
Spengemann, Marco

Working Paper

The pricing kernel under proportional ambiguity

Center for Mathematical Economics Working Papers, No. 700

Provided in Cooperation with:
Center for Mathematical Economics (IMW), Bielefeld University

Suggested Citation: Spengemann, Marco (2025) : The pricing kernel under proportional ambiguity,
Center for Mathematical Economics Working Papers, No. 700, Bielefeld University, Center for
Mathematical Economics (IMW), Bielefeld,
https://nbn-resolving.de/urn:nbn:de:0070-pub-30006309

This Version is available at:
https://hdl.handle.net/10419/312888

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:0070-pub-30006309%0A
https://hdl.handle.net/10419/312888
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


700
January 2025

The Pricing Kernel under Proportional
Ambiguity

Marco Spengemann

Center for Mathematical Economics (IMW)
Bielefeld University
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The Pricing Kernel under Proportional Ambiguity∗

Marco Spengemann1

1Center for Mathematical Economics, Bielefeld University

January 29, 2025

Abstract

The pricing kernel is an important tool for understanding asset prices, expected
returns, and investor preferences. However, empirical findings often reveal devia-
tions from theoretical predictions, leading to the so-called ”pricing kernel puzzle”.
This article explores the pricing kernel under Knightian uncertainty driven by iden-
tifiable business cycles. In a pure exchange economy with a representative agent
exhibiting smooth ambiguity preferences, the pricing kernel is derived from equi-
librium asset prices. By linking normal variance-mean mixtures with model un-
certainty, we account for agents facing uncertainty across a continuum of economic
regimes. Our results show that the pricing kernel can either decrease monotonically
or exhibit a U-shape, depending on the level of ambiguity aversion. Additionally,
we provide economic insights into the conditions that give rise to a U-shaped pric-
ing kernel.
Keywords: Pricing kernel, business cycles, normal variance-mean mixture, model
uncertainty, identifiability, ambiguity aversion
JEL Classification: G12, D53, D81

1 Introduction

In the absence of arbitrage, the pricing kernel, also known as stochastic discount fac-
tor, enables us to price assets by taking the expectation of the product of the pricing
kernel and the asset’s payoff. Being derived from equilibrium prices, the pricing kernel
expresses information on the investor’s preferences across different states, and is therefore
of fundamental importance in finance.

In standard portfolio choice models and consumption-based asset pricing models under
risk, the pricing kernel is proportional to marginal utility of wealth. Therefore, under
risk aversion, the pricing kernel decreases monotonically in wealth. A monotonically
decreasing pricing kernel formalizes the economic intuition that the investor values payoffs
higher in states of lower wealth than in states of higher wealth.

However, empirical estimates of the pricing kernel in index markets reveal a different
picture, documenting the pricing kernel puzzle. For this purpose, empirical risk-neutral

∗Financial support by the German Research Foundation (DFG) [RTG 2865/1 – 492988838] is grate-
fully acknowledged.
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densities are derived from traded option prices written on an index that serves as an ap-
proximation of overall wealth. To find empirical pricing kernels, the risk-neutral densities
are divided by ”physical distributions”, derived from time series of returns of the under-
lying index. Empirical pricing kernels were first estimated by Aıt-Sahalia and Lo (2000),
Jackwerth (2000) and Rosenberg and Engle (2002). They all find increasing parts of the
pricing kernel, violating the discussed monotonicity property. Cuesdeanu and Jackwerth
(2018) provide an overview over empirical shapes of the pricing kernel, stating that tilde-
and U-shaped pricing kernels are the most prominent ones discussed in the empirical liter-
ature. More recently, Sichert (2023) argues that empirical pricing kernels are consistently
U-shaped.

This paper provides a new economic intuition for U-shaped pricing kernels by inves-
tigating the pricing kernel under Knightian uncertainty about identifiable regimes of the
economy. In particular, mean growth and volatility of the regime are unknown to the in-
vestor at the point of decision-making. In contrast to the existing literature, we consider
a continuum of possible regimes instead of only a discrete set. We fit our model to index
return data and find that the pricing kernel either decreases monotonically or exhibits a
U-shape, depending on the level of ambiguity aversion.

Knightian uncertainty (or ambiguity), as opposed to risk, describes a situation where
there is no probabilistic information available to the investor. Thus, under uncertainty,
the investor is not able to assign exact probabilities to states. Instead, he takes a set of
probability distributions into consideration. Additionally, we require this set of possible
probability distributions to be identifiable. Identifiability of probability distributions, a
concept in statistics, allows one to learn the true value of the distribution’s underlying
parameters. Hence, probability distributions (or just models) become objective descrip-
tions that can be identified from observed events. Therefore, realized states also provide
information on the probabilistic law that the investor needs to take into account.

To derive the pricing kernel from equilibrium prices, we employ a pure exchange
economy with a representative investor who has smooth ambiguity preferences such as in
Klibanoff et al., (2005). Smooth ambiguity preferences allow for a separation of beliefs
and ambiguity attitudes, enabling us to analyze the impact of the level of ambiguity
aversion on the shape of the pricing kernel. Denti and Pomatto (2022) places smooth
ambiguity preferences in the framework that we consider, of identifiable models.

We model business cycles or regimes of the economy as probability distributions of the
states. As the pricing kernel reflects the investor’s preferences across states, this model-
ing approach conceptualizes the intuition that the valuation of payoffs should incorporate
the investor’s expectations regarding the economic regime and how it is evaluated. Iden-
tifiability of models provides a foundation for this approach. The investor observes a
particular state and, by identifiability, this state informs about the prevailing business
cycle. Thus, the investor can anticipate the economic regime, which influences his valu-
ation of payoffs in the observed state.

Our approach can be seen as a static version of regime-switching under ambiguity.
In regime-switching models, a framework often applied in macro-finance, distributions
of states switch according to the prevailing regime. Regime-switching models were first
discussed in Hamilton (1989), where the distribution switches between a high growth and
a low growth phase. In an ambiguity setting, Ju and Miao (2012) also consider switching
between two regimes with different means – a recession and a boom. However, we allow
for different volatilities and assume that an expansive regime is associated with a higher
mean and lower volatility and a recessive regime with a lower mean and higher volatility,
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respectively.
Since the literature on regime-switching models focuses on a discrete set of regimes,

it falls short of accounting for regimes between recessions and expansions that are hard
to distinguish. Especially the prominent modeling of only two regimes cannot grasp the
complexity accordingly. Therefore, instead of discussing only a discrete set of regimes,
we consider a continuum of possible regimes. To do so, we make use of normal variance-
mean mixtures, first discussed by Barndorff-Nielsen et al., (1982). A random variable R,
describing the distribution of possible states, follows a normal variance-mean mixture if

R ∼ N (α + βM,M) , with α, β ∈ R,

conditional on a distribution M on (0,∞). Thus, each regime is a normal distribution
with unknown mean and unknown variance, with both being in a proportional relationship
to each other. We purposely let β < 0 such that the set of models

P = {N (α + βm,m) | m ∈ (0,∞)}

can be interpreted as a continuum of possible regimes of the economy.
For tractability, we consider possible returns of an index that correlates with aggregate

wealth as states and discuss the pricing kernel as a function of return. We show that the
pricing kernel is logarithmically convex, which allows for either a monotonically decreasing
or a U-shaped pricing kernel. We state characterizing conditions for these two shapes
and find that the pricing kernel is U-shaped if the effect of ambiguity attitude dominates
the effect of risk attitude. Consequently, a higher ambiguity aversion causes a more
pronounced U-shape, providing another explanation of U-shaped pricing kernels. It is
the anticipation of a recessive regime when observing a high index return that drives the
valuation of payoffs upward. The magnitude of the increase in the valuation of payoffs
crucially depends on the level of ambiguity aversion.

This article contributes to the literature on trying to explain the pricing kernel puz-
zle. Hens and Reichlin (2013) discuss possible solutions of the pricing kernel puzzle by
weakening the assumptions of complete markets, risk-averse agents and correct beliefs.
They find that, as one weakens at least one assumption, the pricing kernel admits locally
increasing parts. However, the boundary behavior will still be decreasing. On the other
hand, Christoffersen et al., (2013) argue in favor of U-shaped pricing kernels by allowing
the pricing kernel to depend on the variance. Bakshi et al., (2010) study the implications
of U-shaped pricing kernels and find broad support in index option data. The pricing
kernel in the presence of Knightian uncertainty is also discussed in Hara et al., (2024),
Gollier (2011) and Chen et al., (2025). These papers have in common that there is un-
certainty driven by two possible scenarios and the investor forms a binomial belief over
these scenarios.

The paper is structured as follows. First, Section 2 introduces the formal model and
derives equilibrium prices, from which we infer the pricing kernel. Section 3 discusses the
modeling of a continuum of different business cycles and its consequences on the shape
of the pricing kernel. Furthermore, we fit the pricing kernel to index return data and
investigate the impact of the level of ambiguity aversion on the pricing kernel. Finally,
Section 4 concludes.
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2 The Model: A Pure Exchange Economy under

Identifiable Model Uncertainty

2.1 Setting and Preliminaries

Consider a state space Ω and denote by ∆ (Ω) the set of probability distributions on Ω.
Let P ⊂ ∆(Ω) constitute the set of possible regimes of the economy that the agent deems
possible.

We assume that the set of models P is point-identifiable, i.e., the regime that operates
can be inferred from realizations of Ω. By Denti and Pomatto (2022), identifiability of
models implies that there exists a kernel function k : Ω → P such that for all P ∈ P we
have P [{ω | k(ω) = P}] = 1. The kernel function k, assigning observed states to models,
therefore captures the idea of an expert committee that announces the true model after
a given time.

For our purposes, we can rewrite the state space in the product form Ω = R × P ,
as suggested by Hara et al., (2024). Each regime P ∈ P is a probability distribution on
the set of possible index returns R. Hence, a state of the world ω = (r, P ) consists of a
realized return r ∈ R and the regime from which r is drawn. The true parameter that
characterizes the regime is identified by the kernel function k such that k(r, P ) = P for
all r ∈ R.

To illustrate this, think of the NBER’s Business Cycle Dating Committee observing,
next to index return data, economic indicators such as the unemployment rate or the
GDP, and, based on these observations, announcing the business cycle that operates after
a given time. At the point of decision making, the current business cycle is unknown, but
impacts the index return distribution, and therefore aggregate wealth of the economy.

2.2 A Pure Exchange Economy and its Representative Agent

We consider a pure exchange economy with a representative agent that allocates ambigu-
ous aggregate wealth X̄ : Ω → R+, similar to Hara et al., (2024). As the agent does not
know which state ω ∈ Ω will materialize, she faces risk regarding the index return value
r ∈ R. In addition to that, she is uncertain which model P ∈ P is the true one, i.e., which
business cycle is currently operating. These models govern the probability distribution
of the return r.

As the models share the same support, the range of possible realizations of the return
(and therefore aggregate wealth) does not depend on the regime that operates. Thus, am-
biguity of aggregate wealth is generated by different distributions under different regimes,
but these distributions do not exclude any possible realization of the return.

The representative agent evaluates aggregate wealth according to identifiable smooth
preferences, i.e., the smooth model of decision making under ambiguity by Klibanoff et al.,
(2005) restricted to identifiable models. Identifiable smooth preferences were introduced
and axiomatized by Cerreia-Vioglio et al., (2013).1 Denote by EP the expectation op-
erator for random variables defined on R under the probability measure P . Denote by
u : Im

(
X̄
)
→ R a twice continuously differentiable, strictly increasing and strictly con-

cave Bernoulli utility function that governs risk attitude. Furthermore, let ϕ : Im(u) → R
1Denti and Pomatto (2022) show that the utility function u, ambiguity index ϕ and the prior µ are

uniquely determined from preferences.
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be twice continuously differentiable, strictly increasing and concave and let µ ∈ ∆(∆(Ω))
be a probability distribution over models. Then, the agent’s utility functional is given by

V (X̄) =

∫
P
ϕ
(
EP [u(X̄)]

)
µ(dP ). (1)

The (identifiable) smooth model allows for a separation of ambiguity attitudes and beliefs.
The representative agent’s ambiguity attitude is captured by ϕ. A strictly concave ϕ
describes ambiguity aversion, whereas ϕ being linear indicates ambiguity neutrality. The
prior belief µ can be thought of as an expert’s assessment, and the degree of trust in this
assessment is driven by the degree of ambiguity attitude.

We can also rewrite (1) in terms of certainty equivalents,2 defined by cPu
(
X̄
)

=
u−1

(
EP
[
u(X̄)

])
, instead of expected utilities. By introducing v : Im

(
X̄
)
→ R such

that ϕ = v ◦ u−1, we have

V (X̄) =

∫
P
v
(
cPu
(
X̄
))
µ(dP ). (2)

Subsequently, we assume that the utility functions u and v of the representative agent
admit constant relative risk aversion (CRRA).3

Assumption 1. The Bernoulli utility functions u and v of the representative agent with
parameters ρ and γ are given by

u(x) =
x1−ρ

1− ρ
and v(x) =

x1−γ

1− γ
.

Observe that the agent is ambiguity averse if and only if γ > ρ.

2.3 Equilibrium Asset Prices

To study the pricing kernel of the economy, suppose that there is a complete set of con-
tingent claims available. As discussed, we assume that each model P ∈ P is a normal
distribution R on R. By identifiability, each model has to be uniquely identified by its
characterizing parameter m ∈ R++. We denote by pR|M (r | m) the probability density
of return r under regime R, characterized by m. Similarly, the prior belief µ is a con-
tinuous probability distribution M on R++, whose density is given by pM(m). Lastly,
pM |R (m | r) denotes the density4 of the regime’s characterizing parameter m conditional
on an observed return r.

According to Hara et al., (2024), the equilibrium price density is given by a function
Ψ : R× P → R++ with

Ψ(r,m) = ϕ′ (Em
[
u
(
X̄(r)

)])
pR|M (r | m)u′

(
X̄(r)

)
. (3)

2This has the advantage that one can define the ambiguity attitude in terms of two Bernoulli utility
functions u and v.

3By Hara et al., (2024), this corresponds to an economy consisting of homogeneously ambiguity averse
agents. Heterogeneity of ambiguity attitudes across agents corresponds to v exhibiting decreasing relative
risk aversion (DRRA). In this case, the pricing kernel cannot be computed explicitly. However, numerical
computations revealed that the overall shape of the pricing kernel does not depend on whether there is
homogeneity or heterogeneity of ambiguity attitudes across agents. This is also supported by the findings
in Hara et al., (2024).

4Each density is defined with respect to the Lebesgue measure on R and R++, respectively.
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As the payoff of contingent claims written only on the return does not depend on the
regime R, its price density is given by the integral of (3) over all regimes

Ψ(r) = u′
(
X̄(r)

) ∫ ∞

0

ϕ′ (Em
[
u
(
X̄(r)

)])
pR|M (r | m) pM(m)dm. (4)

Note that (4) is our economies’ risk-neutral density of the underlying index return.
To obtain the pricing kernel, the risk-neutral density has to be divided by the ”physical

density” of the return. In our case, this is given by the µ-average of the probability density
of return r under each regime

pµ(r) =

∫ ∞

0

pR|M (r | m) pM(m)dm.

Hence, the pricing kernel is given by a function ψ : R → R++ with

ψ(r) =

∫ ∞

0

pR|M (r | m) pM(m)

pµ(r)
ϕ′ (Em

[
u
(
X̄(r)

)])
u′
(
X̄(r)

)
dm

= u′
(
X̄(r)

) ∫ ∞

0

v′
(
cmu
(
X̄
))

u′
(
cmu
(
X̄
))pM |R (m | r) dm.

(5)

We see that the pricing kernel splits into two effects. On the one hand, we have the effect
of risk attitude given by marginal risk utility u′

(
X̄(r)

)
. On the other hand, there is the

effect of ambiguity attitude5∫ ∞

0

v′
(
cmu
(
X̄
))

u′
(
cmu
(
X̄
))pM |R (m | r) dm,

a weighted mean of marginal ambiguity utility
v′
(
cmu
(
X̄
))

u′
(
cmu
(
X̄
)) , weighted by the posterior

distribution pM |R (m | r). While the effect of risk attitude is monotonically decreasing in
r, the effect of ambiguity attitude could cause non-monotone behavior.

3 The Pricing Kernel

3.1 Normal Variance-Mean Mixtures: A Continuum of Regimes

In the macro-finance literature, it is quite common to model aggregate wealth via a log-
normal distribution, that is, we have X̄ = exp(R), where R follows a normal distribution.6

Recall that R is supposed to be the probability distribution of returns of an index that
correlates with overall wealth in an economy. However, the mean and the variance of
the return distribution are uncertain, and they depend on the current business cycle that
operates.

To rationalize the dependence of return distributions on the economic regime, let
us discuss some empirical studies. Most studies focus on stock market volatility dur-
ing recessions. Hamilton and Lin (1996) find that stock market volatility significantly

5Note that, under ambiguity neutrality, ϕ′ is a constant such that the effect of ambiguity attitude
vanishes.

6See for example Cecchetti et al., (1990) and Kandel and Stambaugh (1991).
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increases in recessive regimes. Regarding the mean, DeStefano (2004) points out that
returns decline at the onset of recessions, reaching their minimum, before beginning to
increase during the later part of recessions. Additionally, Kroencke (2022) investigates
stock prices during recessions. Within the first quarter of recessions, stock prices drop
sharply, explaining highly negative returns at the beginning of recessions. However, a
stylized fact in the finance literature is asymmetric volatility, i.e., stock returns are neg-
atively correlated with the volatility of subsequent returns, as, e.g., Bae et al., (2007)
point out. Therefore, we assume that in a more expansive regime of the economy, the
mean is high and the variance is low, whereas a more recessive regime is characterized by
a low mean and a high variance.

We implement normal variance-mean mixtures, first discussed by Barndorff-Nielsen
et al., (1982), to model a continuum of different regimes.

Definition 1. A normal variance-mean mixture is the continuous probability distribution
of a random variable R given by

R = α + βM + σ
√
MX,

where α, β ∈ R, and σ > 0, X andM are independent random variables with X ∼ N (0, 1)
and M being continuously distributed on (0,∞).

Thus, conditional on a realized variance m, we have that

R ∼ N
(
α + βm, σ2m

)
.

Normal variance-mean mixtures are prominent models in financial engineering as they
give access to the flexible class of generalized hyperbolic distributions while still main-
taining the convenience of Gaussian environments.7

However, we explore normal variance-mean mixtures in a different context. There is
uncertainty about variance and mean of the normal distribution, while both parameters
are in a proportional relationship to each other. For simplicity, we let σ = 1 and assume
the following.

Assumption 2. Aggregate wealth X̄ follows a lognormal distribution

X̄ = exp(R) with R ∼ N (α + βm,m),

where m is unknown and β < 0.

Letting β < 0 ensures that a higher variance comes with a lower mean.
As Barndorff-Nielsen (1997) points out, the conjugate prior in a normal variance-

mean mixture is the generalized inverse Gaussian distribution, which leads to our next
assumption.

Assumption 3. The prior belief M follows a generalized inverse Gaussian distribution
with parameters δ > 0, κ > 0 and λ ∈ R. Its density is given by

pM(m) =

(
δ
κ

)λ/2
2Kλ

(√
δκ
)mλ−1 exp

(
−1

2

(
δm+

κ

m

))
. (6)

7For examples see Bingham et al., (2003) and Luciano and Semeraro (2010).
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For specifications of the posterior parameters see Remark 1 in the Appendix. Note that
Kλ(·) in the normalizing factor in (6) denotes the modified Bessel function of the second
kind of order λ.

We can compute the certainty equivalent conditional on the variance m as

cmu
(
X̄
)
= exp

(
α + βm+

1

2
m(1− ρ)

)
,

and thus

v′
(
cmu
(
X̄
))

u′
(
cmu
(
X̄
)) = exp

(
−(γ − ρ)(α + βm)− (γ − ρ)(1− ρ)

1

2
m

)
.

By (5), the pricing kernel is given by

ψ(r) = exp (−ρr)∫ ∞

0

exp

(
−(γ − ρ)(α + βm)− (γ − ρ)(1− ρ)

1

2
m

)
mλ− 3

2(
δ+β2

κ+(r−α)2

) 2λ−1
4

2Kλ− 1
2

(√
(δ + β2)(κ+ (r − α)2)

) exp

(
−1

2

(
(δ + β2)m+

κ+ (r − α)2

m

))
dm,

which admits a solution only if the following condition is met.

Lemma 1. The pricing kernel ψ is well-defined only if

2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2 > 0.

Given the condition in Lemma 1, one can solve the pricing kernel analytically in terms
of modified Bessel functions of the second kind. In particular, the following integral
representation is useful for our purposes.

Lemma 2. The modified Bessel function of the second kind admits the integral represen-
tation

Kλ(
√
ηζ) =

1

2

√
η

ζ

λ ∫ ∞

0

zλ−1 exp

(
−1

2

(
ηz +

ζ

z

))
dz (7)

for η, ζ > 0.

We apply Lemma 2 to the formula for the pricing kernel.

Lemma 3. The pricing kernel is given by

ψ(r) = C exp (−ρr)
Kλ− 1

2

(√
κ+ (r − α)2

√
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2

)
Kλ− 1

2

(√
κ+ (r − α)2

√
δ + β2

) ,

where C is a constant.

That is, the effect of ambiguity attitude is given by a ratio of modified Bessel functions
of the second kind with the same order.
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3.2 The Shape of the Pricing Kernel

Bakshi et al., (2010) characterize U-shaped pricing kernels as convex functions of the
return that are decreasing up to a point and increasing afterwards. Akin to that, we aim
to investigate the convexity of the pricing kernel. In particular, we even find that the
pricing kernel is logarithmically convex, a stronger notion than convexity.

Proposition 1. Let λ ∈ R \ (0, 1).8 If 2β(γ − ρ) + (γ − ρ)(1− ρ) < 0, then the pricing
kernel ψ is logarithmically convex.

Proof. First, recall that the product of logarithmically convex functions is logarithmically
convex. Moreover, note that the composition of an increasing, (log-)convex function and a
convex function is again (log-)convex (see, e.g., Bertsekas et al., (2003)). As the function

R → R++, r 7→
√
κ+ (r − α)2

is convex, we are left to show that the function

R++ → R++, x 7→ Kλ (C1x)

Kλ (C2x)
(8)

is logarithmically convex and increasing for λ /∈
(
−1

2
, 1
2

)
and constants C2 > C1.

Let us first prove logarithmic convexity. We have

log

(
Kλ(C1x)

Kλ(C2x)

)′

= C1
K ′

λ(C1x)

Kλ(C1x)
− C2

K ′
λ(C2x)

Kλ(C2x)

and

log

(
Kλ(C1x)

Kλ(C2x)

)′′

= C1
C1K

′′
λ(C1x)Kλ(C1x)− C1K

′
λ(C1x)

2

Kλ(C1x)2
− C2

C2K
′′
λ(C2x)Kλ(C2x)− C2K

′
λ(C2x)

2

Kλ(C2x)2

= C2
1

(
K ′

λ(x̂)

Kλ(x̂)

)′
∣∣∣∣∣
x̂=C1x

− C2
2

(
K ′

λ(x̂)

Kλ(x̂)

)′
∣∣∣∣∣
x̂=C2x

.

As Kλ(x) is symmetric in λ, we will focus on λ ≥ 0. By Yang and Zheng (2017) (Lemma
2.2), we have that

K ′
λ(x)

Kλ(x)
= −λ

x
− Kλ−1(x)

Kλ(x)
= −λ

x
− 4

π2

∫ ∞

0

x

x2 + t2
1

t (J2
λ(t) + Y 2

λ (t))
dt

= −λ
x
− 4

π2

∫ ∞

0

x

x2 + t2
Φλ(t)dt,

where Φλ(t) =
1

t(J2
λ(t)+Y 2

λ (t))
. Here, Jλ and Yλ denote the Bessel functions of the first and

second kind, respectively. Differentiation yields(
K ′

λ(x)

Kλ(x)

)′

=
λ

x2
− 4

π2

∫ ∞

0

t2 − x2

(x2 + t2)2
Φλ(t)dt.

8We have to exclude λ ∈ (0, 1) due to technical issues. In particular, the reason is that Kλ(x) is
diverging too fast for x → 0 for λ ∈

(
− 1

2 ,
1
2

)
.
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Thus,

log

(
Kλ(C1x)

Kλ(C2x)

)′′

= C2
1

(
λ

C2
1x

2
− 4

π2

∫ ∞

0

t2 − C2
1x

2

(C2
1x

2 + t2)2
Φλ(t)dt

)
− C2

2

(
λ

C2
2x

2
− 4

π2

∫ ∞

0

t2 − C2
2x

2

(C2
2x

2 + t2)2
Φλ(t)dt

)
=

4

π2

∫ ∞

0

(
C2

2

t2 − C2
2x

2

(C2
2x

2 + t2)2
− C2

1

t2 − C2
1x

2

(C2
1x

2 + t2)2

)
Φλ(t)dt.

We make use of two results provided by Yang and Tian (2024). Lemma 2.2 states that∫ b

a

f(t)g(t)dt ≥ g(t0)

∫ b

a

f(t)dt ≥ 0

for two functions f and g such that

1. f, g are continuous on [a, b];

2. there is a t0 ∈ (a, b) such that f(t) < 0 for t ∈ (a, t0) and f(t) > 0 for t ∈ (t0, b);

3. g(t) is nonnegative and increasing on [a, b];

4.
∫ b

a
f(t)dt ≥ 0.

Moreover, Lemma 2.1 states that Φλ(t) is continuous, increasing on (0,∞) for λ ≥ 1
2
, and

decreasing for 0 ≤ λ < 1
2
. Thus, we are only left to show 1., 2. and 4. for the function

f(t) := C2
2

t2 − C2
2x

2

(C2
2x

2 + t2)2
− C2

1

t2 − C2
1x

2

(C2
1x

2 + t2)2
,

which is postponed to Lemma 4 in Appendix A.1. We are left to prove that (8) is
increasing. To this end, we need to show that(

Kλ(C1x)

Kλ(C2x)

)′

=
C1K

′
λ(C1x)Kλ(C2x)− C2K

′
λ(C2x)Kλ(C1x)

Kλ(C2x)2
> 0,

which holds true if and only if

C1
K ′

λ(C1x)

Kλ(C1x)
− C2

K ′
λ(C2x)

Kλ(C2x)
> 0.

Again, by Yang and Zheng (2017), we infer

C1
K ′

λ(C1x)

Kλ(C1x)
− C2

K ′
λ(C2x)

Kλ(C2x)
=

4

π2

∫ ∞

0

(
C2

2x

C2
2x

2 + t2
− C2

1x

C2
1x

2 + t2

)
Φλ(t)dt.

We have that
C2

2x

C2
2x

2+t2
− C2

1x

C2
1x

2+t2
> 0 for all t ∈ (0,∞) since C2 > C1. As Φλ(t) is also

nonnegative for all t ∈ (0,∞) and all λ ∈ R, the proof is complete.

Note that, assuming ambiguity aversion, ρ > 1 is a sufficient condition for the pricing
kernel to be logarithmically convex. Based on this observation, the pricing kernel can
take on two different shapes, either monotonically decreasing or U-shaped.
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Theorem 1. Let λ ∈ R \ (0, 1) and 2β(γ − ρ) + (γ − ρ)(1− ρ) < 0. Then,

1. the pricing kernel is U-shaped if and only if√
δ + β2 −

√
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2 > ρ (9)

2. the pricing kernel is monotonically decreasing if and only if√
δ + β2 −

√
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2 ≤ ρ. (10)

Proof. By Proposition 1, the pricing kernel is logarithmically convex. Therefore, it is
sufficient to look at the behavior for large absolute values of r to investigate monotonicity
properties. This enables us to use the asymptotic expansion of the modified Bessel
function of the second kind, which is, e.g., given in Abramowitz and Stegun (1968) as

Kλ(x) ≈
√

π

2x
exp (−x) with relative error O

(
1

x

)
.

Then, for large absolute values of r, the pricing kernel can be approximated by

f(r) := Ĉe
−ρr+

√
κ+(r−α)2

(√
δ+β2−

√
2β(γ−ρ)+(γ−ρ)(1−ρ)+δ+β2

)
.

Differentiation yields

f ′(r) =

f(r)

(
−ρ+ r − α√

κ+ (r − α)2

(√
δ + β2 −

√
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2

))
.

Clearly, for r ≤ α, f ′(r) < 0. Otherwise, note that r−α√
κ+(r−α)2

↗ 1 for r → ∞. Hence, if

inequality (9) is satisfied, there will be a r∗ ∈ R++ such that f ′(r) > 0 for all r ≥ r∗. If
inequality (10) holds, f ′(r) < 0 for all r ∈ R.
As ψ is logarithmically convex, the monotonicity properties derived for f also hold for
the pricing kernel.

Observe that the inequalities (9) and (10) express whether the effect of ambiguity
attitude or the effect of risk attitude dominates. Since both effects work in the same
direction for r < α, the inequalities matter only for r > α. Thus, the pricing kernel
is initially decreasing, regardless of which effect dominates. Having a closer look at the
effect of ambiguity attitude, encapsulated by√

δ + β2 −
√

2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2,

gives insights into the conditions that provoke a U-shaped pricing kernel. First, assuming
risk aversion of ρ > 1, a high ambiguity aversion γ causes a U-shape. Second, the impact
of a high ambiguity aversion multiplies with β. The smaller β, the lower the means that
are associated with higher volatilities. Hence, intuitively, the fear of a recessive regime is
even more pronounced when the anticipated recession is more severe.

In the next section, we fit the pricing kernel to index return data and discuss in more
detail why the preceding arguments cause a U-shaped pricing kernel.
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3.3 Plots and Comparative Statics

To fit the pricing kernel to index return data, we aim to fit the marginal distribution of r to
a return distribution of an index and take advantage of the properties of normal variance-
mean mixtures mentioned earlier. Recall that the marginal distribution represents the
physical distribution of an underlying index return that is used when estimating an
empirical pricing kernel. As is well known, the distribution of a normal variance-mean
mixture when the generalized inverse Gaussian distribution serves as a mixing distribution
is a generalized hyperbolic (GH) distribution, introduced by Barndorff-Nielsen (1977).

Eberlein and Prause (2002) study applications of the GH distribution in finance. In
particular, they fit return data from the German DAX from 1993 to 1997 to the GH
distribution, and we adopt the parameter values (see Table I).

Parameter λ β δ κ α

Value −2.018 −24.919 1571.6 0.0003 0.0034

Table I: Fitted parameter values, DAX 1993 to 1997 (Eberlein and Prause, 2002)

To give a better insight into the GH distribution and its properties, we additionally
perform a parameter fitting to more recent data. In particular, we fit the GH distribution
to daily log return observations from the S&P 500 from January 2020 to December 2023.
The corresponding parameter values to the GH fit in Figure 1 are given in Table II and
the process of parameter fitting is described in Appendix A.2.10

Parameter λ β δ κ α

Value −2.017 −19.36 971.3 0.0003 0.0030

Table II: Fitted parameter values, S&P 500 2020 to 2023
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Figure 1: Fitting of the GH and normal distribution to S&P 500 daily return data from
January 2020 to December 2023

9Note that β is a skewness parameter of the GH distribution. A negative β indicates a negatively
skewed return distribution, i.e. a long left tail with negative returns.

10For a more detailed and sophisticated approach to fitting the GH distribution to return data see
Prause (1999).
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Figure 1 illustrates the advantages of the GH distribution. Having a more pronounced
peak in the center and having more mass in the tails, the GH distribution is a much
better fit to return data than, e.g., a normal distribution. We plot both pricing kernels in
Figure 2 for a fixed parameter of risk aversion ρ and different values for the parameter of
ambiguity aversion γ. Observe that both pricing kernels are pretty similar, with a higher
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(a) Pricing kernel for ρ = 2 and different
values for γ, DAX 1993 to 1997
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(b) Pricing kernel for ρ = 2 and different
values for γ, S&P 500 2020 to 2023

Figure 2: Pricing kernels

ambiguity aversion implying a more pronounced U-shape. For higher values of ambiguity
aversion the pricing kernels match empirically observed U-shaped pricing kernels, as found
by, e.g., Cuesdeanu and Jackwerth (2018) and Sichert (2023), quite well. An ambiguity
aversion of γ = 4 is not large enough to dominate the effect of risk attitude.
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Figure 3: Expected variance m conditional on observed return r (for parameter values
from Table II)

Let us now investigate the economic intuition underlying the shape of the pricing
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kernel in our model. Recall the effect of ambiguity aversion given by a mean of marginal
ambiguity utility, weighted by the posterior distribution. As can be seen in Figure 3, the
posterior distribution assigns a greater probability mass to higher variances for returns
that deviate from zero. That is, observing a high or low index return, the agent believes
that the current variance of the index returns is high. As a result of the normal variance-
mean mixture with β < 0, a high variance indicates a recessive regime. The anticipation
of a bad regime is assessed by the agent’s utility function ϕ = v ◦ u−1. By ambiguity
aversion, ϕ is a concave function such that marginal ambiguity utility decreases. However,
the agent evaluates marginal ambiguity utility at expected utility, which decreases as we
move to more recessive regimes of the economy. Hence, marginal ambiguity utility is an
increasing function of the variance. Since greater ambiguity aversion results in ϕ being
more concave, a greater ambiguity aversion causes a more pronounced U-shape of the
pricing kernel. Otherwise, if ambiguity aversion is sufficiently small, the effect of risk
attitude dominates and the pricing kernel will be monotonically decreasing, as suggested
by Theorem 1.

To wrap up, observing a high return of the index, the agent believes that the variance
is high, which hints at a recessive business cycle. As an ambiguity averse agent values
payoffs in recessions highly, marginal ambiguity utility is high. The greater the ambiguity
aversion, the higher payoffs are valued in recessive business cycles.

4 Conclusion

This paper studied the pricing kernel in a pure exchange economy under identifiable model
uncertainty. Uncertainty is driven by the agents’ lack of awareness of the business cycle
that is in play at the point of decision making. However, the existing literature covers
the modeling of a discrete set of regimes, mostly either recession or expansion. By linking
normal variance-mean mixtures of Barndorff-Nielsen et al., (1982) with uncertainty, we
were able to model uncertainty about a continuum of different business cycles.

This led us to give an explanation of U-shaped pricing kernels. Observing a high index
return, the agent believes that the economy is in a recessive regime. As an ambiguity
averse agent values payoffs highly in recessions, the pricing kernel increases. The more
ambiguity averse the agent, the more pronounced the U-shape of the pricing kernel.
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A Appendix

A.1 Additional Lemmas and Proofs

Remark 1. Suppose we have a normal variance-mean mixture R given by

R = α + βM +
√
MX,

where M follows a generalized inverse Gaussian distribution with parameters δ > 0,
κ > 0 and λ ∈ R. Then the conditional distribution of M given an observation r is also
generalized inverse Gaussian with parameters

δ + β2, κ+ (r − α)2 and λ− 1

2
.

Proof of Lemma 1. The exponential terms in the integral in the formula for the pricing
kernel read as

exp

(
−(γ − ρ)(α + βm)− (γ − ρ)(1− ρ)

1

2
m− 1

2

(
(δ + β2)m+

κ+ (r − α)2

m

))
.

Dropping all terms independent of m and rearranging terms yield

exp

(
−
(
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2

)
m− κ+ (r − α)2

2m

)
. (11)
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Since we only allow for κ > 0, we have that κ+ (r − α)2 > 0 such that∫ ∞

0

exp

(
−κ+ (r − α)2

m

)
dm <∞.

Moreover, from (11) it is obvious to see that

2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2 > 0

must hold since
∫∞
0

exp (cm) dm = ∞ for any c > 0.

Proof of Lemma 2. By Eberlein (2001), the modified Bessel function of the second kind
possesses the integral representation

Kλ(z) =
1

2

∫ ∞

0

xλ−1 exp

(
−z
2

(
x+

1

x

))
dx. (12)

In (12), substitute x =
√

η
ζ
z. Then,

Kλ(
√
ηζ) =

1

2

∫ ∞

0

√
η

ζ

λ−1

zλ−1 exp

−
√
ηζ

2

√η

ζ
z +

√
η
ζ

z

√η

ζ
dz

=
1

2

√
η

ζ

λ ∫ ∞

0

zλ−1 exp

(
−1

2

(
ηz +

ζ

z

))
dz.

Proof of Lemma 3. By Lemma 2 and choosing

η = 2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2 and ζ = κ+ (r − α)2,

we infer

ψ(r) = exp (−ρr − α(γ − ρ)) (δ + β2)
2λ−1

4

(
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2

) 1−2λ
4

Kλ− 1
2

(√
κ+ (r − α)2

√
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2

)
Kλ− 1

2

(√
(δ + β2)(κ+ (r − α)2)

) .

Substituting all constant terms by C > 0,

ψ(r) = C exp (−ρr)
Kλ− 1

2

(√
κ+ (r − α)2

√
2β(γ − ρ) + (γ − ρ)(1− ρ) + δ + β2

)
Kλ− 1

2

(√
κ+ (r − α)2

√
δ + β2

) .

Lemma 4. Define

f(t) := C2
2

t2 − C2
2x

2

(C2
2x

2 + t2)2
− C2

1

t2 − C2
1x

2

(C2
1x

2 + t2)2
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for t > 0 and C2, C1 ∈ R++ with C2 > C1. Then, f is continuous on (0,∞) and there
exists exactly one solution to f(t) = 0, given by

t0 =
x√
2

√
C2

1 + C2
2 +

√
C4

1 + 14C2
1C

2
2 + C4

2 ,

and f(t) < 0 for all t ∈ (0, t0) and f(t) > 0 for all t ∈ (t0,∞). Moreover, we have∫ ∞

0

f(t)dt = 0.

Proof. Continuity is obvious. For the second part, we have to solve

C2
2

t2 − C2
2x

2

(C2
2x

2 + t2)2
= C2

1

t2 − C2
1x

2

(C2
1x

2 + t2)2
,

which can be rewritten as

t6(C2
2 − C2

1) + t4(x2(C4
1 − C4

2)) + t2(3x4(C4
1C

2
2 − C4

2C
2
1)) = 0.

As t > 0, we have

t4(C2
2 − C2

1) + t2(x2(C4
1 − C4

2)) + 3x4(C4
1C

2
2 − C4

2C
2
1) = 0.

Substituting t2 = u and since C2 ̸= C1, we have

u2 − ux2
C4

2 − C4
1

C2
2 − C2

1

+ 3x4
C4

1C
2
2 − C4

2C
2
1

C2
2 − C2

1

= 0.

This yields

u1/2 =
x2

2
(C2

2 + C2
1)±

√√√√(x2C4
2−C4

1

C2
2−C2

1

)2
4

− 3x4
C4

1C
2
2 − C4

2C
2
1

C2
2 − C2

1

=
x2

2

(
(C2

2 + C2
1)±

√
(C4

1 − C4
2)

2 − 12(C4
1C

2
2 − C4

2C
2
1)(C

2
2 − C2

1)

C2
2 − C2

1

)

=
x2

2

(
(C2

2 + C2
1)±

√
(C2

1 − C2
2)

2(C4
1 + 14C2

1C
2
2 + C4

2)

C2
2 − C2

1

)

=
x2

2

(
(C2

2 + C2
1)±

√
C4

1 + 14C2
1C

2
2 + C4

2

)
.

As C2
2 + C2

1 <
√
C4

1 + 14C2
1C

2
2 + C4

2 , resubstituting yields the unique (real) solution

t0 =
x√
2

√
C2

1 + C2
2 +

√
C4

1 + 14C2
1C

2
2 + C4

2 .

Define t− := x√
2
C1 < t0. Then

f(t−) = C2
2

x2C2
1

2
− C2

2x
2

(C2
2x

2 +
x2C2

1

2
)2

− C2
1

x2C2
1

2
− C2

1x
2

(C2
1x

2 +
x2C2

1

2
)2

=
18C2

2 (C
2
1 − 2C2

2) + 2 (2C2
2 + C2

1)
2

9x2 (2C2
2 + C2

1)
2 ,
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which is negative if and only if 18C2
2 (C

2
1 − 2C2

2) + 2 (2C2
2 + C2

1)
2
is negative. This term

can be rewritten as

28C2
2

(
C2

1 − C2
2

)
+ 2

(
C4

1 − C2
1C

2
2

)
,

which is clearly negative since C2 > C1. Hence f(t) < 0 for all t ∈ (0, t0). But since∫∞
0
f(t)dt = 0 and f crosses the t-axis only once, we have that f(t) > 0 for all t ∈ (t0,∞).

For the integral, consider∫ ∞

0

f(t)dt =

∫ ∞

0

C2
2

t2 − C2
2x

2

(C2
2x

2 + t2)2
dt−

∫ ∞

0

C2
1

t2 − C2
1x

2

(C2
1x

2 + t2)2
dt.

We focus on∫ ∞

0

C2
2

t2 − C2
2x

2

(C2
2x

2 + t2)2
dt = C2

2

(∫ ∞

0

1

t2 + C2
2x

2
dt− 2C2

2x
2

∫ ∞

0

1

(t2 + C2
2x

2)2
dt

)
.

We calculate the first integral by substituting u = t
C2x

. Then

∫
1

t2 + C2
2x

2
dt =

∫
1

u2C2
2x

2 + C2
2x

2
C2xdu =

1

C2x

∫
1

u2 + 1
du =

arctan
(

t
C2x

)
C2x

.

For the second integral, consider t = C2x tan(u) such that dt = C2x
1

cos2(u)
du. Then

∫
1

(t2 + C2
2x

2)2
dt =

∫ C2x
1

cos2(u)

(C2
2x

2 tan2(u) + C2
2x

2)
2du =

∫ C2x
1

cos2(u)

C4
2x

4
(

1
cos2(u)

)2du
=

1

C3
2x

3

∫
cos2(u)du

=
1
2
u+ 1

4
sin(2u)

C3
2x

3
.

Resubstituting yields∫
1

(t2 + C2
2x

2)2
dt =

arctan( t
C2x

)

2C3
2x

3
+

sin(2 arctan( t
C2x

))

4C3
2x

3
.

All in all,∫ ∞

0

C2
2

t2 − C2
2x

2

(C2
2x

2 + t2)2
dt

= C2
2

arctan
(

t
C2x

)
C2x

− 2C2
2x

2

(
arctan( t

C2x
)

2C3
2x

3
+

sin(2 arctan( t
C2x

))

4C3
2x

3

)t=∞

t=0

= C2
2

[
−
sin(2 arctan( t

C2x
))

2C2x

]t=∞

t=0

= C2

(
−sin(π)

2x
+

sin(0)

2x

)
= 0,

which completes the proof.
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A.2 Parameter Fitting

By Lemma 2, the marginal distribution pµ(r) is given by(
δ
κ

)λ
2

√
2πKλ

(√
δκ
)eβ(r−α)

(
κ+ (r − α)2

β2 + δ

)λ
2
− 1

4

Kλ− 1
2

(√
β2 + δ

√
κ+ (r − α)2

)
, (13)

which is the density of a generalized hyperbolic distribution with parameters

λ, β, δ, κ and α.

However, to fit the GH distribution to daily log return data, we use a different parametriza-
tion, provided by Prause (1999). It allows for an easier interpretation of the parameters
and is given by

g
(
r | λ, ᾱ, β̄, σ, µ

)
=

(ᾱ− β̄)
λ
2

√
2πᾱλ− 1

2σKλ

(√
ᾱ2 − β̄2

) (1 + (r − µ

σ

)2
)λ

2
− 1

4

Kλ− 1
2

ᾱ
√
1 +

(
r − µ

σ

)2
 exp

(
β̄

(
r − µ

σ

))
.

Note that there is a clear interpretation for µ being the location and σ being the scale pa-
rameter, next to the others being shape parameters. We assume independent observations
and derive the log likelihood function, given by

L
(
λ, ᾱ, β̄, σ, µ | r1, ..., rn

)
=n log

 (ᾱ− β̄)
λ
2

√
2πᾱλ− 1

2σKλ

(√
ᾱ2 − β̄2

)


+

(
λ

2
− 1

4

) n∑
i=1

log

(
1 +

(
ri − µ

σ

)2
)

+
n∑

i=1

log

Kλ− 1
2

ᾱ
√
1 +

(
ri − µ

σ

)2
+ β̄

(
ri − µ

σ

)
.

In order to avoid taking derivatives with respect to λ, we use an optimization algorithm
that does not make use of derivatives. In particular, we use the method by Powell (1964).
To select suitable starting values, we combine the interpretation of µ and σ as well as
Eberlein and Prause (2002)’s values, which leads to the starting values in Table III.

Parameter λ ᾱ β̄ σ µ

Value −2.018 46.82 · sd(data) −24.91 · sd(data) sd(data) mean(data)

Table III: Starting values for the ML algorithm

We fit daily log return data from the S&P 500 from 01.01.2020 to 31.12.2023, provided
by FRED. We compute log returns as

st = log

(
Closet
Closet−1

)
.

The algorithm converged after 19 iterations to the parameter values given in Table II,
with a log likelihood value of 2981.15.
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