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A Positive Theory of Income Taxation∗

Oriol Carbonell-Nicolau†

October 2007

Abstract

We propose a dynamic version of the standard two-party electoral compe-
tition model adapted to nonlinear income taxation. The theory has a number
of desirable features. First, equilibria always exist, even though the set of
admissible tax policies is multidimensional. Second, the Nash set can be
characterized generically, and its components give sharp predictions. Third,
the features of equilibrium tax policies depend only on empirically meaningful
fundamentals. Equilibrium tax schedules benefit the more numerous income
groups and place the burden of taxation on income groups with fewer voters.
For empirical income distributions, the features of an equilibrium tax sched-
ule are reminiscent of Director’s law of public income redistribution (Stigler
[36]).
Keywords: nonlinear income taxation, electoral competition, Director’s law,
extensive zero-sum game.
JEL classification: H23, H31, D72, D78.

1. Introduction

Extant positive theories of income taxation are for the most part formulated in terms
of small sub-classes of tax functions. This contrasts with the generality achieved
by the canonical model of optimal income taxation.1 Unlike this model, positive
theories of taxation focus on the choice of tax policy by agents not necessarily inter-
ested in maximizing welfare. This approach often entails the formulation of strategic

∗I am indebted to Colin Campbell and Rich McLean for very useful discussions. Thanks also
to Marcus Berliant, Alessandro Lizzeri, Daijiro Okada, Sjaak Hurkens, and seminar participants
at Rutgers University, Universitat Autònoma de Barcelona, and Universidad Carlos III de Madrid
for their comments; John Bowblis for research assistance; and the Spanish Ministry of Education
and Science and the Research Council at Rutgers University for financial assistance. Part of this
research was conducted during the author’s visit to CODE at Universitat Autònoma de Barcelona.
The author is grateful to CODE for its support.
†Department of Economics, Rutgers University, and CODE, Universitat Autònoma de

Barcelona; carbonell-nicolau@rutgers.edu.
1See, among others, Mirrlees [28] and Saez [33].
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games played by actors who interact within institutions (for example, two candi-
dates competing for office). Strategic considerations make it difficult to consider as
rich a set of available tax policies as in the standard optimal taxation model, even
for very simple institutions. The fundamental difficulty is that collective decision-
making processes modeled as strategic games with multidimensional action spaces
(such as spaces of general nonlinear tax schemes) typically have no (pure-strategy)
equilibrium.

To overcome this problem, an important part of the existing literature on voting
over income taxes assumes policy spaces that are artificially constrained. Restrain-
ing policy domains reduces their multidimensionality and renders the game easier
to analyze. For instance, to be able to make use of the median voter theorem, the
seminal papers of Romer [32], Roberts [30], and Meltzer and Richard [27] consider
only linear tax schemes.

In general, resort to various forms of constraints imposed on the set of admissible
tax schemes for the sole purpose of obtaining a coherent model, namely one for
which an equilibrium can be shown to exist, is pervasive.2 However, existence of
equilibrium often vanishes as soon as the constraints are removed. The essence of
the problem that arises when tax policies are not constrained can be grasped in
the context of the standard model of two-party competition, where voters switch
support from one candidate to the other if promised a more favorable policy. When
the set of admissible policies is sufficiently rich, this creates incentives for a bidding
war between the parties, which leads to cycling over alternative platforms. This is a
fundamental problem that is not specific to taxation settings, but rather rooted in
Arrow’s impossibility theorem and intrinsic to environments of collective choice over
many dimensions.3 This argument (or some variation of it) can be used to explain
why the constraints on the set of admissible tax schemes cannot be dispensed with
in most of the literature on positive income taxation.

Relaxing these constraints is desirable to evaluate (1) the relationship between
democracy and observed nonlinearities in actual tax structures and (2) the trade-off
between the candidates’ incentives to favor certain voter groups and the distortion
of labor supply embedded in income redistribution.4 A number of research avenues
have been explored to study collective decision-making with nonlinear tax schemes.5

2Despite the constraints, the field has produced studies that are useful to understand various
aspects of the political economy of income taxation (cf. Romer [32], Roberts [30], and Meltzer
and Richard [27], Cukierman and Meltzer [12], Gouveia and Oliver [16], Snyder and Kramer [35],
Marhuenda and Ortuño-Ort́ın ([25],[26]), Roemer [31], Benabou [5], Berliant and Gouveia [6],
Austen-Smith [2], Hindriks [18], Kranich [19], De Donder and Hindriks [13], and Bandyopadhyay
and Esteban [4].)

3See Austen-Smith and Banks [3] for a general treatment.
4In this paper, income is assumed to be exogenous (and therefore the second point cannot be

addressed). This is a natural first step. The analysis with incentives is left for future research.
5See, for instance, Aumann and Kurz [1], Hettich and Winer [17], Lindbeck and Weibull [22],

Chen [11], Myerson [29], Lizzeri and Persico [23], Laslier and Picard [20], Carbonell-Nicolau and
Klor [9], Carbonell-Nicolau and Ok [10], Dekel, Jackson, and Wolinsky [14], and Ledyard [21].
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Nonetheless, no clear pattern has emerged concerning the relationship between pre-
tax income distributions and income tax structures. In this paper, we propose
a positive theory of income taxation with a number of desirable features. First,
equilibria always exist, even though the set of admissible tax policies is multidimen-
sional. Second, the Nash set can be characterized generically, and its components
give sharp predictions. Third, the features of equilibrium tax policies depend only
on empirically meaningful fundamentals.

We extend the static two-party electoral competition model studied in Carbonell-
Nicolau and Ok [10] by allowing the parties to reveal their tax platforms gradually in
more than one period. The candidates reveal—when it is their turn to do so—small
pieces of information concerning their platform and must commit to any current and
past announcements.6 We assume a discrete money unit and formulate this scenario
as a finite extensive game. Imposing a smallest money unit ε > 0 means that all
money amounts (tax liabilities, pre-tax income levels, etc.) must be multiples of
ε. This, together with the assumption that, when it is their turn to speak, the
candidates must provide some information (however minimal this information may
be) about their prospective tax policy, implies that tax functions are described in
finite time. Finiteness of the strategy spaces guarantees the existence of a subgame
perfect equilibrium.7

Equilibrium tax policies depend only on empirically meaningful fundamentals—
the shape of the income distribution and the government’s target revenue. In par-
ticular, the theory does not need to resort to probabilistic voting to get existence of
equilibria (as in Lindbeck and Weibull [22]), and therefore the results do not depend
on the distribution of preferences over the candidates’ personal attributes.

For generic games, we characterize the Nash set and show that, at each com-
ponent, equilibrium tax schemes lie within a small set of admissible policies that
benefit the more populous voter groups and place the burden of taxation on income
groups with fewer voters. When the income distribution resembles a log-normal
density function, the features of an equilibrium tax schedule are reminiscent of Di-
rector’s law of public income redistribution, which states that ‘public expenditures
are made for the primary benefit of the middle classes, and financed with taxes that
are borne in considerable part by the poor and rich’ (Stigler [36]).8,9

Finally, our model allows for the introduction of sources of voter heterogeneity
other than pre-tax income, such as marital status, immigration status, etc., ac-
cording to which tax structures may discriminate between taxpayers. Results are
obtained for any given partition of the population consisting on various groups of

6This assumption is discussed in Subsection 2.1.
7The convenience of introducing a discrete money unit was first exploited by Dekel, Jackson,

and Wolinsky [14].
8Theories that build on probabilistic voting models yield a version of Director’s law under the

assumption that the middle class cares less about the candidates’ personal attributes (and more
about the policy implemented) than the poor and the rich (Lindbeck and Weibull [22]).

9On the other hand, the results suggest a u-shaped pattern of effective marginal tax rates,
which is observed in the data on US effective marginal tax rates (see, for instance, [8]).
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‘similar’ individuals (where the relation of similarity is defined in terms of the in-
dividuals’ pre-tax income and possibly in terms of other attributes that may be
relevant for tax purposes).

The paper is organized as follows. Section 2 introduces the setup and discusses
the modeling strategy. The results appear in Section 3. Subsection 3.1 contains an
example, and the general results are provided in Subsections 3.2 and 3.3. Section 4
concludes. The proofs are relegated to Section 5.

2. The model

Society consists of a continuum of individuals and two political parties, denoted as
A and B. Let X be a large positive real, and, for +∞ > ε > 0, define

Xε := {0, ε, 2ε, ...} ∩
[
0, X

]
.

The set Xε represents the universe of possible pre-tax income levels (multiples of ε).
We refer to ε as the money unit for Xε.

Fix a finite set A. The set Aε := Xε×A represents a set of individual attributes.
Each individual is characterized by an element (x, a) of Aε, which is a description of
the individual’s pre-tax income x along with other attributes a that may be relevant
for tax purposes (e.g., single/married, homeowner/renter, etc.).10

A pre-tax income distribution is defined as an element of

D :=

d ∈ ⋃
ε>0

[0, 1]Aε :
∑

(x,a)∈Aε

d(x, a) = 1

 .

A distribution d ∈ D determines the measure d(x, a) of individuals with character-
istic (x, a). For d ∈ D, let ε(d) denote the money unit corresponding to the domain
of d. In the remainder of the paper, {d > 0} shall be used to designate the set{

(x, a) ∈ Aε(d) : d(x, a) > 0
}

=: {d > 0} .

Let

M :=

(d, r) : d ∈ D, 0 ≤ r ≤
∑

(x,a)∈Aε(d)

d(x, a)x

 .

10Imagine a situation where society has identified a partition of the set of all individuals such
that each element of the partition contains individuals that are identical with respect to a number
of characteristics (pre-tax income, marital status, immigrant status, etc.). Tax structures cannot
discriminate between people belonging to the same element of the partition, and may discriminate
between members of different elements of the partition. Thus, the partition is a specification of the
relation of ‘similarity’ between individuals that is necessary to objectify the notion of horizontal
equity (here we are referring to the traditional public finance concept of horizontal equity; see
Berliant and Strauss [7]). In this paper, we take this partition as given. In terms of our notation,
the population is partitioned into as many groups as there are elements in Aε, and each (x, a) ∈ Aε
can be interpreted as the list of characteristics (including pre-tax income) shared by the members
of group (x, a). (If A = ∅, then income is the only source of discrimination.)
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Each tuple (d, r) in M consists of an income distribution d and a target revenue
r. A tax policy in (d, r) ∈ M is a map t : {d > 0} → Xε(d) that assigns to
each vector of attributes (x, a) a total tax liability t(x, a) with the property that
0 ≤ t(x, a) ≤ x for all x ∈ {d > 0}. The first inequality rules out negative taxation,
that is, subsidies.11 The second inequality says that an individual can never be
required to pay more than her endowment. Let P(d,r) represent the set of all tax
policies.

A tax policy t is admissible for (d, r) ∈M if
∑

(x,a) t(x, a)d(x, a) ≥ r. That is,
t is admissible if it collects at least the target revenue r. The set of all tax policies
that are admissible for (d, r) is designated by T(d,r).

Before the election, each candidate advocates an admissible tax policy, possibly
revealed gradually as follows. There is a number of rounds 1, 2, .... The candidates
take actions in each round as indicated next. Let (d, r) ∈M be the relevant model.
In round 1, candidate A announces a mapping f1 ∈ P(d,r). Any such mapping is
called an announcement , and may be interpreted as a way of raising part (or
all) of the required revenue r. By proposing f1, candidate A commits to levying
(at least) f1(x, a) on voter group (x, a). If

∑
(x,a) f1(x, a)d(x, a) < r, then f1 falls

short of collecting the target revenue. In this case, by announcing f1, candidate A
reveals only part of her proposed policy. In subsequent rounds, the candidate will
indicate how the remainder of the required revenue, r −

∑
(x,a) f1(x, a)d(x, a), will

be collected. Also in round 1, candidate B makes an announcement g1 ∈ P(d,r),
with a similar interpretation. The announcements are revealed sequentially. Some
candidate moves first and then the opponent takes an action having observed the
other player’s move. Nature determines the order of moves. To avoid difficulties
generated by an asymmetric treatment of the players (as will become clear our game
features a second-mover advantage), we shall assume that each candidate has a 50%
chance of moving first.

Again in round 2, nature determines whether A moves first or B does. Can-
didate A’s second announcement, f2 ∈ P(d,r), is made public in round 2, after A’s
observation of B’s first announcement, g1, and possibly B’s second announcement
(if A moves second in round 2); f2 must be consistent with previous announcements
made by A in the sense that f2 ≥ f1.

12 After observing A’s first proposal and pos-
sibly A’s second move (if B moves second in round 2), candidate B makes a second
announcement, g2, also in round 2. This announcement must be consistent with B’s
first proposal, g1, as specified above. The parties make proposals according to this
time frame, each proposal being consistent with previous proposals as indicated. In
each round, each candidate has a 50% chance of moving first.13

In any given period, a candidate’s announcement f is final if f ∈ T(d,r). With

11Allowing for subsidies would not change the essence of our results.
12This assumption is discussed in Subsection 2.1.
13We know that most of our results would prevail if actions were taken simultaneously in each

round, or if nature chose whether the moves are sequential or simultaneous at the beginning of
each round. In this case, the probability of sequential moves could be history-dependent.

5



a final announcement, a candidate discloses all information about its advocated tax
policy and commits to its implementation, conditional on winning the election. The
sequence of campaign promises reaches an end when both parties have made a final
announcement.14

We assume that, when it is one candidate’s turn to make an announcement, this
candidate must give new information about its prospective policy. More precisely,
given two successive announcements f and g of the same candidate such that f is
not final, g 6= f .15

After each candidate has fully specified a final proposal, the election takes place.
Each voter casts a ballot for one of the two candidates. The candidate that receives
the most votes wins the election and implements her proposed tax policy. Ties
are broken via an equal probability rule. Voters vote for the candidate whose final
announcement most favors their economic interests. In other words, each voter
chooses the candidate who will enact, if elected, a tax policy under which the voter’s
disposable income is maximal. In case of indifference, voters toss a fair coin to
determine their choice.

The candidates are opportunistic; they wish to maximize their net plurality,
which is defined as the difference between their vote share and the vote share of the
opponent. Formally, if (f, g) represents the observed pair of final announcements, a
candidate i receives a payoff of

ui(d,r)(f, g) :=
∑

(x,a):f(x,a)<g(x,a)

d(x, a)−
∑

(x,a):f(x,a)>g(x,a)

d(x, a), (1)

if i = A, and ui(d,r)(f, g) := −uA(d,r)(f, g) if i = B.16

The above scenario can be embedded in the formal definition of a two-player
zero-sum extensive game G(d,r) parameterized by an income distribution d and a
revenue requirement r.17 We focus on the notion of Nash equilibrium and subgame
perfect equilibrium.

14Observe that an announcement f ∈ P(d,r) could also be interpreted as a “promise” that each
group of individuals (x, a) will pay at most f(x, a) plus the maximum additional tax this group
could face given what is left to be collected.

15This assumption is discussed in Subsection 2.1.
16Other standard candidate objectives include the vote share and the probability of winning.

Assuming that the candidates maximize the vote share would not change any of the results of the
paper. Moreover, if uA(d,r) were defined as a continuous, strictly increasing, and symmetric around
zero transformation of the expression in (1), and similarly for uB(d,r), all the results would remain
unaltered. Observe that this transformation permits a pointwise approximation of the candidates’
objective to the probability of winning. Finally, Theorem 1 is also true when the candidates’
objective is exactly the probability of winning (and not just a pointwise approximation to it).

17Observe that the set of all possible histories is finite. Further, the game has finite horizon (i.e.,
all histories are finite).
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2.1. Remarks on the modeling strategy

The model proposed here is in the tradition of the standard two-party electoral
competition model (the so-called Downsian model (Downs [15])). There is, however,
an important difference between the standard model and our model: the latter is
richer than the former in the sense that in the current model candidates have more
flexibility in the strategies they can use. For example, in the standard model,
which is static, the candidates must completely reveal their policy in one shot; by
contrast, in our model, the candidates could completely reveal their policy in the
first period if they wished, but may decide to wait to do so. It turns out that this
extra flexibility matters in that, in equilibrium, the players choose to wait (more on
this in Subsection 2.2).

In light of the above comparison between models, we can view our assumption
that the candidates must give new information about their prospective tax policy
(each time it is their turn to make an announcement) as a weakening of the standard
assumption that the candidates must completely reveal their policy in one period.18

On the other hand, the assumption that the candidates must commit to past
announcements is also made in the standard model, where the candidates are not
allowed to change their actions once a policy has been chosen. It is natural to
assume that platform adjustments are costly in that they entail reversing previous
promises. In this paper (as in virtually all the literature on electoral competition
with commitment), we assume that it is too costly for the candidates to rectify past
moves.19

Finally, our model is one possible extension of the static model towards models
of gradual commitment, but there are obviously alternative formulations. While the
analysis of some of these alternatives lies outside the scope of this paper, we discuss
possible variants in Sections 3.2.1 and 4.

2.2. Second-mover advantage

The static (one-period) version of our model studied in Carbonell-Nicolau and Ok
[10] lacks a pure-strategy equilibrium. In fact, given any admissible tax function, it
is always possible to find another tax policy meeting the revenue requirement and
defeating the original tax function under pairwise majority voting. This would also
true here (at least for sufficiently small money units) if the parties were constrained
to fully reveal their tax policy in one period. This means that each candidate i

18Alternatively, one may assume that candidates may remain silent, each time it is their turn
to speak, at a cost. If the total cost incurred by a candidate is convex in the number of times the
candidate fails to provide new information, then the game can be shown to possess an equilibrium.
I conjecture that in this new game Theorem 1 would remain intact.

19One could envisage a game where, in each round, each candidate must either respect foregoing
announcements or incur a cost to amend them. This is related to the variant proposed in footnote
18. I conjecture that the new game would not affect Theorem 1. A thorough analysis is left for
future research.
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would like her opponent to reveal their tax policy completely in the first round,
since then i could commit to some tax platform that defeats the opponent’s policy,
after observing the opponent’s first move.20 Obviously, in equilibrium, the oppo-
nent would never find it optimal to make a final announcement in the first round.
Thus, there is an incentive for the candidates to reveal little information in each
round, thereby gaining leverage to react to the opponent’s announcements in future
rounds.21

It is worth noting that, while the candidates have a desire to delay electoral
commitment, one should not conclude that this feature of the model is the sole
driving force for our results. This is discussed in Section 3.2.1.

3. Results

In the present model, the pre-tax income distribution is exogenously given, and
therefore individuals cannot escape excessive tax burdens by reducing their labor
supply. For this reason, in the equilibria described here, and absent any limits on
the extent individuals may be taxed, smaller voter groups tend to be expropriated.
This is obviously unrealistic and would not occur in a model à la Mirrlees [28],
with endogenous labor supply. Since the introduction of distortionary taxation lies
outside the scope of this paper, one might for now be content with the assumption
that, for each group (x, a), there is a maximum (exogenously given) tax liability
λ(x,a) ∈ Xε(d) that may be imposed on group (x, a). This assumption would not
change the results of the paper, yet we have omitted it to ease notation.22

Our first result states, roughly speaking, that G(d,r) possesses a subgame perfect
equilibrium whose corresponding tax function is such that taxes are borne by less
populous voter groups. Before stating the general result, we present a special case,
with three income groups, which illustrates the argument that is used to prove
Theorem 1.

3.1. An example

In this example we assume that the set A of other individual attributes is empty,
so that the tax system does not discriminate between individuals whose pre-tax
endowment is identical. Consider a population consisting of six individuals, one of
them endowed with (pre-tax) income $3, two of them endowed with $1 each, and

20Even if the second mover made a final announcement in the first round, it would be possible
for the first mover (for sufficiently small money units) to reveal little information in the first round
and then choose, in the second round (and after observing the opponent’s final policy), some tax
scheme ensuring victory.

21This feature of the model contrasts with the first-mover advantage exhibited by other extensive
forms, such as the bargaining game of alternating offers and the Stackelberg game.

22The results of Section 3, stated (with the obvious modifications) in terms of the upper bounds
λ(x,a), remain valid.
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the rest in possession of $2 each.23 Let d denote the corresponding pre-tax income
distribution. Suppose that the money unit is set at ε(d) = 0.01.

It is clear that if the revenue requirement r lies anywhere between $0 and $3 any
equilibrium of G(d,r) has both players collecting all taxes from the richest individual.
Finding an equilibrium strategy for other values of r is less trivial.

Say r = 8. We shall first construct one equilibrium profile for this case and
then look at the associated equilibrium tax policy. Let us suppose that candidate
B plays only strategies that increase taxes by 0.01 in each round. This simplifies
the description of the following strategy of A, but a similar treatment is possible if
B plays any kind of strategy. Throughout the sequel, we consider paths of play in
which player A is always the first mover (the worst-case scenario for this player).
By determining A’s payoffs along these paths at a given strategy profile, we can find
a lower bound for this player’s payoff in the game.

Suppose that A starts announcing that 0.01 will be collected from the richest
individual and that, in subsequent rounds, A takes one of the following three actions
until (1) the game terminates or (2) the richest individual’s total tax liability equals
$2.97 and the actions listed below prescribe a non-final announcement that increases
the richest individual’s tax by 0.01 (from $2.97).

• A increases the tax liability of the richest individual by 0.01 if B’s announce-
ment in the previous round coincided with that of A.

• A imitates the announcement made by B in the previous round if this an-
nouncement was different from that of A and not final.

• A levies all the uncollected revenue from the richest individual if B’s announce-
ment in the previous round was different from that of A and final. (This action
is possible because it is taken in a situation where the candidates’ announce-
ments are identical except at two income levels; one of them is 3 and the other
is either 1 or 2; at 3 A’s announcement exceeds that of B by 0.01, while at
the other income level it is B’s announcement that exceeds that of A by 0.01;
it follows that B’s (final) announcement collects at most $0.02 in excess of
A’s announcement, and therefore B may increase the richest individual’s tax
liability—which is at most $2.97—to meet the revenue requirement.)

It is easy to see that if A follows this strategy and the game reaches an end while
the above rules are in effect, then, regardless of B’s choice of a strategy, A secures
a payoff of at least 0.

If the game does not terminate while the above rules are in effect, then the last
announcements of both players are identical and tax the richest person at $2.97.
We consider two sub-cases.

23While this distribution is not exactly a member of D, it can be transformed into a member of
D without altering the essence of the example.
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Suppose that the last announcements of both players are identical and tax the
richest person at $2.97 and that any final announcement of both players in the
continuation game, restricted to the domain {d > 0}, is within a distance 0.04 of a
tax policy t with

t(x) =

{
x if x = 1 or x = 3,
1 if x = 2.

(2)

Then let A play an equilibrium strategy of the continuation game. In this case, the
policy implemented (restricted to {d > 0}) is within $0.04 of some t with the above
properties and, because the continuation game is symmetric, A obtains a payoff of
0.

Suppose that the last announcements of both players are identical and tax the
richest person at $2.97 and that a final announcement exists in the continuation
game whose restriction to {d > 0} lies at a distance from a tax policy t satisfying
(2) that exceeds 0.04. If A can raise all the uncollected revenue from the richest
individual, he does so. Otherwise, A announces that an additional 0.01 will be
collected from the two poorest individuals and, in subsequent rounds, A takes ac-
tion according to the following until (1) the game finishes or (2) the two poorest
individuals’ total tax liability equals $0.96 and the actions listed below prescribe
a non-final announcement that increases the two poorest individuals’ tax by 0.01
(from $0.96).

• Suppose that B’s announcement in the previous round coincided with that of
A. Then A collects all the remaining revenue from the richest person, as long
as it is possible to do so. Otherwise, A increases the tax liability of the two
poorest individuals by 0.01.

• Suppose that B’s announcement in the previous round was different from that
of A. If B’s announcement in the previous round increased the tax liability
of the richest person by 0.01, then A increases the tax of the richest person
by 0.01 as well. Otherwise, it means that B increased the tax of the middle
class by 0.01. In this case, A levies all the uncollected revenue from the richest
and the poorest, as long as it is possible to do so. Otherwise, A imitates the
announcement made by B in the previous round.

If the game reaches an end while the above conditions are in effect, then A
obtains a payoff of at least 0 irrespective of B’s behavior. Otherwise, the last
announcements of both players are identical and tax the richest person at $2.97
and the poorest at $0.96.24 This implies that any final announcement of both
players in the continuation game, restricted to the domain {d > 0}, is within a
distance 0.04 of a tax policy t satisfying (2). Suppose that A plays an equilibrium
strategy of the continuation game. In this case, the policy implemented, restricted

24This is not immediate from the above conditions. A complete argument is omitted for brevity.
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to {d > 0}, is within $0.04 of some t satisfying (2) and, because the continuation
game is symmetric, A obtains a payoff of 0.

We have argued that an action plan specifying, in each round, an announcement
for A contingent on B’s action in the preceding round may be obtained that secures
a payoff of at least 0 against any strategy of B. While this action plan does not
constitute a full contingent plan for A, one can prove that an equilibrium strategy
profile µ in G(d,r) may be constructed that follows the said action plan along the
equilibrium path. Thus, play of µ results in the implementation of a tax policy t
satisfying (2). Observe that t exempts the more populated groups from taxation.

Similar results can be obtained in general. Theorem 1 below says, roughly, that,
given an error margin η > 0 and a pre-tax income distribution whose money unit is
sufficiently small, there exists an equilibrium of the corresponding game that results
in the implementation of a tax policy that lies within a distance η of a tax function
that exempts the more populated groups from taxation.

3.2. Characterizing an equilibrium

Let Ẽ(d,r) be the set of all admissible tax policies t ∈ T(d,r) such that, for all (x, a),

t(x, a) > 0⇒ t|{(y,b):d(y,b)<d(x,a)} = i|{(y,b):d(y,b)<d(x,a)},

where i : {d > 0} → {d > 0} is the identity function on {d > 0}. The set Ẽ(d,r)
contains those admissible tax policies that tax more populous groups only if less
numerous groups have been taxed to the fullest extent possible. Define

E(d,r) :=
{
t ∈ Ẽ(d,r) : there is no τ ∈ T(d,r) with τ � t

}
.

Thus, E(d,r) is the set of admissible tax policies that levy r on the less numerous
groups, leaving the more numerous groups untaxed.

The result below depends on a parameter +∞ > η > 0, which may be interpreted
as an error margin for the graph of an equilibrium tax policy. Given η and a
model (d, r) ∈ M, consider the following statement: the tax policy implemented
at a subgame perfect equilibrium of G(d,r) lies in E(d,r) with an error margin of η
or, more precisely, it lies in Nη

(
E(d,r)

)
.25 Obviously, if η is very large, then the

assertion is vacuous. If, on the other hand, η is small, then the equilibrium policy
lies (approximately) in E(d,r), and this characterizes the equilibrium policy quite
sharply, given the ‘smallness’ of E(d,r) within the set of all admissible tax policies.

We state our result for all the members of a sub-class of models in M, which
depends on η. Roughly speaking, we require that the money unit ε(d) be sufficiently
small relative to the error margin η. This imposes an upper bound on ε(d) that
decreases with the error margin. If, for example, the error margin η is 100 times the

25Here Nη
(
E(d,r)

)
denotes the set

⋃
t∈E(d,r) Nη(t), where Nη(t) stands for the η-neighborhood of

t in T(d,r) (relative to the sup metric).
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money unit ε(d), and ε(d) is taken to be one cent of a dollar, then Theorem 1 says
that the graph of an equilibrium tax schedule lies within a neighborhood of radius
one dollar of an element of E(d,r).

Theorem 1. Suppose that +∞ > η > 0. There exists +∞ > εη > 0 such that,
for every (d, r) ∈M with ε(d) ≤ εη, G(d,r) has a subgame perfect equilibrium whose
corresponding tax policy lies in Nη

(
E(d,r)

)
.

Clearly, the content of Theorem 1 is meaningful only if η is a small number, and
the informativeness of the theorem is inversely related to the size of η. One can
ensure a precise statement by choosing a small η. The following example illustrates
the relationship between the error margin and the magnitude of the money unit
using real data.

[FIGURE 1 ABOUT HERE.]

Example 1. Figure 1 depicts the US household income distribution for the year
2004. The data depicted can be presented as an element of D, for some choice of a
money unit. (In this example we assume that the set A of other individual attributes
is empty, so that the tax system does not discriminate between individuals whose
pre-tax endowment is identical.) Let this distribution be denoted by dUS, where
ε(dUS) = $0.01 (i.e., say that the money unit is one cent of a dollar). Let rUS be the
total amount of taxes collected by the Internal Revenue Service in 2004.26 If one
sets η = $1.74, then the model (dUS, rUS) is such that the tax policy implemented
at some subgame perfect equilibrium of G(dUS,rUS) lies in Nη

(
E(dUS,rUS)

)
. Thus, if

one takes the money unit to be one cent of a dollar, Theorem 1 gives, with an error
margin of at most $1.74, an equilibrium tax policy in E(dUS,rUS).

[FIGURE 2 ABOUT HERE.]

Observe the implications of Theorem 1 for the features of the equilibrium tax
policy in a society where the income distribution is of a log-normal type (Figure
2).27 For this type of distribution, at the equilibrium of Theorem 1, the tax revenue

26Net collections for individual income tax, IRS Data Book 2004, Table 1.
27This type of distribution is empirically relevant: the fact that income obeys a log-normal

distribution is widespread. The log-normal distribution has the probability density function

f(x;µ, σ) =
exp

(
−(ln x−µ)2

2σ2

)
xσ
√

2π
,

for x > 0, where µ and σ are the mean and standard deviation of the variable’s logarithm, respec-
tively. Discrete analogues of f can be defined as follows. Given a partition I = {(0, δ), [δ, 2δ), ...}
of the positive real line into intervals of length δ > 0, the discrete version fI of f given I is

fI(x;µ, σ) =


1
δ

∫ δ
0
f(y;µ, σ)dy if 0 < x < δ,

1
δ

∫ 2δ

δ
f(y;µ, σ)dy if δ ≤ x < 2δ,
...

...
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is collected from the tails of the distribution. This is consistent with Director’s law
of public income redistribution, which states that ‘public expenditures are made for
the primary benefit of the middle classes, and financed with taxes that are borne in
considerable part by the poor and rich’ (Stigler [36]).28

3.2.1. Discussion

It is useful to outline some intuition for Theorem 1. The candidates’ ultimate goal is
to please as many voters as possible. Given our discussion in Subsection 2.2, it may
appear that incrementing taxes for smaller groups will serve the candidates’ purpose:
In each round, the candidates harden their platforms by incrementing taxes for some
voter group, and individuals within this group are treated symmetrically. Because
the size of commitment (measured in terms of tax revenue) is proportional to the
size of the group on which the tax rate is levied and the candidates prefer seeing the
opponent’s move before taking an action, incrementing taxes for the smaller groups
(as in the equilibrium of Theorem 1) implies a lesser commitment. In light of this
argument, one may be tempted to conclude that the candidates’ desire to delay
electoral commitment is the main driving force behind Theorem 1. Yet the fact of
the matter is that this force does not per se explain the result. Indeed, there are
situations in which incrementing taxes for small groups will imply a higher amount
of commitment than incrementing taxes for larger groups. This is illustrated in the
following example.

Suppose that there are three income groups x1 = 1, x2 = 2, and x3 = 3 (xi
denotes group i’s endowment) with sizes .35, .4, and .25, respectively. Suppose that
the revenue requirement is r = 0.78. It is clear that the revenue cannot be collected
by taxing group x3 only, while it is possible to meet the revenue requirement by
taxing group x2 only. Therefore, if a candidate’s first move is to increment group
x3’s tax liability by ε, this candidate is committing to taxing not only group x3, but
also either group x1 or x2. By contrast, incrementing group x2 tax liability entails
no commitment as to whether other groups will be taxed. Moreover, note that the
size of group x3 plus the size of either x1 or x2 exceeds the size of group x2.

Theorem 1 tells us that, in equilibrium, the candidates start by incrementing
taxes for the smallest group, in spite of the fact that they could choose actions that
entail less commitment. To see that this strategy cannot be beaten by a strategy
whereby the opponent taxes group x2 only, suppose that candidate A chooses to
increment group x2’s taxes by ε in each round, while candidate B starts levying
taxes on group x3. After the first round, B can imitate A’s move in the previous
round and keep doing this until a point is reached in which A has collected all
revenue, say kε, from group x2, while B has committed to levying ε on group x3

28On the other hand, the locus of equilibrium marginal tax rates against income is reminiscent
of a u-shaped pattern. A first look at some US data (see, for instance, [8]) reveals that the theory,
augmented to allow for endogenous labor supply, could be useful to understand some aspects of
the empirical pattern of effective marginal tax rates.
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and (k− 1)ε on group x2. At this point, if ε is sufficiently small, B can collect what
is left to be collected from group x3, thereby ensuring that the members of group x2

will vote for B. Given A’s position, this gives the electoral victory to B. Here, the
candidates’ desire to please a large share of the electorate, along with their endowed
flexibility to shape their policy through time in sufficiently small steps, explains the
tendency to increment taxes for less populous groups.29

3.3. On the analysis of other equilibria

Theorem 1 states that the game G(d,r) has a subgame perfect equilibrium whose
corresponding tax policy lies, approximately, in E(d,r). However, the theorem does
not say anything about the features of other Nash equilibria in G(d,r). We can
provide a complete description of the Nash set for perturbed versions of G(d,r). We
show that there are perturbations of G(d,r) such that, at each component of the Nash
set, any equilibrium tax policy lies, approximately, in E(d,r).

We think of G(d,r) as a member of an enriched class of games where the players
may not have perfect information about the order of moves and the second mover
may receive distorted information about the first mover’s action. Consider the
following extension of the game analyzed in the previous section. In each round, the
players do not observe nature’s choice of the order of moves. Rather, they observe
signals that contain information on the order of moves. Moreover, the first mover’s
actions are only indirectly observable by the second mover through a (not necessarily
perfect) signal.

Formally, let h be any history of announcements in G(d,r). In the round that
follows h, nature determines who will be the first mover (in that round) and then
sends a private message to each player. Each message is an element of {0, 1}. If 0 is
observed by player i, i’s signal is interpreted as saying that i is the first mover in the
round that follows h. If player i is chosen as the first mover, nature sends a message
(mA,mB) ∈ {0, 1}2 with probability χ

(h,i)
(d,r)(mA,mB), where mA is the message sent

to A and mB is the message sent to B. Each mi is private information of player i. If
player i is chosen to be the first mover and nature sends the message m = (mA,mB),
the sequence of actions occurs as follows:

• If mi = 0, then i chooses an announcement. If m−i = 0, where −i 6= i, then
i’s move is followed by −i’s move. Before making a choice, the second mover
does not have any information on the first mover’s action. If, on the other

29The reader may wonder what would happen in slightly different game whereby the candidates
promised upper bounds to the voter groups. That is, suppose that, starting from an initial situation
where everybody is taxed to the fullest extent, the candidates reduce taxes incrementally up to the
point where the required amount of revenue is just barely collected. It can be shown, at least in
the context of an example, that Theorem 1 survives if one changes the rules of the game according
to this story. Observe that, in this variant of the game, the survival of Theorem 1 implies that, in
equilibrium, the candidates start making promises to the more numerous groups, in spite of the
fact that, by doing so, the amount of assumed commitment is larger.
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hand, m−i = 1, then i’s move is followed by nature’s choice of a message to
−i. The content of the message is an announcement feasible for i in the round
that follows h. This message signals i’s move (which is not directly observed
by −i) and need not be completely accurate. If i chooses g, the message
received by −i is f with probability ϑ−i(d,r)(h, i,m, g)(f) (thus, ϑ−i(d,r)(h, i,m, g)
is a probability measure on the set of all the announcements that are feasible
for i in the round that follows h). After receiving the signal, −i chooses an
announcement.

• If mi = 1 (i.e., if i receives information indicating that i is the second mover,
even though i is the actual first mover), then nature sends a message to i.
The content of the message is an announcement feasible for −i (−i 6= i) in
the round that follows h. The message received by i is f with probability
ϑi(d,r)(h, i,m)(f). After receiving the message, i chooses an announcement. To
describe what happens next, we distinguish two cases. If m−i = 0, then i’s
move is followed by −i’s choice of an announcement. In this case, −i takes
action without receiving any signal on i’s move. If m−i = 1, then i’s move is
followed by nature’s choice of a message to −i. The content of the message
is an announcement feasible for i in the round that follows h. This message
signals i’s previous move (which is not directly observed by −i). If i chooses
g, then the content of the message is f with probability ϑ−i(d,r)(h, i,m, g)(f).
After receiving the signal, −i chooses an announcement.

If player i receives message 0 and ψ
(h,i)
(d,r) is a probability measure on {0, 1} rep-

resenting i’s prior beliefs on the identity of the first mover at the beginning of the
round that follows h, then, by Bayes’ rule, i believes that she is the first mover with
probability

ψ
(h,i)
(d,r)

(0)
(
χ

(h,i)
(d,r)

(0,0)+χ
(h,i)
(d,r)

(0,1)
)

ψ
(h,i)
(d,r)

(0)
(
χ

(h,i)
(d,r)

(0,0)+χ
(h,i)
(d,r)

(0,1)
)
+ψ

(h,i)
(d,r)

(1)
(
χ

(h,−i)
(d,r)

(0,0)+χ
(h,−i)
(d,r)

(0,1)
) ,

where −i 6= i. Posterior beliefs about the first mover’s action given the messages
received by a player can be formed similarly.30

At the beginning of each round, any uncertainty (about the identity of the first
mover and on the second mover’s actions) concerning the previous round vanishes,
and the players observe the actual choices made by the opponent (as well as their
own) in the previous round.

In order to emphasize the dependence of the new game on the signals sent by
nature in each round, we shall designate our game by G(d,r)(λ(d,r)), where

λ(d,r) =
(
χ(d,r),ϑ(d,r)

)
=

({
χ

(h,i)
(d,r)

}
(h,i)

,
{
ϑi(d,r)(h, i,m)

}
(h,i,m)

,
{
ϑ−i(d,r)(h, i,m, g)

}
(h,i,m,g)
i 6=−i

)
.

30The details are cumbersome. We omit the exact derivation in the general case, which is not
needed for our purposes.
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We shall often omit the second subscript and simply write G(d,r)(λ). Note that
G(d,r)(λ) is now an extensive zero-sum game with imperfect information. We study
Nash equilibria of this game.

Let Λ(d,r) be the set of all maps like λ(d,r). Each member λ of Λ(d,r) describes
the signals received by the players in each round of G(d,r)(λ). A member λ of Λ(d,r)

is perfect if the signals are completely accurate. Formally, Λ(d,r) is perfect if the
following is satisfied:

• For each (h, i) and every (mA,mB),

χ
(h,i)
(d,r)(mA,mB) =


1 if (mA,mB) = (0, 1) and i = A,

1 if (mA,mB) = (1, 0) and i = B,

0 elsewhere.

• For each (h, i,m, g), ϑ−i(d,r)(h, i,m, g) assigns full support to g, where −i 6= i.

[FIGURE 3 ABOUT HERE.]

Figure 3 illustrates the extensive form of G(d,r)(λ), in a given round, when λ =
(χ,ϑ) satisfies

supp
(
χ(h,i)

)
∈

{
{(0, 0), (0, 1)} if i = A,

{(0, 0), (1, 0)} if i = B,

for each (h, i), and (χ,ϑ) is otherwise identical to a perfect signal.31 At the begin-
ning of the round, nature (N in Figure 3) chooses the first mover (either A or B).
Then nature sends signals about the order of moves to the players. If it chooses
(mA,mB) = (0, 0), each player is told that she is the first mover. If (0, 1) is chosen,
then player A is told that she is the first mover and player B is told that she is the
second mover, and so on. If each mi is 0, both players choose an announcement with-
out receiving any information about the first mover’s action. If (mA,mB) = (0, 1),
then A moves first and nature sends an accurate signal to B about A’s action, and
so on. In Figure 3, decision nodes belonging to the same information set are linked
using dashed lines.

Note that if λ is perfect, the game G(d,r)(λ) coincides with G(d,r). We shall
consider versions G(d,r)(λ) of G(d,r) that are close to G(d,r). To make this statement
precise, we need the following notation.

We view D as a metric space with metric %D, where %D is defined as follows. Let
%0 be the discrete metric on A (i.e., %0 : A2 → R, %0(a, b) := 1 if a 6= b, %0(a, b) := 0
if a = b). Define % : (R× A× [0, 1])2 → R by

% ((x, a, d), (y, b, δ)) := max {|x− y|, %0(a, b), |d− δ|} .
31This case will be particularly relevant for our purposes; it describes a situation where the

actual first mover always receives an accurate signal, but the second mover may sometimes receive
a signal indicating that she is moving first. In all other instances, λ is like a perfect signal.
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Given d ∈ D, we define the graph of d as

gr(d) := {(x, a, d(x, a)) : (x, a) ∈ {d > 0}} .

Observe that each gr(d) is a subset of R×A× [0, 1]. Identify the members of D with
their graphs and define the distance between distributions in D to be the Hausdorff
distance between their graphs in R× A× [0, 1], where R× A× [0, 1] is viewed as a
metric space with associated metric %. That is, given d, δ ∈ D, let

%D(d, δ) := h (gr(d), gr(δ)) ,

where h (gr(d), gr(δ)) stands for the Hausdorff distance between gr(d) and gr(δ) as
induced by %.32 Take M as a metric space with associated metric

%M ((d, r), (δ, r)) := max {%D(d, δ), |r − r|} .

View any subset M′ of M as a metric subspace of M (with its relative topology).
If a statement is true for all members of an open and dense subset of M′, we say
that it is generically true in M′.

Let %Λ(d,r)
be a metric on Λ(d,r) such that

%Λ(d,r)
((χ,ϑ) , (ψ,θ))

= max

{
max
(h,i,m)

∣∣∣χ(h,i)
(d,r)(m)− ψ(h,i)

(d,r)(m)
∣∣∣ , max

(h,i,m,f)

∣∣ϑi(d,r)(h, i,m)(f)− θi(d,r)(h, i,m)(f)
∣∣ ,

max
(h,i,m,g,f)
i 6=−i

∣∣∣ϑ−i(d,r)(h, i,m, g)(f)− θ−i(d,r)(h, i,m, g)(f)
∣∣∣
 .

Let G(d,r) :=
{
G(d,r)(λ) : λ ∈ Λ(d,r)

}
be a metric space with associated metric %G(d,r)

,
where

%G(d,r)

(
G(d,r)(λ), G(d,r)(λ

′)
)

:= %Λ(d,r)
(λ,λ′).

By a neighborhood of G(d,r)(λ) we mean an open subset of G(d,r) containing
G(d,r)(λ). We may think of the game G(d,r)(λ) as a perturbed version of G(d,r) (recall
that G(d,r) = G(d,r)(θ) if θ is perfect) if G(d,r)(λ) lies within a small neighborhood
of G(d,r).

Note that, for each member of Ẽ(d,r) not in E(d,r), there exists another tax policy
that meets the revenue constraint and makes some group of voters strictly better off
without making any other voter group worse off. Some of these policies cannot, in
principle, be ruled out as equilibrium outcomes of G(d,r)(λ). In fact, in equilibrium,
the last move of a player could be optimal and, at the same time, overtax some

32One could also require that the distance between the money unit associated to each distribution
be factored in. The following (more stringent) alternative definition of %D could also be adopted
without altering our results: %D(d, δ) := max {h(gr(d), gr(δ)), |ε(d)− ε(δ)|}.
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voter group (in the sense that one could reduce the tax burden and still meet the
revenue requirement). This could happen if suppressing the tax excess did not
switch the group’s support from one candidate to the other.33 To avoid situations
where some voter group is soaked excessively (in the sense that some candidate
keeps taxing them even when the revenue requirement has been met), we assume
that the candidates are forced to choose final announcements in

O(d,r) :=
{
t ∈ T(d,r) : there is no τ ∈ T(d,r) with τ � t

}
.34

The statement below refers to the version of G(d,r)(λ) in which the candidates’ final
announcements must be elements of O(d,r). We slightly abuse notation and denote
this game again by G(d,r)(λ).

Theorem 2 says that (for a sufficiently small money unit) the components of
the Nash set in perturbations of G(d,r) have the same features as the equilibrium of
Theorem 1, in the sense that, for all these components, any equilibrium tax policy
lies, approximately, in E(d,r).

For +∞ > ε > 0 and 1 > θ > 0, define the set

M(ε, θ) :=
{

(d, r) ∈M : ε(d) < ε, r∑
(x,a) d(x,a)x

< θ
}
.

This set contains all the pairs (d, r) for which the money unit ε(d) is smaller than
ε and the revenue requirement as a fraction of total income lies below θ.

Theorem 2. Suppose that +∞ > η > 0 and 1 > θ > 0. There exists +∞ > ε(η,θ) >
0 such that, generically in M

(
ε(η,θ), θ

)
, any neighborhood of G(d,r) contains a game

G(d,r)(λ) such that the tax policy implemented at any Nash equilibrium of G(d,r)(λ)
lies in Nη

(
E(d,r)

)
.

The proof is relegated to Section 5.

4. Concluding remarks

We have modeled electoral competition between two candidates as a dynamical
process in which each candidate gradually commits to a tax schedule that is to be
implemented if she is elected by a majority of voters. We have characterized the
Nash set of the associated game. At each component of this set, equilibrium tax
schedules take a very particular form, which is reminiscent of Director’s law of public
income redistribution (Stigler [36]).

This paper has proposed a particular extensive form as a representation of the
dynamical campaigning process, but other rules of the game could be envisaged.
For example, the candidates could announce an arbitrary subset of the set of all tax

33Observe that this feature of some equilibria is particularly stark in a model with exogenous
labor supply.

34Without this assumption, Theorem 2 is also valid with Ẽ(d,r) replacing E(d,r).
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policies in the first round, and then refine this subset in subsequent rounds. Another
possibility would be for the players to announce intervals of possible tax liabilities
for each voter group, each interval being a refinement of intervals announced in
previous rounds. Since our analysis does not readily extend to these alternative
formulations, the study of these variations is left for future research.

Finally, extending the analysis to the case of endogenous labor supply is desirable
for at least two reasons. First, in a model à la Mirrlees [28], the limit on the extent
to which a voter group may be soaked would be endogenous, and would depend on
elasticities. Second, the predictions of the current model, augmented to allow for
distortionary taxation, would give new insight on the interplay of the candidates’
incentives to favor certain voter groups and the distortion of labor supply embedded
in income redistribution.35

5. Proofs

The proof of Theorem 1 is omitted and available from the author upon request.36

5.1. Theorem 2: preliminaries

Define F∗(d,r) : P(d,r) ⇒ P(d,r) by

F∗(d,r)(f) :=


g ∈ P(d,r) :

 g(x, a) = f(x, a) + ε(d),

some (x, a) with f(x, a) < x,

g = f elsewhere


 if f is not final,

{f} if f is final.

Define T(d,r) : P(d,r) ⇒ T(d,r) by T(d,r)(f) :=
{
g ∈ O(d,r) : g ≥ f

}
and Z(d,r) : P(d,r) ⇒

Aε(d) by
Z(d,r)(f) := arg min

(x,a)∈{d>0}
(x−f(x,a)−ε(d))d(x,a)≥max(y,b) d(y,b)ε(d)

+
∑

(y,b):d(y,b)<d(x,a)(y−f(y,b))d(y,b)

d(x, a).

Given (x, a) ∈ {d > 0}, define ϕ
(x,a)
(d,r) : P(d,r) → P(d,r) by

ϕ
(x,a)
(d,r)(f)(y, b) :=

{
f(y, b) + ε(d) if (y, b) = (x, a),

f(y, b) otherwise.

35If one could interpret equilibrium tax schedules as optimal ones, for some (endogenously de-
termined) social welfare weights, then the machinery developed within the framework of optimal
income taxation could be used to understand the features of equilibrium outcomes.

36The argument for this proof was illustrated in Section 3.1. Moreover, Theorem 1 can be viewed
as a special case of Theorem 2 (note however that Theorem 2 refers to a perturbation of G(d,r),
while Theorem 1 is about G(d,r)).
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Let G∗(d,r)(λ) be a game exactly like G(d,r)(λ) with the following constraints on

the actions available to the players: (1) at the beginning of the game, both players
are forced to choose an announcement fA1 := 0 =: fB1 ; and (2) in round k = 2, 3, ...,
each player i is forced to choose an announcement f ik ∈ F∗(d,r)(f

i
k−1). When λ is

perfect, we often denote G∗(d,r)(λ) as G∗(d,r). Let Λ∗(d,r) be the analogue of Λ(d,r)

(that is, the set of all possible λ describing the information structure in G∗(d,r)(λ)).
The set Λ∗(d,r) can be viewed as a metric space with corresponding metric %Λ∗(d,r)

,

where the definition of %Λ∗(d,r)
is analogous to that of %Λ(d,r)

(Subsection 3.3). One can

then view G∗(d,r) :=
{
G∗(d,r)(λ) : λ ∈ Λ∗(d,r)

}
as a metric space with associated metric

%G∗
(d,r)

, where %G∗
(d,r)

(
G∗(d,r)(λ), G∗(d,r)(λ

′)
)

:= %Λ∗(d,r)
(λ,λ′). By a neighborhood of

G∗(d,r)(λ) we mean an open subset of G∗(d,r) containing G∗(d,r)(λ).

By the subgame of G∗(d,r)(λ) induced by h we mean the subgame of G∗(d,r)(λ)

that starts immediately after the history of announcements h in G∗(d,r)(λ), before na-
ture chooses the order of moves in the round that follows h. We denote this subgame

by Γ∗h(d,r)(λ), and represent its value as v∗h(d,r)(λ) =
(
v∗

(h,A)
(d,r) (λ), v∗

(h,B)
(d,r) (λ)

)
.37

Let Γh(d,r)(λ) be the analogue of Γ∗h(d,r)(λ) for G(d,r)(λ).

A perfect λ in Λ∗(d,r) is the analogue of a perfect signal in Λ(d,r) (see Section
3.3). A member λ = (χ,ϑ) of Λ∗(d,r) is symmetric in Λ∗(d,r) if the following holds:

• For each h whose last two announcements are identical, the following holds:
χ(h,A) = χ(h,B) for all h; ϑA(h,A,m) = ϑB(h,B,m) for all m; and
ϑA(h,B,m, g) = ϑB(h,A,m, g) for all (m, g).

• For each h whose last two announcements are identical and each super-history
(h, f1, g1, ..., fk, gk) of h in G∗(d,r)(λ), the following holds:

◦ χ((h,f1,g1,...,fk,gk),A) = χ((h,g1,f1,...,gk,fk),B).

◦ ϑA((h, f1, g1, ..., fk, gk), A,m) = ϑB((h, g1, f1, ..., gk, fk), B,m) for all m.

◦ ϑA((h, f1, g1, ..., fk, gk), B,m, g) = ϑB((h, g1, f1, ..., gk, fk), A,m, g) for all
(m, g).

A symmetric λ in Λ(d,r) is defined analogously.
Let H(d,r) be a map that assigns to each history of announcements

h = (f1, g1, ..., fk, gk) in G∗(d,r) the set H(d,r)(h) of all histories of announcements

(t1, τ1, ..., tk, τk) in G∗(d,r) such that, for some κ for which fκ = gκ, (tl, τl) = (fl, gl)

for l = 1, ..., κ, and (if κ < k) (tκ+1, τκ+1, ..., tk, τk) = (gκ+1, fκ+1, ..., gk, fk).
LetM◦ be the set of all (d, r) ∈M for which

∑
(x,a)∈X d(x, a) 6=

∑
(x,a)∈Y d(x, a)

whenever {d > 0} ⊇ X 6= Y ⊆ {d > 0}.
37Each Γ∗h(d,r)(λ) is a special case of the zero-sum game of incomplete information studied by

Mamer and Schilling [24]. By Sion [34], this game has a value. Similar statements are true for
Γh(d,r)(λ) (to be defined next).
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Let T ◦(d,r) be the set of all f ∈ O(d,r) such that there exist f1, ..., fk and

(x2, a2), ..., (xk, ak) satisfying the following three conditions: (1) f1 = 0 and fk = f ;
(2) for all κ = 2, ..., k, (xκ, aκ) ∈ Z(d,r)(fκ−1) if Z(d,r)(fκ−1) 6= ∅; and (3) for all
κ = 2, ..., k,

fκ =

{
ϕ

(xκ,aκ)
(d,r) (fκ−1) if fκ−1 is not final,

fκ−1 if fκ−1 is final.

(If r = 0 then T ◦(d,r) is simply {0}.) Let E∗(d,r) be the set of all t ∈ O(d,r) satisfying
t ≤ gτ for some τ ∈ T ◦(d,r), where

gτ (x, a) :=

x if d(x, a) < max
(y,b):τ(y,b)>0

d(y, b),

τ(x, a) if d(x, a) = max
(y,b):τ(y,b)>0

d(y, b).

For +∞ > η > 0, let M∗
η be the set of all (d, r) ∈M satisfying the following:

• For any non-final f ∈ P(d,r) for which f ≤ g, some g ∈ O(d,r), Z(d,r)(f) 6= ∅.

• For all f ∈ T ◦(d,r) and all (x, a) with f(x, a) > 0,

η − ξ(x,a)ε(d)

≥
∑
(y,b):

d(y,b)<d(x,a)

20
d(y,b)

max
(z,c)

d(z, c)ε(d) +
∑
(z,c):

d(z,c)<d(x,a)

(z − f(z, c))d(z, c)

 ,
(3)

where ξ(x,a) := 2 + 1
d(x,a)

∑
(y,b):d(y,b)≤d(x,a) d(y, b).

Let Λ•(d,r) be the set of all symmetric λ ∈ Λ∗(d,r) satisfying the following property:

Suppose that h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ) such

that fAk 6= fBk . Suppose that there is a player i such that, for any announcement f i

that is feasible for i in the round that follows h (i.e., any member of F∗(d,r)(f
i
k)), there

exists an announcement f j that the opponent j may choose (in the same round) in

F∗(d,r)(f
j
k) such that i’s value in Γ∗

(h,fA,fB)
(d,r) (λ) is negative. Then the value of Γ∗h(d,r)(λ)

is nonzero.
Let Λ◦(d,r) be the set of all (χ,ϑ) in Λ∗(d,r) such that the following is satisfied: for

each (h, i), supp
(
χ(h,i)

)
6= {(0, 0)},

supp
(
χ(h,i)

)
∈

{
{(0, 0), (0, 1)} if i = A,

{(0, 0), (1, 0)} if i = B,

and (χ,ϑ) is otherwise identical to a perfect signal in Λ∗(d,r). Each member of Λ◦(d,r)
has the property that the actual first mover always receives an accurate signal, but
the second mover may sometimes receive a signal indicating that she is moving first.
In all other instances, the members of Λ◦(d,r) are like perfect signals.

Let L(d,r) : Λ∗(d,r) → Λ(d,r) be such that the restriction of L(d,r) (λ) to G∗(d,r)(λ)

coincides with λ and L(d,r) (λ) is otherwise identical to a perfect signal in Λ(d,r).
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5.2. Proof of Theorem 2

Lemma 1. Suppose that λ ∈ Λ•(d,r). Then L(d,r)(λ) is symmetric in Λ(d,r).

Proof. It follows from the definition of L(d,r) and the following facts: (1) λ is sym-
metric in Λ∗(d,r) and (2) a perfect signal in Λ(d,r) is symmetric. �

Lemma 2. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let θ be a perfect

signal in Λ∗(d,r). Fix any open subset O of Λ∗(d,r) containing θ. Then O ∩ Λ•(d,r) ∩
Λ◦(d,r) 6= ∅.

Proof. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let λ0 = (χ0,ϑ0) be a

perfect signal in Λ∗(d,r). If λ0 ∈ Λ•(d,r) ∩Λ◦(d,r), there is nothing to prove, so suppose
that λ0 /∈ Λ•(d,r) ∩Λ◦(d,r). Since λ0 ∈ Λ◦(d,r), we must have λ0 /∈ Λ•(d,r). Fix any open
subset O of Λ∗(d,r) containing λ0.

Let H1 be the set of all histories of announcements h in G∗(d,r)(λ0) satisfying

the following: (i) the last pair of announcements (gA, gB) in h has gA 6= gB; (ii)
there is a player i such that, for any announcement f i that is feasible for i in the
round that follows h (i.e., any member of F∗(d,r)(g

i)), there exists an announcement

f j that the opponent j may choose (in the same round, in F∗(d,r)(g
j)) such that

v∗
((h,fA,fB),i)
(d,r) (λ0) < 0; (iii) v∗h(d,r)(λ0) = 0; and (iv) there is no super-history h′ of

h different from h such that (1) the last pair of announcements (tA, tB) in h′ has
tA 6= tB, (2) there is a player i such that, for any announcement τ i ∈ F∗(d,r)(t

i), there

exists an announcement τ j that the opponent j may choose (in the same round,

in F∗(d,r)(t
j)) such that v∗

((h′,τA,τB),i)
(d,r) (λ0) < 0, and (3) v∗h

′

(d,r)(λ0) = 0. Because

λ0 /∈ Λ•(d,r), since λ0 is symmetric, we have H1 6= ∅. Let λ1ε = (χ1ε,ϑ1ε) be an
element of Λ∗(d,r) exactly like λ0 except for the following:

• Take h1 ∈ H1. For some 1 > ε > 0,

χ
(h1,A)
1ε (m) =


1− ε if m = (0, 1),

ε if m = (0, 0),

0 elsewhere,

and

χ
(h1,B)
1ε (m) =

{
1 if m = (1, 0),

0 elsewhere.

Moreover, for all h ∈ H(d,r)(h1), χ
(h1,A)
1ε = χ

(h,B)
1ε and χ

(h1,B)
1ε = χ

(h,A)
1ε .

• Let h2 ∈ H1\
(
{h1} ∪ H(d,r)(h1)

)
. Then, χ

(h2,A)
1ε = χ

(h1,A)
1ε and χ

(h2,B)
1ε = χ

(h1,B)
1ε .

Moreover, for all h ∈ H(d,r)(h2), χ
(h2,A)
1ε = χ

(h,B)
1ε and χ

(h2,B)
1ε = χ

(h,A)
1ε .

• Let h3 ∈ H1 \
(
∪2
l=1

(
{hl} ∪ H(d,r)(hl)

))
and proceed as in the previous steps

until χ
(h,i)
1ε has been defined for each h ∈ H1 and each i.
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Claim 1. There exists a symmetric λ1 = (χ1,ϑ1) ∈ Λ◦(d,r) such that v∗h(d,r)(λ1) 6= 0
for each h ∈ H1, and λ1 ∈ O.

Proof. Let H∗1 be the set of all h ∈ H1 for which, given ε, there exists ε′ < ε
such that v∗h(d,r)(λ1ε′) 6= 0. Define H′1 := H1 \ H∗1. Suppose that H′1 6= ∅ (if this
set is empty, ignore the ensuing argument and go straight to the next paragraph).
Let λ′1ε = (χ′1ε,ϑ

′
1ε) be an element of Λ∗(d,r) that is exactly like λ1ε except for the

following:

• Take h1 ∈ H′1. Then

χ′
(h1,B)
1ε (m) =


1− ε if m = (1, 0),

ε if m = (0, 0),

0 elsewhere,

and

χ′
(h1,A)
1ε (m) =

{
1 if m = (0, 1),

0 elsewhere.

Moreover, for all h ∈ H(d,r)(h1), χ
′(h1,A)
1ε = χ′

(h,B)
1ε and χ′

(h1,B)
1ε = χ′

(h,A)
1ε .

• Let h2 ∈ H′1 \
(
{h1} ∪ H(d,r)(h1)

)
. Then, χ′

(h2,A)
1ε = χ′

(h1,A)
1ε and χ′

(h2,B)
1ε =

χ′
(h1,B)
1ε . Moreover, for all h ∈ H(d,r)(h2), χ

′(h2,A)
1ε = χ′

(h,B)
1ε and χ′

(h2,B)
1ε = χ′

(h,A)
1ε .

• Let h3 ∈ H′1 \
(
∪2
l=1

(
{hl} ∪ H(d,r)(hl)

))
and proceed as in the previous steps

until χ′
(h,i)
1ε has been defined for each h ∈ H′1 and each i.

Clearly, each λ′1ε belongs to Λ◦(d,r). We claim that, for ε sufficiently small,

v∗h(d,r)(λ
′
1ε) 6= 0 for each h ∈ H′1. We momentarily take this statement for granted

and relegate its proof to the next paragraph. If, for ε sufficiently small, v∗h(d,r)(λ
′
1ε) 6=

0 for each h ∈ H′1, then, for ε sufficiently small, v∗h(d,r)(λ
′
1ε) 6= 0 for each h ∈ H1,

and λ′1ε ∈ O. Thus, since λ′1ε is symmetric by construction, the proof of Claim 1 is
completed by taking λ1 := λ′1ε (ε sufficiently small).

We now turn to showing that v∗h(d,r)(λ
′
1ε) 6= 0 for each h ∈ H′1, for ε sufficiently

small. Fix h ∈ H′1. For ε sufficiently small, λ1ε is accurate enough that the players’
equilibrium behavior along the equilibrium path in G∗(d,r)(λ1ε), in the round that
follows h, is as follows:

(a) For each i, if the content of i’s first message is 0, then i’s equilibrium behavior
strategy αi has support within

arg min
f i

(
max
f−i

v∗
((h,fA,fB),−i)
(d,r) (λ1ε)

)
, −i 6= i,

at the corresponding information set of i.
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(b) For each i, if the content of i’s first message is 1 and the second message says
‘f−i’ (−i 6= i), i’s equilibrium behavior strategy has support within

arg max
f i

v∗
((h,fA,fB),i)
(d,r) (λ1ε)

at the corresponding information set of i.

Analogous statements hold for G∗(d,r)(λ
′
1ε).

Since h ∈ H′1, h ∈ H1, and so v∗h(d,r)(λ0) = 0. Hence, in view of (a) and (b),

v∗
(h,A)
(d,r) (λ0) = 1

2
min
fB

max
fA

v∗
((h,fA,fB),A)
(d,r) (λ0) + 1

2
max
fA

min
fB

v∗
((h,fA,fB),A)
(d,r) (λ0) = 0. (4)

Moreover, since h ∈ H′1, v∗h(d,r)(λ1ε) = 0, and therefore

0 = v∗
(h,A)
(d,r) (λ1ε) = 1

2
min
fB

max
fA

v∗
((h,fA,fB),A)
(d,r) (λ1ε)

+1
2

ε ∑
(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),A)
(d,r) (λ1ε) + (1− ε) max

fA
min
fB

v∗
((h,fA,fB),A)
(d,r) (λ1ε)

 .

We can replace λ1ε by λ0 in this equation, for λ1ε and λ0 coincide at the beginning
of the round that follows any history of announcements of the form (h, fA, fB) .
Hence, using (4), we obtain∑

(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),A)
(d,r) (λ0) = max

fA
min
fB

v∗
((h,fA,fB),A)
(d,r) (λ0).

Since we know that the right-hand side of this equation is negative, so is the left-hand
side, and therefore ∑

(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),B)
(d,r) (λ0) > 0. (5)

Moreover,

v∗
(h,B)
(d,r) (λ′1ε) = 1

2
min
fA

max
fB

v∗
((h,fA,fB),B)
(d,r) (λ′1ε)

+1
2

ε ∑
(fA,fB)

αA(fA)αB(fB)v∗
((h,fA,fB),B)
(d,r) (λ′1ε) + (1− ε) max

fB
min
fA

v∗
((h,fA,fB),B)
(d,r) (λ′1ε)

 .

As before, we can replace λ1ε by λ0 in this equation. Therefore, since equation (4)

holds true and minfA maxfB v
∗((h,fA,fB),B)
(d,r) (λ0) > 0, it follows (in view of (5)) that

v∗
(h,B)
(d,r) (λ′1ε) > 0, as we sought. �
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Claim 2. For each h ∈ H1, there is no super-history h′ (including h) of h such
that (1) the last pair of announcements (tA, tB) in h′ has tA 6= tB, (2) there is a
player i such that, for any announcement τ i ∈ F∗(d,r)(t

i), there exists an announce-

ment τ j that the opponent j may choose (in the same round, in F∗(d,r)(t
j)) such that

v∗
((h′,τA,τB),i)
(d,r) (λ1) < 0, and (3) v∗h

′

(d,r)(λ1) = 0.

Proof. Take h ∈ H1 and a super-history h′ of h. If h′ = h, the statement fol-
lows immediately from Claim 1. If h 6= h′, the statement follows from (iv) and
the fact that when h 6= h′ the choice of λ1 (in the proof of Claim 1) entails

v∗
((h′,τA,τB),i)
(d,r) (λ0) = v∗

((h′,τA,τB),i)
(d,r) (λ1) and v∗h

′

(d,r)(λ0) = v∗h
′

(d,r)(λ1). �

Since λ1 ∈ O ∩ Λ◦(d,r) (Claim 1), if λ1 ∈ Λ•(d,r), the proof is complete. Suppose
that λ1 /∈ Λ•(d,r). Let H2 be the set of all histories of announcements h in G∗(d,r)(λ1)

satisfying the following: (1) the last pair of announcements (gA, gB) in h has gA 6=
gB; (2) there is a player i such that, for any announcement f i ∈ F∗(d,r)(g

i), there

exists an announcement f j that the opponent j may choose (in the same round, in

F∗(d,r)(g
j)) such that v∗

((h,fA,fB),i)
(d,r) (λ1) < 0; (3) v∗h(d,r)(λ1) = 0; and (4) there is no

super-history h′ of h different from h such that (a) the last pair of announcements
(tA, tB) in h′ has tA 6= tB, (b) there is a player i such that, for any announcement
τ i ∈ F∗(d,r)(t

i), there exists an announcement τ j that the opponent j may choose (in

the same round, in F∗(d,r)(t
j)) such that v∗

((h′,τA,τB),i)
(d,r) (λ1) < 0, and (c) v∗h

′

(d,r)(λ1) = 0.

Because λ1 /∈ Λ•(d,r), since λ1 is symmetric (Claim 1), we have H2 6= ∅. Moreover,
by Claim 2, and letting H and H◦1 represent, respectively, the set of all histories of
announcements in G∗(d,r) and the set of all super-histories (in G∗(d,r)) of the members

of H1 (including H1), we must have H2 ⊆ H \ H◦1. Reasoning as before, one can
obtain the analogue of λ1, λ2, in O ∩ Λ◦(d,r). If λ2 ∈ Λ•(d,r), the proof is complete.
Otherwise, one can define the analogue of H2, H3, and show that H3 ⊆ H \ H◦2,
where H◦2 is the analogue of H◦1. Eventually, there is an element of the sequence
H \ H◦1,H \ H◦2, ... that becomes ∅, and some λk is obtained in O ∩ Λ◦(d,r) with
λk ∈ Λ•(d,r). �

Lemma 3. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let θ∗ and θ be

perfect signals in Λ∗(d,r) and Λ(d,r) respectively. Fix open subsets O∗ and O of Λ∗(d,r)
and Λ(d,r) containing θ∗ and θ, respectively. Then there exists λ ∈ Λ•(d,r) ∩ Λ◦(d,r)
such that O ∩ L(d,r) (λ) 6= ∅.

Proof. The statement follows from Lemma 2 and the definition of L(d,r). �

Lemma 4. Suppose that +∞ > η > 0 and 1 > θ > 0. Then M
(
ε(η,θ), θ

)
⊆M∗

η for
some +∞ > ε(η,θ) > 0.
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Proof. Suppose that +∞ > η > 0. It is easy to see that there exists +∞ > εη > 0
such that any member of {(d, r) ∈M : ε(d) ≤ εη} satisfies the second condition in
the definition of M∗

η (see (3)).38

We show that there exists +∞ > εθ > 0 such that any member of{
(d, r) ∈M : ε(d) ≤ εθ and r∑

(x,a) d(x,a)x
≤ θ
}

satisfies the first condition in the def-

inition of M∗
η. Given (d, r) ∈ M, define the sets X0

(d,r), X
1
(d,r), ... inductively as

follows: X0
(d,r) := arg min(x,a)∈{d>0} d(x, a), and, for k = 1, 2, ...,

Xk
(d,r) := arg min

(x,a)∈{d>0}\
(⋃k−1

l=0 X
l
(d,r)

) d(x, a).

Define τ(d,r) inductively as follows:

• τ(d,r)(x, a) := max
f∈P(d,r):

(x−f(x,a)−ε(d))d(x,a)
≥max(y,b) d(y,b)ε(d)

f(x, a) for all (x, a) ∈ X0
(d,r);

• for k = 1, 2, ..., let

τ(d,r)(x, a) := max
f∈P(d,r):

(x−f(x,a)−ε(d))d(x,a)≥max(y,b) d(y,b)ε(d)

+
∑

(y,b):d(y,b)<d(x,a)(y−f(y,b))d(y,b)

f(x, a)

for all (x, a) ∈ Xk
(d,r).

Note that the choice of τ(d,r) entails that, for any (d, r) with ε(d) sufficiently small,
say ε(d) ≤ εθ, ∑

(x,a) τ(d,r)(x,a)d(x,a)∑
(x,a) xd(x,a)

> θ. (6)

Now fix any (d, r) ∈ M with ε(d) ≤ εθ and r∑
(x,a) d(x,a)x

≤ θ. The first condition

in the definition of M∗
η says that for any non-final f ∈ P(d,r) for which f ≤ g,

some g ∈ O(d,r), Z(d,r)(f) 6= ∅. Fix a non-final f ∈ P(d,r) for which f ≤ g, some
g ∈ O(d,r). Because ε(d) ≤ εθ (so (6) holds) and r∑

(x,a) d(x,a)x
≤ θ, there exists (x, a)

such that f(x, a) ≤ τ(d,r)(x, a). Clearly, the choice of τ(d,r) entails Z(d,r)

(
τ(d,r)

)
3 (x, a)

for all (x, a) ∈ {d > 0}. In particular, Z(d,r)

(
τ(d,r)

)
3 (x, a). Therefore, since

f(x, a) ≤ τ(d,r)(x, a), it follows that Z(d,r)(f) 6= ∅.
We conclude that any member of

{
(d, r) ∈M : ε(d) ≤ εθ and r∑

(x,a) d(x,a)x
≤ θ
}

satisfies the first condition in the definition of M∗
η. It only remains to observe that

M
(
ε(η,θ), θ

)
⊆M∗

η holds for any 0 < ε(η,θ) < min {εη, εθ}. �

38As ε(d) decreases, given f ∈ T ◦(d,r), (x, a) with f(x, a) > 0, and (z, c) with d(z, c) < d(x, a),
z − f(z, c) decreases, and one can take z − f(z, c) below any positive number if ε(d) is sufficiently
small.
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Lemma 5. Suppose that (d, r) ∈ M◦ and λ ∈ Λ•(d,r). Suppose that

h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ) such that fAk 6=

fBk . If the value of Γ∗h(d,r)(λ) is zero, there exists a Nash equilibrium in Γ∗h(d,r)(λ) that

generates a unique history of announcements in Γ∗h(d,r)(λ) whose last two elements
are identical.

Proof. Suppose that (d, r) ∈M◦ and λ ∈ Λ•(d,r). Suppose that h = (fA1 , f
B
1 , ..., f

A
k , f

B
k )

is a history of announcements in G∗(d,r)(λ) such that fAk 6= fBk , and let the value of

Γ∗h(d,r)(λ) be zero. We proceed by induction on the number of rounds left until the
end of the game.

If the set F∗(d,r)(f
A
k )×F∗(d,r)(f

B
k ) contains only pairs of final announcements, then,

since (1) λ ∈ Λ•(d,r), (2) h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in

G∗(d,r)(λ) such that fAk 6= fBk , and (3) the value of Γ∗h(d,r)(λ) is zero, for any player i,

there exists f i ∈ F∗(d,r)(f
i
k) such that, for all τ j ∈ F∗(d,r)(f

j
k) (j 6= i), v∗

((h,f i,τ j),i)
(d,r) (λ) ≥

0.39 It follows that there is an equilibrium in Γ∗h(d,r)(λ) that prescribes play of

(fA, fB) (with probability one) in the first round of Γ∗h(d,r)(λ). Moreover, since

v∗
((h,fA,fB),i)
(d,r) (λ) ≥ 0 for each i, we have v∗

(h,fA,fB)
(d,r) (λ) = 0. Therefore, since (d, r) ∈

M◦ and, by assumption, each f i is final, fA = fB must hold. We have thus obtained
a Nash equilibrium in Γ∗h(d,r)(λ) that generates a unique history of announcements

in Γ∗h(d,r)(λ) whose last two elements are identical.
Now suppose that the following has been proven: Suppose that

h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ) such that fAk 6=

fBk , and let the value of Γ∗h(d,r)(λ) be zero. Suppose that (τAκ , τ
B
κ ) is a pair of final

announcements for any history (τA1 , τ
B
1 , ..., τ

A
κ , τ

B
κ ) of announcements in Γ∗h(d,r)(λ)

having length κ. Then there exists a Nash equilibrium in Γ∗h(d,r)(λ) that generates a

unique history of announcements in Γ∗h(d,r)(λ) whose last two elements are identical.

Suppose that h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ)

such that fAk 6= fBk , and let the value of Γ∗h(d,r)(λ) be zero. Suppose that (τAκ+1, τ
B
κ+1)

is a pair of final announcements for any history (τA1 , τ
B
1 , ..., τ

A
κ+1, τ

B
κ+1) of announce-

ments in Γ∗h(d,r)(λ) having length κ+1. We show that there exists a Nash equilibrium

in Γ∗h(d,r)(λ) that generates a unique history of announcements in Γ∗h(d,r)(λ) whose
last two elements are identical.

As before, there exists an equilibrium in Γ∗h(d,r)(λ) that prescribes play of (fA, fB)

in the first round of the game, and v∗
(h,fA,fB)
(d,r) (λ) = 0. If fA = fB, the proof is com-

plete. Otherwise, we have a history (h, fA, fB) with fA 6= fB and v∗
(h,fA,fB)
(d,r) (λ) = 0,

and the induction hypothesis gives the desired conclusion. �

Lemma 6. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η. Let h be a history of an-

nouncements in G∗(d,r)(λ), where λ is symmetric in Λ∗(d,r). Suppose that the last two

39By v∗((h,f
i,τj),i)

(d,r) (λ) we mean v∗
((h,fA,τB),i)
(d,r) (λ) if i = A and v∗

((h,τA,fB),i)
(d,r) (λ) if i = B.
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announcements in h are identical and equal to f , and let T(d,r)(f)∩E∗(d,r) 6= ∅. Then

either T(d,r)(f) ⊆ Nη

(
E(d,r)

)
or there exists a Nash equilibrium in Γ∗h(d,r)(λ) that

generates a unique history of announcements in Γ∗h(d,r)(λ) whose last two elements
are identical.

Proof. While the general proof is long, the essence of the argument is relatively
straightforward, and can be illustrated within the example of Section 3.1 (the details
are available upon request). In this example, assuming the antecedent of the lemma,
it is easy to see that, if T(d,r)(f) * Nη

(
E(d,r)

)
, then, for some (y, b) ∈ Z(d,r)(f), the

following map is not final:

(x, a) 7→

{
x if d(x, a) < d(y, b),

f(x, a) elsewhere.
(7)

(This is also true in general.) Any player i’s choice of ϕ
(y,b)
(d,r)(f) in the round that

follows h is optimal. In fact, if the opponent chooses ϕ
(z,c)
(d,r)(f) with d(z, c) = d(y, b),

then (z, c) = (y, b);40 since λ is symmetric, choosing the same action gives both
players a payoff of zero, and zero is the value of Γ∗h(d,r)(λ) (since λ is symmetric and

the last two announcements in h equal f). If the opponent chooses ϕ
(z,c)
(d,r)(f) with

d(z, c) < d(y, b), then, since the map (7) is not final, she cannot win the election.

If the opponent chooses ϕ
(z,c)
(d,r)(f) with d(z, c) > d(y, b), then two cases are possi-

ble: (1) i can keep taxing group (y, b) until the revenue constraint is met, thereby
defeating her opponent; (2) otherwise, the map (x, a) 7→ x if d(x, a) < d(y, b),

(x, a) 7→ ϕ
(z,c)
(d,r)(f)(x, a) elsewhere, is not final, and i can choose ϕ

(z,c)
(d,r)

(
ϕ

(y,b)
(d,r)(f)

)
after ϕ

(y,b)
(d,r)(f). In this case, the argument can be repeated (with ϕ

(y,b)
(d,r)(f) replacing

f). A finite number of iterations will give the desired result. �

Lemma 7. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Let λ be symmetric

in Λ◦(d,r). Let h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) be a history of announcements in G∗(d,r)(λ)

satisfying the following: (1) there exist (x, a) and (y, b) and i and j such that

f jk(x, a) = f ik(x, a) + ε(d), f ik(y, b) = f jk(y, b) + ε(d), and f ik = f jk elsewhere, (8)

and f ik(y, b) > t(y, b) for all t ∈ E∗(d,r), and (2) fAk and fBk are not final. Let σi be a

strategy profile in Γ∗h(d,r)(λ) that prescribes ϕ
(x,a)
(d,r)(f

i
k) in the first round of Γ∗h(d,r)(λ).

Then, there is a strategy σj in Γ∗h(d,r)(λ) that secures a positive payoff in Γ∗h(d,r)(λ)
against σi.

40This is true in the example and, in general, if (d, r) ∈ M◦. While the statement of Lemma 6
covers in principle cases where (d, r) /∈M◦, proving it only for the cases where (d, r) ∈M◦ suffices
for the proof of Theorem 2.
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Proof. The details are cumbersome (and available upon request), but the general

idea of the proof is simple. Since (8) holds and σi prescribes ϕ
(x,a)
(d,r)(f

i
k) in the first

round of Γ∗h(d,r)(λ), it suffices to show that there is a strategy νj in Γ∗h
′

(d,r)(λ) that
secures a positive payoff against νi, where the last two elements of h′ are identical
and equal to f jk , and νi prescribes ϕ

(y,b)
(d,r)(f

j
k) in the first round of Γ∗h

′

(d,r)(λ). Observe

that, because (1) f jk is not final, (2) f jk ≤ g for some g ∈ O(d,r) (for h is a history of

announcements in G∗(d,r)(λ)), and (3) (d, r) ∈M∗
η, we have Z(d,r)(f

j
k) 6= ∅. Therefore,

the argument in the proof of Lemma 6 can be used to see that there is a strategy
νj in Γ∗h

′

(d,r)(λ) that secures a nonnegative payoff against νi. Imagine for a moment

that λ is perfect. Consider a strategy µj in Γ∗h
′

(d,r)(λ) that mimics νj except that,
each time it is j’s time to move second, j increases her tax policy by ε(d) at the
point where i increased her tax policy as a first mover. Because f ik(y, b) > t(y, b)
for all t ∈ E∗(d,r), for each non-final f ∈ T(d,r)(f

j
k) and every (z, c) ∈ Z(d,r)(f), we have

d(z, c) < d(y, b). Thus, µj ensures, against νi, a zero payoff when it mimics νj and

a positive payoff in the event in which j moves second in each round of Γ∗h
′

(d,r)(λ).
The same argument is valid if λ ∈ Λ◦(d,r). �

Lemma 8. Suppose that (d, r) ∈M. Suppose that λ is symmetric in Λ∗(d,r). Let h be

a history in G∗(d,r)(λ) whose last pair of announcements is (fA, fB), where fA 6= fB.

Let σ = (σA, σB) be a strategy profile in Γ∗h(d,r)(λ) with following property: σ is a

Nash equilibrium in Γ∗h(d,r)(λ), and play of σ generates a unique history of announce-

ments in Γ∗h(d,r)(λ) whose last two elements are identical. Let (fA1 , f
B
1 , ..., f

A
k , f

B
k )

be a history generated under play of σ. Suppose that k > 1, fA` 6= fB` for all

` = 1, ..., k − 1, and fAk = fBk . Suppose that fA1 = ϕ
(x,a)
(d,r)(f

A) and fA2 = ϕ
(y,b)
(d,r)(f

A
1 ),

where (x, a) 6= (y, b). Then the value of Γ∗
(
h,ϕ

(y,b)
(d,r)

(fA),fB1

)
(d,r) (λ) is zero. Analogous

statements are true for player B.

Proof. Assume the antecedent. We prove the statement for player A (the argument
for B is similar). By the property of σ and the fact that λ is symmetric, the value

of Γ∗h(d,r)(λ) is zero. Let h′ :=
(
h, ϕ

(y,b)
(d,r)(f

A), fB1

)
. We show that v∗

(h′,A)
(d,r) (λ) ≥

0. To see this, it suffices to show that v∗
((
h′,ϕ

(x,a)
(d,r)

(
ϕ

(y,b)
(d,r)

(fA)
)
,τB
)
,A
)

(d,r) (λ) ≥ 0 for any

announcement τB that is feasible for B in the first round of Γ∗h
′

(d,r)(λ). Observe

that
(
ϕ

(x,a)
(d,r)

(
ϕ

(y,b)
(d,r)(f

A)
)
, τB

)
= (fA2 , τ

B). Further, v∗
((h,fA1 ,fB1 ,fA2 ,τB),A)
(d,r) (λ) ≥ 0,

since the choice of fA2 is optimal in the round that follows (h, fA1 , f
B
1 ) (and σ is a

Nash equilibrium in Γ∗h(d,r)(λ) that generates a unique history of announcements

(fA1 , f
B
1 , ..., f

A
k , f

B
k ) in Γ∗h(d,r)(λ) whose last two elements are identical). Therefore,

v∗
((
h′,ϕ

(x,a)
(d,r)

(
ϕ

(y,b)
(d,r)

(fA)
)
,τB
)
,A
)

(d,r) (λ) = v∗
((h,fA1 ,fB1 ,fA2 ,τB),A)
(d,r) (λ) ≥ 0, as desired.

Because the value of Γ∗h(d,r)(λ) is zero and there exists an optimal play of B that

prescribes fB1 in the first round of Γ∗h(d,r)(λ), regardless of nature’s choices (of the
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order of moves and the signals), we must have v∗
(h′,B)
(d,r) (λ) ≥ 0. Hence, since we know

that v∗
(h′,A)
(d,r) (λ) ≥ 0, we obtain v∗h

′

(d,r)(λ) = 0, as we sought. �

Lemma 9. Suppose that (d, r) ∈ M◦ and λ ∈ Λ•(d,r) ∩ Λ◦(d,r). Let

h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) be a history of announcements in G∗(d,r)(λ) such that

T(d,r)(f
i
k)∩E∗(d,r) 6= ∅ for each i. Let σ = (σA, σB) be a Nash equilibrium in Γ∗h(d,r)(λ)

that generates a unique history of announcements in Γ∗h(d,r)(λ) whose last two com-

ponents are identical. Given a player i, suppose that σi prescribes gi in the round
that follows h. Then T(d,r)(g

i) ∩ E∗(d,r) 6= ∅.

Proof. Assume the antecedent. We fix a player i, assume that T(d,r)(g
i)∩E∗(d,r) = ∅,

and derive a contradiction. Because T(d,r)(f
i
k) ∩ E∗(d,r) 6= ∅ and T(d,r)(g

i) ∩ E∗(d,r) =

∅, gi = ϕ
(x,a)
(d,r)(f

i
k) for some (x, a). The choice of (x, a), along with the fact that

T(d,r)(f
i
k) ∩ E∗(d,r) 6= ∅ and T(d,r)(g

i) ∩ E∗(d,r) = ∅, entails gi(x, a) > gτ (x, a) for all

τ ∈ T ◦(d,r) (gτ was defined in Section 5.1). By assumption, play of σ in Γ∗h(d,r)(λ)

generates a unique history of announcements (τA1 , τ
B
1 , ..., τ

A
l , τ

B
l ) in Γ∗h(d,r)(λ) whose

last two elements are identical (τAl = τBl ). Either l = 1 or l > 1. Both cases can be
dealt with using a similar argument, so we only consider the case when l > 1.

Without loss of generality, assume τA` 6= τB` for all ` = 1, ..., l − 1. Since τ i1 =
gi and gi(x, a) > gτ (x, a) for all τ ∈ T ◦(d,r), we may pick the longest sub-history

(τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) of (τA1 , τ

B
1 , ..., τ

A
l−1, τ

B
l−1) such that the following is true:

(?) There exist a player ι and (y, b) with τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m) and τ ιm+1(y, b) > gτ (y, b)

for all τ ∈ T ◦(d,r).

Let h′ := (h, τA1 , τ
B
1 , ..., τ

A
m, τ

B
m). Two cases are possible: τAm(y, b) = τBm(y, b)

and τ ιm(y, b) < τ jm(y, b), where j 6= ι (the case when τ ιm(y, b) > τ jm(y, b) is not
possible, for in this case (τA1 , τ

B
1 , ..., τ

A
m, τ

B
m) would not be the longest sub-history of

(τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) satisfying (?) (recall that τAl = τBl )). We consider each case in

turn.

Case 1. τAm(y, b) = τBm(y, b). Since τAl = τBl and (τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) is the longest

sub-history of (τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) such that (?) holds, in this case we must have

τAm+1(y, b) = τBm+1(y, b). On the other hand, we know that τAm 6= τBm (for m < l).
Since (1) (τA1 , τ

B
1 , ..., τ

A
m, τ

B
m) is the longest sub-history of (τA1 , τ

B
1 , ..., τ

A
l−1, τ

B
l−1) such

that (?) holds, (2) τAm 6= τBm , (3) τAm(y, b) = τBm(y, b), and (4) τAl = τBl , letting j

be ι’s opponent, τ jm+1 must be not final, so we may write τ jm+2 = ϕ
(z,c)
(d,r)(τ

j
m+1) for

some (z, c). Note that the fact that (τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) is the longest sub-history

of (τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) such that (?) holds implies that (z, c) 6= (y, b). Thus, we

have τ jm+1 = ϕ
(y,b)
(d,r)(τ

j
m), τ jm+2 = ϕ

(z,c)
(d,r)(τ

j
m+1), and (z, c) 6= (y, b). Moreover, m + 2 ≤

l (indeed, we have τAm 6= τBm and τAm+1 6= τBm+1). Therefore, by Lemma 8, the
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value of Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ jm),τ ιm+1

)
(d,r) (λ) is zero.41 Since (1) (d, r) ∈ M◦, (2) λ ∈ Λ•(d,r),

(3) ϕ
(z,c)
(d,r)(τ

j
m) 6= τ ιm+1, and (4) the value of Γ∗

(
h′,ϕ

(z,c)
(d,r)

(τ jm),τ ιm+1

)
(d,r) (λ) is zero,42 Lemma

5 gives a Nash equilibrium ν = (νA, νB) in Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ jm),τ ιm+1

)
(d,r) (λ) that generates

a unique history of announcements (tA1 , t
B
1 , ..., t

A
κ , t

B
κ ) whose last two elements are

identical (tAκ = tBκ ). We consider two sub-cases:

Case 1.1. κ = 1. To ease notation, let tj0 := ϕ
(z,c)
(d,r)(τ

j
m) and tι0 := τ ιm+1. We have

tA0 6= tB0 , tA0 and tB0 non-final, and (if κ = 1) tA1 = tB1 . Therefore, there exist (x, a)
and (y, b) and i1 and i2 such that

ti10 (x, a) = ti20 (x, a) + ε(d), ti20 (y, b) = ti10 (y, b) + ε(d), and tA0 = tB0 elsewhere. (9)

Moreover, we have the following: (1) tA0 and tB0 are non-final; (2) tι0(y, b) = τ ιm+1(y, b) >
t(y, b) for all t ∈ E∗(d,r) (since τ ιm+1(y, b) > gτ (y, b) for all τ ∈ T ◦(d,r)); (3) since

τAm(y, b) = τBm(y, b) and (z, c) 6= (y, b),

tj0(y, b) = ϕ
(z,c)
(d,r)(τ

j
m)(y, b) < ϕ

(y,b)
(d,r)(τ

j
m)(y, b) = τ ιm+1(y, b) = tι0(y, b),

and so, in view of (9), we have either (y, b) = (x, a) or (y, b) = (y, b). Without
loss of generality, say (y, b) = (x, a), so that j = i2 (and ι = i1); (4) and, since

tA1 = tB1 , νι is a strategy in Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ) that prescribes ϕ

(y,b)
(d,r)(t

ι
0) in the first round

of Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ). Consequently, by Lemma 7, νι is not optimal in Γ∗

(h′,tA0 ,tB0 )
(d,r) (λ),

thereby contradicting the fact that ν is a Nash equilibrium in Γ∗
(h′,tA0 ,tB0 )
(d,r) (λ).

Case 1.2. κ > 1. In this case, one may proceed as before, i.e., one may pick the
longest sub-history (tA1 , t

B
1 , ..., t

A
n , t

B
n ) of (tA1 , t

B
1 , ..., t

A
κ−1, t

B
κ−1) such that the analogue

of (?) is satisfied. One may then consider the analogues of the current Case 1 and
Case 2 (below) and either obtain a contradiction or repeat the argument once more,
until a point is reached in which a contradiction arises.

Case 2. τ ιm(y, b) < τ jm(y, b), where j 6= ι. We consider three sub-cases:

Case 2.1. m+1 = l and τ jm is final. In this case, τAm+1 = τBm+1, and ι has an optimal

strategy in Γ∗h
′

(d,r), σι, which chooses τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m) in the first round of this

game (regardless of nature’s choices). Therefore, since τ jm is final by assumption, we
must have τAm = τBm everywhere except at (y, b), where τ ιm(y, b) < τ jm(y, b). Because
τ ιm+1(y, b) > gτ (y, b) for all τ ∈ T ◦(d,r), τ ιm(y, b) ≥ gτ (y, b) for all τ ∈ T ◦(d,r). We claim

41By Γ∗
(
h′,ϕ

(z,c)
(d,r)(τ

j
m),τιm+1

)
(d,r) (λ) we mean Γ∗

(
h′,ϕ

(z,c)
(d,r)(τ

j
m),τιm+1

)
(d,r) (λ) if j = A and

Γ∗
(
h′,τιm+1,ϕ

(z,c)
(d,r)(τ

j
m)
)

(d,r) (λ) if j = B.
42See footnote 41.
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that this implies that there exists (y, b) such that d(y, b) < d(y, b) and, for some
positive integer l, the following map is final:

(x, a) 7→

{
τ ιm(x, a) if (x, a) 6= (y, b),

τ ιm(x, a) + lε(d) if (x, a) = (y, b).
(10)

To see this, observe that we must have (y, b) ∈ Z(d,r)(τ
ι
m) for some (y, b) with

d(y, b) < d(y, b) (otherwise, since τ ιm(y, b) ≥ gτ (y, b) for all τ ∈ T ◦(d,r) and

arg max(x,a):τ(x,a)>0 d(x, a) is a singleton for all τ ∈ T ◦(d,r) (because (d, r) ∈ M◦),

τ ιm would be final, thereby contradicting that τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m)). But since (y, b) ∈

Z(d,r)(τ
ι
m), we have

(y− τ ιm(y, b)− ε(d)) d(y, b) ≥ max
(x,a)

d(x, a)ε(d) ≥ d(y, b)ε(d).

Therefore, since τ jm is final and τAm = τBm everywhere except at (y, b), where τ ιm(y, b) <
τ jm(y, b), it follows that the map in (10) is final for some positive integer l and some

(y, b) with d(y, b) < d(y, b). But then, σι, which chooses τ ιm+1 = ϕ
(y,b)
(d,r)(τ

ι
m) in the

first round of Γ∗h
′

(d,r)(λ), cannot be optimal (in fact, choosing the map in (10) in

Γ∗h
′

(d,r)(λ) gives ι a higher payoff).

Case 2.2. m+ 1 = l and τ jm is not final. In this case, τAm+1 = τBm+1 (as in Case 2.1),
and there exists (z, c) such that

τ jm(y, b) = τ ιm(y, b) + ε(d), τ ιm(z, c) = τ jm(z, c) + ε(d), and τAm = τBm elsewhere.

We omit the rest of the argument, which is similar to that of Case 1.1.

Case 2.3. m+1 < l. In this case, since (τA1 , τ
B
1 , ..., τ

A
m, τ

B
m) is the longest sub-history

of (τA1 , τ
B
1 , ..., τ

A
l−1, τ

B
l−1) such that (?) holds, there must exist (z, c) such that τ ιm+2 =

ϕ
(z,c)
(d,r)(τ

ι
m+1) and (z, c) 6= (y, b). Thus, we have τ ιm+1 = ϕ

(y,b)
(d,r)(τ

ι
m), τ ιm+2 = ϕ

(z,c)
(d,r)(τ

ι
m+1),

and (z, c) 6= (y, b). Now, by Lemma 8, the value of Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ ιm),τ jm+1

)
(d,r) (λ) is zero.

Since (d, r) ∈ M• ∩M◦, ϕ
(z,c)
(d,r)(τ

ι
m) 6= τ jm+1, and the value of Γ∗

(
h′,ϕ

(z,c)
(d,r)

(τ ιm),τ jm+1

)
(d,r) (λ)

is zero, Lemma 5 gives a Nash equilibrium in Γ∗
(
h′,ϕ

(z,c)
(d,r)

(τ ιm),τ jm+1

)
(d,r) (λ) that generates

a unique history of announcements whose last two elements are identical. One may
now formulate the analogues of Case 1 and Case 2 for the new history, and repeat
the argument as needed, until a contradiction is obtained. �

We omit the proof of the following lemma, which is similar to that of Lemma 9.

Lemma 10. Suppose that (d, r) ∈M◦ and λ ∈ Λ•(d,r). Let h = (fA1 , f
B
1 , ..., f

A
k+1, f

B
k+1)

be a history of announcements in G∗(d,r)(λ) such that T(d,r)(f
ι
k) ∩ E∗(d,r) 6= ∅ for each

ι, T(d,r)(f
i
k+1) ∩ E∗(d,r) 6= ∅ and T(d,r)(f

j
k+1) ∩ E∗(d,r) = ∅ for some i, j. Then the value

of Γ∗h(d,r)(λ) is nonzero.
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Lemma 11. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩ M◦. Then E∗(d,r) ⊆

Nη

(
E(d,r)

)
.

Proof. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η ∩M◦. Fix f ∈ E∗(d,r). It suffices

to show that there exists g ∈ E(d,r) such that f(x, a) ∈ (g(x, a)− η, g(x, a) + η) for
all (x, a). Let

D := arg max
(x,a):∃f∈E(d,r):f(x,a)>0

d(x, a)

and
d := max

(x,a):∃f∈E(d,r):f(x,a)>0
d(x, a).

Define

g(x, a) :=


0 if d(x, a) > d,

maxf∈E(d,r) f(x, a) if d(x, a) = d,

x elsewhere.

Because (d, r) ∈ M◦, (y, b) 6= (z, c) implies d(y, b) 6= d(z, c), so D is a singleton.
Hence, the definition of g entails g ∈ E(d,r), so it suffices to show that

f(x, a) ∈ (g(x, a)− η, g(x, a) + η) (11)

for all (x, a). We consider three cases.

Case 1. d(x, a) > d. If f(x, a) = 0, since g(x, a) = 0, (11) follows immediately. If
f(x, a) > 0, then there exists τ ∈ T ◦(d,r) such that τ(x, a) > 0. Therefore, for all

(y, b) with d(y, b) < d(x, a),

(y− τ(y, b)− ε(d))d(y, b) < max
(z,c)

d(z, c)ε(d) +
∑

(z,c):d(z,c)<d(y,b)

(z− τ(z, c))d(z, c). (12)

We have

f(x, a)− ε(d)

≤ 1
d(x,a)

∑
(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

< 1
d(x,a)

∑
(y,b):

d(y,b)<d(x,a)

2 max
(z,c)

d(z, c)ε(d) +
∑
(z,c):

d(z,c)<d(y,b)

(z − τ(z, c))d(z, c)


≤ η − ε(d),

where the first inequality is true because τ ∈ T ◦(d,r) and d(x, a) > d, the second

inequality uses (12), and the third inequality uses the fact that (d, r) ∈ M∗
η (see

(3)). Hence, 0 < f(x, a) < η. Since g(x, a) = 0, (11) obtains.
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The following equations will be useful to handle the next two cases. Let D =
{(x, a)} (recall that D is a singleton). Then(

max
f∈T ◦

(d,r)

f(x, a)− max
f∈E(d,r)

f(x, a)

)
d(x, a) ≤ d(x, a)ε(d)+

∑
(y,b):d(y,b)
<d(x,a)

(y−τ(y, b))d(y, b) (13)

for any τ ∈ T ◦(d,r). Moreover, since f ∈ E∗(d,r),∑
(y,b):d(y,b)>d(x,a)

f(y, b)d(y, b) ≤ max
(y,b)

d(y, b)ε(d)+
∑

(y,b):d(y,b)≤d(x,a)

(y−τ(y, b))d(y, b) (14)

for any τ ∈ T ◦(d,r).

Case 2. d(x, a) = d. In this case, (x, a) = (x, a). We consider two sub-cases.

Case 2.1. f(x, a) ≥ g(x, a). In this case, since f ∈ E∗(d,r) and g(x, a) = maxf∈E(d,r) f(x, a),
we have

0 ≤ f(x, a)− g(x, a) ≤ max
f∈T ◦

(d,r)

f(x, a)− max
f∈E(d,r)

f(x, a).

But since (x, a) = (x, a) and (13) holds for any τ ∈ T ◦(d,r), we have

(f(x, a)− g(x, a))d(x, a) ≤ d(x, a)ε(d) +
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

for any τ ∈ T ◦(d,r). Since the right-hand side of this equation is less than ηd(x, a)

(because (d, r) ∈M∗
η (see (3))), we obtain f(x, a)−g(x, a) < η. This, together with

the inequality f(x, a) ≥ g(x, a), gives (11).

Case 2.2. f(x, a) < g(x, a). In this case, the choice of g entails

(g(x, a)− f(x, a)− ε(d))d(x, a) <
∑

(y,b):d(y,b)>d(x,a)

f(y, b)d(y, b). (15)

If
∑

(y,b):d(y,b)>d(x,a) f(y, b)d(y, b) = 0, then g(x, a)−f(x, a) < ε(d) < η (since (d, r) ∈
M∗

η), and therefore, since f(x, a) < g(x, a), (11) follows. If, on the other hand,∑
(y,b):d(y,b)>d(x,a)

f(y, b)d(y, b) > 0,

then there exists τ ∈ T ◦(d,r) such that τ(z, c) > 0 for some (z, c) with d(z, c) > d(x, a),
and therefore

(x− τ(x, a)− ε(d))d(x, a) < max
(y,b)

d(y, b)ε(d) +
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b).
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Combining this equation with (14) and (15) (recall that (x, a) = (x, a)), we obtain,
for any τ ∈ T ◦(d,r),

(g(x, a)− f(x, a)−ε(d))d(x, a)

< max
(y,b)

d(y, b)ε(d) +
∑

(y,b):d(y,b)≤d(x,a)

(y − τ(y, b))d(y, b)

= max
(y,b)

d(y, b)ε(d) + (x− τ(x, a))d(x, a)

+
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

= max
(y,b)

d(y, b)ε(d) + (x− τ(x, a) + ε(d)− ε(d))d(x, a)

+
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

= max
(y,b)

d(y, b)ε(d) + d(x, a)ε(d) + (x− τ(x, a)− ε(d))d(x, a)

+
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

< 2

max
(y,b)

d(y, b)ε(d) +
∑

(y,b):d(y,b)
<d(x,a)

(y − τ(y, b))d(y, b)

+ d(x, a)ε(d).

Therefore,

(g(x, a)− f(x, a))d(x, a) < 2

2 max
(y,b)

d(y, b)ε(d) +
∑

(y,b):d(y,b)
<d(x,a)

(y − τ(y, b))d(y, b)

 .

Because (d, r) ∈ M∗
η (see (3)), the right-hand side of this equation is less than or

equal to ηd(x, a), and so g(x, a) − f(x, a) < η. This, together with the inequality
f(x, a) < g(x, a), gives (11).

Case 3. d(x, a) < d. Since f ∈ E∗(d,r), we have

(g(x, a)− f(x, a))d(x, a)

≤

(
max

f∈T ◦
(d,r)

f(x, a)− max
f∈E(d,r)

f(x, a)

)
d(x, a) +

∑
(y,b):d(y,b)>d(x,a)

f(y, b)d(y, b).
(16)

Therefore, if
∑

(y,b):d(y,b)>d(x,a) f(y, b)d(y, b) = 0, we obtain, using (13),

(g(x, a)− f(x, a))d(x, a) ≤ d(x, a)ε(d) +
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)
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for any τ ∈ T ◦(d,r). From Case 2.1, we know that the right-hand side of this equation

is less than ηd(x, a). Hence, g(x, a)−f(x, a) < η. This, together with the inequality
f(x, a) ≤ g(x, a) (which follows from the fact that g(x, a) = x (since d(x, a) < d)),
gives (11). If, on the other hand,

∑
(y,b):d(y,b)>d(x,a) f(y, b)d(y, b) > 0, then there exists

τ ∈ T ◦(d,r) such that τ(z, c) > 0 for some (z, c) with d(z, c) > d(x, a), and therefore

(x− τ(x, a)− ε(d))d(x, a) < max
(y,b)

d(y, b)ε(d) +
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b).

Combining this equation with (16) and (13)-(14), we get

(g(x, a)− f(x, a))d(x, a) ≤ 2 max
(y,b)

d(y, b)ε(d) + (x− τ(x, a))d(x, a)

+ 2
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

= 2 max
(y,b)

d(y, b)ε(d) + (x− τ(x, a) + ε(d)− ε(d))d(x, a)

+ 2
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

= 3 max
(y,b)

d(y, b)ε(d) + (x− τ(x, a)− ε(d))d(x, a)

+ 2
∑

(y,b):d(y,b)<d(x,a)

(y − τ(y, b))d(y, b)

< 4 max
(y,b)

d(y, b)ε(d) + 3
∑

(y,b):d(y,b)
<d(x,a)

(y − τ(y, b))d(y, b)

≤ ηd(x, a),

where the last inequality follows from the fact that (d, r) ∈ M∗
η (see (3)). Hence,

g(x, a)− f(x, a) < η, so (11) obtains, as before. �

Lemma 12. Suppose that +∞ > η > 0, (d, r) ∈ M∗
η ∩ M◦, and λ ∈ Λ•(d,r) ∩

Λ◦(d,r). Then the tax policy implemented at any Nash equilibrium of G∗(d,r)(λ) lies in

Nη

(
E(d,r)

)
.

Proof. Suppose that +∞ > η > 0, (d, r) ∈M∗
η ∩M◦, and λ ∈ Λ•(d,r) ∩Λ◦(d,r). Sup-

pose that σ = (σA, σB) is a strategy profile in G∗(d,r)(λ). Let h = (fA1 , f
B
1 , ..., f

A
k , f

B
k )

be any history of announcements in G∗(d,r)(λ) generated under play of σ. We

know that f i1 = 0 for each i, and therefore T(d,r)(f
i
1) ∩ E∗(d,r) 6= ∅ for each i. If

T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι, there is nothing to prove, so suppose that it is not

true that T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι. Let (h, fAk+1, f

B
k+1) be a super-history of

h in G∗(d,r)(λ) generated under play of σ, and suppose that T(d,r)(f
i
k+1) ∩ E∗(d,r) = ∅

for some i. We first show that σ is not a Nash equilibrium of G∗(d,r)(λ).
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Observe that, because T(d,r)(f
i
k+1) ∩ E∗(d,r) = ∅ and T(d,r)(f

i
1) ∩ E∗(d,r) 6= ∅, there

must exist some κ = 1, ..., k with T(d,r)(f
i
κ) ∩ E∗(d,r) 6= ∅ and T(d,r)(f

i
κ+1) ∩ E∗(d,r) = ∅.

There is no loss of generality in assuming that i’s opponent j satisfies T(d,r)(f
j
κ) ∩

E∗(d,r) 6= ∅. Let hl := (fA1 , f
B
1 , ..., f

A
l , f

B
l ) for each l = 1, ..., κ. We consider two cases:

Case 1. Either fAκ 6= fBκ and the value of Γ∗hκ(d,r)(λ) is zero or fAκ = fBκ . If fAκ = fBκ ,

since T(d,r)(f
ι
κ) ∩ E∗(d,r) 6= ∅ for each ι, Lemma 6 implies that either T(d,r)(f

ι
κ) ⊆

Nη

(
E(d,r)

)
for each ι or there exists a Nash equilibrium in Γ∗hκ(d,r)(λ) that generates a

unique history of announcements in Γ∗hκ(d,r)(λ) whose last two elements are identical.

Thus, if fAκ = fBκ , it suffices to consider the case where T(d,r)(f
ι
κ) * Nη

(
E(d,r)

)
(recall that we are assuming that it is not true that T(d,r)(f

ι
k) ⊆ Nη

(
E(d,r)

)
for each

ι).
There exists a Nash equilibrium µ in Γ∗hκ(d,r)(λ) that generates a unique history

of announcements in Γ∗hκ(d,r)(λ) whose last two elements are identical (this follows

from Lemma 5 if fAκ 6= fBκ and the value of Γ∗hκ(d,r)(λ) is zero, and from Lemma 6 if

fAκ = fBκ and T(d,r)(f
ι
κ) * Nη

(
E(d,r)

)
). Therefore, since λ is symmetric and Γ∗hκ(d,r)(λ)

is zero-sum, the value of Γ∗hκ(d,r)(λ) is zero. Since the value of Γ∗hκ(d,r)(λ) is zero,

letting (tA, tB) be a history in Γ∗hκ(d,r)(λ) that is generated with probability one under

play of µ, and letting j be i’s opponent, we must have v∗
((hκ,tj ,t),j)
(d,r) (λ) ≥ 0 for any

t ∈ F∗(d,r)(f
i
κ).

43 Since Γ∗hk(d,r)(λ) is zero-sum, this implies v∗
((hκ,tj ,t),i)
(d,r) (λ) ≤ 0 for any

such t. Observe that we cannot have T(d,r)(t
j)∩ E∗(d,r) = ∅, for, if this equality held,

since T(d,r)(f
ι
κ)∩E∗(d,r) 6= ∅ for each ι, µ would not be a Nash equilibrium in Γ∗hκ(d,r)(λ)

by Lemma 9. So we must have T(d,r)(t
j)∩E∗(d,r) 6= ∅. Because T(d,r)(f

ι
κ)∩E∗(d,r) 6= ∅ for

each ι, T(d,r)(t
j)∩E∗(d,r) 6= ∅, and T(d,r)(f

i
κ+1)∩E∗(d,r) = ∅, Lemma 10 implies that the

value of Γ∗
(hκ,tj ,f iκ+1)

(d,r) (λ) is nonzero.44 Since v∗
((hκ,tj ,t),i)
(d,r) (λ) ≤ 0 for any t ∈ F∗(d,r)(f

i
κ),

we must have, in particular, v∗
((hκ,tj ,f iκ+1),i)
(d,r) (λ) ≤ 0. This inequality, together with

the fact that the value of Γ∗
(hκ,tj ,f iκ+1)

(d,r) (λ) is nonzero, gives v∗
((hκ,tj ,f iκ+1),i)
(d,r) (λ) < 0.

Therefore, since v∗
((hκ,tA,tB),i)
(d,r) (λ) = 0 and hκ is reached with positive probability

under play of σ in G∗(d,r)(λ), if player i chooses f iκ+1 under play of σ as a first mover

in the round that follows hκ, then σ is not a Nash equilibrium in G∗(d,r)(λ).

Suppose that player i chooses f iκ+1 under play of σ as a second mover in the
round that follows hκ. Since λ ∈ Λ◦(d,r) (so λ is symmetric) and there exists a

Nash equilibrium in Γ∗hκ(d,r)(λ) that generates a unique history of announcements

in Γ∗hκ(d,r)(λ) whose last two elements are identical, at any equilibrium of Γ∗hκ(d,r)(λ),

43By v∗((hκ,t
j ,t),j)

(d,r) (λ) we mean v∗
((hκ,t

j ,t),j)
(d,r) (λ) if j = A and v∗

((hκ,t,t
j),j)

(d,r) (λ) if j = B.
44By Γ∗

(hκ,t
j ,fiκ+1)

(d,r) (λ) we mean Γ∗
(hκ,f

i
κ+1,t

j)

(d,r) (λ) if i = A and Γ∗
(hκ,t

j ,fiκ+1)

(d,r) (λ) if i = B.
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in the first round of the game, the first mover, say player ι, must choose some
τ ι ∈ F∗(d,r)(f

ι
κ) with v∗

((hκ,τ ι,τ),ι)
(d,r) (λ) ≥ 0 for all τ ∈ F∗(d,r)(f

−ι
κ ), −ι 6= ι.45 Since

we are assuming that player i chooses f iκ+1 under play of σ as a second mover in

the round that follows hκ, f
j
κ+1 must have the properties of τ ι. We claim that

T(d,r)(f
j
κ+1) ∩ E∗(d,r) 6= ∅. To show this, we assume T(d,r)(f

j
κ+1) ∩ E∗(d,r) = ∅ and

derive a contradiction. Suppose that T(d,r)(f
j
κ+1) ∩ E∗(d,r) = ∅. Recall that (tA, tB)

represents the history in Γ∗hκ(d,r)(λ) that is generated with probability one under

play of µ. Observe that we cannot have T(d,r)(t
i) ∩ E∗(d,r) = ∅, for, if this equality

held, since T(d,r)(f
ι
κ) ∩ E∗(d,r) 6= ∅ for each ι, µ would not be a Nash equilibrium in

Γ∗hκ(d,r)(λ) by Lemma 9. So we must have T(d,r)(t
i) ∩ E∗(d,r) 6= ∅. But then Lemma

10 implies that the value of Γ∗
(hκ,fjκ+1,t

i)
(d,r) (λ) is nonzero, thereby contradicting the

fact that f jκ+1 has the properties of τ ι. Thus, T(d,r)(f
j
κ+1) ∩ E∗(d,r) 6= ∅. In this case,

Lemma 10 implies that the value of Γ∗
(hκ,fAκ+1,f

B
κ+1)

(d,r) (λ) is nonzero. Since there exists

a Nash equilibrium in Γ∗hκ(d,r)(λ) that generates a unique history of announcements in

Γ∗hκ(d,r)(λ) whose last two elements are identical, there exists (τA, τB) ∈ F∗(d,r)(f
A
κ )×

F∗(d,r)(f
B
κ ) such that, for each ι, v∗

((hκ,τ ι,τ),ι)
(d,r) (λ) ≥ 0 for all τ ∈ F∗(d,r)(f

−ι
κ ), −ι 6= ι.46

This, together with the fact that the value of Γ∗
(hκ,fAκ+1,f

B
κ+1)

(d,r) (λ) is nonzero, implies

that the restriction of σ to Γ∗hκ(d,r)(λ) is not a Nash equilibrium in Γ∗hκ(d,r)(λ). Hence,

because hκ is reached with positive probability under play of σ in G∗(d,r)(λ), σ cannot

be a Nash equilibrium in G∗(d,r)(λ).

Case 2. fAκ 6= fBκ and the value of Γ∗hκ(d,r)(λ) is nonzero. Since the value of G∗(d,r)(λ)

is zero and the value of Γ∗hκ(d,r)(λ) is nonzero, there must exist some ` = 1, ..., κ− 1

(note that κ > 1) such that the value of Γ∗h`(d,r)(λ) is zero and the value of Γ∗
h`+1

(d,r)(λ)
is nonzero. If the last two announcements in h` are identical and equal to f ,
Lemma 6 says that either T(d,r)(f) ⊆ Nη

(
E(d,r)

)
or there exists a Nash equilib-

rium in Γ∗h`(d,r)(λ) that generates a unique history of announcements in Γ∗h`(d,r)(λ)
whose last two elements are identical. Since we are assuming that it is not true that
T(d,r)(f

ι
k) ⊆ Nη

(
E(d,r)

)
for each ι, in this case there must exist a Nash equilibrium

in Γ∗h`(d,r)(λ) that generates a unique history of announcements in Γ∗h`(d,r)(λ) whose
last two elements are identical. The same is true if the last two announcements in
h` are not identical, for, in this case, since Γ∗h`(d,r) has value zero, one can use Lemma
5 to reach that conclusion.

Therefore, in all cases, there is a Nash equilibrium in Γ∗h`(d,r)(λ) that generates a

unique history of announcements in Γ∗h`(d,r)(λ) whose last two elements are identical.

This implies that each player ι can choose an announcement tι in F∗(d,r)(f
ι
`) such that

45By v∗((hκ,τ
ι,τ),ι)

(d,r) (λ) we mean v∗
((hκ,τ

ι,τ),ι)
(d,r) (λ) if ι = A and v∗

((hκ,τ,τ
ι),ι)

(d,r) (λ) if ι = B.
46Here, the analogue of footnote 45 applies.
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v∗
((h`,t

ι,t),ι)
(d,r) (λ) ≥ 0 for all t ∈ F∗(d,r)(f

−ι
` ), −ι 6= ι.47 At any equilibrium of Γ∗h`(d,r)(λ),

in the first round of the game, the first mover, say player ι, must choose one such tι.
And the second mover, say player −ι, must choose, in equilibrium, a strategy that
prescribes, for any announcement t of the first mover in the first round of Γ∗h`(d,r)(λ),

some τt such that v∗
((h`,τt,t),−ι)
(d,r) (λ) ≥ 0. Hence, for any history of announcements

(tA1 , t
B
1 , ..., t

A
l , t

B
l ) in Γ∗h`(d,r)(λ) generated under play of an equilibrium in Γ∗h`(d,r)(λ),

Γ∗
(h`,t

A
1 ,t

B
1 )

(d,r) (λ) must have value zero. But then, since the value of Γ∗
h`+1

(d,r)(λ) is nonzero

and hκ is reached with positive probability under play of σ in G∗(d,r)(λ), σ cannot

be a Nash equilibrium of G∗(d,r)(λ).

We have shown that if (1) h = (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements

in G∗(d,r)(λ) generated under play of σ, (2) it is not true that T(d,r)(f
ι
k) ⊆ Nη

(
E(d,r)

)
for each ι, (3) (h, fAk+1, f

B
k+1) is a super-history of h in G∗(d,r)(λ) generated under play

of σ, and (4) T(d,r)(f
i
k+1) ∩ E∗(d,r) = ∅ for some i, then σ is not a Nash equilibrium

in G∗(d,r)(λ). Since σ was an arbitrary profile in G∗(d,r)(λ), we conclude that any

history (tA1 , t
B
1 , ..., t

A
l , t

B
l ) of announcements in G∗(d,r)(λ) generated under play of a

Nash equilibrium in G∗(d,r)(λ) must satisfy either T(d,r)(t
ι
l) ⊆ Nη

(
E(d,r)

)
for each ι

or T(d,r)(t
ι
l) ∩ E∗(d,r) 6= ∅ for each ι. Now Lemma 12 is obtained via Lemma 11. �

Lemma 13. Suppose that +∞ > η > 0, (d, r) ∈ M∗
η ∩ M◦, and λ ∈ Λ•(d,r) ∩

Λ◦(d,r). Suppose that (fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r)(λ)

generated under play of σ. Suppose that (1) T(d,r)(f
ι
k) ∩ E∗(d,r) 6= ∅ for each ι, (2)

T(d,r)(f
i
k+1) ∩ E∗(d,r) = ∅, some i, and (3) it is not true that T(d,r)(f

ι
k) ⊆ Nη

(
E(d,r)

)
for each ι. Then σ is not a Nash equilibrium in G∗(d,r)(λ).

Proof. The proof of this statement is contained in the last paragraph of the proof
of Lemma 12. �

Lemma 14. Suppose that (d, r) ∈ M◦ and λ is symmetric in Λ(d,r). Suppose that
h = (fA1 , f

B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G∗(d,r). Suppose that there

exists a Nash equilibrium in Γh(d,r)(λ) that generates a unique history of announce-

ments in Γh(d,r)(λ) whose last two elements are identical. Then, in equilibrium, each

player i chooses, in the round that follows h, an announcement in F∗(d,r)(f
i
k).

Proof. Assume the antecedent. Because λ is symmetric in Λ(d,r) and there exists
a Nash equilibrium in Γh(d,r)(λ) that generates a unique history of announcements

in Γh(d,r)(λ) whose last two elements are identical, the value of Γh(d,r)(λ) is 0. We

assume that there exists a Nash equilibrium σ = (σA, σB) in Γh(d,r)(λ) for which σi
(some player i) assigns positive probability to an announcement t not in F∗(d,r)(f

i
k)

and derive a contradiction. Let j be i’s opponent and consider a strategy νj of j in
Γh(d,r)(λ) with the following properties:

47Here, the analogue of footnote 45 applies.
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• νj starts prescribing (in Γh(d,r)(λ)) an announcement τ ∈ F∗(d,r)(f
j
k) that secures

a payoff of zero or more against any strategy of the opponent (such a τ exists
because there exists a Nash equilibrium in Γh(d,r)(λ) that generates a unique

history of announcements in Γh(d,r)(λ) whose last two elements are identical).

• Suppose that h′ = (gA1 , g
B
1 , ..., g

A
κ , g

B
κ ) is a history of announcements in Γh(d,r)(λ)

generated under play of (σi, νj).
48 If there exists (x, a) for which giκ(x, a) >

gjκ(x, a) + ε(d), then νj prescribes, in the round that follows h′, ϕ
(x,a)
(d,r)(g

j
κ).

Otherwise, if

#
{

(x, a) : giκ(x, a) < gjκ(x, a)
}
< #

{
(x, a) : giκ(x, a) > gjκ(x, a)

}
,

then νj prescribes, in the round that follows h′, ϕ
(y,b)
(d,r)(g

j
κ) for some

(y, b) ∈ arg min
(z,c):giκ(z,c)>gjκ(z,c)

d(z, c).

• In all other instances, νj mimics σj.

It is easy to see that νj is optimal in Γh(d,r)(λ), and so (since σi is also optimal

and the value of Γh(d,r)(λ) is 0), play of νj against σi must give j a payoff of 0. Let

(t1, τ), ..., (tm, τ) (17)

be an enumeration of the histories generated under play of (σi, νj) at the end of
the first round of Γh(d,r)(λ).49 We know that t = tl for some l = 1, ...,m and

t /∈ F∗(d,r)(f
i
k). We also know that the equilibrium payoff to j in each of the games

Γ
(h,tl,τ)
(d,r) (λ) (l = 1, ...,m) is at least zero.50 In particular, the equilibrium payoff to

j in Γ
(h,t,τ)
(d,r) (λ) is at least zero. Since tl = t /∈ F∗(d,r)(f

i
k) for some l = 1, ...,m and

(d, r) ∈M◦, the properties of νj entail that the equilibrium payoff to j in Γ
(h,t,τ)
(d,r) (λ)

is nonzero. Therefore, the equilibrium payoff to j in Γ
(h,t,τ)
(d,r) (λ) must be positive.

This, together with the fact that the equilibrium payoff to j in each of the games
Γ

(h,tl,τ)
(d,r) (λ) (l = 1, ...,m) is at least zero, implies that the value of Γh(d,r)(λ) is nonzero,

a contradiction. �

Lemma 15. Suppose that (d, r) ∈ M and λ ∈ Λ(d,r). Suppose that there exists a
Nash equilibrium in G(d,r)(λ) that generates a unique history of announcements in
G(d,r)(λ) whose last two elements are identical. Then, in equilibrium, each player i
starts choosing the announcement 0.

48By (σi, νj) we mean (σi, νj) if i = A and (νj , σi) if i = B.
49The first component of the pairs in (17) indicates i’s announcement, while the second compo-

nent represents j’s move.
50By Γ(h,tl,τ)

(d,r) (λ) we mean Γ(h,tl,τ)
(d,r) (λ) if i = A and Γ(h,τ,tl)

(d,r) (λ) if i = B.
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Proof. Analogous to the proof of Lemma 14. �

The proofs of the following two lemmata are analogous to that of Lemma 6.

Lemma 16. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η. Suppose that λ is

symmetric in Λ(d,r). Let h be a history of announcements in G(d,r)(λ). Suppose that
the last two announcements in h are identical and equal to f , and let T(d,r)(f) ∩
E∗(d,r) 6= ∅. Then either T(d,r)(f) ⊆ Nη

(
E(d,r)

)
or there exists a Nash equilibrium in

Γh(d,r)(λ) that generates a unique history of announcements in Γh(d,r)(λ) whose last
two elements are identical.

Lemma 17. Suppose that +∞ > η > 0 and (d, r) ∈ M∗
η. Suppose that λ is

symmetric in Λ(d,r). Either T(d,r)(0) ⊆ Nη

(
E(d,r)

)
or there exists a Nash equilibrium

in G(d,r)(λ) that generates a unique history of announcements in G(d,r)(λ) whose
last two elements are identical.

Lemma 18. Suppose that +∞ > η > 0, (d, r) ∈ M∗
η ∩ M◦, and λ ∈ Λ•(d,r) ∩

Λ◦(d,r). Suppose that σ is a Nash equilibrium of G(d,r)

(
L(d,r)(λ)

)
. Suppose that

(fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G(d,r)

(
L(d,r)(λ)

)
generated un-

der play of σ. Suppose that T(d,r)(f
i
k) * Nη

(
E(d,r)

)
for some i. Then there exists

a history of announcements (tA1 , t
B
1 , ..., t

A
κ , t

B
κ ) in G∗(d,r)(λ) generated under play of a

Nash equilibrium in G∗(d,r)(λ) such that (tAκ , t
B
κ ) = (fAk , f

B
k ).

Proof. Suppose that +∞ > η > 0, (d, r) ∈ M∗
η ∩ M◦, and λ ∈ Λ•(d,r) ∩ Λ◦(d,r).

Suppose that σ is a Nash equilibrium of G(d,r)

(
L(d,r)(λ)

)
. Suppose that h =

(fA1 , f
B
1 , ..., f

A
k , f

B
k ) is a history of announcements in G(d,r)

(
L(d,r)(λ)

)
generated un-

der play of σ. Suppose that T(d,r)(f
i
k) * Nη

(
E(d,r)

)
for some i.

Claim 3. fA1 = fB1 = 0 and T(d,r)(0) ∩ E∗(d,r) 6= ∅.

Proof. The equation T(d,r)(0)∩E∗(d,r) 6= ∅ is clearly true. Since T(d,r)(f
i
k) * Nη

(
E(d,r)

)
,

we must have T(d,r)(0) * Nη

(
E(d,r)

)
. Therefore, because L(d,r)(λ) is symmetric in

Λ(d,r) (Lemma 1), Lemma 17 gives a Nash equilibrium in G(d,r)

(
L(d,r)(λ)

)
that

generates a unique history of announcements in G(d,r)

(
L(d,r)(λ)

)
whose last two el-

ements are identical. By Lemma 15, therefore, the players must start choosing 0 at
any Nash equilibrium of G(d,r)

(
L(d,r)(λ)

)
. Hence, fA1 = fB1 = 0. �

Suppose that the following has been proven: there exists a Nash equilibrium in
G∗(d,r)(λ) that generates the history (fA1 , f

B
1 , ..., f

A
κ , f

B
κ ), T(d,r)(f

ι
κ)∩E∗(d,r) 6= ∅ for each

ι, and the game Γ∗
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r) (λ) has value 0. It suffices to show that there exists

a Nash equilibrium in G∗(d,r)(λ) that generates the history (fA1 , f
B
1 , ..., f

A
κ+1, f

B
κ+1),

T(d,r)(f
ι
κ+1)∩ E∗(d,r) 6= ∅ for each ι, and the game Γ∗

(fA1 ,f
B
1 ,...,f

A
κ+1,f

B
κ+1)

(d,r) (λ) has value 0.
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Claim 4. There exists a Nash equilibrium in Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
that gener-

ates a unique history of announcements in Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
whose last two

elements are identical.

Proof. By assumption, T(d,r)(f
ι
κ) ∩ E∗(d,r) 6= ∅ for each ι. Therefore, if fAκ = fBκ ,

because L(d,r)(λ) is symmetric in Λ(d,r) (Lemma 1) and T(d,r)(f
i
k) * Nη

(
E(d,r)

)
,

Lemma 16 gives a Nash equilibrium in Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
that generates

a unique history of announcements in Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
whose last two

elements are identical. Suppose that fAκ 6= fBκ . By assumption, there exists a
Nash equilibrium in G∗(d,r)(λ) that generates the history (fA1 , f

B
1 , ..., f

A
κ , f

B
κ ), and

the game Γ∗
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r) (λ) has value 0. Therefore, Lemma 5 gives a Nash equi-

librium in Γ∗
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r) (λ) that generates a unique history of announcements

in Γ∗
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r) (λ) whose last two elements are identical. It follows that there

exists a Nash equilibrium in Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
that generates a unique his-

tory of announcements in Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
whose last two elements are

identical. �

Since Claim 4 is true, Lemma 14 implies that, at any equilibrium of

Γ
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r)

(
L(d,r)(λ)

)
, each player ι starts choosing an announcement in F∗(d,r)(f

ι
κ).

But then, since (1) (fA1 , f
B
1 , ..., f

A
κ , f

B
κ ) is not only generated under play of a Nash

equilibrium in G(d,r)

(
L(d,r)(λ)

)
but also generated under play of a Nash equilib-

rium in G∗(d,r)(λ), and (2) (fA1 , f
B
1 , ..., f

A
κ+1, f

B
κ+1) is generated under play of σ,

(fA1 , f
B
1 , ..., f

A
κ+1, f

B
κ+1) must also be generated under play of a Nash equilibrium

in G∗(d,r)(λ), as we sought.

It remains to show that T(d,r)(f
ι
κ+1)∩E∗(d,r) 6= ∅ for each ι and Γ∗

(fA1 ,f
B
1 ,...,f

A
κ+1,f

B
κ+1)

(d,r) (λ)

has value 0. That Γ∗
(fA1 ,f

B
1 ,...,f

A
κ+1,f

B
κ+1)

(d,r) (λ) has value 0 follows from the fact that there

exists a Nash equilibrium in Γ∗
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r) (λ) that generates a unique history of

announcements in Γ∗
(fA1 ,f

B
1 ,...,f

A
κ ,f

B
κ )

(d,r) (λ) whose last two elements are identical (see

the proof of Claim 4 and recall that λ is symmetric). On the other hand, since
(fA1 , f

B
1 , ..., f

A
κ+1, f

B
κ+1) is generated under play of a Nash equilibrium in G∗(d,r)(λ),

Lemma 13 gives T(d,r)(f
ι
κ+1) ∩ E∗(d,r) 6= ∅ for each ι. �

Proof of Theorem 2. Suppose that +∞ > η > 0 and 1 > θ > 0. Take any
(d, r) ∈ M∗

η ∩M◦. By Lemma 3, there exists G(d,r)(λ) arbitrarily close to G(d,r)

such that λ ∈ L(d,r)

(
Λ•(d,r) ∩Λ◦(d,r)

)
.

Claim 5. The tax policy implemented at any Nash equilibrium of G(d,r)(λ) lies in
Nη

(
E(d,r)

)
.
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Proof. Fix any Nash equilibrium σ in G(d,r)(λ), and let (fA1 , f
B
1 , ..., f

A
k , f

B
k ) be

a history of announcements in G(d,r)(λ) generated under play of σ. It suffices
to show that if T(d,r)(f

i
k) * Nη

(
E(d,r)

)
, some i, then f ik is not final. Assume

T(d,r)(f
i
k) * Nη

(
E(d,r)

)
, some i. Since λ ∈ L(d,r)

(
Λ•(d,r) ∩Λ◦(d,r)

)
, there exists

λ∗ ∈ Λ•(d,r) ∩ Λ◦(d,r) such that λ = L(d,r)(λ
∗), and Lemma 18 gives a history of

announcements (tA1 , t
B
1 , ..., t

A
κ , t

B
κ ) in G∗(d,r)(λ

∗) generated under play of a Nash equi-

librium in G∗(d,r)(λ
∗) such that (tAκ , t

B
κ ) = (fAk , f

B
k ). But since we know that the tax

policy implemented at any Nash equilibrium of G∗(d,r)(λ
∗) lies in Nη

(
E(d,r)

)
(Lemma

12), since T(d,r)(f
i
k) * Nη

(
E(d,r)

)
, it follows that f ik is not final, as we sought. �

By Lemma 4, M
(
ε(η,θ), θ

)
⊆ M∗

η for some +∞ > ε(η,θ) > 0. Moreover,

M
(
ε(η,θ), θ

)
∩M◦ is clearly open and dense inM

(
ε(η,θ), θ

)
. Therefore, using Claim

5 and the fact that (d, r) was arbitrary in M∗
η ∩M◦ and G(d,r)(λ) was arbitrarily

close to G(d,r), we obtain the desired result. �
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Fi 2 A l l d it d it di t lFigure 2. A log-normal density and its discrete analogue.
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