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Abstract

The main objective of this paper is to propose a feasible, model free estimator of the predictive

density of integrated volatility. In this sense, we extend recent papers by Andersen, Bollerslev,

Diebold and Labys (2003), and by Andersen, Bollerslev and Meddahi (2004, 2005), who address

the issue of pointwise prediction of volatility via ARMA models, based on the use of realized

volatility. Our approach is to use a realized volatility measure to construct a non parametric

(kernel) estimator of the predictive density of daily volatility. We show that, by choosing an ap-

propriate realized measure, one can achieve consistent estimation, even in the presence of jumps

and microstructure noise in prices. More precisely, we establish that four well known realized

measures, i.e. realized volatility, bipower variation, and two measures robust to microstructure

noise, satisfy the conditions required for the uniform consistency of our estimator. Furthermore,

we outline an alternative simulation based approach to predictive density construction. Finally,

we carry out a simulation experiment in order to assess the accuracy of our estimators, and pro-

vide an empirical illustration that underscores the importance of using microstructure robust

measures when using high frequency data.
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1 Introduction

In a recent paper, Andersen, Bollerslev, Diebold and Labys (2003) suggest a novel, model free,

approach for forecasting daily volatility. They advocate the use of simple, reduced form time series

models for realized volatility, where the latter is constructed by summing up intradaily squared

returns. The predictive ability of a given model is measured via the R2 from the autoregressive or

ARMA models constructed using (the log of) realized volatility. Their findings suggest that these

ARMA based forecasts for realized volatility outperform most of the volatility models commonly

used by practitioners, such as different varieties of GARCH models, for example. The rationale

behind their approach is that, as the time interval between successive observations shrinks, realized

volatility converges to the “true” daily volatility, whenever the underlying asset price is a continuous

semimartingale. Although tick by tick and ultra high frequency data are now available, they

are often contaminated by microstructure noise; therefore, in order to account for this potential

problem, volatility has typically been constructed using 5 minutes interval returns, say, or even lower

frequency observations. Hence, these reduced form time series forecasts for realized volatility imply

a loss in efficiency relative to the infeasible optimal forecasts for the daily volatility process, based

on the entire volatility path. For the class of eigenfunction stochastic volatility models of Meddahi

(2001), an analytical expression for such loss in efficiency is provided by Andersen, Bollerslev and

Meddahi (2004). In particular, they show that the error associated with realized volatility induces

a downward bias in the estimated degree of predictability obtained via the R2 approach mentioned

above. To overcome this issue, Andersen, Bollerslev and Meddahi (2005) develop a general, model

free, feasible procedure to compute the adjusted R2 used in model evaluation. Galbraith and

Zinde Walsh (2006) use realized volatility measure to obtain consistent Least Square and Least

Absolute Deviation deviation estimators of GARCH parameters, regardless the implied volatility

measurement error. More recently, Andersen, Bollerslev and Meddahi (2006), Aı̈t-Sahalia and

Mancini (2006) and Ghysels and Sinko (2006) have considered ARMA models constructed using

microstructure robust measures. All of the papers mentioned above are concerned with pointwise

prediction of volatility via ARMA models based on realized measures. On the other hand, there

are situations in which interest may focus on predictive conditional densities, as such densities yield

information not only on the conditional mean of volatility, but also on all conditional aspects of

the predictive distribution. An important reason for paying attention to predictive densities of

volatility is the recent development of numerous volatility-based derivative products. Examples

include volatility options on various currencies such as the British pound and the Japanese Yen;

and VOLAX futures, which are based upon the implied volatility of DAX index options.

The main objective of this paper is to propose a feasible, model free estimator of the conditional

predictive density of integrated volatility.

From Meddahi (2003), we know that, within the context of eigenfunction stochastic volatility

models, integrated volatility follows an ARMA(p, p) structure, where p denotes the number of

eigenfunctions. However, we only have a complete characterization of the autoregressive part of
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the model. Furthermore, we do not know the marginal distribution of the innovation. For these

reasons, we cannot exploit the ARMA representation in order to construct predictive densities for

integrated volatility. Thus, we need to follow a different route. Our approach is to construct a

kernel estimator of the density of daily volatility (based on a given realized volatility measure),

conditional on recent observed values of the realized measure itself. We provide general conditions

on the moments of the measurement error between the realized measure and integrated volatility.

Given these conditions, we define a sequence of bandwidth parameters under which the kernel

estimator of the conditional density is uniformly consistent. We also provide a uniform rate of

convergence, which depends on the bias and variance of the kernel estimator, as well as on the

measurement error. Finally, we derive the relative rate, in terms of the number of days, T, at which

the bandwidth parameter and the moments of the measurement error have to approach zero, in order

to ensure that all three components (bias, variance and contribution of measurement error) approach

zero at the same speed. Also, we show that four well known realized measures (realized volatility;

bipower variation, Barndorff-Nielsen and Shephard, 2004, 2006; and the robust subsampled realized

volatility measures of (i) Zhang, Mykland and Aı̈t-Sahalia, 2005 and (ii) Aı̈t-Sahalia, Mykland and

Zhang, 2006, Zhang, 2006 and Barndorff-Nielsen, Hansen, Lunde and Shephard, 2006a,b) satisfy

the conditions on the measurement error required for the uniform consistency of the estimator. This

means that we can provide a feasible model free estimator of the conditional predictive density of

integrated volatility even in presence of jumps or microstructure noise.

Suppose that we knew the data generating process for the instantaneous volatility. While this

information suffices to characterize the autoregressive structure of the integrated volatility process,

often it does not suffice to recover the “entire” data generating process. Nevertheless, in this

case we can construct a kernel density estimator using the integrated volatility values simulated

under the null model (and “evaluated” at the estimated parameters) instead of using a realized

measure. Under mild regularity conditions, and if the null model is correct, as the sample size

and the number of simulations grow at an appropriate rate, the conditional density based on kernel

estimators of simulated volatility converges to the “true” conditional density of integrated volatility.

A natural question is whether there is some advantage, in terms of a faster rate of convergence, in

using simulated volatility rather than realized measures. We show that the answer to this question

depends on the relative rate at which the number of intradaily observations, M, grows, relative to

the number of days T, and on the specific realized measure used.

In order to evaluate the accuracy of our proposed estimator constructed using realized measures,

we carry out a simulation experiment in which the pseudo true predictive density is compared

with the one estimated using our methodology. This is done for various daily sample sizes and

for a variety of different intraday data frequencies and for different data generating processes,

including jumps and microstructure noise. As expected, our subsampled realized volatility measures

yield substantially more accurate predictions than the other measures, when data are subject to
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microstructure noise. Furthermore, the predictive estimator is seen to perform quite well, overall,

based on the examination of mean square error loss. We also compare the relative accuracy of

predictive densities based on realized measures and on simulated integrated volatility. Finally, we

provide an empirical illustration that underscores the importance of using microstructure robust

measures when using data sampled at a high frequency.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 provides

a uniform rate of convergence for the conditional density estimator based on a given realized

measure. Section 4 provides a uniform rate of convergence for the conditional density estimator

based on simulated integrated volatility, for the case in which we know the data generating process

of the instantaneous volatility process. Section 5 provides conditions under which realized volatility,

bipower variation and the microstructure robust measures of realized volatility satisfy the conditions

on the measurement error that are required for the uniform consistency of the kernel estimator

based on realized measures. Section 6 reports the results from our simulation experiment, and our

empirical illustration is discussed in Section 7. Finally, Section 8 contains some concluding remarks.

All proofs are gathered in the Appendix.

2 The Model

The observable state variable, Yt = log St, where St denotes the price of a financial asset or the

exchange rate between two currencies, is modelled as a jump diffusion process with constant drift

term and variance term modelled as a measurable function of a latent factor, ht, which is also

generated by a diffusion process. Thus,

dYt = mdt + dzt +
√

σ2
t

(√
1− ρ2dW1,t + ρdW2,t

)
, (1)

where W1,t and W2,t refer to two independent Brownian motions and volatility is modelled according

to the eigenfunction stochastic volatility model of Meddahi (2001), so that

σ2
t = ψ(ht) =

p∑

i=1

aiPi(ht)

dht = µ(ht,θ)dt + σ(ht, θ)dW2,t, (2)

for some θ ∈ Θ, where Pi (ht) denotes the i -th eigenfunction of the infinitesimal generator A
associated with the unobservable state variable ht.1 The pure jump process dzt specified in (1) is

1The infinitesimal generator A associated with ht is defined by

Aφ (ht) ≡ µ (ht) φ′ (ht) +
σ2 (ht)

2
φ′′ (ht)

for any square integrable and twice differentiable function φ (·). The corresponding eigenfunctions Pi (ht) and eigen-

values −λi are given by APi (ht) = −λiPi (ht).
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such that

Yt = mt +
∫ t

0

√
σ2

s

(√
1− ρ2dW1,s + ρdW2,s

)
+

Nt∑

i=1

ci,

where Nt is a finite activity counting process, and ci is a nonzero i.i.d. random variable, independent

of Nt. By modeling Nt as a finite activity counting process, in this paper we consider the case of a

finite number of jumps occurring over any fixed time span.

As is customary in the literature on stochastic volatility models, the volatility process is assumed

to be driven by (a function of) the unobservable state variable ht. Rather than assuming an ad

hoc function for ψ (·) (such as, for example, the square root function), the eigenfunction stochastic

volatility model adopts a more flexible approach. In fact ψ (·) is modeled as a linear combination

of the eigenfunctions of A associated with ht.2

The generality and embedding nature of the approach just outlined stems from the fact that

any square integrable function ψ (ht) can be written as a linear combination of the eigenfunctions

associated with the state variable ht. As a result, most of the widely used stochastic volatility

models can be derived as special cases of the general eigenfunction stochastic volatility model. For

more details on the properties of these models, see Meddahi (2001, 2003). Finally, notice that we

have assumed a constant drift term.3

In what follows, we assume to have MT observations for (1), consisting of M intradaily ob-

servations for T days. We allow for the possibility that proces are recorded up to a measurement

error, by observing

Xt+j/M = Yt+j/M + εt+j/M , t = 1, . . . , T and j = 1, . . . , M, (3)

where

εt+j/M ∼ i.i.d.(0, ν) and E(εt+j/MYs+i/M ) = 0 for all t, s, j, i. (4)

Thus, according to (3), the observed transaction price can be decomposed into the efficient one

plus a “noise” due to measurement error, which captures generic microstructure effects.

The microstructure noise is assumed to be identically and independently distributed and inde-

pendent of the underlying prices. This is consistent with the model considered by Aı̈t-Sahalia, Myk-

land and Zhang (2005), Zhang, Mykland and Aı̈t-Sahalia (2005), Bandi and Russell (2004, 2006).4

Needless to say, when ν = 0, then εt+j/M = 0 (almost surely), and therefore Xt+j/M = Yt+j/M .

2The ai’s are real numbers and p may be infinite. For normalization purposes, it is further assumed that P0 (ht) = 1

and that var (Pi (ht)) = 1, for any i 6= 0. When p is infinite, we also require
P∞

i=1 ai < ∞.
3This is in line with Bollerslev and Zhou (2002), who assume a zero drift term and justify this with the fact that

there is very little predictive variation in the mean of high frequency returns, as supported the empirical findings of

Andersen and Bollerslev (1997). Indeed, the test statistics suggested below do not require the knowledge of the drift

term. However, some of the proofs make use of the fact that the drift is constant.
4Recently, Aı̈t-Sahalia, Mykland and Zhang (2006), and Barndorff-Nielsen, Hansen, Lunde and Shephard (2006a)

allow for some dependence in the microstructure noise, while Awartani, Corradi and Distaso (2006) allow for corre-

lation between the underlying price process and the microstructure noise.
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The daily integrated volatility process at day t is defined as

IVt =
∫ t

t−1
σ2

sds. (5)

Since IVt is not observable, different realized measures, based on the sample Xt+j/M , t = 1, . . . , T

and j = 1, . . . , M, are used as proxies for IVt. The realized measure, say RMt,M , is a noisy measure

of the true integrated volatility process; in fact

RMt,M = IVt + Nt,M ,

where Nt,M denotes the measurement error associated with the realized measure RMt,M . Note

that, in the case where ν > 0, any realized measure of integrated volatility is contaminated by two

measurement errors, given that the realized measure is constructed using contaminated data.

In the paper, we derive consistent estimators of predictive conditional densities of integrated

volatility as follows. First, we construct functionals of kernel estimators of conditional densities,

based on the observable (but noisy) realized measure RMt,M , instead of the unobservable IVt.

Second, we provide primitive conditions on the measurement error Nt,M , in terms of its moments

structure, ensuring that the kernel conditional density estimators based on RMt,M are uniformly

consistent for the conditional density of IVt. Third, we adapt the given primitive conditions on

Nt,M to the four considered realized measures of integrated volatility: namely,

(a) realized volatility, defined as:

RVt,M =
M−1∑

j=1

(
Xt+(j+1)/M −Xt+j/M

)2 ; (6)

(b) normalized bipower variation, given by:

(µ1)−1BVt,M = (µ1)−1 M

M − 1

M−1∑

j=2

∣∣Xt+(j+1)/M −Xt+j/M

∣∣ ∣∣Xt+j/M −Xt+(j−1)/M

∣∣ , (7)

where µ1 = E |Z| = 21/2Γ(1)/Γ(1/2) and Z is a standard normal random variable;

(c) a microstructure robust subsampled based realized volatility measure, R̂V t,l,M , suggested by

Zhang, Mykland and Ait-Sahalia (2005), defined as

R̂V t,l,M = RV avg
t,l,M − 2lν̂t,M , (8)

where

ν̂t,M =
RVt,M

2M
=

1
2M

M−1∑

j=1

(
Xt+ j

M
−Xt+ j−1

M

)2
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and

RV avg
t,l,M =

1
B

B∑

b=1

RV b
t,l =

1
B

B∑

b=1

l−1∑

j=1

(
X

t+ jB+b
M

−X
t+

(j−1)B+b
M

)2
. (9)

Here Bl ∼= M, l = O(M1/3), l denotes the subsample size and B the number of subsamples.

The logic underlying (8) is the following: first construct B realized volatility measures using

l non overlapping subsamples, then take an average of this B realized volatility measures and

correct this average by an estimator of the bias term due to market microstructure, where

the bias estimator is constructed using a finer grid;

(d) another microstructure robust subsampled based realized volatility, R̃V t,e,M , which has been

proposed by Zhang (2006), Aı̈t-Sahalia, Mykland and Zhang (2006). See also, Barndorff-

Nielsen, Hansen, Lunde and Shephard (2006a,b) who suggest asymptotically equivalent esti-

mators. Define,

R̃V t,e,M =
e∑

i=1

aiR̃V t,ei,M +
RVt,M

M

=
e∑

i=1

ai
1
ei




M−ei∑

j=1

(
X

t+
j+ei

M

−Xt+ j
M

)2


 +

RVt,M

M
, (10)

so that R̃V t,e,M is a linear weighted combination of e realized volatilities compute over non-

overlapping subsamples of ei observations each, plus a bias correction term. For ei = i,

ai = 12
i

e2

(
i
e − 1

2 − 1
2e

)
(
1− 1

e2

) .

Zhang (2006) has shown that if
√

M/e → π, 0 < π < ∞, then M1/4
(
R̃V t,e,M − IVt

)
is

OP (1), and, in the case of finite time span, satisfies a central limit.

In particular, for each considered realized measure we will provide regularity conditions about

the relative speed at which T, M have to go to infinity.

3 A Predictive Density Estimator for Volatility Based on the Use

of Realized Volatility Measures

Our objective is to construct a nonparametric estimator of the density of integrated volatility,

conditional on a given realized volatility measure actually observed at time T. Define the condi-

tional density kernel estimator based on realized measure, f̂RMT+1,M |RMT,M
(x|RMT,M ), as the ratio

of the estimators of the joint density, f̂RMT+1,M ,RMT,M
(x,RMT,M ), and of the marginal density,
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f̂RMT,M
(RMT,M ),

f̂RMT+1,M |RMT,M
(x|RMT,M ) =

1
Tξ2

2,T

∑T−1
t=1 K

(
RMt+1,M−x

ξ2,T
,

RMt,M−RMT,M

ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−RMT,M

ξ1,T

)

=
f̂RMT+1,M ,RMT,M

(x,RMT,M )

f̂RMT,M
(RMT,M )

(11)

Notice that we use different bandwidth sequences, ξ2,T and ξ1,T , for the joint and marginal density

estimators.5

In the sequel, we will need the following assumptions.

Assumption A1: There is a sequence bM , with bM →∞ as M →∞, such that, uniformly in t,

(i) E (Nt,M ) = O
(
b−1
M

)
,

(ii) Var (Nt,M ) = O
(
b−1
M

)

Assumption A2: ht is a time reversible process.

Assumption A3: the spectrum of the infinitesimal generator operator A of ht is discrete, and

denoted by 0 < λ1 < . . . < λi < . . . < λN , where λi is the eigenvalue associated with the i − th

eigenfunction Pi(ht).

Assumption A4:

(i) the kernel, K, is a symmetric, nonnegative, continuous function with bounded support

[−Γ, Γ]2; and is at least twice continuously differentiable on the interior of its support, satis-

fying: ∫
K(s)ds = 1,

∫
sK(s)ds = 0

Let K
(j)
i be the j − th derivative of the kernel with respect to the i−th variable. Then,

K
(j)
i (−Γ) = K

(j)
i (Γ) = 0, for i = 1, 2, j = 1, . . . , J, J ≥ 1.

(ii) the kernel K is a symmetric, nonnegative, continuous function with bounded support [−Γ, Γ],

at least twice differentiable on the interior of its support, satisfying:
∫

K(s)ds = 1,

∫
sK(s)ds = 0.

Let K(j) be the j−th derivative of the kernel. Then, K(j)(−Γ) = K(j)(Γ) = 0, for j = 1, . . . , J,

J ≥ 1.

5In the sequel, we consider one step ahead predictive densities; however, the case of τ−step ahead predictive

densities, for τ finite, can be treated in an analogous manner. Multistep ahead estimators are analyzed in the

empirical illustration.
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(iii) fIVT
(·) and fIVT+1|IVT

(·|·) are absolutely continuous with respect to the Lebesgue measure in

R+ and R2+, respectively, are ω−times continuously differentiable on R and R2, with ω ≥ 2,

are bounded and have bounded first derivatives.

Note that, because of assumption A2, IVt is a strictly stationary process, and so fIVT+1|IVT
(·|·) =

fIVt+1|IVt
(·|·) and fIVT

(·) = fIVt(·), for t = 1, 2, . . . , T . We can now state the following.

Theorem 1. Let assumptions A1-A4 hold. Then, for all RMT,M such that f̂RMT,M
(RMT,M ) > dT ,

with dT = o(1), uniformly in x ∈ R+,

∣∣∣f̂RMT+1,M |RMT,M
(x|RMT,M )− fIVT+1|IVT

(x|RMT,M )
∣∣∣

= OP (b−1/2
M ξ−3

2,T d−1
T ) + OP (b−1/2

M ξ−2
1,T d−2

T ) + OP (T−1/2ξ−2
2,T d−1

T )

+OP (T−1/2ξ
−1/2
1,T d−2

T ) + O
(
ξ2
2,T d−1

T

)
+ O

(
ξ2
1,T d−2

T

)
. (12)

Note that the first two terms above reflect the measurement error due to the fact that we compute

densities using a realized measure instead of the “true integrated volatility”, the second two terms

reflect the variance component and the last two terms the bias component associated with any

nonparametric estimator.

In the proposition below we provide conditions on the relative rate of growth of ξ1,T , ξ2,T , dT , bM

relative to T, under which (i) the order of magnitude of the second, fourth and sixth terms is

smaller than the order of the other terms, so that the total error component due to the estimation

of the marginal density is negligible; (ii) the first, third and fifth terms approach zero uniformly in

x ∈ R+, so that we have a uniform rate; (iii) the measurement error component is of the same or

smaller order than the variance and the bias components, so that that it does not “slow down” the

convergence to the true conditional density.

Proposition 1. Let ξ1,T = cT−φ1 , ξ2,T = cT−φ2 , bM = cTψ, dT = cT−δ, ψ, δ ≥ 0, φ1 > φ2 > 0,

with c denoting a generic positive constant, and let assumptions of Theorem 1 hold. Then, for all

RMT,M such that f̂RMT,M
(RMT,M ) > dT , uniformly in x ∈ R+, 6

(a) if (i) φ2 < φ1 < 3/2φ2, and (ii) δ < min{3φ2 − 2φ1, 2(φ1 − φ2)},
∣∣∣f̂RMT+1,M |RMT,M

(x|RMT,M )− fIVT+1|IVT
(x|RMT,M )

∣∣∣
= OP (b−1/2

M ξ−3
2,T d−1

T ) + OP (T−1/2ξ−2
2,T d−1

T ) + O(ξ2
2,T d−1

T ); (13)

(b) if, in addition to (i), (ii) above, (iii) φ2 < 1
6 and (iv) ψ > 6φ2 + 2δ,

∣∣∣f̂RMT+1,M |RMT,M
(x|RMT,M )− fIVT+1|IVT

(x|RMT,M )
∣∣∣

6Theorem 1 and Proposition 1 deal with the case in which we condition only on current volatility, RMT,M . If

instead we would condition on say R MT,M , ..., RMT−(d−1),M , then the measurement error term, the variance and

the bias term would be OP (b
−1/2
M ξ

−(d+2)
2,T d−1

T ), OP (T−1/2ξ
−(d+1)
2,T d−1

T ), O(ξ2
2,T d−1

T ), respectively.
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= oP (1);

(c) if, in addition to (i)-(iv) above, (v) φ2 = 1
8 and (v) ψ ≥ 5/4,

∣∣∣f̂RMT+1,M |RMT,M
(x|RMT,M )− fIVT+1|IVT

(x|RMT,M )
∣∣∣

= OP (T−1/4d−1
T ).

First, from (a) above note that the error due to the variance component, i.e. the second term on

the right hand side of (13), is of a larger order of probability than the typical one occurring in the

pointwise case or when the supremum is taken over a bounded set (see, e.g., Bosq, Ch. 2, 1998). In

fact, in the pointwise case we would have OP

(
T−1/2ξ−1

2,T

)
, instead of OP

(
T−1/2ξ−2

2,T

)
. The reason

why, when taking the supremum on R+, we have a slower rate for the variance, comes from a

proof based on the Fourier transform of the kernel, firstly introduced by Bierens (1983) for regres-

sion functions with strong mixing processes and then extended to the case of generic derivatives

of density and/of regression functions for general near epoch dependent, possibly heterogeneous,

processes by Andrews (1990,1995).

Second, from (b) and (c) above we see that the faster the trimming parameter dT approaches

zero, the slower is the rate of convergence of the estimator of the conditional density. In fact, if

δ = 0 we have the fastest rate; however, in this case we have to “give up” constructing a predictive

density for all values of RMT,M such that f̂RMT+1,M |RMT,M
(x|RMT,M ) < c, where c is an arbitrarily

small positive constant .

Third, we note that when φ2 = 1
8 and ψ = 5

4 , all the error components, due to measurement

error, variance and bias, are of the same order and we get a “pseudo” optimal rate OP

(
T−

1
4 d−1

T

)
.

This requires that bM grows at a rate faster than T (later in the paper it will be shown that

bM = M for realized volatility and for bipower variation, while bM = M1/3 or M1/2 for the two

microstructure robust versions of realized volatility).

In practice, we have M intraday observations and T days, and once a realized measure has been

chosen, we know how bM grows with M. Thus, in practice we have to fix ψ, as it is implied by our

measure. First, it is immediate to see that, whenever ψ < 1 + 2φ2, then the measurement error

term converges slower than the variance term; in fact the former converges at rate T−1/2ψT 3φ2d−1
T ,

while the latter converges at rate T−1/2T 2φ2d−1
T . Therefore, for a given ψ, we define that value for

φ2 which equalizes the order of magnitude of the measurement error term and of the bias term.

Thus, we want to find φ2, such that −1/2ψ + 3φ2 = −2φ2; this gives

φ2 =
ψ

10
,

which implies a uniform convergence at rate T−
2ψ
10 .

Realized measures are by definition positive, thus in the neighborhood of the boundary are

downward biased, as some weight would be given also to negative observations. Hence, Theorem 1

and Proposition 1 apply only when x and RMT,M are not too close to the boundary.
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In order to overcome this issue, we can use local linear estimators (see e.g. Fan and Gijbels,

1997 and Fan and Yao, 2005).7Define

α̂T,M (x|RMT,M ) , β̂T,M (x|RMT,M )

= arg min
α,β

1
Tζ1T ζ2,T

T−1∑

t=1

(
K

(
RMt+1,M − x

ζ2,T

)
− α− β (RMt,M −RMT,M )

)2

W

(
RMt,M −RMT,M

ζ1,T

)
,

where K and W are two one-dimensional kernel functions satisfying A4(ii), and possibly W ≡ K.

Note that

α̂T,M (x|RMT,M ) =
1

Tζ1,T ζ2,T

T−1∑

t=1

K

(
RMt+1,M − x

ζ2,T

)
W

(
RMt,M −RMT,M

ζ1,T

)

×
(

sT,M,2(RMT,M )− (RMt,M −RMT,M ) sT,M,1(RMT,M )
sT,M,0(RMT,M )sT,M,2(RMT,M )− s2

T,M,2(RMT,M )

)
,

where

sT,M,j(RMT,M ) =
1

Tζ1,T

T−1∑

t=1

(
RMt,M −RMT,M

ζ1,T

)j

W

(
RMt,M −RMT,M

ζ1,T

)
, j = 0, 1, 2

Provided that W is a second order symmetric kernel, as T,M → ∞, sT,M,1(RMT,M ) P−→ 0, and

more precisely

α̂T,M (x|RMT,M ) =
1

Tζ1,T ξ2,T

T−1∑

t=1

K

(
RMt+1,M − x

ζ2,T

)
W

(
RMt,M −RMT,M

ζ1,T

)
1

sT,M,0(RMT,M )

+OP

(
b
−1/2
M ζ−2

1,T

)
+ OP

(
T−1/2ζ

−1/2
1,T

)
+ O

(
ζ2
1,T

)
. (14)

By an analogous argument as that used in the proof of Theorem 1, for all RMT,M such that

sT,M,0(RMT,M ) > dT , uniformly in x ∈ R+,

∣∣α̂T,M (x|RMT,M )− fIVT+1|IVT
(x|RMT,M )

∣∣

= OP

(
b
−1/2
M

(
ζ−2
1,T ζ−1

2,T + ζ−1
1,T ζ−2

2,T

)
d−1

T

)
+ OP

(
T−1/2ζ−1

1,T ζ−1
2,T d−1

T

)
+ O

(
ζ2
1,T d−1

T + ζ2
2,T d−1

T

)

+OP

(
b
−1/2
M ζ−2

1,T d−2
T

)
+ OP

(
T−1/2ζ

−1/2
1,T d−2

T

)
+ O

(
ζ2
1,T d−2

T

)
.

Also, if ζ2,T d−1
T → 0 and ζ2

1,T /
(
ζ2
2,T dT

)
→ 0, then, for all RMT,M such that sT,M,0(RMT,M ) > dT ,

uniformly in x ∈ R+,

∣∣α̂T,M (x|RMT,M )− fIVT+1|IVT
(x|RMT,M )

∣∣

= OP

(
b
−1/2
M ζ−2

1,T ζ−1
2,T d−1

T

)
+ OP

(
T−1/2ζ−1

1,T ζ−1
2,T d−1

T

)
+ O

(
ζ2
2,T d−1

T

)

7Alternatively, one can simply use boundary corrected kernel functions (see e.g. Müller, 1991). Local polynomial

estimators are in general preferrable, as they have better finite sample properties, because of their greater flexibility.
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Note that the first term on the RHS of (14) corresponds to a “standard” conditional density

estimator in which the joint density is constructed using the product kernel K = K × W and

different bandwidths for the dependent and the conditioning variables (ζ2,T and ζ1,T , respectively),

and the marginal density is constructed using the kernel W with bandwidth ζ1,T .

Of course, if one constructs predictive densities for log-volatility, then the boundary problem

does not arise. By Lemma 2 in Corradi and Distaso (2006), the results stated in this section also

apply to the prediction of the log of volatility. However, it should be pointed out that, contrary to

the marginal density case, we cannot in general recover the conditional density of volatility from

the one of its logarithm.

4 A Predictive Density Estimator for Volatility Based on the Use

of Simulated Daily Volatility

In this section we consider the case in which we know the model generating the instantaneous

volatility process, though we do not know the closed form of the conditional density of the integrated

volatility process. We proceed in the following way: for any value in the parameter space, we

generate S (instantaneous) volatility paths of k days (with k ≥ 1), using as initial value a draw from

the invariant distribution, and construct the associated daily integrated volatility. Parameters can

be estimated by the method of Simulated Generalized Method of Moments (SGMM), as in Corradi

and Distaso (2006, Theorem 2). More formally: for any simulation i = 1, . . . , S, for j = 1, . . . , N

and for any θ ∈ Θ, we simulate the volatility paths of length k + 1 using a Milstein scheme, i.e.

hi,j k+1
N

(θ)

= hi,(j−1) k+1
N

(θ) + µ(hi,(j−1) k+1
N

(θ) ,θ)− 1
2
σ′(hi,(j−1) k+1

N
(θ) , θ)σ(hi,(j−1) k+1

N
(θ) , θ)

k + 1
N

+σ(hi,(j−1) k+1
N

(θ) , θ)
(
Wi,j k+1

N
−Wi,(j−1) k+1

N

)

+
1
2
σ′(hi,(j−1) k+1

N
(θ) , θ)σ(hi,(j−1) k+1

N
(θ) ,θ)

(
Wi,j k+1

N
−Wi,(j−1) k+1

N

)2
, (15)

where σ′ (·) denotes the derivative of σ (·) with respect to its first argument,
{

Wi,j k+1
N
−Wi,(j−1) k+1

N

}

is i.i.d. N(0, k+1
N ) and hi,0 (θ) is drawn from the invariant distribution of the volatility process under

the given model. As discussed above, σ2
i,j k+1

N

= ψ(hi,j k+1
N

). Now, for each i it is possible to compute

the simulated integrated volatility as:

IVi,τ,N (θ) =
1

N/(k + 1)

N/(k+1)∑

j=1

σ2
i,τ−1+j k+1

N

(θ), τ = 1, . . . , k + 1, (16)

and

σ2
i,τ−1+jh(θ) = ψ(hi,τ−1+jh (θ)).
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Also, averaging the quantity calculated in (16) over the number of simulations S and over the

length of the path k + 1 yields respectively

IV S,τ,N (θ) =
1
S

S∑

i=1

IVi,τ,N (θ) ,

and

IV S,N (θ) =
1

k + 1

k+1∑

τ=1

IV S,τ,N (θ) .

We are now in a position to define the set of moment conditions as

g∗T,M − gS,N (θ) =
1
T

T∑

t=1

g∗t,M − 1
S

S∑

i=1

gi,N (θ) , (17)

where g∗t,M is defined as

g∗t,M =




RMt,M(
RMt,M −RMT,M

)2

(
RMt,M −RMT,M

) (
RMt−1,M −RMT,M

)
...(

RMt,M −RMT,M

) (
RMt−k,M −RMT,M

)




, (18)

RMt,M denotes the particular realized measure used, and RMT,M =
∑T

t=1 RMt,M . Also

1
S

S∑

i=1

gi,N (θ) =




1
S

∑S
i=1 IVi,1,N (θ)

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

)2

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

) (
IVi,2,N (θ)− IV S,N (θ)

)
...

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

) (
IVi,k+1,N (θ)− IV S,N (θ)

)




. (19)

We can define the SGMM estimator as the minimizer of the quadratic form

θ̂T,S,M,N = arg min
�∈�

(g∗T,M − gS,N (θ))′W−1
T,M (g∗T,M − gS,N (θ)), (20)

where WT,M is defined as

WT,M =
1
T

T∑

t=1

(
g∗t,M − g∗T,M

) (
g∗t,M − g∗T,M

)′ (21)

+
2
T

pT∑

v=1

wv

T∑

t=v+1

(
g∗t,M − g∗T,M

) (
g∗t−v,M − g∗T,M

)′
.

Also, define

θ∗ = arg min
�∈�

(g∗∞ − g∞ (θ))′W−1
∞ (g∗∞ − g∞ (θ)), (22)
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where g∗∞, g∞ (θ) and W−1∞ are the probability limits, as T , S, M and N go to infinity, of g∗T,M ,

gS,N (θ) and W−1
T,M , respectively.

We can now construct kernel conditional density estimators based on the integrated volatility

simulated under the estimated parameters. For i = 1, . . . , Υ, Υ < S, define:

f̂
Υ,IV2,N(b�T,S,M,N)|IV1,N(b�T,S,M,N) (x|RMT,M )

=

1
Υς22,Υ

∑Υ
i=1 K

(
IVi,2,N(b�T,S,M,N)−x

ς2,Υ
,

IVi,1,N(b�T,S,M,N)−RMT,M

ς2,Υ

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,1,N(b�T,S,M,N)−RMT,M

ς1,Υ

)

=
f̂
Υ,IV2,N(b�T,S,M,N),IV1,N(b�T,S,M,N)(x, RMT,M )

f̂
Υ,IV1,N(b�T,S,M,N)(RMT,M )

(23)

Note that the S and Υ denote the number of simulation draws used in for parameter estimation

and for density estimation respectively, with Υ < S. As outlined in Proposition 2 below, we require

that S grow at least as fast as T and that Υ grow slower than T.

We also need the following further assumptions.

Assumption A5: The drift and variance functions µ (·) and σ (·) , as defined in (2), satisfy the

following conditions:

(1a) |µ(hr (θ1) , θ1)− µ(hr (θ2) , θ2)| ≤ K1,r ‖θ1 − θ2‖,
|σ(hr (θ1) , θ1)− σ(hr (θ2) ,θ2)| ≤ K2,r ‖θ1 − θ2‖,
for 0 ≤ r ≤ k + 1, where ‖·‖ denotes the Euclidean norm, any θ1, θ2 ∈ Θ, with K1,r, K2,r

independent of θ, and supr≤k+1 K1,r = OP (1), supr≤k+1 K2,r = OP (1).

(1b) |µ(hr,N (θ1) , θ1)− µ(hr,N (θ2) , θ2)| ≤ K1,r,N ‖θ1 − θ2‖ ,

|σ(hr,N (θ1) , θ1)− σ(hr,N (θ2) , θ2)| ≤ K2,r,N ‖θ1 − θ2‖, where hr,N (θ) = hbNrh
k+1 c (θ) and for

any θ1, θ2 ∈ Θ, with K1,r,N , K2,r,N independent of θ, and supr≤k+1 K1,r,N = OP (1),

supr≤k+1 K2,r,N = OP (1), uniformly in N .

(2) |µ(x,θ)− µ(y, θ)| ≤ C1 ‖x− y‖ , |σ(x, θ)− σ(y, θ)| ≤ C2 ‖x− y‖ ,

where C1, C2 are independent of θ.

(3) σ (·) is three times continuously differentiable and ψ (·) is a Lipschitz-continuous function,

where σ (·) and ψ (·) are defined in (2).

Assumption A6: (g∗∞ − g∞ (θ∗))′W−1∞ (g∗∞ − g∞ (θ∗)) < (g∗∞ − g∞ (θ))′W−1∞ (g∗∞ − g∞ (θ)), for

any θ 6= θ∗.

Assumption A7:

13



(1) θ̂T,S,M,N and θ∗ are in the interior of Θ.

(2) gS (θ) is twice continuously differentiable in the interior of Θ, where

gS (θ) =
1
S

S∑

i=1

gi (θ) , (24)

where

gS (θ) =
1
S

S∑

i=1

gi (θ) =




1
S

∑S
i=1 IVi,1 (θ)

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

)2

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

) (
IVi,2 (θ)− IV S (θ)

)
...

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

) (
IVi,k+1 (θ)− IV S (θ)

)




, (25)

and, for τ = 1, . . . , k + 1,

IVi,τ (θ) =
∫ τ

τ−1
σ2

i,s (θ) ds, IV S (θ) =
1

k + 1

k+1∑

τ=1

1
S

S∑

i=1

∫ τ

τ−1
σ2

i,s (θ) ds.

(3) E(∂g1 (θ) /∂θ|�=�∗) exists and is of full rank.

Note that A5-A7, together with some conditions on the relative rate of growth of T, M, S, N ensure

that
√

T
(
θ̂T,S,M,N − θ†

)
= OP (1).

Theorem 2. Let A1-A7 be satisfied. If, as M, T, S, N,Υ → ∞, T/b2
M → 0, T/N (1−{) → 0, for

κ > 0, S/T → π ≥ 1, T 2/S → ∞, pT → ∞ and pT /T 1/4 → 0, then, for all RMT,M such that

f̂
Υ,IV1,N(b�T,S,M,N)(RMT,M ) > dΥ, with dΥ = o(1), uniformly in x ∈ R+,

∣∣∣f̂T,Υ,IVi,2,N(b�T,S,M,N)|IVi,1,N(b�T,S,M,N) (x|RMT,M )− fIVT+1|IVT
(x|RMT,M )

∣∣∣
= OP (T−1/2ς−3

2,Υd−1
Υ ) + OP (T−1/2ς−2

1,Υd−2
Υ ) + OP (Υ−1/2ς−2

2,Υd−1
Υ )

+OP (Υ−1/2ς
−1/2
1,Υ d−2

Υ ) + O
(
ς2
2,Υd−1

Υ

)
+ O

(
ς2
1,Υd−2

Υ

)
.

Theorem 2 reports the uniform rate of convergence for the case where we construct kernel den-

sity estimators based on integrated volatility, simulated using a
√

T -consistent estimator for the

parameters.

Proposition 2. Let the Assumptions of Theorem 2 hold. Also, let dΥ = cΥ−$, ς1,Υ = cΥ−ϕ1 ,

ς2,Υ = cΥ−ϕ2 , $, ϕ1, ϕ2 > 0, for a generic constant c > 0, be defined as in Proposition 1.

Then, for all RMT,M such that f̂
Υ,IV1,N(b�T,S,M,N)(RMT,M ) > dΥ, uniformly in x ∈ R+,

(a) If (i) ϕ2 < ϕ1 < 3/2ϕ2, and (ii) δ < min{3ϕ2 − 2ϕ1, 2(ϕ1 − ϕ2)},
∣∣∣f̂T,Υ,IVi,2,N(b�T,S,M,N)|IVi,1,N(b�T,S,M,N) (x|RMT,M )− fIVT+1|IVT

(x|RMT,M )
∣∣∣
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= OP (T−1/2ς−3
2,Υd−1

Υ ) + OP (Υ−1/2ς−2
2,Υd−1

Υ ) + O
(
ς2
2,Υd−1

Υ

)
. (26)

(b) If in addition to (i)-(ii) above, (iii) ς2,Υ = cΥ−1/8 and (iv) Υ = cT 4/5, for some constant c, all

the terms on the RHS of (26) are of the same order and
∣∣∣f̂T,Υ,IVi,2,N(b�T,S,M,N)|IVi,1,N(b�T,S,M,N) (x|RMT,M )− fIVT+1|IVT

(x|RMT,M )
∣∣∣ = OP (T−1/5d−1

Υ ).

Note that the first term on the RHS of (26) reflects the contribution of parameter estimation

error, while the second and third term reflect the variance and bias term, respectively. Also, note

that the “pseudo” optimal uniform rate in part (ii) of Proposition 2 requires that Υ grows at a

slower rate than T. It may seem a little bit surprising that increasing the number of simulation

used in the construction of the estimator could be harmful. This is due to the fact that the first

term on the RHS of (26) decreases with T and increases with Υ.

Finally, it is worthwhile to point out that the statements in the theorem and proposition above

hold only when the (instantaneous) volatility process has been simulated using the correct model;

in fact, if volatility were simulated from the “wrong” model, then the bias components would be

bounded away from zero.

By comparing the statements in Propositions 1 and 2, it appears that there is a gain in using

the simulation based estimator whenever T is larger than bM , and provided that data are simulated

from the correct volatility model.

5 Applications to Specific Volatility Realized Measures

Assumption A1 states some primitive conditions on the measurement error between integrated

volatility and a generic realized volatility measure. Basically, A1 requires that the first two moments

of the measurement error are of order b−1
M . We now specialize the conditions on the measurement

error to the different estimators of integrated volatility considered in the paper.

Realized volatility has been suggested as an estimator of integrated volatility by Barndorff-Nielsen

and Shephard (2002a) and Andersen, Bollerslev, Diebold and Labys (2001, 2003). When the (log)

price process is a continuous semimartingale, then realized volatility is a consistent estimator of

the increments of the quadratic variation (see e.g. Karatzas and Shreve, 1991, Ch.1). The relevant

limit theory, under general conditions, also allowing for generic leverage effects, has been provided

by Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard (2006), who have shown that, as

M −→∞,
√

M

(
RVT ,M −

∫ T

0
σ2

sds

)
d−→ MN

(
0, 2

∫ T

0
σ4

sds

)
,

for given T .

Proposition 3. Let dzt = 0, a.s. and ν = 0, where dzt and ν are defined in (1) and in (4),

respectively. Then Assumption A1 holds with RMt,M = RVt,M for bM = O(M).
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Bipower variation has been introduced by Barndorff-Nielsen and Shephard (2004, 2006). Barndorff-

Nielsen, Graversen, Jacod, Podolskij and Shephard (2006) show that, as M −→∞,

√
M

(
µ−2

1 BVT ,M −
∫ T

0
σ2

sds

)
d−→ MN

(
0, 2.6090

∫ T

0
σ4

sds

)
.

Proposition 4. Let ν = 0, where ν is defined in (4). Then Assumption A1 holds with RMt,M =

BVt,M for bM = O(M).

Thus, when using bipower variation (robust to the presence of jumps) instead of realized volatil-

ity, there is no cost in terms of slower convergence rate. Nevertheless, it is immediate to see that

bipower variation is a less efficient estimator than realized volatility.

As for the microstructure noise estimator suggested by Zhang, Mykland, and Aı̈t-Sahalia (2005),

we have the following Proposition.

Proposition 5. Let dzt = 0 a.s., where dzt is defined in (1). Let M/l1/3 → π, 0 < π < ∞. Then

Assumption A1 holds with RMt,M = R̂V t,l,M for bM = M1/3.

Finally, if our realized measure is the microstructure robust subsampled based realized volatility

measure of Zhang (2006), Aı̈t-Sahalia, Mykland and Zhang (2006), and Barndorff-Nielsen, Hansen,

Lunde and Shephard (2006a), we have the following result.

Proposition 6. Let dzt = 0 a.s., where dzt is defined in (1). Let M/
√

e → π, 0 < π < ∞. Then

Assumption A1 holds with RMt,M = R̃V t,e,M for bM = M1/2.

The data generating process in (1) and (2) allows for jumps in the return process but not in

the volatility process. Using option prices data, evidence of jumps in volatility has been supported

by e.g. Eraker (2004) and Broadie, Chernov and Johannes (2006). Recently, Barndorff-Nielsen,

Graversen, Jacod, Podolskij and Shephard (2006) provided a central limit theorem for the measure-

ment error of various realized measures, allowing for the presence of a finite number of jumps in

the volatility process. While the statements in the theorems and propositions above are based on a

data generating process that only allows for jumps in the return process, we nevertheless conjecture

that under additional assumptions, the same (uniform) rate of convergence may hold also in the

presence of jumps in volatility, provided that the integrated volatility process “retains” stationarity

and the number of jumps is finite over a finite time span. This is left for future research.

6 Experimental Results: Predictive Density Estimator Accuracy

Our primary objective in this section is to assess the accuracy of the realized measured (RM) type

predictive density estimator outlined in Section 3. Our secondary objective is to assess the accuracy

of two alternative estimators - the simulation type estimator of Section 4 and a simple alternative
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which we call the AR type estimator. The latter estimator is based on the findings of Andersen,

Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen and Shephard (2002b) that the log of

realized volatility is close to normally distributed. Along these lines, we consider a simple AR type

estimator where an autoregressive process of order one is fitted to each realized measure discussed

in Section 5, and the errors of this regression are assumed to be normally distributed.

Recall that our realized measure type estimator defined in Section 3 is:

f̂RMT+1,M |RMT,M
(x|RMT,M ) =

1
Tξ2

2,T

∑T−1
t=1 K

(
RMt+1,M−x

ξ2,T
,

RMt,M−RMT,M

ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−RMT,M

ξ1,T

) .

Our simulation type estimator simply replaces RM data used in the formation of f̂RMT+1,M |RMT,M
(x|RMT,M )

with simulated integrated volatility data. Namely, in Section 4 we define:

f̂
Υ,IV2,N(b�T,S,M,N)|IV1,N(b�T,S,M,N) (x|RMT,M )

=

1
Υς22,Υ

∑Υ
i=1 K

(
IVi,2,N(b�T,S,M,N)−x

ς2,Υ
,

IVi,1,N(b�T,S,M,N)−RMT,M

ς2,Υ

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,1,N(b�T,S,M,N)−RMT,M

ς1,Υ

)
.

Note that parameters need to be estimated prior to construction of f̂
Υ,IV2,N(b�T,S,M,N)|IV1,N(b�T,S,M,N) (x|RMT,M ).

Furthermore, we assume knowledge of the correct functional form of the model used for simulating

volatility. As such knowledge is clearly not available in general, our experimental results based

upon the simulation type estimator should be interpreted with caution. The simulation type esti-

mator will be biased in empirical applications whenever the functional form of the volatility model

is misspecified.

Our experiment is carried out as follows. Using the notation defined in Section 4, we begin by

simulating S paths of the quantity hi,j k+1
N

, as defined in (15), where each path is of length k+1, and

where data are simulated using the discrete interval N−1. In order to carry out the simulations,

we define the drift term, variance term, and derivative of the variance term of the instantaneous

volatility process as follows:

µ(hi,(j−1) k+1
N

(θ) , θ) = κ
(
α + 1− hi,(j−1) k+1

N

)
,

σ(hi,(j−1) k+1
N

(θ) , θ) =
√

2κ
√

hi,(j−1) k+1
N

,

σ′(hi,(j−1) k+1
N

(θ) , θ) =
1
2

√
2κh

−1/2

i,(j−1) k+1
N

.

Thus, we are assuming that volatility follows a square root process. The reader is referred to

Meddahi (2001) for a complete discussion of the one to one mapping between square root stochastic

volatility models and eigenfunction stochastic volatility models of the variety posited here. Now,
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note that we can define the volatility as σ2
i,j k+1

N

= ψ(hi,j k+1
N

), as discussed above. Also, we set

k = 1 and θ = θ†. Now, we fix
{

Wi,j k+1
N
−Wi,(j−1) k+1

N

}
across simulations, j = 1, . . . , N/(k + 1).

However,
(
Wi,j k+1

N
−Wi,(j−1) k+1

N

)
is independent across i, for j = N/(k + 1) + 1, . . . , N. Thus,

hi,j k+1
N

is fixed across simulations; and consequently does not depend on i, for j = 1, . . . , N/(k +1).

Given this framework, and noting that integrated volatility is thus fixed during the first day, across

all simulations, we can define the first day IV as:

IV1,N

(
θ†

)
=

1
N/(k + 1)

N/(k+1)∑

j=1

σ2
j k+1

N

(θ†), (27)

where the index i is dropped as this value is fixed across i. Furthermore, for all days beyond the

first:

IVi,τ+1,N

(
θ†

)
=

1
N/(k + 1)

(τ+1)N/(k+1)∑

j=τN/(k+1)+1

σ2
i,j k+1

N

(θ†), τ = 1, ..., k, i = 1, ..., S.

It thus follows that we can construct a pseudo-true conditional predictive volatility density as:

f̃IV3,N(�†)|IV2,N(�†)
(
x|IV1,N

(
θ†

))
=

1
Sς22,S

∑S
i=1 K

(
IVi,3,N(�†)−x

ς2,S
,

IVi,2,N(�†)−IV1,N(�†)
ς2,S

)

1
Sς1,S

∑S
i=1 K

(
IVi,2,N(�†)−IV1,N(�†)

ς1,S

) . (28)

Note that, for ς2,S = O(S−1/8),
∣∣∣f̃IV3,N(�†)|IV2,N(�†)

(
x|IV1,N

(
θ†

))
− fIV3,N(�†)|IV2,N(�†)

(
x|IV1,N

(
θ†

))∣∣∣

= OP

(
1

S1/4

)
+ OP

(
1

N1/2−δ/2

)
, for any δ > 0, (29)

where the error on the right hand side above can be made arbitrarily small by choosing S and N

sufficiently large. Note also that the first term on the right hand side of (29) can be derived in a

straightforward manner using Theorem 1 in Andrews (1995), and the second term is due to the

discretization error (see e.g. Pardoux and Talay, 1985, Corollary 1.8).8

In the experiment, we compare the pseudo true estimator in (28), with our three estimators

discussed above. In order to facilitate the comparison, we begin by simulating a path of length

T for Xt, say, using constant drift and the same specification for instantaneous volatility as that

given above. Namely, and in addition to the above volatility model, we specify

dXt = mdt +

√
η2

2κ
htdW1,t,

where for simplicity we fix ρ = 0.
8We use Silverman (1986, equation (3.31) for univariate density estimator bandwidth selection, and the modifica-

tion of Silverman (1986, equation (3.28)) due to Scott (1992, pp. 152) for multivariate density estimator bandwidth

selection.
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6.1 Simulation Procedure

Given the framework just outlined, we begin by generating an Xt path via use of the Milstein

scheme, using a discrete interval of order N−1. Then, we sample the simulated process for the

Xt at frequency 1/M of the actual data, and form the 4 realized volatility measures discussed in

Section 2 based on M intradaily observations. For the RM type estimator, we then construct:

f̂RMT+1,M |RMT,M

(
x|IV1,N

(
θ†

))
=

1
Tξ2

2,T

∑T−1
t=1 K

(
RMt+1,M−x

ξ2,T
,

RMt,M−IV1,N(�†)
ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−IV1,N(�†)

ξ1,T

) , (30)

where IV1,N

(
θ†

)
is the quantity computed in (27); and where the kernel that we use in our exper-

iment is the product of two Epanechnikov kernels defined as:

K (·, ·) =
3
4

(
1−

(
RMt+1,M − x

ξT

)2
)

1n���RMt+1,M−x

ξT

���≤1
o

×3
4


1−

(
RMt,M − IV1,N

(
θ†

)

ξT

)2

 1(�����RMt,M−IV1,N(�†)

ξT

�����≤1

),

for the bivariate case, and is an Epanechnikov kernel for the univariate case. In addition, we use

Silverman (1986, equation (3.31) for univariate density estimator bandwidth selection, and the

modification of Silverman (1986, equation (3.28)) due to Scott (1992, pp. 152) for multivariate

density estimator bandwidth selection. For the simulation type estimator, we use the Xt data

to estimate the parameters of the instantaneous volatility model given above, and then use the

estimated parameters to simulate Υ IV paths of length three (Υ=500 in our experiment), where

the last two observations in each path are in turn used to form:

f̂
Υ,IVT+1,N(b�T,S,M,N)|IVT,N(b�T,S,M,N) (x|IV1,N

(
θ†

)
)

=

1
Υς22,Υ

∑Υ
i=1 K

(
IVi,T+1,N(b�T,S,M,N)−x

ς2,Υ
,

IVi,T,N(b�T,S,M,N)−IV1,N(�†)
ς2,Υ

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,T,N(b�T,S,M,N)−IV1,N(�†)

ς1,Υ

)
.

Finally, for the AR type estimator, we form predictions based on the assumption that

(RMT+1,M |RMT,M ) ∼ N(θ̂0,T,M + θ̂1,T,MRMT,M , σ̂2
T,M ),

where θ̂0,T,M and θ̂1,T,M are autoregressive parameters from an AR(1) fitted to the RM data, and

where σ̂2
T,M is the associated estimate of the error variance. In order to compare this estimator with

our other estimators, we simply use θ̂0,T,M + θ̂1,T,MIV1,N

(
θ†

)
in place of θ̂0,T,M + θ̂1,T,MRMT,M .

(Note that while logged RM data has been reported by the authors mentioned above to be approx-

imately normally distributed, we report results for both levels and logged data, in order to shed

19



further light on the advantages associated with using logged data when constructing this estima-

tor). We repeat this simulation procedure Ξ times (i.e. we generate Ξ paths of length T for Xt and

carry out Ξ Monte Carlo repetitions).

6.2 Simulation Results

In order to illustrate our approach to accuracy assessment, consider the RM type estimator, defined

as f̂{RMT+1,M |RMT,M},p
(
x|IV1,N

(
θ†

))
, for p = 1, ...,Ξ. We measure the degree of accuracy of this

conditional density estimator by comparing it with the pseudo true estimator as follows. For

M = {48, 144, 360, 720} and T = {100, 300, 500}, at each replication, we construct the integrated

mean square error, and then we average over the number of replications. That is, we construct:

1
Ξ

Ξ∑

p=1


 1

Λ

Λ∑

j=1

(
f̂{RMT+1,M |RMT,M},p

(
xj |IV1,N

(
θ†

))
− f̃IV3,N(�†)|IV2,N(�†)

(
xj |IV1,N

(
θ†

)))2


 ,

(31)

where Λ is the number of points in the range of the data across which to evaluate the density. We

set Λ equal to 100 equally spaced values across the interval [IV − ŜE(IV ), IV + ŜE(IV )], where

IV and ŜE(IV ) are constructed from a large dataset of simulated daily IV values using the true

model. Also, in order to evaluate the variability across Monte Carlo replications, we also consider

the standard error of the integrated mean square error across Monte Carlo replications, that is:




1
Ξ

Ξ∑

p=1


 1

Λ

Λ∑

j=1

(
f̂{RMT+1,M |RMT,M},p

(
xj |IV1,N

(
θ†

))
− f̃IV3,N(�†)|IV2,N(�†)

(
xj |IV1,N

(
θ†

)))2




2

−

 1

Ξ

Ξ∑

p=1


 1

Λ

Λ∑

j=1

(
f̂{RMT+1,M |RMT,M},p

(
xj |IV1,N

(
θ†

))
− f̃IV3,N(�†)|IV2,N(�†)

(
xj |IV1,N

(
θ†

)))2







2


1/2

.

The same approach as that outlined above is also used to assess the accuracy of the simulation

type and the AR type estimators. All results are based upon 1000 Monte Carlo replications.

The results of this experiment are gathered in four tables. Table 1 (Case I: levels data; no

microstructure noise or jumps) and Table 2 (Case II: logged data; no microstructure noise or

jumps) report findings for all three types of estimator, whereas Table 3 (Case III: microstructure

noise) and Table 4 (Case IV: jumps) contain results only for the RM type estimator. The magni-

tude and frequency of the noise and jumps are as follows: for microstructure noise, we add i.i.d.
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N(0, 1/ (α1440)) increments to the generated data, where α = {0.5, 1, 2}; and for jumps, we add

i.i.d. N(0, α×0.64×IV ) jumps occurring once (on average) every five days, where α = {1, 3, 5}. In

all tables, results are given for the 4 realized measures discussed above; namely for RVt,M , BVt,M ,

R̂V t,l,M and R̃V t,e,M . Recall that in the case of the RM type estimator, these four measures are

used directly in the construction of the predictive density. However, in the case of the simulation

type estimator, the 4 measures enter into our calculations only inasmuch as they are used to con-

struct the historical data-based moments used in parameter estimation. Entries in the table are

the MSEs defined in equation (31), and associated standard errors appear in parentheses.

A number of clear conclusions emerge upon examination of the tables. From Table 1, where

results for Case I are reported, note that results based on the realized measure type estimator

indicate that RVt,M and BVt,M perform approximately equally well. Additionally, both of these

measures yield more accurate density estimates than the two subsampled measures, as expected.

Furthermore, the mean square error reduces by approximately 20-40% as the number of intraday

observations increases from 48 to 720; and there is a reduction of approximately 40-50% as the

number of daily observations is increased from 100 to 300. As might be expected, given that we

assume that the “correct” model is known, the simulation type estimator yields lower MSEs than

the RM type estimator. Furthermore, again as expected, the simulation type estimator improves

very little for fixed M , as T increases. Finally, notice that the AR type estimator yields inferior

predictive density estimates, as they are worse by a factor of approximately 3, when compared with

the RM type estimator. This, of course, is not surprising, given that there is no evidence that

levels RM data are approximately normally distributed. The more interesting comparison of the

AR type estimator is contained in Table 2, where results for logged data are presented.

Turning now to Table 2, three observations are worth making. First, notice that the results

of our experiments are confounded slightly when data are logged. For example, the clear ordinal

ranking of the MSEs as one increases M for fixed T, or as one increases T for fixed M , no longer

holds when comparing the point MSEs. Second, note however that there is a clear improvement

in MSE relative to the levels case under both the RM type estimator and the AR type estimator,

supporting the finding of Andersen, Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen

and Shephard (2002b) that the log of realized volatility is close to normally distributed. Finally,

the AR type estimator does not outperform our RM type estimator, although it is relatively better,

as it is now worse by a factor of about 2 rather than 3.

We now turn our discussion to microstructure noise and jumps, which are evaluated only for

our RM type estimator, given the findings of Tables 1 and 2. In Table 3 (Case III), R̂V t,l,M and

R̃V t,e,M are both superior to the non-microstructure noise robust realized measures, particularly

for large values of M , as expected.9 For example, consider Panel A in Table 2. The MSE for
9Note that no values are reported for BVt,M for the case where M = 720. This omission is due to numerical

instability of the particular kernel density estimator that we use in this experiment, and is indicative of the fact that
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RVt,M is 0.023634 for M = 48; and increases to 0.481822 when M = 720, again as expected.

Furthermore, R̃V t,e,M is 0.029185 for M = 48; and slowly shrinks as M increases, to a level of

0.021236 when M = 720. The R̂V t,l,M measure performs similarly well for most values of M , other

than when M = 48, in which case it performs substantially worse than all other measures. Overall,

R̃V t,e,M performs marginally better than R̂V t,l,M , although the performance of the former measure

depends somewhat upon the number of realized volatilities (e) used in the construction. Thus, the

results here that are based on their comparison are only preliminary, as we did not experiment

with different weights and truncation values. Examination of Table 4 (Case IV) suggests that

when there are jumps of sufficient magnitude (see Panel C), BVt,M outperforms all other measures,

with MSE values less than one half that or any other realized measure. Furthermore, in this case,

the standard error associated with the MSE, across simulations, is also less than one half that of

any other measure. The same result holds for the case when α = 3 (see Panel B), although the

magnitude of the jumps is sufficiently small in Panel A of the table so as to leave little to choose

between the 4 realized measures. In summary, the predictive integrated volatility density estimator

appears to be performing adequately, and as expected, given the theoretical results outlined in the

prior sections of this paper.

7 Empirical Illustration: Forecasting the Conditional Distribution

of Daily Volatility of Intel

7.1 Data Description and Methodology

Data are retrieved from the Trade and Quotation (TAQ) database at the New York Stock Exchange

(NYSE). The TAQ database contains intraday trades and quotes for all securities listed on the

NYSE, the American Stock Exchange (AMEX) and the Nasdaq National Market System (NMS).

The data have been published monthly on CD-ROM since 1993 and on DVD since June 2002. Our

sample contains data for the stock Intel and extends from January 1st to May 20th 1997, for a

total of 100 trading days.

In this exercise, we predict the conditional distribution of daily integrated volatility for Wednes-

day May 21st, 1997. In order to have at least a visual grasp of the effect of the conditioning set,

we consider 4 cases: 1, 4, 7, and 10 day ahead prediction. Along these lines, note that the formula

given in (11) can be readily generalized to allow for (∆ + 1) day ahead prediction, as follows:

f̂RMT+1,M |RMT−∆,M
(x|RMT−∆,M ) (32)

=

1
(T−∆−1)ξ2

2,T

∑T−∆−1
t=1 K

(
RMt+∆+1,M−x

ξ2,T
,

RMt,M−RMT−∆,M

ξ2,T

)

1
(T−∆−1)ξ1,T

∑T−∆−1
t=1 K

(
RMt,M−RMT−∆,M

ξ1,T

) .

the non-robust measures exhibit increasingly dramatic performance deterioration as M increases.
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In other words, we calculate (32) with ∆ = 0, 3, 6, 9. In our calculations, we tried Epanechnikov

as well as quartic kernel functions with bandwidth parameters chosen as discussed in Section 6.1.

Results are reported for estimators constructed using Epanechnikov kernels.

From the original data set, which includes prices recorded for every trade, we extracted 10 second

and 5 minute interval data. Provided that there is sufficient liquidity in the market, the 5 minute

frequency is generally accepted as the highest frequency at which the effect of microstructure biases

are not too distorting (see Andersen, Bollerslev, Diebold and Labys, 2001 and Andersen, Bollerslev

and Lang, 1999). Hence our choice of these two frequencies allows us to evaluate the effect of

microstructure noise on the estimated densities.

The price figures for each 10 second and 5 minute intervals are determined using the last tick

method, which was first proposed by Wasserfallen and Zimmermann (1985). Specifically, when no

trade occurs at the required point in time, the price is calculated as last observed price. Another way

of obtaining equidistant artificial prices is the linear interpolation method, where the price figure is

computed as the interpolated average between the preceding and the immediately following trades,

weighted linearly by their inverse relative distance to the required point in time (see Andersen and

Bollerslev, 1997). Unfortunately, constructing realized measures of integrated volatility using this

kind of artificial price process has some disadvantages (see e.g., Lemma 1 in Hansen and Lunde,

2006); realized volatility constructed from linearly interpolated returns converges in probability to

zero as the time interval shrinks to zero.

From the calculated series we have obtained 10 second and 5 minute intradaily returns as the

difference between successive log prices expressed in percentages. Formally:

Rt+ i
M

= 100×
(
log(Xt+ i

M
)− log(Xt+ i−1

M
)
)

,

where Rt+i/M denotes the return for intraday period i/M on trading day t , with t = 0, . . . , T − 1.

The New York Stock Exchange opens at 9:30 a.m. and closes at 4.00 p.m.. Therefore, a full trading

day consists of 2340 (resp. 78) intraday returns calculated over an interval of ten seconds (resp.

five minutes).10

7.2 Main Results

Using the two series of returns at different frequencies, the predictive densities have been calculated

for each of the four considered realized measures and for different values of ∆. Results are shown

in Figures 1 to 8 (for the raw measures) and in Figures 9 to 16 (for the logged ones), using 1000

evaluation points for the conditional densities.
10Highly liquid stocks may have more than one price at certain points in time (for example, 5 or 10 quotations at

the same time stamp is normal for Intel and Microsoft); hence, when there exists more than one price at the required

time, we select the last provided one.
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The graphs yield some interesting findings. To begin, note that the graphs for the realized

volatility and bipower variation are quite similar. This would suggest that jumps occur occasionally

in the price process, or in any case that they do not affect a procedure which is based on sample

sizes containing a large number of daily observations.

On the other hand, microstructure noise seems to have a tangible effect on our estimates. In

fact, by looking at the range of the densities of realized volatility and bipower variation for the

two different frequencies, one can immediately appreciate the effect of microstructure noise. As

predicted by theory (see Aı̈t-Sahalia, Mykland and Zhang, 2006), and confirmed by simulation

results, when the time interval between successive observations becomes small, then the signal

to noise ratio contained in the data also becomes very small, and realized volatility and bipower

variation tend to explode, instead of converging to the quadratic variation. This can be seen in

the pictures. In fact, the range of the density of the two estimators, estimated with data at a high

frequency, is considerably wider than the corresponding one obtained with a lower frequency. The

microstructure robust realized measures display a more stable picture. Increasing the frequency at

which data are sampled does not seem to induce any distortion. These results thus provide further

evidence in favor of a warning against trying to estimate integrated volatility with data sampled

at a very high frequency, when using estimators which are not robust to the presence of market

microstructure noise.

The effect of the conditioning set is also evident in the densities. In general, one day ahead

predictive densities display more probability mass at the center of the domain, and less weight in

the tails.

Finally, the effect of the logarithmic transformation supports previous findings by Andersen,

Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and Shephard (2002b). The shapes

of the densities seem more symmetric and they look closer to the normal than those based on

raw realized measures. Additionally, the distortionary effect of microstructure noise is even more

apparent. Consider for example, Figures 13 and 14, where there is an apparent absence of mass in

the left tail of the density.

8 Concluding Remarks

In this paper we have proposed a feasible, model free estimator of the conditional predictive density

of integrated volatility. The estimator, which is constructed using either realized volatility, or using

simulated integrated volatility, is shown to be both empirically tractable and uniformly consistent

under both microstructure noise, and in the presence of jumps. In this sense, the estimator discussed

in this paper can be viewed as a natural model free extension of the point predictive estimator

developed in Andersen, Bollerslev, Diebold and Labys (2003) and Andersen, Bollerslev and Meddahi

(2004, 2005). A simulation experiment is carried out, illustrating that the estimator is accurate,
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and yields sensible answers in a variety of scenarios, including cases where there is microstructure

noise and when there are jumps. Finally, we illustrate the ease with which the estimator can be

applied via an empirical illustration.
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Appendix

In the sequel, let uT,M = (x,RMT,M )′, Ût+1,M = (RMt+1,M , RMt,M )′, Ut+1 = (IVt+1, IVt)′, and

Ût+1,M − Ut+1 = (Nt+1,M , Nt,M )′. Thus

f̂RMT+1|RMT,M
(x|RMT,M )

=

1
Tξ2

2,T

∑T−1
t=1 K

(
RMt+1,M−x

ξ2,T
,

RMt,M−RMT,M

ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−RMT,M

ξ1,T

)

=

1
Tξ2

2,T

∑T−1
t=1 K

( bUt+1,M−uT,M

ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−RMT,M

ξ1,T

) .

The proof of Theorem 1 requires the following Lemma.

Lemma 1. Let assumptions A1 and A4 hold. Then

f̂RMT+1,M ,RMT,M
(x,RMT,M )−fIVt+1,IVt(x,RMT,M ) = OP

(
b
−1/2
M ξ−3

2,T

)
+OP

(
T−1/2ξ−2

2,T

)
+O

(
ξ2
2,T

)
,

(33)

uniformly in x ∈ R+, and

f̂RMt,M
(RMT,M )− fIVt(RMT,M ) = OP

(
b
−1/2
M ξ−2

1,T

)
+ OP

(
T−1/2ξ

−1/2
1,T

)
+ O

(
ξ2
1,T

)
. (34)

Proof of Lemma 1

We show the result in (33). The result in (34) follows by the same argument. Given A4(i), by a

mean value expansion,

1
Tξ2

2,T

T−1∑

t=1

K

(
Ût+1,M − uT,M

ξ2,T

)
− 1

Tξ2
2,T

T−1∑

t=1

K
(

Ut+1 − uT,M

ξ2,T

)

=
1

Tξ3
2,T

T−1∑

t=1

K(1)
1

(
U t+1,M − uT,M

ξ2,T

)
Nt+1,M +

1
Tξ3

2,T

T−1∑

t=1

K(1)
2

(
U t+1,M − uT,M

ξ2,T

)
Nt,M ,(35)

where U t+1,M ∈
(
Ût+1,M , Ut+1

)
. The second term on the RHS of (35) is majorized by

sup
t,x

K(1)
2

(
U t+1,M − uT,M

ξ2,T

)
1

Tξ3
2,T

T−1∑

t=1

|Nt,M |

= OP

(
ξ−3
2,T

)(
1
T

T−1∑

t=1

E |Nt,M |+ 1
T

T−1∑

t=1

(|Nt,M | − E |Nt,M |)
)

.

Given A1, E
(
N2

t,M

)
= O(b−1

M ). By Jensen inequality,

E (|Nt,M |) = E
(√

N2
t.M

)
≤ (

E
(
N2

t,M

))1/2 = O(b−1
M ).
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Let |Nt,M | = |Nt,M | − E |Nt,M | . Now,

Var

(
1
T

T−1∑

t=1

|Nt,M |
)

=
1
T 2

T−1∑

t=1

T−1∑

s=1

E
(
|Nt,M ||Ns,M |

)

≤ 1
T 2

T−1∑

t=1

T−1∑

s=1

(
E

(
|Nt,M |2

))1/2 (
E

(
|Ns,M |2

))1/2
,

and

E
(
|Nt,M |2

)
= E

(
N2

t,M

)− (E (|Nt,M |))2 = O(b−1
M ), uniformly in t.

Thus, uniformly in x ∈ R+,

1
Tξ2

2,T

T−1∑

t=1

K

(
Ût+1,M − uT,M

ξ2,T

)
− 1

Tξ2
2,T

T−1∑

t=1

K
(

Ut+1 − uT,M

ξ2,T

)
= OP

(
ξ−3
2,T b

−1/2
M

)
.

Finally, uniformly in x ∈ R+,

1
Tξ2

2,T

T−1∑

t=1

K
(

Ut+1 − uT,M

ξ2,T

)
− fIVt+1,IVt(x,RMT,M )

=
1
T

T−1∑

t=1

1
ξ2
2,T

(
K

(
Ut+1 − uT,M

ξ2,T

)
− E

(
K

(
Ut+1 − uT,M

ξ2,T

)))

+

(
1

ξ2
2,T

E
(
K

(
Ut+1 − uT,M

ξ2,T

))
− fIVt+1,IVt(x,RMT,M )

)

= OP

(
T−1/2ξ−2

2,T

)
+ O

(
ξ2
2,T

)
,

by Theorem 1 in Andrews (1995), setting, in his notation, k = 2, λ = 0, η = ∞, σ1T = σ2T , and

ω = 2. In fact, given A2-A3, IVt has an ARMA structure, and so is geometrically strong mixing,

thus NP1 in Andrews holds with η = ∞, and a(s) decaying at a geometric rate. Also, A4 implies

that NP2 and NP4 in Andrews (1995) are satisfied. ¥

Proof of Theorem 1

A simple rearrangement of terms yields

f̂RMT+1|RMT,M
(x|RMT,M )− fIVt+1|IVt

(x|RMT,M )

=
f̂RMT+1,M ,RMT,M

(x,RMT,M )

f̂RMT,M
(RMT,M )

− fIVt+1,IVt(x,RMT,M )
fIVt(RMT,M )

=
f̂RMT+1,M ,RMT,M

(x,RMT,M )− fIVt+1,IVt(x,RMT,M )

f̂RMT,M
(RMT,M )

+
fIVt+1,IVt(x,RMT,M )

(
fIVt(RMT,M )− f̂RMT,M

(RMT,M )
)

f̂RMT,M
(RMT,M )fIVt(RMT,M )

.

Now, f̂RMT,M
(RMT,M ) > dT , and by noting that fIVt(RMT,M ) = f̂RMt,M

(RMT,M ) + oP (1), given

Lemma 1 above, the statement in the theorem follows. ¥
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Proof of Proposition 1

(a) We begin by showing that given (i) and (ii),

ξ2
1,T d−2

T

ξ2
2,T d−1

T

→ 0,
ξ−1
1,T d−2

T

ξ−2
2,T d−1

T

→ 0,
ξ−2
1,T d−2

T

ξ−3
2,T d−1

T

→ 0. (36)

Now, if δ < 2 (φ1 − φ2) , and φ1 > φ2,

ξ2
1,T d−2

T

ξ2
2,T d−1

T

=
ξ2
1,T

ξ2
2,T dT

→ 0;

also, if δ − 3φ2 + 2φ1 < 0 and φ2 < φ1 < 3
2φ2, then

ξ−2
1,T d−2

T

ξ−3
2,T d−1

T

=
ξ3
2,T

ξ2
1,T dT

→ 0.

Finally, note that given (ii),
ξ3
2,T

ξ2
1,T dT

→ 0 implies that

ξ−1
1,T d−2

T

ξ−2
2,T d−1

T

=
ξ2
2,T

ξ1,T dT
→ 0.

Thus, the contribution due to the estimation of the marginal density is of smaller order than that

due to the estimation of the joint density.

(b) Given (36), it suffices to check that

ξ2
2,T d−1

T → 0, T−1/2ξ−2
2,T d−1

T → 0, b
−1/2
M ξ−3

2,T d−1
T → 0. (37)

Now, (i) and (ii) ensure that ξ2
2,T d−1

T → 0; also, (iii) ensures that T−1/2ξ−2
2,T d−1

T → 0. In fact, we

need that −1
2 + 2φ2 + δ < 0. Now, as δ < 2 (φ1 − φ2) and φ1 < 3

2φ2,

−1
2

+ 2φ2 + δ < −1
2

+ 3φ2,

where the latter is negative for φ2 < 1/6. Finally, (iv) ensures that b
−1/2
M ξ−3

2,T d−1
T → 0.

(c) We first need to find conditions under which b
−1/2
M ξ−3

2,T d−1
T , T−1/2ξ−2

2,T d−1
T and ξ2

2,T d−1
T are of the

same order of magnitude. In other words, we need to find values for φ2 and ψ, such that

−2φ2 + δ = 2φ2 − 1/2 + δ = −1/2ψ + 3φ2 + δ

From the first equality, we obtain φ2 = 1
8 , and plugging in this value and solving the second equality

for ψ, we get ψ = 5
4 . Thus, the rate at which all components converge is T−

1
4
+δ. Finally, notice that

for ψ > 5/4, the measurement error component becomes negligible, and so the rate is determined

by the variance and bias components, which are indeed of order T−1/4. ¥
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Before proving Theorem 2, we need to introduce some convenient notation. Let

Ui,N

(
θ̂T,S,M,N

)
=

(
IVi,2,N

(
θ̂T,S,M,N

)
, IVi,1,N

(
θ̂T,S,M,N

))′
,

Ui,N

(
θ†

)
=

(
IVi,2,N

(
θ†

)
, IVi,1,N

(
θ†

))′
, Ui

(
θ†

)
=

(
IVi,2

(
θ†

)
, IVi,1

(
θ†

))′
,

Ui,N (θ) = (IVi,2,N (θ) , IVi,1,N (θ))′ .

Thus

f̂
Υ,IV2,N(b�T,S,M,N)|IV1,N(b�T,S,M,N)(x|RMT,M )

=
f̂
Υ,IV2,N(b�T,S,M,N),IV1,N(b�T,S,M,N)(x, RMT,M )

f̂
Υ,IV1,N(b�T,S,M,N)(RMT,M )

(38)

=

1
Υς22,Υ

∑Υ
i=1 K

(
IVi,2,N(b�T,S,M,N)−x

ς2,Υ
,

IVi,1,N(b�T,S,M,N)−RMT,M

ς2,Υ

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,1,N(b�T,S,M,N)−RMT,M

ς1,Υ

)

=

1
Υς22,Υ

∑Υ
i=1 K

(
Ui,N(b�T,S,M,N)−uT,M

ς2,T

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,1,N(b�T,S,M,N)−RMT,M

ς1,T

) . (39)

Also, let

f̂Υ,IV2,N(�†)|IV1,N(�†)(x,RMT,M ) =

1
Υς22,Υ

∑Υ
i=1 K

(
Ui,N(�†)−uT,M

ς2,T

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,1,N(�†)−RMT,M

ς1,T

) (40)

and

f̂Υ,IV2(�†)|IV1(�†)(x,RMT,M ) =

1
Υς22,Υ

∑Υ
i=1 K

(
Ui(�†)−uT,M

ς2,T

)

1
Υς1,Υ

∑Υ
i=1 K

(
IVi,1(�†)−RMT,M

ς1,T

) . (41)

The proof of Theorem 2 requires the following Lemma.

Lemma 2. Let A1-A7 hold. If T/b2
M → 0, T/N (1−{) → 0, for a positive constant κ, T/S → π ≥ 1,

T 2/S →∞, pT →∞ and pT /T 1/4 → 0, then

(i)

f̂
Υ,IV2,N(b�T,S,M,N),IV1,N(b�T,S,M,N)(x,RMT,M )− fIV2(�†),IV1(�†)(x,RMT,M )

= OP

(
T−1/2ς−3

2,Υ

)
+ OP

(
Υ−1/2ς−2

2,Υ

)
+ O

(
ς2
2,Υ

)
,

uniformly in x ∈ R+;

(ii)

f̂
Υ,IV1,N(b�T,S,M,N)(RMT,M )− fIV1(�†)(RMT,M )

= OP

(
T−1/2ς−2

1,Υ

)
+ OP

(
Υ−1/2ς

−1/2
1,Υ

)
+ O

(
ς2
1,Υ

)
.
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Proof of Lemma 2

(i) First note that

sup
x

∣∣∣f̂Υ,IV2,N(b�T,S,M,N),IV1,N(b�T,S,M,N)(x,RMT,M )− fIV2(�†),IV1(�†)(x, RMT,M )
∣∣∣

≤ sup
x

∣∣∣f̂Υ,IV2,N(b�T,S,M,N),IV1,N(b�T,S,M,N)(x,RMT,M )− f̂Υ,IV2,N(�†),IV1,N(�†)(x,RMT,M )
∣∣∣

+sup
x

∣∣∣f̂Υ,IV2,N(�†),IV1,N(�†)(x,RMT,M )− f̂Υ,IV2(�†),IV1(�†)(x, RMT,M )
∣∣∣

+sup
x

∣∣∣f̂Υ,IV2(�†),IV1(�†)(x,RMT,M )− fIV2(�†),IV1(�†)(x,RMT,M )
∣∣∣ . (42)

We begin by considering the first term on the RHS of (42). Via a mean value expansion around θ†,

f̂
Υ,IV2,N(b�T,S,M,N),IV1,N(b�T,S,M,N)(x,RMT,M )− fIV2(�†),IV1(�†)(x,RMT,M )

=
1

Υς3
2,Υ

Υ∑

i=1

K(1)
1

(
Ui,N

(
θT,S,M,N

)− uT,M

ς2,T

)
∂IVi,2,N (θ)

∂θ

∣∣∣�=�T,S,M,N

(
θ̂T,S,M,N − θ†

)

+
1

Υς3
2,Υ

Υ∑

i=1

K(1)
2

(
Ui,N

(
θT,S,M,N

)− uT,M

ς2,T

)
∂IVi,1,N (θ)

∂θ

∣∣∣�=�T,S,M,N

(
θ̂T,S,M,N − θ†

)
.

Given A2,A3,A5 and A7, by the uniform law of large numbers,

1
Υ

Υ∑

i=1

K(1)
2

(
Ui,N (θT,S,M,N )− uT,M

ς2,T

)
∂IVi,1,N (θ)

∂θ
= OP (1),

uniformly in x ∈ R+ and in θ. Also, given A1-A3, A5-A7, and under the regularity conditions set

out in the statement of the Lemma, then

θ̂T,S,M,N − θ† = OP (T−1/2),

because of Theorem 2 in Corradi and Distaso (2006).11 Thus, the first term on the RHS of (42) is

OP

(
T−1/2ς−3

2,T

)
.

The second term on the RHS of (42) captures the discretization error incurred in the simulation

of the volatility path. Now,

f̂Υ,IV2,N(�†)|IV1,N(�†)(x,RMT,M )− f̂Υ,IV2(�†)|IV1(�†)(x,RMT,M )

=
1

Υς3
2,Υ

Υ∑

i=1

K(1)
1

(
Ui,N

(
θ†

)− uT,M

ς2,T

) (
IVi,2,N

(
θ†

)
− IVi,2

(
θ†

))

+
1

Υς3
2,Υ

Υ∑

i=1

K(1)
2

(
Ui,N

(
θ†

)− uT,M

ς2,T

)(
IVi,1,N

(
θ†

)
− IVi,1

(
θ†

))
. (43)

11Note that for
√

T−consistency it suffices that S grows at least as fast as T.
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We just analyze the first term on the RHS of (43), as the second term can the dealt with in the

same manner. Note that, given A4(i),

1
Υς3

2,Υ

Υ∑

i=1

K(1)
1

(
Ui,N

(
θ†

)− uT,M

ς2,T

)(
IVi,2,N

(
θ†

)
− IVi,2

(
θ†

))

≤ sup
i,x

∣∣∣∣∣K
(1)
1

(
Ui,N

(
θ†

)− uT,M

ς2,T

)∣∣∣∣∣
1

ς3
2,Υ

1
Υ

Υ∑

i=1

∣∣∣IVi,1,N

(
θ†

)
− IVi,1

(
θ†

)∣∣∣

= OP (1)
1

ς3
2,Υ

1
Υ

Υ∑

i=1

∣∣∣IVi,1,N

(
θ†

)
− IVi,1

(
θ†

)∣∣∣ .

Now, by Corollary 1.8 in Pardoux and Talay (1985), for κ > 0,

1
Υ

Υ∑

i=1

∣∣∣IVi,1,N

(
θ†

)
− IVi,1

(
θ†

)∣∣∣

≤ sup
i

∣∣∣IVi,N

(
θ†

)
− IVi,1

(
θ†

)∣∣∣ = OP

(
N−1/2(1−{)

)
.

Thus,

sup
i,x

K(1)
1

(
Ui,N

(
θ†

)− uT,M

ς2,T

)
1

ς3
2,Υ

1
Υ

Υ∑

i=1

∣∣∣IVi,1,N

(
θ†

)
− IVi,1

(
θ†

)∣∣∣

= OP

(
ς−3
2,Υ

) 1
Υ

Υ∑

i=1

∣∣∣IVi,1,N

(
θ†

)
− IVi,1

(
θ†

)∣∣∣ = OP

(
N−1/2(1−{)ς−3

2,Υ

)
.

As T/N (1−{) → 0, the second term on the RHS of (42) is of a smaller order than the first one.

Finally, as for the third term on the RHS of (42), from Theorem 1 in Andrews,

sup
x

∣∣∣f̂Υ,IV2(�†),IV1(�†)(x,RMT,M )− fIV2(�†),IV1(�†)(x, RMT,M )
∣∣∣

= OP

(
T−1/2ς−2

2,T

)
+ O

(
ς2
2,T

)
.

(ii) By the same argument used in the proof of (i). ¥

Proof of Theorem 2

Given Lemma 2, by the same argument used in the proof of Theorem 1. ¥

Proof of Proposition 2

(a) Given the rate conditions in (i) and (ii), the contribution of the marginal density estimator is

negligible, and thus the rate is determined only by the estimator of the joint density. The statement

then follow from Lemma 2, part (i).

(b) Given (iii) and (iv), ς2,Υ = Υ−1/8 = T−1/10, and all the three terms on the RHS of (26) are of

the same probability order T−1/5d−1
Υ . ¥
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Proof of Proposition 3,4,5

By the same argument used in the proof of Propositions 1 and 2 in Corradi and Distaso (2006). ¥

Proof of Propositions 6

From Part (iv) in the proof of Lemma 1 in Corradi, Distaso and Swanson (2006). ¥
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Table 3: Predictive Integrated Volatility Density Estimator Accuracy Experiment∗
Case III: Levels Data - Microstructure Noise

M Realized V olatility Bipower V ariation Sub− Sample 1 Sub− Sample 2

Panel A: Noise = i.i.d.N(0, (0.5× 1440)−1)
Mean Square Error

48 0.023634 0.021947 0.098536 0.029185
(0.018776) (0.023383) (0.458070) (0.028641)

144 0.064163 0.065729 0.034548 0.023347
(0.023403) (0.023196) (0.062030) (0.029805)

360 0.263250 0.290226 0.022895 0.023367
(0.025255) (0.024631) (0.033408) (0.039845)

720 0.481822 NA 0.023558 0.021236
(0.328727) NA (0.041435) (0.024881)

Mean Absolute Deviation
48 0.125476 0.119375 0.230040 0.141292

(0.051502) (0.052888) (0.157586) (0.056501)
144 0.222514 0.225302 0.135356 0.121413

(0.040080) (0.039833) (0.087225) (0.060361)
360 0.454759 0.481319 0.115923 0.118471

(0.024858) (0.024268) (0.067095) (0.067344)
720 0.650182 NA 0.116885 0.115182

(0.067010) NA (0.069086) (0.059355)
Mean Absolute Percentage Error

48 0.193329 0.182913 0.376544 0.222798
(0.078471) (0.079412) (0.252663) (0.089189)

144 0.355870 0.360370 0.215683 0.188564
(0.063781) (0.063299) (0.138491) (0.093522)

360 0.678564 0.715640 0.180751 0.181184
(0.036460) (0.035842) (0.102403) (0.102182)

720 1.014426 NA 0.182902 0.175388
(0.142956) NA (0.105107) (0.089049)

Panel B: Noise = i.i.d.N(0, (1440)−1)
Mean Square Error

48 0.022364 0.020362 0.049526 0.026017
(0.015850) (0.015011) (0.029492) (0.016029)

144 0.034303 0.033039 0.017617 0.020784
(0.018292) (0.017939) (0.014197) (0.014413)

360 0.092704 0.100991 0.015277 0.019279
(0.024913) (0.024982) (0.012597) (0.014351)

720 0.266881 0.297374 0.016220 0.019797
(0.024044) (0.022913) (0.012469) (0.014826)

Mean Absolute Deviation
48 0.122231 0.116203 0.191830 0.137637

(0.048673) (0.046974) (0.062965) (0.047308)
144 0.158116 0.154575 0.106559 0.119460

(0.044247) (0.044540) (0.047763) (0.045933)
360 0.268330 0.280626 0.099561 0.112874

(0.035813) (0.034774) (0.043763) (0.047031)
720 0.457690 0.487453 0.103695 0.114165

(0.023591) (0.022716) (0.043095) (0.047574)
Mean Absolute Percentage Error

48 0.185577 0.175721 0.311322 0.212097
(0.072429) (0.068862) (0.099865) (0.071829)

144 0.248965 0.243625 0.167605 0.180836
(0.069022) (0.069458) (0.073303) (0.066432)

360 0.424465 0.444162 0.154502 0.169177
(0.055356) (0.054443) (0.065684) (0.067548)

720 0.682359 0.724261 0.162286 0.171107
(0.034150) (0.033646) (0.065899) (0.068964)

Panel C: Noise = i.i.d.N(0, (2× 1440)−1)
Mean Square Error

48 0.021719 0.019801 0.049092 0.026016
(0.015822) (0.015106) (0.029676) (0.016129)

144 0.026526 0.025115 0.017488 0.021031
(0.016575) (0.015719) (0.014223) (0.014577)

360 0.043186 0.043747 0.015396 0.019621
(0.020275) (0.020104) (0.012785) (0.014348)

720 0.094308 0.104114 0.016668 0.020113
(0.025476) (0.025880) (0.012915) (0.015034)

Mean Absolute Deviation
48 0.120176 0.114174 0.190779 0.137585

(0.048803) (0.048095) (0.063387) (0.047790)
144 0.136212 0.132317 0.105977 0.120308

(0.045642) (0.044667) (0.047744) (0.046114)
360 0.179547 0.181078 0.099895 0.114161

(0.043652) (0.043078) (0.044144) (0.046737)
720 0.271028 0.285306 0.105120 0.115111

(0.036244) (0.035354) (0.043999) (0.048060)
Mean Absolute Percentage Error

48 0.181875 0.172265 0.309536 0.211937
(0.072050) (0.070549) (0.100485) (0.072448)

144 0.211320 0.204913 0.166340 0.181935
(0.069706) (0.068446) (0.073093) (0.066678)

360 0.285055 0.288008 0.154824 0.170972
(0.068402) (0.067658) (0.066069) (0.066966)

720 0.429704 0.452715 0.164250 0.172409
(0.056172) (0.055448) (0.067260) (0.069574)

∗ Notes: See notes to Table 1. All experiments are based on samples of 100 observations.
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Table 4: Predictive Integrated Volatility Density Estimator Accuracy Experiment∗
Case IV: Levels Data - Jumps

M Realized V olatility Bipower V ariation Sub− Sample 1 Sub− Sample 2

Panel A: One i.i.d.N(0, 0.64× E(IVt)) Jump Every 5 Days
Mean Square Error

48 0.144282 0.133275 0.111008 0.149304
(0.023653) (0.027431) (0.053430) (0.051297)

144 0.139575 0.142283 0.092840 0.133265
(0.022013) (0.026829) (0.042424) (0.045331)

360 0.138015 0.150057 0.081050 0.119391
(0.022929) (0.030385) (0.035938) (0.041793)

720 0.137182 0.150156 0.072408 0.111794
(0.022836) (0.029449) (0.032069) (0.039420)

Mean Absolute Deviation
48 0.325440 0.315792 0.297938 0.339042

(0.026261) (0.032255) (0.073026) (0.062056)
144 0.327073 0.337826 0.261602 0.314090

(0.026458) (0.032870) (0.064234) (0.057707)
360 0.326980 0.349090 0.238300 0.292410

(0.027335) (0.035934) (0.054750) (0.054195)
720 0.326562 0.349791 0.222487 0.280613

(0.027339) (0.035073) (0.051296) (0.052627)
Mean Absolute Percentage Error

48 0.451091 0.458656 0.402300 0.434432
(0.044360) (0.060193) (0.093534) (0.083214)

144 0.485407 0.542330 0.334005 0.394789
(0.055779) (0.066547) (0.084554) (0.075377)

360 0.492771 0.576933 0.298630 0.363185
(0.055249) (0.069065) (0.067737) (0.068037)

720 0.495093 0.584380 0.277939 0.347582
(0.054141) (0.068187) (0.062904) (0.065759)

Panel B: One i.i.d.N(0, 0.64× 3× E(IVt)) Jump Every 5 Days
Mean Square Error

48 0.223485 0.139572 0.211826 0.265271
(0.051631) (0.027181) (0.089160) (0.079232)

144 0.200653 0.143716 0.226750 0.260806
(0.045961) (0.027634) (0.082941) (0.076183)

360 0.196553 0.150798 0.227445 0.257420
(0.043549) (0.032258) (0.077804) (0.074407)

720 0.194077 0.151596 0.222624 0.254306
(0.042500) (0.029691) (0.075733) (0.073837)

Mean Absolute Deviation
48 0.407790 0.320696 0.412592 0.462877

(0.056069) (0.029645) (0.094558) (0.079086)
144 0.384516 0.337640 0.422375 0.456395

(0.048356) (0.032754) (0.087711) (0.077892)
360 0.380547 0.349315 0.419720 0.451196

(0.045522) (0.037239) (0.084946) (0.077381)
720 0.377833 0.351351 0.413667 0.447094

(0.044201) (0.034673) (0.084104) (0.078405)
Mean Absolute Percentage Error

48 0.517496 0.452164 0.548307 0.605975
(0.070684) (0.044784) (0.127808) (0.118153)

144 0.494314 0.532773 0.548666 0.593166
(0.050939) (0.066360) (0.127268) (0.117351)

360 0.491051 0.572192 0.539174 0.582774
(0.046094) (0.071289) (0.124280) (0.117380)

720 0.487681 0.585180 0.529439 0.575835
(0.043446) (0.067117) (0.122332) (0.118434)

Panel C: One i.i.d.N(0, 0.64× 5× E(IVt)) Jump Every 5 Days
Mean Square Error

48 0.305656 0.144657 0.297220 0.351849
(0.070500) (0.027574) (0.098630) (0.074695)

144 0.279918 0.148138 0.328315 0.353022
(0.068412) (0.029469) (0.081995) (0.072312)

360 0.275542 0.154826 0.335798 0.354874
(0.068330) (0.033539) (0.079966) (0.072359)

720 0.272757 0.157227 0.333624 0.354244
(0.067245) (0.032349) (0.079103) (0.074101)

Mean Absolute Deviation
48 0.494553 0.326322 0.496872 0.546059

(0.073259) (0.030058) (0.093704) (0.067478)
144 0.468434 0.342204 0.524310 0.546529

(0.072569) (0.034736) (0.076079) (0.065959)
360 0.464017 0.353723 0.529770 0.547601

(0.072597) (0.038517) (0.075786) (0.066556)
720 0.461241 0.357720 0.527285 0.546460

(0.071641) (0.037297) (0.076073) (0.069101)
Mean Absolute Percentage Error

48 0.642378 0.458218 0.666059 0.731700
(0.115489) (0.051364) (0.133621) (0.104542)

144 0.603734 0.537271 0.699370 0.731113
(0.109214) (0.070743) (0.115908) (0.103420)

360 0.597831 0.578814 0.705339 0.731934
(0.107915) (0.074945) (0.117669) (0.105038)

720 0.593559 0.595093 0.700783 0.729717
(0.105708) (0.071941) (0.118685) (0.109426)

∗ Notes: See notes to Table 2.
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Figure 1: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on realized

volatility. M = 78, T = 100.

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

0
50

0
10

00
15

00
20

00 ∆ = 0
∆ = 3
∆ = 6
∆ = 9

Figure 2: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on bipower

variation. M = 78, T = 100.
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Figure 3: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on R̂V t,l,M .

M = 78, T = 100.
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Figure 4: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on R̃V t,e,M .

M = 78, T = 100.
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Figure 5: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on realized

volatility. M = 2340, T = 100.
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Figure 6: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on bipower

variation. M = 2340, T = 100.
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Figure 7: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on R̂V t,l,M .

M = 2340, T = 100.
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Figure 8: Predictive density of IVT+1, conditional on IVT−∆, for the Intel stock, based on R̃V t,e,M .

M = 2340, T = 100.
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Figure 9: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on realized volatility. M = 78, T = 100.
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Figure 10: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on bipower variation. M = 78, T = 100.
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Figure 11: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on R̂V t,l,M . M = 78, T = 100.
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Figure 12: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on R̃V t,e,M . M = 78, T = 100.
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Figure 13: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on realized volatility. M = 2340, T = 100.
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Figure 14: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on bipower variation. M = 2340, T = 100.
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Figure 15: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on R̂V t,l,M . M = 2340, T = 100.
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Figure 16: Predictive density of log (IVT+1), conditional on log (IVT−∆), for the Intel stock, based

on R̃V t,e,M . M = 2340, T = 100.

48


