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Biases in Static Oligopoly Models?:

Evidence from the California Electricity Market

Dae-Wook Kim and Christopher R. Knittel�

September 14, 2005

Abstract

Estimating market power is often complicated by a lack of reliable marginal cost

data. Instead, policy-makers often rely on summary statistics of the market, thought

to be correlated with price cost margins� such as concentration ratios or the HHI. In

many industries, these summary statistics may be only weakly correlated with devia-

tions from marginal cost pricing. Beginning with Gollop and Roberts (1979), a number

of empirical studies identify industry competition and marginal cost levels by estimat-

ing the �rms��rst order condition within a conjectural variations framework. Despite

the prevalence of such �New Empirical Industrial Organization�(NEIO) studies, Corts

(1999) illustrates the estimated mark-ups may be biased, since the estimated conjec-

tural variations model forces the supply relationship to be a ray through the marginal

cost intercept, whereas this need not be true in dynamic games. In this paper, we use

direct measures of marginal cost for the California electricity market to measure the

extent to which estimated mark-ups and marginal costs are biased. Our results suggest

that the NEIO technique poorly estimates mark-ups and the sensitivity of marginal

cost to cost shifters.

�We thank Severin Borenstein, Jim Bushnell, Erin Mansur, Steve Puller, Victor Stango and Cather-

ine Wolfram for helpful comments. We also thank Severin Borenstein, Jim Bushnell and Frank Wolak for

providing us with their marginal cost data. Kim gratefully acknowledges support from the California En-

ergy Commission, while Knittel gratefully acknowledges support from the University of California Energy

Institute. Kim: Korea Institute for Industrial Economics and Trade. Email: daekim@kiet.re.kr. Knittel:

Department of Economics, University of California, Davis, University of California Energy Institute and

NBER. Email: crknittel@ucdavis.edu.
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1 Introduction

Estimating market power is often complicated by a lack of reliable marginal cost data.

Instead, policy-makers often rely on summary statistics of a market, thought to be correlated

with price cost margins� such as concentration ratios or the HHI. In many industries, these

summary statistics may be only weakly correlated with deviations from perfectly competitive

pricing.1

Beginning with Gollop and Roberts (1979), �New Empirical Industrial Organization�

(NEIO) studies estimate price-cost margins by estimating the �rms��rst order condition

within a conjectural variations framework. Marginal costs are treated as a function of ob-

servable cost shifters and a set of unknown parameters. By observing �uctuations in demand

over time (or cross-sectionally), marginal costs are identi�ed through the �rms��rst order

conditions, which relate prices to marginal costs, the �conduct parameter�and the elasticity

of demand. While the use of these models has been extensive,2 Corts (1999) illustrates the

estimated conduct parameter may be biased, since the estimated conduct parameter forces

the supply relationship to be a ray through the marginal cost intercept, whereas this need

not be true in dynamic games.

Because policy can often hinge on these estimates, it is important to understand the

extent of this bias, and, if possible, its direction. For example, perceived market power in

California�s electricity industry prompted a number of policy changes and lawsuits; many

antitrust actions are also based on the level of market power in an industry.

In this paper, we take advantage of unique data that allow us to quantify the accuracy

of NEIO estimates. We analyze NEIO methods using a number of metrics. First, we use

direct measures of marginal cost to calculate the average elasticity-adjusted Lerner index and

compare this to the NEIO estimate. Second, we calculate hourly NEIO estimates of marginal

cost and compare these to direct marginal cost levels. Third, we compare the sensitivity of

the estimated marginal cost to cost shifters with the sensitivity of the direct marginal cost

measure to the same set of cost shifters. Finally, to test the robustness of the NEIO results,

1Borenstein, Bushnell and Knittel (1999) show that these measures may actually be negatively correlated

with market power levels in restructured electricity markets.
2See, for example, Appelbaum (1983), Porter (1983), Roberts (1984), Spiller and Favaro (1984), Gelfand

and Spiller (1987), Brander and Zhang (1990 and 1993), Ellison (1994), Berg and Kim (1994), Graddy

(1995), Nebesky, McMullen, Lee (1995), Kadiyali (1996 and 1999), Kadiyali, Vilcassim, Chintagunta (1999),

Raper, Love and Shumway (2000).
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we estimate a number of demand and marginal cost functional forms. Our results suggest

that the NEIO technique does a poor job of estimating market power levels. In general, we

�nd that NEIO estimates overstate market power. We also �nd that despite direct measures

of market power levels being robust to changes in the functional form of demand, NEIO

results vary widely. Furthermore, the NEIO estimates of marginal cost do not measure the

sensitivity of marginal cost to cost shifters well.

Our empirical setting is the restructured California electricity market. Concerns regard-

ing market power levels in restructured electricity markets are especially high, as many

industry observers argue prices far exceed marginal costs. Fortunately, as a result of the

long history of regulation and the transparency of the production technology, detailed cost

data for electricity markets are currently available. These data have been used to calculate

the level of market power, measured as Lerner and elasticity-adjusted Lerner indexes, in the

UK and California markets. Wolfram (1999) compares UK wholesale electricity prices with

marginal costs. Her results suggest the average elasticity-adjusted Lerner index is small.

Borenstein, Bushnell and Wolak (2002) and Joskow and Kahn (2001) estimate hourly mar-

ginal cost for the California market and compare these estimates to wholesale prices. They

�nd that, in certain time periods, prices substantially exceeded marginal cost.

While reliable marginal cost data for the electricity industry are currently available, this

is unlikely to continue. Entrants into these markets� independent power producers� do not

face the same data requirements as investor owned utilities. In addition, there is evidence

that existing �rms are lobbying policy-makers to make cost data unavailable to the public.

The absence of reliable data in the future increases the importance of evaluating methods

that infer price-cost margins without cost data. In our analysis, we employ only data that

are likely to be available in the future: market level prices, quantities and demand and cost

shifters. As such our focus is not on individual �rm conduct, but instead on the ability to

estimate the e¢ ciency of the market as a whole without detailed cost data.

Our work adds to a small literature examining the accuracy of NEIO techniques. Genesove

and Mullin (1998) use data from the sugar industry during the late 19th and early 20th cen-

turies; the transparency of sugar�s cost technology and its heavy reliance on the price of

cane sugar allow them to accurately estimate marginal costs. They �nd that the direct

measure of the elasticity-adjusted Lerner index falls outside the 95 percent con�dence in-

terval of the NEIO estimate, and that the NEIO estimate understates margins; however,

in economic terms, the di¤erence is not large. Clay and Troesken (2003) perform a similar
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analysis for the whiskey industry during the late nineteenth century. They also �nd that

the direct elasticity-adjusted Lerner index falls outside of the 95 percent con�dence interval

of the NEIO estimate. Unlike Genesove and Mullin, they �nd that the NEIO technique

overstates mark-ups for each of the estimated functional forms. Finally, Wolfram (1999)

studies the deregulated UK electricity market and �nds that the NEIO technique provides a

noisy estimate of market power; neither perfect competition nor equality to the direct level

of mark-ups can be rejected.

2 Empirical Framework

The typical empirical implementation of the NEIO technique uses data on industry level

prices, quantities and demand and cost determinants. The technique begins by characterizing

market i�s equilibrium price within a conjectural variations model:

P (Qi; Xi; �) + �QiP
0 (Qi; Xi; �) = C

0 (Qi; Ki; 
) (1)

where P (Qi; Xi; �) is the market inverse demand function, C 0 (Qi; Ki; 
) is the market mar-

ginal cost function, Qi is the market quantity, Xi is a vector of variables that a¤ect demand,

Ki is a vector of variables that a¤ect costs and � and 
 are vectors of unknown parameters

associated with demand and costs, respectively.

Solving for �, we see that � represents the elasticity-adjusted Lerner index:

� =
Pi �MCi

Pi
� (2)

Identi�cation of � relies on variation in demand across time or across markets. The

model nests joint pro�t maximization (� = 1), perfect competition (� = 0) and the Cournot

equilibrium (� = 1=N).

Given equation (1) and functional form assumptions for demand and marginal costs, Pi

can be solved for as a function of some measure of the responsiveness of demand and marginal

cost shifters. Once isolated, Pi becomes the dependent variable for estimation purposes.

2.1 Potential Weaknesses

The relevance of equation (1) has been questioned on a number of fronts. For one, because

the pricing rule is the result of a conjectural variations model, it need not represent a Nash
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equilibrium. Taking the conjectural variation model literally, the parameter represents �rms�

beliefs regarding how competitors will react to changes in a �rm�s quantity. Unfortunately,

the theoretical literature has shown that the behavioral parameter represents a consistent

equilibrium only under very speci�c information assumptions. (Lindh [1992]) A number of

authors have defended the method on this front, however. The basis of the defense is that the

conjectural variations model is only proxying for a dynamic model, and the Folk theorem tells

us that a range of conducts are Nash equilibria in a dynamic game. Therefore, one can view �

not as an estimate from a theoretical model, but a measure of the elasticity-adjusted Lerner

index, measuring the �static-equivalent� level of an industry�s competitiveness. Provided

the technique yields accurate estimates of the elasticity-adjusted Lerner index, it is a useful

exercise.

A second criticism comes from Corts (1999). Corts illustrates that the conduct parameter

estimated from equation (1) can be biased even if the econometrician views � as an �as-if�

estimate of behavior. The intuition is simple. The pricing rule in equation (1) is the solution

to the �rms�static �rst order conditions. If �rms are competing in a dynamic setting, then

the �rms��rst order conditions may also depend on the incentive compatibility constraints

associated with collusion. If the incentive compatibility constraints are a function of demand

shocks, then the estimated � may be biased.

Finally, Bresnahan (1982 and 1989), Lau (1982) and Reiss and Wolak (2005) point out

that identi�cation of � hinges on demand and costs functional form assumptions; the esti-

mates of � may vary widely depending on functional form assumptions. Empirical evidence

of this is mixed. While the results of Genesove and Mullin (1998) and Clay and Troesken

(2003) are robust across functional form assumptions, Wolfram (1999) and Bettendorf and

Verboven (2000) �nd that their results vary widely.

3 Empirical Setting

3.1 Institutional Detail

The restructured California wholesale electricity market began operation in April of 1998.

Prior to 2001, wholesale electricity was primarily traded in two markets. The now de-

funct Power Exchange (PX) organized a day-ahead market and was one of many �Schedul-

ing Coordinators� (SCs). The PX had an advantage over other SCs because California�s
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three IOUs� Paci�c Gas and Electric, Southern California Edison and San Diego Gas and

Electric� were initially required to trade through the PX. Electricity that was not traded

through a scheduling coordinator, was traded through the Independent System Operator

(ISO), which operated an �imbalance market� designed to instantaneously equate supply

and demand.

For system reliability reasons, the vast majority of energy was traded in the PX market;

the ISO was designed to meet only unforeseen shocks to supply or demand.3 Trading the

bulk of electricity in the day prior to delivery allowed market organizers su¢ cient time to

plan the use of the state�s transmission grid.

The PX worked as follows: At 7am each morning, suppliers and demanders submitted

hourly supply and demand curves for the following day (beginning at 12am). The PX aggre-

gated these bids into one hourly supply bid and one hourly demand bid. The intersection of

these bids determined the �unconstrained�PX price for each hour of the day. The PX then

submitted its �preferred�prices and quantities to the ISO. Provided the preferred schedule

did not result in any transmission congestion, the unconstrained PX price became the market

clearing price. If the preferred schedule (along with the schedules of other scheduling coor-

dinators) resulted in congestion, another round of bidding was used to reduce the demand

(or increase the supply) in certain areas. In our analysis, we follow the existing literature

and use the unconstrained PX price as the market clearing price.4

3.2 Measuring Marginal Cost

In many ways, the California electricity industry is an ideal setting for analyzing NEIO

techniques. The bulk of electricity generated is produced using fossil fuel generation plants;

furthermore fossil-fuel plants are predominantly the marginal plants operating. Accurate

estimates of the short-run marginal cost of fossil-fuel electricity plants can be calculated

since their thermal e¢ ciencies at di¤erent output levels are currently available, as are spot

market prices for natural gas. In particular, for each plant, a heat rate is available measuring

3During the PX�s operation, over 80% of energy was traded in the PX, but there is evidence that the

IOUs underscheduled demand in the PX as a means of reducing PX prices. See Borenstein, Bushnell, Knittel

and Wolfram (2001) for an analysis of this.
4The results do not qualitatively change if we use the ISO price or constrained PX prices.
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the e¢ ciency in which the plant converts fuel to electricity.5 The heat rate coupled with

fuel prices allows the component of marginal cost attributed to fuel to be computed. The

remaining components of marginal cost are operation and maintenance costs. Borenstein,

Bushnell and Wolak (2002) calculate hourly marginal costs in the California electricity mar-

ket; we make use of their marginal cost data and refer the reader to their work for additional

details of the process.

We make one adjustment to their measure of marginal cost. In 45 percent of the hours

price is below their measure of marginal cost. Since short-run pro�t maximizing �rms would

not price below marginal cost, this likely re�ects either (a) estimation error in the marginal

cost measures, or (b) inter-temporal constraints to shutting down power plants.6 Consistent

with both of these explanations, this occurs predominantly in low demand hours. To control

for this, we de�ne marginal cost as:

min
�
Pt;MC

BBW
t

�
(3)

By doing this, we set the Lerner index to zero in these hours, thereby understating market

power during low demand periods, since we know only that marginal cost is, at most, equal

to the price. We note, however, while we make this adjustment in a signi�cant number of

the hours, for many of the hours, this re�ects a small change in the Borenstein, Bushnell

and Wolak (BBW) marginal cost estimates. Marginal cost is above price by more than ten

percent in only 19 percent of the hours. Nevertheless, in section 5 we analyze the robustness

of this assumption.

Figure 1 is a scatterplot of system-wide marginal cost on quantity; a Lowess non-

parametric regression line is also plotted. It is apparent that the market faces a capacity

constraint, although the regression line does not appear to become vertical only steeper as

quantity increases. To capture this feature of marginal cost we initially assume that marginal

costs are quadratic in quantity; we also estimate an endogenous spline model in section 5.

5Speci�cally, the heat rate is de�ned as the the number of BTUs required to produce one KWh of

electricity.
6Plants face non-trivial start up costs, implying a �rm may be willing to run a plant when the price is

below the plants static marginal costs if price is expected to rise in the coming hours.
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3.3 Estimation of Demand

The demand for electricity is extremely inelastic. Compounding the inelastic nature of

demand is the fact that only a small percentage of demand faces wholesale prices. During

the time period analyzed in this paper, retail consumers faced a �xed price, that was, at least

in the short run, independent of wholesale prices. Barbose, Goldman and Neenan (2004)

report that only one percent of demand faced wholesale prices during our sample period.

This feature of the market suggests that short run demand is best viewed as being perfectly

inelastic. However, for issues of market power, the relevant elasticity measure is the elasticity

faced by �strategic��rms in the market, since some �rms may not possess unilateral market

power. Following Borenstein, Bushnell and Wolak (2002) and Puller (2002), we de�ne a set

of �rms as �non-strategic� and a set of �rms as �strategic.�Non-strategic �rms are price

takers and bid their marginal cost curves. Strategic �rms, in contrast, price according to

equation (1).

As an initial step in classifying �rms, Table 1 reports the in-state �rms�generation capac-

ities in July of 1999 by fuel type. Seven �rms held signi�cant amounts of generation assets,

with the �Other�category representing many small �rms, many of which were �Qualifying

Facility� units that were paid outside of the auction. PG&E and SCE di¤ered from the

other large �rms. For the majority of hours, PG&E and SCE were net buyers of electricity.

Therefore, these �rms did not have an incentive to increase prices and would therefore not

act on any market power they possess. Given these considerations, we treat supply from

PG&E, SCE and �Other�as non-strategic.

California also receives a signi�cant amount of electricity from out-of-state �rms; we

treat these �rms as non-strategic. The bulk of out-of-state supply comes from regulated

utilities and quasi-governmental entities (e.g., Bonneville Power Administration). Out-of-

state utilities are regulated via rate-of-return regulation and must �rst meet their native

demand requirements, leaving only excess generation capacity for exporting to California.

This reduces the size of any single �rm. For entities such as BPA, it is unclear that their

objective function would be improved from exercising any market power that they possess.

Therefore, we de�ne the strategic group of �rms as AES, Duke, Dynegy, Reliant and

Mirant. To estimate the hourly residual demand for these �rms, we �rst estimate the non-

strategic �rms�inverse supply equation, given as:

Qns = f (P;X;Z; �; "ns) (4)
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where P is the wholesale price, X is a vector of cost variables, Z is a vector of variables that

capture the native demand of out-of-state �rms, � is a vector of unknown parameters and

"ns is an error term that captures unobserved components of non-strategic supply.

Letting Qtot be the total amount of electricity demanded, the residual demand faced by

strategic �rms can be expressed as:

Qs = Qtot �Qns (5)

= Qtot � f (P;X;Z; �; "ns)

4 Results

4.1 Non-Strategic Functional Form, Variables and Results

In this section we discuss functional form assumptions for non-strategic supply as well as the

variables included in X and Z. Table 2 reports the summary statistics for these variables

and their correlations with non-strategic supply.

We allow the wholesale price to a¤ect non-strategic supply di¤erently during peak, o¤-

peak and weekend periods and in each of the three years of our data.7 This yields nine

coe¢ cients associated with the wholesale price. We instrument for wholesale prices since

shocks to non-strategic supply decisions will be correlated with the wholesale price. Fortu-

nately, good demand instruments are available. Speci�cally, we instrument for price using

the ISO�s forecast for demand, which is independent of the error term since these forecasts

do not take non-strategic supply into consideration. Given the interaction terms associated

with price, we create nine instruments by interacting forecasted demand with the peak/o¤-

peak/weekend/year indicator variables. Although we estimate non-strategic supply within

a GMM framework, the results of the ��rst stage�regressions of the PX price on forecasted

demand are presented Table 3; forecasted demand is highly signi�cant in each of the speci-

�cations.8

The vector X includes variables that capture the marginal cost of non-strategic supply.

The bulk of non-strategic supply is generated using natural gas and hydroelectric resources.

PNGN and PNGS are the daily city-gate price of natural gas for northern and southern Califor-

7We de�ne the peak period as those hours between 12pm and 6pm.
8The results with the variables in logs are qualitatively similar.

9



nia, respectively. While many of the non-strategic suppliers are out-of-state �rms, regional

natural gas prices are highly correlated. We control for the availability of hydroelectric

resources using year/month indicator variables (a total of 28).

A key determinant of an out-of-state �rm�s ability to export power to California is their

native demand requirements. To capture out-of-state native demand requirements, Z in-

cludes the average of the daily minimum and maximum temperatures in Phoenix and Tucson,

AZ; Portland and Pendleton, OR; Ely Yelland Field and Las Vegas, NV; Salt Lake City, UT;

Seattle and Spokane, WA.9 We also interact this variable with a summer indicator variable,

since native demand is positively correlated with temperature during the summer� because

of air conditioning� and negatively correlated with temperature during the winter� because

of heating.

Finally, in addition to the year/month indicator variables, we include three sets of indica-

tor variables to capture temporal changes in supply. We include day of week, hour/weekday

and hour/weekend indicator variables.

We estimate three functional forms for non-strategic supply: a linear model, a log-log

model and a linear-log model.10 The results for the three models are reported in Table 4. We

estimate the equation using GMM and report Newey-West corrected standard errors that

account for the serial correlation in the residuals.11

The results are largely consistent with economic intuition. In each of the three models,

non-strategic supply is more responsive to price changes during the o¤-peak and weekend pe-

riods; this is likely because out-of-state �rms have more excess capacity available throughout

the di¤erent regions of their marginal cost curves. The sensitivity to price is not statistically

di¤erent between 1998 and 1999, but decreased during 2000. This decrease is dramatic for

the linear model. The results also suggest that higher natural gas prices reduce the supply

of non-strategic generators; this e¤ect is stronger for southern California natural gas prices.

This may be because many of the out-of-state non-strategic natural gas plants are located in

Arizona. Finally, lower out-of-state temperatures decrease non-strategic supply in the fall,

winter and spring months, while this e¤ect is reversed in the summer.

9The results are robust to a number of alternatives to simple averaging the maximum and minimum

temperatures. In particular, we included each of the high and low temperatures separately and included the

average of the high temperatures and the average of the low temperatures.
10That is, y = log(X)� + ": Because the log of price enters the log-log and linear-log models, we delete

the 110 observations where price is zero. We do this for all three models to be consistent.
11We include 24 lags.

10



The non-strategic supply curve estimates de�ne the residual demand faced by strategic

�rms. Table 5 reports the mean, median and standard deviation of the residual demand

elasticity estimates. The log-log and linear-log models yield similar results while the linear

demand model implies a more inelastic residual demand curve.

4.2 Direct Measures of Mark-ups

Using the residual demand estimates and the BBW marginal cost numbers, we calculate the

hourly Lerner index and elasticity-adjusted Lerner index for the three models; the descriptive

statistics are reported in Table 6. For the entire sample, the average Lerner index is 0.13.

Interestingly, while the linear demand model yields elasticity estimates that contrast with

the other two models, the elasticity-adjusted Lerner indexes widely agree across the three

models. Among the three models, the hourly linear and linear-log elasticity-adjusted Lerner

indexes are the least correlated; yet, this correlation is still .82. The average elasticity-

adjusted Lerner index ranges from 0.070 to 0.073, which is equivalent to a static equilibrium

with 14 symmetric Cournot �rms, far more than the �ve strategic �rms that operate in

California, suggesting the industry is more competitive than what a Cournot model would

imply.

To see if there are temporal changes in mark-ups, Table 6 also reports the Lerner in-

dex and elasticity-adjusted Lerner index separately for weekday peak, weekday o¤-peak and

weekend periods and for each of the three years. Both adjusted and non-adjusted Lerner

indexes are higher during peak hours. The average Lerner index during weekday o¤-peak

periods is higher than weekend periods; for the elasticity-adjusted Lerner index in the linear

and linear-log models, this relationship is reversed. The average Lerner index increased sig-

ni�cantly in 2000, compared to 1998 and 1999. Interestingly, however, the average adjusted

Lerner index shows little variation across the three years. The log-log and linear-log models

suggest that market power levels increased slightly in 2000, but not nearly as much as the

unadjusted Lerner index.

4.3 Strategic Supply

Given residual demand estimates, the strategic supply relationship is estimated from the

�rst order condition in equation (1). Marginal costs are parameterized as:
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MC = 
0 + 
1P
NG + 
4P

NOx + 
5Crisis� PNOx + 
6qst + 
7q2st (6)

where PNG is the average daily price of natural gas paid by IOUs, PNOx is the price of NOx

permits and qst is the quantity of strategic �rms.12 For much of the sample period NOx

emission permit prices were low. During the California electricity crisis, however, NOx prices

increased dramatically and became a signi�cant component of marginal cost. To allow for

non-linearities associated with the NOx permit prices, we interact the permit price with

a crisis indicator variable.13 Because the quantity variables are likely to be endogenous,

we instrument for them using total demand and the square of total demand, which will be

uncorrelated with shocks to price because it is perfectly inelastic.

Table 7 reports the strategic supply estimates for the three demand models. The standard

errors account for serial correlation and the �rst stage estimation of demand.14 Despite the

consistency of the direct elasticity-adjusted Lerner indexes across functional forms, the NEIO

estimates vary widely. The linear model produces the most accurate estimate of the direct

market power level: 0.123 compared to the direct measure of 0.070. The log-log and linear-

log models overstate market power levels, 0.229 and 0.188, respectively, compared to the

direct measures of .073 and .071, respectively. In each of the models, the direct measure falls

outside of the 95 percent con�dence interval of the NEIO estimate. These results provide an

initial test of the NEIO method.

In the linear and linear-log models, marginal costs are estimated to be convex in quantity.

The sensitivity of marginal cost to natural gas prices varies across the models, ranging from

5.60 in the log-log model to 8.02 in the linear-log model. The coe¢ cients with respect to the

price of NOx permits are puzzling. For the linear model, increases in the price of permits

are estimated to reduce marginal costs. During the crisis period this e¤ect subsides, but

remains negative.

To further test the accuracy of the NEIO technique in estimating marginal costs, Figure

2 is a density estimate of the di¤erence between direct measure of marginal costs and the

12These prices include transportation costs. While they are at the IOU level, not the strategic �rm level,

these prices are likely to be strongly correlated. We include the weighted average of the natural gas prices

for PG&E, SCE and SDG&E (weighted by monthly generation by natural gas units). The estimates of �

are robust to this assumption.
13We de�ne the crisis period as after May of 2000.
14The standard errors report Newey West standard errors accounting for the �rst stage estimation using

McFadden�s (1999) GMM correction.
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NEIO marginal costs from the linear model.15 On average, the NEIO technique overstates

marginal costs; however this is not symmetric.16 A regression of the NEIO estimates on the

direct measure of marginal cost yields:

MCNEIOt = 5:36 + :79MCDirectt + "t (7)

Thus, the NEIO technique tends to overstate marginal cost when marginal cost is low, but

understate marginal cost when it is high. Figure 3 is a scatterplot of the direct measure of

marginal cost and the NEIO marginal cost estimates plotted against strategic quantity. The

NEIO estimates fail to capture the high marginal costs during high demand periods.

As a second metric for the NEIO marginal cost estimates, we regress the direct measure

of marginal cost on the cost shifters included in equation (6) and compare these parameter

estimates to those obtained from the NEIO estimates. These results are reported in the

�nal column of Table 7. Comparing these to the NEIO technique, we �nd that the NEIO

technique does a poor job of estimating the sensitivity of marginal cost to cost shifters. The

direct measure implies marginal costs are more sensitive to natural gas price changes. The

direct measure of marginal cost suggests that NOx permit prices have a positive e¤ect on

marginal costs. This is not the case in the NEIO results. Finally, the direct measure of

marginal cost is estimated to be linear in quantity.

The next thought experiment we conduct is the following: suppose the econometrician

knew the sensitivity of marginal cost to a speci�c input, possibly because of engineering

estimates, would the estimate of market power become more accurate? We do this for each

of the models estimated. Tables 8 through 10 report the results. For variables denoted as

�known�we replace the unknown marginal cost parameter with the marginal cost parameter

estimated using the direct measures of marginal cost listed in the �nal column of Table 7.

In general, this does not improve the accuracy of the NEIO estimates or the estimates of the

remaining marginal cost parameters.17

15We chose the linear model since this yields the most accurate estimate of market power. We truncate

observations above $20 (1.9%) so that the �gure is easier to interpret.
16The mean di¤erence (actual minus NEIO) is �1:95 with a standard deviation of 8.11.
17In a similar exercise, Genesove and Mullin (1998) �nd that replacing the marginal cost parameter

associated with the price of raw sugar does not improve their estimate of market power, but does improve

their estimate of the marginal cost intercept.
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4.3.1 Time-Varying Mark-Ups

We next analyze the NEIO technique�s ability to accurately re�ect temporal changes in

mark-ups. As in Table 6, we allow for mark-ups to vary across years and throughout the

day. The NEIO estimates of mark-ups for the di¤erent years are reported in Table 11; the

results contrast with the direct measures of mark-ups. The estimates of � suggest that market

power existed only in 2000, despite the consistency of the direct measure across years.

Table 12 reports the NEIO estimates allowing for a di¤erent � during the peak hours of

a weekday, the o¤-peak hours of a weekday and during weekends. Each of the NEIO models

suggests that market power levels are highest during the weekend, at odds with the direct

measures which imply market power is greatest during peak hours.

The inability of the NEIO technique to accurately estimate changes in market power is

important, since it could be the case that it does not estimate market power levels accurately,

but policy makers can still learn about changes in market power levels. Unfortunately, this

does not appear to be the case.

5 Robustness Checks

As noted, one shortcoming of our data is that in a substantial number of hours our marginal

cost measure is above the market clearing price. In the previous analysis we adjusted the

hourly marginal cost numbers to be the minimum of the BBW measure and price. In this

section, we adjust our sample so that this is less of an issue. In doing so, our goal is to

use selection criteria that are simple enough to be used when marginal cost data are not

available.18

We look at two sub-samples of the data. The �rst selects observations based on the time

of day and time of year, using only weekday-peak hours in the months between May and

October observations. Because price is higher during peak times and summer months, the

dynamic marginal cost is more likely to be equal to the static marginal cost measure. In

this sample, marginal cost exceeds price in 14 percent of the hours, but exceeds price by

more than ten percent in only six percent of the hours. The second sub-sample uses only

18We have also analyzed samples that are based on our direct marginal cost data and the results do not

qualitatively change. For example, we have used only those observations where price is above the direct

measure of marginal cost and estimated a probit to predict when price will be above marginal cost based on

forecasted demand.
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observations where demand is expected to be high, using hours in which forecasted demand

is above the median. In this sample, marginal cost exceeds price in 19 percent of the hours,

but it exceeds price by more than ten percent in only four percent of the hours. Focusing

on these sub-samples has the additional advantage that market power concerns are highest

during high demand periods when supply constraints begin to bind. If the NEIO technique

can accurately re�ect market power levels during these times, but not during all hours, then

it may still be useful for policy analysis.

Tables 13 and 14 report the direct measures of market power and the NEIO estimates

for the two sub-samples. The results are mixed. For both sub-samples, the NEIO technique

provides accurate �entire sample�estimates of market power for two of the three functional

forms; unfortunately the two functional forms vary. In the weekday peak sample, the linear

and log-log models provide accurate estimates, whereas the linear and linear-log results are

accurate for the forecasted-demand sample. The linear model continues to yield the most

accurate results.

The estimation of temporal changes in market power is also mixed. As with the full

sample, the NEIO estimates fail to capture the existence of market power in the 1998 and

1999. Again, given that the direct measures of market power vary little across functional

forms, we would hope that the NEIO would also be consistent. Using the forecasted-demand

sample, within day changes in market power are accurately re�ected for the linear demand

model, but the other two demand models overstate market power.

One possible explanation for the poor performance of the NEIO technique is that the

market in 2000 was very di¤erent compared to 1998 and 1999, thus combining all of the

years into one sample may lead to erroneous conclusions. In support of this, Kolstad and

Wolak (2004) present evidence that during certain periods of 2000, �rms were able to use

their market power in the NOx permit market to increase the costs of their rivals. This

would imply that NOx permit prices may be endogenous. To account for this, we estimate

market power using data only for 1998 and 1999 and report these results in Table 15. This

does little to increase the accuracy of the NEIO estimates.

In the previous speci�cations, marginal costs are assumed to be quadratic in quantity.

Our last robustness check alters the functional form for marginal cost. We assume that

marginal costs are a linear spline with one knot. We endogenously determine the knot by

using the method in Andrews (1993). We estimate the endogenous spline model under the

linear non-strategic supply model since this model provided the most accurate estimates
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of market power. The results are listed in Table 16 and are consistent with the quadratic

marginal cost model.

6 Conclusion

In this paper, we compare direct measures of mark-ups and marginal costs to estimates based

on the static conjectural variations �rst-order conditions of an industry. We take advantage

of unique data that allow us to directly measure marginal costs in the restructured California

electricity market. Our results suggest that, in this setting, the NEIO technique does a poor

job of estimating market power.

Admittedly, it is di¢ cult to extend our results to other industries, but our results sug-

gest that policy makers should be cautious when relying on NEIO techniques to diagnose

industry performance. Furthermore, these results underline the importance of data collec-

tion requirements in restructured electricity markets. Given that the NEIO does a poor job

in this setting, future policy based on market power concerns will require actual marginal

cost data.
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A Tables

Table 1: In-state Capacity during July 1999

Firm Fossil Hydro Nuclear Renewable

AES 4,071 0 0 0

Duke 2,950 0 0 0

Dynegy 2,856 0 0 0

PG&E 580 3,878 2,160 793

Reliant 3,531 0 0 0

SCE 0 1,164 1,720 0

Mirant 3,424 0 0 0

Other 6,617 5,620 430 4,888

Source: California Energy Commission

Table 2: Summary Statistics of Non-Strategic Supply Variables

Mean Std Dev Min Max Corr(X;Qns)

Price 45:580 58:328 0:0001 749.996 0:204

NaturalGasN 2:998 1:093 1.810 6.840 �0:182
NaturalGasS 2:893 1:177 1.650 7.260 �0:176
Temperature 60:233 13:581 21.056 86.667 0:182

Temperature� Sum 75:018 5:076 58.722 86.667 0:114
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Table 3: First Stage Regressions
Price P �WDay � Pk P �Wday �OPk P �Wend

Full Sample
Constant �104:899 �341:787 �69:569 �73:353

(10:692) (55:836) (10:249) (12:398)
Forecast 0:006

(0:000)
Forecast�WDay � Pk 0:013

(0:002)
Forecast�WDay �OPk 0:004

(0:000)
Forecast�Wend 0:005

(0:001)

�N� 21104 4340 10474 6290
Adj R2 0:274 0:398 0:215 0:285

1999 Sample
Constant -79.308 �12:785 �21:669

(15.796) (1:755) (3:052)
Forecast�WDay � Pk 0.004

(0.001)
Forecast�WDay �OPk 0:002

(0:000)
Forecast�WEnd 0:002

(0:000)

�N� 1792 4344 2612
Adj R2 0.430 0:356 0:368

2000 Sample
Constant -673.504 -136.659 -140.453

(76.773) (19.183) (20.642)
Forecast�WDay � Pk 0.024

(0.003)
Forecast�WDay �OPk 0.008

(0.001)
Forecast�WeekEnd 0.008

(0.001)
�N� 1498 3638 2183
Adj R2 0.655 0.339 0.444
Notes: All estimates are signi�cant in 1% level.
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Table 4: Estimates of the Non-Strategic Supply Relationship
Linear Log-log Linear-log

P �Wday � Pk 66.543��� 0.159��� 3976.5���

(7:813) (0:011) (266:0)
P �Wday �OffPk 104.522��� 0.195��� 4471.5���

(13:602) (0:017) (385:1)
P �Wend 147.298��� 0.216��� 4923.9���

(15:382) (0:016) (370:8)
P �Wday � Pk � Y r99 13.656 �0:008 �41:824

(8:735) (0:012) (270:2)
P �Wday �OffPk � Y r99 14.876 �0:011 �111:133

(11:034) (0:013) (289:5)
P �Wend� Y r99 7.138 0:010 �102:861

(13:355) (0:012) (287:4)
P �Wday � Pk � Y r00 -51.101��� �0:014 �426:561�

(7:675) (0:012) (257:8)
P �Wday �OffPk � Y r00 -81.156��� �0:026�� �632:1��

(12:237) (0:012) (279:3)
P �Wend� Y r00 -108.425��� �0:030�� �724:899���

(13:754) (0:012) (282:2)
PNGN -901.744�� �0:178�� �4393:13��

(471:4) (0:090) (2080:5)
PNGS -775.013� �0:195�� �4142:07��

(429:3) (0:085) (1948:7)
Temperature 39.155��� 0:044�� 970.954�

(10:770) (0:022) (523:7)
Temperature� Sum -75.232��� �0:295��� �6646:07���

(23:000) (0:085) (1963:1)

Day, year�month, hour�weekday and hour�weekend monthly indicator
variables not reported.

Table 5: Estimates of Residual Demand Elasticities
Linear Log-Log Linear-Log

Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev

Entire Sample 0.695 0.581 0.486 1.250 1.004 0.870 1.344 1.011 1.037
1998 0.739 0.663 0.376 1.279 1.133 0.693 1.364 1.155 0.856
1999 0.996 0.895 0.494 1.493 1.246 0.921 1.622 1.254 1.123
2000 0.304 0.270 0.178 0.938 0.633 0.817 0.998 0.655 0.935
Weekday Peak 0.388 0.395 0.216 0.713 0.621 0.412 0.713 0.614 0.414
Weekday O¤peak 0.648 0.612 0.407 1.263 1.058 0.798 1.347 1.044 0.956
Weekend 0.983 0.917 0.578 1.599 1.368 1.019 1.775 1.466 1.226
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Table 6: Direct Measures of Lerner and Elasticity-Adjusted Lerner Indexes
Linear Model Log-log Model Linear-Log Model

LI Adj LI Adj LI Adj LI N
Entire Sample 0.128 0.070 0.073 0.071 21104

(0.191) (0.139) (0:096) (0:090)
1998 0.099 0.066 0.068 0.063 5037

(0.164) (0.147) (0:101) (0:091)
1999 0.088 0.072 0.066 0.064 8748

(0.139) (0.140) (0:094) (0:089)
2000 0.196 0.072 0.085 0.085 7319

(0.237) (0.131) (0:094) (0:090)
Weekday Peak 0.228 0.097 0.103 0.099 4340

(0.243) (0.148) (0:094) (0:085)
Weekday O¤peak 0.108 0.058 0.066 0.064 10474

(0.168) (0.122) (0:092) (0:086)
Weekend 0.093 0.074 0.064 0.064 6290

(0.162) (0.154) (0:099) (0:097)

Numbers in parentheses represent standard deviations.

Table 7: Strategic Pricing Relationship Estimates
Linear Model Log-log Model Linear-log model Direct MC

Constant 26.798��� 6.531�� -1.480 -7.020���

(6.449) (2.783) (3.253) (0.759)

P
NatGas

6.501��� 5.599�� 8.023��� 8.792���

(1.798) (2.550) (0.797) (0.273)
PNOx -2.942��� 0.405 -0.134 0.265���

(0.966) (0.502) (0.438) (0.105)
PNOx � Crisis 2.618��� -0.571 0.160 -0.048

(0.794) (0.421) (0.369) (0.093)
Quantity -0.015��� -0.002 -0.001 0.002���

(0.002) (0.004) (0.001) (0.000)
Quantity2 1.556�10�6��� 3.724�10�7 2.932�10�7� 1.035�10�8

(2.048�10�7) (4.461�10�7) (1.635�10�7) (1.526�10�8)
� 0.123��� 0.229��� 0.188���

(0.017) (0.053) (0.022)
Notes: � denotes signi�cant at the .1 level, �� at the .05 level, and ��� at the .01 level
Quantity and Quantity2 are instrumented for using Forecasted Demand and
Forecasted Demand2.
Standard Errors account for the �rst stage estimation of non-strategic supply.
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Table 8: Supplemental Information and Estimates of Market Power
Linear Model. For variables marked as known, their estimate from the Direct MC
equation are used and treated as �xed.

Direct MC NEIO 1 NEIO 2 NEIO 3 NEIO 4
Constant -7.020��� 26.798��� 20:923��� 34.359��� -4.378

(0.759) (6.449) (4.604) (6.930) (5.287)
PNatGas 8.792��� 6.501��� known 2.888�� 4.748��

(0.273) (1.798) (1.264) (2.184)
PNOx 0.265��� -2.942��� -3.187��� known -6.184���

(0.105) (0.966) (0.877) (0.972)
PNOx -0.048 2.618��� 2.678��� known 5.431���

�Crisis (0.093) (0.794) (0.779) (0.786)
Quantity 0.002��� -0.015��� -0.015��� -0.015��� known

(0.000) (0.002) (0.002) (0.002)
Quantity2 -1.035�10�8 1.556�10�6��� 1.567�10�6��� 1.614�10�6��� known

(1.526�10�8) (2.048�10�7) (2.069�10�7) (2.105�10�7)
� 0.070 0.123��� 0.116��� 0.120��� 0.225���

(0.139)y (0.017) (0.018) (0.017) (0.025)
* denotes signi�cant at the .1 level, ** at the .05 level, and *** at the .01 level
y This represents the standard devation.
Table 9: Supplemental Information and Estimates of Market Power
Log-log Model. For variables marked as known, their estimate from the Direct MC
equation are used and treated as �xed.

Direct MC NEIO 1 NEIO 2 NEIO 3 NEIO 4
Constant -7.020��� 6.531�� 2.027 13.816��� -3.148

(0.759) (2.783) (3.616) (3.918) (4.174)

P
NatGas

8.792��� 5.599�� known 3.231� 5.555���

(0.273) (2.550) (1.974) (1.524)
PNOx 0.265��� 0.405 -0.077 known 0.238

(0.105) (0.502) (0.512) (0.532)
PNOx -0.048 -0.571 -0.276 known -0.458
�Crisis (0.093) (0.421) (0.439) (0.400)
Quantity 0.002��� -0.002 -0.004�� -0.003 known

(0.000) (0.004) (0.002) (0.005)
Quantity2 1.035�10�8 3.724�10�7 6.195�10�7��� 4.415�10�7 known

(1.526�10�8) (4.461�10�7) (2.270�10�7) (5.383�10�7)
� 0.073 0.229��� 0.192��� 0.220��� 0.240���

(0.096)y (0.053) (0.036) (0.060) (0.017)
* denotes signi�cant at the .1 level, ** at the .05 level, and *** at the .01 level
y This represents the standard devation.
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Table 10: Supplemental Information and Estimates of Market Power
Linear-Log Model. For variables marked as known, their estimate from the Direct MC
equation are used and treated as �xed.

Direct MC NEIO 1 NEIO 2 NEIO 3 NEIO 4
Constant -7.020��� -1.480 -2.976 1.983 -8.523���

(0.759) (3.253) (2.641) (2.067) (2.102)

P
NatGas

8.792��� 8.023��� known 6.733��� 8.072���

(0.273) (0.797) (0.731) (0.807)
PNOx 0.265��� -0.134 -0.268 known -0.305

(0.105) (0.438) (0.403) (0.374)
PNOx -0.048 0.160 0.224 known 0.298
�Crisis (0.093) (0.369) (0.364) (0.331)
Quantity 0.002��� -0.001 -0.002 -0.001 known

(0.000) (0.001) (0.001) (0.001)
Quantity2 1.035�10�8 2.932�10�7� 3.223�10�7� 3.218�10�7�� known

(1.526�10�8) (1.635�10�7) (1.763�10�7) (1.577�10�7)
� 0.071 0.188��� 0.184��� 0.186��� 0.198���

(0.090)y (0.022) (0.024) (0.023) (0.006)
* denotes signi�cant at the .1 level, ** at the .05 level, and *** at the .01 level
y This represents the standard devation.

Table 11: Strategic Pricing Relationship Estimates� Yearly Variation in �
Linear Model Log-log Model Linear-log Model

Constant 28.089��� 15.214��� 17.676���

(7.369) (4.122) (5.508)

P
NatGas

3.677�� 4.460��� 4.962���

(1.873) (1.062) (1.106)
PNOx -3.173��� 0.828� -0.005

(1.017) (0.509) (0.467)
PNOx � Crisis 3.396��� -1.045��� 0.039

(0.819) (0.419) (0.388)
Quantity -0.009��� -0.005�� -0.006���

(0.002) (0.002) (0.002)
Quantity2 1.275�10�6��� 7.604�10�7��� 9.917�10�7���

(1.923�10�7) (3.006�10�7) (2.304�10�7)
� � Y r98 -0.027 0.069 -0.043

(0.049) (0.081) (0.056)
� � Y r99 0.014 0.111� 0.015

(0.054) (0.066) (0.049)
� � Y r00 0.066��� 0.197��� 0.135���

(0.017) (0.037) (0.025)
� denotes signi�cant at the .1 level, �� at the .05 level, and ��� at the .01 level
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Table 12: Strategic Pricing Relationship Estimates� Intra-day Variation in �
Linear Model Log-log Model Linear-log Model

Constant 38.277��� 13.245��� 1.053
(6.869) (3.454) (1.823)

P
NatGas

2.077 3.661 4.599���

(2.078) (3.256) (0.566)
PNOx -2.987��� 0.935 0.328

(0.961) (0.618) (0.302)
PNOx � Crisis 2.698��� -1.067�� -0.201

(0.793) (0.522) (0.260)
Quantity -0.015��� -0.004 0.002���

(0.002) (0.004) (0.001)
Quantity2 1.599�10�6��� 4.711�10�7 -1.570�10�7

(2.014�10�7) (4.302�10�7) (1.116�10�7)
� �Wday � Pk 0.139��� 0.219��� 0.241���

(0.018) (0.053) (0.015)
� �Wday �OffPk 0.159��� 0.252��� 0.260���

(0.020) (0.069) (0.018)
� �Wend 0.263��� 0.278��� 0.298���

(0.034) (0.070) (0.017)
� denotes signi�cant at the .1 level, �� at the .05 level, and ��� at the .01 level
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A.1 Robustness Checks

A.1.1 Weekday Peak Hours

Table 13: Weekday Peak Sample (from May to October)
Linear Model Log-log Model Linear-Log Model

Direct Estimated Direct Esitmated Direct Estimated N
Entire Sample 0.134 0.161�� 0.131 0.129 0.123 0.238��� 2583

(0.165) (0.074) (0:093) (0.149) (0:078) (0.018)
1998 0.122 -0.196 0.123 -0.141 0.111 0.234 770

(0.165) (0.333) (0:105) (0.356) (0:087) (0.548)
1999 0.134 -0.125 0.121 -0.072 0.116 0.233 903

(0.154) (0.425) (0:084) (0.275) (0:075) (0.452)
2000 0.146 0.122 0.147 0.116 0.140 0.235 910

(0.176) (0.160) (0:087) (0.145) (0:070) (0.167)
Numbers in parentheses for Direct measures represent standard deviations and for Estimated
represent standard errors.

A.1.2 Selecting on Forecasted Demand

Table 14: Selecting on Forecasted Demand
Linear Model Log-log Model Linear-Log Model

Direct Estimated Direct Esitmated Direct Estimated N
Entire Sample 0.110 0.085��� 0.112 0.217��� 0.105 0.149��� 10607

(0.167) (0.025) (0.101) (0.027) (0.090) (0.044)
1998 0.111 -0.082 0.113 0.123 0.103 -0.042 2442

(0.178) (0.061) (0.107) (0.084) (0.092) (0.123)
1999 0.117 -0.001 0.107 0.166��� 0.102 0.034 4079

(0.168) (0.073) (0.101) (0.057) (0.094) (0.087)
2000 0.102 0.039� 0.115 0.207��� 0.109 0.141��� 4086

(0.158) (0.023) (0.096) (0.043) (0.085) (0.049)
Weekday Peak 0.102 0.104��� 0.107 0.214��� 0.103 0.228��� 4101

(0.151) (0.029) (0.094) (0.052) (0.084) (0.037)
Weekday O¤peak 0.094 0.119��� 0.105 0.251��� 0.097 0.247��� 4873

(0.152) (0.037) (0.098) (0.065) (0.086) (0.042)
Weekend 0.178 0.209��� 0.143 0.282��� 0.136 0.284��� 1633

(0.222) (0.065) (0.118) (0.062) (0.106) (0.037)
Numbers in parentheses for Direct measures represent standard deviations and for Estimated
represent standard errors.
* denotes signi�cant at the .1 level, ** at the .05 level, and *** at the .01 level
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A.1.3 1998 and 1999 Only

Table 15: Direct and Estimated Measures of Adjusted Lerner Indexes� 1998 and 1999 only
Linear Model Log-log Model Linear-Log Model

Direct Estimated Direct Estimated Direct Estimated N
Entire Sample 0.070 0.132��� 0.067 0.254��� 0.064 0.146��� 13785

(0.143) (0.034) (0:096) (0.024) (0:090) (0.030)
1998 0.066 0.134��� 0.068 0.222��� 0.063 0.144��� 5037

(0.147) (0.040) (0:101) (0.026) (0:091) (0.032)
1999 0.072 0.148��� 0.066 0.228��� 0.064 0.154��� 8748

(0.140) (0.043) (0:094) (0.023) (0:089) (0.030)
Weekday Peak 0.100 0.171��� 0.101 0.274��� 0.097 0.287��� 2842

(0.145) (0.059) (0:095) (0.029) (0:087) (0.023)
Weekday O¤peak 0.058 0.181�� 0.059 0.316��� 0.055 0.303��� 6836

(0.129) (0.080) (0:091) (0.040) (0:085) (0.030)
Weekend 0.069 0.249��� 0.056 0.370��� 0.055 0.366��� 4107

(0.159) (0.102) (0:100) (0.042) (0:095) (0.035)
Numbers in parentheses for Actual measures represent standard deviations and for Estimated
represent standard errors.
* denotes signi�cant at the .1 level, ** at the .05 level, and *** at the .01 level
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A.1.4 Endogenous MC Spline

Table 16: Strategic Pricing Relationship Estimates (Spline Function)

Model 1 Model 2 Model 3

Constant -7.301 -0.322 3.608

(4.553) (4.441) (5.385)

P
NatGas

7.912��� 5.874��� 3.146

(1.864) (1.820) (2.237)

PNOx -3.932��� -4.038��� -4.183���

(0.979) (1.099) (0.977)

PNOx � Crisis 3.547��� 4.247��� 3.801���

(0.791) (0.896) (0.787)

Spline1 0.001��� 0.003��� 0.001��

(0.000) (0.001) (0.000)

Spline2 0.025��� 0.023��� 0.024���

(0.003) (0.002) (0.002)

� 0.139���

(0.021)

� � Y r98 -0.011

(0.045)

� � Y r99 0.054

(0.050)

� � Y r00 0.075���

(0.018)

� �Wday � Pk 0.163���

(0.023)

� �Wday �OffPk 0.181���

(0.026)

� �Wend 0.302���

(0.043)

* denotes signi�cant at the .1 level, ** at the .05 level,

and *** at the .01 level
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Figure 1: Scatterplot of Actual MC versus Strategic Quantity
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Figure 2: Kernel Density Estimate of Actual MC minus NEIO

MC
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Figure 3: Scatterplot of Actual MC and NEIO MC Estimates

versus Strategic Quantity
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