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1. Introduction

Traders, economists and central bankers all have interest in assessing market beliefs. The problem

is that markets speak to us in the language of prices, and extracting their views can often be a

di¢ cult inference problem.

This paper surveys and occasionally extends a variety of methods for obtaining not just market

expectations, but the full range of predictive densities. I examine and implement procedures for

both options and the underlying. A mastery of these approaches can help banks, trading �rms and

their regulators avoid excessive risks.

The paper begins by explaining the theoretical connection between option prices and probability

measures. The relationship linking the option price and the risk neutral density is established,

under very general conditions, using the Feynman-Kac lemma.

I then establish empirically that the log normality restrictions implied by Black-Scholes are too

severe. Our evidence, drawn from an exchange rate example, illustrates the volatility smile and

skew.

The paper then moves beyond the log-normal and extracts densities using histogram estimators.

These approaches perform fairly poorly, but I introduce a well-behaved method that can be solved

in a spreadsheet.

A closely related approach using Rubinstein�s (1994) implied binomial trees follows. We use

the modi�cations of Barle and Cakici (1998) and Cakici and Foster (2002) in a numerical example.

The most popular approach in the practitioner literature, local volatility modeling, is discussed

next. We follow Shimko (1993) and Dumas, Fleming and Whaley (1998) and interpolate the volatil-

ity surface. These techniques are computationally straightforward, but are limited by potential

arbitrage violations in the tails, precisely the region of greatest interest to policy authorities.

I next turn to alternative stochastic processes for the underlying. I parameterize the spot price

process as a mixture of log normals, as in Ritchey (1990) and Melick and Thomas (1997), and

�t the model to options prices. This model has proven useful in analyzing exchange rate crises

in Haas, Mittnik and Mizrach (2006) and, in Mizrach (2006), predicting Enron�s bankruptcy risk

prior to its collapse.

Econometric issues are considered in the stochastic process section. These include the choice

of metric. The paper endorses the view that matching option volatility is the preferred distance

measure. Hypothesis testing against simpler alternatives is not straightforward due to nuisance
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parameters, and a bootstrap approach is discussed. Comparing value-at-risk over a speci�c interval

is done using the approach of Christo¤ersen (1998), and comparison of the entire predictive density

is also done using Berkowitz (2001).

I then examine jump processes and introduce the crucial recent results of Barndor¤-Neilsen

and Shephard (2006). These enable a straightforward extraction of the jump risk component in

the underlying. I �nd that, in exchange rates, jump risk does not move in lockstep with stochastic

volatility.

I now begin in the obvious place, with the Black-Scholes model as a baseline.

2. Black Scholes Baseline

I specify the price process and the hedge portfolio in the �rst part. The link between the risk

neutral measure and the solution to the portfolio di¤erential equation is in the second part.

2.1 The B-S di¤erential equation

We assume that the spot price St follows a geometric Brownian motion,

St = S0 exp(�t+ �Wt) (1)

where S0 is an initial condition, � and � are constants and Wt is a standard Brownian motion.

This process is log normal because log(St) = log(S0) + �t + �Wt is normally distributed. Ito�s

lemma implies that

dSt = �Stdt+ �StdWt; (2)

with drift � = (�+ �2=2) and deterministic volatility �:

Suppose that Yt is the price of a derivative security contingent on S and t: From Ito�s lemma,

we obtain,

dYt =

�
@Y

@S
�St +

@Y

@t
+
1

2

@2Y

@S2
�2S2t

�
dt+

@Y

@S
�StdWt: (3)

Consider next a portfolio, �, short one derivative security and long an amount @Y=@S of the

underlying,

�t = �Yt +
@Y

@S
St: (4)

The change in value of this portfolio in a short interval is

d�t = �dYt +
@Y

@S
dSt: (5)
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Substituting (2) and (3) into (5) yields,

d�t = �
�
@Y

@t
+
1

2

@2Y

@S2
�2S2t

�
dt: (6)

Since this equation does not involve dWt, the portfolio is riskless during the interval dt: Under a

no arbitrage assumption, this portfolio can only earn the riskless rate of interest r,

d�t = r�tdt (7)

Substituting from (4) and (6), this becomes�
@Y

@t
+
1

2

@2Y

@S2
�2S2t

�
dt = r

�
Yt �

@Y

@S
St

�
dt: (8)

This can be expressed as a partial di¤erential equation (PDE),

@Y

@t
+
@Y

@S
rSt +

1

2

@2Y

@Y 2
�2S2t = rYt: (9)

This equation was initially proposed and solved by Black and Scholes (1973) in their seminal

paper. A number of derivative securities can be priced using the solution to (9) along with the

appropriate boundary conditions,

YT = exp(�r�) (ST ) (10)

where T is the date of expiry, and � = T �t. For a European call with strike price K, the boundary

condition would be

 (St) = exp(�r�)max[ST �K; 0]: (11)

We then obtain the well-known Black-Scholes formula,

BSC(St;K; T; r; �) = St�(d1)�K exp(�r�)�(d2); (12)

with

d1 =
ln(St=K) + (r + �

2=2)�

�
p
�

;

d2 = d1 � �
p
� ;

and �(�) denotes the cumulative standard normal distribution.

2.2 A probability density approach

The link between the typically numerical PDE approach and stochastic processes is provided by

the Feynman-Kac analysis.

Consider again a spot price process that solves (1), and a derivative security that follows the

PDE,
@Y

@S
�St +

@Y

@t
+
1

2

@2Y

@S2
�2S2t = 0; (13)
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and satis�es the boundary condition (11). Applying Ito�s lemma to (13), we again obtain (3).

The �rst term in (3) drops out from (13), and then integrating on both sides,R T
t dYt = YT � Yt =

R T
t

@Y

@S
�StdWt: (14)

Taking expectations, the right hand side is zero, leaving

Yt = E[YT ] = exp(�r�)EQ[ (ST )jSt = s] (15)

Note that we have replaced the solution of the PDE with a conditional expectation taken under

the risk neutral measure Q. Regularity conditions are established in Karatzas and Shreve (1991).

Hambly (2006) shows how we can use the Feynman-Kac to construct probability densities for

the spot price. Set  (s) = I�(s), the indicator function of a set �. The solution to the PDE (13)

with this boundary condition is

E[I�(ST )jSt = s] = Pr[ST 2 �jSt = s] (16)

The probability density f obeys the Kolmogorov (or Fokker-Planck) forward equation,

@f

@S
�St +

@f

@t
+
1

2

@2f

@S2
�2S2t = 0 (17)

where we impose a terminal delta function. This equation describes the probability density of

being at ST given that we are at St.

In the case where the spot price process follows a Brownian process with drift r;

dSt = rStdt+ �StdWt; (18)

we calculate that the transition density is the log-normal,

f(ST ) =
1

ST
p
2��2�

exp

"
�
[ln(STSt )� (r � �

2=2)� ]2

2�2�

#
:

3. Empirical Departures from Black Scholes

Data on option prices appear to be inconsistent with the Black-Scholes assumptions. In particular,

volatility seems to vary across strike prices � often with a parabolic shape called the volatility

�smile.�The smile is often present on only one part of the distribution giving rise to a �smirk.�

Tompkins (2001) shows that these patterns are quite typical in a wide range of options markets,

including stock indices, Treasury bonds and exchanges rates for Germany, the U.K. and the U.S.

The motivating examples in this section are drawn from the foreign exchange market and draw

upon the work of Haas, Mittnik and Mizrach (2006). I analyze the US Dollar/British Pound
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(US$/BP) option which trades on the Philadelphia exchange. Both American and European op-

tions are traded. The BP options are for 31; 250 Pounds. I use daily closing option prices that are

quoted in cents. Spot exchange rates are expressed as US$ per unit of foreign currency and are

recorded contemporaneously with the closing trade. Foreign currency appreciation (depreciation)

will increase the moneyness of a call (put) option. Interest rates are the Eurodeposit rates closest

in maturity to the term of the option.

To obtain a rough idea about the implied volatility pattern in the currency options, I look

at sample averages. I sort the data into bins based on the strike/spot ratio, S=K, and compute

implied volatilities using the Black-Scholes formula. In Figure 1, I plot the data for all of 1992 and

1993, for the British Pound. It displays the characteristic pattern, with the minima of the implied

volatility at the money, and with higher implied volatilities in the two tails.

[Insert Figure 1 Here]

Black-Scholes cannot account for this pattern in implied volatility. The next three sections

discuss how to move beyond the restrictive Black-Scholes assumptions.

4. Beyond Black Scholes

I extend the Black-Scholes model by allowing volatility to vary with the strike price. The formal

link is established using the forward Kolmogorov equation.

4.0.1 How Volatility Varies with the Strike

The Feynman-Kac analysis enables us to de�ne a risk neutral probability in which we can price

options. Let f(ST ) denote the terminal risk neutral (Q-measure) probability at time T , and let

F (ST ) denote the cumulative probability. A European call option at time t, expiring at T , with

strike price K, is priced

C(K; �) = exp(�r�)
Z 1

K
(ST �K)f(ST )dST ; (19)

In the case where f(�) is the log-normal density and volatility � is constant with respect to K, this

yields the Black-Scholes formula, In this benchmark case, implied volatility is a su¢ cient statistic

for the entire implied probability density which is centered at the risk-free rate.

In the baseline case, practitioners often try to invert (2) to estimate �implied volatility�. The
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academic literature has focused on whether volatility in the physical measure is better predicted

by implied volatility, GARCH or stochastic volatility.

Under basic no-arbitrage restrictions, we can consider more general densities than the log-

normal for the underlying. Breeden and Litzenberger (1978) show that the �rst derivative is a

function of the cumulative distribution,

@C=@K jK=ST= �e�r� (1� F (ST )): (20)

The second derivative then extracts the density,

@2C=@K2 jK=ST= e�r�f(ST ): (21)

4.0.2 The Kolmogorov equation

Dupire (1994) clari�es the isomorphism between the approaches that specify the density and those

that specify price process. He shows that for driftless di¤usions, there is a unique stochastic process

corresponding to a given implied probability density.

From the Kolmogorov equation (17) for this density, I rearrange

@C

@T
=
1

2
�2K2 @

2C

@K2
� rK @C

@K
(22)

and obtain the local volatility formula,

�2(K; t) =
@C
@T + rK

@C
@K

1
2K

2 @2C
@K2

: (23)

The principal problem in estimating f is that one does not observe a continuous function of

option prices and strikes. My �rst attempt to estimate f utilizes a histogram method to try and

trace out the density.

5. Histogram Estimators

This section develops two nonparametric estimators of the risk neutral density.

5.1 A crude histogram estimator

This section describes a method �rst proposed by Longsta¤ (1990) and then modi�ed by Rubinstein

(1994). Let S be the current price of the underlying asset. Let C1 to Cn be the prices of n associated

call options with striking prices K1 < K2 < � � � < Kn all with the same time to expiration. Denote

by ST the price of the asset at expiration, and let r be the riskless rate of interest, and � be the
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payout rate on the underlying asset (e.g. a dividend for a stock or in the case of a foreign exchange

option, the interest di¤erential).

As ST goes from Kn to Kn�1 the payo¤ goes from 0 to Kn � Kn�1 with an average payo¤

of 0:5(Kn � Kn�1). It follows that Cn�1 = 0:5pn(Kn � Kn�1)=(1 + r) with pn the risk neutral

probability associated with the histogram bin n.

Consider now the price of the call with the next lowest striking price. There are three outcomes

one must consider. If ST < Kn�2 then the payo¤ is zero. In the interval betweenKn�1 andKn�2 the

average payo¤ is 0:5(Kn�1�Kn�2). Above Kn�1 the payo¤ is pn[(Kn�1�Kn�2)+1=2(Kn�Kn�1)].

The latter part is easily seen as just (1 + r)Cn�1. Adding up these components, gives us the

recursion,

Cn�j = [0:5pn�j+1 +
Xj

k=2
pn�j+k](Kn�j+1 �Kn�j)=(1 + r) + Cn�j : (24)

I can view the underlying asset as a call with strike K0 = 0. As before, I have three outcomes to

consider. If ST < 0 then the payo¤ is zero. For 0 � ST < K1, then the payo¤ is 1=2(K1 � 0)p1,

and for ST > K1,

(K1 � 0)[p2 + � � �+ pn]=(1 + r) + C1: (25)

Adding up these payo¤ components gives us,

S=(1 + �) = K1[0:5p1 +
Xn

k=2
pk]=(1 + r) + C1: (26)

Exploiting the fact that the probabilities sum to one,

S=(1 + �) = K1[0:5p1 + (1� p)1]=(1 + r) + C1; (27)

I can rearrange (27) and solve for P1,

p1 = 2[1� (1 + r)(S=(1 + �)� C1)K�1
1 ]: (28)

More generally, I can write pj = 2[1�
Pj�1
k=1 pk � (1 + r)(Cj�1 � Cj)(Kj �Kj�1)�1]:

I implement this histogram method in Figure 2. The baseline is a normal distribution for which

I have priced 11 Black-Scholes calls for strikes from 75 to 125, with a spot price of 100. For this

example, the Longsta¤-Rubinstein estimator does not provide even a good rough approximation.

The probabilities whipsaw back and forth; every other bin turns negative. After some trial and

error, it was apparent this property was not uncommon. I turn next to an improved estimator.

[Insert Figure 2 Here]

8



5.2 An improved histogram estimator

Let bi > 0; i = 0; : : : ; n+1 be the cardinality of a set uniformly distributed with meanKi+1�Ki for

i = 1 to n� 1, and �Ki at the end points. To transform bi into a probability measure, de�ne

pj = bj=
Xn+1

j=1
bj (29)

The improved estimator minimizes the percentage deviation from the simulated and observed

call prices,

min
b0;:::;bn+1

Xn

j=1
(Ĉj � Cj)=Cj ; (30)

where the cC 0s can be determined using the recursion (24).
I used this optimized histogram estimator to �t the same 11 Black-Scholes calls from the prior

example. For a small number of calls, this algorithm can be solved in a spreadsheet. I plot the

risk neutral probabilities in Figure 2.

The optimized histogram is a substantial improvement over the crude estimator. There are no

negative probabilities (by construction) and with the exception of the long bin from 0 to 75, it

provides a good approximation to the underlying normal. This method is quite reliable for back of

the envelope calculations, but for more complicated processes, one needs more powerful techniques.

6. Tree Methods

6.1 A standard tree

I begin the discussion by de�ning a notation for a standard binomial tree. Let S0;0 denote the

current spot price. Any element of the spot price tree is a sequence of recombining up and down

moves u; d :

Si;j = S0;0 � ujdi�j ; i = 0; : : : ; N; j = 0; : : : i; (31)

where

u = exp�
p
T=N ; d = 1=u;

N is the number of steps in the tree, T is the time to expiration, and � is the annualized volatility.

The risk neutral probability of an up move is

p =
exprT=N �d

u� d (32)

where r is the risk free rate of return.

The main advantage of the standard approach is simplicity. One of the important limitations
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for our purposes is the assumption that the probabilities are constant throughout the tree. This

implies that the nodal probability of reaching any particular terminal point SN;;j is just the binomial

probability

pN;j = Pr[ST = SN;j ] = �(j;N; p); (33)

=
j!(N !� j)!

N !
� pj(1� p)N�j :

6.2 Implied binomial trees

The implied binomial tree approach of Rubinstein (1994) and Jackwerth and Rubinstein (1996)

relaxes the assumption of constant probabilities as in (32). Our discussion here follows the devel-

opments in Barle and Cakici (1998) and Cakici and Foster (2002). The �rst key modi�cation is to

center the tree at the forward price Fi;j ;

Fi;j = pi;jSi;j+1 + (1� pi;j)Si;j : (34)

The other change is to value options using Black-Scholes with interpolated volatilities rather than

the Arrow-Debreu prices �i;j ;

BSCi;j(S0;0;K; T; �) =
Pn
j=1 �i;j exp(�r�t)max(Si;j �K; 0); (35)

which is a call with strike price K, expiration �t;and volatility �.

To grow the tree from the initial spot price (or any odd number step in the tree), we have two

even nodes. The upper central node is

Si+1;j+1 = Fi;j
�i;jFi;j +�

C
i;j

�i;jFi;j ��Ci;j
(36)

where

�Ci;j = exp(r�t)Ci;j(Fi;j ;�t)�
Pi
k=j+1 �i;k(Fi;k � Fi;j); (37)

The lower central node must then satisfy Si+1;jSi+1;j+1 = F 2i;j :

We then move up from the central node using the recursions,

Si;j+1 =
�Ci�1;jSi;j � �i;jFi�1;j(Fi�1;j � Si;j)

�Ci�1;j � �i;j(Fi�1;j � Si;j)
: (38)

Moves down from the central node are given by

Si;j =
�i�1;jFi�1;j(Si;j+1 � Fi�1;j)��Pi�1;jSi;j+1

�i�1;j(Si;j+1 � Fi�1;j)��Pi�1;j
(39)

where

�Pi;j = exp(r�t)Pi;j(Fi;j ;�t)�
Pj�1
k=1 �i;k(Fi;k � Fi;j) (40)
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The Arrow-Debreu probabilities are then updated,

�i+1;j exp(r�t) =

8<: pi;j�i;j for j = n+ 1
pi;j�1�i;j�1 + (1� pi;j)�i;j for 2 � j � n

(1� pi;1)�i;1 for j = 1

9=; : (41)

6.3 Numerical example

We illustrate the implied binomial trees using a numerical example. Consider an 2-step tree, six

months from expiration, which implies �t = 0:25. The initial price S0;0 = 100: Volatility is a

smirk, rising when the strike price is above 100, K = max(20; 20 � Fi;j=S0;0): The continuously

compounded interest rate is r = ln(4:8790) = 5%:

Starting from S0;0, we compute the forward price, F0;0 = 100 exp(0:04879 � 0:25) = 101:2272.

The Arrow-Debreu price at the origin is �0;0 = 1:0. The Black-Scholes call struck at the futures

price, expiring next period and volatility � = 20� 101:2272=100 = 20:2454 is

BSCi;j(S = S0;0;K = F0;0; T = 0:25; � = 20:2454) = 4:0367;

which implies

�Ci;j = exp(0:04879� 0:25)4:0367 = 4:0862:

We then use (36) to �nd

S1;1 = 101:2272
(1:0)(101:2272) + 4:0862

(1:0)(101:2272)� 4:0862 = 109:7434:

We �nd the lower central node by equating spot and futures prices,

S1;0 = F 20;0=S1;1 = 93:3719:

Having found the new spot prices, we can update the transition probabilities,

p0;0 =
(F0;0 � S1;0)
(S1;1 � S1;0)

= 0:4798;

and the Arrow-Debreu prices,

�1;1 = �0;0p0;0 exp(�r�t) = 0:4740;

�1;0 = �0;0(1� p0;0) exp(�r�t) = 0:5139:

The next central node is at the 2-step ahead forward price,

S2;1 = 100 exp(0:04879� 0:25� 2) = 102:4695:

We work up from there using (38). This requires the forward prices at the prior node,

F1;1 = exp(r�t)S1;1 = 111:0902;
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and the call prices. We compute the new local volatility � = 22:2180; and price the call

BSCi;j(S0;0;K = F1;1; T = 0:5; � = 22:2180) = 3:1597:

Since this call is at expiry, we don�t need to discount, �Ci;j = BSCi;j : Substituting into (38),

S2;2 =
(3:1597)(102:4695)� (0:4740)(111:0902)(111:0902� 102:4695)

3:1597� (0:4740)(111:0902� 102:4695)
= 140:4882:

Moving down from the central node requires (39). We use the futures price

F1;0 = exp(r�t)S1;0 = 94:5178;

and the volatility � = 20;to price the put,

BSPi;j(S0;0;K = F1;0; T = 0:5; � = 20) = 2:3970:

Substituting into (39),

S2;0 =
(0:5139)(94:5178)(102:4695� 94:5178)� (2:3970)(102:4695)

(0:5139)(102:4695� 94:5178)� 2:3970
= 83:2339:

This completes this simple example.

A simpler approach which interpolates the implied volatility surface is my next topic.

7. Local Volatility Functions

The most popular practitioners method is the use of local volatility functions. The seminal refer-

ences are Shimko (1993) and Dumas, Fleming and Whaley (1998).

Shimko (1993) proposed to �t a polynomial to the smile so as to infer how volatility varied

with the striking price. He chose to use a quadratic,

�̂(K; t) = a0 + a1K + a2K
2: (42)

In the case where volatility varies in this fashion, the density f(ST ) can be written,

N 0(d2) [d2K � (a1 + 2a2K)(1� d2d2K)� 2a2K] : (43)

Shimko�s method has several advantages. It can be used to generate call prices for a continuum of

strikes. In this way, I can �ll in the histogram proposed by Longsta¤ (1990) and Rubinstein (1994).

The downside is that it can easily generate either negative probabilities or pricing inconsistencies.

I can illustrate this in an empirical example now.

The di¢ culties with Shimko�s method arise when @�=@K is too steep. At some point, the
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volatility may become so high that is implies a more deeply out of the money option has a higher

price than those close to being in the money.

I utilize data from the Philadelphia Exchange for June 25, 1992 DM/$ puts and calls. I �t a

quadratic to the smile, 0:4035� (%M)2 + 0:288� (%M) +10:362 in Figure 3(a).

[Insert Figure 3(a) and (b) Here]

At �4% out of the money, the implied volatility rises to 15:67 and at �6%, 23:16: Once I

translate these volatilities into prices in Figure 3(b), one can see that an arbitrage exists. The

�6% call is more valuable than the �4%, 0:16 versus 0:10:

A further di¢ culty is that even when this arbitrage is not a problem, there is no guarantee that

the bracketed term in (58) will remain positive for all choices of a. I also conjecture that one set

of restrictions does not necessarily imply the other, making this a fairly complicated constrained

optimization. Brunner and Hafner (2003) is a promising step in this direction.

Bliss and Panigirtzoglou (2002) endorse the use of local volatility functions1 over the mixture-

of-normals approach in the next section, but this conclusion does not seem to hold when we look

just at the tails of the distribution.

8. PDF Approaches

8.1 Mixture-of-Log-Normals Speci�cation

I assume that the stock price process is a draw from a mixture of three (non-standard) normal

distributions, �(�j ; �j), j = 1; 2; 3; with �3 � �2 � �1. Three additional parameters �1; �2 and �3

de�ne the probabilities of drawing from each normal. To nest the Black-Scholes, we restrict the

mean to equal the interest di¤erential, �2 = id � if . Risk neutral pricing then implies restrictions

on either the other means or the probabilities. I chose to let �1; �1 and �3 vary, which implies

�3 =
�1�1
�3;

; (44)

and

�2 = 1� �1 � �3: (45)

1 They use natural splines in the implied volatility-delta space. When �tting the mixture of normals, they
use the call price-strike metric.
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For estimation purposes, this leaves six free parameters � = (�1; �2; : : : ; �6). To keep the

estimates positive, I embed the parameters into the exponential function. The left-hand tail dis-

tribution is given by

�(�1; �1) = �(id � if � e�1 ; 100� e�2): (46)

The only free parameter of the middle normal density is the standard deviation,

�(�2; �2) = �(id � if ; 100� e�3): (47)

I use the logistic function for the probabilities to bound them on [0; 1],

�1 =
e�4

1 + e�4
; (48)

�3 =
e�5

1 + e�5
: (49)

The probability speci�cation implies the following mean restrictions on the third normal,

�(�3; �3) = �

�
(id � if + e�1)�

e�4=(1 + e�4)

e�5=(1 + e�5)
; 100� e�6

�
: (50)

Mizrach (2006) shows that this data generating mechanism can match a wide range of shapes

for the volatility smile.

8.2 Data and Estimation Results

8.2.1 Data

I focus on a subset of the results from Haas, Mittnik and Mizrach (2006). I utilize the British

Pound/US$ option data described in Section 3. For estimation purposes, I excluded options that

were less than 5 or more than 75 days to maturity, more than 10% in or out of the money, and

with volumes less than 5 contracts. This seemed to eliminate most data points with unreasonably

high implied volatilities.

8.2.2 Implied Density Estimation

There are two key issues in �tting a stochastic process to the options data. The �rst is to extend

the analysis to American options which can be exercised before expiration. The second is choosing

the loss function for estimation.

I approximate American puts and calls using the Bjerksund and Stensland (1993) approach.

Ho¤man (2000) shows that the Bjerksund-Stensland algorithm compares favorably in accuracy and
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computational e¢ ciency to the Barone-Adesi and Whaley (1987) quadratic approximation. Our

estimates were also quite similar using implied binomial trees.2

Let

fdj;tgnj=1 = [c(�1;K1); : : : ; c(�m;Km); p(�m+1;Km+1); : : : ; p(�n;Kn)]

denote a sample of size n of the calls c and puts p traded at time t, with strike price Kj and

expiring in � j years, and denote the pricing estimates from the model by fdj;t(�)g.

In estimation, Christo¤ersen and Jacobs (2004) emphasize that the choice of loss function is

important. Bakshi, Cao and Chen (1997), for example, match the model to data using option

prices. This can lead to substantial errors among the low priced options though. Since these

options are associated with tail probability events, this is not the best metric for our exercise. We

obtained the best �t overall using the implied Bjerksund-Stensland implied volatility,

�j;t = BJST�1(dj;t; St; it): (51)

Let the estimated volatility be denoted by

�j;t(�) = BJST�1(dj;t(�); St; it): (52)

We then minimize the sum of squared deviations from the implied volatility in the data,

min
�

Pn
j=1(�j;t(�)� �j;t)

2: (53)

As Christo¤ersen and Jacobs note, this is just a weighted least squares problem that, with the

monotonicity of the option price in �, satis�es the usual regularity conditions.

[Insert Table 1 Here]

I report estimates for two sample days around the ERM crisis in Table 1. Haas, Mittnik and

Mizrach (2006) establish that the model �ts well both before and after the crisis. Inferences drawn

from the BP/US$ options are analyzed in the next section.

9. Inferences from the Mixture Model

There is often a belief that the standard model is su¢ cient in all but the most extreme circum-

stances. It turns out that a formal test of this kind in a mixture model is not at all straightforward.

2 We can also price exotics in this framework, pricing options using Monte Carlo or other numerical proce-
dures. Conditions under which these simulated moments models are appropriate is considered in Mizrach
(2006).
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The forecast comparisons discussed in the second and third parts may make more sense for prac-

titioners.

9.1 Tests of the adequacy of Black-Scholes

Hansen (1996) considers the case of additive nonlinear models like our mixture model,

�j;t = (1� �1 � �3)�(id � if ; �2(�3)) + �1�(�1(�1); �1(�2))

+�3�(�3; �3�1(�6))

Under Black-Scholes, �1 = �3 = 0; and it is tempting to compare the models using the likelihood

ratio. Unfortunately, under the Black-Scholes alternative, the parameters in the two tail log nor-

mals, �1; �2 and �6, are nuisance parameters. Formally, the derivative of the likelihood function is

�at with respect to these parameters. Their non-identi�cation invalidates the distribution theory

for the standard LR test. Hansen (1996) reports severe size distortions in several cases for the

standard test.

Fortunately, Hansen also o¤ers a constructive alternative. In our present setting, we can take

minimizing the squared residuals,

"2t = (�j;t(�)� �j;t)2

as the objective function. The restricted alternative is given by

"2R;t = (�j;t(�3)� �j;t)2

Construct the F -test,

Fn = n
Pn
j=1("

2
R;t � "2t )=

Pn
j=1 "

2
R;t: (54)

Hansen then shows that

Fn = sup
�2�

Fn(�):

whose distribution is not asymptotically F and must be obtained by bootstrap. Since coe¢ cients

are likely to change daily, this is potentially tedious procedure.

9.2 Forecast comparison

9.2.1 Hypothesis tests on the forecast intervals

To compare the value-at-risk on the 2 days at both con�dence levels. I adapt the framework of

Christo¤ersen (1998). In each of the three cases, I construct the test of the null hypothesis from a
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sequence of Bernoulli trials,

I�t =

�
1; Pr [(ST � St)=St < �%V aR�] > �
0 Pr [(ST � St)=St < �%V aR�] < �

�
; (55)

where St is the current spot price, T � t is four weeks, and � is the critical level of the V aR: I

take the V aR loss intervals from August 20 as the null, and compute �%V aR0:05 = �4:84% and

�%V aR0:01 = �7:14%

Since the V aR is assessing tail risk, we are concerned with the coverage of the forecast interval

from (�1;�%V aR�). Under what Christo¤ersen calls unconditional coverage, I test

H0 : E[I
�
t ] = �;

using the likelihood ratio

LR� = �2 ln[�n0(1� �)n1=(b��n0(1� b��)n1)]; (56)

where b�� = n0=(n1 + n0);

is the maximum likelihood estimator of �. Under H0, LR� is distributed �2(1):

As one might expect, the V aR rose substantially with the higher volatility during the crisis.

Values at risk rises to �%V aR0:05 = �6:11% and �%V aR0:01 = �8:73%: To assess the statistical

signi�cance of this, I implement the test in (56) in Table 1. I simulate N = 250 forecasts from

the September 17 parameterization. Let n0 be the number of times that (ST � St)=St is less than

�%V aR�. I �nd n0 under the August loss coverage rejects too often, 26 times, rather than the

expected 0:05�250 = 12:5 times under the null. The likelihood ratio is 11.87 which rejects the null

at better than 1% signi�cance, At the 99% level, I �nd n0 = 3, and the test, with LR0:01 = 0:094,

is not nearly powerful enough to reject that the forecasts are di¤erent.

9.2.2 Comparing the entire density

Next, we evaluate the forecast densities produced across their entire support. The approach we

take is the one originally proposed by Berkowitz (2001). He notes that the probability integral

transform bF (st) = Z st

�1
f(u)du:

generates uniform, independent and identically distributed estimates under fairly weak assump-

tions.

Testing for an independent uniform density in small samples can be problematic, so Berkowitz
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suggests transforming the data into normal random variates,

zt = �
�1( bF (st));

A simple test of the null hypothesis that the transformed forecast statistics, zt, have mean zero

can be performed using the likelihood ratio,

LR =
PT
t=1

�
z2t
�̂2
� 1
�
; (57)

where �̂ is the forecast standard deviation. LR is then approximately distributed �2(1).

I graph the forecast density for August 20, 1992 in Figure 4.

[Insert Figure 4 Here]

The realized 4-week returns are then plotted in comparison to the density. To the naked eye,

the left-tail, associated with BP depreciation, is substantially longer. This was indeed detected in

our VAR exercise in the prior section.

When looking across the entire density, the power of the test is substantially weaker. The

average forecast is 0.9756 or approximately a 2:5% decline. The average z-value is �0:4261; and

�̂2 = 2:4195: I compute LR = 1:5008 which has a p-value of only 0:2206. Clearly, when the risks

are one-sided, you want to exploit this information.

10. Jump Processes

I now move back to the case of a single process for the underlying. The key step is to introduce

discontinuities in the price process through jumps. I begin with the Merton (1976) model as a

baseline, and then allow for stochastic volatility in the second part.

10.1 Merton model

Merton (1976) has proposed a jump di¤usion model

dSt = (�� �k)Stdt+ �StdWt + dqt; (58)

where dWt is a Wiener process, dqt is the Poisson process generating the jumps, and � is the

volatility. dW and dq are considered independent. This assumption is important because we

cannot apply risk-neutral valuation to situations where the jump size is systematic.

� is the rate at which jumps happen, � is the expected return, and k is the average jump size.
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This model gives rise to fatter left and right tails than Black-Scholes. If we assume that the log of

k is normal with standard deviation �, the European call option price is

C =
P1
n=0

e��
0T (�0�)n

n!
fn; (59)

where �0 = �(1 + k) and fn is the Black-Scholes option price when the variance is

�2 + n�2=T;

and the risk free rate is

r � �k + n ln(1 + k)=T:

Carr and Wu (2004) consider the generalization of the jump di¤usion model to Levy processes.

Bates (1991) has estimated this model to infer the risk in options prior to the 1987 stock market

crash.

10.2 Bipower Variation

I follow Andersen, Bollerslev and Diebold (2007) and consider a stochastic volatility model with

jumps,

dpt = �tdt+ �tdWt + �tdqt (60)

where pt = ln(St), qt is a counting process with intensity �t, and �t is the jump size with mean ��

and standard deviation ��. The quadratic variation for the cumulative return process, rt = pt�p0
is then

[r; r]t =
R t
0 �

2
sds+

P
0<s�t �

2(s): (61)

Estimation of the quadratic variation proceeds with discrete sampling from the log price process.

Denote the �-period returns by rt+1;� = pt+1 � pt+1��. The realized volatility is

RVt+1;� =
P1=�
j=1 r

2
t+j��;�: (62)

In the now vast literature on the stochastic volatility model, � = 0, researchers have employed

realized volatility as an estimator of the integrated volatility,
R t
0 �

2
sds:

In the case of discontinuous price paths, Barndor¤-Nielsen and Shephard (2006) show that the

realized volatility will also include the jump component,

p lim
��!0

RVt+1;� =
R t+1
t �2sds+

P
t<s�t+1 �

2(s): (63)

To extract the integrated volatility from (60), Barndor¤-Nielsen and Shephard have also introduced

the realized bi-power variation,

BVt+1;� = ��21
P1=�
j=2 jrt+j��;�j

��rt+(j�1)��;��� (64)
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where �1 =
p
2=�: It is then possible to show

p lim
��!0

BVt+1;� =
R t+1
t �2sds: (65)

By comparing (63) and (65), we have the estimate of just the jump portion of the process,

p lim
��!0

(RVt+1;� �BVt+1;�) =
P
t<s�t+1 �

2(s): (66)

I next turn to an application of this analysis in the ERM exchange rate context

10.3 An application

I will now take the sampling interval � to be daily changes, and compute 50-period rolling sample

estimates of realized volatility,

RV
1=2
t = (

P50
j=1 r

2
t�j=50)

1=2 (67)

and bipower variation,

BVt = (�=2)
P50
j=1 jrt�j j

��rt�j�1)�� =50: (68)

We constrain the jump risk to be positive,

�t = (max[RVt �BVt; 0])1=2 (69)

I again use the British Pound/US$ exchange rate sample for January to October 1992, and

plot the realized standard deviation and jump risk in Figure 5.

[Insert Figure 5 Here]

The �gure has several features worth noting. The �rst is that while realized volatility for the

British Pound was quite high leading into the Spring of 1992, jump risk is zero until April 24.

Jump risk rises rather steadily through the rest of the spring, peaking at 0:2836% on June 1. Jump

risk then falls through the summer, returning to zero from July 24 to August 24.

On August 25, the jump risk spikes to 0:2188% and then falls back until September 14th, when

it spikes again to 0:4155%: Following a third local maximum of 0:3850% on Britain�s September

17th ERM withdrawal, jump risk falls back to zero by September 22. This is true even though the

realized volatility remains as high as it was during the crisis.

Although not shown in the �gure, both the volatility and jump risks remain high into 1993.

At the end of 1992, more than 3 months after the crisis, the realized volatility is at 0:9007%: The

jump risk spikes twice above 0:30%, October 19 and December 2.
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11. Conclusion

It is important to stress what this paper has not discussed: the preservation of moments into the

change to the risk neutral measure. While straightforward in the Black-Scholes case, the results

do not hold in general. This paper has only shown, empirically, that there is useful information

in the risk neutral measure. The stochastic volatility model was not addressed in great detail; my

emphasis on tail behavior gave priority to jumps. I also have not discussed approaches like Bates

(2006) that rely on the characteristic function.

The paper has covered ground in three important areas: (1) nonparametric approaches esti-

mating implied densities directly from option prices; (2) parametric modeling of the local volatility

surface; (3) generalizations of the PDEs for the underlying process.

I also evaluate and implement tools for hypothesis testing and evaluating forecasts from al-

ternative models. The nuisance parameter issue is addressed with a bootstrap. Value-at-risk and

forecast comparison relies on the formal statistical procedures introduced by Christo¤ersen (1998)

and Berkowitz (2001).

I last considered the very recent work of Barndor¤-Neilsen and Shephard on bipower varia-

tion. This enables researchers to easily extract the jump component from the underlying. These

discontinuities are unhedgeable risks that may be systemic.

Policy makers may �nd these tools and inference worthwhile in a variety of contexts. Their

subjective weights between type I and type II errors should not only be tested ex-post but incorpo-

rated directly in the estimation. Both Skouras (2007) and Christo¤ersen and Jacobs (2004) have

made progress along these lines.
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Figure 1
Averages of Implied Volatility BP/US$ Options 1992-93

10

11

12

13

14

15

16

17

<0.92 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 >1.08

Strike Price/Spot Price

Im
pl

ie
d 

V
ol

at
ili

ty
 (%

 P
er

 A
nn

um
)

NOTES: The �gure reports implied volatility for BP/US$ options from the Philadelphia Ex-
change for 1992-93.
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Figure 2
Histogram Estimators
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NOTES: The �gure reports various di¤erent histogram estimators.
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Figure 3
Local Volatility Functions and Arbitrage Violations

DM/$ Options June 25, 1992
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+10:362 �t to the implied volatility of the DM/US$ options. As we extrapolate the local volatility
surface further out of the money, the model produces an arbitrage violation in panel (b) for the
calls more than 5% out of the money.
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Figure 4
Forecast Density Comparison
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NOTES: The light bars are the forecast density for the 4-week return on the spot exchange

rate using the mixture model parameters from August 20, 1992 in Table 1. The dark bars are the

subsequent 20 realizations. A formal statistical comparison is conducted using (57).

27



Figure 5
Jump Risk Estimates
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NOTES: The �gure plots realized daily standard deviation (67) and jump risk (32) for the

British Pound spot rate between March 18 and September 30, 1992.
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Table 1
Estimates of the Mixture of Log Normals Model

Date �1 �2 �3 �4 �5 �6 �%V aR0:05 �%V aR0:01 LR0:05 LR0:01

20-Aug-1992 �2:179
(0:01)

�1:908
(0:15)

�0:816
(0:01)

�1:855
(0:01)

�1:908
(0:07)

�2:440
(0:63)

-4.84% -7.14%

17-Sep-1992 �0:882
(0:07)

�0:943
(0:48)

�3:634
(0:48)

�3:108
(0:02)

�2:051
(0:09)

�1:933
(2:12)

-6.11% -8.73% 11:87
(0:00)

0:09
(0:76)

NOTES: The �0s are estimates of the model (14). t-ratios are in parentheses. �%V aR0:05
and �%V aR0:01 are the value at risk, in percent of long position in the BP over a four-week time
horizon at the 95 and 99% con�dence level. The LR statistic is given by (55) and compares the
V aR across the two dates. The simulation size is N = 250 observations. The LR test, with p-values
underneath, is distributed �2(1).
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