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Abstract

This chapter discusses estimation, specification testing, and model selection of predictive density models. In particular, pre-

dictive density estimation is briefly discussed, and a variety of different specification and model evaluation tests due to various

authors including Christoffersen and Diebold (2000), Diebold, Gunther and Tay (1998), Diebold, Hahn and Tay (1999), White

(2000), Bai (2003), Corradi and Swanson (2005a,b,c,d), Hong and Li (2003), and others are reviewed. Extensions of some

existing techniques to the case of out-of-sample evaluation are also provided, and asymptotic results associated with these

extensions are outlined.
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Part I: Introduction

1 Estimation, Specification Testing, and Model Evaluation

The topic of predictive density evaluation has received considerable attention in economics and finance over

the last few years, a fact which is not at all surprising when one notes the importance of predictive densities to

virtually all public and private institutions involved with the construction and dissemination of forecasts. As

a case in point, consider the plethora of conditional mean forecasts reported by the news media. These sorts

of predictions are not very useful for economic decision making unless confidence intervals are also provided.

Indeed, there is a clear need when forming macroeconomic policies and when managing financial risk in

the insurance and banking industries to use predictive confidence intervals or entire predictive conditional

distributions. One such case is when value at risk measures are constructed in order to assess the amount

of capital at risk from small probability events, such as catastrophes (in insurance markets) or monetary

shocks that have large impact on interest rates (see Duffie and Pan (1997) for further discussion). Another

case is when maximizing expected utility of an investor who is choosing an optimal asset allocation of stocks

and bonds, in which case there is a need to model the joint distribution of the assets (see Guidolin and

Timmermann (2004a,b) for a discussion of this and related applications). Finally, it is worth noting that

density forecasts may be useful in multi-step ahead prediction contexts using nonlinear models, even if interest

focuses only on point forecasts of the conditional mean (see chapter in this book by Teräsvirta.(2005)). In

this chapter we shall discuss some of the tools that are useful in such situations, with particular focus on

estimation, specification testing, and model evaluation. Additionally, we shall review various tests for the

evaluation of point predictions.1

There are many important historical precedents for predictive density estimation, testing, and model

selection. From the perspective of estimation, the parameters characterizing distributions, conditional dis-

tributions and predictive densities can be constructed using innumerable well established techniques, includ-

ing maximum likelihood, (simulated generalized) methods of moments, and a plethora of other estimation

techniques. Additionally, one can specify parametric models, nonparametric models, and semi-parametric
1In this chapter, the distinction that is made between specification testing and model evaluation (or predictive accuracy

testing) is predicated on the fact that specification tests often consider only one model. Such tests usually attempt to ascertain

whether the model is misspecified, and they usually assume correct specification under the null hypothesis. On the other hand,

predictive accuracy tests compare multiple models and should (in our view) allow for various forms of misspecification, under

both hypotheses.
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models. For example, a random variable of interest, say yt, may be assumed to have a particular distribu-

tion, say F (u|θ0) = P (y ≤ u|θ0) = Φ(u) =
∫ u

−∞ f(y)dy, where f(y) = 1
σ
√

2π
e
−(y−µ)2

2σ2 . Here, the consistent

maximum likelihood estimator of θ0 is µ̂ = n−1
∑T

t=1 yt, and σ̂2 = n−1
∑T

t=1(yt− µ̂)2, where T is the sample

size. This example corresponds to the case where the variable of interest is a martingale difference sequence

and so there is no potentially useful (conditioning) information which may help in prediction. Then, the

predictive density for yt is simply f̂(y) = 1

σ̂
√

2π
e
−(y−µ̂)2

2̂σ2 . Alternatively, one may wish to use a nonpara-

metric estimator. For example, if the functional form of the distribution is unknown, one might choose to

construct a kernel density estimator. In this case, one would construct f̂(y) = 1
Tλ

∑T
t=1 κ

(
yt−y

λ

)
, where κ

is a kernel function and λ is the bandwidth parameter that satisfies a particular rate condition in order to

ensure consistent estimation, such as λ = O
(
T−1/5

)
. Nonparametric density estimators converge to the true

underlying density at a nonparametric (slow) rate. For this reason, a valid alternative is the use of empirical

distributions, which instead converge to the cumulative distribution (CDF) at a parametric rate (see e.g.

Andrews (1993) for a thorough overview of empirical distributions, and empirical processes in general). In

particular, the empirical distribution is crucial in our discussion of predictive density because it is useful in

estimation, testing, and model evaluation; and has the property that 1√
T

∑T
i=1(1 {yt ≤ u}−F (u|θ0)) satisfies

a central limit theorem.

Of course, in economics it is natural to suppose that better predictions can be constructed by conditioning

on other important economic variables. Indeed, discussions of predictive density are usually linked to discus-

sions of conditional distribution, where we define conditioning information as Zt = (yt−1, ..., yt−v, Xt, ..., Xt−w)

with v, w finite, and where Xt may be vector valued. In this context, we could define a parametric model,

say F (u|Zt, θ) to characterize the conditional distribution F0(u|Zt, θ0) = Pr(Yt ≤ u|Zt). Needless to say, our

model would be misspecified, unless F = F0.

Alternatively, one may wish to estimate and evaluate a group of alternative models, say F1(u|Zt, θ†1), ..., Fm(u|Zt, θ†m),

where the parameters in these distributions correspond to the probability limits of the estimated parameters,

and m is the number of models to be estimated and evaluated. Estimation in this context can be carried

out in much the same way as when unconditional models are estimated. For example, one can construct

a conditional distribution model by postulating that yt|Zt ∼ N(θ′Zt, σ2), estimate θ by least square, σ2

using least square residuals and then forming predictive confidence intervals or the entire predictive density.

The foregoing discussion underscores the fact that there are numerous well established estimation techniques

which one can use to estimate predictive density models, and hence which one can use to make associated

probabilistic statements such as: “There is 0.9 probability, based on the use of my particular model, that in-

4



flation next period will lie between 4 and 5 percent.” Indeed, for a discussion of estimation, one need merely

pick up any basic or advanced statistics and/or econometrics text. Naturally, and as one might expect, the

appropriateness of a particular estimation technique hinges on two factors. The first is the nature of the

data. Marketing survey data are quite different from aggregate measures of economic activity, and there

are well established literatures describing appropriate models and estimation techniques for these and other

varieties of data, from spatial to panel, and from time series to cross sectional. Given that there is already a

huge literature on the topic of estimation, we shall hereafter assume that the reader has at her/his disposal

software and know-how concerning model estimation (for some discussion of estimation in cross sectional,

panel, and time series models, for example, the reader might refer to Baltagi (1995), Bickel and Doksum

(2001), Davidson and MacKinnon (1993), Hamilton (1996), White (1994), and Wooldridge (2002), to name

but a very few). The second factor upon which the appropriateness of a particular estimation strategy hinges

concerns model specification. In the context of model specification and evaluation, it is crucial to make it

clear in empirical settings whether one is assuming that a model is correctly specified (prior to estimation),

or whether the model is simply an approximation, possibly from amongst a group of many “approximate

models”, from whence some “best” predictive density model is to be selected. The reason this assumption

is important is because it impacts on the assumed properties of the residuals from the first stage condi-

tional mean regression in the above example, which in turn impacts on the validity and appropriateness

of specification testing and model evaluation techniques that are usually applied after a model has been

estimated.

The focus in this chapter is on the last two issues, namely specification testing and model evaluation.

One reason why we are able to discuss both of these topics in a (relatively) short handbook chapter is that

the literature on the subjects is not near so large as that for estimation; although it is currently growing at

an impressive rate! The fact that the literature in these areas is still relatively underdeveloped is perhaps

surprising, given that the “tools” used in specification testing and model evaluation have been around

for so long, and include such important classical contributions as the Kolmogorov-Smirnov test (see e.g.

Kolmogorov (1933) and Smirnov (1939)), various results on empirical processes (see e.g. Andrews (1993)

and the discussion in chapter 19 of van der Vaart (1998) on the contributions of Glivenko, Cantelli, Doob,

Donsker and others), the probability integral transform (see e.g. Rosenblatt (1952)), and the Kullback-

Leibler Information Criterion (see e.g. White (1982) and Vuong (1989)). However, the immaturity of the

literature is perhaps not so surprising when one considers that many of the contributions in the area depend

upon recent advances including results validating the use of the bootstrap (see e.g. Horowitz (2001)) and
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the invention of crucial tools for dealing with parameter estimation error (see e.g. Ghysels and Hall (1990),

Khmaladze (1981,1988) and West (1996)), for example.

We start by outlining various contributions which are from the literature on (consistent) specification

testing (see e.g. Bierens (1982,1990) and Bierens and Ploberger (1997)). An important feature of such tests is

that if one subsequently carries out a series of these tests, such as when one performs a series of specification

tests using alternative conditional distributions (e.g. the conditional Kolmogorov-Smirnov test of Andrews

(1997)), then sequential test bias arises (i.e. critical values may be incorrectly sized, and so inference based

on such sequential tests may be incorrect). Additionally, it may be difficult in some contexts to justify the

assumption under the null that a model is correctly specified, as we may want to allow for possible dynamic

misspecification under the null, for example. After all, if two tests for the correct specification of two different

models are carried out sequentially, then surely one of the models is misspecified under the null, implying

that the critical values of one of the two tests may be incorrect, as we shall shortly illustrate. It is in this

sense that the idea of model evaluation in which a group of models are jointly compared, and in which case

all models are allowed to be misspecified, is important, particularly from the perspective of prediction. Also,

there are many settings for which the objective is not to find the correct model, but rather to select the “best”

model (based on a given metric or loss function to be used for predictive evaluation) from amongst a group

of models, all of which are approximations to some underlying unknown model. Nevertheless, given that

advances in multiple model comparison under misspecification derive to a large extent from earlier advances

in (correct) specification testing, and given that specification testing and model evaluation are likely most

powerful when used together, we shall discuss tools and techniques in both areas.

Although a more mature literature, there is still a great amount of activity in the area of tests for

the correct specification of conditional distributions. One reason for this is that testing for the correct

conditional distribution is equivalent to jointly evaluating many conditional features of a process, including

the conditional mean, variance, and symmetry. Along these lines, Inoue (1999) constructs tests for generic

conditional aspects of a distribution, and Bai and Ng (2001) construct tests for conditional asymmetry.

These sorts of tests can be generalized to the evaluation of predictive intervals and predictive densities, too.

One group of tests that we discuss along these lines is that due to Corradi and Swanson (2005a). In

their paper, they construct Kolmogorov type conditional distribution tests in the presence of both dynamic

misspecification and parameter estimation error. As shall be discussed shortly, the approach taken by these

authors differs somewhat from much of the related literature because they construct a statistics that allow for

dynamic misspecification under both hypotheses, rather than assuming correct dynamic specification under
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the null hypothesis. This difference can be most easily motivated within the framework used by Diebold,

Gunther and Tay (DGT: 1998), Hong (2001), and Bai (2003). In their paper, DGT use the probability integral

transform to show that Ft(yt|=t−1, θ0) is identically and independently distributed as a uniform random

variable on [0, 1], where Ft(·|=t−1, θ0) is a parametric distribution with underlying parameter θ0, yt is again

our random variable of interest, and =t−1 is the information set containing all “relevant” past information

(see below for further discussion). They thus suggest using the difference between the empirical distribution

of Ft(yt|=t−1, θ̂T ) and the 45◦−degree line as a measure of “goodness of fit”, where θ̂T is some estimator of

θ0. This approach has been shown to be very useful for financial risk management (see e.g. Diebold, Hahn

and Tay (1999)), as well as for macroeconomic forecasting (see e.g. Diebold, Tay and Wallis (1998) and

Clements and Smith (2000,2002)). Likewise, Bai (2003) proposes a Kolmogorov type test of Ft(u|=t−1, θ0)

based on the comparison of Ft(yt|=t−1, θ̂T ) with the CDF of a uniform on [0, 1]. As a consequence of using

estimated parameters, the limiting distribution of his test reflects the contribution of parameter estimation

error and is not nuisance parameter free. To overcome this problem, Bai (2003) uses a novel approach based

on a martingalization argument to construct a modified Kolmogorov test which has a nuisance parameter

free limiting distribution. This test has power against violations of uniformity but not against violations

of independence (see below for further discussion). Hong (2001) proposes another related interesting test,

based on the generalized spectrum, which has power against both uniformity and independence violations,

for the case in which the contribution of parameter estimation error vanishes asymptotically. If the null is

rejected, Hong (2001) also proposes a test for uniformity robust to non independence, which is based on the

comparison between a kernel density estimator and the uniform density. All of these tests are discussed in

detail below. In summary, two features differentiate the tests of Corradi and Swanson (CS: 2005a) from the

tests outlined in the other papers mentioned above. First, CS assume strict stationarity. Second, CS allow for

dynamic misspecification under the null hypothesis. The second feature allows CS to obtain asymptotically

valid critical values even when the conditioning information set does not contain all of the relevant past

history. More precisely, assume that we are interested in testing for correct specification, given a particular

information set which may or may not contain all of the relevant past information. This is important when

a Kolmogorov test is constructed, as one is generally faced with the problem of defining =t−1. If enough

history is not included, then there may be dynamic misspecification. Additionally, finding out how much

information (e.g. how many lags) to include may involve pre-testing, hence leading to a form of sequential

test bias. By allowing for dynamic misspecification, such pre-testing is not required.

To be more precise, critical values derived under correct specification given =t−1 are not in general valid
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in the case of correct specification given a subset of =t−1. Consider the following example. Assume that

we are interested in testing whether the conditional distribution of yt|yt−1 is N(α†1yt−1, σ1). Suppose also

that in actual fact the “relevant” information set has =t−1 including both yt−1 and yt−2, so that the true

conditional model is yt|=t−1 = yt|yt−1, yt−2 = N(α1yt−1 + α2yt−2, σ2), where α†1 differs from α1. In this

case, correct specification holds with respect to the information contained in yt−1; but there is dynamic

misspecification with respect to yt−1, yt−2. Even without taking account of parameter estimation error, the

critical values obtained assuming correct dynamic specification are invalid, thus leading to invalid inference.

Stated differently, tests that are designed to have power against both uniformity and independence violations

(i.e. tests that assume correct dynamic specification under H0) will reject; an inference which is incorrect,

at least in the sense that the “normality” assumption is not false. In summary, if one is interested in the

particular problem of testing for correct specification for a given information set, then the CS approach

is appropriate, while if one is instead interested in testing for correct specification assuming that =t−1 is

known, then the other tests discussed above are useful - these are some of the tests discussed in the second

part of this chapter, and all are based on probability integral transforms and Kolmogorov Smirnov distance

measures.

In the third part of this chapter, attention is turned to the case of density model evaluation. Much of the

development in this area stems from earlier work in the area of point evaluation, and hence various tests of

conditional mean models for nested and nonnested models, both under assumption of correct specification,

and under the assumption that all models should be viewed as “approximations”, are first discussed. These

tests include important ones by Diebold and Mariano (1995), West (1996), White (2000), and many others.

Attention is then turned to a discussion of predictive density selection. To illustrate the sort of model

evaluation tools that are discussed, consider the following. Assume that we are given a group of (possibly)

misspecified conditional distributions, F1(u|Zt, θ†1), ..., Fm(u|Zt, θ†m), and assume that the objective is to

compare these models in terms of their “closeness” to the true conditional distribution, F0(u|Zt, θ0) =

Pr(Yt+1 ≤ u|Zt). Corradi and Swanson (2005b,c) consider such a problem. If m > 2, they follow White

(2000), in the sense that a particular conditional distribution model is chosen as the “benchmark” and one

tests the null hypothesis that no competing model can provide a more accurate approximation of the “true”

conditional distribution against the alternative that at least one competitor outperforms the benchmark

model. However, unlike White, they evaluate predictive densities rather than point forecasts. Pairwise

comparison of alternative models, in which no benchmark needs to be specified, follows from their results

as a special case. In their context, accuracy is measured using a distributional analog of mean square error.

8



More precisely, the squared (approximation) error associated with model i, i = 1, ...,m, is measured in terms

of E

((
Fi(u|Zt+1, θ†i )− F0(u|Zt+1, θ0)

)2
)

, where u ∈ U , and U is a possibly unbounded set on the real

line. The case of evaluation of multiple conditional confidence interval models is analyzed too.

Another well known measure of distributional accuracy which is also discussed in Part 3 is the Kullback-

Leibler Information Criterion (KLIC). The KLIC is useful because the “most accurate” model can be shown to

be that which minimizes the KLIC (see below for more details). Using the KLIC approach, Giacomini (2002)

suggests a weighted version of the Vuong (1989) likelihood ratio test for the case of dependent observations,

while Kitamura (2002) employs a KLIC based approach to select among misspecified conditional models

that satisfy given moment conditions. Furthermore, the KLIC approach has been recently employed for

the evaluation of dynamic stochastic general equilibrium models (see e.g. Schorfheide (2000), Fernandez-

Villaverde and Rubio-Ramirez (2004), and Chang, Gomes and Schorfheide (2002)). For example, Fernandez-

Villaverde and Rubio-Ramirez (2004) show that the KLIC-best model is also the model with the highest

posterior probability. In general, there is no reason why either of the above two measures of accuracy is

more “natural”. These tests are discussed in detail in the chapter.

As a further preamble to this chapter, we now present a table which summarizes selected testing and

model evaluation papers. The list of papers in the table is undoubtedly incomplete, but nevertheless serves

as a rough benchmark to the sorts of papers and results that are discussed in this chapter. The primary

reason for including the table is to summarize in a directly comparable manner the assumptions made in the

various papers. Later on, assumptions are given as they appear in the original papers, and are gathered in

Appendix A.
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Table 1: Summary of Selected Specification Testing and Model Evaluation Papers

Paper Eval Test Misspec Loss PEE Horizon Nesting CV

Bai (2003)1 S CD C NA Yes h = 1 NA Standard

Corradi and Swanson (2005a)2 S CD D NA Yes h = 1 NA Boot

Diebold, Gunther and Tay (1998)2 S CD C NA No h = 1 NA NA

Hong (2001) S CD C,D,G NA No h = 1 NA Standard

Hong and Li (2003)1 S CD C,D,G NA Yes h = 1 NA Standard

Chao, Corradi and Swanson (2001) S CM D D Yes h ≥ 1 NA Boot

Clark and McCracken (2001,2003) S,P CM C D Yes h ≥ 1 N,A Boot,Standard

Corradi and Swanson (2002)3 S CM D D Yes h ≥ 1 NA Boot

Corradi and Swanson (2005b) M CD G D Yes h ≥ 1 O Boot

Corradi, Swanson and Olivetti (2001) P CM C D Yes h ≥ 1 O Standard

Diebold, Hahn and Tay (1999) M CD C NA No h ≥ 1 NA NA

Diebold and Mariano (1995) P CM G N No h ≥ 1 O Standard

Giacomini (2002) P CD G NA Yes h ≥ 1 A Standard

Giacomini and White (2002)5 P CM G D Yes h ≥ 1 A Standard

Li and Tcakz (2004) S CD C NA Yes h ≥ 1 NA Standard

Rossi (2005) P CM C D Yes h ≥ 1 O Standard

Thompson (2002) S CD C NA Yes h ≥ 1 NA Standard

West (1996) P CM C D Yes h ≥ 1 O Standard

White (2000)4 M CM G N Yes h ≥ 1 O Boot

Notes: The table provides a summary of various tests currently available. For completeness, some tests of conditional mean are also
included, particularly when they have been, or could be, extended to the case of conditional distribution evaluation. Many tests are
considered ancilliary, or have been ommitted due to ignorance. Many other tests are discussed in the papers cited in this table. “NA”
entries denote “Not Applicable”. Columns and mnemonics used are defined as follows:

* Eval = Evaluation is of: Single Model (S); Pair of Models (P); Multiple Models (M).

* Test = Test is of: Conditional Distribution (CD); Conditional Mean (CM).

* Misspec = Misspecification assumption under H0: Correct Specification (C); Dynamic Misspecification Allowed (D); General Mis-
specification Allowed (G).

* Loss = Loss function assumption: Differentiable (D); May be Non-differntiable (N).

* PEE = Parameter estimation error: Accounted for (yes); Not Accounted for (no).

* Horizon = Prediction horizon: 1-step (h = 1); Multi-step (h ≥ 1).

* Nesting = Assumption vis nestedness of models: (At least one) Nonnested Model Required (O); Nested Models (N); Any Combination
(A).

* CV = Critical values constructed via: Standard Limiting Distribution or Nuisance Parameter Free Nonstandard Distribution (Stan-
dard); Bootstrap or Other Procedure (Boot).

1 See extension in this paper to the out-of-sample case.
2 Extension to multiple horizon follows straightforwardly if the marginal distribution of the errors is normal, for example; otherwise
extension is not always straightforward.
3 This is the only predictive accuracy test from the listed papers that is consistent against generic (nonlinear) alternatives.
4 See extention in this paper to predictive density evaluation, allowing for parameter estimation error.
5 Parameters are estimated using a fixed window of observations, so that parameters do not approach their probability limits, but are
instead treated as mixing variables under the null hypothesis.
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Part II: Testing for Correct Specification of
Conditional Distributions

2 Specification Testing and Model Evaluation In-Sample

There are several instances in which a “good” model for the conditional mean and/or variance is not adequate

for the task at hand. For example, financial risk management involves tracking the entire distribution of a

portfolio; or measuring certain distributional aspects, such as value at risk (see e.g. Duffie and Pan (1997)).

In these cases, the choice of the best loss function specific model for the conditional mean may not be of

too much help. The reader is also referred to the papers by Guidolin and Timmermann (2004a,b) for other

interesting financial applications illustrating cases where models of conditional mean and/or variance are not

adequate for the task at hand.

Important contributions that go beyond the examination of models of conditional mean include assessing

the correctness of (out-of-sample) conditional interval prediction (Christoffersen (1998)) and assessing volatil-

ity predictability by comparing unconditional and conditional interval forecasts (Christoffersen and Diebold

(2000)).2 Needless to say, correct specification of the conditional distribution implies correct specification of

all conditional aspects of the model. Perhaps in part for this reason, there has been growing interest in recent

years in providing tests for the correct specification of conditional distributions. In this section, we analyze

the issue of testing for the correct specification of the conditional distribution, distinguishing between the

case in which we condition on the entire history and that in which we condition on a given information

set, thus allowing for dynamic misspecification. In particular, we illustrate with some detail recent impor-

tant work by Diebold, Gunther and Tay (1998), based on the probability integral transformation (see also

Diebold, Hahn and Tay (1999) and Christoffersen and Diebold (2000)); by Bai (2003), based on Kolmogorov

tests and martingalization techniques; by Hong (2001), based on the notion of generalized cross-spectrum;

and by Corradi and Swanson (2005a), based on Kolmogorov type tests. We begin by considering the in-

sample version of the tests, in which the same set of observations is used for both estimation and testing.

Further, we provide an out-of-sample version of these tests, in which the first subset of observations is used

for estimation and the last subset is used for testing. In the out-of-sample case, parameters are generally

estimated using either a recursive or a rolling estimation scheme. Thus, we first review important results by
2Prediction confidence intervals are also discussed in Granger, White and Kamstra (1989), Diebold, Tay and Wallis (1998),

Clements and Taylor (2001), and the references cited therein.
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West (1996) and West and McCracken (1998) about the limiting distribution of m−estimators and GMM

estimators in a variet yof contexts, such as recursive and rolling estimation schemes.3 As pointed in section

2.3.3 below, asymptotic critical values for both the in-sample and out-of-sample versions of the statistic by

Corradi and Swanson can be obtained via an application of the bootstrap. While the asymptotic behavior

of (full sample) bootstrap m−estimators is already well known, see the literature cited below, this is no

longer true for the case of bootstrap estimators based on either a recursive or a rolling scheme. This issue is

addressed by Corradi and Swanson (2005b,d) and summarized in sections 2.3.4.1 and 2.3.4.2 below.

2.1 Diebold, Gunther and Tay Approach - Probability Integral Transform

In a key paper in the field, Diebold, Gunther and Tay (DGT: 1998) use the probability integral transform (see

e.g. Rosenblatt (1952)) to show that Ft(yt|=t−1, θ0) =
∫ yt

−∞ ft(y|=t−1, θ0), is identically and independently

distributed as a uniform random variable on [0, 1], whenever Ft(yt|=t−1, θ0) is dynamically correctly specified

for the CDF of yt|=t−1. Thus, they suggest to use the difference between the empirical distribution of

Ft(yt|=t−1, θ̂T ) and the 45◦−degree line as a measure of “goodness of fit”, where θ̂T is some estimator of

θ0. Visual inspection of the plot of this difference gives also some information about the deficiency of the

candidate conditional density, and so may suggest some way of improving it. The univariate framework of

DGT is extended to a multivariate framework in Diebold, Hahn and Tay (DHT: 1999), in order to allow

to evaluate the adequacy of density forecasts involving cross-variable interactions. This approach has been

shown to be very useful for financial risk management (see e.g. DGT (1998) and DHT (1999)), as well as

for macroeconomic forecasting (see Diebold, Tay and Wallis (1998), where inflation predictions based on

professional forecasts are evaluated, and see Clements and Smith (2000), where predictive densities based on

nonlinear models of output and unemployment are evaluated). Important closely related work in the area

of the evaluation of volatility forecasting and risk management is discussed in Christoffersen and Diebold

(2000). Additional tests based on the DGT idea of comparing the empirical distribution of Ft(yt|=t−1, θ̂T )

with the 45◦−degree line have been suggested by Bai (2003), Hong (2001), Hong and Lee (2003), and Corradi

and Swanson (2005a).

3See also Dufour, Ghysels and Hall (1994) and Ghysels and Hall (1990) for related discussion and results.
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2.2 Bai Approach - Martingalization

Bai (2003) considers the following hypotheses:

H0 : Pr(yt ≤ y|=t−1, θ0) = Ft(y|=t−1, θ0), a.s. for some θ0 ∈ Θ (1)

HA : the negation of H0, (2)

where =t−1 contains all the relevant history up to time t− 1. In this sense, the null hypotheses corresponds

with dynamic correct specification of the conditional distribution.

Bai (2003) proposes a Kolmogorov type test based on the comparison of Ft(y|=t−1, θ0) with the CDF

of a uniform random variable on [0, 1]. In practice, we need to replace the unknown parameters, θ0, with

an estimator, say θ̂T . Additionally, we often do not observe the full information set =t−1, but only a subset

of it, say Zt ⊆ =t−1. Therefore, we need to approximate Ft(y|=t−1, θ0) with Ft(y|Zt−1, θ̂T ). Hereafter, for

notational simplicity, define

Ût = Ft(yt|Zt−1, θ̂T ) (3)

Ũt = Ft(yt|Zt−1, θ†) (4)

Ut = Ft(yt|=t−1, θ0), (5)

where θ† = θ0 whenever Zt−1 contains all useful information in =t−1, so that in this case Ũt = Ut. As a

consequence of using estimated parameters, the limiting distribution of his test reflects the contribution of

parameter estimation error and is not nuisance parameter free. In fact, as shown in his eqs. (1)-(4),

V̂T (r) =
1√
T

T∑
t=1

(
1{Ût ≤ r} − r

)

=
1√
T

T∑
t=1

(
1{Ũt ≤ r} − r

)
+ g(r)′

√
T

(
θ̂T − θ†

)
+ oP (1),

=
1√
T

T∑
t=1

(1{Ut ≤ r} − r) + g(r)′
√

T
(
θ̂T − θ0

)
+ oP (1) (6)

where the last equality holds only if Zt−1 contains all useful information in =t−1.4 Here,

g(r) = plimT→∞
1
T

T∑
t=1

∂Ft

∂θ
(x|Zt−1, θ†)|x=F−1

t (r|Zt−1,θ†).

4Note that Ût should be defined for t > s, where s is the largest lags contained in the information set Zt−1, however for

notational simplicity we start all summation from t = 1, as if s = 0.

13



Also, let

g(r) = (1, g(r)′).

To overcome the nuisance parameter problem, Bai uses a novel approach based on a martingalization argu-

ment to construct a modified Kolmogorov test which has a nuisance parameter free limiting distribution. In

particular, let
·
g be the derivative of g, and let C(r) =

∫ 1

r

·
g(τ)

·
g(τ)′dτ. Bai’s test statistic (eq. (5), p. 533) is

defined as:

ŴT (r) = V̂T (r)−
∫ r

0

(
·
g(s)C−1(s)

·
g(s)′

∫ 1

s

·
g(τ)dV̂T (τ)

)
ds, (7)

where the second term may be difficult to compute, depending on the specific application. Several examples,

including GARCH models and (self-exciting) threshold autoregressive models are provided in Section IIIB

of Bai (2003). The limiting distribution of the statistic in (7) is obtained under assumptions BAI-BAI4,

which are listed in Appendix A. It is of note that stationarity is not required. (Note also that BAI4 below

rules out non-negligible differences between the information in Zt−1 and =t−1, with respect to the model of

interest).

The following result can be proven.

Theorem 2.1 (from Corollary 1 in Bai (2003)): Let BAI1-BAI4 hold, then under H0,

sup
r∈[0,1]

∣∣∣ŴT (r)
∣∣∣ d→ sup

r∈[0,1]

|W (r)| ,

where W (r) is a standard Brownian motion. Therefore, the limiting distribution is nuisance parameter free

and critical values can be tabulated.

Now, suppose there is dynamic misspecification, so that Pr(yt ≤ y|=t−1, θ0) 6= Pr(yt ≤ y|Zt−1, θ†). In

this case, critical values relying on the limiting distribution in Theorem 2.1 are no longer valid. However, if

F (yt|Zt−1, θ†) is correctly specified for Pr(yt ≤ y|Zt−1, θ†), uniformity still holds, and there is no guarantee

that the statistic diverges. Thus, while Bai’s test has unit asymptotic power against violations of uniformity,

is does not have unit asymptotic power against violations of independence. Note that in the case of dynamic

misspecification, assumption BAI4 is violated. Also, the assumption cannot be checked from the data, in

general. In summary, the limiting distribution of Kolmogorov type tests is affected by dynamic misspeci-

fication. Critical values derived under correct dynamic specification are not in general valid in the case of

correct specification given a subset of the full information set. Consider the following example. Assume that

we are interested in testing whether the conditional distribution of yt|yt−1 is N(α†1yt−1, σ1). Suppose also

that in actual fact the “relevant” information set has Zt−1 including both yt−1 and yt−2, so that the true
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conditional model is yt|Zt−1 = yt|yt−1, yt−2 = N(α1yt−1 + α2yt−2, σ2), where α†1 differs from α1. In this

case, we have correct specification with respect to the information contained in yt−1; but we have dynamic

misspecification with respect to yt−1, yt−2. Even without taking account of parameter estimation error, the

critical values obtained assuming correct dynamic specification are invalid, thus leading to invalid inference.

2.3 Hong and Li Approach - A Nonparametric Test

As mentioned above, the Kolmogorov test of Bai does not necessarily have power against violations of

independence. A test with power against violations of both independence and uniformity has been recently

suggested by Hong and Li (2003), who also draw on results by Hong (2001). Their test is based on the

comparison of the joint nonparametric density of Ût and Ût−j , as defined in (3), with the product of two

UN [0, 1] random variables. In particular, they introduce a boundary modified kernel which ensures a “good”

nonparametric estimator, even around 0 and 1. This forms the basis for a test which has power against both

non-uniformity and non-independence. For any j > 0, define

φ̂(u1, u2) = (n− j)−1
n∑

τ=j+1

Kh(u1, Ûτ )Kh(u2, Ûτ−j), (8)

where

Kh(x, y) =





h−1(x−y
h )/

∫ 1

−(x/h)
k(u)du if x ∈ [0, h)

h−1(x−y
h ) if x ∈ [h, 1− h)

h−1(x−y
h )/

∫ (1−x)/h

−1
k(u)du if x ∈ [1− h, 1]

(9)

In the above expression, h defines the bandwidth parameter, although in later sections (where confusion

cannot easily arise), h is used to denote forecast horizon. As an example, one might use,

k(u) =
15
16

(1− u2)21{|u| ≤ 1}.

Also, define

M̂(j) =
∫ 1

0

∫ 1

0

(
φ̂(u1, u2)− 1

)2

du1du2 (10)

and

Q̂(j) =
(
(n− j)M̂(j)−A0

h

)
/V

1/2
0 , (11)

with

A0
h =

(
(h−1 − 2)

∫ 1

−1

k2(u)du + 2
∫ 1

0

∫ b

−1

kb(u)dudb

)2

− 1,
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kb(·) = k(·)/
∫ b

−1

k(v)dv,

and

V0 = 2

(∫ 1

−1

(∫ 1

−1

k(u + v)k(v)dv

)2

du

)2

.

The limiting distribution of Q̂(j) is obtained by Hong and Li (2003) under assumptions HL1-HL4, which

are listed in Assumption A:5

Given this setup, the following result can be proven.

Theorem 2.2 (from Theorem 1 in Hong and Li (2003): Let HL1-HL4 hold. If h = cT−δ, δ ∈ (0, 1/5),

then under H0 (i.e. see (1)), for any j > 0, j = o(T 1−δ(5−2/v)), Q̂(j) d→ N(0, 1).

Once the null is rejected, it remains of interest to know whether the rejection is due to violation of

uniformity or to violation of independence (or both). Broadly speaking, violations of independence arises in

the case of dynamic misspecification (Zt does not contain enough information), while violations of uniformity

arise when we misspecify the functional form of ft when constructing Ût. Along these lines, Hong (2001)

proposes a test for uniformity, which is robust to dynamic misspecification. Define, the hypotheses of interest

as:

H0 : Pr(yt ≤ y|Zt−1, θ†) = Ft(y|Zt−1, θ†), a.s. for some θ0 ∈ Θ (12)

HA : the negation of H0, (13)

where Ft(y|Zt−1, θ†) may differ from Ft(y|=t−1, θ0). The relevant test is based on the comparison of a

kernel estimator of the marginal density of Ût with the uniform density, and has a standard normal limiting

distribution under the null in (12). Hong (2001) also provides a test for the null of independence, which is

robust to violations of uniformity.

Note that the limiting distribution in Theorem 2.2, as well as the limiting distribution of the uniformity

(independence) test which is robust to non uniformity (non independence) in Hong (2001) are all asymp-

totically standard normal, regardless of the fact that we construct the statistic using Ût instead on Ut. This

is due to the feature that parameter estimators converge at rate T 1/2, while the statistics converge at non-

parametric rates. The choice of the bandwidth parameter and the slower rate of convergence are thus the

prices to be paid for not having to directly account for parameter estimation error.
5Hong et al. specialize their test to the case of testing continuous time models. However, as they point out, it is equally

valid for discrete time models.
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2.4 Corradi and Swanson Approach

Corradi and Swanson (2005a) suggest a test for the null hypothesis of correct specification of the conditional

distribution, for a given information set which is, as usual, called Zt, and which, as above, does not necessarily

contain all relevant historical information. The test is again a Kolmogorov type test, and is based on the

fact that under the null of correct (but not necessarily dynamically correct) specification of the conditional

distribution, Ut is distributed as [0, 1]. As with Hong’s (2001) test, this test is thus robust to violations of

independence. As will become clear below, the advantages of the test relative to that of Hong (2001) is that

it converges at a parametric rate and there is no need to choose the bandwidth parameter. The disadvantage

is that the limiting distribution is not nuisance parameters free and hence one needs to rely on bootstrap

techniques in order to obtain valid critical values. Define:

V1T = sup
r∈[0,1]

|V1T (r)|, (14)

where,

V1T (r) =
1√
T

T∑
t=1

(
1{Ût ≤ r} − r

)
,

and

θ̂T = arg max
θ∈Θ

1
T

T∑
t=1

ln f(yt|Xt, θ).

Note that the above statistic is similar to that of Bai (2003). However, there is no “extra” term to cancel

out the effect of parameter estimation error. The reason is that Bai’s martingale transformation argument

does not apply to the case in which the score is not a martingale difference process (so that (dynamic)

misspecification is not allowed for when using his test).

The standard rationale underlying the above test, which is known to hold when Zt−1 = =t−1, is that

under H0 (given above as (12)), F (yt|Zt−1, θ0) is distributed independently and uniformly on [0, 1]. The

uniformity result also holds under dynamic misspecification. To see this, let cr
f (Zt−1) be the r − th critical

value of f(·|Zt−1, θ0), where f is the density associated with F (·|Zt−1, θ0) (i.e. the conditional distribution

under the null)6. It then follows that,

Pr(F (yt|Zt−1, θ0) ≤ r) = Pr
(∫ yt

−∞
f(y|Zt−1, θ0)dy ≤ r

)

= Pr
(
1{yt ≤ cr

f (Zt−1)} = 1|Zt−1
)

= r, for all r ∈ [0, 1],

if yt|Zt−1 has density f(·|Zt−1, θ0). Now, if the density of yt| Zt−1 is different from f(·|Zt−1, θ0), then,

Pr
(
1{yt ≤ cr

f (Zt−1)} = 1|Zt−1
) 6= r,

6For example, if f(Y |Xt, θ0) ∼ N(αXt, σ2), then c0.95
f (Xt) = 1.645 + σαXt.
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for some r with nonzero Lebesgue measure on [0, 1]. However, under dynamic misspecification, F (yt|Zt−1, θ0)

is no longer independent (or even martingale difference), in general, and this will clearly affect the co-

variance structure of the limiting distribution of the statistic. Theorem 2.3 below relies on assumptions

CS1-CS3,.which are listed in Appendix A.

Of note is that CS2 imposes mild smoothness and moment restrictions on the cumulative distribution

function under the null, and is thus easily verifiable. Also, we use CS2(i)-(ii) in the study of the limiting

behavior of V1T and CS2(iii)-(iv) in the study of V2T .

Theorem 2.3 (from Theorem 1 in Corradi and Swanson (2005a)): Let CS1, CS2(i)–(ii) and CS3

hold. Then: (i) Under H0, V1T ⇒ supr∈[0,1] |V1(r)|, where V is a zero mean Gaussian process with covariance

kernel K1(r, r′) given by:

E(V1(r)V1(r′)) = K1(r, r′) = E(
∞∑

s=−∞

(
1{F (y1|Z0, θ0) ≤ r} − r

)
(1{F (ys|Zs−1, θ0) ≤ r′} − r′))

+E(∇θF (x(r)|Zt−1, θ0))′A(θ0)
∞∑

s=−∞
E(q1(θ0)qs(θ0)′)A(θ0)E(∇θF (x(r′)|Zt−1, θ0))

−2E(∇θF (x(r)|Zt−1, θ0))′A(θ0)
∞∑

s=−∞
E(

(
1{F (y1|Z0, θ0) ≤ r} − r

)
qs(θ0)′),

with qs(θ0) = ∇θ ln fs(ys|Zs−1, θ0), x(r) = F−1(r|Zt−1, θ0), and A(θ0) = (E (∇θqs(θ0)∇θqs(θ0)′))
−1

.

(ii) Under HA, there exists an ε > 0 such that limT→∞ Pr( 1
T 1/2 V1T > ε) = 1.

Notice that the limiting distribution is a zero mean Gaussian process, with a covariance kernel that

reflects both dynamic misspecification as well as the contribution of parameter estimation error. Thus, the

limiting distribution is not nuisance parameter free and so critical values cannot be tabulated.

Corradi and Swanson (2005a) also suggest another Kolmogorov test, which is no longer based on the

probability integral transformation, but can be seen as an extension of the conditional Kolmogorov (CK)

test of Andrews (1997) to the case of time series data and possible dynamic misspecification.

In a related important paper, Li and Tkacz (2004) discuss an interesting approach to testing for correct

specification of the conditional density which involves comparing a nonparametric kernel estimate of the

conditional density with the density implied under the null hypothesis. As in Hong and Li (2003) and Hong

(2001), the Tkacz and Li test is characterized by a nonparametric rate. Of further note is that Whang

(2000,2001) also proposes a version of Andrews’ CK test for the correct specification, although his focus is

on conditional mean, and not conditional distribution.
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A conditional distribution version of the CK test is constructed by comparing the empirical joint dis-

tribution of yt and Zt−1 with the product of the distribution of yt|Zt and the empirical CDF of Zt−1. In

practice, the empirical joint distribution, say ĤT (u, v) = 1
T

∑T
t=1 1{yt ≤ u}1{Zt−1 < v}, and the semi-

empirical/semi-parametric analog of F (u, v, θ0), say F̂T (u, v, θ̂T ) = 1
T

∑T
t=1 F (u|Zt−1, θ̂T )1{Zt−1 < v} are

used, and the test statistic is:

V2T = sup
u×v∈U×V

|V2T (u, v)|, (15)

where U and V are compact subsets of < and <d, respectively, and

V2T (u, v) =
1√
T

T∑
t=1

(
(1{yt ≤ u} − F (u|Zt−1, θ̂T ))1{Zt−1 ≤ v}

)
.

Note that V2T is given in equation (3.9) of Andrews (1997).7 Note also that when computing this statistic,

a grid search over U × V may be computationally demanding when V is high-dimensional. To avoid this

problem, Andrews shows that when all (u, v) combinations are replaced with (yt, Z
t−1) combinations, the

resulting test is asymptotically equivalent to V2T (u, v).

Theorem 2.4 (from Theorem 2 in Corradi and Swanson (2005a)):

Let CS1, CS2(iii)–(iv) and CS3 hold. Then: (i) Under H0, V2T ⇒ supu×v∈U×V |Z(u, v)|, where V2T is

defined in (15) and Z is a zero mean Gaussian process with covariance kernel K2(u, v, u′, v′) given by:

E(
∞∑

s=−∞
((1{y1 ≤ u} − F (u|Z0, θ0))1{X0 ≤ v})((1{ys ≤ u′} − F (u|Zs−1, θ0))1{Xs ≤ v′}))

+E(∇θF (u|Z0, θ0)′1{Z0 ≤ v})A(θ0)
∞∑

s=−∞
q0(θ0)qs(θ0)′A(θ0)E(∇θF (u′|Z0, θ0)1{Z0 ≤ v′})

−2
∞∑

s=−∞
((1{y0 ≤ u} − F (u|Z0, θ0))1{Z0 ≤ v})E(∇θF (u′|Z0, θ0)′1{Z0 ≤ v′})A(θ0)qs(θ0)).

(ii) Under HA, there exists an ε > 0 such that limT→∞ Pr( 1
T 1/2 V2T > ε) = 1.

As in Theorem 2.3, the limiting distribution is a zero mean Gaussian process with a covariance kernel

that reflects both dynamic misspecification as well as the contribution of parameter estimation error. Thus,

the limiting distribution is not nuisance parameter free and so critical values cannot be tabulated. Below,

we outline a bootstrap procedure that takes into account the joint presence of parameter estimation error

and possible dynamic misspecification.
7Andrews (1997), for the case of iid observations, actually addresses the more complex situation where U and V are

unbounded sets in R and Rd, respectively. We believe that an analogous result for the case of dependent observations holds,

but showing this involves proofs for stochastic equicontinuity which are quite demanding.
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2.5 Bootstrap Critical Values for the V1T and V2T Tests

Given that the limiting distributions of V1T and V2T are not nuisance parameter free, one approach is to

construct bootstrap critical values for the tests. In order to show the first order validity of the bootstrap,

it thus remains to obtain the limiting distribution of the bootstrapped statistic and show that it coincides

with the limiting distribution of the actual statistic under H0. Then, a test with correct asymptotic size and

unit asymptotic power can be obtained by comparing the value of the original statistic with bootstrapped

critical values.

If the data consists of iid observations, we should consider proceeding along the lines of Andrews (1997),

by drawing B samples of T iid observations from the distribution under H0, conditional on the observed

values for the covariates, Zt−1. The same approach could also be used in the case of dependence, if H0 were

correct dynamic specification, (i.e. if Zt−1 = =t−1); in fact, in that case we could use a parametric bootstrap

and draw observations from F (yt|Zt, θ̂T ). However, if instead Zt−1 ⊂ =t−1, using the parametric bootstrap

procedure based on drawing observations from F (yt|Zt−1, θ̂T ) does not ensure that the long run variance of

the resampled statistic properly mimics the long run variance of the original statistic; thus leading in general

to the construction of invalid asymptotic critical values.

The approach used by Corradi and Swanson (2005a) involves comparing the empirical CDF of the re-

sampled series, evaluated at the bootstrap estimator, with the empirical CDF of the actual series, evaluated

at the estimator based on the actual data. For this, they use the overlapping block resampling scheme

of Künsch (1989), as follows:8 At each replication, draw b blocks (with replacement) of length l from

the sample Wt = (yt, Z
t−1), where T = lb. Thus, the first block is equal to Wi+1, ..., Wi+l, for some i,

with probability 1/(T − l + 1), the second block is equal to Wi+1, ...,Wi+l, for some i, with probability

1/(T − l + 1), and so on for all blocks. More formally, let Ik, k = 1, ..., b be iid discrete uniform ran-

dom variables on [0, 1, ..., T − l], and let T = bl. Then, the resampled series, W ∗
t = (y∗t , X∗

t ), is such that

W ∗
1 ,W ∗

2 , ...,W ∗
l ,W ∗

l+1, ..., W
∗
T = WI1+1,WI1+2, ..., WI1+l,WI2 , ..., WIb+l, and so a resampled series consists

8Alternatively, one could use the stationary bootstrap of Politis and Romano (1994(a)(b)). The main difference between

the block bootstrap and the stationary bootstrap of Politis and Romano (PR: 1994a) is that the former uses a deterministic

block length, which may be either overlapping as in Künsch (1989) or non-overlapping as in Carlstein (1986), while the latter

resamples using blocks of random length. One important feature of the PR bootstrap is that the resampled series, conditional on

the sample, is stationary, while a series resampled from the (overlapping or non overlapping) block bootstrap is nonstationary,

even if the original sample is strictly stationary. However, Lahiri (1999) shows that all block boostrap methods, regardless of

whether the block length is deterministic or random, have a first order bias of the same magnitude, but the bootstrap with

deterministic block length has a smaller first order variance. In addition, the overlapping block boostrap is more efficient than

the non overlapping block bootstrap.
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of b blocks that are discrete iid uniform random variables, conditional on the sample. Also, let θ̂∗T be the

estimator constructed using the resampled series. For V1T , the bootstrap statistic is:

V ∗
1T = sup

r∈[0,1]

|V ∗
1T (r)|,

where

V ∗
1T (r) =

1√
T

T∑
t=1

(
1{F (y∗t |Z∗,t−1, θ̂∗T ) ≤ r} − 1{F (yt|Zt−1, θ̂T ) ≤ r}

)
, (16)

and

θ̂∗T = arg max
θ∈Θ

1
T

T∑
t=1

ln f(y∗t |Z∗,t−1, θ).

The rationale behind the choice of (16) is the following. By a mean value expansion it can be shown that,

V ∗
1T (r) =

1√
T

T∑
t=1

(
1{F (y∗t |Z∗,t−1, θ†) ≤ r} − 1{F (yt|Zt−1, θ†) ≤ r})

− 1
T

T∑
t=1

∇θF (yt|Zt−1, θ†)
√

T (θ̂∗T − θ̂T ) + oP∗(1), Pr−P, (17)

where P ∗ denotes the probability law of the resampled series, conditional on the sample; P denotes the

probability law of the sample; and where “oP∗(1), Pr−P ”, means a term approaching zero according to P ∗,

conditional on the sample and for all samples except a set of measure approaching zero. Now, the first term

on the RHS of (17) can be treated via the empirical process version of the block bootstrap, suggesting that the

term has the same limiting distribution as 1√
T

∑T
t=1

(
1{F (yt|Zt−1, θ†) ≤ r} − E

(
1{F (yt|Zt−1, θ†) ≤ r})) ,

where E
(
1{F (yt|Xt, θ

†) ≤ r}) = r under H0, and is different from r under HA, conditional of the sample.

If
√

T (θ̂∗T − θ̂T ) has the same limiting distribution as
√

T (θ̂T − θ†), conditionally on the sample and for all

samples except a set of measure approaching zero, then the second term on the RHS of (17) will properly

capture the contribution of parameter estimation error to the covariance kernel. For the case of dependent

observations, the limiting distribution of
√

T (θ̂∗T − θ̂T ) for a variety of quasi maximum likelihood (QMLE)

and GMM estimators has been examined in numerous papers in recent years.

For example, Hall and Horowitz (1996) and Andrews (2002) show that the block bootstrap provides

improved critical values, in the sense of asymptotic refinement, for “studentized” GMM estimators and for

tests of overidentifying restrictions, in the case where the covariance across moment conditions is zero after

a given number of lags.9 In addition, Inoue and Shintani (2004) show that the block bootstrap provides
9Andrews (2002) shows first order validity and asymptotic refinements of the equivalent k−step estimator of Davidson and

MacKinnon (1999), which only requires the construction of a closed form expression at each bootstrap replication, thus avoiding

nonlinear optimization at each replication.
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asymptotic refinements for linear overidentified GMM estimators for general mixing processes. In the present

context, however, one cannot “studentize” the statistic, and we are thus unable to show second order refine-

ment, as mentioned above. Instead, and again as mentioned above, the approach of Corradi and Swanson

(2005a) is to show first order validity of
√

T (θ̂∗T − θ̂T ). An important recent contribution which is useful in

the current context is that of Goncalves and White (2002,2004) who show that for QMLE estimators, the

limiting distribution of
√

T (θ̂∗T − θ̂T ) provides a valid first order approximation to that of
√

T (θ̂T − θ†) for

heterogeneous and near epoch dependent series.

Theorem 2.5 (from Theorem 3 of Corradi and Swanson (2005a)): Let CS1, CS2(i)–(ii) and CS3

hold, and let T = bl, with l = lT , such that as T →∞, l2T /T → 0. Then,

P
(
ω : supx∈<

∣∣∣P ∗ [V ∗
1T (ω) ≤ u]− P

[
supr∈[0,1]

1√
T

∑T
t=1

(
1{F (yt|Zt−1

,θ̂T ) ≤ r} − E
(
1{F (yt|Zt−1

, θ†) ≤ r}
))
≤ x

]∣∣∣ > ε
)

→ 0.

Thus, V ∗
1T has a well defined limiting distribution under both hypotheses, which under the null coincides

with the same limiting distribution of V1T , Pr - P, as E(1{F (yt|Zt−1, θ†) ≤ r}) = r. Now, define

V ∗
2T = supu×v∈U×V |V ∗

2T (u, v)|, where

V ∗
2T (u, v) =

1√
T

T∑
t=1

(
(1{y∗t ≤ u} − F (u|Z∗,t−1, θ̂∗T ))1{Z∗,t−1 ≤ v} − (1{yt ≤ u} − F (u|Zt−1, θ̂T ))1{Zt−1 ≤ v}

)
.

Theorem 2.6 (from Theorem 4 of Corradi and Swanson (2005a): Let CS1, CS2(iii)–(iv) and CS3

hold, and let T = bl, with l = lT , such that as T →∞, l2T /T → 0. Then,

P

(
ω : sup

x∈<
|P ∗[V ∗

2T (ω) ≤ x]

P

[
sup

u×v∈U×V

1√
T

T∑
t=1

((1{yt≤ u} − F (u|Zt−1
,θ̂T ))1{Zt−1≤ v}

−E((1{yt≤ u} − F (u|Zt−1
, θ†))1{Zt−1≤ v})) ≤ x

]
> ε

∣∣∣
)

→ 0

In summary, from Theorems 2.5 and 2.6, we know that V ∗
1T (resp. V ∗

2T ) has a well defined limiting

distribution, conditional on the sample and for all samples except a set of probability measure approaching

zero. Furthermore, the limiting distribution coincides with that of V1T (resp. V2T ), under H0. The above

results suggest proceeding in the following manner. For any bootstrap replication, compute the bootstrapped

statistic, V ∗
1T (resp. V ∗

2T ). Perform B bootstrap replications (B large) and compute the percentiles of

the empirical distribution of the B bootstrapped statistics. Reject H0 if V1T (V2T ) is greater than the
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(1−α)th-percentile. Otherwise, do not reject H0. Now, for all samples except a set with probability measure

approaching zero, V1T (V2T ) has the same limiting distribution as the corresponding bootstrapped statistic,

under H0. Thus, the above approach ensures that the test has asymptotic size equal to α. Under the

alternative, V1T (V2T ) diverges to infinity, while the corresponding bootstrap statistic has a well defined

limiting distribution. This ensures unit asymptotic power. Note that the validity of the bootstrap critical

values is based on an infinite number of bootstrap replications, although in practice we need to choose B.

Andrews and Buchinsky (2000) suggest an adaptive rule for choosing B, Davidson and MacKinnon (2000)

suggest a pretesting procedure ensuring that there is a “small probability” of drawing different conclusions

from the ideal bootstrap and from the bootstrap with B replications, for a test with a given level. However,

in the current context, the limiting distribution is a functional of a Gaussian process, so that the explicit

density function is not known; and thus one cannot directly apply the approaches suggested in the papers

above. In Monte Carlo experiments, Corradi and Swanson (2005a) show that finite sample results are quite

robust to the choice of B. For example, they find that even for values of B as small as 100, the bootstrap

has good finite sample properties.

Needless to say, if the parameters are estimated using T observations, and the statistic is constructed

using only R observations, with R = o(T ), then the contribution of parameter estimation error to the

covariance kernel is asymptotically negligible. In this case, it is not necessary to compute θ̂∗T . For example,

when bootstrapping critical values for a statistic analogous to V1T , but constructed using R observations,

say V1R, one can instead construct V ∗
1R as follows:

V ∗
1R = sup

r∈[0,1]

1√
R

R∑
t=1

(
1{F (y∗t |Z∗,t−1, θ̂T ) ≤ r} − 1{F (yt|Zt−1, θ̂T ) ≤ r}

)
. (18)

The intuition for this statistic is that
√

R(θ̂T − θ†) = op(1), and so the bootstrap estimator of θ is

not needed in order to mimic the distribution of
√

T (θ̂T − θ†). Analogs of V1R and V ∗
1R can similarly be

constructed for V2T . However, Corradi and Swanson (2005a) do not suggest using this approach because of

the cost to finite sample power, and also because of the lack of an adaptive, data-driven rule for choosing R.

2.6 Other Related Work

Most of the test statistics described above are based on testing for the uniformity on [0, 1] and/or inde-

pendence of Ft(yt|Zt−1, θ0) =
∫ yt

−∞ ft(y|Zt−1, θ0). Needless to say, if Ft(yt|Zt−1, θ0) is iid UN [0, 1], then

Φ−1
(
Ft(yt|Zt−1, θ0)

)
, where Φ denotes the CDF of a standard normal, is iidN(0, 1).
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Berkowitz (2001) proposes a likelihood ratio test for the null of (standard) normality against autore-

gressive alternatives. The advantage of his test is that is easy to implement and has standard limiting

distribution, while the disadvantage is that it only has unit asymptotic power against fixed alternatives.

Recently, Bontemps and Meddahi (BM: 2003a,b) introduce a novel approach to testing distributional

assumptions. More precisely, they derive set of moment conditions which are satisfied under the null of a

particular distribution. This leads to a GMM type test. Of interest is the fact that, the tests suggested by

BM do not suffer of the parameter estimation error issue, as the suggested moment condition ensure that

the contribution of estimation uncertainty vanishes asymptotically. Furthermore, if the null is rejected, by

looking at which moment condition is violated one can get some guidance on how to “improve” the model.

Interestingly, BM (2003b) point out that, a test for the normality of Φ−1
(
Ft(yt|Zt−1, θ0)

)
is instead affected

by the contribution of estimation uncertainty, because of the double transformation. Finally, other tests for

normality have been recently suggested by Bai and Ng (2005) and by Duan (2003).

3 Specification Testing and Model Selection Out-of-Sample

In the previous section we discussed in-sample implementation of tests for the correct specification of the

conditional distribution for the entire or for a given information set. Thus, the same set of observations

were to be used for both estimation and model evaluation. In this section, we outline out-of-sample versions

of the same tests, where the sample is split into two parts, and the latter portion is used for validation.

Indeed, going back at least as far as Granger (1980) and Ashley, Granger and Schmalensee (1980), it has

been noted that if interest focuses on assessing the predictive accuracy of different models, it should be of

interest to evaluate them in an out of sample manner - namely by looking at predictions and associated

prediction errors. This is particularly true if all models are assumed to be approximations of some “true”

underlying unknown model (i.e. if all models may be misspecified). Of note is that Inoue and Kilian (2004))

claim that in-sample tests are more powerful than simulated out-of-sample variants thereof. Their findings

are based on the examination of standard tests that assume correct specification under the null hypothesis.

As mentioned elsewhere in this chapter, in a recent series of papers, Corradi and Swanson (2002,2005a,b,c,d)

relax the correct specification assumption, hence addressing the fact that standard tests are invalid in the

sense of having asymptotic size distortions when the model is misspecified under the null.

Of further note is that the probability integral transform approach has frequently been used in an out-

of-sample fashion (see e.g. the empirical applications in DGT (1998) and Hong (2001)), and hence the tests
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discussed above (which are based on the probability integral transform approach of DGT) should be of

interest from the perspective of out-of-sample evaluation. For this reason, and for sake of completeness, in

this section we provide out-of-sample versions of all of the test statistics in Sections 2.2.2-2.2.4. This requires

some preliminary results on the asymptotic behavior of recursive and rolling estimators, as these results have

not yet been published elsewhere (see Corradi and Swanson (2005b,d).

3.1 Estimation and Parameter Estimation Error in Recursive and Rolling Es-

timation Schemes - West as well as West and McCracken Results

In out-of-sample model evaluation, the sample of T observations is split into R observations to be used

for estimation, and P observations to be used for forecast construction, predictive density evaluation, and

generally for model validation and selection. In this context, it is assumed that T = R +P. In out-of-sample

contexts, parameters are usually estimated using either recursive or rolling estimation schemes. In both

cases, one constructs a sequence of P estimators, which are in turn used in the construction of P h−step

ahead predictions and prediction errors, where h is the forecast horizon.

In the recursive estimation scheme, one constructs the first estimator using the first R observations, say

θ̂R, the second using observations up to R+1, say θ̂R+1, and so on until one has a sequence of P estimators,

(θ̂R, θ̂R+1, ..., θ̂R+P−1). In the sequel, we consider the generic case of extremum estimators, or m−estimators,

which include ordinary least squares, nonlinear least squares, and (quasi) maximum-likelihood estimators.

Define the recursive estimator as:10

θ̂t,rec = arg min
θ∈Θ

1
t

t∑

j=1

q(yj , Z
j−1, θ), t = R,R + 1, ...R + P − 1, (19)

where q(yj , Z
j−1, θi) denotes the objective function (i.e. in (quasi) MLE, q(yj , Z

j−1, θi) = − ln f(yj , Z
j−1, θi),

with f denoting the (pseudo) density of yt given Zt−1).11

In the rolling estimation scheme, one constructs a sequence of P estimators using a rolling window of

R observations. That is, the first estimator is constructed using the first R observations, the second using

observations from 2 to R + 1, and so on, with the last estimator being constructed using observations from

T −R to T − 1, so that we have a sequence of P estimators, (θ̂R,R, θ̂R+1,R, ..., θ̂R+P−1,R).12

10For notational simplicity, we begin all summations at t = 1. Note, however, that in general if Zt−1 contains information up

to the sth lag, say, then summation should be initiated at t = s + 1.
11Generalized method of moments (GMM) estimators can be treated in an analogous manner. As one is often interested in

comparing misspecified models, we avoid using overidentified GMM estimators in our discussion. This is because, as pointed

out by Hall and Inoue (2003), one cannot obtain asymptotic normality for overidentified GMM in the misspecified case.
12Here, for simplicity, we have assumed that in-sample estimation ends with period T − R to T − 1. Thus, we are implicity
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In general, it is common to assume that P and R grow as T grows. This assumption is maintained in the

sequel. Notable exceptions to this approach are Giacomini and White (2003)13, who propose using a rolling

scheme with a fixed window that does not increase with the sample size, so that estimated parameters are

treated as mixing variables, and Pesaran and Timmermann (2004a,b) who suggest rules for choosing the

window of observations, in order to take into account possible structure breaks.

Turning now to the rolling estimation scheme, define the relevant estimator as:

θ̂t,rol = arg min
θ∈Θ

1
R

t∑

j=t−R+1

q(yj , Z
j−1, θ), R ≤ t ≤ T − 1. (20)

In the case of in-sample model evaluation, the contribution of parameter estimation error is summarized by

the limiting distribution of
√

T
(
θ̂T − θ†

)
, where θ† is the probability limit of θ̂T . This is clear, for example,

from the proofs of Theorems 2.3 and 2.4 above, which are given in Corradi and Swanson (2005a). On the other

hand, in the case of recursive and rolling estimation schemes, the contribution of parameter estimation error is

summarized by the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t,rec − θ†

)
and 1√

P

∑T−1
t=R

(
θ̂t,rol − θ†

)
respectively.

Under mild conditions, because of the central limit theorem,
(
θ̂t,rec − θ†

)
and

(
θ̂t,rol − θ†

)
are OP (R−1/2).

Thus, if P grows at a slower rate than R (i.e. if P/R → 0, as T → ∞), then 1√
P

∑T−1
t=R

(
θ̂t,rec − θ†

)
and

1√
P

∑T−1
t=R

(
θ̂t,rol − θ†

)
are asymptotically negligible. In other words, if the in-sample portion of the data

used for estimation is “much larger” than the out-of-sample portion of the data to be used for predictive

accuracy testing and generally for model evaluation, then the contribution of parameter estimation error is

asymptotically negligible.

A key result which is used in all of the subsequent limiting distribution results discussed in this chapter is

the derivation of the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t,rec − θ†

)
(see West (1996)) and of 1√

P

∑T−1
t=R

(
θ̂t,rol − θ†

)

(see West and McCracken (1998)). Their results follow, given assumptions W1 and W2, which are listed

in Appendix A.

Theorem 3.1 (from Lemma 4.1 and Theorem 4.1 in West (1996)):

Let W1 and W2 hold. Also, as T →∞, P/R → π, 0 < π < ∞. Then,

1√
P

T−1∑

t=R

(
θ̂t,rec − θ†

)
d→ N(0, 2ΠA†C00A

†),

assuming that h = 1, so that P out-of-sample predictions and prediction errors can be constructed.
13The Giacomini and White (2003) test is designed for conditional mean evaluation, although it can likely be easily extended

to the case of conditional density evaluation. One important advantage of this test is that it is valid for both nested and

nonnested models (see below for further discussion).
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where Π = (1 − π−1 ln(1 + π)), C00 =
∑∞

j=−∞E
((∇θq(y1+s, Z

s, θ†)
) (∇θq(y1+s+j , Z

s+j , θ†)
)′)

, and A† =

E
(−∇2

θi
q(yt, Z

t−1, θ†)
)
.

Theorem 3.2 (from Lemmas 4.1 and 4.2 in West (1996) and McCracken (1998)):

Let W1 and W2 hold. Also, as T →∞, P/R → π, 0 < π < ∞. Then,

1√
P

T−1∑

t=R

(
θ̂t,rol − θ†

)
d→ N(0, 2ΠC00),

where for π ≤ 1, Π = π − π2

3 and for π > 1, Π = 1− 1
3π . Also, C00 and A† defined as in Theorem 3.1.

Of note is that a closely related set of results to those discussed above, in the context of GMM estimators,

structural break tests, and predictive tests is given in Dufour, Ghysels and Hall (1994) and Ghysels and Hall

(1990). Note also that in the proceeding discussion, little mention is made of π. However, it should be stressed

that although our asymptotics do not say anything about the choice of π, some of the tests discussed below

have nonstandard limit distributions that have been tabulated for various values of π, and choice thereof

can have a discernable impact on finite sample test performance.

3.2 Out-of-Sample Implementation of Bai as well as Hong and Li Tests

We begin by analyzing the out-of-sample versions of Bai’s (2003) test. Define the out-of-sample version of

the statistic in (6) for the recursive case, as

V̂P,rec =
1√
P

T−1∑

t=R

(
1{Ft+1(yt+1|Zt, θ̂t,rec) ≤ r} − r

)
, (21)

and for the rolling case as

V̂P,rol =
1√
P

T−1∑

t=R

(
1{Ft+1(yt+1|Zt, θ̂t,rol) ≤ r} − r

)
, (22)

where θ̂t,rec and θ̂t,rol are defined as in (19) and (20), respectively. Also, define

ŴP,rec(r) = V̂P,rec(r)−
∫ r

0

(
·
g(s)C−1(s)

·
g(s)′

∫ 1

s

·
g(τ)dV̂P,rec(τ)

)
ds

and

ŴP,rol(r) = V̂P,rol(r)−
∫ r

0

(
·
g(s)C−1(s)

·
g(s)′

∫ 1

s

·
g(τ)dV̂P,rol(τ)

)
ds

Let BAI1, BAI2 and BAI4 be as given in Appendix A, and modify BAI3 as follows:

BAI3’:
(
θ̂t,rec − θ0

)
= OP (P−1/2), uniformly in t.14

14Note that BAI3’ is satisfied under mild conditions, provided P/R → π with π < ∞. In particular,

P 1/2
(
θ̂t − θ0

)
=

(
1

t

t∑
j=1

∇2
θqj(θt)

)−1 (
P 1/2

t

t∑
j=1

∇θqj(θ0)

)
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BAI3”:
(
θ̂t,rol − θ0

)
= OP (P−1/2), uniformly in t.15

Given this setup, the following proposition holds.

Proposition 3.2: Let BAI1,BAI2,BAI4 hold and assume that as T →∞, P/R → π, with π < ∞. Then,

(i) If BAI3’ hold, under the null hypothesis in (1), supr∈[0,1] ŴP,rec(r)
d→ supr∈[0,1] W (r).

(ii) If BAI3” hold, under the null hypothesis in (1), supr∈[0,1] ŴP,rol(r)
d→ supr∈[0,1] W (r).

Proof: See Appendix.

Turning now to an out-of-sample version of the Hong and Li test, note that these tests can be defined as

in equations (8)-(11) above, by replacing Ût in (8) with Ût,rec and Ût,rol, respectively, where

Ût+1,rec = Ft+1(yt+1|Zt, θ̂t,rec), and Ût+1,rol = Ft+1(yt+1|Zt, θ̂t,rol), (23)

with θ̂t,rec and θ̂t,rol defined as in (19) and (20). Thus, for the recursive estimation case, it follows that

φ̂rec(u1, u2) = (P − j)−1
T−1∑

τ=R+j+1

Kh(u1, Ûτ,rec)Kh(u2, Ûτ−j,rec),

where n = T = R + P. For the rolling estimation case, it follows that

φ̂rol(u1, u2) = (P − j)−1
T−1∑

τ=R+j+1

Kh(u1, Ûτ,rol)Kh(u2, Ûτ−j,rol).

Also, define

M̂rec(j) =
∫ 1

0

∫ 1

0

(
φ̂rec(u1, u2)− 1

)2

du1du2, M̂rol(j) =
∫ 1

0

∫ 1

0

(
φ̂rol(u1, u2)− 1

)2

du1du2

and

Q̂rec(j) =
(
(n− j)M̂rec(j)−A0

h

)
/V

1/2
0 , Q̂rol(j) =

(
(n− j)M̂rol(j)−A0

h

)
/V

1/2
0 .

The following proposition then holds.

Proposition 3.3: Let HL1-HL4 hold. If h = cP−δ, δ ∈ (0, 1/5), then under the null in (1), and for any

j > 0, j = o(P 1−δ(5−2/v)), if as P, R →∞, P/R → π, π < ∞, Q̂rec(j)
d→ N(0, 1) and Q̂rol(j)

d→ N(0, 1).

Now, by uniform law of large numbers,

(
1
t

∑t

j=1
∇2

θqj(θt)

)−1

−
(

1
t

∑t

j=1
E

(
∇2

θqj(θ0)
))−1

pr→ 0. Let t = [Tr], with (1 +

π)−1 ≤ r ≤ 1. Then,

P 1/2

[Tr]

[Tr]∑
j=1

∇θqj(θ0) =

√
P

T

1

r

1√
T

[Tr]∑
j=1

∇θqj(θ0).

For any r, 1
r

1√
T

∑[Tr]

j=1
∇θqj(θ0) satisfies a CLT and so is OP (T−1/2) and so O(P−1/2). As r is bounded away from zero, and

because of stochastic equicontinuity in r, supr∈[(1+π)−1,1]

√
P
T

1
r

1√
T

∑[Tr]

j=1
∇θqj(θ0) = OP (P−1/2).

15BAI3” is also satisfied under mild assumptions, by the same arguments used in the footnote above.

28



The statement in the proposition above follows straightforwardly by the same arguments used in the

proof of Theorem 1 in Hong and Li (2003). Additionally, and as noted above, the contribution of parameter

estimation error is of order OP (P 1/2), while the statistic converges at a nonparametric rate, depending on the

bandwidth parameter. Therefore, regardless of the estimation scheme used, the contribution of parameter

estimation error is asymptotically negligible.

3.3 Out-of-Sample Implementation of Corradi and Swanson Tests

We now outline out-of-sample versions of the Corradi and Swanson (2005a) tests. First, redefine the statistics

using the above out-of-sample notation as

V1P,rec = sup
r∈[0,1]

|V1P,rec(r)|, V1P,rol = sup
r∈[0,1]

|V1P,rol(r)|

where

V1P,rec(r) =
1√
P

T−1∑

t=R

(
1{Ût+1,rec ≤ r} − r

)

and

V1P,rol(r) =
1√
P

T−1∑

t=R

(
1{Ût+1,rol ≤ r} − r

)
,

with Ût,rec and Ût,rol defined as in (23). Further, define

V2P,rec = sup
u×v∈U×V

|V2P,rec(u, v)| V2P,rol = sup
u×v∈U×V

|V2P,rol(u, v)|,

where

V2P,rec(u, v) =
1√
P

T−1∑

t=R

(
(1{yt+1 ≤ u} − F (u|Zt, θ̂t,rec))1{Zt ≤ v}

)

and

V2P,rol(u, v) =
1√
P

T−1∑

t=R

(
(1{yt+1 ≤ u} − F (u|Zt, θ̂t,rol))1{Zt ≤ v}

)
.

Hereafter, let V1P,J = V1P,rec when J = 1 and V1P,J = V1P,rol when J = 2 and similarly, V2P,J = V2P,rec

when J = 1 and V2P,J = V2P,rol when J = 2. The following propositions then hold.

Proposition 3.4: Let CS1, CS2(i)–(ii) and CS3 hold. Also, as P, R →∞, P/R → π, 0 < π < ∞.16 Then

for J = 1, 2: (i) Under H0, V1P,J ⇒ supr∈[0,1] |V1,J(r)|, where V1,J is a zero mean Gaussian process with

covariance kernel K1,J(r, r′) given by:

K1,J(r, r′) = E(
∞∑

s=−∞

(
1{F (y1|Z0, θ0) ≤ r} − r

)
(1{F (ys|Zs−1, θ0) ≤ r′} − r′))

16Note that for π = 0, the contribution of parameter estimation error is asymptotically negligible, and so the covariance

kernel is the same as that given in Theorem 2.3.
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+ΠJE(∇θF (x(r)|Zt−1, θ0))′A(θ0)
∞∑

s=−∞
E(q1(θ0)qs(θ0)′)A(θ0)E(∇θF (x(r′)|Zt−1, θ0))

−2CΠJE(∇θF (x(r)|Zt−1, θ0))′A(θ0)
∞∑

s=−∞
E(

(
1{F (y1|Z0, θ0) ≤ r} − r

)
qs(θ0)′)

with qs(θ0) = ∇θ ln fs(ys|Zs−1, θ0), x(r) = F−1(r|Zt−1, θ0), A(θ0) = (E (∇θqs(θ0)∇θqs(θ0)′))
−1

, Π1 =

2(1−π−1 ln(1+π)), and CΠ1 = (1−π−1 ln(1+π)). For J = 2, j = 1 and P ≤ R, Π2 =
(
π − π2

3

)
, CΠ2 = π

2 ,

and for P > R, Π2 =
(
1− 1

3π

)
and CΠ2 =

(
1− 1

2π

)
.

(ii) Under HA, there exists an ε > 0 such that limT→∞ Pr( 1
P 1/2 V1T,J > ε) = 1, J = 1, 2.

Proof: See Appendix.

Proposition 3.5: Let CS1, CS2(iii)–(iv) and CS3 hold. Also, as P, R →∞, P/R → π, 0 < π < ∞. Then

for J = 1, 2: (i) Under H0, V2P,J ⇒ supu×v∈U×V |ZJ(u, v)|, where V2P,J is defined as in (15) and Z is a zero

mean Gaussian process with covariance kernel K2,J(u, v, u′, v′) given by:

E(
∞∑

s=−∞
((1{y1 ≤ u} − F (u|Z0, θ0))1{X0 ≤ v})((1{ys ≤ u′} − F (u|Zs−1, θ0))1{Xs ≤ v′}))

+ΠJE(∇θF (u|Z0, θ0)′1{Z0 ≤ v})A(θ0)
∞∑

s=−∞
q0(θ0)qs(θ0)′A(θ0)E(∇θF (u′|Z0, θ0)1{Z0 ≤ v′})

−2CΠJ

∞∑
s=−∞

((1{y0 ≤ u} − F (u|Z0, θ0))1{Z0 ≤ v})E(∇θF (u′|Z0, θ0)′1{Z0 ≤ v′})A(θ0)qs(θ0)).

where ΠJ and CΠJ are defined as in the statement of Proposition 3.4.

(ii) Under HA, there exists an ε > 0 such that limT→∞ Pr( 1
T 1/2 V2T > ε) = 1.

Proof: See Appendix.

It is immediate to see that the limiting distributions in Propositions 3.4 and 3.5 differ from the ones

in Theorems 2.3 and 2.4 only up to terms Πj and CΠj , j = 1, 2. On the other hand, we shall see that

valid asymptotic critical values cannot be obtained by directly following the bootstrap procedure described

in Section 2.5. Below, we outline how to obtain valid bootstrap critical values in the recursive and in the

rolling estimation cases, respectively.

3.4 Bootstrap Critical for the V1P,J and V2P,J Tests Under Recursive Estimation

When forming the block bootstrap for recursive m-estimators, it is important to note that earlier observations

are used more frequently than temporally subsequent observations when forming test statistics. On the other

hand, in the standard block bootstrap, all blocks from the original sample have the same probability of being
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selected, regardless of the dates of the observations in the blocks. Thus, the bootstrap estimator, say θ̂∗t,rec,

which is constructed as a direct analog of θ̂t,rec, is characterized by a location bias that can be either positive

or negative, depending on the sample that we observe. In order to circumvent this problem, we suggest

a re-centering of the bootstrap score which ensures that the new bootstrap estimator, which is no longer

the direct analog of θ̂t,rec, is asymptotically unbiased. It should be noted that the idea of re-centering is

not new in the bootstrap literature for the case of full sample estimation. In fact, re-centering is necessary,

even for first order validity, in the case of overidentified generalized method of moments (GMM) estimators

(see e.g. Hall and Horowitz (1996), Andrews (2002, 2004), and Inoue and Shintani (2004)). This is due

to the fact that, in the overidentified case, the bootstrap moment conditions are not equal to zero, even

if the population moment conditions are. However, in the context of m−estimators using the full sample,

re-centering is needed only for higher order asymptotics, but not for first order validity, in the sense that

the bias term is of smaller order than T−1/2 (see e.g. Andrews (2002)). However, in the case of recursive

m−estimators the bias term is instead of order T−1/2, and so it does contribute to the limiting distribution.

This points to a need for re-centering when using recursive estimation schemes, and such re-centering is

discussed in the next subsection.

3.4.1 The Recursive PEE Bootstrap

We now show how the Künsch (1989) block bootstrap can be used in the context of a recursive estimation

scheme. At each replication, draw b blocks (with replacement) of length l from the sample Wt = (yt, Z
t−1),

where bl = T − 1. Thus, the first block is equal to Wi+1, ..., Wi+l, for some i = 0, ..., T − l − 1, with

probability 1/(T − l), the second block is equal to Wi+1, ...,Wi+l, again for some i = 0, ..., T − l − 1,

with probability 1/(T − l), and so on, for all blocks. More formally, let Ik, k = 1, ..., b be iid discrete

uniform random variables on [0, 1, ..., T − l + 1]. Then, the resampled series, W ∗
t = (y∗t , Z∗,t−1), is such that

W ∗
1 ,W ∗

2 , ...,W ∗
l ,W ∗

l+1, ..., W
∗
T = WI1+1,WI1+2, ..., WI1+l,WI2 , ..., WIb+l, and so a resampled series consists

of b blocks that are discrete iid uniform random variables, conditional on the sample.

Suppose we define the bootstrap estimator, θ̂∗t,rec, to be the direct analog of θ̂t,rec. Namely,

θ̂∗t,rec = arg min
θ∈Θ

1
t

t∑

j=1

q(y∗j , Z∗,j−1, θ), R ≤ t ≤ T − 1. (24)

By first order conditions, 1
t

∑t
j=1∇θq(y∗j , Z∗,j−1, θ̂∗t,rec) = 0, and via a mean value expansion of
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1
t

∑t
j=1∇θq(y∗j , Z∗,j−1, θ̂∗t,rec) around θ̂t,rec, after a few simple manipulations, we have that

1√
P

T−1∑

t=R

(
θ̂∗t,rec − θ̂t,rec

)

=
1√
P

T−1∑

t=R





1

t

t∑

j=1

∇2
θq(y

∗
j , Z∗,j−1, θ

∗
t,rec)



−1

1
t

t∑

j=1

∇θq(y∗j , Z∗,j−1, θ̂t,rec)




= A†i
1√
P

T−1∑

t=R


1

t

t∑

j=1

∇θq(y∗j , Z∗,j−1, θ̂t,rec)


 + oP∗(1) Pr−P

= A†i
aR,0√

P

R∑
t=1

∇θq(y∗j , Z∗,j−1, θ̂t,rec) + A†i
1√
P

P−1∑

j=1

aR,j∇θq(y∗R+j , Z
∗,R+j−1, θ̂t,rec)

+oP∗(1) Pr−P, (25)

where θ
∗
t,rec ∈

(
θ̂∗t,rec, θ̂t,rec

)
, A† = E

(∇2
θq(yj , Z

j−1, θ†)
)−1

, aR,j = 1
R+j + 1

R+j+1 + ... + 1
R+P−1 , j =

0, 1, ..., P − 1, and where the last equality on the right hand side of (25) follows immediately, using the same

arguments as those used in Lemma A5 of West (1996). Analogously,

1√
P

T−1∑

t=R

(
θ̂t,rec − θ†

)

= A†
aR,0√

P

R∑
t=s

∇θq(yj , Z
j−1, θ†) + A†

1√
P

P−1∑

j=1

aR,j∇θq(yR+j , Z
R+j−1, θ†) + oP (1). (26)

Now, given the definition of θ†, E
(∇θq(yj , Z

j−1, θ†)
)

= 0 for all j, and 1√
P

∑T−1
t=R

(
θ̂t,rec − θ†

)
has a zero

mean normal limiting distribution (see Theorem 4.1 in West (1996)). On the other hand, as any block of

observations has the same chance of being drawn,

E∗
(
∇θq(y∗j , Z∗,j−1, θ̂t,rec)

)
=

1
T − 1

T−1∑

k=1

∇θq(yk, Zk−1, θ̂t,rec) + O

(
l

T

)
Pr−P, (27)

where the O
(

l
T

)
term arises because the first and last l observations have a lesser chance of being drawn (see

e.g. Fitzenberger (1997)).17 Now, 1
T−1

∑T−1
k=1 ∇θq(yk, Zk−1, θ̂t,rec) 6= 0, and is instead of order OP

(
T−1/2

)
.

Thus, 1√
P

∑T−1
t=R

1
T−1

∑T−1
k=1 ∇θq(yk, Zk−1, θ̂t,rec) = OP (1), and does not vanish in probability. This clearly

contrasts with the full sample case, in which 1
T−1

∑T−1
k=1 ∇θq(yk, Zk−1, θ̂T ) = 0, because of the first order

conditions. Thus, 1√
P

∑T−1
t=R

(
θ̂∗t,rec − θ̂t,rec

)
cannot have a zero mean normal limiting distribution, but is

instead characterized by a location bias that can be either positive or negative depending on the sample.

Given (27), our objective is thus to have the bootstrap score centered around 1
T−1

∑T−1
k=1 ∇θq(yk, Zk−1, θ̂t,rec).

17In fact, the first and last observation in the sample can appear only at the beginning and end of the block, for example.
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Hence, define a new bootstrap estimator, θ̃∗t,rec, as:

θ̃∗t,rec = arg min
θ∈Θ

1
t

t∑

j=1

(
q(y∗j , Z∗,j−1, θ)− θ′

(
1
T

T−1∑

k=1

∇θq(yk, Zk−1, θ̂t,rec)

))
, (28)

R ≤ t ≤ T − 1.18

Given first order conditions, 1
t

∑t
j=1

(
∇θq(y∗j , Z∗,j−1, θ̃∗t,rec)−

(
1
T

∑T−1
k=1 ∇θq(yk, Zk−1, θ̂t,rec)

))
= 0, and

via a mean value expansion of 1
t

∑t
j=1∇θq(y∗j , Z∗,j−1, θ̃∗t,rec) around θ̂t,rec, after a few simple manipulations,

we have that

1√
P

T−1∑

t=R

(
θ̃∗t,rec − θ̂t,rec

)

= A†
1√
P

T∑

t=R


1

t

t∑

j=s

(
∇θq(y∗j , Z∗,j−1, θ̂t,rec)−

(
1
T

T−1∑

k=s

∇θq(yk, Zk−1, θ̂t,rec)

))


+oP∗(1) Pr−P.

Given (27), it is immediate to see that the bias associated with 1√
P

∑T−1
t=R

(
θ̃∗t,rec − θ̂t,rec

)
is of order

O
(
lT−1/2

)
, conditional on the sample, and so it is negligible for first order asymptotics, as l = o(T 1/2).

The following result pertains given the above setup.

Theorem 3.6 (from Theorem 1 in Corradi and Swanson (2005d): Let CS1 and CS3 hold. Also,

assume that as T →∞, l →∞, and that l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

v∈<%(i)

∣∣∣∣∣P
∗
T

(
1√
P

T∑

t=R

(
θ̃∗t,rec − θ†

)
≤ v

)
− P

(
1√
P

T∑

t=R

(
θ̂t,rec − θ†

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗T denotes the probability law of the resampled series, conditional on the (entire) sample.

Broadly speaking, Theorem 3.6 states that 1√
P

∑T−1
t=R

(
θ̃∗t,rec − θ†

)
has the same limiting distribution as

1√
P

∑T−1
t=R

(
θ̂t,rec − θ†

)
, conditional on the sample, and for all samples except a set with probability measure

approaching zero. As outlined in the following sections, application of Theorem 3.6 allows us to capture the

contribution of (recursive) parameter estimation error to the covariance kernel of the limiting distribution

of various statistics.
18More precisely, we should define

θ̃∗i,t = arg min
θi∈Θi

1

t− s

t∑
j=s

(
qi(y

∗
j , Z∗,j−1, θi)− θ′i

(
1

T − s

T−1∑
k=s

∇θi
qi(yk, Zk−1, θ̂i,t)

))

However, for notational simplicity we approximate 1
t−s

and 1
T−s

with 1
t

and 1
T

.
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3.4.2 V1P,J and V2P,J Bootstrap Statistics Under Recursive Estimation

One can apply the results above to provide a bootstrap statistic for the case of the recursive estimation

scheme. Define

V ∗
1P,rec = sup

r∈[0,1]

|V ∗
1P,rec(r)|,

where

V ∗
1P,rec(r) =

1√
P

T−1∑

t=R


1{F (y∗t+1|Z∗,t, θ̃∗t,rec) ≤ r} − 1

T

T−1∑

j=1

1{F (yj+1|Zj , θ̂t,rec) ≤ r}

 (29)

Also define,

V ∗
2P,rec = sup

u×v∈U×V
V ∗

2P,rec(u, v)

where

V ∗
2P,rec(u, v) =

1√
P

T−1∑

t=R

(
(1{y∗t+1 ≤ u} − F (u|Z∗,t, θ̃∗t,rec))1{Z∗,t ≤ v}

− 1
T

T−1∑

j=1

(1{yj+1 ≤ u} − F (u|Zj , θ̂t,rec))1{Zj ≤ v}

 (30)

Note that bootstrap statistics in (29) and (30) are different from the “usual” bootstrap statistics, which are

defined as the difference between the statistic computed over the sample observations and over the bootstrap

observations. For brevity, just consider V ∗
1P,rec. Note that each bootstrap term, say 1{F (y∗t+1|Z∗,t, θ̃∗t,rec) ≤

r}, t ≥ R, is recentered around the (full) sample mean 1
T

∑T−1
j=1 1{F (yj+1|Zj , θ̂t,rec) ≤ r}. This is necessary

as the bootstrap statistic is constructed using the last P resampled observations, which in turn have been

resampled from the full sample. In particular, this is necessary regardless of the ratio P/R. If P/R → 0,

then we do not need to mimic parameter estimation error, and so could simply use θ̂1,t,τ instead of θ̃∗1,t,τ ,

but we still need to recenter any bootstrap term around the (full) sample mean. This leads to the following

proposition.

Proposition 3.7: Let CS1, CS2(i)–(ii) and CS3 hold. Also, assume that as T → ∞, l → ∞, and that

l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

x∈<

∣∣∣∣∣P
∗ [

V ∗
1P,rec(ω) ≤ u

]− P

[
sup

r∈[0,1]

1√
P

T−1∑

t=R

(
1{F (yt+1|Zt

,θ†) ≤ r} − E
(
1{F (yt+1|Zt

, θ†) ≤ r}
))
≤ x

]∣∣∣∣∣ > ε

)

→ 0.

Proof: See Appendix.
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Proposition 3.8: Let CS1, CS2(iii)–(iv) and CS3 hold. Also, assume that as T → ∞, l → ∞, and that

l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

x∈<

∣∣P ∗[V ∗
2P,rec(ω) ≤ x]

P

[
sup

u×v∈U×V

1√
P

T−1∑

t=R

((1{yt+1≤ u} − F (u|Zt
,θ†))1{Zt≤ v}

−E((1{yt+1≤ u} − F (u|Zt
, θ†))1{Zt≤ v})) ≤ x

]
> ε

∣∣∣
)

→ 0

Proof: See Appendix.

The same remarks given below Theorems 2.5 and 2.6 apply here.

3.5 Bootstrap Critical for the V1P,J and V2P,J Tests Under Rolling Estimation

In the rolling estimation scheme, observations in the middle of the sample are used more frequently than

observations at either the beginning or the end of the sample. As in the recursive case, this introduces a

location bias to the usual block bootstrap, as under standard resampling with replacement, any block from

the original sample has the same probability of being selected. Also, the bias term varies across samples

and can be either positive or negative, depending on the specific sample. In the sequel, we shall show how

to properly recenter the objective function in order to obtain a bootstrap rolling estimator, say θ̃∗t,rol such

that 1√
P

∑T−1
t=R

(
θ̃∗t,rol − θ̂t,rol

)
has the same limiting distribution as 1√

P

∑T−1
t=R

(
θ̂t,rol − θ†

)
, conditionally

on the sample.

Resample b overlapping blocks of length l from Wt = (yt, Z
t−1), as in the recursive case and define the

rolling bootstrap estimator as,

θ̃∗t,rol = arg max
θi∈Θi

1
R

t∑

j=t−R+1

(
q(y∗j , Z∗,j−1, θ)− θ′

(
1
T

T−1∑

k=s

∇θq(yk, Zk−1, θ̂t,rol)

))
.

Theorem 3.9 (from Proposition 2 in Corradi and Swanson (2005d)): Let CS1 and CS3 hold.

Also, assume that as T →∞, l →∞, and that l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

v∈<%(i)

∣∣∣∣∣P
∗
T

(
1√
P

T∑

t=R

(
θ̃∗t,rol − θ̂t,rol

)
≤ v

)
− P

(
1√
P

T∑

t=R

(
θ̂t,rol − θ†

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

Finally note that in the rolling case, V ∗
1P,rol, V

∗
2P,rol can be constructed as in (29) and (30), θ̃∗t,rec and

θ̂t,rec with θ̃∗t,rol and θ̂t,rol, and the same statement as in Propositions 3.7 and 3.8 hold.
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Part III: Evaluation of (Multiple) Misspecified
Predictive Models

4 Pointwise Comparison of (Multiple) Misspecified Predictive Mod-

els

In the previous two sections we discussed several in-sample and out of sample tests for the null of either

correct dynamic specification of the conditional distribution or for the null of correct conditional distribution

for given information set. Needless to say, the correct (either dynamically, or for a given information set)

conditional distribution is the best predictive density. However, it is often sensible to account for the fact that

all models may be approximations, and so may be misspecified. The literature on point forecast evaluation

does indeed acknowledge that the objective of interest is often to choose a model which provides the best (loss

function specific) out-of-sample predictions, from amongst a set of potentially misspecified models, and not

just from amongst models that may only be dynamically misspecified, as is the case with some of the tests

discussed above. In this section we outline several popular tests for comparing the relative out-of-sample

accuracy of misspecified models in the case of point forecasts. We shall distinguish among three main groups

of tests: (i) tests for comparing two nonnested models, (ii) tests for comparing two (or more) nested models;

and (iii) tests for comparing multiple models, where at least one model is non-nested. In the next section,

we broaden the scope by considering tests for comparing misspecified predictive density models.19

4.1 Comparison of Two Nonnested Models: Diebold and Mariano Test

Diebold and Mariano (DM: 1995) propose a test for the null hypothesis of equal predictive ability that is

based in part on the pairwise model comparison test discussed in Granger and Newbold (1986). The Diebold

and Mariano test allows for nondifferentiable loss functions, but does not explicitly account for parameter

estimation error, instead relying on the assumption that the in-sample estimation period is growing more

quickly than the out-of-sample prediction period, so that parameter estimation error vanishes asymptotically.

West (1996) takes the more general approach of explicitly allowing for parameter estimation error, although

at the cost of assuming that the loss function used is differentiable. Let u0,t+h and u1,t+h be the h−step ahead

19It should be noted that the contents of this section of the chapter have broad overlap with a number of topics discussed in

the chapter in this volume by Ken West (2005). For further details, the reader is referred to that chapter.
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prediction error associated with predictions of yt+h, using information available up to time t. For example,

for h = 1, u0,t+1 = yt+1− κ0(Zt−1
0 , θ†0), and u1,t+1 = yt+1− κ1(Zt−1

1 , θ†1), where Zt−1
0 and Zt−1

1 contain past

values of yt and possibly other conditioning variables. Assume that the two models be nonnested (i.e. Zt−1
0

not a subset of Zt−1
1 -and vice-versa- and/or κ1 6= κ0). As lucidly pointed out by Granger and Pesaran (2000),

when comparing misspecified models, the ranking of models based on their predictive accuracy depends on

the loss function used. Hereafter, denote the loss function as g, and as usual let T = R + P, where only

the last P observations are used for model evaluation. Under the assumption that u0,t and u1,t are strictly

stationary, the null hypothesis of equal predictive accuracy is specified as:

H0 : E(g(u0,t)− g(u1t)) = 0

and

HA : E(g(u0,t)− g(u1t)) 6= 0

In practice, we do not observe u0,t+1 and u1,t+1, but only û0,t+1 and û1,t+1, where û0,t+1 = yt+1−κ0(Zt
0, θ̂0,t),

and where θ̂0,t is an estimator constructed using observations from 1 up to t, t ≥ R, in the recursive estimation

case, and between t − R + 1 and t in the rolling case. For brevity, in this subsection we just consider the

recursive scheme. Therefore, for notational simplicity, we simply denote the recursive estimator for model

i, θ̂0,t, θ̂0,t,rec. Note that the rolling scheme can be treated in an analogous manner. Of crucial importance

is the loss function used for estimation. In fact, as we shall show below if we use the same loss function for

estimation and model evaluation, the contribution of parameter estimation error is asymptotically negligible,

regardless of the limit of the ratio P/R as T →∞. Here, for i = 0, 1

θ̂i,t = arg min
θi∈Θi

1
t

t∑

j=1

q(yj − κi(Z
j−1
i , θi)), t ≥ R

In the sequel, we rely on the assumption that g is continuously differentiable. The case of non-differentiable

loss functions is treated by McCracken (2000,2004b). Now,

1√
P

T−h∑

t=R

g(ûi,t+1) =
1√
P

T−1∑

t=R

g(ui,t+1) +
1√
P

T−1∑

t=R

∇g(ui,t+1)
(
θ̂i,t − θ†i

)

=
1√
P

T−1∑

t=R

g(ui,t+1) + E (∇g(ui,t+1))
1√
P

T−1∑

t=R

(
θ̂i,t − θ†i

)
+ oP (1). (31)

It is immediate to see that if g = q (i.e. the same loss is used for estimation and model evaluation), then

E (∇g(ui,t+1)) = 0 because of the first order conditions. Of course, another case in which the second term

on the RHS of (31) vanishes is when P/R → 0 (these are the cases DM consider). The limiting distribution
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of the RHS in (31) is given in Section 3.1. The Diebold and Mariano test is

DMP =
1√
P

1
σ̂P

T−1∑

t=R

(g(û0,t+1)− g(û1,t+1)) ,

where

1√
P

T−1∑

t=R

(g(û0,t+1)− g(û1,t+1))

d→ N (0, Sgg + 2ΠF ′0A0Sh0h0A0F0

+2ΠF ′1A1Sh1h1A1F1 −Π(S′gh0
A0F0 + F ′0A0Sgh0)

−2Π (F ′1A1Sh1h0A0F0 + F ′0A0Sh0h1A1F1)

+Π(S′gh1
A1F1 + F ′1A1Sgh1)

)
,

with

σ̂2
P = Ŝgg + 2ΠF̂ ′0Â0Ŝh0h0 + +2ΠF̂ ′1Â1Sh1h1Â1F̂1

−2Π
(
F̂ ′1Â1Ŝh1h0Â0F̂0 + F̂ ′0Â0Ŝh0h1Â1F̂1

)
+ Π(Ŝ′gh1

Â1F̂1 + F̂ ′1Â1Ŝgh1),

where for i, l = 0, 1, Π = Π = 1− π−1 ln(1 + π), and qt(θ̂i,t) = q(yt − κi(Zt−1
i , θ̂i,t),

Ŝhihl
=

1
P

lP∑

τ=−lP

wτ

T−lP∑

t=R+lP

∇θqt(θ̂i,t)∇θqt+τ (θ̂l,t)′

Ŝfhi =
1
P

lP∑

τ=−lP

wτ

T−lP∑

t=R+lP(
(g(û0,t)− g(û1,t))− 1

P

T−1∑

t=R

(g(û0,t+1)− g(û1,t+1))

)

×∇βqt+τ (θ̂i,t)′

Ŝgg =
1
P

lP∑

τ=−lP

wτ

T−lP∑

t=R+lP(
g(û0,t)− g(û1,t)− 1

P

T−1∑

t=R

(g(û0,t+1)− g(û1,t+1))

)

(
g(û0,t+τ )− g(û1,t+τ )− 1

P

T−1∑

t=R

(g(û0,t+1)− g(û1,t+1))

)

with w = 1−
(

τ
lP +1

)
, and where

F̂i =
1
P

T−1∑

t=R

∇θig(ûi,t+1), Âi =

(
− 1

P

T−1∑

t=R

∇2
θi

q(θ̂i,t)

)−1
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Proposition 4.1 (from Theorem 4.1 in West (1996)): Let W1-W2 hold. Also, assume that g is

continuously differentiable, then, if as P → ∞, lp → ∞ and lP /P 1/4 → 0, then as P,R → ∞, under H0,

DMP
d→ N(0, 1) and under HA, Pr

(
P−1/2 |DMP | > ε

) → 1, for any ε > 0.

Recall that it is immediate to see that if either g = q or P/R → 0, then the estimator of the long-run variance

collapses to σ̂2
P = Ŝgg. The proposition is valid for the case of short-memory series. Corradi, Swanson and

Olivetti (2001) consider DM tests in the context of cointegrated series, and Rossi (2005) in the context of

processes with roots local to unity.

The proposition above has been stated in terms of one-step ahead prediction errors. All results carry

over to the case of h > 1. However, in the multistep ahead case, one needs to decide whether to compute

“direct” h−step ahead forecast errors (i.e. ûi,t+h = yt+h − κi(Zt−h
i , θ̂i,t)) or to compute iterated h−ahead

forecast errors (i.e. first predict yt+1 using observations up to time t, and then use this predicted value in

order to predict yt+2, and so on). Within the context of VAR models, Marcellino, Stock and Watson (2005)

conduct an extensive and careful empirical study in order to examine the properties of these direct and

indirect approaches to prediction.

Finally, note that when the two models are nested, so that u0,t = u1,t under H0, both the numerator of

the DMP statistic and σ̂P approach zero in probability at the same rate, if P/R → 0, so that the DMP

statistic no longer has a normal limiting distribution under the null. The asymptotic distribution of the

Diebold-Mariano statistic in the nested case has been recently provided by McCracken (2004a), who shows

that the limiting distribution is a functional over Brownian motions. Comparison of nested models is the

subject of the next subsection.

4.2 Comparison of Two Nested Models

In several instances we may be interested in comparing nested models, such as when forming out-of-sample

Granger causality tests. Also, in the empirical international finance literature, an extensively studied issue

concerns comparing the relative accuracy of models driven by fundamentals against random walk models.

Since the seminal paper by Meese and Rogoff (1983), who find that no economic models can beat a random

walk in terms of their ability to predict exchange rates, several papers have further examined the issue of

exchange rate predictibility, a partial list of which includes Berkowitz and Giorgianni (2001), Mark (1995),

Kilian (1999a), Clarida, Sarno and Taylor (2003), Kilian and Taylor (2003), Rossi (2005), Clark and West

(2005), and McCracken and Sapp (2004). Indeed, the debate about predictability of exchange rates was one

of the driving force behind the literature on out-of-sample comparison of nested models.
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4.2.1 Clark and McCracken Tests

Within the context of nested linear models, Clark and McCracken (CMa: 2001) propose some easy to

implement tests, under the assumption of martingale difference prediction errors (these tests thus rule out

the possibility of dynamic misspecification under the null model). Such tests are thus tailored for the case

of one-step ahead prediction. This is because h−step ahead prediction errors follow an MA(h− 1) process.

For the case where h > 1, Clark and McCracken (CMb: 2003) propose a different set tests. We begin by

outlining the CMa tests.

Consider the following two nested models. The restricted model is

yt =
q∑

j=1

βjyt−j + εt (32)

and the unrestricted model is

yt =
q∑

j=1

βjyt−j +
k∑

j=1

αjxt−j + ut (33)

The null and the alternative hypotheses are formulated as:

H0 : E(ε2t )− E(u2
t ) = 0

HA : E(ε2t )− E(u2
t ) > 0,

so that it is implicitly assumed that the smaller model cannot outperform the larger. This is actually the case

when the loss function is quadratic and when parameters are estimated by LS, which is the case considered

by CMa. Note that under the null hypothesis, ut = εt, and so DM tests are not applicable in the current

context. We use assumptions CM1 and CM2, listed in Appendix A, in the sequel of this section. Note that

CM2 requires that the larger model is dynamically correctly specified, and requires ut to be conditionally

homoskedastic. The three different tests proposed by CMa are

ENC − T = (P − 1)1/2 c

(P−1
∑T−1

t=R (ct+1 − c))1/2
,

where ct+1 = ε̂t+1(ε̂t+1 − ût+1), c = P−1
∑T−1

t=R ct+1, and where ε̂t+1 and ût+1 are residuals from the LS

estimation. Additionally,

ENC −REG = (P − 1)1/2 P−1
∑T−1

t=R (ε̂t+1 (ε̂t+1 − ût+1))

(P−1
∑T−1

t=R (ε̂t+1 − ût+1)
2
P−1

∑T−1
t=R ε̂2t+1 − c2)1/2

,

and

ENC −NEW = P
c

P−1
∑

t=1 û2
t+1
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Of note is that the encompassing t-test given above is proposed by Harvey, Leybourne and Newbold

(1997).

Proposition 4.2 (from Theorems 3.1, 3.2, 3.3 in CMa): Let CM1-CM2 hold. Then under the null,

(i) If as T → ∞, P/R → π > 0, then ENC − T and ENC − REG converge in distribution to Γ1/Γ2

where Γ1 =
∫ 1

(1+π)−1 s−1W ′(s)dW (s) and Γ2 =
∫ 1

(1+π)−1 s−2W ′(s)W (s)ds. Here, W (s) is a standard k−
dimensional Brownian motion (note that k is the number of restrictions or the number of extra regressors

in the larger model). Also, ENC −NEW converges in distribution to Γ1, and

(ii) If as T →∞, P/R → π = 0, then ENC − T and ENC −REG converge in distribution to N(0, 1), and

ENC −NEW converges to 0 in probability.

Thus, for π > 0 all three tests have non-standard limiting distributions, although the distributions are

nuisance parameter free. Critical values for these statistics under π > 0 have been tabulated by CMa for

different values of k and π.

It is immediate to see that CM2 is violated in the case of multiple step ahead prediction errors. For the

case of h > 1, CMb provide modified versions of the above tests in order to allow for MA(h-1) errors. Their

modification essentially consists of using a robust covariance matrix estimator in the context of the above

tests.20 Their new version of the ENC − T test is

ENC − T ′ = (P − h + 1)1/2
1

P−h+1

∑T−h
t=R ĉt+h

(
1

P−h+1

∑j

j=−j

∑T−h
t=R+j K

(
j
M

)
(ĉt+h − c) (ĉt+h−j − c)

)1/2
, (34)

where ĉt+h = ε̂t+h (ε̂t+h − ût+h) , c = 1
P−h+1

∑T−τ
t=R ĉt+h, K (·) is a kernel (such as the Bartlett kernel),

and 0 ≤ K
(

j
M

) ≤ 1, with K(0) = 1, and M = o(P 1/2). Note that j does not grow with the sample size.

Therefore, the denominator in ENC − T ′ is a consistent estimator of the long run variance only when

E
(
ctct+|k|

)
= 0 for all |k| > h (see Assumption A3 in CMb). Thus, the statistic takes into account the

moving average structure of the prediction errors, but still does not allow for dynamic misspecification under

the null. Another statistic suggested by CMb is the Diebold Mariano statistic with nonstandard critical

values. Namely,

MSE − T ′ = (P − h + 1)1/2
1

P−h+1

∑T−h
t=R d̂t+h

(
1

P−h+1

∑j

j=−j

∑T−h
t=R+j K

(
j
M

) (
d̂t+h − d

)(
d̂t+h−j − d

))1/2
,

where d̂t+h = û2
t+h − ε̂2t+h, and d = 1

P−h+1

∑T−τ
t=R d̂t+h.

20The tests are applied to the problem of comparing linear economic models of exchange rates in McCracken and Sapp (2004).
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The limiting distributions of the ENC−T ′ and MSE−T statistics are given in Theorems 3.1 and 3.2 in

CMb, and for h > 1 contain nuisance parameters so their critical values cannot be directly tabulated. CMb

suggest using a modified version of the bootstrap in Kilian (1999a) to obtain critical values.21

4.2.2 Chao, Corradi and Swanson Tests

A limitation of the tests above is that they rule out possible dynamic misspecification under the null. A test

which does not require correct dynamic specification and/or conditional homoskedasticity is proposed by

Chao, Corradi, and Swanson (2001). Of note, however, is that the Clark and McCracken tests are one-sided

while the Chao, Corradi and Swanson test are two-sided, and so may be less powerful in small samples. The

test statistic is

mP = P−1/2
T−1∑

t=R

ε̂t+1Xt, (35)

where ε̂t+1 = yt+1−
∑p−1

j=1 β̂t,jyt−j , Xt = (xt, xt−1, . . . xt−k−1)′. We shall formulate the null and the alterna-

tive as

H̃0 : E(εt+1xt−j) = 0, j = 0, 1, . . . k − 1

H̃A : E(εt+1xt−j) 6= 0 for some j, j = 0, 1, . . . k − 1.

The idea underlying the test is very simple, if α1 = α2 = ... = αk = 0 in equation (32), then εt is uncorrelated

with the past of X. Thus, models including lags of Xt do not “outperform” the smaller model. In the sequel

we shall require assumption CSS, which is listed in Appendix A.

Proposition 4.3 (from Theorem 1 in Chao, Corradi and Swanson (2001)): Let CCS hold. As

T →∞, P, R →∞, P/R → π, 0 ≤ π < ∞,

(i) Under H̃0, for 0 < π < ∞,

mP
d→ N

(
0, S11 + 2(1− π−1 ln(1 + π))F ′MS22MF

−(1− π−1 ln(1 + π))(F ′MS12 + S′12MF ))
)

In addition, for π = 0,mP
d→ N(0, S11), where F = E(YtX

′
t), M =plim

(
1
t

∑t
j=q YjY

′
j

)−1

, and

Yj = (yj−1, . . . yj−q)′, so that M is a q × q matrix, F is a q × k matrix, Yj is a k × 1 vector, S11 is a k × k

21For the case of h = 1, the limit distribution of ENC−T ′ corresponds with that of ENC−T, given in Proposition 4.2, and

the limiting dustribution is derived by McCracken (2000).
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matrix, S12 is a q × k matrix, and S22 is a q × q matrix, with

S11 =
∞∑

j=−∞
E ((Xtεt+1 − µ)(Xt−jεt+1−j − µ)′) ,

where µ = E(Xtεt+1), S22 =
∑∞

j=−∞E ((Yt−1εt)(Yt−1−jεt−j)′) and

S′12 =
∑∞

j=−∞E ((εt+1Xt − µ)(Yt−1−jεt−j)′).

(ii) Under H̃A, limP→∞ Pr
(∣∣ mp

P 1/2

∣∣ > 0
)

= 1.

Corollary 4.4 (from Corollary 2 in Chao, Corradi and Swanson (2001)): Let Assumption CCS

hold. As T →∞, P,R →∞, P/R → π, 0 ≤ π < ∞, lT →∞, lT /T 1/4 → 0,

(i) Under H̃0, for 0 < π < ∞,

m′
p

(
Ŝ11 + 2(1− π−1 ln(1 + π))F̂ ′M̂Ŝ22M̂F̂

−(1− π−1 ln(1 + π))(̂F
′
M̂Ŝ12 + Ŝ′12M̂F̂ ))−1

)−1

mP

d→ χ2
k (36)

where F̂ = 1
P

∑T
t=R YtX

′
t, M̂ =

(
1
P

∑T−1
t=R YtY

′
t

)−1

, and Ŝ11 =

1
P

T−1∑

t=R

(ε̂t+1Xt − µ̂1)(ε̂t+1Xt − µ̂1)′

+
1
P

lT∑
t=τ

wτ

T−1∑

t=R+τ

(ε̂t+1Xt − µ̂1)(ε̂t+1−τXt−τ − µ̂1)′

+
1
P

lT∑
t=τ

wτ

T−1∑

t=R+τ

(ε̂t+1−τXt−τ − µ̂1)(ε̂t+1Xt − µ̂1)′,

where µ̂1 = 1
P

∑T−1
t=R ε̂t+1Xt,

Ŝ′12 =
1
P

lT∑
τ=0

wτ

T−1∑

t=R+τ

(ε̂t+1−τXt−τ − µ̂1) (Yt−1ε̂t)
′

+
1
P

lT∑
τ=1

wτ

T−1∑

t=R+τ

(ε̂t+1Xt − µ̂1) (Yt−1−τ ε̂t−τ )′ ,

and

Ŝ22 =
1
P

T−1∑

t=R

(Yt−1ε̂t) (Yt−1ε̂t)
′ +

1
P

lT∑
τ=1

wτ

T−1∑

t=R+τ

(Yt−1ε̂t) (Yt−1−τ ε̂t−τ )′

+
1
P

lT∑
τ=1

wτ

T−1∑

t=R+τ

(Yt−1−τ ε̂t−τ ) (Yt−1ε̂t)
′
,
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with wτ = 1− τ
lT +1 .

In addition, for π = 0, m′
pŜ11mp

d→ χ2
k .

(ii) Under H̃A, m′
pŜ

−1
11 mp diverges at rate P.

Two final remarks: (i) note that the test can be easily applied to the case of multistep-ahead prediction, it

suffices to replace ”1” with ”h” above. (ii) linearity of neither the null nor the larger model is required. In

fact the test, can be equally applied using residuals from a nonlinear model and using a nonlinear function

of Xt, rather than simply using Xt.

4.3 Comparison of Multiple Models: The Reality Check

In the previous subsection, we considered the issue of choosing between two competing models. However,

in a lot of situations many different competing models are available and we want to be able to choose the

best model from amongst them. When we estimate and compare a very large number of models using the

same data set, the problem of data mining or data snooping is prevalent. Broadly speaking, the problem of

data snooping is that a model may appear to be superior by chance and not because of its intrinsic merit

(recall also the problem of sequential test bias). For example, if we keep testing the null hypothesis of efficient

markets, using the same data set, eventually we shall find a model that results in rejection. The data snooping

problem is particularly serious when there is no economic theory supporting an alternative hypothesis. For

example, the data snooping problem in the context of evaluating trading rules has been pointed out by

Brock, Lakonishok and LeBaron (1992), as well as Sullivan, Timmerman and White (1999,2001).

4.3.1 White’s Reality Check and Extensions

White (2000) proposes a novel approach for dealing with the issue of choosing amongst many different

models. Suppose there are m models, and we select model 1 as our benchmark (or reference) model. Models

i = 2, ..., m are called the competitor (alternative) models. Typically, the benchmark model is either a simple

model, our favorite model, or the most commonly used model. Given the benchmark model, the objective

is to answer the following question: “Is there any model, amongst the set of m− 1 competitor models, that

yields more accurate predictions (for the variable of interest) than the benchmark?”.

In this section, let the generic forecast error be ui,t+1 = yt+1−κi(Zt, θ†i ), and let ûi,t+1 = yt+1−κi(Zt, θ̂i,t),

where κi(Zt, θ̂i,t) is the conditional mean function under model i, and θ̂i,t is defined as in Section 3.1. Assume

that the set of regressors may vary across different models, so that Zt is meant to denote the collection of
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all potential regressors. Following White (2000), define the statistic

SP = max
k=2,...,m

SP (1, k),

where

SP (1, k) =
1√
P

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1)) , k = 2, ...,m,

The hypotheses are formulated as

H0 : max
k=2,...,m

E(g(u1,t+1)− g(gk,t+1)) ≤ 0

HA : max
k=2,...,m

E(g(u1,t+1)− g(uk,t+1)) > 0,

where uk,t+1 = yt+1 − κk(Zt, θ†k,t), and θ†k,t denotes the probability limit of θi,t.

Thus, under the null hypothesis, no competitor model, amongst the set of the m − 1 alternatives, can

provide a more (loss function specific) accurate prediction than the benchmark model. On the other hand,

under the alternative, at least one competitor (and in particular, the best competitor) provides more accurate

predictions than the benchmark. Now, let W1 and W2 be as stated in Appendix A, and assume WH,

also stated in Appendix A. Note that WH requires that at least one of the competitor models has to be

nonnested with the benchmark model.22 We have:

Proposition 4.5: (Parts (i) and (iii) are from Proposition 2.2 in White (2000)): Let W1-W2

and WH hold. Then, under H0,

max
k=2,...,m

(
SP (1, k)−

√
PE (g(u1,t+1)− g(uk,t+1))

)
d→ max

k=2,...,m
S(1, k), (37)

where S = (S(1, 2), ..., S(1, n)) is a zero mean Gaussian process with covariance kernel given by V, with V a

m×m matrix, and

(i) If parameter estimation error vanishes (i.e. if either P/R goes to zero and/or the same loss function is used

for estimation and model evaluation, g = q, where q is again the objective function), then for i = 1, ..., m−1,

V = [vi,i] = Sgigi , and

(ii) If parameter estimation error does not vanish (i.e. if P/R → 0 and g 6= q), then for i, j = 1, ...,m− 1

V = [vi,i] = Sgigi + 2Πµ′1A
†
1C11A

†
1µ1 + 2Πµ′iA

†
iCiiA

†
iµi − 4Πµ′1A

†
1C1iA

†
iµi + 2ΠSgiq1

A†1µ1 − 2ΠSgiqi
A†iµi,

where Sgigi =
∑∞

τ=−∞E ((g(u1,1)− g(ui,1)) (g(u1,1+τ )− g(ui,1+τ ))) ,

Cii =
∑∞

τ=−∞E

((
∇θiqi(y1+s, Z

s, θ†i )
)(
∇θiqi(y1+s+τ , Zs+τ , θ†i )

)′)
,

22This is for the same reasons as discussed in the context of the Diebold and Mariano test.

45



Sgiqi
=

∑∞
τ=−∞E

(
(g(u1,1)− g(ui,1))

(
∇θiqi(y1+s+τ , Zs+τ , θ†i )

)′)
,

B†
i =

(
E

(
−∇2

θiqi(yt, Z
t−1, θ†i )

))−1

, µi = E (∇θig(ui,t+1)) , and Π = 1− π−1 ln(1 + π).

(iii) Under HA, Pr
(

1√
P
|SP | > ε

)
→ 1, as P →∞.

Proof: For the proof of part (ii), see the Appendix.

Note that under the null, the least favorable case arises when E (g(u1,t+1)− g(uk,t+1)) = 0, ∀ k. In this

case, the distribution of SP coincides with that of maxk=2,...,m

(
SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1))

)
,

so that SP has the above limiting distribution, which is a functional of a Gaussian process with a covariance

kernel that reflects uncertainty due to dynamic misspecification and possibly to parameter estimation error.

Additionally, when all competitor models are worse than the benchmark, the statistic diverges to minus

infinity at rate
√

P . Finally, when only some competitor models are worse than the benchmark, the limiting

distribution provides a conservative test, as SP will always be smaller than

maxk=2,...,m

(
SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1))

)
, asymptotically. Of course, when HA holds, the

statistic diverges to plus infinity at rate
√

P.

We now outline how to obtain valid asymptotic critical values for the limiting distribution on the RHS

of (37), regardless whether the contribution of parameter estimation error vanishes or not. As noted above,

such critical values are conservative, except for the least favorable case under the null. We later outline

two ways of alleviating this problem, one suggested by Hansen (2004a) and another, based on subsampling,

suggested by Linton, Maasoumi and Whang (2004).

Recall that the maximum of a Gaussian process is not Gaussian in general, so that standard critical values

cannot be used to conduct inference on SP . As pointed out by White (2000), one possibility in this case is

to first estimate the covariance structure and then draw 1 realization from an (m − 1)-dimensional normal

with covariance equal to the estimated covariance structure. From this realization, pick the maximum value

over k = 2, . . . , m. Repeat this a large number of times, form an empirical distribution using the maximum

values over k = 2, . . . , m, and obtain critical values in the usual way. A drawback to this approach is that we

need to rely on an estimator of the covariance structure based on the available sample of observations, which

in many cases may be small relative to the number of models being compared. Furthermore, whenever

the forecasting errors are not martingale difference sequences (as in our context), heteroskedasticity and

autocorrelation consistent covariance matrices should be estimated, and thus a lag truncation parameter

must be chosen. Another approach which avoids these problems involves using the stationary bootstrap of

Politis and Romano (1994). This is the approach used by White (2000). In general, bootstrap procedures
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have been shown to perform well in a variety of finite sample contexts (see e.g. Diebold and Chen (1996)).

White’s suggested bootstrap procedure is valid for the case in which parameter estimation error vanishes

asymptotically. His bootstrap statistic is given by:

S∗∗P = max
k=2,...m

|S∗∗P (1, k)| , (38)

where

S∗∗P (1, k) =
1√
P

T−1∑

t=R

((
g(û∗∗1,t+1)− g(û1,t+1)

)− (
g(û∗∗k,t+1)− g(ûk,t+1)

))
,

and û∗∗k,t+1 = y∗∗t+1−κk(Z∗∗,t, θ̂k,t), where y∗∗t+1 Z∗∗,t denoted the resampled series. White uses the stationary

bootstrap by Politis and Romano (1994), but both the block bootstrap and stationary bootstrap deliver

the same asymptotic critical values. Note that the bootstrap statistics ”contains” only estimators based on

the original sample: this is because in White’s context PEE vanishes. Our approach to handling PEE is

to apply the recursive PEE bootstrap outlined in Section 3.3 in order to obtain critical values which are

asymptotically valid in the presence of non vanishing PEE.

Define the bootstrap statistic as:

S∗P = max
k=2,...,m

S∗P (1, k),

where

S∗P (1, k) =
1√
P

T−1∑

t=R

[(
g(y∗t+1 − κ1(Z∗,t, θ̃∗1,t))− g(y∗t+1 − κk(Z∗,t, θ̃∗k,t))

)

−




1
T

T−1∑

j=s

(
g(yj+1 − κ1(Zj , θ̂1,t))− g(yj+1 − κk(Zj , θ̂k,t))

)





 . (39)

Proposition 4.6: ((i) from Corollary 2.6 in White (2000), (ii) from Proposition 3 in Corradi

and Swanson (2005d)).

Let W1-W2 and WH hold.

(i) If P/R → 0 and/or g = q, then as P, R →∞

P

(
ω : sup

v∈<

∣∣∣∣P ∗R,P

(
max

k=2,...,n
S∗∗P (1, k) ≤ v

)
− P

(
max

k=2,...n
Sµ

P (1, k) ≤ v

)∣∣∣∣ > ε

)
→ 0,

(ii) Let Assumptions A1-A4 hold. Also, assume that as T →∞, l →∞, and that l
T 1/4 → 0. Then, as T, P

and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗T
(

max
k=2,...,n

S∗P (1, k) ≤ v

)
− P

(
max

k=2,...n
Sµ

P (1, k) ≤ v

)∣∣∣∣ > ε

)
→ 0,
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and

Sµ
P (1, k) = SP (1, k)−

√
PE (g(u1,t+1)− g(uk,t+1)) ,

The above result suggests proceeding in the following manner. For any bootstrap replication, compute the

bootstrap statistic, S∗P . Perform B bootstrap replications (B large) and compute the quantiles of the empirical

distribution of the B bootstrap statistics. Reject H0, if SP is greater than the (1−α)th-percentile. Otherwise,

do not reject. Now, for all samples except a set with probability measure approaching zero, SP has the same

limiting distribution as the corresponding bootstrapped statistic when E (g(u1,t+1)− g(uk,t+1)) = 0 ∀ k,

ensuring asymptotic size equal to α. On the other hand, when one or more competitor models are strictly

dominated by the benchmark, the rule provides a test with asymptotic size between 0 and α (see above

discussion). Under the alternative, SP diverges to (plus) infinity, while the corresponding bootstrap statistic

has a well defined limiting distribution, ensuring unit asymptotic power.

In summary, this application shows that the block bootstrap for recursive m-estimators can be readily

adapted in order to provide asymptotically valid critical values that are robust to parameter estimation

error as well as model misspecification. In addition, the bootstrap statistics are very easy to construct, as

no complicated adjustment terms involving possibly higher order derivatives need be included.

4.3.2 Hansen’s Approach Applied to the Reality Check

As mentioned above, the critical values obtained via the empirical distribution of S∗∗P or S∗P are upper bounds

whenever some competing models are strictly dominated by the benchmark. The issue of conservativeness

is particularly relevant when a large number of dominated (bad) models are included in the analysis. In

fact, such models do not contribute to the limiting distribution, but drive up the reality check p−values,

which are obtained for the least favorable case under the null hypothesis. The idea of Hansen (2004a)23 is to

eliminate the models which are dominated, while paying careful attention to not eliminate relevant models.

In summary, Hansen defines the statistic

S̃P = max





max
k=2,...,m

SP (1, k)
(
v̂ar 1

P

∑T−1
t=R (g(û1,t+1)− g(ûk,t+1))

)1/2
, 0





,

where v̂ar 1
P

∑T−1
t=R (g(û1,t+1)− g(ûk,t+1)) is defined in (40) below. In this way, the modified reality check

statistic does not take into account strictly dominated models.

23A careful analysis of testing in the presence of composite null hypotheses is given in Hansen (2004b).
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The idea of Hansen is also to impose the “entire” null (not only the least favorable component of the

null) when constructing the bootstrap statistic. For this reason, he adds a recentering term. Define,

µ̂k =
1
P

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1)) 1{g(û1,t+1)− g(ûk,t+1) ≥ AT,k},

where AT,k = 1
4T−1/4

√
v̂ar 1

P

∑T−1
t=R (g(û1,t+1)− g(ûk,t+1)),

with

v̂ar
1
P

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1))

= B−1
B∑

b=1

(
1
P

T−1∑

t=R

(
(g(û1,t+1)− g(ûk,t+1))−

(
g(û∗1,t+1)− g(û∗k,t+1)

))2

)
, (40)

and where B denotes the number of bootstrap replications. Hansen’s bootstrap statistic is then defined as

S̃∗P = max
k=2,...,m

1√
P

∑T−1
t=R [

(
g(û∗1,t+1)− g(û∗k,t+1)

)
− µ̂k]

(
v̂ar 1

P

∑T−1
t=R (g(û1,t+1)− g(ûk,t+1))

)1/2

P -values are then computed in terms of the number of times the statistic is smaller than the bootstrap

statistic, and H0 is rejected if, say, 1
B

∑B
b=1 1

{
S̃P ≤ S̃∗P

}
is below α. This procedure is valid, provided that

the effect of parameter estimation error vanishes.

4.3.3 The Subsampling Approach Applied to the Reality Check

The idea of subsampling is based on constructing a sequence of statistics using a (sub)sample of size b,

where b grows with the sample size, but at a slower rate. Critical values are constructed using the empirical

distribution of the sequence of statistics (see e.g. the book by Politis, Romano and Wolf (1999)). In the

current context, let the subsampling size to be equal to b, where as P →∞, b →∞ and b/P → 0. Define

SP,a,b = max
k=2,...,m

SP,a,b(1, k), a = R, ...T − b− 1

where

SP,a,b(1, k) =
1√
b

a+b−1∑
t=a

(g(û1,t+1)− g(ûk,t+1)) , k = 2, ..., m.

Compute the empirical distribution of SP,a,b using T − b − 1 statistics constructed using b observations.

The rule is to reject if we get a value for SP larger than the (1 − α)−critical value of the (subsample)

empirical distribution, and do not reject otherwise. If maxk=2,...,m E(g(u1,t+1) − g(uk,t+1)) = 0, then this

rule gives a test with asymptotic size equal to α, while if maxk=2,...,m E(g(u1,t+1) − g(uk,t+1)) < 0 (i.e. if
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all models are dominated by the benchmark), then the rule gives a test with asymptotic size equal to zero.

Finally, under the alternative, SP,a,b diverges at rate
√

b, ensuring unit asymptotic power, provided that

b/P → 0. The advantage of subsampling over the block bootstrap, is that the test then has correct size when

maxk=2,...,m E(g(u1,t+1) − g(uk,t+1)) = 0, while the bootstrap approach gives conservative critical values,

whenever E(g(u1,t+1) − g(uk,t+1)) < 0 for some k. Note that the subsampling approach is valid also in the

case of non vanishing parameter estimation error. This is because each subsample statistic properly mimics

the distribution of the actual statistic. On the other hand the subsampling approach has two drawbacks.

First, subsampling critical values are based on a sample of size b instead of P. Second, the finite sample power

may be rather low, as the subsampling quantiles under the alternative diverge at rate
√

b, while bootstrap

quantiles are bounded under both hypotheses.24

4.3.4 The False Discovery Rate Approach Applied to the Reality Check

Another way to avoid sequential testing bias is to rely on bounds, such as (modified) Bonferroni bounds.

However, a well known drawback of such an approach is that it is conservative, particularly when we compare

a large number of models. Recently, a new approach, based on the false discovery rate (FDR) has been

suggested by Benjamini and Hochberg (1995), for the case of independent statistics. Their approach has

been extended to the case of dependent statistics by Benjamini and Yekutieli (2001).25 The FDR approach

allows one to select among alternative groups of models, in the sense that one can assess which group(s)

contribute to the rejection of the null. The FDR approach has the objective of controlling the expected

number of false rejections, and in practice one computes p-values associated with m hypotheses, and orders

these p-values in increasing fashion, say P1 ≤ ... ≤ Pi ≤ .... ≤ Pm. Then, all hypotheses characterized by

Pi ≤ (1 − (i − 1)/m)α are rejected, where α is a given significance level. Such an approach, though less

conservative than Hochberg’s (1988) approach, is still conservative as it provides bounds on p-values. More

recently, Storey (2003) introduces the q−value of a test statistic, which is defined as the minimum possible

false discovery rate for the null is rejected. McCracken and Sapp (2004) implement the q−value approach for

the comparison of multiple exchange rate models. Overall, we think that a sound practical strategy could

be to first implement the above reality check type tests. These tests can then be complemented by using a

multiple comparison approach, yielding a better overall understanding concerning which model(s) contribute

24In a recent paper, Linton, Maasoumi and Whang (2004) apply the subsampling approach to the problem of testing for

stochastic dominance; a problem characterized by a composite null, as in the reality check case.
25Benjamini and Yekutieli (2001) show that the Benjamini and Hochberg (1995) FDR is valid when the statistics have positive

regression dependency. This condition allows for multivariate test statistics with a non diagonal correlation matrix.
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to the rejection of the null, if it is indeed rejected. If the null is not rejected, then one simply chooses the

benchmark model. Nevertheless, even in this case, it may not hurt to see whether some of the individual

hypotheses in their joint null hypothesis are rejected via a multiple test comparison approach.

4.4 A Predictive Accuracy Test That is Consistent Against Generic Alterna-

tives

So far we have considered tests for comparing one model against a fixed number of alternative models.

Needless to say, such tests have power only against a given alternative. However, there may clearly be some

other model with greater predictive accuracy. This is a feature of predictive ability tests which has already

been addressed in the consistent specification testing literature (see e.g. Bierens (1982, 1990), Bierens and

Ploberger (1997), de Jong (1996), Hansen (1996), Lee, Granger and White (1993), Stinchcombe and White

(1998)).

Corradi and Swanson (2002) draw on both the consistent specification and predictive accuracy testing

literatures, and propose a test for predictive accuracy which is consistent against generic nonlinear alterna-

tives, and which is designed for comparing nested models. The test is based on an out-of-sample version of

the integrated conditional moment (ICM) test of Bierens (1982,1990) and Bierens and Ploberger (1997).

Summarizing, assume that the objective is to test whether there exists any unknown alternative model

that has better predictive accuracy than a given benchmark model, for a given loss function. A typical

example is the case in which the benchmark model is a simple autoregressive model and we want to check

whether a more accurate forecasting model can be constructed by including possibly unknown (non)linear

functions of the past of the process or of the past of some other process(es).26 Although this is the case

that we focus on, the benchmark model can in general be any (non)linear model. One important feature of

this test is that the same loss function is used for in-sample estimation and out-of-sample prediction (see

Granger (1993) and Weiss (1996)).

Let the benchmark model be

yt = θ†1,1 + θ†1,2yt−1 + u1,t, (41)

where θ†1 = (θ†1,1, θ
†
1,2)

′ = arg minθ1∈Θ1 E(q(yt − θ1,1 − θ1,2yt−1)), θ1 = (θ1,1, θ1,2)′, yt is a scalar, q = g, as

the same loss function is used both for in-sample estimation and out-of-sample predictive evaluation, and
26For example, Swanson and White (1997) compare the predictive accuracy of various linear models against neural network

models using both in-sample and out-of-sample model selection criteria.

51



everything else is defined above. The generic alternative model is:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)w(Zt−1, γ) + u2,t(γ), (42)

where θ†2(γ) = (θ†2,1(γ), θ†2,2(γ), θ†2,3(γ))′ = arg minθ2∈Θ2 E(q(yt − θ2,1 − θ2,2yt−1 − θ2,3w(Zt−1, γ))), θ2(γ) =

(θ2,1(γ), θ2,2(γ), θ2,3(γ))′, and θ2 ∈ Θ2, where Γ is a compact subset of <d, for some finite d. The alternative

model is called “generic” because of the presence of w(Zt−1, γ), which is a generically comprehensive function,

such as Bierens’ exponential, a logistic, or a cumulative distribution function (see e.g. Stinchcombe and

White (1998) for a detailed explanation of generic comprehensiveness). One example has w(Zt−1, γ) =

exp(
∑s

i=1 γiΦ(Xt−i)), where Φ is a measurable one to one mapping from < to a bounded subset of <, so

that here Zt = (Xt, ..., Xt−s+1), and we are thus testing for nonlinear Granger causality. The hypotheses of

interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0 (43)

HA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (44)

Clearly, the reference model is nested within the alternative model, and given the definitions of θ†1 and θ†2(γ),

the null model can never outperform the alternative. For this reason, H0 corresponds to equal predictive

accuracy, while HA corresponds to the case where the alternative model outperforms the reference model, as

long as the errors above are loss function specific forecast errors. It follows that H0 and HA can be restated

as:

H0 : θ†2,3(γ) = 0 versus HA : θ†2,3(γ) 6= 0,

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Now, given the definition of θ†2(γ), note that

E


g′(yt+1 − θ†2,1(γ)− θ†2,2(γ)yt − θ†2,3(γ)w(Zt, γ))×




−1

−yt

−w(Zt, γ)





 = 0,

where g′ is defined as above. Hence, under H0 we have that θ†2,3(γ) = 0, θ†2,1(γ) = θ†1,1, θ†2,2(γ) = θ†1,2, and

E(g′(u1,t+1)w(Zt, γ)) = 0. Thus, we can once again restate H0 and HA as:

H0 : E(g′(u1,t+1)w(Zt, γ)) = 0 versus HA : E(g′(u1,t+1)w(Zt, γ)) 6= 0, (45)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Finally, define û1,t+1 = yt+1 −
(

1 yt

)
θ̂1,t.

The test statistic is:

MP =
∫

Γ

mP (γ)2φ(γ)dγ, (46)
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and

mP (γ) =
1

P 1/2

T−1∑

t=R

g′(û1,t+1)w(Zt, γ), (47)

where
∫
Γ

φ(γ)dγ = 1, φ(γ) ≥ 0, and φ(γ) is absolutely continuous with respect to Lebesgue measure. In the

sequel, we need Assumptions NV1-NV4, which are listed in Appendix A.

Theorem 4.7 (from Theorem 1 in Corradi and Swanson (2002)): Let NV1-NV3 hold. Then, the

following results hold:

(i) Under H0,

MP =
∫

Γ

mP (γ)2φ(γ)dγ
d→

∫

Γ

Z(γ)2φ(γ)dγ,

where mP (γ) is defined in equation (47) and Z is a Gaussian process with covariance kernel given by:

K(γ1, γ2) = Sgg(γ1, γ2) + 2Πµ′γ1
A†ShhA†µγ2 + Πµ′γ1

A†Sgh(γ2)

+Πµ′γ2
A†Sgh(γ1),

with µγ1 = E(∇θ1(g
′
t+1(u1,t+1)w(Zt, γ1))), A† = (−E(∇2

θ1
q1(u1,t)))−1,

Sgg(γ1, γ2) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)g′(u1,s+j+1)w(Zs+j , γ2)),

Shh =
∑∞

j=−∞E(∇θ1q1(u1,s)∇θ1q1(u1,s+j)′),

Sgh(γ1) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)∇θ1q1(u1,s+j)′), and γ, γ1, and γ2 are generic elements of Γ.

Π = 1− π−1 ln(1 + π), for π > 0 and Π = 0 for π = 0, zq = (z1, ..., zq)′, and γ, γ1, γ2 are generic elements of

Γ.

(ii) Under HA, for ε > 0 and δ < 1,

lim
P→∞

Pr
(

1
P δ

∫

Γ

mP (γ)2φ(γ)dγ > ε

)
= 1.

Thus, the limiting distribution under H0 is a Gaussian process with a covariance kernel that reflects both

the dependence structure of the data and, for π > 0, the effect of parameter estimation error. Hence, critical

values are data dependent and cannot be tabulated.

Valid asymptotic critical values have been obtained via a conditional P-value approach by Corradi and

Swanson (2002, Theorem 2). Basically, they have extended Inoue’s (2001) to the case of non vanishing

parameter estimation error. In turn, Inoue (2001) has extended this approach to allow for non-martingale

difference score functions. A drawback of the conditional P-values approach is that the simulated statistic is

of order OP (l), where l plays the same role of the block length in the block bootstrap, under the alternative.
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This may lead to a loss in power, specially with small and medium size samples. A valid alternative is

provided by the block bootstrap for recursive estimation scheme.

Define,

θ̃∗1,t = (θ̃∗1,1,t, θ̃
∗
1,2,t)

′ = arg min
θ1∈Θ1

1
t

t∑

j=2

[g(y∗j − θ1,1 − θ1,2y
∗
j−1)

−θ′1
1
T

T−1∑

i=2

∇θg(yi − θ̂1,1,t − θ̂1,2,tyi−1)] (48)

Also, define ũ∗1,t+1 = y∗t+1 −
(

1 y∗t
)

θ̃∗1,t. The bootstrap test statistic is:

M∗
P =

∫

Γ

m∗
P (γ)2φ(γ)dγ,

where,

m∗
P (γ) =

1
P 1/2

T−1∑

t=R

(
g′

(
y∗t+1 −

(
1 y∗t

)
θ̃∗1,t

)
w(Z∗,t, γ)− 1

T

T−1∑

i=1

g′
(
yi+1 −

(
1 yi

)
θ̂1,t

)
w(Zi, γ)

)

(49)

Theorem 4.8: (from Proposition 5 in Corradi and Swanson (2005d))

Let Assumptions NV1-NV4 hold. Also, assume that as T →∞, l →∞, and that l
T 1/4 → 0. Then, as T, P

and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗T
(∫

Γ

m∗
P (γ)2φ(γ)dγ ≤ v

)
− P

(∫

Γ

mµ
P (γ)2φ(γ)dγ ≤ v

)∣∣∣∣ > ε

)
→ 0,

where mµ
P (γ) = mP (γ)−√PE (g′(u1,t+1)w(Zt, γ)) .

The above result suggests proceeding the same way as in the first application. For any bootstrap repli-

cation, compute the bootstrap statistic, M∗
P . Perform B bootstrap replications (B large) and compute the

percentiles of the empirical distribution of the B bootstrap statistics. Reject H0 if MP is greater than the

(1 − α)th-percentile. Otherwise, do not reject. Now, for all samples except a set with probability measure

approaching zero, MP has the same limiting distribution as the corresponding bootstrap statistic under H0,

thus ensuring asymptotic size equal to α. Under the alternative, MP diverges to (plus) infinity, while the

corresponding bootstrap statistic has a well defined limiting distribution, ensuring unit asymptotic power.
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5 Comparison of (Multiple) Misspecified Predictive Density Mod-

els

In Section 2 we outlined several tests for the null hypothesis of correct specification of the conditional

distribution (some of which allowed for dynamic misspecification). Nevertheless, and as discussed above, most

models are approximations of reality and therefore they are typically misspecified, and not just dynamically.

In Section 4, we have seen that much of the recent literature on evaluation of point forecast models has

already acknowledged the fact that models are typically misspecified. The purpose of this section is to merge

these two strands of the literature and discuss recent tests for comparing misspecified conditional distribution

models.

5.1 The Kullback-Leibler Information Criterion Approach

A well known measure of distributional accuracy is the Kullback-Leibler Information Criterion (KLIC),

according to which we choose the model which minimizes the KLIC (see e.g. White (1982), Vuong (1989),

Giacomini (2002), and Kitamura (2002)). In particular, choose model 1 over model 2, if

E(log f1(Yt|Zt, θ†1)− log f2(Yt|Zt, θ†2)) > 0.

For the iid case, Vuong (1989) suggests a likelihood ratio test for choosing the conditional density model

that is closer to the “true” conditional density in terms of the KLIC. Giacomini (2002) suggests a weighted

version of the Vuong likelihood ratio test for the case of dependent observations, while Kitamura (2002)

employs a KLIC based approach to select among misspecified conditional models that satisfy given moment

conditions.27 Furthermore, the KLIC approach has recently been employed for the evaluation of dynamic

stochastic general equilibrium models (see e.g. Schorfheide (2000), Fernandez-Villaverde and Rubio-Ramirez

(2004), and Chan, Gomes and Schorfheide (2002)). For example, Fernandez-Villaverde and Rubio-Ramirez

(2004) show that the KLIC-best model is also the model with the highest posterior probability.

The KLIC is a sensible measure of accuracy, as it chooses the model which on average gives higher

probability to events which have actually occurred. Also, it leads to simple likelihood ratio type tests which

have a standard limiting distribution and are not affected by problems associated with accounting for PEE.

However, it should be noted that if one is interested in measuring accuracy over a specific region, or in

measuring accuracy for a given conditional confidence interval, say, this cannot be done in as straightforward

27Of note is that White (1982) shows that quasi maximum likelihood estimators minimize the KLIC, under mild conditions.
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manner using the KLIC. For example, if we want to evaluate the accuracy of different models for approxi-

mating the probability that the rate of inflation tomorrow, given the rate of inflation today, will be between

0.5% and 1.5%, say, we can do so quite easily using the square error criterion, but not using the KLIC.

5.2 A Predictive Density Accuracy Test for Comparing Multiple Misspecified

Models

Corradi and Swanson (2005b,c) introduce a measure of distributional accuracy, which can be interpreted as

a distributional generalization of mean square error. In addition, Corradi and Swanson (2005c) apply this

measure to the problem of selecting amongst multiple misspecified predictive density models. In this section

we discuss these contributions to the literature.

5.2.1 A Mean Square Error Measure of Distributional Accuracy

As usual, consider forming parametric conditional distributions for a scalar random variable, yt, given Zt,

where Zt = (yt−1, ..., yt−s1 , Xt, ..., Xt−s2+1) with s1, s2 finite. Define the group of conditional distribution

models from which one is to select a “best” model as F1(u|Zt, θ†1), ..., Fm(u|Zt, θ†m), and define the true

conditional distribution as

F0(u|Zt, θ0) = Pr(yt+1 ≤ u|Zt).

Hereafter, assume that θ†i ∈ Θi, where Θi is a compact set in a finite dimensional Euclidean space, and

let θ†i be the probability limit of a quasi maximum likelihood estimator (QMLE) of the parameters of the

conditional distribution under model i. If model i is correctly specified, then θ†i = θ0. If m > 2, follow White

(2000). Namely, choose a particular conditional distribution model as the “benchmark” and test the null

hypothesis that no competing model can provide a more accurate approximation of the “true” conditional

distribution, against the alternative that at least one competitor outperforms the benchmark model. Needless

to say, pairwise comparison of alternative models, in which no benchmark need be specified, follows as a

special case. In this context, measure accuracy using the above distributional analog of mean square error.

More precisely, define the mean square (approximation) error associated with model i, i = 1, ..., m, in terms

of the average over U of E

((
Fi(u|Zt, θ†i )− F0(u|Zt, θ0)

)2
)

, where u ∈ U , and U is a possibly unbounded

set on the real line, and the expectation is taken with respect to the conditioning variables. In particular,

model 1 is more accurate than model 2, if

∫

U

E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2

−
(
F2(u|Zt, θ†2)− F0(u|Zt, θ0)

)2
)

φ(u)du < 0,
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where
∫

U
φ(u)du = 1 and φ(u) ≥ 0, for all u ∈ U ⊂ <. This measure essentially integrates over different

quantiles of the conditional distribution. For any given evaluation point, this measure defines a norm and

it implies a standard goodness of fit measure. Note, that this measure of accuracy leads to straightforward

evaluation of distributional accuracy over a given region of interest, as well as to straightforward evaluation

of specific quantiles.

A conditional confidence interval version of the above condition which is more natural to use in applica-

tions involving predictive interval comparison follows immediately, and can be written as

E

(((
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

−
((

F2(u|Zt, θ†2)− F2(u|Zt, θ†2)
)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

)
≤ 0.

5.2.2 The Tests Statistic and Its Asymptotic Behavior

In this section, F1(·|·, θ†1) is taken as the benchmark model, and the objective is to test whether some

competitor model can provide a more accurate approximation of F0(·|·, θ0) than the benchmark. The null

and the alternative hypotheses are:

H0 : max
k=2,...,m

∫

U

E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2

−
(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du ≤ 0

(50)

versus

HA : max
k=2,...,m

∫

U

E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2

−
(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du > 0,

(51)

where φ(u) ≥ 0 and
∫

U
φ(u) = 1, u ∈ U ⊂ <, U possibly unbounded. Note that for a given u, we compare

conditional distributions in terms of their (mean square) distance from the true distribution. We then average

over U. As discussed above, a possibly more natural version of the above hypotheses is in terms of conditional

confidence intervals evaluation, so that the objective is to “approximate” Pr(u ≤ Yt+1 ≤ u|Zt), and hence

to evaluate a region of the predictive density. In that case, the null and alternative hypotheses can be stated

as:

H ′
0 : max

k=2,...,m
E

(((
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

−
((

Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k)
)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

)
≤ 0.

versus

H ′
A : max

k=2,...,m
E

(((
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2
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−
((

Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k)
)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

)
> 0.

Alternatively, if interest focuses on testing the null of equal accuracy of two conditional distribution models,

say F1 and Fk, we can simply state the hypotheses as:

H ′′
0 :

∫

U

E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2

−
(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du = 0

versus

H ′′
A :

∫

U

E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2

−
(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du 6= 0,

or we can write the predictive density (interval) version of these hypotheses.

Needless to say, we do not know F0(u|Zt). However, it is easy to see that

E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2

−
(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

= E

((
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

)2
)
− E

((
1{yt+1 ≤ u} − Fk(u|Zt, θ†k)

)2
)

, (52)

where the RHS of (52) does not require the knowledge of the true conditional distribution.

The intuition behind equation (52) is very simple. First, note that for any given u, E(1{yt+1 ≤ u}|Zt) =

Pr(yt+1 ≤ u|Zt) = F0(u|Zt, θ0). Thus, 1{yt+1 ≤ u} − Fk(u|Zt, θ†k) can be interpreted as an “error” term

associated with computation of the conditional expectation under Fi. Now, j = 1, ...,m :

µ2
k(u) = E

((
1{yt+1 ≤ u} − Fk(u|Zt, θ†k)

)2
)

= E

(((
1{yt+1 ≤ u} − F0(u|Zt, θ0)

)−
(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

))2
)

= E
(
(1{yt+1 ≤ u} − F0(u|Zt, θ0))2

)
+ E

((
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

,

given that the expectation of the cross product is zero (which follows because 1{yt+1 ≤ u} − F0(u|Zt, θ0) is

uncorrelated with any measurable function of Zt). Therefore,

µ2
1(u)− µ2

k(u) = E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
)
− E

((
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

.

(53)

The statistic of interest is

ZP,j = max
k=2,...,m

∫

U

ZP,u,j(1, k)φ(u)du, j = 1, 2 (54)
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where for j = 1 (rolling estimation scheme),

ZP,u,1(1, k) =
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,t,rol)

)2

−
(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t,rol)

)2
)

and for j = 2 (recursive estimation scheme),

ZP,u,2(1, k) =
1√
P

T−1∑

t=R

((
1{yt+1 ≤ u} − F1(u|Zt, θ̂1,rec)

)2

−
(
1{yt+1 ≤ u} − Fk(u|Zt, θ̂k,t,rec)

)2
)

,

(55)

where θ̂i,t,rol and θ̂i,t,rec are defined as in (20) and in (19) in Section 3.1.

As shown above and in Corradi and Swanson (2005c), the hypotheses of interest can be restated as:

H0 : max
k=2,...,m

∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du ≤ 0

versus

HA : max
k=2,...,m

∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du > 0,

where µ2
i (u) = E

((
1{yt+1 ≤ u} − Fi(u|Zt, θ†i )

)2
)

. In the sequel, we require Assumptions MD1-MD4,

which are listed in Appendix A.

Proposition 5.1 (from Proposition 1 in Corradi and Swanson (2005b)): Let MD1-MD4 hold.

Then,

max
k=2,...,m

∫

U

(
ZP,u,j(1, k)−

√
P

(
µ2

1(u)− µ2
k(u)

))
φU (u)du

d→ max
k=2,...,m

∫

U

Z1,k,j(u)φU (u)du,

where Z1,k,j(u) is a zero mean Gaussian process with covariance Ck,j(u, u′) (j = 1 corresponds to rolling

and j = 2 to recursive estimation schemes), equal to:

E




∞∑

j=−∞

((
1{ys+1≤ u} − F 1(u|Zs

, θ†1)
)2

− µ2
1(u)

)((
1{ys+j+1≤ u′} − F 1(u

′|Zs+j
,θ†1)

)2

− µ2
1(u

′)
)



+E




∞∑

j=−∞

((
1{ys+1≤ u} − F k(u|Zs

,θ†k)
)2

− µ2
k(u)

)((
1{ys+j+1≤ u′} − F k(u′|Zs+j

,θ†k)
)2

− µ2
k(u′)

)


−2E




∞∑

j=−∞

((
1{ys+1≤ u} − F 1(u|Zs

,θ†1)
)2

− µ2
1(u)

)((
1{ys+j+1≤ u′} − F k(u′|Zs+j

,θ†k)
)2

− µ2
k(u′)

)


+4Πjmθ†1
(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)∇θ1
ln f1(ys+j+1|Zs+j

, θ†1)
′


A(θ†1)mθ†1

(u′)
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+4Πjmθ†
k
(u)′A(θ†

k
)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs
, θ†k)∇θk

ln fk(ys+j+1|Zs+j
, θ†k)′


A(θ†k)mθ†

k
(u′)

−4Πjmθ†1
(u, )′A(θ†

1
)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)∇θk
ln fk(ys+j+1|Zs+j

, θ†k)′

A(θ†k)mθ†

k
(u′)

−4CΠjmθ†1
(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)
((

1{ys+j+1≤ u} − F 1(u|Zs+j
,θ†1)

)2

− µ2
1(u)

)


+4CΠjmθ†1
(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)
((

1{ys+j+1≤ u} − F k(u|Zs+j
,θ†k)

)2

− µ2
k(u)

)


−4CΠjmθ†
k
(u)′A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs
, θ†k)′

((
1{ys+j+1≤ u} − F k(u|Zs+j

,θ†k)
)2

− µ2
k(u)

)


+4CΠjmθ†
k
(u)′A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs
, θ†k)′

((
1{ys+j+1≤ u} − F 1(u|Zs+j

,θ†1)
)2

− µ2
1(u)

)
 ,

(56)

with mθ†
i
(u)′ = E

(
∇θiFi(u|Zt, θ†i )

′
(
1{yt+1 ≤ u} − Fi(u|Zt, θ†i )

))
and

A(θ†i ) = A†i =
(
E

(
−∇2

θi
ln fi(yt+1|Zt, θ†i )

))−1

, and for j = 1 and P ≤ R, Π1 =
(
π − π2

3

)
, CΠ1 = π

2 ,

and for P > R, Π1 =
(
1− 1

3π

)
and CΠ1 =

(
1− 1

2π

)
. Finally, for j = 2, Π2 = 2

(
1− π−1 ln(1 + π)

)
and

CΠ2 = 0.5Π2.

From this proposition, note that when all competing models provide an approximation to the true

conditional distribution that is as (mean square) accurate as that provided by the benchmark (i.e. when
∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, ∀k), then the limiting distribution is a zero mean Gaussian process with

a covariance kernel which is not nuisance parameter free. Additionally, when all competitor models are

worse than the benchmark, the statistic diverges to minus infinity at rate
√

P . Finally, when only some

competitor models are worse than the benchmark, the limiting distribution provides a conservative test, as

ZP will always be smaller than maxk=2,...,m

∫
U

(
ZP,u(1, k)−√P

(
µ2

1(u)− µ2
k(u)

))
φ(u)du, asymptotically.

Of course, when HA holds, the statistic diverges to plus infinity at rate
√

P .

For the case of evaluation of multiple conditional confidence intervals, consider the statistic:

VP,τ = max
k=2,...,m

VP,u,u,τ (1, k) (57)

60



where

VP,u,u,τ (1, k) =
1√
P

T−1∑

t=R

((
1{u ≤ yt+1 ≤ u} −

(
F1(u|Zt, θ̂1,t,τ )− F1(u|Zt, θ̂1,t,τ )

))2

−
(
1{u ≤ yt+1 ≤ u} −

(
Fk(u|Zt, θ̂k,t,τ )− Fk(u|Zt, θ̂k,t,τ )

))2
)

(58)

where s = max{s1, s2}, τ = 1, 2, θ̂k,t,τ = θ̂k,t,rol for τ = 1, and θ̂k,t,τ = θ̂k,t,rec for τ = 2.

We then have the following result.

Proposition 5.2 (from Proposition 1b in Corradi and Swanson (2005b)).

Let Assumptions MD1-MD4 hold. Then for τ = 1,

max
k=2,...,m

(
VP,u,u,τ (1, k)−

√
P

(
µ2

1 − µ2
k

)) d→ max
k=2,...,m

VP,k,τ (u, u),

where VP,k,τ (u, u) is a zero mean normal random variable with covariance ckk = vkk + pkk + cpkk, where vkk

denotes the component of the long-run variance matrix we would have in absence of parameter estimation

error, pkk denotes the contribution of parameter estimation error and and cpkk denotes the covariance across

the two components. In particular:

vkk = E

∞∑

j=−∞

(((
1{u ≤ ys+1 ≤ u} −

(
F1(u|Zs, θ†1)− F1(u|Zs, θ†1)

))2

− µ2
1

)

((
1{u ≤ ys+1+j ≤ u} −

(
F1(u|Zs+j , θ†1)− F1(u|Zs+j , θ†1)

))2

− µ2
1

))
(59)

+E

∞∑

j=−∞

(((
1{u ≤ ys+1 ≤ u} −

(
Fk(u|Zs, θ†k)− Fk(u|Zs, θ†k)

))2

− µ2
k

)

((
1{u ≤ ys+1+j ≤ u} −

(
Fk(u|Zs+j , θ†k)− Fk(u|Zs+j , θ†k)

))2

− µ2
k

))
(60)

−2E

∞∑

j=−∞

(((
1{u ≤ ys+1 ≤ u} −

(
F1(u|Zs, θ†1)− F1(u|Zs, θ†1)

))2

− µ2
1

)

((
1{u ≤ ys+1+j ≤ u} −

(
Fk(u|Zs+j , θ†k)− Fk(u|Zs+j , θ†k)

))2

− µ2
k

))
(61)

pkk = 4mθ†1
′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)∇θ1
ln f1(ys+1+j |Zs+j

, θ†1)
′


A(θ†1)mθ†1

(62)

+4m′
θ†

k

A(θ†
k
)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs
, θ†k)∇θk

ln fk(ys+1+j |Zs+j
, θ†k)′


A(θ†k)mθ†

k
(63)
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−8m′
θ†1

A(θ†
1
)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)∇θk
ln fk(ys+1+j |Zs+j

, θ†k)′

 A(θ†k)mθ†

k
(64)

cpkk = −4m′
θ†1

A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs

, θ†1)

((
1{u ≤ ys+j ≤ u} −

(
F1(u|Zs+j , θ†1)− F1(u|Zs+j , θ†1)

))2

− µ2
1

))

+8mθ†1
′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(ys|Zs

, θ†1)

((
1{u ≤ ys+1+j ≤ u} −

(
Fk(u|Zs+j

, θ†k)− F k(u|Zs+j
, θ†k)

))2

− µ2
k

))

−4m′
θ†

k

A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(ys+1|Zs
, θ†k)

((
1{u ≤ ys+j ≤ u} −

(
Fk(u|Zs+j

, θ†k)− F k(u|Zs+j
, θ†k)

))2

− µ2
k

)


with mθ†
i

′ = E
(
∇θi

(
Fi(u|Zt, θ†i )− Fi(u|Zt, θ†i )

)(
1{u ≤ yt ≤ u} −

(
Fi(u|Zt, θ†i )− Fi(u|Zt, θ†i )

)))
and A(θ†i ) =

(
E

(
− ln∇2

θi
fi(yt|Zt, θ†i )

))−1

. An analogous result holds for the case where τ = 2, and is omitted for the

sake of brevity.

5.2.3 Bootstrap Critical Values for the Density Accuracy Test

Turning now to the construction of critical values for the above test, note that using the bootstrap sampling

procedures defined in Sections 3.4.1 and 3.5.1 or in Sections 3.4.2 and 3.5.2, one first constructs appropriate

bootstrap samples. Thereafter, form bootstrap statistics as follows

Z∗P,τ = max
k=2,...,m

∫

U

Z∗P,u,τ (1, k)φ(u)du,

where for τ = 1 (rolling estimation scheme), and for τ = 2 (recursive estimation scheme):

Z∗P,u,τ (1, k) =
1√
P

T−1∑

t=R

(((
1{y∗t+1 ≤ u} − F1(u|Z∗,t, θ̃∗1,t,τ )

)2

−
(
1{y∗t+1 ≤ u} − Fk(u|Z∗,t, θ̃∗k,t,τ )

)2
)

− 1
T

T−1∑

j=s+1

((
1{yj+1 ≤ u} − F1(u|Zi, θ̂1,t,τ )

)2

−
(
1{yj+1 ≤ u} − Fk(u|Zj , θ̂k,t,τ )

)2
)



Note that each bootstrap term, say 1{y∗t+1 ≤ u} − Fi(u|Z∗,t, θ̃∗i,t,τ ), t ≥ R, is recentered around the (full)

sample mean 1
T

∑T−1
j=s+1

(
1{yj+1 ≤ u} − Fi(u|Zi, θ̂i,t,τ )

)2

. This is necessary as the bootstrap statistic is

constructed using the last P resampled observations, which in turn have been resampled from the full

sample. In particular, this is necessary regardless of the ratio P/R. If P/R → 0, then we do not need to
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mimic parameter estimation error, and so could simply use θ̂1,t,τ instead of θ̃∗1,t,τ , but we still need to recenter

any bootstrap term around the (full) sample mean.

For the confidence interval case, define:

V ∗
P,τ = max

k=2,...,m
V ∗

P,u,u,τ (1, k)

V ∗
P,u,u,τ (1, k) =

1√
P

T−1∑

t=R

(((
1{u ≤ y∗t+1 ≤ u} −

(
F1(u|Z∗t, θ̃∗1,t,τ )− F1(u|Z∗t, θ̃∗1,t,τ )

))2

−
(
1{u ≤ y∗t+1 ≤ u} −

(
Fk(u|Z∗t, θ̃∗k,t,τ )− F1(u|Z∗t, θ̃∗k,t,τ )

))2
)

− 1
T

T−1∑

j=s+1

((
1{u ≤ yi+1 ≤ u} −

(
F1(u|Zj , θ̂1,t,τ )− F1(u|Zj , θ̂1,t,τ )

))2

−
(
1{u ≤ yj+1 ≤ u} −

(
Fk(u|Zj , θ̂k,t,τ )− F1(u|Zj , θ̂k,t,τ )

))2
))

,

where, as usual, τ = 1, 2. The following results then hold.

Proposition 5.3 (from Proposition 6 in Corradi and Swanson (2005b)):

Let Assumptions MD1-MD4 hold. Also, assume that as T → ∞, l → ∞, and that l
T 1/4 → 0. Then, as

T, P and R →∞, for τ = 1, 2 :

P

(
ω : sup

v∈<

∣∣∣∣P ∗T
(

max
k=2,...,m

∫

U

Z∗P,u,τ (1, k)φ(u)du ≤ v

)
− P

(
max

k=2,...,m

∫

U

Zµ
P,u,τ (1, k)φ(u)du ≤ v

)∣∣∣∣ > ε

)
→ 0,

where Zµ
P,u,τ (1, k) = ZP,u,τ (1, k) −√P

(
µ2

1(u)− µ2
k(u)

)
, and where µ2

1(u) − µ2
k(u) is defined as in equation

(53).

Proposition 5.4 (from Proposition 7 in Corradi and Swanson (2005b)):

Let Assumptions MD1-MD4 hold. Also, assume that as T → ∞, l → ∞, and that l
T 1/4 → 0. Then, as

T, P and R →∞, for τ = 1, 2 :

P

(
ω : sup

v∈<

∣∣∣∣P ∗T
(

max
k=2,...,m

V ∗
P,u,u,τ (1, k) ≤ v

)
− P

(
max

k=2,...,m
V ∗

P,u,u,τ (1, k) ≤ v

)∣∣∣∣ > ε

)
→ 0,

where V µ
P,j(1, k) = VP,j(1, k)−√P

(
µ2

1 − µ2
k

)
, and where µ2

1 − µ2
k is defined as in equation (??).

The above results suggest proceeding in the following manner. For brevity, just consider the case of Z∗P,τ .

For any bootstrap replication, compute the bootstrap statistic, Z∗P,τ . Perform B bootstrap replications (B

large) and compute the quantiles of the empirical distribution of the B bootstrap statistics. Reject H0, if

ZP,τ is greater than the (1 − α)th-percentile. Otherwise, do not reject. Now, for all samples except a set
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with probability measure approaching zero, ZP,τ has the same limiting distribution as the corresponding

bootstrapped statistic when E
(
µ2

1(u)− µ2
k(u)

)
= 0, ∀ k, ensuring asymptotic size equal to α. On the other

hand, when one or more competitor models are strictly dominated by the benchmark, the rule provides a

test with asymptotic size between 0 and α. Under the alternative, ZP,τ diverges to (plus) infinity, while the

corresponding bootstrap statistic has a well defined limiting distribution, ensuring unit asymptotic power.

From the above discussion, we see that the bootstrap distribution provides correct asymptotic critical values

only for the least favorable case under the null hypothesis; that is, when all competitor models are as good as

the benchmark model. When maxk=2,...,m

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du <

0 for some k, then the bootstrap critical values lead to conservative inference. An alternative to our bootstrap

critical values in this case is the construction of critical values based on subsampling (see e.g. Politis, Romano

and Wolf (1999), Ch. 3). Heuristically, construct T − 2bT statistics using subsamples of length bT , where

bT /T → 0. The empirical distribution of these statistics computed over the various subsamples properly

mimics the distribution of the statistic. Thus, subsampling provides valid critical values even for the case

where maxk=2,...,m

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for some k. This is

the approach used by Linton, Maasoumi and Whang (2003), for example, in the context of testing for

stochastic dominance. Needless to say, one problem with subsampling is that unless the sample is very

large, the empirical distribution of the subsampled statistics may yield a poor approximation of the limiting

distribution of the statistic. An alternative approach for addressing the conservative nature of our bootstrap

critical values is suggested in Hansen (2001). Hansen’s idea is to recenter the bootstrap statistics using the

sample mean, whenever the latter is larger than (minus) a bound of order
√

2T log log T . Otherwise, do not

recenter the bootstrap statistics. In the current context, his approach leads to correctly sized inference when

maxk=2,...,m

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for some k. Additionally, his

approach has the feature that if all models are characterized by a sample mean below the bound, the null is

“accepted” and no bootstrap statistic is constructed.

5.2.4 Empirical Illustration - Forecasting Inflation

In this section we summarize the results of a simple stylized macroeconomic example from Corradi and

Swanson (2005b) to illustrate how to apply the predictive density accuracy test discussed in the section

5.2.2. In particular, assume that the objective is to select amongst 4 different predictive density models

for inflation, including a linear AR model and an ARX model, where the ARX model differs from the AR

model only through the inclusion of unemployment as an additional explanatory variable. Assume also that
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2 versions of each of these models are used, one assuming normality, and one assuming that the conditional

distribution being evaluated follows a Student’s t distribution with 5 degrees of freedom. Further, assume

that the number of lags used in these models is selected via use of either the SIC or the AIC. This example

can thus be thought of as an out-of-sample evaluation of simplified Phillips curve type models of inflation.

The data used were obtained from the St. Louis Federal Reserve website. For unemployment, we use

the seasonally adjusted civilian unemployment rate. For inflation, we use the 12th difference of the log of

the seasonally adjusted CPI for all urban consumers, all items. Both data series were found to be I(0),

based on application of standard augmented Dickey-Fuller unit root tests. All data are monthly, and the

sample period is 1954:1-2003:12. This 600 observation sample was broken into two equal parts for test

construction, so that R = P = 300. Additionally, all predictions were 1-step ahead, and were constructed

using the recursive estimation scheme discussed above.28 Bootstrap percentiles were calculated based on

100 bootstrap replications, and we set u ∈ U ⊂ [Infmin, Infmax], where Inft is the inflation variable being

examined, and 100 equally spaced values for u across this range were used (i.e. φ(u) is the uniform density).

Lags were selected as follows. First, and using only the initial R sample observations, autoregressive lags

were selected according to both the SIC and the AIC. Thereafter, fixing the number of autoregressive lags,

the number of lags of unemployment (Unemt) was chosen, again using each of the SIC and the AIC. This

framework enabled us to compare various permutations of 4 different models using the ZP,2 statistic, where

ZP,2 = max
k=2,...,4

∫

U

ZP,u,2(1, k)φ(u)du

and

ZP,u,2(1, k) =
1√
P

T−1∑

t=R

((
1{Inft+1 ≤ u} − F1(u|Zt, θ̂1,t,rec)

)2

−
(
1{Inft+1 ≤ u} − Fk(u|Zt, θ̂k,t,rec)

)2
)

,

as discussed above. In particular, we consider (i) a comparison of AR and ARX models, with lags selected

using the SIC; (ii) a comparison of AR and ARX models , with lags selected using the AIC; (iii) a comparison

of AR models, with lags selected using either the SIC or the AIC; and (iv) a comparison of ARX models,

with lags selected using either the SIC or the AIC. Recalling that each model is specified with either a

Gaussian or Student’s t error density,we thus have 4 applications, each of which involves the comparison of

4 different predictive density models. Results are gathered in Tables 1-4. The tables contain: mean square

forecast errors - MSFE (so that our density accuracy results can be compared with model rankings based on

conditional mean evaluation); lags used;
∫

U
1√
P

∑T−1
t=R

(
1{Inft+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2

φ(u)du = DMSFE

28Results based on the rolling estimation scheme have been tabulated, and are available upon request from the authors.
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(for “ranking” based on our density type mean square error measures), and {50,60,70,80,90} split and full

sample bootstrap percentiles for block lengths of {3,5,10,15,20} observations (for conducting inference using

ZP,2).

A number of results emerge, upon inspection of the tables. For example, notice that lower MSFEs

are uniformly associated with models that have lags selected via the AIC. This rather surprising result

suggests that parsimony is not always the best “rule of thumb” for selecting models for predicting conditional

mean, and is a finding in agreement with one of the main conclusions of Marcellino, Stock and Watson

(2005). Interestingly, though, the density based mean square forecast error measure that we consider (i.e.

DMSFE) is not generally lower when the AIC is used. This suggests that the choice of lag selection

criterion is sensitive to whether individual moments or entire distributions are being evaluated. Of further

note is that maxk=2,...,4

∫
U

ZP,u,2(1, k)φ(u)du in Table 1 is -0.046, which fails to reject the null hypothesis

that the benchmark AR(1)-normal density model is at least as “good” as any other SIC selected model.

Furthermore, when only AR models are evaluated (see Table 3), there is nothing gained by using the AIC

instead of the SIC, and the normality assumption is again not “bested” by assuming fatter predictive density

tails (notice that in this case, failure to reject occurs even when 50th percentiles of either the split or full

sample recursive block bootstrap distributions are used to form critical values). In contrast to the above

results, when either the AIC is used for all competitor models (Table 2), or when only ARX models are

considered with lags selected by either SIC or AIC (Table 4), the null hypothesis of normality is rejected

using 90th percentile critical values. Further, in both of these cases, the “preferred model”, based on ranking

according to DMSFE, is (i) an ARX model with Student’s t errors (when only the AIC is used to select

lags) or (ii) an ARX model with Gaussian errors and lags selected via the SIC (when only ARX models are

compared). This result indicates the importance of comparing a wide variety of models. If we were only

to compare AR and ARX models using the AIC, as in Table 2, then we would conclude that ARX models

beat AR models, and that fatter tails should replace Gaussian tails in error density specification. However,

inspection of the density based MSFE measures across all models considered in the tables makes clear that

the lowest DMSFE values are always associated with more parsimonious models (with lags selected using

the SIC) that assume Gaussianity.
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Table 1: Comparison of Autoregressive Inflation Models with and Without Unemployment Using SIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification AR ARX AR ARX
lag Selection SIC (1) SIC (1,1) SIC (1) SIC (1,1)

MSFE 0.00083352 0.00004763 0.00083352 0.00004763
DMSFE 1.80129635 2.01137942 1.84758927 1.93272971

ZP,u,2(1, k) benchmark -0.21008307 -0.04629293 -0.13143336

Critical Values

Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20

50 0.094576 0.095575 0.097357 0.104290 0.105869 0.059537 0.062459 0.067246 0.073737 0.079522
60 0.114777 0.117225 0.128311 0.134509 0.140876 0.081460 0.084932 0.097435 0.105071 0.113710
70 0.142498 0.146211 0.169168 0.179724 0.200145 0.110945 0.110945 0.130786 0.145153 0.156861
80 0.178584 0.193576 0.221591 0.244199 0.260359 0.141543 0.146881 0.185892 0.192494 0.218076
90 0.216998 0.251787 0.307671 0.328763 0.383923 0.186430 0.196849 0.254943 0.271913 0.312400

(∗) Notes: Entires in the table are given in two parts (i) summary statistics, and (ii) bootstrap percentiles. In (i): “specification”
lists the model used. For each specification, lags may be chosen either with the SIC or the AIC, and the predictive density
may be either Gaussian or Student’s t, as denoted in the various columns of the table. The bracketed entires beside SIC and
AIC denote the number of lags chosen for the autoregressive part of the model and the number of lags of unemployment used,
respectively. MSFE is the out-of-sample mean square forecast error based on evaluation of P=300 1-step ahead predictions

using recursively estimated models, and DMSFE =
∫

U
1√
P

∑T−1

t=R

(
1{Inft+1 ≤ u} − F1(u|Zt, θ̂1,t)

)2
φ(u)du, where R = 300,

corresponding to the sample period from 1954:1-1978:12, is our analogous density based square error loss measure. Finally,
ZP,u,2(1, k) is the accuracy test statistic, for each benchmark/alternative model comparison. The density accuracy test is the
maximum across the ZP,u,2(1, k) values. In (ii) percentiles of the bootstrap empirical distributions under different block length
sampling regimes are given. The “Bootstrap with Adjustment” allows for parameter estimation error, while the “Bootstrap
without Adjustment” assumes that parameter estimation error vanishes asymptotically. Testing is carried out using 90th
percentiles (see above for further details).

Table 2: Comparison of Autoregressive Inflation Models with and Without Unemployment Using AIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification AR ARX AR ARX
lag Selection AIC (3) AIC (3,1) AIC (3) AIC (3,1)

MSFE 0.00000841 0.00000865 0.00000841 0.00000865
DMSFE 2.17718449 2.17189485 2.11242940 2.10813786

ZP,u,2(1, k) benchmark 0.00528965 0.06475509 0.06904664

Critical Values

Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20

50 -0.004056 -0.003820 -0.003739 -0.003757 -0.003722 -0.004542 -0.004448 -0.004316 -0.004318 -0.004274
60 -0.003608 -0.003358 -0.003264 -0.003343 -0.003269 -0.004318 -0.003999 -0.003911 -0.003974 -0.003943
70 -0.003220 -0.002737 -0.002467 -0.002586 -0.002342 -0.003830 -0.003384 -0.003287 -0.003393 -0.003339
80 -0.002662 -0.001339 -0.001015 -0.001044 -0.000321 -0.003148 -0.001585 -0.001226 -0.001340 -0.000783
90 -0.000780 0.001526 0.002828 0.002794 0.003600 -0.000925 0.001371 0.002737 0.002631 0.003422

(∗) Notes: See notes to Table 1.
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Table 3: Comparison of Autoregressive Inflation Models Using SIC and AIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification AR AR AR AR
lag Selection SIC (1) AIC (3) SIC (1) AIC (3)

MSFE 0.00083352 0.00000841 0.00083352 0.00000841
DMSFE 1.80129635 2.17718449 1.84758927 2.11242940

ZP,u,2(1, k) benchmark -0.37588815 -0.04629293 -0.31113305

Critical Values

Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20

50 0.099733 0.104210 0.111312 0.114336 0.112498 0.063302 0.069143 0.078329 0.092758 0.096471
60 0.132297 0.147051 0.163309 0.169943 0.172510 0.099277 0.109922 0.121311 0.132211 0.135370
70 0.177991 0.193313 0.202000 0.217180 0.219814 0.133178 0.150112 0.162696 0.177431 0.185820
80 0.209509 0.228377 0.245762 0.279570 0.286277 0.177059 0.189317 0.210808 0.237286 0.244186
90 0.256017 0.294037 0.345221 0.380378 0.387672 0.213491 0.244186 0.280326 0.324281 0.330913

(∗) Notes: See notes to Table 1.

Table 4: Comparison of Autoregressive Inflation Models with Unemployment Using SIC and AIC(∗)

Model 1 - Normal Model 2 - Normal Model 3 - Student’s t Model 4 - Student’s t
Specification ARX ARX ARX ARX
lag Selection SIC (1,1) AIC (3,1) SIC (1,1) AIC (3,1)

MSFE 0.00004763 0.00000865 0.00004763 0.00000865
DMSFE 2.01137942 2.17189485 1.93272971 2.10813786

ZP,u,2(1, k) benchmark -0.16051543 0.07864972 -0.09675844

Critical Values

Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20

50 0.013914 0.015925 0.016737 0.018229 0.020586 0.007462 0.012167 0.012627 0.014746 0.016022
60 0.019018 0.022448 0.023213 0.024824 0.027218 0.013634 0.016693 0.018245 0.019184 0.022048
70 0.026111 0.028058 0.029292 0.030620 0.033757 0.019749 0.022771 0.023878 0.025605 0.029439
80 0.031457 0.033909 0.038523 0.041290 0.043486 0.025395 0.027832 0.033134 0.034677 0.039756
90 0.039930 0.047533 0.052668 0.054634 0.060586 0.035334 0.042551 0.046784 0.049698 0.056309

(∗) Notes: See notes to Table 1.
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Part IV: Appendices and References

6 Appendix A: Assumptions

Assumptions BAI1-BAI4 are used in Section 2.2.
BAI1: Ft(yt|Zt−1, θ) and its density ft(yt|Zt−1, θ) are continuously differentiable in θ. Ft(y|Zt−1, θ) is
strictly increasing in y, so that F−1

t is well defined. Also,

E sup
x

sup
θ

ft(yt|Zt−1, θ) ≤ M1 < ∞

and
E sup

x
sup

θ

∥∥∥∥
∂Ft

∂θ
(x|Zt−1, θ)

∥∥∥∥ ≤ M1 < ∞,

where the supremum is taken over all θ, such that |θ − θ†| ≤ MT−1/2, M < ∞.

BAI2: There exists a continuously differentiable function g(r), such that for every M > 0,

sup
u,v

|u−θ†|≤MT−1/2,|v−θ†|≤MT−1/2

∥∥∥∥∥
1
T

T∑
t=1

∂Ft

∂θ
(F−1

t (r|u)|v)− g(r)

∥∥∥∥∥ = oP (1),

where the oP (1) is uniform in r ∈ [0, 1]. In addition,
∫ 1

0

∥∥∥ ·g(r)
∥∥∥ dr < ∞, C(r) =

∫ 1

r

·
g(τ)

·
g(τ)′dτ is invertible

for all r.

BAI3:
√

T
(
θ̂T − θ†

)
= OP (1).

BAI4: The effect of using Zt−1 instead of =t−1 is negligible. That is,

sup
u,|u−θ0|≤MT−1/2

T−1/2
T∑

t=1

∣∣Ft

(
F−1

t (r|Zt−1, u)|=t−1, θ0

)− Ft

(
F−1

t (r|=t−1, u)|=t−1, θ0

)∣∣ = oP (1)

Assumptions HL1-HL4 are used in Section 2.3.
HL1: (yt, Z

t−1) are strong mixing with mixing coefficients α(τ) satisfying
∑∞

τ=0 α(τ)(v−1).v ≤ C < ∞, with
v > 1.
HL2: ft(y|Zt, θ) is twice continuously differentiable in θ, in a neighborhood of θ0, and limT→∞

∑n
τ=1 E

∣∣∂Ut

∂θ

∣∣4 ≤
C, limT→∞

∑n
τ=1 E supθ∈Θ

∣∣∣ ∂2Ut

∂θ∂θ′

∣∣∣
2

≤ C, for some constant C.

HL3:
√

T (θ̂T − θ†) = OP (1), where θ† is the probability limit of θ̂T , and is equal to θ0, under the null in
(1).
HL4: The kernel function k : [−1, 1] → <+ is a symmetric, bounded, twice continuously differentiable
probability density, such that

∫ 1

−1
k(u)du = 0 and

∫ 1

−1
k2(u)du < ∞.

Assumptions CS1-CS3 are used in Sections 2.4-2.5 and 3.3-3.5.
CS1: (yt, Z

t−1), are jointly strictly stationary and strong mixing with size −4(4 + ψ)/ψ, 0 < ψ < 1/2.

CS2: (i) F (yt|Zt−1, θ) is twice continuously differentiable on the interior of Θ ⊂ Rp, Θ compact; (ii)
E(supθ∈Θ |∇θF (yt|Zt, θ)i|5+ψ) ≤ C < ∞, i = 1, ..., p, where ψ is the same positive constant defined in A1,
and ∇θF (yt|Zt−1, θ)i is the i−th element of ∇θF (yt|Zt−1, θ); (iii) F (u|Zt−1, θ) is twice differentiable on the

69



interior of U × Θ, where U and Θ are compact subsets of < and <p respectively; and (iv) ∇θF (u|Zt−1, θ)
and ∇u,θF (u|Zt−1, θ) are jointly continuous on U ×Θ and 4s−dominated on U ×Θ for s > 3/2.

CS3: (i) θ† = arg maxθ∈Θ E(ln f(y1|Z0, θ)) is uniquely identified, (ii) f(yt|Zt−1, θ) is twice continuously
differentiable in θ in the interior of Θ, (ii) the elements of ∇θ ln f(yt|Zt−1, θ) and of ∇2

θ ln f(yt|Zt−1, θ) are
4s−dominated on Θ, with s > 3/2, E

(−∇2
θ ln f(yt|Zt−1, θ)

)
is positive definite uniformly in Θ.29

Assumptions W1-W2 are used in Sections 3.1, 4.1 and 4.3.
W1: (yt, Z

t−1), with yt scalar and Zt−1 an Rζ−valued (0 < ζ < ∞) vector, is a strictly stationary and
absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

W2: (i) θ† is uniquely identified (i.e. E(q(yt, Z
t−1, θ)) > E(q(yt, Z

t−1, θ†i )) for any θ 6= θ†); (ii) q is twice
continuously differentiable on the interior of Θ, and for Θ a compact subset of R%; (iii) the elements of ∇θq

and ∇2
θq are p−dominated on Θ, with p > 2(2+ψ), where ψ is the same positive constant as defined in W1;

and (iii) E
(−∇2

θq(θ)
)

is negative definite uniformly on Θ.

Assumptions W1-W2 are used in Section 4.2.
CM1: (yt, xt) are strictly stationary, strong mixing processes, with size −4(4+δ)

δ , for some δ > 0, and
E(yt)8 < ∞, E(xt)8.
CM2: Let zt = (yt−1, ..., yt−q, xt−1, ..., xt−q) and E(ztut|=t−1) = 0, where =t−1 contains all the information
at time t− 1 generated by all the past of xt and yt. Also, E(u2

t |=t−1) = σ2
u.

Assumption CSS is used in Section 4.2.
CCS: (yt, xt) are strictly stationary, strong mixing processes, with size −4(4+δ)

δ , for some δ > 0, and E(yt)8 <

∞, E(xt)8 < ∞, E(εtyt−j) = 0, j = 1, 2, . . . q.30

Assumption WH is used in Section 4.3.
WH: (i) κi is twice continuously differentiable on the interior of Θi and the elements of ∇θiκi(Zt, θi) and
∇2

θi
κi(Zt, θi) are p−dominated on Θi, for i = 2, ...,m, with p > 2(2 + ψ), where ψ is the same positive

constant defined in W1; (ii) g is positive valued, twice continuously differentiable on Θi, and g, g′ and g′′

are p−dominated on Θi with p defined as in (i); and (iii) let ckk =
limT→∞ V ar

(
1√
T

∑T
t=s (g(u1,t+1)− g(uk,t+1))

)
, k = 2, ..., m, define analogous covariance terms, cj,k, j, k =

2, ..., m, and assume that [cj,k] is positive semi-definite.
Assumptions NV1-NV4 are used in Section 4.4.
NV1: (i) (yt, Z

t) is a strictly stationary and absolutely regular strong mixing sequence with size −4(4+ψ)/ψ,

ψ > 0, (ii) g is three times continuously differentiable in θ, over the interior of B, and ∇θg, ∇2
θg, ∇θg

′, ∇2
θg
′

are 2r−dominated uniformly in Θ, with r ≥ 2(2 + ψ), (iii) E
(−∇2

θgt(θ)
)

is negative definite, uniformly in
Θ, (iv) w is a bounded, twice continuously differentiable function on the interior of Γ and ∇γw(zt, γ) is
bounded uniformly in Γ and (v) ∇γ∇θg

′
t(θ)w(Zt−1, γ) is continuous on Θ × Γ, Γ a compact subset of Rd

and is 2r−dominated uniformly in Θ× Γ, with r ≥ 2(2 + ψ).
NV2: (i) E(g′(yt − θ1,1 − θ1,2yt−1)) > E(g′(xt − θ†1,1 − θ†1,2xt−1)), ∀θ 6= θ† and
(ii) E(g′(yt − θ2,1 − θ2,2xt−1 − θ2,3w(Zt−1, γ))) > infγ E(g′(yt − θ†2,1(γ) − θ

†
2,2(γ)yt−1 − θ

†
2,3(γ)w(Zt−1, γ)))

for θ 6= θ
†
(γ).

29Let ∇θ ln f(yt|Xt, θ)i be the i− th element of ∇θ ln f(yt|Xt, θ). For 4s−domination on Θ, we require |∇θ ln f(yt|Xt, θ)i| ≤
m(Xt), for all i, with E((m(Xt))4s) < ∞, for some function m.

30Note that the requirement E(εtyt−j) = 0, j = 1, 2, . . . p is equivalent to the requirement that E(yt|yt−1, ..., yt−p) =∑p−1

j=1
βjyt−j . However, we allow dynamic misspecification under the null.
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NV3: T = R + P, and as T →∞, P
R → π, with, 0 ≤ π < ∞.

NV4: For any t, s; ∀ i, j, k = 1, 2; and for ∆ < ∞ :
(i) E

(
supθ×γ×γ+∈Θ×Γ×Γ

∣∣g′t(θ)w(Zt−1, γ)∇k
θg′s(θ)w(Zs−1, γ+)

∣∣4
)

< ∆,

where ∇k
θ(·) denotes the k−th element of the derivative of its argument with respect to θ.

(ii) E

(
supθ∈Θ

∣∣∣
(
∇k

θ(∇i
θgt(θ))∇j

θgs(θ)
)∣∣∣

4
)

< ∆, and

(iii) E

(
supθ×γ∈Θ×Γ

∣∣∣
(
g′t(θ)w(Zt−1, γ)∇k

θ(∇j
θgs(θ))

)∣∣∣
4
)

< ∆.

Assumptions MD1-MD4 are used in Section 5.2.
MD1: (yt, Xt), with yt scalar and Xt an Rζ−valued (0 < ζ < ∞) vector, is a strictly stationary and
absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

MD2: (i) θ†i is uniquely identified (i.e. E(ln fi(yt, Z
t−1, θi)) < E(ln fi(yt, Z

t−1, θ†i )) for any θi 6= θ†i ); (ii)
ln fi is twice continuously differentiable on the interior of Θi, for i = 1, ..., m, and for Θi a compact subset
of R%(i); (iii) the elements of ∇θi

ln fi and ∇2
θi

ln fi are p−dominated on Θi, with p > 2(2 + ψ), where ψ

is the same positive constant as defined in Assumption A1; and (iii) E
(−∇2

θi
ln fi(θi)

)
is positive definite

uniformly on Θi.

MD3: T = R + P, and as T →∞, P/R → π, with 0 < π < ∞.

MD4: (i) Fi(u|Zt, θi) is continuously differentiable on the interior of Θi and ∇θiFi(u|Zt, θ†i ) is 2r-dominated
on Θi, uniformly in u, r > 2, i = 1, ..., m;31 and (ii) let vkk(u) =plimT→∞

V ar

(
1√
T

∑T
t=s

(((
1{yt+1 ≤ u} − F1(u|Zt, θ†1)

)2

− µ2
1(u)

)
−

((
1{yt+1 ≤ u} − Fk(u|Zt, θ†k)

)2

− µ2
k(u)

)))
,

k = 2, ..., m, define analogous covariance terms, vj,k(u), j, k = 2, ...,m, and assume that [vj,k(u)] is positive
semi-definite, uniformly in u.

7 Appendix B: Proofs

Proof of Proposition 3.2:
For brevity, we just consider the case of recursive estimation. The case of rolling estimation schemes can be
treated in an analogous way.

ŴP,rec =
1√
P

T∑

t=R+1

(
1{Ft(yt|Zt−1, θ̂t,rec) ≤ r} − r

)

=
1√
P

T∑

t=R+1

(
1{Ft(yt|Zt−1, θ0) ≤ F (F−1(r|Zt−1, θ̂t,rec)|Zt−1, θ0)} − r

)

=
1√
P

T∑

t=R+1

(
1{Ft(yt|Zt−1, θ0) ≤ F (F−1(r|Zt−1, θ̂t,rec)|Zt−1, θ0)} − F (F−1(r|Zt−1, θ̂t,rec)|Zt−1, θ0)

)

+
1√
P

T∑

t=R+1

(
F (F−1(r|Zt−1, θ̂t)|Zt−1, θ0)− r

)

= IP + IIP .

31We require that for j = 1, ..., pi,
(
E

(
∇θFi(u|Zt, θ†i

))
j
≤ Dt(u), with supt supu∈< E(Dt(u)2r) < ∞.
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We first want to show that:
(i) IP = 1√

P

∑T
t=R+1

(
1{Ft(yt|Zt−1, θ0) ≤ r} − r

)
+ oP (1), uniformly in r, and

(ii) IIP = g(r) 1√
P

∑T
t=R+1

(
θ̂t,rec − θ0

)
+ oP (1), uniformly in r.

Given BAI2, (ii) follows immediately. For (i), we need to show that

1√
P

T∑

t=R+1

(1
{

Ft(yt|Zt−1, θ0) ≤ r +
∂Ft

∂θ

(
F−1

t (r|θt,rec), θ0

) (
θ̂t,rec − θ0

)}

−
(

r +
∂Ft

∂θ

(
F−1

t (r|θt,rec), θ0

) (
θ̂t − θ0

))
)

=
1√
P

T∑

t=R+1

(1{Ft(yt|Ωt−1, θ0) ≤ r} − r) + oP (1), uniformly in r

Given BAI3’, the equality above follows by the same argument as that used in the proof of Theorem 1 in
Bai (2003). Given (i) and (ii), it follows that

V̂P,rec =
1√
P

T∑

t=R+1

(1{Ft(yt|Ωt−1, θ0) ≤ r} − r) + g(r)
1√
P

T∑

t=R+1

(
θ̂t,rec − θ0

)
+ oP (1), (65)

uniformly in r, where g(r) =plim 1
P

∑T
t=R+1

∂Ft

∂θ

(
F−1

t (r|θt,rec), θ0

)
, θt,rec ∈

(
θ̂t,rec, θ0

)
.

The desired outcome follows if the martingalization argument applies also in the recursive estimation
case and the parameter estimation error component cancel out in the statistic. Now, equation A4 in Bai
(2003) holds in the form of eq. (65) above. Also,

ŴP,rol(r) = V̂P,rol(r)−
∫ r

0

(
·
g(s)C−1(s)

·
g(s)′

∫ 1

s

·
g(τ)dV̂P,rol(τ)

)
ds. (66)

It remain to show that the parameter estimation error term, which enters into both V̂P,rol(r) and dV̂P,rol(τ),
cancels out, as in the fixed estimation scheme. Notice that g(r) is defined as in the fixed scheme. Now, it
suffices to define the term c, which appears at the bottom of p. 543 (below equation A6 in Bai (2003)) as:

c =
1√
P

T∑

t=R+1

(
θ̂t,rec − θ0

)
.

Then, the same argument used by Bai (2003) on p. 544 applies here, and the term 1√
P

∑T
t=R+1

(
θ̂t,rec − θ0

)

on the RHS in (66) cancels out.
Proof of Proposition 3.4: (i) We begin by considering the case of recursive estimation. Given CS1 and
CS3, θ̂t,rec

a.s.→ θ†, with θ† = θ0, under H0. Given A2(i), and following Bai (2003, p. 545-546), we have that:

1√
P

T−1∑

t=R

(1{F (yt+1|Zt, θ̂t,rec) ≤ r}− r) =
1√
P

T−1∑

t=R

(
1

{
F (yt+1|Zt, θ0) ≤ F

(
F−1

(
r|Zt, θ̂t,rec

)
|Zt, θ0

)}
− r

)

=
1√
P

T−1∑

t=R

(
1{F (yt+1|Zt, θ0) ≤ F

(
F−1

(
r|Zt, θ̂t,rec

)
|Zt, θ0

)
} − F

(
F−1

(
r|Zt, θ0

) |Zt, θ0

))

− 1√
P

T−1∑

t=R

∇θF (F−1
(
r|Zt, θt,rec

) |Zt, θ0)(θ̂t,rec − θ0), (67)
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with θt,rec ∈ (θ̂t,rec, θ0). Given CS1 and CS3, (θ̂t,rec − θ0) = OP (1), uniformly in t. Thus, the first term on
the RHS of (67) can be treated by the same argument as that used in the proof of Theorem 1 in Corradi
and Swanson (2005a). With regard to the last term on the RHS of (67), note that by the uniform law of
large numbers for mixing processes,

1√
P

T−1∑

t=R

∇θF (F−1
(
r|Zt, θt,rec

) |Zt, θ0)(θ̂t,rec − θ0)

= E(∇θF (x(r)|Zt−1, θ0))′
1√
P

T−1∑

t=R

(θ̂t,rec − θ0) + oP (1), (68)

where the oP (1) term is uniform in r. The limiting distribution of 1√
P

∑T−1
t=R (θ̂t,rec − θ0), and so the key

contribution of parameter estimation error, comes from Theorem 4.1 and Lemma 4.1 in West (1996). With
regard to the rolling case, the same argument as above applies, with θ̂t,rec replaced by θ̂t,rol. The limiting
distribution of 1√

P

∑T−1
t=R (θ̂t,rec − θ0) is given by Lemma 4.1 and 4.2 in West and McCracken (1998).

Proof of Proposition 3.5: The proof is straightforward upon combining the proof of Theorem 2 in Corradi
and Swanson (2005a) and the proof of Proposition 3.4.
Proof of Proposition 3.7: Note that:

1√
P

T−1∑

t=R


1{F (y∗t+1|Z∗,t, θ̃∗t,rec) ≤ r} − 1

T

T−1∑

j=1

1{F (yj+1|Zj , θ̂t,rec) ≤ r}



=
1√
P

T−1∑

t=R


1{F (y∗t+1|Z∗,t, θ̂t,rec) ≤ r} − 1

T

T−1∑

j=1

1{F (yj+1|Zj , θ̂t,rec) ≤ r}



− 1√
P

T−1∑

t=R

∇θF (F−1
(
r|Zt, θ

∗
t,rec

)
|Zt, θ0)(θ̃∗t,rec − θ̂t,rec), (69)

where θ
∗
t,rec ∈

(
θ̃∗t,rec, θ̂t,rec

)
. Now, the first term on the RHS of (69) has the same limiting distribution as

1√
P

∑T−1
t=R

(
1{F (yt+1|Zt, θ†) ≤ r} − E

(
1{F (yj+1|Zj , θ†) ≤ r})) , conditional on the sample. Furthermore,

given Theorem 3.6, the last term on the RHS of (69) has the same limiting distribution as

E(∇θF (x(r)|Zt−1, θ0))′ 1√
P

∑T−1
t=R

(
θ̂t,rec − θ†

)
,

conditional on the sample. The rolling case follows directly, by replacing θ̃∗t,rec and θ̂t,rec with θ̃∗t,rol and
θ̂t,rol, respectively.
Proof of Proposition 3.8: The proof is similar to the proof of Proposition 3.7.
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Proof of Proposition 4.5 (ii): Note that, via a mean value expansion, and given A1,A2,

SP (1, k) =
1

P 1/2

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1))

=
1

P 1/2

T−1∑

t=R

(g(u1,t+1)− g(uk,t+1))

+
1
P

T−1∑

t=R

g′(u1,t+1)∇θ1κ1(Zt, θ1,t)P 1/2
(
θ̂1,t − θ†1

)

− 1
P

T−1∑

t=R

g′(uk,t+1)∇θk
κk(Zt, θk,t)P 1/2

(
θ̂k,t − θ†k

)

=
1

P 1/2

T−1∑

t=R

(g(u1,t+1)− g(uk,t+1))

+µ1
1

P 1/2

T−1∑

t=R

(
θ̂1,t − θ†1

)
− µk

1
P 1/2

T−1∑

t=R

(
θ̂k,t − θ†k

)
+ oP (1),

where µ1 = E
(
g′(u1,t+1)∇θ1κ1(Zt, θ†1)

)
, and µk is defined analogously. Now, when all competitors have

the same predictive accuracy as the benchmark model, by the same argument as that used in Theorem 4.1
in West (1996),

(SP (1, 2), ..., SP (1, n)) d→ N(0, V ),

where V is the n× n matrix defined in the statement of the proposition.

Proof of Proposition 4.6(ii): For brevity, we just analyze model 1. In particular, note that:

1
P 1/2

T−1∑

t=R

(
g(û∗1,t+1)− g(û1,t+1)

)
=

1
P 1/2

T−1∑

t=R

(
g(u∗1,t+1)− g(u1,t+1)

)

+
1

P 1/2

T−1∑

t=R

(
∇θ1g(u∗1,t+1)

(
θ̂∗1,t − θ†1

)
−∇θ1g(u1,t+1)

(
θ̂1,t − θ†1

))
, (70)

where u∗1,t+1 = yt+1 − κ1(Z∗,t, θ
∗
1,t), u1,t+1 = yt+1 − κ1(Zt, θ1,t), θ

∗
1,t ∈ (θ̂∗1,t, θ

†
1) and θ1,t ∈ (θ̂1,t, θ

†
1). As an

almost straightforward consequence of Theorem 3.5 in Künsch (1989), the first term on the RHS of (70)
has the same limiting distribution as P−1/2

∑T−1
t=R (g(u1,t+1)− E(g(u1,t+1))) . Additionally, the second line

in (70) can be written as:

1
P 1/2

T−1∑

t=R

∇θ1g(u∗1,t+1)
(
θ̂∗1,t − θ̂1,t

)
− 1

P 1/2

T−1∑

t=R

(∇θ1g(u∗1,t+1)−∇θ1g(u1,t+1)
) (

θ̂1,t − θ†1
)

=
1

P 1/2

T−1∑

t=R

∇θ1g(u∗1,t+1)
(
θ̂∗1,t − θ̂1,t

)
+ o∗P (1), Pr−P

= µ1B
†
1

1
P 1/2

T−1∑

t=R

(
h∗1,t − h1,t

)
+ o∗P (1), Pr−P, (71)
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where h∗1,t+1 = ∇θ1q1(y∗t+1, Z
∗,t, θ†1) and h1,t+1 = ∇θ1q1(yt+1, Z

t, θ†1). Also, the last line in (71) can be
written as:

µ1B
†
1

(
a2

R,0

1
P 1/2

R∑
t=1

(
h∗1,t − h1,t

)
+

1
P 1/2

P−1∑

i=1

aR,i

(
h∗1,R+i − h1,P

)
)

−µ1B
†
1

1
P 1/2

P−1∑

i=1

aR,i

(
h1,R+i − h1,P

)
+ o∗P (1), Pr−P, (72)

where h1,P is the sample average of h1,t computed over the last P observations. Given Lemma A3, by the
same argument used in the proof of Theorem 1, the first line in (72) has the same limiting distribution as

1
P 1/2

∑T−1
t=R

(
θ̂1,t − θ†1

)
, conditional on sample. Therefore we need to show that the correction term for model

1 offsets the second line in (72), up to an o(1) Pr−P term. Let h1,t+1

(
θ̂1,T

)
= ∇θ1q1(yt+1, Z

t, θ̂1,T ) and let

h1,P

(
θ̂1,T

)
be the sample average of h1,t+1

(
θ̂1,T

)
, over the last P observations. Now, by the uniform law

of large numbers

1
T

T−1∑
t=s

∇θ1g(u∗1,t+1)

(
1
T

T−1∑
t=s

∇2
θ1

q1(y∗t , Z∗,t−1, θ̂1,T )

)−1

− µ1B
†
1 = o∗P (1), Pr−P.

Also, by the same argument used in the proof of Theorem 1, it follows that,

1
P 1/2

P−1∑

i=1

aR,i

(
h1,R+i − h1,P

)− 1
P 1/2

P−1∑

i=1

aR,i

(
h1,R+i

(
θ̂1,T

)
− h1,P

(
θ̂1,T

))
= o(1), Pr−P.

75



8 References

Andrews, D.W.K., (1993), An Introduction to Econometric Applications of Empirical Process Theory for
Dependent Random Variables, Econometric Reviews, 12, 183-216.

Andrews, D.W.K., (1997), A Conditional Kolmogorov Test, Econometrica, 65, 1097-1128.

Andrews, D.W.K., (2002), Higher-Order Improvements of a Computationally Attractive k−step Bootstrap
for Extremum Estimators, Econometrica, 70, 119-162.

Andrews, D.W.K. and M., Buchinsky, (2000), A Three Step Method for Choosing the Number of Bootstrap
Replications, Econometrica, 68, 23-52.

Ashley, R., C.W.J., Granger and R. Schmalensee, (1980), Advertising and Aggregate Consumption: An
Analysis of Causality, Econometrica, 48, 1149-1167.

Bai, J., (2003), Testing Parametric Conditional Distributions of Dynamic Models, Review of Economics and
Statistics, 85, 531-549.

Bai, J. and S. Ng, (2001), A Consistent test for Conditional Symmetry in Time Series Models, Journal of
Econometrics, 103, 225-258.

Bai, J. and S. Ng, (2005), Testing Skewness, Kurtosis and Normality in Time Series Data, Journal of Business
and Economic Statistics 23, 49-61.

Baltagi, B.H., (1995), Econometric Analysis of Panel Data, Wiley, New York.

Benjamini, Y. and Y. Hochberg, (1995), Controlling the False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing, Journal of the Royal Statistical Society Series B, 57, 289-300.

Benjamini, Y. and Y. Yekutieli, (2001), The Control of the False Discovery Rate in Multiple Testing Under
Dependency, Annals of Statistics, 29, 1165-1188.

Berkowitz, J., (2001), Testing Density Forecasts with Applications to Risk Management, Journal of Business
and Economic Statistics, 19, 465-474.

Berkowitz, J. and L. Giorgianni, (2001), Long-horizon Exchange Rate Predictability?, Review of Economics
and Statistics 83, 81-91.

Bickel, P.J. and K.A. Doksum, (1977), Mathematical Statistics, Prentice Hall, Englewood Cliffs.

Bierens, H.J., (1982), Consistent Model-Specification Tests, Journal of Econometrics, 20, 105-134.

Bierens, H.J., (1990), A Consistent Conditional Moment Test of Functional Form, Econometrica, 58, 1443-
1458.

Bierens, H.J. and W., Ploberger, (1997), Asymptotic Theory of Integrated Conditional Moments Tests,
Econometrica, 65, 1129-1151.

Bontemps, C., and N. Meddahi, (2003a), Testing Normality: a GMM Approach, Journal of Econometrics,
forthcoming.

Bontemps, C., and N. Meddahi, (2003b), Testing Distributional Assumptions: a GMM Approach, Working
Paper, University of Montreal.

Brock, W., J. Lakonishok and B. LeBaron, (1992), Simple Technical Trading Rules and the Stochastic
Properties of Stock Returns, Journal of Finance, 47, 1731-1764.

Chao, J.C., V. Corradi and N.R. Swanson, (2001), An out-of-sample Test for Granger Causality”, Macroe-
conomic Dynamics, 5, 598-620

Chang, Y.S., J.F. Gomes and F. Schorfheide, (2002), Learning-by-Doing as a Propagation Mechanism,
American Economic Review, 92, 1498-1520.

76



Clarida, R.H., L. Sarno and M.P. Taylor, (2003), The Out-of-Sample Success of Term Structure Models as
Exchange-Rate Predictors: A Step Beyond, Journal of International Economics, 60, 61-83.

Clark, T.E. and M.W., McCracken, (2001), Tests of Equal Forecast Accuracy and Encompassing for Nested
Models, Journal of Econometrics 105, 85-110.

Clark, T.E. and M.W. McCracken, (2003), Evaluating Long-Horizon Forecasts, Working Paper, University
of Missouri-Columbia.

Clark, T.E. and K.J. West, (2005), Using Out-of-Sample Mean Squared Prediction Errors to Test the Mar-
tingale Difference Hypothesis, Journal of Econometrics, forthcoming.

Clements, M.P. and J. Smith, (2000), Evaluating the Forecast Densities of Linear and Nonlinear Models:
Applications to Output Growth and Unemployment, Journal of Forecasting, 19, 255-276.

Clements, M.P. and J. Smith, (2002), Evaluating Multivariate Forecast Densities: A Comparison of Two
Approaches, International Journal of Forecasting, 18, 397-407.

Christoffersen, P. and F.X. Diebold, (2000), How Relevant is Volatility Forecasting for Financial Risk Man-
agement?, Review of Economics and Statistics, 82, 12-22.

Corradi, V. and N.R. Swanson and C. Olivetti, (2001), Predictive Ability with Cointegrated Variables,
Journal of Econometrics, 104, 315-358.

Corradi, V. and N.R., Swanson, (2002), A Consistent Test for Out of Sample Nonlinear Predictive Ability,
Journal of Econometrics, 110, 353-381.

Corradi, V. and N.R. Swanson, (2005a), Bootstrap Conditional Distribution Tests in the Presence of Dynamic
Misspecification, Journal of Econometrics, forthcoming.

Corradi. V. and N.R. Swanson, (20005b), Predictive Density and Conditional Confidence Interval Accuracy
Tests, Journal of Econometrics, forthcoming.

Corradi. V. and N.R. Swanson, (2005c), A Test for Comparing Multiple Misspecified Conditional Distribu-
tions, Econometric Theory, forthcoming.

Corradi. V. and N.R. Swanson, (2005d), Nonparametric Bootstrap Procedures for Predictive Inference Based
on Recursive Estimation Schemes, Working Paper, Rutgers University.

Davidson, R. and J.G. MacKinnon, (1993), Estimation and Inference in Econometrics, Oxford University
Press, New York.

Davidson, R. and J.G. MacKinnon, (1999), Bootstrap Testing in Nonlinear Models, International Economic
Review, 40, 487-508.

Davidson, R. and J.G. MacKinnon, (2000), Bootstrap Tests: How Many Bootstraps, Econometric Reviews,
19, 55-68.

DeJong, R.M., (1996), The Bierens Test Under Data Dependence, Journal of Econometrics, 72, 1-32.

Diebold, F.X. and C. Chen, (1996), Testing Structural Stability with Endogenous Breakpoint: A Size Com-
parison of Analytical and Bootstrap Procedures, Journal of Econometrics, 70, 221-241.

Diebold, F.X., T. Gunther and A.S. Tay, (1998), Evaluating Density Forecasts with Applications to Finance
and Management, International Economic Review, 39, 863-883.

Diebold, F.X., J. Hahn and A.S. Tay, (1999), Multivariate Density Forecast Evaluation and Calibration
in Financial Risk Management: High Frequency Returns on Foreign Exchange, Review of Economics and
Statistics, 81, 661-673.

Diebold, F.X. and R.S. Mariano, (1995), Comparing Predictive Accuracy, Journal of Business and Economic
Statistics, 13, 253-263.

77



Diebold, F.X., A.S. Tay and K.D. Wallis, (1998), Evaluating Density Forecasts of Inflation: The Survey of
Professional Forecasters, in Festschrift in Honor of C.W.J. Granger, eds. R.F. Engle and H. White, Oxford
University Press, Oxford.

Duan, J.C., (2003), A Specification Test for Time Series Models by a Normality Transformation, Working
Paper, University of Toronto.

Duffie, D. and J. Pan, (1997), An Overview of Value at Risk, Journal of Derivatives, 4, 7-49.

Dufour, J.-M., E. Ghysels and A. Hall, (1994), Generalized Predictive Tests and Structural Change Analysis
in Econometrics, International Economic Review, 35, 199-229.

Fernandez-Villaverde, J. and J.F. Rubio-Ramirez, (2004), Comparing Dynamic Equilibrium Models to Data,
Journal of Econometrics, 123, 153-187.

Ghysels, E. and A. Hall, (1990), A Test for Structural Stability of Euler Conditions Parameters Estimated
Via the Generalized Method of Moments Estimator, International Economic Review, 31, 355-364.

Giacomini, R., (2002), Comparing Density Forecasts via Weighted Likelihood Ratio Tests: Asymptotic and
Bootstrap Methods, Working Paper, University of California, San Diego.

Giacomini, R. and H. White, (2003), Tests of Conditional Predictive Ability, Working Paper, University of
California, San Diego.

Goncalves, S. and H. White, (2002), The Bootstrap of the Mean for Dependent Heterogeneous Arrays,
Econometric Theory, 18, 1367-1384.

Goncalves, S. and H. White, (2004), Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models,
Journal of Econometrics, 119, 199-219.

Granger, C.W.J., (1980), Testing for Causality: A Personal Viewpoint, Journal of Economics and Dynamic
Control, 2, 329-352

Granger, C.W.J., (1993), On the Limitations on Comparing Mean Squared Errors: A Comment, Journal of
Forecasting, 12, 651-652

Granger, C.W.J. and P. Newbold, (1986), Forecasting Economic Time Series, Academic Press, San Diego.

Granger, C.W.J. and M.H. Pesaran, (1993), Economic and Statistical Measures of Forecast Accuracy, Journal
of Forecasting, 19, 537-560.

Guidolin, M. and A. Timmermann, (2004), Term Structure of Risk Under Alternative Econometric Specifi-
cations, Journal of Econometrics, forthcoming.

Guidolin, M. and A. Timmermann, (2005), Strategic Asset Allocation, Working Paper, Uniersity of Califor-
nia, San Diego.

Hall, P. and J.L. Horowitz, (1996), Bootstrap Critical Values for Tests Based on Generalized Method of
Moments Estimators, Econometrica, 64, 891-916.

Hall, A.R. and A. Inoue, (2003), The Large Sample Behavior of the Generalized Method of Moments Esti-
mator in Misspecified Models, Journal of Econometrics, 361-394.

Hamilton, J.D., (1994), Time Series Analysis, Princeton University Press, Princeton.

Hansen, B.E., (1996), Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis,
Econometrica, 64, 413-430.

Hansen, P.R., (2004a), A Test for Superior Predictive Ability, Working Paper, Brown University, Journal of
Business and Economic Statistics, forthcoming.

Hansen, P.R., (2004b), Asymptotic Tests of Composite Hypotheses, Working Paper, Brown University.

78



Harvey, D.I., S.J. Leybourne and P. Newbold, (1997), Tests for Forecast Encompassing, Journal of Business
and Economic Statistics 16, 254-259.

Hong, Y., (2001), Evaluation of out-of-sample Probability Density Forecasts with Applications to S&P 500
Stock Prices, Working Paper, Cornell University.

Hong, Y.M., H. Li (2003), out-of-sample Performance of Spot Interest Rate Models, Review of Financial
Studies, forthcoming.

Horowitz, J., (2001), The Bootstrap, in: Handbook of Econometrics, Volume 5, ed. JJ. Heckman and E.
Leamer, Elsevier, Amsterdam.

Inoue, (2001), Testing for Distributional Change in Time Series, Econometric Theory, 17, 156-187.

Inoue, A. and L., Kilian (2004), In-Sample or Out-of-Sample Tests of Predictability: Which One Should We
Use? Econometric Reviews 23, 371-402.

Inoue, A. and M. Shintani, (2004), Bootstrapping GMM Estimators for Time Series, Journal of Econometrics,
forthcoming.

Khmaladze, E., (1981), Martingale Approach in the Theory of Goodness of Fit Tests, Theory of Probability
and Its Applications, 20, 240-257.

Khmaladze, E., (1988), An Innovation Approach to Goodness of Fit Tests in Rm, Annals of Statistics, 100,
789-829.

Kilian, L., (1999a), Exchange Rate and Monetary Fundamentals: What Do We Learn from Long-Horizon
Regressions? Journal of Applied Econometrics, 14, 491-510.

Kilian, L., (1999b), Finite Sample Properties of Percentile and Percentile t-Bootstrap Confidence Intervals
for Impulse Responses, Review of Economics and Statistics, 81, 652-660.

Kilian, L. and M.P., Taylor, (2003), Why is it so Difficult to Beat the Random Walk Forecast of Exchange
Rates? Journal of International Economics, 60, 85-107.

Kitamura, Y., (2002), Econometric Comparisons of Conditional Models, Working Paper, University of Penn-
sylvania.

Kolmogorov A.N., (1933), Sulla Determinazione Empirica di una Legge di Distribuzione, Giornale dell’Istituto
degli Attuari, 4, 83-91.
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