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Abstract
We consider a scheduling problem where a set of known jobs needs to be assigned to a set of given parallel resources such that
the expected waiting time for a set of uncertain emergency jobs is kept as small as possible. On the basis of structural insights
from queuing theory, we develop deterministic scheduling policies that reserve resource capacity in order to increase the
likelihood of resource availability whenever an emergency job arrives. Applications of this particular scheduling problem are,
for instance, found in the field of surgical operations scheduling in hospitals, where high-priority but uncertain emergencies
compete for scarce operating room capacity with elective surgeries of lower priority. We compare our approaches with other
policies from the literature in a comprehensive simulation study of a surgical operations unit.

Keywords Machine scheduling · Operating room scheduling · Non-elective surgery · Queueing theory

1 Introduction

In typical scheduling problems, a set of jobs I has to be
scheduled on a set of given resources O such that some (often
time-oriented) objective is optimized. Inmany planning envi-
ronments, not all jobs or their characteristics are known at
the time of a scheduling decision, so that there is consid-
erable uncertainty about future demand for resources and
thus about ideal resource utilization. At the heart of many
scheduling problems therefore lies a form of risk manage-
ment that needs to trade off the consequences of scheduling
a known job on some resource against future demand induced
by uncertain jobs. The importance of the scheduling decision
is exacerbated if jobs cannot be interrupted once started and
in particular whenever the uncertain jobs foreseeably have an
emergency character, so that the success of the total system
crucially depends on whether emergency jobs can be served
in a timely fashion.

In this work, we study the decision problem of schedul-
ing a known set of non-pre-emptive jobs on homogeneous
resources in such away that thewaiting time of a set of uncer-
tain emergency jobs which will be released to the system at
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a later stage is kept low. Applications for this kind of plan-
ning problem have been extensively studied in the context of
operating room scheduling (see the survey of Cardoen et al.,
2010), where all surgeries that are carried out can typically be
split up into a subset of known elective surgeries, which can
be planned upfront on a daily or weekly basis, and a subset
of non-elective surgeries, which most often constitute emer-
gency surgeries that are uncertain with respect to the points
in time of their occurrence and resource utilization. Due to
the nature of emergencies, these latter non-elective surgeries
often need to be serviced as fast as possible, so that a suc-
cessful scheduling policy of elective surgeries should leave
sufficient free capacity to service emergencies. Related prob-
lemshave also been studied in thefield ofmachine scheduling
and maintenance in order to accommodate rush orders or
maintenance operations (see Sect. 2).

While it is possible to estimate the effects of stochastic
resource demand and incorporate the estimates in a stochas-
tic optimization model, in scheduling practice often simpler
policies dominate that reserve a certain set of resources or
a share of their productive time to the uncertain emergency
jobs. In operating room scheduling, for instance, a standard
practice is to reserve one ormore operating rooms exclusively
for emergency surgeries in order to always have available
capacity for the emergency surgeries (provided that these
resources have not already been seized by another emer-
gency). This also reduces disruptions of the planned schedule
comprised of known jobs, since they are effectively not com-
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peting for the same resources. However, this will typically
come at the expense of a lower resource utilization whenever
no or only few emergencies need to be processed and might
be too inflexible whenever several emergencies occur one
after the other. In this work, we will investigate deterministic
scheduling policies that try to schedule known jobs in such a
way that the expected waiting time of uncertain emergency
jobs is reduced without directly having to anticipate future
demand in the analysis.

For this purpose, the paper is structured as follows: in
Sect. 2, we provide a literature overview with a focus on
operating room scheduling. In Sect. 3, the problem setting is
described. We also analyse a simplified queueing model in
order to derive theoretical insights into the problem structure
(Sect. 3.1) and motivate a deterministic scheduling policy
that arranges jobswithout emergencies in a particular fashion
(Sect. 3.2). We then develop two scheduling approaches in
Sects. 4 (mixed-integer programme) and 5 (heuristic), which
are tested in a computational study in Sect. 6. The paper
closes with a conclusion in Sect. 7.

2 Literature review

Although the investigated problem can be found in different
areas of application in principle (e.g. production and mainte-
nance scheduling), the presented literature review focuses
on operating room scheduling since it is in this field of
enquiry that the trade-offs between the interests of elective
and non-elective patients have been studied most intensely
(cf. Cardoen et al., 2010 and Samudra et al., 2016). Further-
more, we will contrast our policy with two approaches that
have been developed explicitly in the context of operating
room scheduling (Wullink et al., 2007 and van Essen et al.,
2012). Nevertheless, we give some brief references to other
areas of application at the end of this section.

Operating room scheduling needs to consider a funda-
mental conflict between elective surgeries (jobs of normal
priority), whose characteristics are known at the time of the
scheduling decision, and non-elective surgeries, which typ-
ically arrive as emergency surgeries and thus have a very
high priority, but are otherwise uncertain with respect to
their characteristics and times of arrival (see van Riet and
Demeulemeester 2015 for an in-depth discussion of the con-
flict of interest between elective and non-elective patients).
Although non-elective surgeries are divided into urgent surg-
eries, which need care within a fixed time horizon of a couple
of hours, and emergencies, which need care immediately, we
focus only on emergencies in this paper. Both types of surg-
eries, electives and emergencies, have to be scheduled in a
given number of operating rooms (OR) with a fixed time
capacity. In order to accommodate emergency surgeries, two
scheduling strategies are possible. In the first, a single or

more ORs are exclusively reserved for emergencies and elec-
tive surgeries are scheduled only in the remainingORs. In the
second, both patient groups use all ORs. In the literature, dif-
ferent results are found for the questionwhether electives and
emergencies should use the same ORs or not. While Heng
and Wright (2013) found out in a simulation study that ORs
exclusively used by emergencies reduce the waiting time,
Ferrand et al. (2014) demonstrated that emergency waiting
times can be reduced significantly when both patient groups
can use all ORs. To allow the shared use of the same resources
by elective and emergency surgeries, a reaction plan needs
to be devised that determines under what circumstances an
emergency surgery that enters the system can make use of an
OR that might have been assigned to an elective surgery by
the scheduling procedure. Since it is typically not possible to
interrupt an ongoing surgery, reaction plans often define the
so-called break-in-moments (BIM), which arise whenever
an elective surgery ends, and allow any waiting emergency
surgery to utilize the respective operating room even if that
means that an elective surgery needs to be postponed or can-
celled. Wullink et al. (2007) showed that emergency waiting
time will be reduced considerably whenever emergencies are
operated in the OR as soon as the next surgery finishes, while
maintaining a buffer at the end of the surgery day for any
postponed surgery. Another approach by van der Lans et al.
(2006) contains a model which distributes BIMs evenly over
the surgery day. A similar approach was chosen by van Essen
et al. (2012), albeit without considering buffer time.

We focus on scheduling policies minimizing the sum of
emergencywaiting times in this paper.Nonetheless, hospitals
have to include further criteria like costs, idle time, overtime,
utilization, cancellations, and lengths of stay of the patients
after surgery inside the hospital in their scheduling process
(cf. Beliën et al., 2009, van Veen-Berkx et al., 2016, Jung et
al., 2019, Vandenberghe et al. 2020). In contrast to the sum
of waiting times, Vandenberghe et al. (2019) minimized the
expected maximum waiting time of emergent patients. Van-
denberghe et al. (2020)minimized amongst others the risk for
emergencies to suffer an excessively long waiting time. Xiao
andYoogalingam (2021) introduced a set of standby patients,
who are assigned to unused capacity if a lower than expected
number of emergencies arrived. Bovim et al. (2020) sched-
uled flexible operating room slots for emergency patients in
a master surgery schedule.

Moreover, we omit further resources used by the emer-
gency patients. In reality, further resources like surgeons,
nurses, anaesthesiologists, instruments, imaging equipment
(Latorre-Núñez et al., 2016) and prior and later stages, as
the preoperative holding unit and the post-anaesthesia care
unit, are required (Wang et al., 2015). Besides, we consider
deterministic durations of elective surgeries and stochas-
tic durations of emergencies. Amongst others, Kroer et al.
(2018) consider stochastic elective durations.
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Fig. 1 The three considered
scheduling policies
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Figure 1 presents the three scheduling policies considered
in this paper and their relation to the literature. The example
shows seven elective surgeries which have to be scheduled
in three ORs. The points in time where emergency patients
can enter an OR are marked by thick solid lines and boxes,
respectively. The left approach is an adapted version of the
one proposed in van Essen et al. (2012). All surgeries are
scheduled in the first twoORs such that the break-in-intervals
(BII), i.e. the time between two consecutive BIMs, are mini-
mal and no buffer is included. To make the comparison fair,
we added an OR which is exclusively used by emergencies.
Due to this extra OR, all three approaches have the same free
OR time.

The second schedule in the middle is the one Wullink et
al. (2007) aim at. They also schedule all elective surgeries
without any buffer between but in all ORs such that the free
OR time is distributed over all ORs at the end of the planning
horizon. Emergency patients can enter the schedule at the
end of any elective surgery. We distributed the BIIs as evenly
as possible in the second approach (cf. Theorem 2) although
this is not stated explicitly in Wullink et al. (2007). Further-
more, we do not consider staff requirements but assume that a
surgery team is available when the surgery start is scheduled
and assume that each surgery, elective and emergency, can be
performed in each OR. van Essen et al. (2012) andWullink et
al. (2007) consider fixed assignments of elective patients to
ORs or specialities with several assigned ORs, respectively.
As further restrictions would deteriorate the approximation
of the three schedules in Fig. 1, we omit them and allow each
surgery to be scheduled in each OR.

The right part of Fig. 1 shows the proposed scheduling pol-
icy of this paper. We will not only introduce BIMs at the end
of any scheduled job, which can be used by emergencies to

access resource capacity, but further consider the scheduling
of breaks, i.e. unreserved capacity between any two jobs on
the same resource, as a possible time interval for emergencies
that seek to enter the schedule.

We deviated the first two scheduling policies in Fig. 1 from
the literature and established the third policy in this section.
The three goals of the remaining parts of the paper are to
show that these policies distribute BIMs and, in case of the
third policy, also breaks appropriately over the planning hori-
zon such that the waiting time of emergencies is as low as
possible (1). Moreover, we develop scheduling approaches
for the newly introduced policy (2) and evaluate all three
policies in a comprehensive computational study (3). The
developed approach is sufficiently general such that it can
also be employed in other areas of interest. For instance,
there are a variety of approaches that seek to execute rush
orders that arrive at a random point in time as fast as possi-
ble (see, for instance, the rescheduling approach of Vin and
Ierapetritou (2000) for batch production). A further applica-
tion with similar characteristics lies in the field of planned
maintenance where machine downtimes have to be sched-
uled in such a way as not to disrupt the production rate of the
machine resources (e.g. see the review ofWang 2002). Wang
et al. (2020) optimized makespan and total completion time
on identical parallel machines while assuring a maximum
waiting time for an emergency job.

3 Analysis of problem setting

We schedule a set I of non-pre-emptive jobs with known
processing times pi ≥ 0 for every job i on a set O of homo-
geneous resources over a finite planning horizon with length
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Fig. 2 Example of a schedule with break-in-moments and breaks

T .Weare interested infinding adeterministic schedulingpol-
icy that assigns appointments to all known non-pre-emptive
jobs, while indirectly considering the risk of overlong wait-
ing times for uncertain emergency jobs that enter the system
at random points in time and require immediate attention.
One important application of this problem setting is found
in operating room scheduling, where a number of different
scheduling approaches have been developed and studied (see
Cardoen et al., 2010 for a general survey of the topic).

Figure 2 presents an example for a schedule with two
resources and four jobs. We define any planned downtime on
a resource as a break in the schedule, which includes any time
interval between the end of a job and the beginning of the next
job on the same resource as well as the time between the start
(end) of the planning horizon and the start (end) of the first
(last) job on each resource. Any end of a job—independent
whether there is a break with a positive length or length zero
(e.g. when a job starts immediately after the prior job on the
same resource ended)—is referred to as a break-in-moment
(BIM). Emergency jobs are allowed to enter the schedule and
seize a resource only during breaks.

The remainder of this section is organized as follows. In
Sect. 3.1, we use queueing theory to determine quality char-
acteristics of good schedules regarding the expected waiting
time of emergency jobs. Afterwards, we deduce our objec-
tives from the theoretical results (Sect. 3.2).

3.1 A queueingmodel for distributing breaks in
emergency scheduling

In order to derive basic theoretical insights into the problem
structure,wewill first analyse a queueingmodel that serves as
an ideal proxy for more practice-oriented planning environ-
ments. We will then extend the results of the queueing model
to identify characteristics of promising scheduling policies.

The main goal of this model is to find theoretical support
for two basic intuitions with respect to the availability of
resources, namely that: (1) the number of reserved resources
for emergency jobs should be the same at each point in time
and (2) BIMs should be distributed as evenly as possible over
the time horizon.

For the purpose of our analysis in this subsection, we
assume that

• the time between two emergency job arrivals is exponen-
tially distributed with parameter λ, i.e. the expected time
between two arrivals is 1

λ
.

• the processing time of emergency jobs is exponentially
distributedwith parameterμ, i.e. the expected processing
time is 1

μ
.

• arrivals and processing times are independent from each
other and amongst themselves.

• emergency jobs can enter the resources whenever there
are breaks according to a FCFS policy.

With these assumptions, we can formulate a straightforward
multi-server queueing system that will be the starting point
of the analysis.

Theorem 1 Let μ > λ > 0 and o ∈ R≥0 be the mean num-
ber of resources which are reserved for emergency jobs over

the time, i.e. o = |O|·T−∑
i∈I pi

T . Then, the expected waiting
time of emergency jobs is minimal if exactly o resources are
reserved for them at any point in time if o ∈ N0 and �o� or
�o� resources such that the mean number is o else.

The proof of Theorem 1 is given in Appendix A.
Our next theorem states that BIMs should be distributed

as evenly as possible over the time horizon. The theorem
confirms the findings by van Essen et al. (2012). As we want
to investigate how a schedule should be designed beforehand,
we assume in the theorem that emergency jobs lead to no
disruptions. Thus, we assume emergency jobs to be finished
until the nextBIMon the same resource. Further, no newBIM
is created if an emergency job ends before the next scheduled
BIM on the resource, i.e. emergencies are allowed to enter
an OR only at scheduled BIMs.

Theorem 2 Let λ > D > 0 be the mean time between two
BIMs. Then, the expected waiting time of emergency jobs is—
independent of the number of resources—minimal if the time
between two consecutive BIMs is exactly D. If an equidistant
distribution of the BIMs is not possible, waiting time of emer-
gency jobs is minimal if the variance of the times between
two successive BIMs is minimal.

The proof of Theorem 2 is presented in Appendix B.
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3.2 Scheduling policy

In this subsection, we derive our four objectives:

(a) reserve at each point in time |O|·T−∑
i∈I pi

T resources for
emergencies or deviate as little as possible from it (com-
pare Theorem 1).

(b) distribute the extent of breaks evenly over the time hori-
zon (compare Theorem 2).

(c) distribute the lengths of breaks, i.e. the time between the
end of a job and the beginning of its successor on the same
resource, evenly between any two consecutive jobs.

(d) utilize as many other resources as possible between the
scheduling of any two jobs on the same resource, i.e. as
many other resources as possible have breaks between
two consecutive breaks on one resource. We name the
sequence of resources that specifies where the next break
is changing pattern. This leads also to an even distribution
of breaks over all resources.

The analytical results of the queueing model are subject
to several simplifying assumptions that are not typical for
practical planning environments. Still it can be instructive to
build up on these insights when considering more practice-
relevant settings. As long as the arrival pattern of stochastic
emergency jobs follows a stationary Poisson distribution, for
instance, expectedwaiting timeswill tend to be lowwhenever
the reserved capacity for emergency jobs is at each point in
time as close to itsmean as possible (objective (a)) and breaks
are distributed evenly over the time horizon (objective (b)).
This follows intuitively since uneven distributions of breaks
over resources and/or time can give rise to bottlenecks that
will lead to an increased waiting time for any emergency job
that enters the system.

If we consider furthermore the situation where an emer-
gency job is already worked on, breaks on that resource are
occupied for further emergency jobs. Hence, it is advan-
tageous if breaks have the same length (objective (c)), as
no break should be particularly long, and as many other
resources as possible have a break between two consecu-
tive breaks on the same resource (objective (d)), i.e. breaks
should ideally rotate always in the same sequence over all
resources.

In a setting with a finite planning environment and a set
of homogeneous jobs, the analytic results suggest the real-
ization of a deterministic scheduling policy as illustrated in
Fig. 3. In the depicted example, 30 homogeneous jobs are
assigned to ten resources in such a way that—with excep-
tion of the beginning and the end of the schedule—three
resources are always available for a break-in of any arriving
emergency (objective (a)). Furthermore, the schedule satis-
fies further characteristics that seem beneficial: all breaks

ti
m
e

resources

1 2 3 4 5 6 7 8 9 10

Fig. 3 Example for a schedule with homogeneous jobs and a finite
planning horizon

between any two consecutive jobs on a resource start after the
same time lag to the previous break (objective (b)), are iden-
tical in length (objective (c)), andwhenever a job finishes, the
same resource is only considered for another job once jobs
have been assigned to all other available resources (objec-
tive (d)). Overall, this makes it less likely that an emergency
job that enters a resource completely disrupts the prior sched-
ule and reduces the risk that two consecutive emergencies
will block each other on the same resource. By consecu-
tively changing resources between breaks and extending the
lengths of breaks after any job as much as possible, it is
more likely that any emergency job will only interact with
the least amount of scheduled jobs possible in a settingwhere
electives and emergencies share all resources. Notice that
whenever jobs are inhomogeneous (i.e. differ with respect to
their processing times), it can become considerably more
challenging to approximate a schedule structure as given
above. On the other hand, diverging processing times open
up possibilities to improve the beginning and the end of the
schedule on a finite planning horizon by appropriately filling
in the gaps in the schedule. Finding appropriate schedules
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for inhomogeneous jobs is the subject of the next two sec-
tions.

4 Amixed-integer programming
formulation for the scheduling problem

The mixed-integer programming (MI P) model takes a set
of elective jobs I with varying processing times pi that are to
be scheduled on a set of homogeneous resources O . It seeks
to find a feasible elective schedule that assigns all jobs to
a resource and to a point in time while observing the four
objectives stated above.
sets

i, j, k ∈ I jobs
o ∈ O resources (O = |O|)

parameters and scalars

pi processing time of job i
ε small positive number
M big number
T available time per resource (length of time horizon)
α, β, γ, δ ∈ [0, 1] weights for the different parts of the
objective

continuous variables

a ensures the right changing pattern for the last job
bi duration of the break-in-interval that follows i
b max duration of break-in-intervals
b min duration of break-in-intervals
do smallest breakbetween twoconsecutive jobs on resource

o
si start time of job i
ovi j amount of time that the executions of jobs i and j over-

lap each other
uio number of jobs which start between the start of the

previous job on resource o and the start of job i

binary variables

ci is 1 if the successor of job i starts at time zero and 0
else

no is 1 if at least two jobs are scheduled on resource o and
0 else

vi jo is 1 if job j starts before job i and j is assigned to
resource o and 0 else

wi j is 1 if jobs i and j overlap the whole processing time
of j and 0 else

xi j is 1 if job i starts before job j and 0 else

yio is 1 if job i is scheduled on resource o and 0 else
zi j is 1 if job i ends before job j starts and 0 else

min

overlap (see (a))
︷ ︸︸ ︷

α ·
∑

i, j∈I :i �= j

ovi j + β · (b − b)
︸ ︷︷ ︸

evenly distributed B I Ms (see (b))

−

break lengths (see (c))
︷ ︸︸ ︷

γ ·
∑

o∈O do
T

+ δ ·
⎛

⎝
∑

i∈I ,o∈O
uio − a

⎞

⎠

︸ ︷︷ ︸
changing pattern (see (d))

(1)

with the constraints

assignment
∑

o∈O
yio = 1 ∀i ∈ I (2)

si + pi ≤ T ∀i ∈ I (3)

job sequence

s j − si ≤ xi j · M ∀i, j ∈ I : i �= j (4)

xi j = 1 − x ji ∀i, j ∈ I : i �= j (5)

si + pi ≤ s j + (1 − zi j ) · M ∀i, j ∈ I : i �= j (6)

si + pi + ε ≥ s j − zi j · M ∀i, j ∈ I : i �= j (7)

break length

si + pi + do ≤ s j + (3 − xi j − yio − y jo) · M
∀o ∈ O, i, j ∈ I : i �= j (8)

no ≤
∑

j y jo

2
∀o ∈ O (9)

do ≤ no · M ∀o ∈ O (10)

overlap

si + pi − s j ≤ ovi j + (1 − xi j + wi j ) · M
∀i, j ∈ I : i �= j (11)

p j ≤ ovi j + (1 − wi j ) · M ∀i, j ∈ I : i �= j (12)

BI I

si + pi − (s j + p j ) ≤ b j

+
⎛

⎝xi j · (|I | + 1) +
⎛

⎝
∑

k∈I :k �=i, j

xki − xk j

⎞

⎠ − 1

⎞

⎠ · M

∀i, j ∈ I : i �= j

si + pi − (s j + p j ) ≥ b j

(13)
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−
⎛

⎝xi j · (|I | + 1) +
⎛

⎝
∑

k∈I :k �=i, j

xki − xk j

⎞

⎠ − 1

⎞

⎠ · M

∀i, j ∈ I : i �= j (14)

bi ≤ T − si − pi + M ·
∑

j∈I : j �=i

xi j ∀i ∈ I (15)

bi ≥ T − si − pi − M ·
∑

j∈I : j �=i

xi j ∀i ∈ I (16)

bi ≤ b ∀i ∈ I (17)

bi ≥ b − (1 − ci ) · M ∀i ∈ I (18)

si + bi ≤ ci · M ∀i ∈ I (19)

changing pattern

vi jo ≥ x ji + y jo − 1 ∀o ∈ O, i, j ∈ I : i �= j (20)

vi jo ≤ (x ji + y jo)/2 ∀o ∈ O, i, j ∈ I : i �= j (21)

vi io = yio ∀i ∈ I , o ∈ O (22)

uio ≥
⎛

⎝
∑

k∈I :k �=i, j

xki − xk j

⎞

⎠ − M · (1 − y jo)

− M ·
⎛

⎝
∑

k∈I :k �=i

viko −
∑

k∈I
v jko

⎞

⎠ − M · |I | · xi j

∀o ∈ O, i, j ∈ I : i �= j (23)

uio ≤
⎛

⎝
∑

k∈I :k �=i, j

xki − xk j

⎞

⎠ + M · (1 − y jo)

+ M ·
⎛

⎝
∑

k∈I :k �=i

viko −
∑

k∈I
v jko

⎞

⎠ + M · |I | · xi j

∀o ∈ O, i, j ∈ I : i �= j (24)

a ≤ uio/2 + (1 − yio) · M +
⎛

⎝|I | − 1 −
∑

j∈I : j �=i

x ji

⎞

⎠ · M

∀i ∈ I , o ∈ O

(25)

range of decision variables

a, b, b ≥ 0 (26)

bi , si ≥ 0, ci ∈ {0, 1} ∀i ∈ I (27)

do ≥ 0, no ∈ {0, 1} ∀o ∈ O (28)

ovi j ≥ 0, wi j , xi j , zi j ∈ {0, 1} ∀i, j ∈ I : i �= j (29)

uio ≥ 0, yio ∈ {0, 1} ∀i ∈ I , o ∈ O (30)

vi jo ∈ {0, 1} ∀i, j ∈ I , o ∈ O (31)

The objective function optimizes our four goals stated in
Sect. 3.2. The letters in brackets refer to the letters of the
optimization goals. In particular, the objective minimizes
the overlap between jobs (11)–(12); compare objective (a))
and the deviation between the longest and shortest break-
in-interval (13)–(19); compare objective (b)). Moreover, we
maximize the shortest break length on each resource (8)–
(10); compare objective (c)) and optimize the rotation of
jobs amongst resources (changing pattern; (20)–(25); com-
pare objective (d)). (2) makes sure that each job is scheduled
on exactly one resource. Because of (3) it is not possible that
the sum of processing times on one resource is bigger than
the available time T .

Constraints (4)–(7) determine the job sequence. Due to
(4), xi j = 1 if job j starts after job i . (5) makes sure that
there is a unique sequence even if more than one job starts
at the same point in time. Thanks to Constraints (7) zi j = 1
if job i is finished before job j starts. Due to ε, the small
positive number, zi j = 1 even if job i is finished at the point
in time job j starts. Constraints (6) make sure that zi j is zero
if job i is not finished when job j starts.

Constraints (8)–(10) determine the shortest break length
on all resources. As the objective tries to maximize do, (8)
makes sure that do equals the smallest break on resource o,
i.e. the smallest time between the end of a job i (si + pi ) and
the start of the following job j . Due to (3−xi j−yio−y jo)·M ,
only the following jobs on the same resource are taken into
account. Constraints (9) and (10) are only necessary if only
one job is assigned to resource o. As in this case do is not
bounded by (8), (10) fixes it to zero.

The next block of constraints determines the overlap-
variables ovi j , which indicate the amount of time jobs i and j
run parallel. Constraints (11) compute the overlap if job j is a
successor of job i , and job i ends before j does (wi j = 0). If
job j ended before job i , (11) would lead to a wrong overlap.
Therefore,wi j is introduced and the case in which job i starts
before and ends after job j is considered in Constraints (12).
Note that an overlap of more jobs is worse than of fewer. If
there is an overlap of two jobs, (11) and (12) count the dura-
tion when the second job starts. If there is an overlap of three
jobs, the overlap between the first two will be counted when
the second job starts. Furthermore, the overlap between the
third and the first, and the third and the second job is counted
when the third job starts. So the overlap between all three of
them is counted three times.

Break-in-intervals are considered in Constraints (13)–
(19). Constraints (13) and (14) fix the BII, i.e. the time
between the end time of job j and the end time of the job i
which starts next to b j , for all jobs which have a successor.
Constraints (15) and (16) do the same for the last job on each
resource. In this case, the break-in-interval is the time until
the end of the planning horizon T , as we assume that emer-
gency jobs can enter any resource at the end of the planning
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horizon. Constraints (17) and (18) determine the maximal
and minimal break-in-intervals b and b. For the computation
of b only one jobwhich starts at the beginning of the planning
horizon is counted (ci = 1 for all other jobs starting at the
beginning of the planning horizon due to (19)), as b would
be zero otherwise.

In the following, the changing pattern is defined. For this,
we introduce vi jo in Constraints (20)–(22) which is 1 if job
j starts before job i and job j is assigned to resource o.
We need vi jo for the big M in Constraints (23) and (24), in
which the number of jobs which started between the start of
the latest preceding job on resource o and the start of job i is
counted (uio). The big M part with vi jo makes sure that this
last preceding job on resource o is considered. Constraints
(25)make sure that the last job i is assigned to the resource for
which uio is maximal, i.e. for which the last preceding job is
the longest time ago. The factor 1/2 is important, as i is also
counted in the sum of the third part of the objective (changing
pattern). Without the factor, the model has no pressure to
assign i to the desired resource.

We needO dummy jobs, one at time zero on each resource
to initialize the changing pattern. Constraints (6), (7), and
(18) do not apply for them. Constraints (19) make sure that
Constraints (18) are not binding in this case. Furthermore, we
cannot count any of them in Constraints (8). Otherwise we
would have a break at time zero on each resource (see Theo-
rem 1). Finally, Constraints (26)–(31) are the non-negativity
and binary constraints.

5 Heuristic scheduling approach

The developed MI P model contains a significant number
of binary variables and will likely be restricted to solving
instances of small size only. Thus, we develop a construction
heuristic in this section that aims to approximate an ideal
schedule structure based on the insights of Sect. 3.

Consider the schedule in Fig. 4. Here, 7 jobs have been
scheduled on three resources such that all of the four objec-
tives described above are satisfied ideally, i.e. breaks are
evenly distributed over time ((b)) and resources ((a)), the
lengths of breaks between any two consecutive jobs are iden-
tical ((c)), and the jobs rotate from one resource to the next
in the sequence (2, 3, 1) ((d)). We will use the structure of
the above schedule as a blueprint to construct approximate
schedules of similar quality. For this purpose, we will inter-
pret the ideally distributed capacity utilization in the schedule
of Fig. 4 as slots, to which a set of jobs of a given problem
instance needs to be assigned. Of course, it will typically not
be possible to assign jobs perfectly to the start and end times
of the slots, but in getting as close as possible,wewill produce
schedules that maintain much of its favourable structure. In
what follows, we will assume w.l.o.g. that there are at least
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Fig. 4 Example schedule for the heuristic approach

as many jobs as resources, since any excess resource will not
need to be considered for a job assignment.

We will first characterize the distribution of slots in the
ideal schedule and then explain how jobs of a given planning
instance are assigned to slots. At the core of the schedule,
there is a set B of slots of the same length which are suc-
cessively assigned to resources rotating from one to the next
(jobs 3–5 in Fig. 4). The exact number of slots in B depends
on the number of complete rotations R (here a single rota-
tion) and the number of resources (|B| = R ·O). In addition
to that, there is an incomplete rotation at the beginning of
the schedule of slots in A with |A| ≤ O that have varying
lengths and make use of any underutilized resources at the
beginning of the schedule (here jobs 1 and 2) and another
incomplete rotation at the end of the schedule of slots in C
with |C | ≤ O that also have different lengths which utilize
the remaining capacity at the end of the planning horizon T
(here jobs 6 and 7).

The construction heuristic works in three phases. In the
first phase, we determine the ideal structure of the schedule,
that is we determine the number and start and end times of
slots on each resource. In the second phase, jobs are assigned
to the sets of slots, and in the third phase the actual start times
of jobs on resources are determined. We begin by determin-
ing the cardinality of each of the slot sets. Given that each
resource has T units of productive time, an even distribu-
tion of breaks over resources seeks to keep approximately

O −
∑

i pi
T resources free at any point in time. It follows that

set A of the first incomplete rotation should ideally contain

|A| :=
⌊∑

i pi
T

⌉

(32)

slots, where �·� rounds to the nearest integer. As a conse-
quence, the number of complete rotations over all resources
equals
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R :=
⌊ |I | − |A|

O
⌋

(33)

and thus |B| = R · O. Any remaining slots are assigned to
set C as the final incomplete rotation

|C | := |I | − |A| − |B|. (34)

There are several possible ways to determine lengths and
start times of slots which utilize a resource in an ideal sched-
ule which can be characterized by a divisor D that denotes
the number of slots over which utilized and idle times are to
be distributed. Once D is determined, the lengths of the slots

sl =
∑

i pi
D and breaks bl = O·T−∑

i pi
D are determined by

evenly distributing the utilized and idle time over all slots.
Finally, the slots should be evenly distributed over the time
horizon, so we set the according rate sr to T

D . One natural
way of choosing D is to count the number of breaks that are
to be scheduled on all resources as D = (R+1) ·O, one ini-
tial break on each resource and an additional one after each
slot in a rotation. This is the case in the example Fig. 4, where
D = (1 + 1) · 3 = 6 and thus sl = 12

6 = 2, bl = 6
6 = 1 and

sr = 6
6 = 1. However, whenever the actual job lengths devi-

ate from the lengths of the ideal slots, better approximations
might be generated by varying D.

With the help of these three concepts, we can determine
the ideal start times s∗

j and end times e∗
j of the slots.Assuming

that slots are numbered in ascending order, the first |A| slots
all have start times of s∗

j = 0 for j = 1, . . . , |A|. The start
times of the next |B| + |C | slots are spaced over time by the
ideal rate such that they result to s∗|A|+ j = sr · j for j =
1, . . . , |B|+ |C |. Ideal end times of the first |A| slots depend
on the start times of the next slot on the same resource and the
ideal length of the breakbetween any two slots. It thus follows
that e∗

j = sr ·(O−|A|+ j)−bl for j = 1, . . . , |A|. End times
for the remaining slots depend on the ideal slot length and
the end of the planning horizon e∗|A|+ j = min{s∗|A|+ j +sl, T }
for j = 1, . . . , |B| + |C |.

In the next phase, the jobs of the planning instance are
grouped into subsets according to the slots they are later
assigned to. Let I A, I B , and I C refer to the job sets assigned
to the corresponding sets of slots. Since the slots in A and
C will typically be shorter, jobs with the lowest processing
times are interchangeably assigned to sets I A and I C , respec-
tively. The remaining jobs are assigned to I B as described
by the following pseudocode:

Algorithm 1

1: for j = 1 to max(|A|, |C |) do
2: if |I A| < |A| then
3: Remove the job i∗ with the smallest processing time

from I
4: Add i∗ to I A

5: end if
6: if |I C | < |C | then
7: Remove the job i∗ with the smallest processing time

from I
8: Add i∗ to IC

9: end if
10: end for
11: I B = I

Consider the example again with 7 jobs with p1 = p7 = 1
and pi = 2∀i ∈ {2, . . . , 6} in Fig. 4. Since

∑
i pi = 12,

two jobs are assigned to the two incomplete rotations at the
beginning and the end (|A| = |C | = 2). So, we have two runs
trough the ‘for’-loop (lines 1–10). In the first, one of jobs 1
and 7 is assigned to I A and the other to I C . As all remaining
jobs have the same length, one of them is assigned to I A and
one to I C in the second run of the ‘for’-loop. The remaining
jobs are assigned to I B (line 11).

Finally, for each job i the start time si and the assignment
variables yio of job i to resource o are determined. Generally
speaking, we seek to start jobs at the ideal start time of the
slot they are assigned to. However, the schedule is adapted
whenever some prior job either fell below or exceeded their
respective slot in order to compensate for the additional or
reduced length of the break in the schedule. Notice in Fig. 4
that if job 1 were to finish prior to the end of its slot, this
could be compensated by letting job 3 start earlier by the
same amount. In particular, if job 3 were itself longer than
its ideal slot length, it might just finish right with the end of
its slot and the rest of the schedule would be unaffected. We
will make use of this insight by tracking for any resource o
the deviation devo which its last assigned job had from the
ideal end date and then adjusting the next job that is assigned
to resource o′ = 1+ (o+|A|−1) mod O, where mod is the
modulo division. This ensures that the two resources affected
by this adjustment are spaced by |o− o′| = O − |A|, i.e. the
number of resources that have a scheduled break at any time
in the ideal schedule. The whole procedure is given by the
following pseudocode:
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Algorithm 2

1: for j = 1 to |A| do
2: Remove the job i∗ with the smallest processing time

from I A

3: si∗ = s∗
j

4: o = O − |A| + j
5: yi∗,o = 1
6: devo = pi∗ − e∗

j
7: endo = pi∗
8: end for
9: for j = 1 to R do
10: for o = 1 to O do
11: j ′ = ( j − 1) · O + o
12: o′ = 1 + (o + O − |A| − 1) mod O
13: s′ = s∗

|A|+ j ′ + devo′

14: if s′ < endo then
15: s′ = endo
16: end if
17: Remove the job i∗ that minimizes |e∗

j ′ − s′ − pi∗ |
from I B

18: si∗ = s′
19: yi∗,o = 1
20: devo = si∗ + pi∗ − e∗

j
21: endo = si∗ + pi∗
22: end for
23: end for
24: for j = 1 to |C | do
25: o′ = 1 + ( j + O − |A| − 1) mod O
26: s′ = s∗|A|+|B|+ j + devo′
27: if s′ < end j then
28: s′ = end j

29: end if
30: Remove the job i∗ with the largest processing time

from IC

31: si∗ = s′
32: yi∗, j = 1
33: end j = si∗ + pi∗
34: end for
35: for o = 1 to O do
36: if endo > T then
37: Reschedule the last job on resource o and, if neces-

sary, its predecessors on resource o, to an earlier
point in time until the time horizon is met

38: end if
39: end for

Jobs in I A are considered in ascending order of their pro-
cessing times and start at their ideal slot lengths, i.e. the
beginning of the planning horizon (lines 2–3). SinceO−|A|
resources are supposed to be free at any time, job j is assigned
to resourceO− |A| + j (lines 4–5). For each resource o, the
deviation from the ideal end date devo and the actual point
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Fig. 5 Alternative example for the heuristic approach

in time when o is free again endo is stored (lines 6–7). The
procedure then moves to schedule the jobs in I B . First, the
start time of the job s′ is set to the ideal start time of its slot
(line 13) adjusted by the deviation incurred by the job that
was scheduled |A| resources before (line 12) or to endo in
case resource o is not free (lines 14–16). Then, the job in I B

that best fits within the adjusted slot length is identified and
scheduled on the current resource (lines 17–21). Finally, the
jobs in I C are scheduled in the same fashion (lines 24–34).
However, since the slots in C will get shorter and shorter, the
jobs in I Care scheduled in descending order of their process-
ing times (line 30), rather than on a best fit basis.

With I A = {1, 2}, I B = {3, 4, 5}, and I C = {6, 7} in
the example in Fig. 4, jobs 1 and 2 are assigned to resources
O − |A| + 1 = 3− 2+ 1 = 2 and O − |A| + 2 = 3 in lines
1–8 of the algorithm. Afterwards, lines 9–23 assign jobs 3,
4, and 5 in any order to the three resources, as all of them
have the same length.

In this example, all jobs fit perfectly to their corresponding
slots, so no adjustments to start or end times were necessary.
In order to see how start and end times are adapted, consider
the variation of the example with p2 = 1 and p4 = 3 in
Fig. 5. There, job 2 would also be assigned to I A; however,
its scheduling on resource 3 would lead to a deviation of
dev3 = −1, since it would end too early for its slot. This is
considered when computing the starting time of job 4 (lines
11–13). With j ′ = ( j −1) ·O+o = (1−1) ·3+2 = 2, o′ =
1+(o+O−|A|−1) mod O = 1+(2+3−2−1) mod 3 = 3
and s′ = s∗

|A|+ j ′ + devo′ = s4 + dev3 = 1. In this way, the
starting time of job 4 (s4) is corrected by the amount of time
job 2 finishes too early and the planned breaking interval is
in effect shifted from resource 2 to resource 3, in order to
account for the different job lengths.

Notice that the construction heuristic cannot guarantee
that all jobs which are assigned to slots in this way end before
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Fig. 6 Scheme of a surgical centre (Pham and Klinkert, 2008)

T on all resources. This is not surprising, since ensuring fea-
sibility would require the solution of a bin packing problem,
which is well known to be NP-hard in the strong sense. In
the case that a job exceeds T on a resource, we thus use the
following simple repair strategy: Beginning with the last job
on the resource, reschedule all jobs successively to an ear-
lier point in time until the time horizon is met (lines 35–39).
This repair strategy will tend to lead to an overutilization of
resources at the end of the planning horizon, the more elec-
tive surgeries have to be pushed back in this manner. It might
thus make sense to choose a higher divisor D to motivate a
more dense assignment of jobs at the beginning of the plan-
ning horizon and thus potentially avoiding repair operations.
Preliminary computational experiments have indicated that
D = |I | offers a good compromise between these two effects
and is thus chosen for the following experimental evaluation.

6 Computational study

In this section, we employ the deterministic scheduling
approaches on an example case from the field of operating
room scheduling and compare the results to other scheduling
policies from the literature. We will first give a brief intro-
duction to the planning environment.

6.1 Description of planning environment

Figure 6 shows a typical set-up of a surgical operations cen-
tre. Elective patients arrive either from outside the hospital
as ambulatory patients just for their surgery or they come
from a nursing unit, but typically every scheduled patient
arrives at a fixed appointment in the surgical centre. In the
first case, the incoming patient registers in the ambulatory
surgical unit (ASU) and then moves into the preoperative
holding unit (PHU), where the patient is prepared for the

surgery. Inpatients are brought directly into the PHU. From
there all patients enter the OR, where the surgery takes place.
As soon as the surgery is finished, the patient is either brought
to the post-anaesthesia care unit (PACU), where the patient
recovers from anaesthesia, or to the intensive care unit (ICU)
if the status of the patient is critical. Inpatients are brought
back to their nursing unit after finishing in PACU, while out-
patients either return to ASU and leave the hospital or are
moved to a nursing unit for post-operative care.

In the following, we will focus on the perioperative area
and consider the scheduling of elective surgeries to operating
rooms. We assume that all elective surgeries have already
been assigned to a given day in a prior planning step and
thus restrict our analysis to the short-term scheduling of daily
surgeries to operating rooms. In order to test the performance
of our approaches, of the MI P model and the construction
heuristic (referred to asbreaks),we compare themwith alter-
native proposals from the literature. A standard policy is to
reserve an OR for emergencies exclusively and use only the
remaining ORs for elective scheduling. We will refer to this
policy as exclusive in the following (see van Essen et al.,
2012) and use it as a benchmark for calculating capacity uti-
lization.Wullink et al. (2007) propose to schedule all elective
surgeries in the first part of the day using all ORs and keep
the remainder of their capacity reserved for emergencies. In
order to allow for break-ins during the first part, they set
BIMs between elective surgeries but do not consider breaks.
van Essen et al. (2012) develop several formal methods to
evenly distribute start times of surgeries. We implemented
their fixed goal value heuristic which demonstrated some of
the strongest performances in order to schedule break-in-
moments. Since the heuristic requires a prior assignment of
surgeries to ORs, jobs are first ordered in descending order
of their processing time and then successively assigned to the
OR with the current lowest sum of surgery times. We refer
to this approach as BI M . Finally, we also test a combina-
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tion of the two alternative proposals by reserving an OR for
emergencies, but allowing break-ins into the elective sched-
ule at evenly distributed BIMs whenever the exclusive OR is
occupied (BI M + ex).

6.2 Parameters of the simulation environment

We simulate two sets of instances, a small test set and a large
test set with varying numbers of ORs and elective surgeries.
In the small test set, either two or three ORs are considered,
one of which is reserved for emergencies in the benchmark
policy. Elective surgeries are varied between 4 and 16 (4, 6,
and 8 per non-reserved OR) as given in Table 1.

The length of the surgery day was set to eight hours (480
minutes) and the total sum of all surgery durations fixed at
(O − 1) · 480, so that capacity utilization of non-reserved
ORs is set to 100%. Processing times of elective surgeries
are determined by a log-normal distribution (compare Strum
et al., 2000 and van Essen et al., 2012) with a shifting mean
set to the remaining surgery time divided by the remaining
number of surgeries with a standard deviation of 10.

In the large test set, up to 15 ORs are scheduled with 4,
6, and 8 elective surgeries for any non-reserved OR as given
in Table 2. Capacity utilization of non-reserved ORs was
further varied in steps of 80%, 90%, and 100% to account
for situations when the capacity of non-reserved ORs is not
fully utilized by elective surgeries.

For each combination of parameters, 60 scheduling
instances are created and solved by the scheduling policies.
The small set was solved by all approaches, including the
MI P model which was implemented in GAMS and solved
byCPLEXwith a time limit of 3600s (= 1 hour). The large set
was solved by the other four policies only, whichwere imple-
mented in V B.net . After the instances were solved, each
solution was evaluated in 500 simulation runs to compute
waiting times. For the simulation, arrival times of emergen-
cies followed a Poisson process with an expected value of
4/480, so that four emergency patients per day are expected.
Emergency surgery times were set by a log-normal distri-

bution (compare Wullink et al., 2007, de Bruin et al., 2010)
with a mean of 90 minutes and a standard deviation of 10.

The simulation then proceeds as follows: Whenever an
emergency enters the system, the next possible break-in point
in the elective schedule is determined (i.e. the next point in
time an OR is free) and the emergency is assigned to this
OR. If the assigned emergency interferes with one or more
scheduled elective surgeries, then these electives are marked
as postponed. In practice, there are several ways to react to
such an interference. For instance, the elective surgery could
simply be postponed until the OR is free again or assigned
to another OR in the meantime. Alternatively, the elective
could be moved to an overtime period at the end of the shift
or be cancelled completely for the day and be rescheduled
at a later date. In order not to rule out particular reaction
schemes and still test the performance of the schedule struc-
tures created by the scheduling procedures, we simply count
postponed electives, but do not allow further emergencies to
make use of any additional free time which might result from
a cancellation. This way it is also ensured that the capacity
utilization remains constant over all procedures,which seems
a prerequisite for a fair comparison.

6.3 Results of the simulation

Preliminary tests showed that MI P could only solve ins-
tances up to three ORs reliably, so that the performance of
the approach is investigated for the small test set only. We
set α = β = γ = δ = 1. Hence, all parts of the objective
have the same weight. Table 3 shows the average waiting
times over all instances with two and three ORs and over all
instances with the given number of surgeries.

As can be seen, the benchmark policy exclusive leads to
the highest averagewaiting time of over 45minutes. Since the
exclusive reservation decouples elective and emergencies,
the results are further independent of the number of ORs and
elective surgeries. In line with the results of Wullink et al.
(2007), waiting times can be reduced significantly bymaking
use of all ORs and evenly distributing BIMs over the surgery
day (BI M). Yet, the combination of both approaches BI M+

Table 1 Tested combinations of
number of ORs (#OR) and
number of elective surgeries
(#elec) for small test set

1 2 3 4 5 6

#OR 2 2 2 3 3 3

#elec 4 6 8 8 12 16

Table 2 Tested combinations of number of ORs and number of elective surgeries for large test set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#OR 2 2 2 3 3 3 5 5 5 10 10 10 15 15 15

#elec 4 6 8 8 12 16 16 24 32 36 54 72 56 84 112
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Table 3 Expected waiting times
over small test set

#OR 2 3 #elec 4 6 8 12 16 avg

exclusive 45.22 45.22 45.22

BI M 30.58 21.59 41.51 28.89 25.63 21.25 13.60 26.09

BI M + ex 18.78 12.38 23.53 20.37 16.79 11.81 8.95 16.37

MI P 20.95 9.84 26.06 22.46 15.62 6.95 5.63 15.39

breaks 20.29 8.87 25.15 21.21 14.88 6.71 4.62 14.57

Table 4 Results of the simulation experiment of large test set

Util #OR #elec breaks B I M exclusive B I M + ex
Avg. wait (max) %postp Avg. wait (max) #postp Avg. wait (max) #postp Avg. wait (max) #postp

0.8 2 4 20.20 (38.03) 2.27 26.89 (50.49) 2.27 45.22 (72.36) 0 18.59 (35.40) 1.43

0.8 2 6 15.15 (29.56) 3.23 20.11 (37.94) 3.03 15.28 (29.87) 2.09

0.8 2 8 12.08 (23.41) 4.04 15.37 (29.94) 3.54 13.56 (26.94) 2.63

0.8 3 8 9.85 (22.61) 3.07 18.29 (40.01) 3.55 11.14 (24.92) 1.83

0.8 3 12 4.84 (11.46) 4.03 13.10 (27.53) 4.80 7.87 (17.74) 2.73

0.8 3 16 3.05 (7.90) 4.30 8.52 (18.24) 5.57 6.04 (14.18) 3.28

0.8 5 16 1.63 (4.71) 3.61 17.61 (37.64) 4.97 7.89 (19.84) 2.09

0.8 5 24 0.47 (1.50) 3.96 8.24 (18.53) 6.10 4.36 (11.22) 3.08

0.8 5 32 0.49 (1.54) 5.11 5.31 (11.69) 7.14 2.96 (7.79) 3.64

0.8 10 36 0.18 (0.63) 3.49 13.70 (32.38) 5.33 6.14 (16.43) 2.27

0.8 10 54 0.04 (0.16) 4.53 6.20 (14.57) 7.34 2.88 (8.16) 3.38

0.8 10 72 0.03 (0.10) 6.21 3.64 (8.46) 8.29 1.62 (4.67) 4.08

0.8 15 56 0.24 (0.89) 3.49 12.15 (29.83) 5.40 5.56 (15.21) 2.38

0.8 15 84 0.03 (0.13) 4.77 5.31 (13.39) 7.54 2.31 (6.85) 3.56

0.8 15 112 0.01 (0.02) 6.51 2.66 (6.63) 8.60 1.16 (3.49) 4.29

0.9 2 4 23.42 (43.29) 2.47 32.74 (58.78) 2.53 20.65 (38.79) 1.48

0.9 2 6 18.07 (34.20) 3.58 24.42 (44.37) 3.33 17.99 (34.16) 2.26

0.9 2 8 12.96 (24.71) 4.17 18.21 (34.13) 3.88 15.02 (29.52) 2.74

0.9 3 8 12.19 (27.01) 3.27 23.41 (48.49) 3.85 13.72 (29.34) 1.94

0.9 3 12 5.71 (13.26) 4.23 17.28 (34.47) 5.32 9.80 (21.32) 2.94

0.9 3 16 3.77 (9.39) 4.43 10.81 (22.07) 6.06 7.51 (16.84) 3.45

0.9 5 16 9.01 (23.05) 3.49 23.67 (47.39) 5.23 10.24 (24.32) 2.17

0.9 5 24 3.04 (8.80) 4.44 11.17 (23.91) 6.68 5.87 (14.59) 3.32

0.9 5 32 1.39 (4.20) 5.63 6.97 (14.52) 7.72 3.74 (9.47) 3.92

0.9 10 36 4.00 (12.03) 4.08 18.83 (41.71) 5.58 8.40 (21.27) 2.37

0.9 10 54 0.60 (2.08) 4.82 8.39 (18.82) 8.06 3.77 (10.28) 3.63

0.9 10 72 0.24 (0.83) 6.73 4.95 (10.98) 8.99 2.23 (6.20) 4.28

0.9 15 56 5.96 (17.16) 4.21 18.01 (40.64) 5.65 7.69 (20.00) 2.44

0.9 15 84 0.74 (2.53) 4.92 7.50 (17.91) 8.29 3.26 (9.18) 3.76

0.9 15 112 0.17 (0.64) 6.90 3.81 (9.14) 9.25 1.67 (4.89) 4.55

1.0 2 4 25.15 (45.98) 2.71 41.51 (71.95) 2.77 23.53 (43.42) 1.36

1.0 2 6 21.21 (38.52) 4.03 28.89 (51.28) 3.58 20.37 (37.74) 2.20

1.0 2 8 14.51 (27.26) 4.47 21.34 (39.13) 4.23 17.19 (33.06) 2.81

1.0 3 8 15.27 (32.07) 3.54 29.92 (58.41) 4.25 16.39 (34.25) 2.01

1.0 3 12 6.71 (15.34) 4.40 21.25 (40.34) 5.66 11.82 (25.04) 3.00

1.0 3 16 4.62 (11.25) 4.68 13.60 (26.40) 6.61 8.95 (19.34) 3.68

1.0 5 16 10.73 (26.43) 3.89 30.09 (57.05) 5.69 13.07 (29.43) 2.28

1.0 5 24 4.43 (11.85) 4.75 13.84 (28.02) 7.06 7.15 (17.11) 3.45
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Table 4 continued

Util #OR #elec breaks B I M exclusive B I M + ex
Avg. wait (max) %postp Avg. wait (max) #postp Avg. wait (max) #postp Avg. wait (max) #postp

1.0 5 32 2.34 (6.65) 6.19 8.90 (17.73) 8.35 5.02 (12.24) 4.15

1.0 10 36 9.77 (24.92) 4.14 25.25 (52.38) 6.11 10.96 (26.29) 2.49

1.0 10 54 3.05 (8.91) 5.40 11.70 (24.79) 8.59 5.10 (13.36) 3.75

1.0 10 72 1.62 (4.99) 7.40 6.45 (13.62) 9.77 2.91 (7.87) 4.63

1.0 15 56 9.62 (24.47) 4.37 23.24 (49.84) 6.20 9.97 (24.67) 2.62

1.0 15 84 3.18 (9.32) 5.70 10.14 (22.88) 8.79 4.43 (12.00) 3.90

1.0 15 112 1.38 (4.33) 7.66 5.05 (11.59) 10.00 2.23 (6.34) 4.88

6.74 (14.63) 4.52 15.52 (31.33) 6.03 45.22 (72.36) 0 8.84 (19.45) 3.00

ex , where a room is exclusively reserved and yet break-ins
are allowed in the elective schedule, considerably improves
performance even further, since the free capacity is more
evenly distributed over time in this case. The two scheduling
policies developed in this work lead to a further decrease in
waiting times of about 2 minutes compared to BI M + ex on
average over all considered instances.However, they perform
worse than BI M+ex for the smallest instance sets with two
ORs and 4 to 6 electives, but significantly better once the
number of ORs and elective surgeries is increased. This is
to be expected, since few surgeries allow only few break-in-
moments, so that an exclusive OR for emergencies only will
have a bigger advantage. Both MI P and breaks perform
similarly and dominate BI M . Interestingly, MI P is even
slightly beaten by the simple construction heuristic because
MI P could not solve all instances to optimality and might
not be parameterized optimally.

In order to get a better insight into the performance, all
approaches, except for MI P , have further been tested on
the large test set. Table 4 gives an overview over all results
reporting the average waiting time of emergencies and the
maximumwaiting times per simulation run averaged over all
runs. Furthermore, it displays the average number of elective
surgeries that have to be postponed due to a break-in of emer-
gencies. Over all instances, breaks clearly outperforms the
benchmark policy and BI M at least with respect to average
and maximum waiting times. The exclusive reservation has
the advantage that the elective schedule is never disrupted,
while break-ins regularly lead to a postponement of elec-
tives in the other cases. When comparing breaks with BI M ,
we can see that the latter is dominated in terms of waiting
times and number of postponed electives. The combination
of an exclusively reserved OR with additional break-ins on
average performs worse with respect to waiting times when
compared to breaks, yet the performance trade-off is much
more complex, also because the lower average waiting times
generated by breaks will beweighed again the lower number
of postponed electives in the case for BI M+ex . On average

over all instances, breaks gains approximately 1.5 minutes
in lower waiting times at the cost of an additional elective
surgery having to be postponed. Yet, the performance differ-
ences vary considerably with respect to capacity utilization,
number of ORs and electives.

In tendency, the lower the number of elective surgeries
and the higher the capacity utilization the better the results
of BI M+ex when compared to breaks. Thismakes intuitive
sense, since breaks is designed to spread out the idle time of
ORs and thus themore idle time there is toworkwith, the bet-
ter it will perform in comparison. Likewise, a low number of
elective surgeries will only allow few degrees of freedom for
break-ins and thus the exclusive OR provides more availabil-
ity. For the same reason, the performance of all approaches
(except exclusive) tends to improvewith an increasing num-
ber of elective surgeries per OR. Interestingly, while the two
BIM approaches also benefit from an increased number of
ORs, the performance ofbreaks is improving at first, but then
in some instances gets worse for further increasing numbers
of ORs, in particular in the lower utilization scenario with
few electives. A possible explanation for this phenomenon
could be that a large number of ORswith few electivesmakes
an approximation to the ideal plan of Figure 4 more difficult
and thus deteriorates performance. Nevertheless, with the
exception of the instances with the lowest number of ORs,
average waiting times for emergencies are within 15 minutes
for the breaks heuristic, which in practice should typically
be sufficient for facilitating an immediate service, given that
the hospital is informed ahead of time of the emergency. In
order to investigate this further, Table 5 shows the percentage
of emergencies that can be served within 15 and 30 minutes,
respectively, for all procedures.

As can be seen, breaks leads to a significantly higher per-
centage of served emergencies within 15 minutes even when
compared to BI M + ex and the improvement only slightly
decreases with higher utilization. The higher the utilization
rate, the lower the percentages of serviced emergencies for
all procedures, yet breaks still manages to guarantee a ser-
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Table 5 Ratio of emergencies
served within 15 and 30 minutes

Util 0.8 0.9 1.0
< 15 < 30 < 15 < 30 < 15 < 30

exclusive 0.49 0.55 0.49 0.55 0.49 0.55

BI M 0.75 0.86 0.69 0.81 0.50 0.62

BI M + ex 0.84 0.92 0.81 0.89 0.78 0.87

breaks 0.91 0.94 0.87 0.92 0.83 0.89

Table 6 Results for stochastic elective surgeries with σ ∗ = 10

Util #OR #elec breaks B I M BIM + ex
Wait Over Ontime Wait Over Ontime Wait Over Ontime

0.8 2 4 20.32 0.00 0.43 27.17 0.00 0.28 18.47 0.00 0.34

0.8 2 6 15.10 0.00 0.46 19.73 0.00 0.32 15.49 0.00 0.32

0.8 2 8 12.07 0.00 0.50 15.37 0.00 0.33 13.25 0.00 0.31

0.8 3 8 10.02 0.43 0.62 18.42 0.00 0.36 10.80 0.00 0.44

0.8 3 12 4.84 0.21 0.67 12.78 0.00 0.35 7.55 0.00 0.39

0.8 3 16 3.22 0.53 0.73 8.32 0.00 0.33 5.86 0.00 0.32

0.8 5 16 1.70 0.57 0.76 16.74 0.00 0.44 7.06 0.00 0.48

0.8 5 24 0.55 0.78 0.83 7.82 0.00 0.39 3.86 0.00 0.41

0.8 5 32 0.56 1.06 0.83 5.26 0.00 0.36 2.57 0.00 0.35

0.8 10 36 0.18 0.96 0.83 12.50 0.00 0.51 5.03 0.00 0.53

0.8 10 54 0.07 1.12 0.87 5.01 0.00 0.44 2.01 0.00 0.44

0.8 10 72 0.04 1.07 0.89 2.96 0.00 0.40 1.03 0.00 0.40

0.8 15 56 0.27 0.53 0.86 10.95 0.00 0.53 4.09 0.00 0.55

0.8 15 84 0.03 1.51 0.87 3.91 0.00 0.43 1.31 0.00 0.43

0.8 15 112 0.01 1.08 0.90 1.91 0.00 0.40 0.59 0.00 0.40

0.9 2 4 22.52 0.00 0.40 33.30 0.00 0.24 20.34 0.00 0.38

0.9 2 6 17.87 0.03 0.40 24.74 0.00 0.26 17.87 0.00 0.30

0.9 2 8 12.89 0.15 0.48 18.33 0.00 0.28 15.09 0.00 0.29

0.9 3 8 12.41 0.87 0.60 23.73 0.00 0.35 13.32 0.00 0.43

0.9 3 12 5.95 0.40 0.65 16.60 0.00 0.30 9.67 0.00 0.34

0.9 3 16 3.74 0.91 0.72 10.72 0.00 0.34 7.14 0.00 0.35

0.9 5 16 8.95 0.48 0.78 22.69 0.00 0.43 9.49 0.00 0.48

0.9 5 24 2.93 0.40 0.81 10.60 0.00 0.39 5.32 0.00 0.41

0.9 5 32 1.45 0.41 0.81 6.86 0.00 0.36 3.50 0.00 0.36

0.9 10 36 3.77 1.10 0.73 17.19 0.00 0.51 6.96 0.00 0.52

0.9 10 54 0.59 1.41 0.80 7.02 0.00 0.43 2.96 0.00 0.44

0.9 10 72 0.28 1.05 0.84 4.09 0.00 0.38 1.47 0.00 0.39

0.9 15 56 5.25 0.74 0.82 16.00 0.00 0.53 6.12 0.00 0.54

0.9 15 84 0.57 1.52 0.81 5.77 0.00 0.43 2.03 0.01 0.44

0.9 15 112 0.17 1.17 0.85 2.65 0.00 0.41 0.89 0.00 0.40

1.0 2 4 25.70 1.19 0.33 41.28 0.00 0.20 23.18 2.88 0.38

1.0 2 6 21.17 1.11 0.33 28.34 0.00 0.23 19.65 3.58 0.30

1.0 2 8 14.54 1.34 0.44 21.91 0.00 0.23 17.16 5.99 0.25

1.0 3 8 15.40 0.53 0.54 29.46 0.00 0.34 15.94 3.87 0.44

1.0 3 12 7.17 0.50 0.62 20.33 0.00 0.33 11.15 4.53 0.36
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Table 6 continued

Util #OR #elec breaks B I M BIM + ex
Wait Over Ontime Wait Over Ontime Wait Over Ontime

1.0 3 16 4.87 0.49 0.69 13.64 0.00 0.31 8.64 5.92 0.33

1.0 5 16 11.12 1.23 0.66 29.00 0.04 0.42 12.19 4.82 0.50

1.0 5 24 4.60 1.02 0.71 13.50 0.00 0.40 6.38 6.15 0.40

1.0 5 32 2.67 0.90 0.75 8.57 0.00 0.35 4.52 7.58 0.35

1.0 10 36 9.44 1.63 0.68 23.23 1.04 0.49 9.41 4.91 0.55

1.0 10 54 3.17 1.90 0.67 9.72 0.72 0.42 3.88 7.07 0.45

1.0 10 72 1.76 2.20 0.68 5.51 0.19 0.38 2.10 8.56 0.37

1.0 15 56 9.19 2.58 0.65 20.70 2.20 0.51 7.93 5.61 0.54

1.0 15 84 2.96 2.49 0.62 8.06 1.83 0.44 2.98 7.04 0.45

1.0 15 112 1.29 2.60 0.62 3.74 1.07 0.41 1.28 7.83 0.41

6.74 0.94 0.68 14.80 0.16 0.38 8.17 1.92 0.41

Table 7 Results for stochastic
elective surgeries with σ ∗ = 20

Util #OR #elec breaks B I M BIM + ex
Wait Over Ontime Wait Over Ontime Wait Over Ontime

0.8 2 4 21.27 1.01 0.42 28.54 0.00 0.25 19.39 0.13 0.32

0.8 2 6 16.18 1.11 0.44 20.47 0.00 0.29 15.87 0.13 0.29

0.8 2 8 13.01 3.13 0.50 17.06 0.00 0.31 14.23 0.66 0.27

0.8 3 8 10.07 3.12 0.61 18.70 0.00 0.35 10.13 0.00 0.40

0.8 3 12 5.55 1.87 0.65 11.79 0.00 0.35 7.35 0.28 0.36

0.8 3 16 4.30 1.94 0.70 9.14 0.00 0.34 6.10 0.88 0.33

0.8 5 16 2.29 3.36 0.73 13.26 0.00 0.45 5.04 0.00 0.48

0.8 5 24 1.47 4.44 0.77 6.79 0.00 0.39 3.22 1.08 0.38

0.8 5 32 1.32 6.12 0.75 4.74 0.02 0.35 2.40 0.83 0.34

0.8 10 36 0.34 4.92 0.76 6.81 0.10 0.52 2.06 0.13 0.53

0.8 10 54 0.25 6.04 0.77 2.68 0.09 0.42 0.87 0.38 0.41

0.8 10 72 0.22 6.84 0.73 1.66 0.19 0.38 0.59 1.40 0.36

0.8 15 56 0.34 5.60 0.75 5.09 0.03 0.52 1.26 0.18 0.52

0.8 15 84 0.08 6.29 0.75 1.31 0.13 0.45 0.34 0.62 0.44

0.8 15 112 0.04 8.51 0.72 0.73 0.39 0.39 0.18 1.29 0.38

0.9 2 4 24.07 2.26 0.36 34.65 0.00 0.20 21.11 2.31 0.33

0.9 2 6 18.41 2.71 0.40 23.67 0.00 0.27 17.76 2.28 0.29

0.9 2 8 14.70 2.47 0.46 19.83 0.00 0.29 16.01 3.08 0.25

0.9 3 8 13.08 2.17 0.55 22.75 0.00 0.35 12.52 1.55 0.40

0.9 3 12 7.13 4.00 0.62 15.95 0.00 0.31 9.20 4.64 0.35

0.9 3 16 5.71 2.09 0.66 10.97 0.00 0.33 7.24 6.09 0.32

0.9 5 16 7.65 3.88 0.67 18.50 0.10 0.41 7.21 1.96 0.46

0.9 5 24 3.40 3.55 0.69 8.61 0.03 0.39 3.81 2.91 0.40

0.9 5 32 2.71 4.96 0.67 6.23 0.29 0.33 3.17 7.80 0.33

0.9 10 36 2.48 6.28 0.65 10.25 1.21 0.49 3.40 2.77 0.49

0.9 10 54 0.89 8.57 0.65 4.12 1.66 0.41 1.24 5.13 0.42

0.9 10 72 0.69 9.32 0.63 2.22 1.32 0.37 0.75 8.19 0.37

0.9 15 56 2.36 5.30 0.66 7.82 1.55 0.51 2.17 2.64 0.52

0.9 15 84 0.48 9.68 0.64 2.22 1.88 0.45 0.52 4.85 0.44

0.9 15 112 0.31 11.54 0.58 1.14 3.25 0.39 0.26 9.61 0.38
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Table 7 continued Util #OR #elec breaks B I M BIM + ex
Wait Over Ontime Wait Over Ontime Wait Over Ontime

1.0 2 4 26.26 2.58 0.33 39.97 0.00 0.19 22.09 8.32 0.36

1.0 2 6 21.85 3.89 0.33 28.65 0.00 0.23 18.61 16.40 0.30

1.0 2 8 16.91 5.13 0.43 23.96 0.00 0.26 16.93 20.08 0.24

1.0 3 8 17.00 4.36 0.48 30.82 0.00 0.28 14.58 16.39 0.39

1.0 3 12 8.66 4.18 0.58 17.81 0.00 0.34 9.81 14.45 0.39

1.0 3 16 6.68 3.91 0.64 12.76 0.00 0.34 7.72 20.52 0.36

1.0 5 16 9.92 8.37 0.55 23.25 1.92 0.39 8.77 17.10 0.45

1.0 5 24 5.64 7.27 0.59 11.01 0.43 0.37 4.88 22.37 0.40

1.0 5 32 4.29 7.95 0.57 7.24 1.32 0.35 3.64 27.36 0.34

1.0 10 36 6.04 15.06 0.57 14.26 10.94 0.48 4.70 21.12 0.50

1.0 10 54 2.71 15.72 0.53 5.35 9.21 0.42 1.79 25.50 0.42

1.0 10 72 1.97 17.67 0.49 3.10 8.49 0.36 0.94 32.50 0.37

1.0 15 56 4.68 16.45 0.58 11.89 13.25 0.50 3.53 20.61 0.51

1.0 15 84 1.54 19.89 0.50 3.41 15.46 0.44 0.83 28.60 0.44

1.0 15 112 0.99 20.90 0.46 1.55 15.36 0.38 0.39 31.44 0.38

7.02 6.59 0.59 12.73 1.97 0.37 6.99 8.81 0.39

vice within 30 minutes for about nine out of ten emergencies
and more than four out of five emergencies can be serviced
within 15minutes. This is a relevant difference since a service
within 15 minutes will typically be sufficient for accepting
an emergency.

In order to test the sensitivity of the experimental results
against the background of a dynamic and uncertain environ-
ment, we also studied the performance of the approaches
under the assumption of uncertain surgery times of elective
surgeries. For this purpose we introduced a normally dis-
tributed error term with a mean of 0 and a standard deviation
of 10 and 20 minutes, respectively. Schedules were planned
under the assumption of deterministic surgery times, which
is typical for practical settings, but the actual surgery lengths
of electives were then adjusted by the error term during the
simulation, which means that some elective surgeries might
have to start later than planned if the OR is not free on time.
Tables 6 and 7 display averagewaiting times for these experi-
ments for breaks, BI M and BI M+ex , since the exclusive
policy is not affected by changes in elective surgery times.
Additionally, the tables report the average unplanned over-
time of each OR in minutes (overtime Over), which results
from elective surgeries exceeding the limit of the time hori-
zon of 480 minutes, and the percentage of electives that were
actually executed on time (Ontime).

The performancemeasured in averagewaiting times tends
to improve for the BI M and BI M + ex heuristics with
a higher standard deviation of elective surgeries. This is
explained by the increased overtime whenever uncharacter-
istically long surgeries are carried out towards the end of the
planning horizon, such that this effectively reduces capacity

utilization within the planning horizon. The performance of
breaks deteriorates slightly with a higher variance, because
unplanned extensions in the duration of elective surgeries
strongly interact with the even distribution of breaks over
time which overcompensates for the lower capacity utiliza-
tion, especially in the high variance case.

One can further see that the more even distribution of
electives over all ORs and time in breaks has the additional
benefit of facilitating punctual starts of elective surgeries in
themajority of cases.Over all testedmediumvariance scenar-
ios, 68% of electives start on time, compared to only around
40% for the other procedures. Even in the high variance case,
59% of electives start on time. As a consequence, elective
schedules determined by breaks will tend to be much more
robust not only with respect to the start times of emergencies,
but also with respect to unplanned interferences with the start
times of elective surgeries.

7 Conclusion

In this work, we investigate deterministic scheduling poli-
cies that allow a timely service of uncertain emergencies.
We showed that evenly distributing non-utilized capacity in
the formof breaks over the planning horizon and all resources
can significantly reduce waiting times for emergency jobs.
Our computational results show that a simple construction
heuristic can significantly reduce waiting times in compari-
son to approaches from the literature. An interesting aspect
was furthermore that expected waiting times for emergency
jobs are strongly dependent on the combination of number
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of resources, number of jobs per resource, and utilization.
This might lead to strategies for job mix and scheduling
which lead at least for special time intervals or a subset of
resources to a good schedule from the point of view of high-
priority emergency jobs (this might be useful especially in
OR scheduling). Moreover, improvement heuristics such as
metaheuristics might improve the results.

In the context of OR scheduling, we have not considered
the pre- and post-operative area. However, our policy sched-
ules surgery starts as evenly as possible over the surgery
day. If we assume preparation times to be independent of
kind and duration of the surgery, then the preoperative work-
load is smoothened simultaneously. Although surgeries have
different durations, we want to have breaks with the same
length. So we also smooth the time between two surgery
ends and therefore indirectly post-operative area’s workload
(compare also Calegari et al., 2020). Dexter et al. (2005) and
Marcon and Dexter (2006) considered surgery scheduling’s
influence on the post-operative area, especially the PACU.
Furthermore, we assumed the interarrival time of emergency
patients as constant. In real applications, the interarrival time
might be longer in the night hours than in the daytime. This
yields to a further question for future research. The transi-
tions from a higher amount of reserved time to a lower and
vice versamight be investigated theoretically or in simulation
studies.

Hans et al. (2008) scheduled electives with random
durations to surgery days. Furthermore, we have not con-
sidered how much time should be reserved for emergencies.
Approaches according to this are based on historic data (see
Lamiri et al., 2008 and van Houdenhoven et al., 2007) or
queueing theory (see Zonderland et al., 2010). Both are inter-
esting aspects to include into our setting in future research.
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A Proof of Theorem 1

Set ρ = λ
cμ . The expected number of emergency jobs in

the system (M/M/c; Barbeau and Kranakis Barbeau and

Kranakis (2007)) is
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)(c+1)

(c + 1)!
(
1 − λ

(c+1)μ

)

− (1 − ρ) (cμ − λ)

(
λ
μ

)c

c! (1 − ρ)
> 0

and

c−1∑

k=0

(
λ
μ

)k

k!
((

1 − λ

(c + 1)μ

)

((c + 1)μ − λ) − (1 − ρ) (cμ − λ)

)

︸ ︷︷ ︸
> 0

+
(

1 − λ

(c + 1)μ

)

((c + 1)μ − λ)

(
λ
μ

)c

c!

+
(

1 − λ

(c + 1)μ

)

((c + 1)μ − λ)

(
λ
μ

)(c+1)

(c + 1)!
(
1 − λ

(c+1)μ

)

− (1 − ρ) (cμ − λ)

(
λ
μ

)c

c! (1 − ρ)

=
(

1 − λ

(c + 1)μ

)

((c + 1)μ − λ)

×
⎛

⎜
⎝

c∑

k=0

(
λ
μ

)k

k! +
(

λ
μ

)c+1

(c + 1)!
(
1 − λ

(c+1)μ

)

⎞

⎟
⎠

− (1 − ρ) (cμ − λ)

⎛

⎜
⎝

c−1∑

k=0

(
λ
μ

)k

k! +
(

λ
μ

)c

c! (1 − ρ)

⎞

⎟
⎠ > 0

follow. Further, we get

(
λ
μ

)(c+1)

(
1 − λ

(c+1)μ

)
((c + 1)μ − λ)(c + 1)!

(
∑c

k=0

(
λ
μ

)k
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(

λ
μ

)(c+1)

(c+1)!
(
1− λ
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)

)

<
1

c + 1

(
λ
μ

)c

(1 − ρ) (cμ − λ)c!
(

∑c−1
k=0

(
λ
μ

)k

k! +
(

λ
μ

)c

c!(1−ρ)

) . (35)

Together with

(
λ
μ

)c

(1 − ρ) (cμ − λ)c!
(

∑c−1
k=0

(
λ
μ

)k

k! +
(

λ
μ

)c

c!(1−ρ)

) > 0

the factor 1
c+1 in (35) implies the second inequality in

0
(35)
>

(
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>

(
λ
μ
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(
1 − λ
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(
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k=0

(
λ
μ

)k

k! +
(

λ
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(c+1)!
(
1− λ
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−
(
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(
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k! +
(
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) . (36)
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Let p j ≥ 0, j = 0, . . . ,O, such that

o =
O∑

j=0

p j · j (37)

and

O∑

j=0

p j = 1 (38)

hold, i.e. p j is the probability, or rather the share of time, that
j resources are reserved for emergencies (such a sequence
exists, since o is the mean number of resources reserved for
emergencies). If the probabilities p j are positive for anynum-
ber of resources less than �o� or higher than �o�, the expected
waiting time can be reduced by the following procedure:

(a) Set j = arg mink:�o��=k �=�o�∧pk>0 pk . If j < o, go to (b),
else to (c).

(b) For any kwith pk > 0, and k > o, set p j+1 := p j+1+p j ,
pk := pk − p j , pk−1 := pk−1 + p j (such a k exists
due to (37) and the choice of j), and p j := 0. Then,
(37) and (38) are still fulfilled and because of (36) this
reduces the expected waiting time. Go back to (a) if any
�o� �= k �= �o� with pk > 0 exists.

(c) For any kwith pk > 0, and k < o, set p j−1 := p j−1+p j ,
pk := pk − p j , pk+1 := pk+1 + p j (such a k exists
due to (37) and the choice of j), and p j := 0. Then,
(37) and (38) are still fulfilled and because of (36) this
reduces the expected waiting time. Go back to (a) if any
�o� �= k �= �o� with pk > 0 exists.

Hence, the expected waiting time of emergencies is minimal
if always o resources are reserved for them or if o /∈ N0,
always �o� or �o� resources are reserved for emergencies
such that the mean number of resources reserved for emer-
gencies is o.

B Proof of Theorem 2

We use the mean queue length of an M/G/1 system to com-
pute the expected waiting time and show that it is minimal
if the service time’s variance is minimal. Let w.l.o.g. a unit
of time be scaled such that λ = 1. Let G be the distribution
of the beforehand scheduled BIIs, i.e. the time between two
successive BIMs, and D the average length of a BII.

The mean queue length (including service) in an M/G/1
system is (Haigh 2013 p. 208 and Asmussen 2003 p. 237)

ρ + ρ2 + λ2var(s)

2(1 − ρ)
,

where var(s) is the variance of the service time distribution
s and ρ = λ/μ. With D = 1/μ and ρ = λD this implies

λD + (λD)2 + λ2var(s)

2(1 − λD)

as the mean queue length (including service). From this, we
get the dwell time (Little, 1961)

λD + (λD)2+λ2var(s)
2(1−λD)

λ
,

and the expected waiting time

λD + (λD)2+λ2var(s)
2(1−λD)

λ
− D = D + λD2 + λvar(s)

2(1 − λD)
− D

= λD2 + λvar(s)

2(1 − λD)
.

An arriving emergency job must wait even if the queue is
empty until the next BIM, so we have to add D/2 weighted
with the probability that the queue is empty when an emer-
gency job arrives to the waiting time. The probability of an
empty queue is 1 − ρ = 1 − λD (Willig, 1999). We get

λD2 + λvar(s)

2(1 − λD)
+ (1 − λD)

D

2
.

λ = 1 implies the waiting time function

W (D, var(s)) := D2 + var(s)

2(1 − D)
+ (1 − D)

D

2

= D3 − D2 + D + var(s)

2(1 − D)
.

Hence, var(s) < var(s′) implies

W (D, var(s)) < W (D, var(s′)).

Since var(s) ≥ 0, the theorem follows.
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