4.4 % reduction in the city-level spatial 
development inequality. Compared to previous studies (Campagnolo & 
Davide, 2019; Spinesi, 2022), which conclude that climate policy may 
exacerbate inequality despite reducing emissions, our findings confirm 
that the LCCPI is a potential win-win solution for developing countries to 
achieve a low-carbon transition.

Additionally, we observe that the estimated coefficient in column (2) 
is − 0.048, which is slightly larger in magnitude than that in column (1). 
Meanwhile, there is no significant difference in the adjusted R² between 
the two columns. These findings collectively suggest that our estimated 
results are unbiased when using the LCCPI as a quasi-natural 
experiment.

4.2. Robustness checks

Parallel trend test. For the DID method to be effectively applied in 
policy evaluation, both the treatment and control groups need to satisfy 
the parallel trend hypothesis. Failure to satisfy this condition would 
result in biased estimated outcomes. As depicted in Fig. 4, there exists no 
notable disparity in the Gini coefficient for nighttime light intensity 
between the treatment and control cities before the LCCPI imple-
mentation. Hence, we can conclude that both the treatment and control 
groups satisfy the parallel trends hypothesis in this study. Moreover, we 
do not observe notable effects of the LCCPI on spatial development 
inequality during the first two years of its implementation. However, 
starting from the third year after its implementation, the parallel trend 
between the treatment and control groups is broken. This indicates that 
the decline in the Gini coefficient for treatment cities can be attributed to 
the implementation of the LCCPI and the pilot-induced effects exhibit 
lags.

Placebo test. We perform a placebo test using randomly generated 
virtual LCCPI events to examine whether the baseline estimates are 
driven by certain accidental factors. More specifically, in the actual 

Fig. 3. The distribution in spatial development inequality across years. 
Notes: The figure depicts the distribution of the Gini coefficient for nighttime 
light intensity in the years 2000 and 2020. Source: The Harvard Dataverse and 
authors’ calculations.

Table 1 
Summary statistics.

Variables Observations Mean Min Max

Ln (Gini coefficient for nighttime 
light intensity)

5624 − 0.585 − 2.449 − 0.065

Ln (Gini coefficient for green 
innovation)

5624 − 1.025 − 3.519 − 0.220

Ln (Gini coefficient for new firm 
registrations)

5624 − 0.789 − 2.754 − 0.145

Ln (fiscal expenditure) 5624 8.068 2.197 11.603
Ln (population density) 5624 − 3.448 − 7.663 0.145
Ln (financial development) 5624 − 0.400 − 2.535 3.011
Ln (fixed asset investment) 5624 9.489 5.146 12.525
Ln (FDI) 5624 3.519 − 3.934 7.990

Notes: All variables are measured in the logarithm. Monetary values are 
measured in constant 2020 RMB (Chinese currency).

Table 2 
Estimated impacts of the LCCPI on spatial development inequality.

Variables Ln (Gini coefficient for nighttime light intensity)

(1) (2)

Treat × Post − 0.044*** − 0.048***
 (0.014) (0.014)
Ln (population density) − 0.079* 
 (0.041) 
Ln (financial development) − 0.043*** 
 (0.014) 
Ln (fixed asset investment) 0.003 
 (0.010) 
Ln (FDI) 0.001 
 (0.003) 
Ln (fiscal expenditure) 0.003 
 (0.012) 
City FE Yes Yes
Year FE Yes Yes
Observations 5624 5624
R2 0.870 0.862

Notes: The dependent variable is the Gini coefficient for nighttime light in-
tensity, assessing city-level spatial development inequality. Standard errors in 
parentheses are clustered at the city level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Fig. 4. Dynamic effects of the LCCPI. 
Notes: The figure illustrates the dynamic effects of the LCCPI on spatial 
development inequality. The horizontal axis denotes the timeline of the LCCPI 
implementation, while the vertical axis displays estimated coefficients derived 
from the dynamic DID. The central blue long-dotted line delineates the event 
window of the LCCPI. The black solid circles depict the dynamic point esti-
mates, accompanied by corresponding 95 % confidence intervals represented 
by black bars. Controls include fiscal expenditure, population density, financial 
development, investment, and FDI. Standard errors in the regression are clus-
tered at the city level.
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sample, there are a total of 121 cities in the treatment group. Accord-
ingly, we randomly designate 121 cities from the entire sample as the 
false treatment group, with the remaining cities assigned to the false 
control group. We repeat the aforementioned steps 1000 times through 
Monte Carlo (MC) simulation and depict the distribution of the resulting 
coefficients and their corresponding p-values in Fig. 5. The absolute 
values of coefficients obtained from 1000 MC simulations consistently 
show a smaller magnitude compared to the estimate derived from actual 
data (− 0.044). Furthermore, the distribution is centered around zero, 
and the majority of estimated p-values exceed 0.1. Therefore, no random 
factors appear to influence our baseline estimates.

Alternative measures on spatial development inequality. While the 
Gini coefficient is commonly utilized for assessing inequality, we also 
employ alternative measures to check the stability of the baseline esti-
mates. Specifically, following Mayer et al. (2014) and Chancel (2022), 
we calculate the city-level Theil index for nighttime light intensity as an 
alternative measure of spatial development inequality. Furthermore, the 
relative mean deviation (RMD) is another method that is used to 
quantify inequality in previous studies (Blackorby & Donaldson, 1978; 
Kozminski & Baek, 2017). Appendix B provides detailed information on 
how to calculate the two indices. Importantly, the estimated results 
(shown in columns (1) and (2) of Table 3) reveal an 8.6 % decrease in the 
Theil index and a 5.2 % reduction in RMD due to the implementation of 
the LCCPI. This suggests the robustness of our baseline findings when 
substituting assessment methods for spatial development inequality. In 
summary, the LCCPI indeed contributes to the alleviation of spatial 
development inequality.

Predetermined variables. The section further examines whether our 
baseline estimates remain robust when considering the predetermined 
variables in the model. As discussed in the baseline section, the LCCPI is 
a potential quasi-natural experiment that is exogenous. However, it is 
noteworthy that pilot cities may not be chosen randomly by the NDRC 
but rather based on GDP and carbon emissions. To mitigate potential 
estimated bias, we follow prior literature and include the predetermined 
variables in column (3) of Table 3 (Lu et al., 2017; Chen et al., 2018; Li 
et al., 2024). In detail, we control for the interaction terms between the 
predetermined features and year-fixed effects. The results indicate that 
the estimated coefficient remains negative and statistically significant at 
the 1 % level, with a magnitude similar to the baseline estimates.

PSM-DID approach. To mitigate potential estimation bias, we re- 
assess the impact of the LCCPI on spatial development inequality 

using the PSM-DID approach, which integrates propensity score 
matching (PSM) with a staggered DID framework. Following prior 
studies (Cui et al., 2021; Wang et al., 2021), the PSM-DID estimation 
involves three main steps. First, we estimate propensity scores for both 
pilot and non-pilot cities employing a logit model. Second, given that the 
PSM method is designed for cross-sectional data, we adopt a 
year-by-year matching approach in this study. In this procedure, we 
exclude observations that fail to meet the common support assumption. 
Third, we use the annually matched samples to re-estimate the coeffi-
cient α1 in Eq. (1).

To evaluate the sensitivity to different matching methods, Table 4

Fig. 5. Distribution of the estimated coefficients. 
Notes: The figure illustrates the probability distribution of estimated co-
efficients from 1000 MC simulations. The dependent variable is the Gini coef-
ficient for nighttime light intensity, assessing city-level spatial development 
inequality. Controls used in regressions include fiscal expenditure, population 
density, financial development, fixed asset investment, and FDI. Standard errors 
in parentheses are clustered at the city level.

Table 3 
Robustness checks (alternative measures and predetermined variables).

Variables (1) (2) (3)
Ln (Theil index) Ln (RMD) Ln (Gini 

coefficient)

Treat × Post − 0.086*** − 0.052*** − 0.036***
 (0.029) (0.015) (0.014)
Ln (population density) − 0.191** − 0.094** − 0.080**
 (0.077) (0.045) (0.040)
Ln (financial 

development)
− 0.094*** − 0.047*** − 0.044***

 (0.028) (0.016) (0.014)
Ln (fixed asset investment) 0.004 0.004 0.003
 (0.021) (0.012) (0.010)
Ln (FDI) 0.001 0.002 − 0.000
 (0.006) (0.003) (0.003)
Ln (fiscal expenditure) 0.005 0.001 0.005
 (0.025) (0.014) (0.012)
City FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 5624 5624 5624
R2 0.876 0.860 0.860

Notes: The dependent variable in column (1) represents the Theil index for 
nighttime light intensity, whereas the dependent variable in column (2) denotes 
the relative mean deviation (RMD) for nighttime light intensity. The dependent 
variable in column (3) is the Gini coefficient for nighttime light intensity. In 
column (3), we include two interaction terms between year-fixed effects and the 
predetermined variables (i.e., average carbon emission and GDP for 
2000–2010). Standard errors in parentheses are clustered at the city level. *** p 
< 0.01, ** p < 0.05, * p < 0.1.

Table 4 
Robustness checks (PSM-DID approach).

Variables (1) (2) (3)
Caliper 
matching

Kernel 
matching

Nearest neighbor 
matching

Treat × Post − 0.043*** − 0.038*** − 0.041***
 (0.013) (0.013) (0.013)
Ln (population 

density)
− 0.061 − 0.059 − 0.057

 (0.038) (0.037) (0.037)
Ln (financial 

development)
− 0.038*** − 0.035*** − 0.036***

 (0.013) (0.012) (0.012)
Ln (fixed asset 

investment)
0.008 0.004 0.005

 (0.010) (0.010) (0.010)
Ln (FDI) 0.001 0.002 0.002
 (0.003) (0.003) (0.003)
Ln (fiscal expenditure) − 0.002 0.000 − 0.001
 (0.011) (0.011) (0.011)
City FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 5262 5175 5193
R2 0.865 0.865 0.864

Notes: The dependent variable in columns (1) to (3) is the Gini coefficient for 
nighttime light intensity, assessing city-level spatial development inequality. 
Standard errors in parentheses are clustered at the city level. *** p < 0.01, ** p <
0.05, * p < 0.1.
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presents the regression outcomes based on caliper matching, kernel 
matching, and nearest-neighbor matching. As highlighted by Wang et al. 
(2021), the effectiveness of the PSM-DID estimation relies on matching 
quality. Accordingly, we first perform the balance test before discussing 
the estimation results. Given minimal differences in matching quality 
across matching methods, we present the balancing test results based 
solely on the caliper matching. As demonstrated in Fig. A2 in Appendix 
A, no significant difference is observed between the treatment and 
control groups after matching. Regarding the estimated results, the 
regression coefficients range from − 0.038 to − 0.043 across the different 
matching methods, which alleviates concerns about estimation bias.

Alternative samples. In this section, we further assess the sensitivity 
of estimated results to alternative samples. First, we examine whether 
the exclusion of direct-controlled municipality samples affects the 
regression results. Specifically, direct-controlled municipalities, oper-
ating under a distinctive administrative system, are situated in major 
economic centers, which may position them as preferred locations for 
the LCCPI. Additionally, compared to other cities, direct-controlled 
municipalities have access to a broader range of policy instruments to 
address internal development inequality. In this context, we re- 
estimated the causal relationship between the LCCPI and spatial devel-
opment inequality using subsamples that exclude direct-controlled 
municipality samples. The estimated results presented in column (1) 
of Table 5 indicate that the regression coefficient is highly consistent 
with that of the baseline selection in both magnitude and significance.

Based on data availability, the time span of our sample is further 
extended to 2023. In the baseline section, the sample covers the period 
from 2000 to 2020 for two reasons. First, since the NDRC launched the 
first round of low-carbon city pilots in 2010, our sample provides a 
balanced representation of the periods before and after the policy 
intervention. Second, excluding samples after 2020 mitigates concerns 
that the COVID-19 shock influences the estimated results. To evaluate 
the robustness of the baseline estimates, we include the sample period 
from 2021 to 2023 in this analysis. As shown in column (2) of Table 5, 
the impact of the LCCPI on spatial development inequality remains 
statistically significant at the 1 % level.

4.3. Potential channels

We further investigate the mechanisms of how the LCCPI affects 
spatial development inequality. The first potential channel is the green 
innovation gap quantified by the Gini coefficient for the number of green 
patent applications. Given the unavailability of data on county-level 
employment and investment, we measure the second channel, factor 
allocation, using the Gini coefficient for new firm registrations. The 
rationale is that the spatial mobility of capital and labor can be indirectly 
captured through enterprise registration activities. More specifically, 
regions with higher levels of entrepreneurial activity tend to exhibit 
agglomeration effects in employment and investment. To validate the 
channel variable, we conduct a mediation effect test, estimating a 95 % 
confidence interval (CI) based on bootstrap methods with 500 replicate 
samples (Carpena & Zia, 2020). A bootstrap-based 95 % CI that excludes 
zero indicates a valid channel variable.

As highlighted earlier, innovation is a critical driver of productivity 
and long-term economic growth (Peretto, 2018). That is, narrowing the 
innovation gap can alleviate economic inequality across regions. While a 
substantial body of literature indicates that the LCCPI has the potential 
to facilitate green innovation (Pan et al., 2022; Zhu & Lee, 2022), its 
effectiveness in mitigating the innovation gap remains uncertain. To 
address this gap, we assess the impact of the LCCPI on the green inno-
vation gap, with the corresponding regression outcomes reported in 
column (1) of Table 6. Our analysis reveals that the implementation of 
the LCCPI is associated with a 6.5 % reduction in the green innovation 
gap. Furthermore, the bootstrap-based 95 % CI excludes zero, indicating 
that the innovation gap is a valid channel variable, thereby confirming 
our hypothesis H2.

We then examine another potential channel influencing spatial 
development inequality, specifically factor allocation. Labor and capital, 
as essential factor inputs, have a direct and significant impact on 
regional economic output (Acemoglu, 2012). To a certain extent, the 
spatial distribution of factor inputs shapes regional development dis-
parities. To the best of our knowledge, although numerous studies 
explore the causality between the LCCPI and employment or investment 
in China (Chen et al., 2022; Cao et al., 2023), it remains unclear whether 
the LCCPI simultaneously influences factor agglomeration. For this 
purpose, we investigate the causality between the LCCPI and factor 
allocation. As demonstrated in column (2) of Table 6, our findings 

Table 5 
Robustness checks (alternative samples).

Variables Subsamples without direct- 
controlled municipalities

Extended samples 
(2000–2023)

(1) (2)

Treat × Post − 0.044*** − 0.042***
 (0.014) (0.014)
Ln (population 

density)
− 0.091* − 0.080*

 (0.047) (0.041)
Ln (financial 

development)
− 0.043*** − 0.045***

 (0.014) (0.014)
Ln (fixed asset 

investment)
0.001 0.003

 (0.010) (0.010)
Ln (FDI) 0.001 0.001
 (0.003) (0.003)
Ln (fiscal 

expenditure)
0.004 0.006

 (0.012) (0.012)
City FE Yes Yes
Year FE Yes Yes
Observations 5540 6434
R2 0.863 0.865

Notes: The dependent variable in columns (1) and (2) is the Gini coefficient for 
nighttime light intensity, assessing city-level spatial development inequality. 
Standard errors in parentheses are clustered at the city level. *** p < 0.01, ** p <
0.05, * p < 0.1.

Table 6 
Mechanisms of the LCCPI on spatial development inequality.

Variables Ln (Green innovation gap) Ln (Factor allocation)
(1) (2)

Treat × Post − 0.065*** − 0.039**
 (0.019) (0.018)
Ln (population density) − 0.013 0.040
 (0.012) (0.038)
Ln (financial development) − 0.007 0.015
 (0.005) (0.018)
Ln (fixed asset investment) 0.004 − 0.004
 (0.004) (0.012)
Ln (FDI) 0.002 0.006
 (0.001) (0.005)
Ln (fiscal expenditure) 0.008 − 0.023
 (0.005) (0.015)
City FE Yes Yes
Year FE Yes Yes
Observations 5624 5624
R2 0.508 0.728
Mediation effect test (− 0.048, − 0.026) (− 0.053, − 0.030)

Notes: The dependent variable in column (1) is the Gini coefficient for the 
number of green patent applications assessing the green innovation gap. The 
dependent variable in column (2) is the Gini coefficient for new firm registra-
tions, assessing factor allocation. The mediation effect test employs bootstrap 
methods with 500 replicate samples. Standard errors in parentheses are clus-
tered at the city level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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indicate that the implementation of the LCCPI can significantly improve 
spatial factor allocation. The mediation effect test further validates 
factor allocation as a channel variable, which is in line with our hy-
pothesis H3.

4.4. Heterogeneity effects

In this section, we move to investigate the heterogeneous effects of 
the LCCPI on spatial development inequality across resource depen-
dence and marketization levels.

First, we evaluate the heterogeneity impact of the LCCPI on spatial 
development inequality across resource dependence. As discussed 
earlier, we present compelling evidence that the LCCPI can significantly 
alleviate spatial development inequality. Compared to non-resource- 
dependent cities (NRDCs), resource-dependent cities (RDCs) confront 
more pronounced challenges in GHG abatement and economic transi-
tions (Havranek et al., 2016). Therefore, RDCs are likely to be more 
sensitive to the LCCPI than NRDCs. More specifically, we hypothesize 
that the LCCPI is more effective in reducing spatial development 
inequality in RDCs. According to the National Sustainable Development 
Plan for Resource-based Cities (NSDP) released by the State Council, we 
further categorize the sample cities into RDCs and NRDCs.4 Table 7
displays the estimated impacts of the LCCPI on spatial development 
inequality across resource dependence. We observe a more pronounced 
reduction in spatial development inequality for RDCs following the 
LCCPI implementation compared to NRDCs.

Second, we compare the estimated effects of the LCCPI on spatial 
development inequality across marketization levels.5 As highlighted by 
previous literature, market mechanisms play an essential role in 
enhancing emission reduction efficiency (Fowlie et al., 2016; Beltrami 
et al., 2021). Compared to high-marketization cities, resource 

misallocation and market distortions are more pronounced in 
low-marketization cities, potentially undermining the effectiveness of 
the LCCPI. Therefore, we assume that the LCCPI has a more significant 
impact on spatial development inequality in high-marketization cities. 
To this end, we categorize sample cities into two groups: 
high-marketization cities and low-marketization cities. 
High-marketization cities are those that exceed the median in terms of 
marketization level, while the remaining cities are designated as 
low-marketization cities. Our estimated results (column (1) of Table 8) 
indicate that the implementation of the LCCPI is associated with a 3.2 % 
reduction in spatial development inequality in high-marketization cities. 
In contrast, no such positive effects are observed in low-marketization 
cities.

5. Conclusions and policy implications

Addressing climate change and mitigating inequality are two critical 
objectives within the framework of the SDGs. This study investigates the 
causal causality between the LCCPI and spatial development inequality 
in China, utilizing city-level data spanning from the years 2000 to 2020. 
The spatial and temporal variations in policy implementation enable us 
to use a staggered DID method to obtain unbiased estimates. We 
calculate city-level spatial development inequality based on county- 
level nighttime light intensity in China.

Our estimated results indicate that the LCCPI can significantly alle-
viate spatial development inequality in China. More specifically, the 
LCCPI contributes to a 4.4 % decline in the Gini coefficient for nighttime 
light intensity. We further find that the green innovation gap and factor 
allocation are the potential channels through which the LCCPI impacts 
spatial development inequality. Finally, our heterogeneity analyses 
reveal that there is a more significant decrease in spatial development 
inequality induced by the LCCPI for resource-dependent cities relative to 
non-resource-dependent cities. Moreover, for cities with a high level of 
marketization, the LCCPI leads to a 3.2 % reduction in spatial devel-
opment inequality. In contrast, no such positive effects are observed in 
low-marketization cities.

This paper yields several policy implications as well. First, this study 
proposes a potential solution for developing countries to assess devel-
opmental inequality in a timely, efficient, and cost-effective manner. 
Specifically, identifying inequality is a fundamental prerequisite for 

Table 7 
Estimated effects of the LCCPI on spatial development inequality across resource 
dependence.

Variables (1) (2)
Resource-dependent 
cities

Non-resource-dependent 
cities

Treat × Post − 0.060** − 0.030*
 (0.030) (0.016)
Ln (population density) − 0.103 − 0.065*
 (0.106) (0.038)
Ln (financial 

development)
− 0.038* − 0.047***

 (0.022) (0.016)
Ln (fixed asset 

investment)
− 0.012 0.019

 (0.015) (0.012)
Ln (FDI) 0.000 0.000
 (0.004) (0.004)
Ln (fiscal expenditure) − 0.004 0.005
 (0.012) (0.019)
City FE Yes Yes
Year FE Yes Yes
Observations 2065 3559
R2 0.851 0.874

Notes: The dependent variable in both columns (1) and (2) is the Gini coefficient 
for nighttime light intensity, assessing city-level spatial development inequality. 
Standard errors in parentheses are clustered at the city level. *** p < 0.01, ** p <
0.05, * p < 0.1.

Table 8 
Estimated effects of the LCCPI on spatial development inequality across mar-
ketization levels.

Variables High-marketization cities Low-marketization cities
(1) (2)

Treat × Post − 0.032** − 0.024
 (0.015) (0.023)
Ln (population density) − 0.113* − 0.038
 (0.062) (0.031)
Ln (financial development) − 0.003 − 0.041***
 (0.013) (0.014)
Ln (fixed asset investment) − 0.011 0.012
 (0.010) (0.012)
Ln (FDI) 0.001 0.003
 (0.003) (0.004)
Ln (fiscal expenditure) − 0.032 − 0.005
 (0.022) (0.010)
City FE Yes Yes
Year FE Yes Yes
Observations 2812 2812
R2 0.915 0.869

Notes: The dependent variable in both columns (1) and (2) is the Gini coefficient 
for nighttime light intensity, assessing city-level spatial development inequality. 
High-marketization cities are those that exceed the median in terms of mar-
ketization level, while the remaining cities are designated as low-marketization 
cities. Standard errors in parentheses are clustered at the city level. *** p < 0.01, 
** p < 0.05, * p < 0.1.

4 Further information is available online at https://www.gov.cn/zwgk/ 
201312/03/content_2540070.htm.

5 The dataset on the marketization index is derived from the China Market 
Index Database maintained by the Beijing National Economic Research 
Institute.
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effective policy intervention. However, this remains a significant chal-
lenge in developing countries, primarily due to the lack of accessible, 
reliable socioeconomic data. In this context, policymakers can leverage 
nighttime light data derived from open-access, high-resolution remote 
sensing imagery to assess development inequality within cities, 
providing essential insights for the design and implementation of pilot 
policies.

Second, efficiency and equity are two critical dimensions for evalu-
ating the effectiveness of climate policy. In light of their economic 
vulnerability, developing countries may struggle to harmonize effi-
ciency and equity in the design and implementation of climate policies. 
By contrast, this study highlights the effectiveness of LCCPI in mitigating 
developmental inequality, while existing literature establishes its role in 
reducing GHG emissions (Chen et al., 2022a; Sun et al., 2024). There-
fore, developing nations can implement low-carbon city pilot initiatives 
for emissions reduction and coordinated development. In detail, poli-
cymakers can integrate the emissions reduction target for pilot cities 
into the political promotion evaluation system, which would ensure that 
local bureaucrats rigorously enforce climate policy.

Third, as highlighted by previous literature, market mechanisms play 
an essential role in enhancing the effectiveness of climate policy (Fowlie 
et al., 2016; Beltrami et al., 2021). Notably, our estimates indicate that 
the LCCPI can curb spatial development inequality in 
high-marketization cities rather than in low-marketization cities. 
Therefore, it is crucial for policymakers to cultivate a market-oriented 
environment, particularly in developing countries, where resource 
misallocation and market distortions are more prevalent. For example, 
policymakers can perform dynamic evaluations of the business envi-
ronment in pilot cities and direct increased climate policy funding to-
ward high-marketization cities.

Finally, we would like to highlight several limitations of our study 
and suggest potential avenues for future research. First, this study 

focuses on the effectiveness of China’s climate policy. Despite being the 
world’s second-largest economy, China is still recognized as a devel-
oping country, which indicates our findings should be cautiously 
extended to developed countries. To enhance the external validity of our 
conclusions, future research could further investigate the causal rela-
tionship between climate policy and development inequality on a global 
scale. Second, in quantifying factor allocation (i.e., the second channel 
variable), we use new firm registrations as a proxy for labor and capital 
mobility. In this case, we are unable to examine the impact of the LCCPI 
on specific factor allocation. In light of this, it will be a potential di-
rection to assess whether and how climate policy influences factor 
agglomeration in the future.
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A. Additional figures
Figs. A1 and A2
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Fig. A1. The spatial distribution of pilot provinces and cities in China. 
Notes: Three rounds of LCCPI were implemented in 2010, 2012, and 2017, respectively.

Fig. A2. Comparison of covariates before and after matching. 
Notes: All covariates are log-transformed. Given minimal differences in matching quality across matching methods, we present the balancing test results based solely 
on caliper matching.

B. Additional model introduction
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The city-level Theil index for nighttime light intensity can be computed as follows: 

Theili,t =
1
ni

∑ni

j=1

[
Lj,t

Li,t
ln
(

Lj,t

Li,t

)]

(B1) 

Here ni denotes the number of counties in city i. Lj,t represents the nighttime light intensity of county j in year t, and Li,t is the mean value of 
nighttime light intensity for city i in year t. Note that the Theil index values range from 0 to 1, with 0 denoting perfect equality and 1 indicating 
complete inequality.

The city-level relative mean deviation (RMD) can be calculated as follows: 

RMDi,t =

1
ni

∑ni
j=1

⃒
⃒Lj,t − Li,t

⃒
⃒

Li,t
(B.2) 

Where each term has the same interpretation as that in Eq. (B1).

Data availability

Data will be made available on request.
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