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Abstract

Heterogeneous beliefs among market participants can lead to ques-
tionable speculative trading that goes beyond any risk-sharing motives.
We demonstrate that such unwarranted betting behavior in market equi-
librium can be mitigated by introducing nonlinear pricing for ambigu-
ous contracts, without compromising legitimate risk-hedging activities.
While Arrow-Debreu equilibria generally fail to achieve belief-neutral
efficiency, we establish a modified version of the first welfare theorem in
which equilibria with nonlinear prices uphold belief-neutral efficiency.
Moreover, we show that belief-neutral efficiency can be ensured by in-
troducing suitable transaction costs for ambiguous financial assets.
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1 Introduction

Excessive trading in financial markets is a well-documented phenomenon
(Odean (1999)) and poses a puzzle when compared to the minimal trading
required to achieve intertemporal efficiency in stationary environments (Judd,
Kubler, and Schmedders (2003)).

We develop a stylized model where excessive trading arises from heteroge-
neous beliefs under Knightian uncertainty. While all economic fundamentals
have commonly known probabilities, placing the economy in a setting of risk,
there is additional uncertainty about unrelated events, such as sports outcomes
or the success of new startups.

In this economy, endowments are risky but not uncertain, as agents share
common beliefs about fundamental probabilities. However, they encounter
external betting opportunities where their beliefs diverge, driven by Knightian
uncertainty or behavioral biases like overconfidence.

Agents may engage in unnecessary betting in such cases, and we demon-
strate that this behavior generically occurs in Arrow-Debreu equilibrium. As
a result, these equilibria are not belief-neutrally efficient in the sense of Brun-
nermeier, Simsek, and Xiong (2014).

This fact raises the question of whether appropriate market design can
lead to better outcomes. We show that incorporating nonlinear pricing, as
proposed by Beissner and Riedel (2019), which accounts for the ambiguity of
betting events, eliminates undesirable betting. The resulting Knight–Walras
equilibria are belief-neutrally efficient, while prices for fundamentals linked to
individuals’ idiosyncratic risks remain linear, ensuring the desired risk-sharing
trade.

As the notion of a Knight-Walras equilibrium is somewhat abstract, we ask
which kind of rules might implement the desired equilibrium in practice. We
show that suitable designed transaction costs for ambiguous assets and events
do the job. The resulting financial markets remains frictionless for purely
hedging related trade and thus does not hamper social welfare of reasonable,
not betting-related trade.

Literature. There is a large and ongoing literature on heterogeneous be-
liefs in economics and finance that can emerge from various sources: Investors
can have heterogeneous prior beliefs (Morris (1995)), they might interpret
information heterogeneously (Harris and Raviv (1993), Kandel and Pearson
(1995), Banerjee and Kremer (2010)). The literature on belief formation
has increasingly emphasized the role of behavioral forces in shaping hetero-
geneously distorted beliefs among individuals. Overconfidence, for instance,
has been extensively studied in financial markets, where individuals tend to
overestimate their abilities or the precision of their information, leading to
suboptimal decisions (Odean (1998), Daniel, Hirshleifer, and Subrahmanyam
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(2001)). Similarly, motivated reasoning, wherein individuals selectively in-
terpret information to reinforce their pre-existing beliefs or desires, has been
shown to distort decision-making in economic and political contexts (Brun-
nermeier and Parker (2005), Bénabou and Tirole (2016)). This paper builds
on these insights to further explore the implications of heterogeneous belief
distortions for economic outcomes.

Economists have long recognized that the classic Pareto criterion often
leads to unappealing outcomes when agents hold heterogeneous beliefs. Early
general equilibrium literature include von Weizsäcker (1969), Dreze (1972),
Starr (1973), Harris (1978), Hammond (1981). More recently – in the after-
math of the great financial crisis – a new interest in efficiency criteria under
heterogeneous beliefs emerged, see Gilboa, Samuelson, and Schmeidler (2014),
Brunnermeier, Simsek, and Xiong (2014), Danan, Gajdos, Hill, and Tallon
(2016).

A consequence of heterogeneous belief in markets often leads to exces-
sive trade and speculation. In the setting of financial market equilibria this
is well studied, see Harrison and Kreps (1978), Detemple and Murthy (1994),
Scheinkman and Xiong (2003), Jouini and Napp (2007), and Borovička (2020).
The rationale for introducing a new efficiency notion relies on the desire to un-
derstand a normative criterion that mitigates such socially nondesirable equi-
librium outcome.

As highlighted by Stiglitz (1989), the welfare-diminishing effect of specula-
tion in financial markets may warrant a corrective market design. Rather than
commonly proposed transaction taxes, our results—assuming belief-neutral
efficiency as the normative benchmark—suggest an alternative approach: a
specific form of market incompleteness regulated through bid-ask spreads. In
the same vein, Blume, Cogley, Easley, Sargent, and Tsyrennikov (2018) ad-
vocate how particular forms of market incompleteness can potentially mute
some forms of excessive trade, see also Simsek (2013) for an inverse approach.
Towards this end our suggested design approach also allows for a link to the
literature on market regulation, see Athanasoulis and Shiller (2000), Easley
and O’Hara (2009), Posner and Weyl (2013).

Our paper is also related to the huge historical debate about appropriate
transaction costs for financial markets, dating back at least to Tobin. In a
sense, we provide a general equilibrium foundation for such transaction cost;
Dávila (2023) has recently studied the optimal transaction tax in a very specific
mean-variance setting.

The paper is structured as follows. Section 2 outlines the basic economic
framework. Section 3 introduces the concept of belief-neutral efficiency and
demonstrates the general belief-neutral inefficiency of Arrow-Debreu equilib-
ria. Section 4 establishes belief-neutral efficiency in Knight-Walras equilibria.
Section 5 examines the role of transaction costs in enabling belief-neutral ef-
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ficiency. The final section provides conclusions, while the Appendix contains
proofs and details of the main example.

2 The Economy

We examine the difference of purely speculative and insurance-oriented trad-
ing within a framework that differentiates between fundamental risks—where
agents share common beliefs—and subjective uncertainty, where beliefs may
diverge.

There are finitely many states of the world S; we denote the power set of
S by F . The commodity space is given by X = RS and the consumption set
by its positive cone X+ = RS

+. Denote by ∆S the probability simplex on S.
The economy consists of finitely many agents i = 1, . . . , I with subjective

beliefs Pi ∈ ∆S. Agents’ risk aversion is described by a Bernoulli utility
function ui : R+ → R. Their preferences are thus represented by the subjective
expected utility function1

Ui(c) = EPi [ui(c)]

for c ∈ X+. The Bernoulli utility functions satisfy standard assumptions as,
e.g., in Dana (1993): ui is strictly increasing and strictly concave, twice contin-
uously differentiable on (0,∞), and limc↓0 u

′
i(c) = ∞. We assume throughout

that the individual endowments ei : S → R+ are strictly positive in every state
of the world.

We are thus in a situation of Knightian uncertainty in as far as agents’
beliefs disagree on some events of the world. We denote by P the convex
hull of the individual beliefs Pi. We denote by G the algebra of events on
which agents agree, i.e. we have A ∈ G if and only if for all i and j we have
Pi(A) = Pj(A). We call G the algebra of risky events2 and we assume that G
is strictly smaller than the power set F of S.

We aim to study a situation in which agents agree on the fundamental risks
of the economy but may disagree about the probability of some events that
do not affect the fundamental economic activities. To this end, we assume
that there is no Knightian uncertainty about the relevant fundamentals of our
economy; the initial endowments ei ∈ X+, G–measurable. There is thus no
disagreement about the probability distribution of endowments.

1We conjecture that our main results hold true for ambiguity-averse preferences as long as
the subjective beliefs in the sense of Rigotti, Shannon, and Strzalecki (2008) are sufficiently
diverse. The point we make is easiest to see with ambiguity-neutral agents.

2The algebra appears under different names in the literature. For example, Ghirardato,
Maccheroni, and Marinacci (2004) call such events crisp. Gul and Pesendorfer (2014) speak
of ideal events.
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Keeping the other ingredients fixed, we write E(P1, . . . , PI) for the economy
with belief profile (P1, . . . , PI).

3 Belief-Neutral Inefficiency of Market Allo-

cations

In this section, we address the common occurrence of unjustified betting under
subjective heterogeneous beliefs. We begin by reviewing the standard concepts
of efficiency and equilibrium. Let e =

∑
i ei be the aggregate endowment;

Λ(e) =

{
(xi) ∈ XI

+ :
∑
i

xi ≤ e

}

is the set of feasible allocations. A feasible allocation (ci) ∈ Λ(e) is efficient if
there is no other feasible allocation (yi) ∈ Λ(e) that makes every agent better
off in the sense3 that Ui(yi) > Ui(ci). An Arrow–Debreu equilibrium consists
of a linear price functional Ψ : X → R and a feasible allocation (ci) ∈ Λ(e) such
that for all agents i and budget-feasible consumption plans y with Ψ(y−ei) ≤ 0
we have Ui(y) ≤ Ui(ci).

With heterogeneous beliefs, an alternative notion of efficiency has been
proposed by Brunnermeier, Simsek, and Xiong (2014). The social planner
recognizes the presence of ambiguity (or the diversity of potentially distorted
beliefs), and acknowledges that all of them belong to the class of reasonable
beliefs. Eficiency is required to be robust across all of the reasonable beliefs.
A feasible allocation (ci) ∈ Λ(e) is called belief-neutral efficient if it is efficient
in every homogeneous belief economy E(Q, . . . , Q) for all reasonable beliefs
Q ∈ P .

We next illustrate how unjustified speculative trade can arise in an Arrow-
Debreu equilibrium with the help of a simple example that illustrates nicely
the basic problem.

Example 1 To make things explicit, assume four states

S = {s1, s2, sA, sB}

and consider two agents. States s1 and s2 are the risky states where agents’
beliefs agree, e.g. we have Pi(s1) = Pi(s2) = 1/4 for agents i = 1, 2. However,
agent 1 thinks that the state sA, maybe related to a sports event in which coun-
try A beats country B, has a higher probability than state sB, say P1(sA) = 3/8,

3With our assumptions on Bernoulli utility functions, one can show that the weak form of
efficiency that we use is equivalent to the usual one in which one requires the strict inequality
only for one agent. See the appendix for details.
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whereas we have exactly the opposite for agent 2, so P2(sB) = 3/8. Consider
constant relative risk aversion of 1 for all agents, i.e. ui(x) = log(x). The
economy’s endowments vary only in the first two states, say

e1(s1) = 3, e1(s2) = 1, e1(sA) = e1(sB) = 2

and
e2(s1) = 1, e1(s2) = 3, e1(sA) = e1(sB) = 2.

The symmetry of the situation suggests that a good allocation would be the full
insurance allocation in which both agents obtain two units of the consumption
good in each state. This allocation would indeed be the equilibrium allocation
if agents had uniform beliefs. Let us consider what happens in Arrow-Debreu
equilibrium with distinct beliefs about the sports’ related states sA and sB.

Write the price functional in the form

Ψ(x) =
∑
s∈S

ψ(s)x(s)

for x ∈ X. The first-order condition is

Pi(s)
1

ci(s)
= λiψ(s)

for a Lagrange multiplier λi. The budget constraint yields λi = 1/Ψ(ei). Hence,
we obtain

ci(s) = Ψ(ei)
Pi(s)

ψ(s)
.

In equilibrium, markets clear, so

4 =
2∑
i=1

ci(s) =
1

ψ(s)

2∑
i=1

Ψ(ei)Pi(s),

resulting in the equilibrium state price

ψ(s) =
1

4

2∑
i=1

Ψ(ei)Pi(s).

We thus see that the equilibrium state price is a convex combination of agents’
beliefs. In fact, if we take ψ(s) = 1/4 for all states, we have found the equi-
librium price, as one easily checks, with symmetric wealth Ψ(ei) = 2. This
solution is also the unique solution of the equilibrium conditions.

As a consequence, in the risky states s1 and s2, both agents fully insure
and consume two units in each state, whereas in the speculative states, where
beliefs differ, they start speculating, with agents consuming

c1(sA) = Ψ(ei)
P1(sA)

ψ(sA)
= 3, c2(sA) = 1, c1(sB) = 1, c2(sB) = 3.
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Agents have insured the risk of the first two states, but have created new,
unnecessary risks on the sports events.

The Arrow-Debreu allocation is not belief-neutral efficient because for any
reasonable belief of the form P h =

∑2
i=1 hiPi, the allocation c is dominated by

the full insurance allocation
c̄hi = EPh

ci

as one can easily prove with the help of Jensen’s inequality (or direct compu-
tation, for that matter).

Although the above example is very special, nothing is special about unjus-
tified trade occurring in markets. Indeed, belief-neutral inefficient trade occurs
generically in Arrow-Debreu equilibria when agents hold heterogeneous beliefs
as the next theorem shows.

Theorem 1 Generically in beliefs, Arrow-Debreu equilibrium allocations are
belief-neutral inefficient.

A rigorous formulation of the statement in measure-theoretic terms as well as
the proof is found in Appendix A.

The basic intuition why belief-neutral efficiency fails in markets is as fol-
lows. Belief-neutral efficient allocation equate agents’ marginal rates of sub-
stitution state by state without referring to beliefs,

u′i (c
∗
i (s))

u′i (c
∗
i (t))

=
u′j

(
c∗j(s)

)
u′j

(
c∗j(t)

)
for all agents i, j and states s, t. With heterogeneous beliefs, however, the
first-order conditions imply that in equilibrium we have instead

Pi(s)u
′
i (c

∗
i (s))

Pi(t)u′i (c
∗
i (t))

=
Pj(s)u

′
j

(
c∗j(s)

)
Pj(t)u′j

(
c∗j(t)

) (1)

for all agents i, j and states s, t. With distinct beliefs, the two systems of
equations are not consistent with each other.

We now present a result on belief-neutral efficiency that might be of in-
dependent interest. Let us first recall the characterization of interior efficient
allocations in homogeneous belief economies. For individual weights α ∈ ∆I,
we define the representative agent’s Bernoulli utility of the homogeneous belief
economy

uα(x) = max
ci∈RI

+:
∑

i ci=x

∑
i

αiui(ci) (2)
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for x > 0. Under our standing assumptions, uα is continuously differentiable.
The unique maximizers in (2) are given by continuously differentiable functions
Cα,i(x) that satisfy the first-order conditions

αiu
′
i (Cα,i(x)) = u′α(x). (3)

These properties are well known, see, e.g. Dana (1993). We now characterize
belief-neutral efficient allocations.

Lemma 1 Let (c∗i ) ∈ Λ(e) be an interior feasible allocation. The following
assertions are equivalent

1. (c∗i ) is belief-neutral efficient.

2. The allocation satisfies

c∗i (s) = Cα,i(e(s))

for some weights αi > 0 and continuously differentiable functions Cα,i :
(0,∞) → R+ that satisfy (3).

Brunnermeier, Simsek, and Xiong (2014) characterize belief-neutral effi-
ciency in Proposition 1 with the help of Bergson-Samuelson social welfare
functions. The above Lemma 1 yields an analytical tractable formulation.

4 Belief-neutral efficient equilibria

In economies characterized by belief heterogeneity, the competitive market
outcome almost never achieves belief-neutral efficiency. This raises a natural
question: can belief-neutral efficiency be attained through appropriate market
mechanisms? In this section, we show that implementing sublinear pricing on
events where agents hold divergent beliefs can effectively induce belief-neutral
efficiency.

Consider the sublinear expectation

EPx = max
P∈P

EPx.

This sublinear expectation is linear on the set of all G-measurable consumption
plans because all P ∈ P coincide on G-measurable events. It is nonlinear
outside this set, in general.

In previous work (Beissner and Riedel (2019)), we defined an equilibrium
concept based on sublinear expectations of the form

EQx = max
P∈Q

EPx
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for x ∈ X and a closed convex set of probabilities Q ⊂ ∆S and we developed
the corresponding equilibrium theory. A pair (ψ, c) consisting of a state–price
ψ : Ω → R+ and a feasible allocation c = (ci)i=1,...,I ∈ Λ(e) is a Knight-Walras
equilibrium (with respect to Q) if for each i, ci maximizes agent i’s utility
subject to the Knight-Walras budget constraint

ΨQ(c− ei) := max
Q∈Q

EQ[ψ(c− ei)] ≤ 0. (4)

We now come to our main theorem that shows how introducing nonlinear
prices on payoffs where agents’ beliefs diverge prevents unjustified betting.

Theorem 2 In every Knight-Walras equilibrium (ψ∗, c∗) with respect to the
set of reasonable beliefs Q = P, the equilibrium allocation c∗ is belief-neutral
efficient.

The proof can be found in the appendix. To see how nonlinear prices on
ambiguous trades work, let us go back to our running example.

Example 1 (continued) The convex hull P of the two beliefs P1 and P2 can
be parametrized as follows, see also Figure 1,

P =
{(

1
4
, 1
4
, p, 1

2
− p

)
: p ∈

[
1
8
, 3
8

]}
.

In Knight-Walras equilibrium, we have ψ(s) = 1 in all states and agents fully
insure, consuming c∗i (s) = 2 in all states, see Appendix D for details of the
computation.

The Knight-Walras equilibrium price system is given by

ΨP(x1, x2, xA, xB) = max
p∈[ 18 ,

3
8 ]

(
x1 + x2

4
+ pxA +

(
1

2
− p

)
xB

)
=
x1 + x2 + xA + xB

4
+

1

8
(xA − xB)

+ +
1

8
(xB − xA)

+ .

The price system is linear in x1 and x2, in consumption in the two risky states
where beliefs agree, and nonlinear in consumption in xA and xB where beliefs
diverge.

The speculative Arrow-Debreu equilibrium consumption plan

c∗1 = (2, 2, 3, 1)

is not budget feasible with the sublinear Knight-Walras prices because we have

ΨP(c∗1 − e1) = max
p∈[ 18 ,

3
8 ]

1

4
(2− 3 + 2− 1) + p · (3− 2) +

(
1

2
− p

)
· (1− 2)

= max
p∈[ 18 ,

3
8 ]
2p− 1

2
− p =

1

4
> 0.
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Figure 1: In view of Example 1, price uncertainty based on P0 (rather
than the smaller set of relevant beliefs) is given by P0 = lin(P1, P2) ∩ ∆ =
cx{(1

4
, 1
4
, 1
2
, 0), (1

4
, 1
4
, 0, 1

2
)} (dashed line segment), while P = cx(P1, P2) (solid

line segment).

The previous theorem demonstrates that a market which appropriately
accounts for the heterogeneity of agents’ beliefs can prevent unjustified, belief-
inefficient trade in equilibrium. In real-world scenarios, however, the market
price system—whether it be a market maker or a regulator—may have limited
information about the precise subjective beliefs P1, . . . , PI of the agents in the
economy. This raises the question of whether it is possible to achieve the same
outcome without knowing the exact beliefs of the agents. We will address this
question in the following.

Let us write P0(A) = Pi(A) for the common belief for events A ∈ G. Let
P0 ⊃ P denote the set of all probability measures on S that extend P0 from G
to the power set F of S, see Figure 1 for an illustration within the setting of
our leading Example 1. Then the conclusion of Theorem 2 still holds true.

Theorem 3 Fix any set of priors Q satisfying P ⊆ Q ⊆ P0. In every Knight-
Walras equilibrium (ψ∗, c∗) with respect to Q, the equilibrium allocation c∗ is
belief-neutral efficient.

The result shows that any set Q of priors situated between the set of rea-
sonable beliefs P and the set P0 of consistent extensions of a reference measure
P0 yields belief-efficient equilibrium allocations. Next, we explore whether it
is possible to use a smaller set Q than the set of reasonable beliefs P for the
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price functional of a Knight-Walras equilibrium while still achieving a belief-
neutral efficient allocation. This question is closely linked to the subspace of
ambiguity-free or frictionless trades associated with Q. We demonstrate that if
the set Q permits a broader range of ambiguity-free trades than those induced
by the field G, belief-neutral efficiency is no longer preserved.

Theorem 4 Let Q be a probability measure on some sigma algebra H ⊋ G,
with Q = P0 on G. Define the set of priors by Q = {P ∈ ∆S : P = Q on H}.
In every Knight-Walras equilibrium (ψ∗, c∗) with respect to Q, the equilibrium
allocation c∗ is belief-neutral inefficient.

The modified versions of the First Welfare Theorem, as stated in Theorems
2 and 3, hold only when the set of reasonable beliefs a social planner might use
and the set of priors a market maker employs to determine prices are sufficiently
aligned. Theorem 4 establishes a lower threshold: if price uncertainty Q is
strictly smaller than P , the resulting Knight-Walras equilibrium fails to achieve
belief-neutral efficiency. Intuitively, in this scenario, an excess of unjustified
bets remains budget-feasible, leading to excessive speculation in equilibrium.
Moreover, it is not viable to consider an alternative set that excludes the set
of reasonable beliefs P . Furthermore, incorporating too many priors into the
price functional may result in a complete lack of trade in the Knight-Walras
equilibrium, which generally does not correspond to a belief-neutral efficient
outcome (see Theorem 8 in Beissner and Riedel (2019)).

The set of reasonable beliefs P ⊂ ∆S and the price uncertainty Q ⊂ ∆S
represent conceptually distinct elements. The set P consists of individuals’
subjective beliefs. From a normative standpoint, a social planner may be re-
luctant to designate any single belief as the “correct” one. Instead, they might
prefer to rely on the entire set of reasonable beliefs as the foundation for wel-
fare evaluations (see Sections II.C.2 and II.C.3 of Brunnermeier, Simsek, and
Xiong (2014)). In contrast, price uncertainty Q serves as a pricing parameter
within the equilibrium framework. It reflects the market maker’s degree of
caution by imposing constraints on agents’ budget sets. For further details
and discussion, see Section 2.3 of Beissner and Riedel (2019).

5 Implementation via Transaction Costs

The abstract results presented above do not reveal how a market maker might
structure markets to mitigate undesirable speculative trading. In this section,
we demonstrate how this objective can be accomplished by designing appropri-
ate financial markets that incorporate transaction costs for purely speculative
assets.
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Consider the following financial market with m + 1 assets. The assets are
traded at bid–ask prices 0 ≤ qBj ≤ qAj , j = 0, . . . ,m and payoff xj ∈ X+, j =
0, . . . ,m. We furthermore assume that “cash” is frictionless and normalize the
interest rate to zero: qB0 = qA0 = x0 = 1. We call M = (qA, qB, x) a financial
market with transaction costs.

We assume that the consumption good is traded at a price ϕ(s) ≥ 0 on a
spot market at time 1 in state s. Agents have to finance their desired value of
excess demand ϕ(ci − ei) by trading in the financial market. A portfolio is a

vector θ = (θA, θB) ∈ R2(m+1)
+ ; θAj is the number of assets j bought at time 0,

θBj is the number of assets j sold short at time 0. We say that a portfolio θ
superhedges a contingent plan ξ ∈ X if its cost is less or equal zero,

γ(θ) :=
M∑
j=0

(
θAj q

A
j − θBj q

B
j

)
≤ 0 ,

and its value at time 1 in state s suffices to cover ξ(s), i.e.

V (θ) :=
M∑
j=0

(
θAj − θBj

)
xj ≥ ξ .

The budget set of agent i in the transaction cost economy E tc (under M)
consists of all consumption plans ci whose value of excess demand can be
financed in the sense that there is θ ∈ R2(m+1)

+ with γ(θ) ≤ 0 and V (θ) ≥
ϕ(ci − ei) . Write Btc(ϕ, ei) for the budget set.

A financial equilibrium consists of a spot price ϕ : Ω → R+, an allocation

c = (ci)i=1,...,I ∈ XI
+, and portfolios θi =

(
θAi , θ

B
i

)
∈ R2(m+1)

+ , i = 1, . . . , I such
that4

1. the allocation c is feasible, i.e.
∑I

i=1(ci − ei) ≤ 0,

2. the financial market clears, i.e.
∑I

i=1 θ
A
ij =

∑I
i=1 θ

B
ij for j = 0, . . . ,m,

3. for each agent i, ci is optimal in the budget set Btc(ϕ, ei), i.e. ci ∈
Btc(ϕ, ei) and for all d ∈ X+ with Ui(d) > Ui(ci) we have d /∈ Btc(ϕ, ei).

Let us now sketch how one can design a financial market with transaction
cost that implements the desired belief-neutral efficient allocation of a Knight-
Walras equilibrium5. The basic idea goes as follows: We need to find a set of

4Note that we require a double index for the portfolios: θAij is the number of assets j that
agent i buys at time 0.

5The construction is based on our previous previous work Beissner and Riedel (2019),
where we have established an equivalence between Knight-Walras equilibria and transaction
cost equilibria, and on Araujo, Chateauneuf, and Faro (2018) who provide an excellent anal-
ysis of the relation between sublinear expectations and pricing rules generated by markets
with transaction costs.
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securities with certain payoffs and corresponding bid–ask spreads such that the
budget constraint in the Knight–Walras economy and the budget constraint
in the financial market are equivalent. One can find the securities that span
the financial market by looking at the convex cones of assets x that are priced
by the belief of agent i:

Vi = {x ∈ X : EPx = EPix}.

This convex cone is polyhedral because it is the intersection of finitely many
half-spaces with normal vectors Pj − Pi. By the Minkowski–Weyl duality, we
know that it is generated by finitely many payoffs xi,1, . . . , xi,ri :

Vi = cone(xi,1, . . . , xi,ri).

We take these payoffs as the dividends for our assets and define the prices

qBi,j = min
l=1,...,n

EP
l xi,j, qAi,j = max

l=1,...,n
EP
l xi,j, j = 1, . . . , ri.

We add a riskless security (cash), and are then able to prove the following
theorem.

Theorem 5 Let (ψ∗, (c∗i )) be a Knight-Walras equilibrium with respect to the
set of reasonable beliefs P such that the equilibrium allocation (c∗i ) is belief-
neutral efficient. There exists a financial market with transaction costs M and
a financial equilibrium with spot price ϕ = ψ∗, allocation (c∗i ), and portfolios
θi =

(
θAi , θ

B
i

)
, i = 1, . . . , I.

The proof is an application of Theorem 9.2 in Beissner and Riedel (2019);
we refer to Araujo, Chateauneuf, and Faro (2018) for more details on pricing
rules in financial markets with transaction costs. We illustrate the theorem
by constructing the suitable financial market with transaction costs in our
running example.

Example 1 (continued) Suppose that next to the riskless asset x0, we have
an asset that pays off the endowment of agent 1 as a dividend, i.e. x1 = e1 =
(3, 1, 2, 2). Furthermore, there are two Arrow securities for the outcome of the
sport event, i.e. x2 = (0, 0, 1, 0) and x3 = (0, 0, 0, 1). This financial market is
complete as every potential consumption plan can be replicated by trade in the
assets.

If the assets were traded in a frictionless way, the classic equivalence re-
sult between Arrow-Debreu and Radner equilibria would lead to belief-neutral
inefficient equilibria and the agents would bet on the sports events. However,
things change if we introduce transaction costs. Define

qBj = min
(
EP1xj, E

P2xj
)
, qAj = max

(
EP1xj, E

P2xj
)
, j = 1, 2, 3.
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As the endowment e1 is G-measurable, the corresponding asset 1 is frictionless,
with qB1 = qA1 = 2. The Arrow securities exhibit transaction costs, with

qBj =
1

8
< qAj =

3

8
, j = 2, 3.

In this situation, both agents stop speculating on the sports event as they are
no longer yielding positive expected profits under either belief. The resulting
transaction cost equilibrium leads to the same belief-neutral efficient allocation
as the Knight-Walras equilibrium. Further details can be found in the appendix.

The theorem has significant policy implications. Specifically, we explore
how the normative selection of an efficiency criterion in the presence of hetero-
geneous beliefs inherently shapes the role of transaction costs as both market
frictions and a regulatory instrument.

The financial market M from Theorem 5 relies on choosing the right secu-
rity design. To conclude this section, we list several appealing properties:

1. The market friction does not prevent beneficial trade: there is no bid-ask
spread for G-measurable contingent claims. Moreover, all portfolios on
the security market line have no bid-ask spreads.

2. The Knight-Walras price system Ψ is a super-replication price of M and
arbitrage free, i.e., for every nonzero x ∈ X+ we have Ψ(x) > 0.

3. The financial market is efficient complete.6 The spanning securities
(x0, x1, . . . , xm) are anti-comonotone with regards to the state price ψ∗.

6 Conclusion

Heterogeneous subjective beliefs, regardless of their source, can lead to prob-
lematic betting behavior. We investigate how market structures can be de-
signed to facilitate seamless hedging and insurance-based trading while limit-
ing speculative trades driven purely by betting. Our results demonstrate that
sublinear pricing, which accurately reflects the ambiguity arising from diverse
beliefs, effectively achieves this goal. Moreover, this pricing framework can be
implemented through appropriately designed transaction costs.

We replace the classic notion of Pareto efficiency with an alternative belief-
neutral efficiency notion. While Pareto efficiency and frictionless Walrasian

6To understand property 3., let LΨ = {x ∈ X : y > x ⇒ Ψ(y) > Ψ(x)} denote the
space of undominated payoffs of some pricing rule Ψ : X → R. Based on the notion of
efficient securities, see Dybvig (1988), undominated payoffs are efficient securities see Araujo,
Chateauneuf, and Faro (2018). Ψ is the pricing rule of an efficient complete market if
LΨ = X.
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markets go hand in hand, we show that belief-neutral efficiency requires a
different market design, an idea that goes as far back as Hurwicz (1973), maybe.
One can thus view our paper as a contribution to market design, creating a
relation between General Equilibrium Theory and Design, in a similar way
as Mechanism Design relates Game Theory and social choice functions. A
natural next step in exploring associated financial systems is to ask: What
further connections exist between efficiency notions, market mechanisms, and
financial market frictions?

A Proof of Theorem 1

We start with the proof of Lemma 1 that we need in the proof of Theorem 1.

Proof of Lemma 1: Recall that a feasible allocation (c∗i ) ∈ Λ(e) is
belief-neutral efficient if it is efficient in every homogeneous belief economy
E(Q, . . . , Q) for all reasonable beliefs Q ∈ P . Fix some Q ∈ P . By Dana
(1993), the allocation (c∗i ) maximizes the linear social welfare function

I∑
i=1

αiE
Qui(di)

over all feasible allocations (di) ∈ Λ(e) for some weights α ∈ ∆I. By linearity
of the (homogeneous) expectation, one can maximize the sum

I∑
i=1

αiui(di(s))

pointwise for every state s, yielding the first-order conditions

αiu
′
i(c

∗
i (s)) = αju

′
j(c

∗
j(s)) (5)

for all agents i, j ∈ {1, . . . , I} and all states s ∈ S. These equations are
independent of the chosen Q ∈ P , and we thus conclude that (c∗i ) is efficient
in E(P, . . . , P ) for every P ∈ P .

The other direction follows similarly. If we have the first-order condition
(5), then the necessary and sufficient conditions for a feasible allocation to
maximize a weigthed social welfare function are satisfied, and (c∗i ) is efficient
in every homogeneous belief economy E(P, . . . , P ) for P ∈ P . 2

Let us now turn to a rigorous formulation of Theorem 1 and its proof.
We parametrize the set of economies by the belief profiles of the form B =
(P1, . . . , PI), keeping the other ingredients of the economy fixed.
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A belief P with full support on S = {s1, . . . , sn} can be equivalently
described by a strictly positive vector (P (s1), . . . , P (sn−1)) ∈ Rn−1 with∑n−1

k=1 P (sk) < 1. Denote this open set by B ⊂ Rn−1. Our set of economies

E = {E(P1, . . . , PI) : all Pi have full support}

is thus isomorphic to BI ⊂ R(n−1)I .

Theorem A.1 The set of economies E(P1, . . . , PI) that admit belief-neutral
efficient Arrow-Debreu equilibria is both a Lebesgue null set and nowhere dense
in E.

Proof: Fix a belief profile B = (P1, . . . , PI). Let
(
Ψ,

(
cBi

))
be an Arrow-

Debreu equilibrium in the economy E (B). By the first welfare theorem, the
allocation

(
cBi

)
is efficient. It is an interior allocation because initial endow-

ments are strictly positive and utilities strictly monotone and satisfy the Inada
condition. Note that the utility Ui(c) = EPiui(c) can be written as an expected
utility under a common probability P with full support and state-dependent
expected utility:

Ui(c) =
∑
s∈S

vi(s, c(s))P (s)

with

vi(s, c) =
Pi(s)

P (s)
ui(c).

By Theorem 1 in Dana (1993), there exist strictly positive weights αi > 0 such
that we have

αi
Pi(s)

P (s)
u′i(ci(s)) = αj

Pj(s)

P (s)
u′j(cj(s)). (6)

Now assume that the allocation
(
cBi

)
is belief-neutral efficient. From Lemma

1, we conclude that there exist weights λi > 0 such that we have the belief-
independent characterization

λiu
′
i(ci(s)) = λju

′
j(cj(s)). (7)

From equations (6) and (7), P1(s) = P2(s) follows. As i and j have been
arbitrary, we conclude that efficient and belief-neutral efficient Arrow-Debreu
equilibria exist only in homogeneous belief economies.

The next lemma then concludes. 2

Lemma A.2 The set of homogeneous belief economies is a Lebesgue null set
and nowhere dense in the set of economies with possibly heterogeneous beliefs.
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Proof: The set of homogeneous beliefs economies is given by the requirement
P1 = P2 = . . . = PI , thus the intersection of a (n−1)-dimensional plane in the
space R(n−1)I with the open set BI , so a Lebesgue null set. The requirement
P1 = P2 = . . . = PI also yields a closed set in the relative topology of BI whose
interior is empty, hence the set is also nowhere dense. 2

B Proof of Theorem 2 and 3

Proof of Theorem 2: Fix any P ∈ P , and consider the homogeneous
belief economy E(P, . . . , P ). Recall the definition of the representative agent’s
Bernoulli utility function uα in (2) for homogeneous beliefs economies and the
resulting allocation rule (Cα,i) in (3). By Theorem 3.1 of Dana (1993), the
equilibrium is characterized as follows. There is a vector of Negishi weights
α ∈ ∆I such that (Ψ, (c∗i )) is an Arrow-Debreu equilibrium in E(P, . . . , P )
with Ψ(x) = EP [ψx] and

ψ(s) = u′α(e(s)) (8)

and
c∗i (s) = Cα,i(e(s)).

As all initial endowments are strictly positive and we have Inada’s conditions
for the Bernoulli utilities, the allocation is an interior allocation and all weights
αi are strictly positive. By Lemma 1, the allocation (c∗i ) is belief-neutral
efficient. The state price ψ and the equilibrium consumption plans c∗i are
functions of aggregate endowment e, and thus G–measurable.

We now show that (ψ, (c∗i )) is a Knight-Walras equilibrium with respect
to P , using Theorem 4 in Beissner and Riedel (2019). We first need to show
that c∗i is budget-feasible for agent i according to the Knight-Walras budget
constraint. This follows immediately from the fact that c∗i is budget-feasible
in the Arrow-Debreu equilibrium of the homogeneous beliefs economy:

ΨP(c∗i − ei) = max
Q∈P

EQ[ψ(c∗i − ei)]=E
P [ψ(c∗i − ei)] ≤ 0. (9)

where the second equality follows from the G-measurability of the net trade.
We next have to check that the set of subjective beliefs πi(c

∗
i ) and the set of

effective pricing measures

ϕP(c∗i−ei) =
{
Q ∈ ∆S : EQ[c∗i − ei] ≥ EQη for all η with ΨP(η) ≤ ΨP(c∗i − ei)

}
have a nonempty intersection. So let us compute those sets in our special case.

For subjective expected utility, the subjective belief πi(x) at x ∈ X is a
singleton and it consists of the so-called risk-adjusted prior

πi(x)(s) =
Pi(s)u

′
i(x(s))∑

t∈S Pi(t)u
′
i(x(t))

, (10)
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compare Section 2.4 in Rigotti, Shannon, and Strzalecki (2008) (subjective
expected utility is a special case of maxmin preferences).

According to Proposition 2 in Beissner and Riedel (2019), elements in
ϕP(c∗i − ei) take the form

ψ(s)Q(s)∑
t∈S ψ(t)Q(t)

,

for some Q ∈ argmaxQ∈PE
Q[ψ(c∗i − ei)]. Now, the state sprice ψ, the con-

sumption plan c∗i , and the endowment ei are G-measurable; as the beliefs in P
all coincide on G, we have EQ[ψ(c∗i − ei)] = EQ′

[ψ(c∗i − ei)] for all Q,Q
′ ∈ P .

Hence, we conclude that the set of effective pricing measures consists of mea-
sures of the form

ψ(s)Q(s)∑
t∈S ψ(t)Q(t)

,

for some Q ∈ P . From (3) and (8, we conclude that we can take Q = Pi to
see that πi(c

∗
i ) ∈ ϕP(c∗i − ei). Hence, (ψ, (c∗i )) is a Knight-Walras equilibrium

with respect to P . 2

Proof of Theorem 3: Inspecting the proof of Theorem 2, we see that we
can replace P by P̃ . This larger price uncertainty is consistent with the set
of reasonable beliefs on G, since still contained in P0. This again leads to G
measurability of the belief-neutral efficient candidate allocation (c∗i ) and state
price ψ∗. More precisely, we get again (8), i.e., (ψ∗, (c∗i )) is again a continuous
function of e. All further arguments apply too, since the following arguments
solely depend on the G-measurability of ψ∗, c∗i , ei and ψ

∗(c∗i − ei). 2

C Proof of Theorem 4

To begin, recall the risk-adjusted prior πi(x) of agent i at x defined in (10).
For the Knight-Walras equilibrium allocation in Theorem 2, πi(c

∗
i ) ̸= πj(c

∗
j)

holds for some i, j. We prepare the proof with the following lemma.

Lemma C.1 Let (c∗i ) be a Knight-Walras equilibrium allocation with respect
to Q, where Q be as in Theorem 4. There is a belief π on H such that

π = E [ πi(c
∗
i ) |H] for all i, (11)

where E denotes the expectation under the uniform distribution on S.

Proof of Theorem 4: By assumption, G is the maximal domain where the
agent’s belief agree. Hence, the sub σ-algebra H is strictly finer than G, such
that the agents’ beliefs are non-concordant with respect to H, i.e., E[Pk|H] is
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not G-measurable for some k and E[Pk|H] ̸= E[Pi|H] for some i, k. This also
implies that LP0 ⊊ LQ holds, by the definition of P0 and Q.

On the other hand, the price uncertainty Q consists of all consistent ex-
tensions of Q : H → [0, 1] to all of F . Let

L(H) = {x ∈ X : x is H-measurable} .

The present form of price uncertainty implies that LQ = L(H). We show in
the following claim that there is trade based on belief disagreement on the
”events” in H \ G, where the reduced price uncertainty Q, relative to P0, fails
to mute trade.

Claim: There is an agent k, such that c∗k is not G-measurable.
Proof: Set the constant µi =

∑
s∈S Pi(s)u

′
i(c

∗
i (s)) > 0. Recall the form of

πi(c
∗
i ) defined in (10) We apply Lemma C.1, the H-measurability of each c∗i

and derive:

E[πi(c
∗
i )|H] = E[πk(c

∗
k)|H] ⇔ E

[
Pi
u′i(c

∗
i )

µi

∣∣∣H]
= E

[
Pk
u′k(c

∗
k)

µk

∣∣∣H]
⇔ u′i(c

∗
i )

µi
E[Pi|H] =

u′k(c
∗
k)

µk
E[Pk|H]

⇔ u′i(c
∗
i )µk

u′k(c
∗
k)µi

=
E[Pk|H]

E[Pi|H]

As E[Pk|H]
E[Pi|H]

fails to be G-measurable by the assumption that G is the largest
domain of common agreement of probabilities, it follows, that either c∗k or c∗i
fails to be G-measurable, since x 7→ u′k(x) and x 7→ u′i(x) are strictly decreasing
functions, and µk

µi
is a constant. This proves the claim.

To complete the proof, assume that c∗ is belief–neutral efficient. Note that each
c∗i is H-measurable. By the Claim, there is some agent k where c∗k /∈ L(G). It
then follows by Lemma 1 in view of (3) that the equilibrium allocation satisfies
the following functional dependency:

c∗i = Cα,i(e) = (u′i)
−1 (αiu

′
α(e)) for each i.

But since e is G-measurable by assumption and x 7→ Cα,i(x) is continuous, it
follows that each c∗i is also G-measurable, a contradiction. 2

.
Proof of Lemma C.1: Set L := LR, where R = { ψ

|ψ|P : P ∈ Q} ⊂ ∆S.
We first show that

c∗ ∈ Λ0(e) := {(xi) ∈ Λ(e) : (xi − ei) ∈ L}.
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By Theorem 6 of Beissner and Riedel (2019), c∗ satisfies ψ(c∗i − ei) ∈ LQ for
all i. This is equivalent to c∗i − ei ∈ L, as Lemma C.2 implies L = L(H) =
LQ. Since c∗ is a Knight-Walras equilibrium allocation, we have c∗ ∈ Λ(e) is
uncertainty neutral efficient thus constrained efficient with respect to L. We
apply Corollary 12.6 in Magill and Quinzii (2002) and get

prL(∇Ui(c∗i )) = prL(∇Uj(c∗j)) for all i, j, (12)

where prL : X → L denptes the orthogonal projection onto L with respect to
⟨x, y⟩ = E[xy].

We show that L is a sublattice of X. As (ψ∗, (c∗i )) is a Knight-Walras
equilibrium with respect to Q, ψ∗ is H-measurable and it follows by Lemma
C.2 that L = L(H), since LQ = L(H). Since L is a lattice,7 the projection
prL coincides with the conditional expectation E[·|H] : X → L(H). Thus, (12)
takes the form in (11). 2

The proof of Lemma C.1 employs the following result.

Lemma C.2 For any G-measurable ψ : Ω → R++, we have

LQ0 = LP0 , where Q0 :=
{ ψ

|ψ|
P : P ∈ P0

}
⊂ ∆S.

Proof of Lemma C.2: Consider the capacity defined by

µP0(A) = max
B⊆A,B∈G

P0(B), (13)

where P0 ∈ ∆G is the belief on G, where the agents agree. It can be shown
that µP0 is a convex capacity with core

core(µP0) = {Q ∈ ∆S : Q(A) ≥ µP0(A) for all A ∈ F} .

A measure Q is in the core if and only if it extends P0 to F , i.e., core(µP0) = P0.
Define Q0 = ψ

|ψ|P0, since ψ is G-measurable, we have Q0 ∈ ∆G. As in

(13) for P0 ∈ ∆G, Q0 gives rise to define a new inner capacity µQ0(A) =
maxB⊂A,B∈G Q0(B). This in turn allows for a characterization of Q0 via

Q0 = core(µQ0) = {Q ∈ ∆S : Q(G) = Q0(G), ∀G ∈ G} .

The claim follows since LQ0 = L(G) holds by the same reasoning that proves
the equality LP0 = L(G). 2

7Given an orthogonal projection p : L(F) → L for some (closed) sub-vector space L, the
following is equivalent: (i) p is a conditional expectation. (ii) L = L(H) for some σ-algebra
H. See Theorem 22.5 in Schilling (2017) for the general case.
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D Details for the Knight-Walras equilibrium

of the sports example

We need to show that the allocation c∗i (s) = 2 with spot price ψ(s) = 1 in all
states is a Knight–Walras equilibrium for the price functional

ΨP(x1, x2, xA, xB) =
x1 + x2 + xA + xB

4
+

1

8
(xA − xB)

+ +
1

8
(xB − xA)

+ .

The market obviously clears and the budget constraint is satisfied because

ΨP(c∗1 − e1) = ΨP(1,−1, 0, 0) = 0

and
ΨP(c∗2 − e2) = ΨP(−1, 1, 0, 0) = 0.

It remains to show optimality for c∗i given the Knight–Walras budget con-
straint. So suppose that ΨP(ci − ei) ≤ 0. Then we have by concavity and the
fact that c∗i = 2 is constant and Pi ∈ P

EPiui(ci)− EPiui(c
∗
i ) ≤ u′i(2)EPi(ci − c∗i )

= u′i(2)
(
EPi(ci − ei) + EPi(ei − 2)

)
≤ u′i(2)

(
ΨP(ci − ei) + 0

)
≤ u′i(2) (0 + 0) = 0.

We conclude that c∗i is indeed optimal.
One can even show that this equilibrium is the unique Knight–Walras equi-

librium for this economy. We leave the proof to the reader.
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