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Abstract

This paper makes two contributions. First, we outline a simple simulation based framework for constructing
conditional distributions for multi-factor and multi-dimensional diffusion processes, for the case where the
functional form of the conditional density is unknown. The distributions can be used, for example, to form
conditional confidence intervals for time period t + τ , say, given information up to period t. Second, we
use the simulation based approach to construct a test for the correct specification of a diffusion process.
The suggested test is in the spirit of the conditional Kolmogorov test of Andrews (1997). However, in the
present context the null conditional distribution is unknown and is replaced by its simulated counterpart.
The limiting distribution of the test statistic is not nuisance parameter free. In light of this, asymptotically
valid critical values are obtained via appropriate use of the block bootstrap. The suggested test has power
against a larger class of alternatives than tests that are constructed using marginal distributions/densities,
such as those in Äıt-Sahalia (1996) and Corradi and Swanson (2005). The findings of a small Monte Carlo
experiment underscore the good finite sample properties of the proposed test, and an empirical illustration
underscores the ease with which the proposed simulation and testing methodology can be applied.
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1 Introduction

In this paper, we outline a simple simulation based framework for constructing conditional distributions

for multi-factor and multi-dimensional diffusion processes, in the case where the functional form of the

conditional density is unknown. The distributions can be used, for example, to form conditional confidence

intervals for time period t + τ , say, given information up to period t. We then use the simulation based

approach to construct tests for the correct specification of a given diffusion model. What distinguishes our

approaches from that followed by numerous other authors, is that we evaluate conditional distributions and

confidence intervals, rather than focussing on marginal and/or joint distributions.

Precedents to our paper include Corradi and Swanson (CS: 2005), who construct various tests, including

a Kolmogorov type test, based on comparison of the empirical cumulative distribution function and the

cumulative distribution function (CDF) implied by the specification of the drift and the variance, under the

null model (see also the related nonparametric test introduced by Äıt-Sahalia (AS: 1996)). Both the AS and

CS procedures determine whether the drift and variance components of a particular single factor continuous

time model are correctly specified, although the CS test is based on a comparison of CDFs, while Äıt-Sahalia’s

is based on the comparison of densities. Thus, his approach requires the use of a nonparametric density

estimator (and hence the choice of the bandwidth parameter), and is characterized by a nonparametric

rate, while the CS test has a parametric rate. In the case of multi-factor and multi-dimensional models

characterized by stochastic volatility, say, the functional form of the invariant density of the return(s) is

no longer guaranteed to be given in closed form, upon joint specification of the drift and variance terms,

so that the Kolmogorov type test of CS is no longer applicable, for example. To get around this problem,

CS compare the empirical joint distribution of the actual data and the empirical joint distribution of the

(model) simulated data (see also Corradi and Swanson (2004a)). This paper can be seen as an extension

of CS (2005), as conditional Kolmogorov type tests that are easy to implement, and that are based upon

evaluation of conditional distributions and/or confidence intervals are discussed, and are implemented via use

of our proposed simulation methodology. Furthermore, given that we develop conditional Kolmogorov (CK)

type tests, this paper can also be viewed as providing an extension of the CK test developed in Andrews

(1997).

In the literature on the evaluation of continuous time financial models, the main goal is to construct spec-

ification tests based on the transition density associated with a model. In fact, tests based on comparisons

of marginal distributions have no power against iid alternatives with the same marginal, for example. The

main difficulty that arises in this context stems from the fact that knowledge of the drift and variance terms

of a diffusion process does not in turn imply knowledge of the transition density, in general. Indeed, if the

functional form for the transition density were known, we could test the hypothesis of correct specification

of a diffusion via the probability integral transform approach of Diebold, Gunther and Tay (1998), the cross

spectrum approach of Hong (2001), Hong and Li (2004), Hong, Li and Zhao (2004), the test of Bai (2003)

based on the joint use of a Kolmogorov test and a martingalization method, or via the normality transfor-

mation approach of Bontemps and Meddahi (2005) and Duan (2003). For the case in which the transition

density is unknown, a test can be constructed by comparing the kernel (conditional) density estimator of the

actual and simulated data, as in Altissimo and Mele (2002, 2005), and Thompson (2004). Alternatively, a

closed form approximation of the transition density (and hence the likelihood function) is proposed by Äıt-
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Sahalia (1999, 2002), who also provides conditions under which the argmax of the approximated likelihood

is asymptotically equivalent to the “true” maximum likelihood estimator. Whether the same approach can

be used to obtain an approximation of the conditional distribution to be used in the implementation of a

conditional Kolmogorov test, along the lines of Andrews (1997), is left to future research. As mentioned

above, our approach in this paper is to focus on a simulation based methodology for diffusion processes

specification testing.

In our framework, parameters are estimated via the simulated generalized method of moments (SGMM)

approach of Duffie and Singleton (1993), assuming exact identification. Of note in this context is that√
T−consistency does not apply to overidentified (S)GMM estimators of misspecified models, as shown

by Hall and Inoue (2003). Additionally, and as is common with the type of test proposed here, limiting

distributions are functionals of zero mean Gaussian processes with covariance kernels that reflect both the

contribution of parameter estimation error (PEE) as well as the time series nature of the data. Thus, the

limiting distributions are not nuisance parameters free and critical values cannot be tabulated.1 In light of

this fact, we provide valid asymptotic critical values via an extension of the empirical process version of the

block bootstrap which properly captures the contribution of PEE, for the case where parameters are estimated

via SGMM. Of note in this context is that when the simulation error is negligible (i.e. the simulated sample

grows faster than the historical sample), and given exact identification, the results developed by Goncalves

and White (2004) for QMLE estimators extend to SGMM estimators.

The potential usefulness of our proposed bootstrap based tests is examined via a simple Monte Carlo

experiments using discrete samples of 400 and 800 observations, and based on the use of bootstrap critical

values constructed using as few as 100 replications. Rejection rates under the null are quite close to nominal

values, and rejection rates under the alternative are generally high.2 Additionally, an empirical illustration

is provided which underscores the ease with which one can apply our simulation and testing methodology.

The rest of the paper is organized as follows. In Section 2, we outline a setup which is appropriate for

discussing our simulation and testing methodology, in the context of one-dimensional diffusion processes. In

Section 3, we discuss a simple approach to simulation of conditional distributions and confidence intervals.

Section 4 outlines our specification test, and Section 5 extends all results to the case of multi-factor and

multi-dimensional models. Section 6 contains the results of our small Monte Carlo experiment, and discusses

the findings from an empirical illustration based on the Eurodollar deposit rate. Concluding remarks are

gathered in Section 7, and all proofs are collected in an appendix.

2 Setup

In this section we outline the set-up for the case of one-dimensional diffusion processes. All results, carry

through to the more complicated cases of multi-dimensional and multi-factor stochastic volatility models, as

outlined in Section 5.

1Note, though, that in the special case of testing for normality, Bontemps and Meddahi (2005) provide a GMM type test

based on moment conditions that is robust to parameter estimation error.
2It is worth noting that the joint problem of simulating paths and simulating bootstrap replications make this Monte Carlo

study rather computationally intensive, and we are not aware of other simulation studies which analyze the performance of

bootstrap tests for diffusion processes other than Corradi and Swanson (2005).
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Let X(t), t ≥ 0, be a one-dimensional diffusion process solution to the following stochastic differential

equation:

dX(t) = b0(X(t), θ0)dt+ σ0(X(t), θ0)dW (t), (1)

where θ0 ∈ Θ, Θ ⊂ �p, and Θ is a compact set. In general, assume that the following model is specified and

estimated:

dX(t) = b(X(t), θ†)dt+ σ(X(t), θ†)dW (t), (2)

Thus, correct specification of the diffusion process corresponds to b(·, ·) = b0(·, ·) and σ(·, ·) = σ0(·, ·). Note
that the drift and variance terms (b(·) and σ2(·), respectively) uniquely determine the stationary density,

say f(x, θ†), associated with the invariant probability measure of the above diffusion process (see e.g. Karlin

and Taylor (1981), pp. 241). In particular:

f(x, θ†) =
c(θ†)

σ2(x, θ†)
exp

(∫ x 2b(v, θ†)

σ2(v, θ†)
dv

)
, (3)

where c(θ†) is a constant ensuring that the density integrates to one. However, knowledge of the drift and

variance terms does not ensure knowledge of a closed functional form for the transition density.

Now, suppose that we observe a discrete sample (skeleton) of T observations, say (X1,X2, . . . ,XT )
′,

from the underlying diffusion. Furthermore, suppose that we use these sample data in conjunction with a

simulated “path” of data in order to construct an estimator of θ, say θ̂T,N,h, where N denotes the simulation

path length and h is the discretization interval.3 Finally, note that we use the notation X(t) to denote the

continuous time process, and the notation Xt to denote the skeleton (i.e. the discrete sample). In light of

this, let Xθ
t,h denote pathwise simulated data, constructed using some θ ∈ Θ.

Assume that θ̂T,N,h is the simulated generalized method of moments (SGMM) estimator, which is defined

as:

θ̂T,N,h = argmin
θ∈Θ

(
1

T

T∑
t=1

g(Xt)− 1

N

N∑
t=1

g(Xθ
t,h)

)′

WT

(
1

T

T∑
t=1

g(Xt)− 1

N

N∑
t=1

g(Xθ
t,h)

)
= argmin

θ∈Θ
GT,N,h(θ)

′WTGT,N,h(θ), (4)

where g denotes a vector of p moment conditions, Θ ⊂ �p (so that we have as many moment conditions as

parameters), and Xθ
t,h = Xθ

[Kth/N ], with N = Kh. Finally, WT is the inverse of a heteroskedasticity and

autocorrelation (HAC) robust covariance matrix estimator. That is:

W−1
T =

1

T

lT∑
ν=−lT

wν

T−lT∑
t=ν+1+lT

(
g(Xt)− 1

T

T∑
t=1

g(Xt)

)(
g(Xt−ν) − 1

T

T∑
t=1

g(Xt)

)′

, (5)

where wv = 1 − v/(lT + 1). In order to construct simulated estimators, we require simulated sample paths.

If we use a Milstein scheme (see e.g. Pardoux and Talay (1985)), then:

Xθ
kh −Xθ

(k−1)h = b(Xθ
(k−1)h, θ)h+ σ(Xθ

(k−1)h, θ)εkh −
1

2
σ(Xθ

(k−1)h, θ)
′σ(Xθ

(k−1)h, θ)h

+
1

2
σ(Xθ

(k−1)h, θ)
′σ(Xθ

(k−1)h, θ)ε
2
kh, (6)

3In the case in which the moment conditions can be written in closed form, we have that θ̂T,N,h = θ̂T , given that N is the

sample length of the simulated path used in estimation of θ, and h is the discretization parameter used in the application of

Euler and/or Milstein approximation schemes, for example (see below for further details).
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where εkh
iid∼ N(0, h), k = 1, . . . ,N, Nh = S, and σ(·, ·)′ is the derivative of σ(·, ·), with respect to its first

argument. Here, the pseudo true value, θ†, is defined to be:

θ† = argmin
θ∈Θ

G∞(θ)′W0G∞(θ),

where G∞(θ)′W0G∞(θ) =plimT→∞,h→0GT,N,h(θ)
′WTGT,N,h(θ), and θ† = θ0, if the model is correctly

specified. Note that the reason why we limit our attention to the exactly identified case is that this ensures

that G∞(θ†) = 0, even when the model used to simulate the diffusion is misspecified, in the sense of differing

from the underlying DGP (see e.g. Hall and Inoue (2003) for discussion of the asymptotic behavior of

misspecified overidentified GMM estimators).4

Before discussing conditional simulation, we first state the assumptions under which
√
T
(
θ̂T,N,h − θ†

)
is asymptotically normal. In particular, we shall rely on the following assumption in the sequel.

Assumption A:

(i) X(t), t ∈ �+, is a strictly stationary, geometric ergodic diffusion.

(ii) b(·, θ†) and σ(·, θ†), as defined in (2), are twice continuously differentiable. Also, b(·, ·), b(·, ·)′, σ(·, ·), and
σ(·, ·)′ are Lipschitz, with Lipschitz constant independent of θ, where b(·, ·)′ and σ(·, ·)′ denote derivatives

with respect to the first argument of the function.

(iii) For any fixed h and θ ∈ Θ, Xθ
kh is geometrically ergodic and strictly stationary.

(iv) WT
a.s.→ W0 =

∑−1

0
, where,

∑
0
=
∑∞

j=−∞E ((g(X1)−E(g(X1)))(g(X1+j)−E(g(X1+j)))
′) .

(v) For θ ∈ Θ and for all h, ||g(Xθ
t,h)||2+δ < C < ∞, g(Xθ

t,h) is Lipschitz, uniformly on Θ, θ → E(g(Xθ
t,h))

is continuous, and g(Xt), g(X
θ
t,h),∇θX

θ
t,h are 2r−dominated (the last two also on Θ) for r > 3/2.5

(vi) Unique identifiability: G∞(θ†)′W0G∞(θ†) < G∞(θ)′W0G∞(θ), ∀θ �= θ†.

(vii) θ̂T,N,h and θ† are in the interior of Θ, g(Xθ
t ) is twice continuously differentiable in the interior of Θ;

and D† = E(∂g(Xθ
t )/∂θ|θ=θ†) exists and is of full rank, p.

All results stated in the sequel rely on the following Lemma.

Lemma 1: Let Assumption A hold. Assume that T,N →∞. Then, if h→ 0, T/N → 0, and h2T → 0, the

following result holds: √
T
(
θ̂T,N,h − θ†

)
d→ N(0,

(
D†′W0D

†
)−1

),

where W0 and D† are defined in Assumption A(iv) and A(vii). The above normality result for the SGMM

estimator can be extended in a straightforward manner to the case of the EMM estimator of Gallant and

Tauchen (1996) (see also Dridi (1999)).

3 Simulated Conditional Distributions

In this section, we outline how to construct in-sample τ−step ahead simulated conditional distributions,

when the functional form of the conditional distribution is not known in closed form. Conditional confidence

4Note that first order conditions imply that

∇θG∞(θ†)′W
†

G∞(θ†) = 0.

However, in the case for which the number of parameters and the number of moment conditions is the same, ∇θG∞(θ†)′W
†
is

invertible, and so the first order conditions also imply that G∞(θ†) = 0.
5More precisely, we require supθ∈Θ |g(X

θ
t,h

)| ≤ Dt, where supt E(Dt)2r < ∞.
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interval construction follows immediately, and is discussed in Section 6. Let S be the number of simulated

paths. Then, for s = 1, ...S, t ≥ 1, and k = 1, ..., τ/h, define:

X
θ̂T,N,h

s,t+kh −X
θ̂T,N,h
s,t+(k−1)h

= b(X
θ̂T,N,h
s,t+(k−1)h

, ̂θT,N,h)h+ σ(X
θ̂T,N,h
s,t+(k−1)h

, ̂θT,N,h)εs,t+kh

−
1

2
σ(X

θ̂T,N,h
s,t+(k−1)h

, ̂θT,N,h)
′σ(X

θ̂T,N,h
s+(k−1)h

, ̂θT,N,h)h

+
1

2
σ(X

θ̂T,N,h
s,t+(k−1)h,

̂θT,N,h)
′σ(X

θ̂T,N,h
s,t+(k−1)h,

̂θT,N,h)ε
2
s,t+kh, (7)

where εs,t+kh
iid
∼ N(0, h). That is, we simulate S paths of length τ, with τ finite, all having the same starting

value, Xt. This allows for the preservation of the starting value effect on the finite length simulation paths.

It should be stressed, however, that the simulated diffusion is ergodic. Thus, the effect of the starting value

approaches zero at an exponential rate, as τ →∞.

Now, for any given starting value, Xt, the simulated randomness is assumed to be independent across

simulations, so that E(εs,t+khεj,t+kh) = 0, for all s �= j. On the other hand, it is important to retain the

same simulated randomness across different starting values (i.e. use the same set of random errors for each

starting value), so that E(εs,t+khεs,l+kh) = h, for any t, l.6

Given the above setup, note that we can equivalently define X
θ̂T,N,h
s,t+τ to be the final value for a given

simulation path, s, when started at Xt. As an estimate for the distribution, at time t+ τ, conditional on Xt,

define:

̂F (u|Xt, ̂θT,N,h) =
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}

As stated in Proposition 2 below, if the model is correctly specified, then 1
S

∑S
s=1 1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
provides

a consistent estimate of the “true” conditional distribution.7 Hereafter, let F (u|Xt, θ) denote the conditional

distribution of Xt+τ , given Xt.

The statement of Proposition 2 requires the following assumption.

Assumption B: (i) F (u|Xt, θ) is twice continuously differentiable in the interior of Θ. Also, ∇θF (u|Xt, θ)

and ∇2
θF (u|Xt, θ) are jointly continuous in the interior of Θ, almost surely, and 2r-dominated on Θi, r > 2.

(ii) Xθ
s,t+τ is continuously differentiable in the interior of Θ, for s = 1, ..., S; and ∇θX

θ
s,t+τ is 2r−dominated

in Θ, uniformly in s for r > 2.

Proposition 2: Let Assumptions A and B hold. Assume that T,N,S → ∞. Then, if h → 0, T/N → 0,

and h2T → 0, the following result holds for any Xt, t ≥ 1, uniformly in u :

F̂ (u|Xt, θ̂T,N,h)− F (u|Xt, θ
†)

pr
→ 0, (8)

In addition, if the model is correctly specified (i.e. if b(·, ·) = b0(·, ·) and σ(·, ·) = σ0(·, ·)) then:

F̂ (u|Xt, θ̂T,N,h)− F0(u|Xt, θ0)
pr
→ 0. (9)

6The test discussed in the next section requires the construction of multiple paths of length τ, for a number of different

starting values, and hence we have attempted to underscore the importance of keeping the random errors used in the construction

of each set of paths for each starting value the same.
7A related approach for approximating distribution functions has been suggested by Thompson (2004), in the context of

tests for the correct specification of term structure models.
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In practice, once we have an estimate for the τ period ahead conditional distribution, we still do not

know whether our estimate is based on the correct model or not. This suggests using the test for correct

specification outlined in the next section, in order to assess the “relevance” of the distribution estimator.

4 Specification Testing

In the first sub-section, we outline the test. The second sub-section discusses bootstrapping procedures for

obtaining asymptotically valid critical values.

4.1 The Test

The test outlined in this section can be viewed as a simulation-based extension of Andrews (1997) and Corradi

and Swanson (2003,2004b), which has been adapted to the use of continuous time models. Of additional

note is that in the Andrews and Corradi-Swanson papers, the functional form of conditional distribution

under the null hypothesis is assumed to be known, while in the current context we replace the conditional

distribution (or conditional mean) with a simulation based estimator. Furthermore, in the Andrews paper,

a conditional-Kolmogorov test is developed under the assumption of iid data, so that the bootstrap used in

that paper is not applicable in our context.

Recall that in the previous section we discussed the construction of simulation paths for a given starting

value. In order to carry out a specification test, however, we now require the construction of a sequence

of T − τ conditional distributions that are τ−steps ahead, say. In this way, S paths of length τ are thus

available for each starting value from t = 1, ..., T − τ .

The hypotheses of interest are:

H0 : F (u|Xt, θ
†) = F0(u|Xt, θ0), for all u, a.s.

HA : Pr
(
F (u|Xt, θ

†)− F0(u|Xt, θ0) �= 0
)
> 0, for some u, with non-zero Lebesgue measure,

Thus, the null hypothesis coincides with that of correct specification of the conditional distribution, and is

implied by the correct specification of the drift and variance terms used in simulating the paths. The alterna-

tive is simply the negation of the null. In practice, we observe neither F (u|Xt, θ
†) nor F0(u|Xt, θ0). However,

we can simply construct a statistic replacing F (u|Xt, θ
†) with 1

S

∑S
s=1 1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
and F0(u|Xt, θ0) with

1

T

∑T
t=1 1{Xt+τ ≤ u}. This is a sensible choice because of Proposition 2 above, and becauseE (1{Xt+τ ≤ u}|Xt) =

F0(u|Xt, θ0). The natural test statistic in this context is thus:

VT = sup
u×v∈U×V

|VT (u, v)| (10)

where

VT (u, v) =
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v} ,

where U and V are compact sets on the real line. The asymptotic behavior of VT is described by the following

theorem.
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Theorem 3: Let Assumptions A and B hold. Assume that T,N, S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, T 2/S →∞, Nh→ 0, and h2T → 0, the following result holds under H0 :

VT
d→ sup

u×v∈U×V

|Z(u, v)|,

where Z(u, v) is a Gaussian process with covariance kernel K(u, u′, v, v′) given by:

K(u, u′, v, v′) =
∞∑

j=−∞

E ((F0(u|X1, θ0)− 1{X1+τ ≤ u}) 1 {X1 ≤ v}

× (F0(u
′|X1+j, θ0)− 1{X1+τ+j ≤ u′}) 1{X1+j ≤ v′})

+
∞∑

j=−∞

E

(
f0(u|X1, θ0)Es

(
∇θ0X

θ0
s,1+τ

)′
1 {X1 ≤ v}D0′W0D

0

× f0(u
′|X1+j, θ0)Es

(
∇θ0X

θ0
s,1+τ+j

)
1 {X1+j ≤ v′}

)

−2
∞∑

j=−∞

E

(
f0(u|X1, θ0)Es

(
∇θ0X

θ0
s,1+τ

)′
(D0′W0D

0)−1D0′W0

(g(X1+j) −E(g(X1))) (F0(u|X1+j, θ0)− 1{X1+τ+j ≤ u′}) 1{X1+j ≤ v′}) .

Furthermore, under HA, there exists some ε > 0 such that:

lim
P→∞

Pr

(
1√
T
VT > ε

)
= 1.

In Theorem 3, E(·) denotes expectation with respect to the probability measure governing the sample,

and Es(·) denotes expectation with respect to the probability measure governing the simulated randomness,

conditional on the sample. Also, recall that under the null hypothesis, θ† = θ0. Notice that the limiting

distribution is a zero mean Gaussian process, with a covariance kernel that reflects the contribution of

parameter estimation error. Thus, the limiting distribution is not nuisance parameter free and hence critical

values cannot be tabulated. In the next section we thus outline a bootstrap procedure for calculating

asymptotically valid critical values for VT .

4.2 Bootstrap Critical Values

Given that the limiting distributions of VT is not nuisance parameter free, our approach is to construct

bootstrap critical values for the test. In order to show the first order validity of the bootstrap, we shall

obtain the limiting distribution of the bootstrapped statistic and show that it coincides with the limiting

distribution of the actual statistic under H0. Then, a test with correct asymptotic size and unit asymptotic

power can be obtained by comparing the value of the original statistic with bootstrapped critical values.

If the data consisted of iid observations, we could consider proceeding along the lines of Andrews (1997),

by drawing bootstrap samples of our simulated observations from the distribution under H0, conditional on

the observed values for the covariates. However, given that we have dependence, and that we observe neither

7



F (u|Xt, θ
†) nor F0(u|Xt, θ0), asymptotically valid bootstrap critical values for the test should be constructed

as follows:

Step 1: At each replication, draw b blocks (with replacement) of length l, where bl = T . Thus, each block

is equal to Xi+1, ...,Xi+l, for some i = 0, ..., T − l+1, with probability 1/(T − l+1). More formally, let Ik,

k = 1, ..., b be iid discrete uniform random variables on [0,1, ..., T − l + 1]. Then, the resampled series, X∗
t

is such that X∗
1 ,X

∗
2 , ...,X

∗
l ,X

∗
l+1, ...,X

∗
T = XI1+1,XI1+2, ...,XI1+l,XI2 , ...,XIb+l, and so a resampled series

consists of b blocks that are discrete iid uniform random variables, conditional on the sample. Use these

data to construct ̂θ∗T,N,h. As N/T → ∞, then GMM and simulated GMM are asymptotically equivalent.

More precisely,

̂θ∗T,N,h = argmin
θ∈Θ

(
1

T

T∑
t=1

g(X∗

t )−
1

N

N∑
t=1

g(Xθ
t,h)

)′
WT

(
1

T

T∑
t=1

g(X∗

t )−
1

N

N∑
t=1

g(Xθ
t,h)

)
,

where WT and g(·) are defined in (4).

Step 2: Using the same set of random errors used in the construction of the actual statistic, construct

X
θ̂∗T,N,h
s,t+τ,∗, s = 1, ..., S, and t = 1, ..., T − τ . Note that we do not resample the simulated series (as S/T →∞,

simulation error is asymptotically negligible). Instead, simply simulate the series using bootstrap estimators

and using bootstrapped values as starting values.

Step 3: Construct the following bootstrap statistic, which is the bootstrap counterpart of VT :

V ∗

T = sup
u×v∈U×V

|V ∗

T (u, v)| , (11)

where

V ∗

T (u, v) =
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂∗T,N,h
s,t+τ,∗ ≤ u

}
− 1{X∗

t+τ ≤ u}
)
1 {X∗

t ≤ v}

− 1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v}

Step 4: Repeat Steps 1-3 B times, and generate the empirical distribution of the B bootstrap statistics.

Theorem 4: Let Assumptions A and B hold. Assume that T,N, S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, T 2/S →∞, Nh→ 0, h2T → 0, l→∞, and l2/T → 0, the following result holds:

P

[
ω : sup

x∈�

|P∗ (V ∗

T (ω) ≤ x)−P ((VT −E(VT )) ≤ x)| > ε

]
→ 0,

where P∗ denotes the probability law of the resampled series, conditional on the sample.

The above results suggest proceeding in the following manner. For any bootstrap replication, compute

the bootstrap statistic, V ∗

T . Perform B bootstrap replications (B large) and compute the quantiles of the

empirical distribution of the B bootstrap statistics. Reject H0, if VT is greater than the (1−α)th-percentile.

Otherwise, do not reject. Now, for all samples except a set with probability measure approaching zero, VT has

the same limiting distribution as the corresponding bootstrapped statistic, ensuring asymptotic size equal

to α. Under the alternative, VT diverges to (plus) infinity, while the corresponding bootstrap statistic has a

well defined limiting distribution, ensuring unit asymptotic power.
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5 Extension: Stochastic Volatility Models

In providing an extension to the multi-dimensional case of the above test for one-dimensional models, a first

difficulty lies in the choice of the discrete approximation scheme. In particular, the diffusion process, X(t),

can be expressed as a function of the driving Brownian motion, W (t), in the one-dimensional case. However,

in the multi-dimensional case, where we have X(t) ∈ Rp, note that X(t) cannot in general be expressed as a

function of the p driving Brownian motions, but is instead a function of (Wj(t),
∫ t
0 Wj(s)dWi(s)), i, j = 1, ...p

(see e.g. Pardoux and Talay (1985), pp. 30-32). For this reason, simple approximations like the Euler and

Milstein schemes, which do not involve approximation of stochastic integrals, may not be adequate. One

case in which the Milstein scheme does straigthforwardly generalize to the multidimensional case is when

the diffusion matrix is commutative. For example, let Σ(X) =
(
σ1(X) . . . σP (X)

)
, where σi(X) is

a p× 1 vector, for i = 1, ..., p. If for all i, j = 1, ..., p,(
∂σj(X)
∂X1

. . .
∂σj (X)
∂Xp

)
σi(X) =

(
∂σi(X)
∂X1

. . . ∂σi(X)
∂Xp

)
σj(X),

then Σ(X) is commutative. It is immediate to see that almost all of the most frequently used stochastic

volatility (SV) models violate the commutativity property. Of course, commutativity holds in the case of

no leverage, but this rules out many important cases. For example, the non-leverage assumption is suitable

for exchange rates, but not for stock returns. The intuitive reason for this is that both the variance of

the observable asset and the variance of the (unobservable) variance process depend only on the volatility

process. In this situation, more “sophisticated” approximation schemes are necessary.

We now focus our attention on two-factor stochastic volatility models. Extension to general multi-factor

and multi-dimensional models follows directly. Consider the following model:(
dX(t)
dV (t)

)
=

(
b1(X(t), θ†)
b2(V (t), θ

†)

)
dt+

(
σ11(V (t), θ

†)
0

)
dW1(t) +

(
σ21(V (t), θ

†)
σ22(V (t), θ

†)

)
dW2(t),

(12)

whereW1,t andW2,t are independent standard Brownian motions, and where b1(·, ·), b2(·, ·), σ11(·, ·), σ21(·, ·),
σ22(·, ·), and θ† are replaced with b1,0(·, ·), b2,0(·, ·), σ11,0(·, ·), σ21,0(·, ·), σ22,0(·, ·), and θ0, respectively,

under correct specification. It is immediate to see that the diffusion in (12) violates the commutativity

property. Also, note that most of the popular SV models, such as the square-root model of Heston (1993),

the GARCH diffusion model of Nelson (1990), the lognormal model of Hull and White (1987), and in general

the eigenfunction stochastic volatility models of Meddahi (2001) can be written as (12) above.

Now, let

b(·, ·) =
(

b1(·, ·)
b2(·, ·)

)
, σ =

(
σ11(·, ·) 0
σ21(·, ·) σ22(·, ·)

)
, (13)

and define the following generalized Milstein scheme (see eq. (3.3), p.346 in Kloeden and Platen (1999)),

Xθ
(k+1)h = Xθ

kh + b̃1(X
θ
kh, θ)h+ σ11(V

θ
kh, θ)ε1,(k+1)h + σ12(V

θ
kh, θ)ε2,(k+1)h

+
1

2
σ22(V

θ
kh, θ)

∂σ12(V
θ
kh, θ)

∂V
ε22,(k+1)h

+σ22(V
θ
kh, θ)

∂σ11(V
θ
kh, θ)

∂V

∫ (k+1)h

kh

(∫ s

kh

dW2,τ

)
dW1,s (14)
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V θ
(k+1)h = V θ

kh + b̃2(V
θ
kh, θ)h+ σ22(V

θ
kh, θ)ε2,(k+1)h

+
1

2
σ22(V

θ
kh, θ)

∂σ22(V
θ
kh, θ)

∂V
ε22,(k+1)h (15)

where h−1/2εi,kh ∼ N(0,1), i = 1,2, E(ε1,khε2,mh) = 0 for all k and m, and

b̃(V, θ) =

(
b̃1(V, θ)

b̃2(V, θ)

)
=

(
b1(V, θ) − 1

2σ22(V, θ)
∂σ12(V,θ)

∂V

b2(V, θ) − 1
2σ22(V, θ)

∂σ22(V,θ)
∂V

)
.

The last terms on the RHS of (14) involves stochastic integrals and cannot be explicitly computed. However,

they can be approximated, up to an error of order o(h) by (see eq. (3.7), p. 347 in Kloeden and Platen

(1999)): ∫ (k+1)h

kh

(∫ s

kh

dW2,τ

)
dW1,s ≈ h

(
1

2
ξ1ξ2 +

√
ρp (µ2,pξ1 − µ1,pξ2)

)

+
h

2π

p∑
r=1

1

r

(
ς2,r

(√
2ξ1 + η1,r

)
− ς1,r

(√
2ξ2 + η2,r

))
,

where for j = 1,2, ξj, µj,p, ςj,r , ηj,r are iidN(0, 1) with ξj = h−1/2εj,(k+1)h, and ρp =
1
12
− 1

2π2

∑p
r=1

1
r2
, and

p is such that as h→ 0, p→∞.

In order to construct conditional distributions, given the observable state variables, we need to perform

the following steps.

Step 1: Simulate a path of lengthN using the schemes in (14)(15) and estimate θ by SGMM, as in (4). Also,

retrieve V
θ̂T,N,h

kh , for k = 1/h, ..., N/h, and hence obtain V
θ̂T,N,h

j,h , j = 1, ...,N (i.e. we sample the simulated

volatility at the same frequency as the data).

Step 2: Using the schemes in (14)(15), simulate S ×N path of length τ, setting the initial value for the

observable state variable to be Xt. As we do not observe data on volatility, use the values simulated in the

previous step as the initial value for the volatility process (i.e. as initial values for unobservable state variable,

use V
θ̂T,N,h

j,h , j = 1, ...,N). Also, keep the simulated randomness (i.e. ε1,kh, ε2,kh,
∫ (k+1)h
kh

(∫ s
kh dW1,τ

)
dW2,s)

constant across j (i.e. constant across the different starting values for the unobservable and observable state

variable). Define X
θ̂T,N,h

j,s,t+τ to be the simulated τ−step ahead value for the return series at replication s, and

using initial values Xt and V
θ̂T,N,h

j,h .

Step 3: As an estimator of F (u|Xt, θ
†), construct 1

NS

∑N
j=1

∑S
s=1 1

{
X

θ̂T,N,h

j,s,t+τ ≤ u

}
.Note that, by averaging

over the initial value of the volatility process, we have integrated out its effect.8

Step 4: Construct the statistic of interest:

SVT = sup
u×v∈U×V

|SVT (u, v)| ,

where

SVT (u, v) =
1√

T − τ

T−τ∑
t=1

⎛
⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

⎞
⎠1 {Xt ≤ v} , (16)

8In other words, 1

S

∑S

s=1
1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
is an estimate of Fi(u|Xt, V

θ†

j,h
, θ†).
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Assumption A′: This assumption is the same as Assumption A, except that Assumption A(ii) is replaced by

(ii′): b(·, ·) and σ(·, ·) (as defined in (12) and (13)), and σlj(V, θ)
∂σkι(V,θ)

∂V
are twice continuously differentiable,

Lipschitz, with Lipschitz constant independent of θ, and grow at most at a linear rate, uniformly in Θ, for

l, j, k, ι = 1, 2.

All of the results outlined in Sections 3 and 4 generalize to the current setting. In particular, the following

results hold.

Proposition 5: Let Assumptions A′ and B hold. Assume that T,N,S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, and h2T → 0, the following result holds for any Xt, t ≥ 1 :

1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
− F (u|Xt, θ

†)
pr→ 0, uniformly in u

In addition, if the model is correctly specified, i.e. if b(·, ·) = b0(·, ·) and σ(·, ·) = σ0(·, ·), then

1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
−F0(u|Xt, θ0)

pr→ 0, uniformly in u

Now, given the same hypotheses as stated in Section 4.1, it follows that the proceeding result holds.

Theorem 6: Let Assumptions A′ and B hold. Assume that T,N, S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, T 2/S →∞, Nh→ 0, and h2T → 0, the following result holds under H0 :

SVT
d→ sup

u×v∈U×V

|SZ(u, v)|,

where SZ(v) is a Gaussian process with covariance kernel SK(v, v′) given by:

SK(u,u′, v, v′) =
∞∑

k=−∞

E ((F0(u|X1, θ0)− 1{X1+τ ≤ u}) 1{X1 ≤ v}

(F0(u
′|X1+k, θ0)− 1{X1+τ+k ≤ u′}) 1{X1+k ≤ v′})

+
∞∑

k=−∞

E

(
f0(u|X1, θ0)Ej,s

(
∇θ0X

θ0
j,s,1+τ

)′
1 {X1 ≤ v}D0′W0D

0

× f0(u
′|X1+k, θ0)Ej,s

(
∇θ0X

θ0
j,s,1+τ+k

)
1{X1+k ≤ v′}

)

−2
∞∑

k=−∞

E

(
f0(u|X1, θ0)Ej,s

(
∇θ0X

θ0
j,s,1+τ

)′
(D0′W0D

0)−1D0′W 0

(g(X1+k)−E(g(X1))) (F0(u|X1+k, θ0)− 1{X1+τ+k ≤ u′}) 1{X1+k ≤ v′}) .

Furthermore, under HA, there exists some ε > 0 such that:

lim
P→∞

Pr

(
1√
T
SVT > ε

)
= 1.

In Theorem 6, E(·) denotes expectation with respect to the probability measure governing the sample, and

Ej,s(·) denotes expectation with respect to the joint probability measure governing the simulated randomness

and the volatility process, V θ0
h,j , conditional on the sample. Also, recall that under the null, θ†i = θ0.
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Finally, in order to obtain asymptotically valid critical values, resample as discussed above for the one-

factor model, and note that there is no need to resample V θ
h,j . In particular, form bootstrap statistics as

follows:

SV ∗T = sup
u×v∈U×V

|SV ∗T (u, v)| , (17)

where

SV ∗T (u, v) =
1√
T − τ

T−τ∑
t=1

⎛
⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂∗i,T,N,h
j,s,t+τ,∗ ≤ u

}
− 1{X∗

t+τ ≤ u}
⎞
⎠1 {X∗

t ≤ v}

− 1√
T − τ

T−τ∑
t=1

⎛
⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂i,T,N,h

j,s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

⎞
⎠1 {Xt ≤ v} ,

where X
θ̂∗i,T,N,h
j,s,t+τ,∗ is the simulated value at simulation s, constructed using θ̂∗i,T,N,h and using as initial value

X∗
t and V

θ̂∗i,T,N,h
j,h .

The following result then holds.

Theorem 7: Let Assumptions A′ and B hold. Assume that T,N, S → ∞. Then, if h → 0, T/N → 0,

T/S → 0, T 2/S →∞, Nh→ 0, h2T → 0, l→∞, and l2/T → 0, the following result holds:

P

[
ω : sup

x∈�

|P∗ (SV ∗T (ω) ≤ x)−P ((SVT −E(SVT )) ≤ x)| > ε

]
→ 0.

As in the single-factor case, the above results suggest proceeding in the following manner. For any

bootstrap replication, compute the bootstrap statistic, SV ∗T . Perform B bootstrap replications (B large)

and compute the quantiles of the empirical distribution of the B bootstrap statistics. Reject H0, if SVT is

greater than the (1−α)th-percentile. Otherwise, do not reject. Now under the null, for all samples except a

set with probability measure approaching zero, SVT and SV ∗T have the same limiting distribution, ensuring

asymptotic size equal to α. Under the alternative, SVT diverges to (plus) infinity, while the corresponding

bootstrap statistic has a well defined limiting distribution, ensuring unit asymptotic power.

6 Experimental and Empirical Results

In this section we briefly illustrate the above testing methodology via an illustration in which we are interested

in specification testing from the perspective of conditional confidence intervals. In particular, we consider

the special case in which VT = supv∈V |VT (v)| ,where

VT (v) =
1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
u ≤ X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{u ≤ Xt+τ ≤ u}

)
1 {Xt ≤ v} .

Additionally, define the following bootstrap statistic: V ∗

T = supv∈V |V ∗

T (v)| , where

V ∗

T (v) =
1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
u ≤ X

θ̂∗T,N,h

s,t+τ,∗ ≤ u

}
− 1{u ≤X∗

t+τ ≤ u}
)
1 {X∗

t ≤ v}

− 1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
u ≤X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{u ≤Xt+τ ≤ u}

)
1 {Xt ≤ v} .
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It is immediate to see that the above statistic is a simplified version of the distributional test discussed

above, so that all of the theoretical results outlined in Section 4 and 5 hold. Although we shall focus in this

simple illustration on single factor models, it also follows that the confidence interval version of the test can

be applied to stochastic volatility models, in the sense that one need simply define: SVT = supv∈V |SVp(v)| ,
where

SVT (v) =
1√
T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
u ≤ X

θ̂T,N,h
j,s,t+τ ≤ u

}
− 1{u ≤Xt+τ ≤ u}

⎞⎠ 1{Xt ≤ v} ;

and SV ∗T = supv∈V |SV ∗

T (v)| , where

SV ∗T (v) =
1√
T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
u ≤ X

θ̂∗i,T,N,h
j,s,t+τ,∗ ≤ u

}
− 1{u ≤ X∗

t+τ ≤ u}
⎞⎠1 {X∗

t ≤ v}

− 1√
T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
u ≤X

θ̂i,T,N,h
j,s,t+τ ≤ u

}
− 1{u ≤ Xt+τ ≤ u}

⎞⎠1 {Xt ≤ v} .

The particular single factor models that we use for this illustration are a common version of the square

root process discussed in Cox, Ingersoll, and Ross (CIR: 1985), and a simple model in which logged data are

generated according to an Ornstein-Uhlenbeck (OU) process. In particular the models are:

CIR: dX(t) = φ1 (α1 −X(t)) dt+ σ1
√
X(t)dW1(t), where φ1 > 0, σ1 > 0 and 2φ1α1 ≥ σ21 ,

OU: d lnX(t) = φ2 (α2 − lnX(t)) dt+ σ2dW1(t), where φ2 > 0, and σ2 > 0.

6.1 Monte Carlo Experiment

Data were generated using the above models. The parameters used in data generation were selected via

examination of models estimated using the interest rate data discussed in the next subsection. Parame-

terizations considered included: CIR: (φ1, α1, σ1) = (0.30, 0.05, 0.10), (0.30,0.07, 0.10), (0.50,0.05, 0.10),

(0.50,0.07, 0.10); andOU : (φ2, α2, σ2) = (0.10,−2.00,0.30), (0.10,−3.00,0.30), (0.20,−2.00, 0.30), (0.20,−3.00,0.30).

Data were generated using the Milstein scheme discussed above with h=1/T , for T = {400,800}. All

subsequent model estimation was done using both exactly identified GMM and SGMM, where the moments

used in SGMM are E [Xt], V ar [Xt] and E [(Xt −E[Xt]) (Xt−1 −E[Xt])]. Results were qualitatively the

same using either approach, and hence only results for the GMM estimation case are discussed below.

Additionally, and for the sake of brevity, we report results only for the following two parameterizations:

CIR: (φ1, α1, σ1) = (0.30, 0.05,0.10) and OU: (φ2, α2, σ2) = (0.10,−2.00,0.30). Results for the other

parameterizations are qualitatively similar, and are available upon request.

In our experiment, all the empirical bootstrap distributions were constructed using 100 bootstrap repli-

cations, and critical values were set equal to the 90th percentile of the bootstrap distribution. For the

bootstrap, block lengths of 5, 10, 20 and 50 were tried. Additionally, we set S = {10T,20T,30T}. Tests

were carried out using τ−step ahead confidence intervals, for τ = {1,2, 4, 12}, and we set (u, u); X±0.25σX ,

X ± 0.5σX , X ±σX , and X ± 2σX , where X and σX are the mean and variance of an initial sample of data

of length 1000 observations, generated using the model under investigation. Finally, the set V was set equal

to [Xmin,Xmax], and a grid of 100 equally spaced values for v across this range was used, where Xmin and
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Xmax are again fixed using the sample of 1000 observations mentioned previously. All results are based on

500 Monte Carlo iterations.

Results are gathered in Table 1-4. Tables 1 and 2 report results for the empirical level of the test while

Tables 3 and 4 report results for power experiments. In the level experiments, estimated models are the same

as the models used for data generation, while in the power experiments, we estimated the CIR model (when

data were generated according to the OU model), and the OU model (when data were generated according

to the CIR model). Each table contains two panels, one for T =400 and one for T =800. Recalling that

the nominal rejection rate is 10%, note that the test does not have particularly good empirical power (level)

for sample size of 400, as empirical rejection rates range from around 13% to 21%, and power can be as

low as 0.27. However, empirical power and level improve significantly as the sample size is increased to 800.

In particular, for T = 800, nominal rejection rates range from approximately 10% to 13%. Interestingly,

these results seem to be quite robust to the choice of bootstrap block length. Additionally, empirical power

increases rather substantially, as empirical rejection frequencies range from around 0.70 to 0.92. Finally,

results appear to be quite robust to the values of τ and S, as well as to the width of the confidence interval.

6.2 Empirical Illustration

In this subsection, the CIR and OU models discussed above are fit to the one-month Eurodollar deposit

rate for the periods January 6, 1971 - April 8, 2005 (1,789 weekly observations) and January 3, 1990 - April

8, 2005 (798 observations).9 Thereafter, specification tests for the two models are constructed.

Table 5 reports the estimation results along with the summary statistics. These include mean, standard

deviation, skewness and kurtosis, as well as the parameter estimates and standard errors. As expected, the

longer sample exhibits more volatility than the recent sample (see Table 1 and Figure 1). Additionally,

parameter estimates for the CIR and OU models are plausible and in line with those reported in the

literature.

Tables 6a-7b report specification test results for the CIR and the OU models, respectively. Intervals

examined, block lengths considered, simulation samples size used, bootstrap replications, and values of

τ considered are the same as discussed the previous subsection. For example, we again consider τ =

{1,2,4,12}, corresponding to one week, two weeks, one month, and one quarter. The exception is that the

interval endpoints are chosen using the actual interest rate data. In particular, X, σX , Xmin, and Xmax are

constructed using 1789 observation dataset or the 798 observation dataset, depending upon which sample is

being used in test statistic construction. Note, for example, that using this approach, X±0.25σX , X±0.5σX ,

X±σX , and X±2σX correspond to intervals with 17.4%, 46.3%, 72.4% and 94.8% coverage, respectively, for

the period January 6, 1971 - April 8, 2005. In the tables, test statistic values (denoted by VT ) and 5%, 10%,

and 20% level bootstrap critical values are given. Single, double, and triple starred entries denote rejection

at the 20%,10%, and 5% levels, respectively. Notice for both the specifications and both sample sizes, for

smaller values of τ (1 and 2) we clearly reject the null of correct specification for all the confidence intervals

(u,u). However for the wider confidence intervals, we sometimes fail to reject the null of correct specification

9Other interest rate datasets examined in the literature include the monthly federal funds rate (Ait-Sahalia (1999)), the

weekly 3-month T-bill rate (Andersen, Benzoni and Lund (2004)), and the weekly US dollar swap rate (Dai and Singleton

(2000)), to name but a few.
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for 12-step (in some cases even 4-step) ahead confidence interval, when the block length is small. This is as

expected, and indeed for bigger block lengths, the null hypothesis is again rejected. Figures 2 and 3 contain

plots of τ −step ahead simulated densities and also contain plots of densities constructed using the historical

data. Notice that the densities associated with 12 − step ahead simulations are quite far away from the

historical distribution for both the specifications, as expected. Notice also that the simple models considered

in this illustration poorly simulate tail behavior, and tend to yield densities that are too concentrated are

mean.

7 Concluding Remarks

In this paper we outline a simple simulation based framework for constructing conditional distributions

for multi-factor and multi-dimensional diffusion processes, for the case where the functional form of the

conditional density is unknown. In a Monte Carlo experiment and an empirical illustration, we show how

the distributions can be used, for example, to form conditional confidence intervals for time period t+τ , say,

given information up to period t. In addition, we use the simulation based framework to construct a test for

the correct specification of a diffusion process, and establish the asymptotic validity of the block bootstrap

for use in the construction of critical values.

This work represents a starting point in our investigation of the usefulness of simulation based methods

for examining continuous time financial models. From a theoretical perspective, it is of interest to establish

whether or not the simulation methodology discussed herein can be extended to contexts in which recursively

constructed predictions are evaluated, and are used in model selection tests. From an empirical perspective,

it should be of interest to compare the finite sample performance of the specification test proposed here with

alternative tests available in the literature.
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8 Appendix

Proof of Lemma 1: Immediate from the proof of Lemma A1 in Corradi and Swanson (2005).

Proof of Proposition 2: Given Assumption A, by Lemma 1,
(
θ̂T,N,h − θ†

)
= oP (1). Given B(ii) and

noting that the indicator function is a measurable function,

1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
=

1

S

S∑
s=1

1
{
Xθ†

s,t+τ ≤ u
}
+ oP (1).

Finally, for any given Xt, X
θ†

s,t+τ is identically distributed and independent of Xθ†

j,t+τ , for all j �= s. The

statement in (8) then follows from the uniform law of large number for iid random variables. In fact,

conditional on Xt, X
θ†

s,t+τ is iid, as randomness is independent across simulations. Finally, the statement in

(9) follows immediately, as in this case F (u|Xt, θ
†) = F0(u|Xt, θ0).

Proof of Theorem 3: We begin by showing convergence in distribution under the null, pointwise in u and

v. Recalling that θ† = θ0 under H0,

VT (u, v) =
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1
{
Xθ0
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v}

+
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1

S

S∑
s=1

1
{
Xθ0
s,t+τ ≤ u

})
1{Xt ≤ v} (18)

Recalling that F (u|Xt, θ
†) = F0(u|Xt, θ0), under H0, the first term on the RHS can be written as:

1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1
{
Xθ0
s,t+τ ≤ u

}
− F0(u|Xt, θ0)

)
1 {Xt ≤ v}

− 1√
T − τ

T−τ∑
t=1

(1 {Xt+τ ≤ u} −F0(u|Xt, θ0)) 1 {Xt ≤ v} (19)

We now show that the first term on the RHS of (19) is oP (1), uniformly in u. Given that 1 {Xt ≤ v} is either
0 or 1, it suffices to show that 1√

T−τ
∑T−τ

t=1

(
1

S

∑S
s=1 1

{
Xθ0
s,t+τ ≤ u

}
− F0(u|Xt, θ0)

)
= oP (1), uniformly in

u. By Chebyshev’s inequality, it thus suffices to show that

V ar

(
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1
{
Xθ0
s,t+τ ≤ u

}
− F0(u|Xt, θ0)

))
→ 0, as P, S →∞. (20)

First note that,

E

(
1

S

S∑
s=1

1
{
Xθ0
s,t+τ ≤ u

}
−F0(u|Xt, θ0)

)

=
1

S

S∑
s=1

EX

(
ES

(
1
{
Xθ0
s,t+τ ≤ u

}
− F0(u|Xt, θ0)

)
|Xt

)
= 0,

where EX denotes expectation with respect to the probability law governing the sample, and ES denotes

expectation with respect to the probability law governing the simulated randomness, conditional on the

sample. Hereafter, let φs(Xt) = 1
{
Xθ0
s,t+τ ≤ u

}
−F0(u|Xt, θ0), and note that,

E (φs(Xt)φj(Xl)) = 0, for all s �= j,
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given that:

E
(
1
{
Xθ0
s,t+τ ≤ u

}
1
{
Xθ0
j,l+τ ≤ u

})
= EX

(
ES

(
1
{
Xθ0
s,t+τ ≤ u

}
1
{
Xθ0
j,l+τ ≤ u

}))
= EX (F0(u|Xt, θ0)F0(u|Xl, θ0))

Thus, (20) can be written as:

1

TS2

T−τ∑
t=1

T−τ∑
l=1

S∑
s=1

E (φs(Xt)φs(Xl)) = O

(
T

S

)
= o(1),

for T/S → 0. This establishes that the first term on the RHS of (19) is oP (1), pointwise in u. Uniformity in

u follows from the stochastic equicontinuity of 1
{
Xθ0
s,t+τ ≤ u

}
−F0(u|Xt, θ0).

Now, the second term on the RHS of (18), can be written as:

1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
Xθ0
s,t+τ ≤ u−

(
X

θ̂T,N,h
s,t+τ −Xθ0

s,t+τ

)}
− F0

(
u−

(
X

θ̂T,N,h
s,t+τ −Xθ0

s,t+τ

)
|Xt, θ0

))
×1 {Xt ≤ v}

+
1√

T − τ

T−τ∑
t=1

1

S

S∑
s=1

(
F0

(
u−

(
X

θ̂T,N,h
s,t+τ −Xθ0

s,t+τ

)
|Xt, θ0

)
−F0 (u|Xt, θ0)

)
1 {Xt ≤ v} . (21)

The first term of (21) is oP (1), uniformly in u and v, by an argument analogous to that used in the proof of

Theorem 3 in Corradi and Swanson (2005). Given Assumption B(i)-(ii), it thus follows that:

VT (u, v)

= − 1√
T − τ

T−τ∑
t=1

(1{Xt+τ ≤ u} − F0(u|Xt, θ0)) 1 {Xt ≤ v}

+
1√

T − τ

T−τ∑
t=1

1

S

S∑
s=1

(
F0

(
u−

(
X

θ̂T,N,h
s,t+τ −Xθ0

s,t+τ

)
|Xt, θ0

)
−F0 (u|Xt, θ0)

)
1 {Xt ≤ v}+ oP (1)

= − 1√
T − τ

T−τ∑
t=1

(1{Xt+τ ≤ u} − F0(u|Xt, θ0)) 1 {Xt ≤ v}

+
1

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

(
f0

(
u−

(
X

θT,N,h
s,t+τ −Xθ0

s,t+τ

)
|Xt

)
∇θiX

θ
s,t+τ |θ=θT,N,h

)′
1{Xt ≤ v}

√
T − τ

(
θ̂T,N,h − θ0

))
+ oP (1), (22)

where the oP (1) term holds uniformly in u and v. Finally, recalling Lemma 1 and Assumption A1(v), the

second term on the RHS of the last equality in (22) can be appropriately restated, so that:

VT (u, v) = − 1√
T − τ

T−τ∑
t=1

(1 {Xt+τ ≤ u} −F0(u|Xt, θ0)) 1{Xt ≤ v}

+
1

T − τ

T−τ∑
t=1

f0 (u|Xt)ES

(
∇θiX

θ0
s,1+τ+j

)′
1{Xt ≤ v}

√
T − τ

(
θ̂T,N,h − θ0

)
+oP (1), uniformly in v,
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where ES

(
∇θiX

θ0
s,1+τ+j

)
is a measurable function of Xt.

The covariance expression in the statement the follows by noting that:

√
T
(
θ̂T,N,h − θ0

)
=
(
−∇θGT,N,h(θ̂T,N,h)

′WT∇θGT,N,h(θT,N,h)
)−1

∇θGT,N,h(θ̂T,N,h)
′WT

√
TGT,N,h(θ0)

Proof of Theorem 4: Consider the bootstrap statistic:

V ∗T = sup
u×v∈U×V

|V ∗T (u, v)| ,

where

V ∗T (u, v) =
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ,∗ ≤ u

}
− 1{X∗

t+τ ≤ u}
)
1{X∗

t ≤ v}

− 1√
T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1{Xt ≤ v}

+
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1

{
X

θ̂∗T,N,h
s,t+τ,∗ ≤ u

}
− 1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ,∗ ≤ u

})
1 {X∗

t ≤ v} (23)

The term in the first two lines in (23) has the same limiting distribution as:

1√
T − τ

T−τ∑
t=1

((
1

S

S∑
s=1

1
{
Xθ†

s,t+τ ≤ u
}
− 1{Xt+τ ≤ u}

)

−E
(
1

S

S∑
s=1

1
{
Xθ†

s,t+τ ≤ u
}
− 1{Xt+τ ≤ u}

))
1 {Xt ≤ v} ,

where θ† = θ0 if the null is true, conditional on the sample and for all samples except a subset of probability

measure approaching zero. In fact,

1√
T − τ

T−τ∑
t=1

E∗
((

1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ,∗ ≤ u

}
− 1{X∗

t+τ ≤ u}
)
1{X∗

t ≤ v}

−
(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v}

)
= O (l/T ) , Pr−P.

Furthermore, and given Lemma 1, and using the same arguments as those used in Theorem 4 of Corradi and
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Swanson (2003):

V ar∗
(

1√
T − τ

T−τ∑
t=1

((
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ,∗ ≤ u

}
− 1{X∗

t+τ ≤ u}
)
1 {X∗

t ≤ v}

−
(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v}

))

=
1

T − τ

T−τ−l∑
t=l

l∑
k=1

(((
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

)
1{Xt ≤ v} − µ(u, v)

)

×
(
1

S

S∑
s=1

1

{
X

θ̂T,N,h
s,t+τ+k ≤ u

}
− 1{Xt+τ+k ≤ u}

)
1 {Xt+k ≤ v} − µ(u, v)

)
+O

(
l/T 1/2

)
, Pr−P

= V ar

(
1√

T − τ

T−τ∑
t=1

(
1

S

S∑
s=1

1
{
Xθ†

s,t+τ ≤ u
}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v}

)
+O(l/T 1/2), Pr−P,

where µ(u, v) = E
((

1

S

∑S
s=1 1

{
Xθ†

s,t+τ ≤ u
}
− 1{Xt+τ ≤ u}

)
1 {Xt ≤ v}

)
. Thus, it remains to show that

the term in the last line of (23) properly captures the contribution of parameter estimation error. Now,

conditional on the resampling variability:

1

S

S∑
s=1

(
1

{
X

θ̂∗R,N,h
s,t+τ,∗ ≤ u

}
−F

(
u|X∗

t , θ̂
∗
T,N,h

))
= OS

(
S−1/2

)
, Pr−P ∗.

Furthermore, conditional on sample and resampling variability:

1

S

S∑
s=1

(
1

{
X

θ̂R,N,h
s,t+τ,∗ ≤ u

}
− F

(
u|X∗

t , θ̂T,N,h

))
= OS

(
S−1/2

)
, Pr−P∗, Pr−P,

where the subscript S denotes convergence in terms of the probability law governing the simulated random-

ness, which is independent of sampling and resampling (bootstrap) variability. Note that F = F0 when the

null is true. Thus, as S/T →∞, the last term on the RHS of (23) can be written as:

− 1√
T − τ

T∑
t=1

(
F
(
u|X∗

t , θ̂
∗
T,N,h

)
−F

(
u|X∗

t , θ̂T,N,h

))
+ oS(1) Pr−P, Pr−P ∗

= − 1√
T − τ

T∑
t=1

f(u|X∗
t , θ

∗
T,N,h)∇′θX

∗,θ∗T,N,h
t

(
θ̂∗T,N,h − θ̂T,N,h

)
+ oS(1) Pr−P, Pr−P ∗

= −E
(
f0(u|X1, θ0)Es

(
∇θ0X

θ0
s,1+τ

))′√
T − τ

(
θ̂∗T,N,h − θ̂T,N,h

)
+ o(1), Pr−P, Pr−P∗,

where θ
∗
T,N,h ∈

(
θ̂∗T,N,h, θ̂R,N,h

)
. The statement in the theorem then follows from Lemma 1.

Proof of Proposition 5: Note that:

1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
−F (u|Xt, θ

†)

=
1

NS

N∑
j=1

(
S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
−F (u|Xt, V

θ̂T,N,h
j,h , θ†)

)

+
1

N

N∑
j=1

(
F (u|Xt, V

θ̂T,N,h
j,h , θ†)−F (u|Xt, θ

†)
)
= I + II
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Now,

II =
1

N

N∑
j=1

(
F (u|Xt, V

θ̂T,N,h
j,h , θ†)− F (u|Xt, V

θ†

j,h, θ
†)
)
+

1

N

N∑
j=1

(
F (u|Xt, V

θ†

j,h, θ
†)−F (u|Xt, θ

†)
)

= oP (1) + oP (1), uniformly in u,

where the first oP (1) term follows from the fact that, given Assumption A’,
(
θ̂T,N,h − θ†

)
= oP (1); and the

second oP (1) term follows from the uniform law of large numbers, given that V θ†

j,h is a geometrically ergodic

process. Also,

I =
1

NS

N∑
j=1

(
S∑

s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
−F (u|Xt, V

θ̂T,N,h
j,h , θ†)

)

=
1

NS

N∑
j=1

(
S∑

s=1

1

{
X

θ†
i

j,s,t+τ ≤ u

}
−Fi(u|Xt, V

θ†

j,h, θ
†)

)
+ oP (1),

where the oP (1) term holds uniformly in u. Furthermore, and the first term on the RHS above is oP (1),

uniformly in u, by the uniform law of large numbers, given that:

E
(
1
{
Xθ†

j,s,t+τ ≤ u
}
|Xt, V

θ†

j,h

)
= F (u|Xt, V

θ†

j,h, θ
†).

Proof of Theorem 6: Note that:

1√
T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

⎞⎠ 1{Xt ≤ v}

=
1√

T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1
{
Xθ0
j,s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

⎞⎠ 1{Xt ≤ v}

+
1√

T − τ

T−τ∑
t=R

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

(
1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
− 1

{
Xθ0
j,s,t+τ ≤ u

})⎞⎠1{Xt ≤ v}

= I + II

Recalling that as T → ∞, N/T → ∞ and S/T → ∞, by a similar argument to that used in the proof of

Theorem 3:

II =
1

T − τ

T−τ∑
t=1

f0 (u|Xt)Ej,s

(
∇θiX

θ0
s,1+τ+j

)′
1 {Xt ≤ v}

√
T − τ

(
θ̂T,N,h − θ0

)
+ oP (1),

where Ej,s(·) denotes expectation with respect to the joint probability measure governing the simulated
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randomness and the volatility process, V θ0
h,j, conditional on the sample. With regard to I, note that:

I =
1√

T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1
{
Xθ0
j,s,t+τ ≤ u

}
− F0

(
u|Xt, V

θ0
h,j , θ0

)⎞⎠1 {Xt ≤ v}

+
1√

T − τ

T−τ∑
t=1

⎛⎝ 1

N

N∑
j=1

(
F0

(
u|Xt, V

θ0
h,j , θ0

)
−F0 (u|Xt, θ0)

)⎞⎠1 {Xt ≤ v}

− 1√
T − τ

T−τ∑
t=1

(1{Xt+τ ≤ u} − F0 (u|Xt, θ0)) 1 {Xt ≤ v} . (24)

We need to show that the first and second terms on the RHS of (24) are oP (1). The statement in the theorem

will then follow by the same argument as that used in the proof of Theorem 3. With regard to the second

term on the RHS of (24), note that:

E

⎛⎝⎛⎝ 1

N

N∑
j=1

(
F
(
u|Xt, V

θ0
h,j , θ0

)
− F1 (u|Xt, θ0)

)⎞⎠1 {Xt ≤ v}
⎞⎠

= E

⎛⎝ 1

N

N∑
j=1

Ej

((
F
(
u|Xt, V

θ0
h,j, θ0

)
−F (u|Xt, θ0)

)
|Xt

)
1{Xt ≤ v}

⎞⎠ = 0,

where Ej denotes expectation with respect to the probability measure governing V θ0
h,j , conditional on the

sample. Also, note that V θ0
h,j and Xt are independent each other, as the simulated randomness does not

depend on Xt. Thus, by noting that 1{Xt ≤ v} is equal to either 1 or 0, it suffices to show that:

lim
P,N→∞

V ar

⎛⎝ 1√
T − τ

T−τ∑
t=1

⎛⎝ 1

N

N∑
j=1

(
F
(
u|Xt, V

θ0
h,j, θ0

)
−F (u|Xt, θ0)

)⎞⎠⎞⎠ = 0.

Now,

V ar

⎛⎝ 1√
T − τ

T−τ∑
t=1

⎛⎝ 1

N

N∑
j=1

(
F
(
u|Xt, V

θ0
h,j , θ0

)
− F1 (u|Xt, θ0)

)⎞⎠⎞⎠
=

1

TN2

T−τ∑
t=1

T−τ∑
l=1

N∑
j=1

N∑
s=j

E
((

F
(
u|Xt, V

θ0
h,j , θ0

)
− F (u|Xt, θ0)

)(
F
(
u|Xl, V

θ0
h,s, θ0

)
−F (u|Xl, θ0)

))

+
1

TN2

T−τ∑
t=1

T−τ∑
l=1

N∑
j=1

N∑
s �=j

E
((

F
(
u|Xt, V

θ0
h,j , θ0

)
− F1 (u|Xt, θ0)

)(
F
(
u|Xl, V

θ0
h,s, θ0

)
−F (u|Xl, θ0)

))
.
(25)

The first term on the RHS of (25) is O
(
T
N

)
= o(1), for T/N → 0. Given that V θ0

h,j is a geometric mixing

process, it can be shown via standard mixing inequality arguments that the second term on the RHS of (25)

is O
(
T
N

)
= o(1), for T/N → 0.

Now, consider the first term on the RHS of (24). It can be shown that this term is oP (1) by a similar

argument as that used in the proof of Theorem 3. Finally, the statement under the alternative follows by

the same argument as that used in the proof of Theorem 3.
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Proof of Theorem 7: Note that:

SV ∗T (u, v)

=
1√

T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ,∗ ≤ u

}
− 1{X∗

t+τ ≤ u}
⎞⎠ 1{X∗

t ≤ v}

− 1√
T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ ≤ u

}
− 1{Xt+τ ≤ u}

⎞⎠1{Xt ≤ v}

+
1√

T − τ

T−τ∑
t=1

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂∗T,N,h
j,s,t+τ,∗ ≤ u

}
− 1

NS

N∑
j=1

S∑
s=1

1

{
X

θ̂T,N,h
j,s,t+τ,∗ ≤ u

}⎞⎠
×1{X∗

t ≤ v} . (26)

By the same argument as that used in the proof of Theorem 4, the first two terms on the RHS of (26) have

the the same limiting distribution as:

1√
T − τ

T−τ∑
t=1

⎛⎝⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1
{
Xθ†

j,s,t+τ ≤ u
}
− 1{Xt+τ ≤ u}

⎞⎠
−E

⎛⎝ 1

NS

N∑
j=1

S∑
s=1

1
{
Xθ†

j,s,t+τ ≤ u
}
− 1{Xt+τ ≤ u}

⎞⎠⎞⎠1 {Xt ≤ v} ,

conditional on the sample. Furthermore, given Proposition 5, the last term on the RHS of (26) properly

mimics the contribution of parameter estimation error, by the same argument as that used in the proof of

Theorem 4.

22



9 References
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Table 1: Simulated Density Based Specification Test Rejection Frequencies - Empirical Level(∗)

Data Generated using the CIR Model
τ (u, u) S,l

10T,5 20T,5 30T,5 10T,10 20T,10 30T,10 10T,20 20T,20 30T,20 10T,50 20T,50 30T,50
Panel A: T = 400

1 X ± 0.25σX 0.212 0.164 0.164 0.148 0.176 0.218 0.186 0.170 0.164 0.132 0.190 0.228

X ± 0.5σX 0.192 0.156 0.134 0.144 0.152 0.156 0.128 0.172 0.182 0.198 0.156 0.186

X ± σX 0.134 0.134 0.128 0.132 0.144 0.132 0.126 0.134 0.138 0.134 0.134 0.136

X ± 2σX 0.132 0.134 0.128 0.126 0.134 0.128 0.128 0.128 0.136 0.128 0.136 0.126

2 X ± 0.25σX 0.214 0.166 0.144 0.136 0.214 0.136 0.216 0.176 0.176 0.136 0.174 0.142

X ± 0.5σX 0.192 0.162 0.154 0.186 0.176 0.158 0.126 0.166 0.172 0.184 0.136 0.198

X ± σX 0.128 0.126 0.126 0.132 0.132 0.132 0.126 0.132 0.128 0.128 0.136 0.132

X ± 2σX 0.128 0.128 0.128 0.128 0.128 0.142 0.128 0.132 0.134 0.134 0.128 0.136

4 X ± 0.25σX 0.152 0.162 0.168 0.198 0.200 0.202 0.184 0.194 0.218 0.188 0.226 0.156

X ± 0.5σX 0.134 0.144 0.122 0.158 0.186 0.156 0.170 0.144 0.178 0.172 0.162 0.122

X ± σX 0.132 0.128 0.134 0.132 0.134 0.126 0.128 0.132 0.134 0.134 0.134 0.126

X ± 2σX 0.132 0.126 0.134 0.134 0.132 0.134 0.132 0.132 0.132 0.138 0.132 0.136

12 X ± 0.25σX 0.178 0.182 0.150 0.166 0.166 0.142 0.222 0.158 0.206 0.138 0.186 0.192

X ± 0.5σX 0.208 0.186 0.182 0.136 0.206 0.172 0.154 0.188 0.134 0.172 0.144 0.168

X ± σX 0.128 0.126 0.134 0.138 0.134 0.136 0.126 0.136 0.132 0.128 0.132 0.128

X ± 2σX 0.132 0.132 0.128 0.134 0.134 0.132 0.134 0.132 0.128 0.136 0.126 0.134
Panel B: T = 800

1 X ± 0.25σX 0.126 0.136 0.124 0.132 0.134 0.124 0.118 0.136 0.124 0.118 0.130 0.120

X ± 0.5σX 0.136 0.126 0.124 0.126 0.134 0.122 0.118 0.126 0.124 0.134 0.118 0.122

X ± σX 0.126 0.124 0.128 0.126 0.130 0.138 0.122 0.122 0.136 0.122 0.132 0.122

X ± 2σX 0.116 0.132 0.134 0.118 0.132 0.136 0.132 0.134 0.134 0.122 0.132 0.122

2 X ± 0.25σX 0.118 0.134 0.122 0.118 0.136 0.128 0.124 0.118 0.128 0.134 0.120 0.128

X ± 0.5σX 0.116 0.118 0.122 0.132 0.136 0.122 0.124 0.122 0.122 0.130 0.122 0.120

X ± σX 0.132 0.124 0.126 0.128 0.136 0.118 0.118 0.134 0.128 0.136 0.130 0.126

X ± 2σX 0.122 0.118 0.136 0.118 0.120 0.134 0.118 0.126 0.130 0.136 0.134 0.126

4 X ± 0.25σX 0.124 0.128 0.124 0.126 0.124 0.122 0.124 0.118 0.120 0.126 0.126 0.126

X ± 0.5σX 0.132 0.132 0.128 0.120 0.128 0.118 0.124 0.132 0.124 0.134 0.122 0.118

X ± σX 0.128 0.118 0.134 0.120 0.126 0.126 0.122 0.132 0.128 0.130 0.118 0.128

X ± 2σX 0.136 0.132 0.122 0.118 0.122 0.134 0.126 0.136 0.126 0.136 0.126 0.120

12 X ± 0.25σX 0.134 0.128 0.128 0.134 0.134 0.128 0.132 0.124 0.134 0.128 0.128 0.126

X ± 0.5σX 0.128 0.126 0.120 0.130 0.124 0.124 0.134 0.128 0.134 0.132 0.122 0.134

X ± σX 0.132 0.122 0.124 0.132 0.134 0.124 0.134 0.134 0.128 0.132 0.124 0.122

X ± 2σX 0.122 0.122 0.122 0.128 0.122 0.122 0.126 0.132 0.130 0.118 0.126 0.122

(∗) Notes: Entries in the table are empirical rejection frequencies, for tests constructed using intervals given in the second
column of the table, and for τ =1,2, 4, 12 . (S, l) combinations used in test construction are given in the second row of the
table, so that the simulation periods considered are S = (10T, 20T, 30T ) and the block lengths considered are l = (5,10,20,50),
where T is the sample size, here set to 400 and 800 observations. Empirical bootstrap distributions are constructed using 100
bootstrap replications, and critical values are set equal to the 90th percentile of the bootstrap distribution. Note additionally
that X and σX are the mean and variance of an initial sample of data of length 1000 observations that is generated using the
model under investigation. See Section 6.1 for further details. All results are based on 500 Monte Carlo simulations.
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Table 2: Simulated Density Based Specification Test Rejection Frequencies - Empirical Level(∗)

Data Generated using the OU Model
τ (u, u) S,l

10T,5 20T,5 30T,5 10T,10 20T,10 30T,10 10T,20 20T,20 30T,20 10T,50 20T,50 30T,50
Panel A: T = 400

1 X ± 0.25σX 0.218 0.178 0.178 0.218 0.182 0.174 0.202 0.196 0.172 0.186 0.174 0.196

X ± 0.5σX 0.206 0.186 0.190 0.208 0.198 0.178 0.214 0.190 0.176 0.218 0.212 0.188

X ± σX 0.132 0.136 0.138 0.132 0.136 0.132 0.140 0.138 0.136 0.132 0.136 0.134

X ± 2σX 0.136 0.136 0.136 0.144 0.132 0.136 0.132 0.132 0.136 0.138 0.132 0.134

2 X ± 0.25σX 0.186 0.188 0.192 0.188 0.214 0.218 0.192 0.184 0.202 0.184 0.202 0.192

X ± 0.5σX 0.182 0.194 0.212 0.204 0.214 0.208 0.186 0.206 0.178 0.176 0.178 0.182

X ± σX 0.134 0.134 0.134 0.130 0.134 0.142 0.132 0.132 0.136 0.140 0.134 0.140

X ± 2σX 0.136 0.132 0.138 0.136 0.134 0.136 0.138 0.136 0.136 0.138 0.136 0.134

4 X ± 0.25σX 0.194 0.182 0.188 0.172 0.172 0.176 0.178 0.200 0.208 0.212 0.174 0.184

X ± 0.5σX 0.214 0.176 0.188 0.178 0.178 0.176 0.196 0.196 0.172 0.178 0.178 0.192

X ± σX 0.138 0.138 0.132 0.136 0.136 0.136 0.142 0.136 0.132 0.138 0.136 0.130

X ± 2σX 0.142 0.138 0.132 0.138 0.132 0.140 0.136 0.136 0.134 0.136 0.140 0.140

12 X ± 0.25σX 0.210 0.202 0.198 0.184 0.206 0.212 0.188 0.212 0.180 0.202 0.216 0.176

X ± 0.5σX 0.198 0.176 0.192 0.178 0.214 0.222 0.218 0.192 0.188 0.218 0.196 0.182

X ± σX 0.134 0.134 0.136 0.138 0.136 0.138 0.142 0.134 0.132 0.138 0.138 0.136

X ± 2σX 0.134 0.136 0.132 0.132 0.136 0.140 0.138 0.132 0.138 0.134 0.138 0.132
Panel B: T = 800

1 X ± 0.25σX 0.108 0.122 0.116 0.120 0.116 0.114 0.112 0.116 0.114 0.116 0.112 0.116

X ± 0.5σX 0.110 0.114 0.118 0.116 0.112 0.118 0.112 0.114 0.118 0.112 0.112 0.118

X ± σX 0.120 0.114 0.116 0.112 0.112 0.114 0.116 0.116 0.118 0.112 0.116 0.114

X ± 2σX 0.120 0.112 0.112 0.112 0.120 0.120 0.112 0.116 0.120 0.118 0.112 0.118

2 X ± 0.25σX 0.110 0.116 0.114 0.118 0.112 0.122 0.122 0.112 0.116 0.114 0.114 0.120

X ± 0.5σX 0.114 0.120 0.120 0.114 0.116 0.118 0.114 0.116 0.118 0.122 0.118 0.116

X ± σX 0.116 0.112 0.122 0.114 0.116 0.116 0.120 0.116 0.114 0.114 0.120 0.118

X ± 2σX 0.110 0.112 0.124 0.112 0.112 0.118 0.118 0.116 0.122 0.118 0.114 0.122

4 X ± 0.25σX 0.108 0.112 0.112 0.116 0.118 0.124 0.112 0.118 0.114 0.126 0.116 0.118

X ± 0.5σX 0.112 0.116 0.118 0.114 0.118 0.112 0.120 0.116 0.112 0.112 0.116 0.112

X ± σX 0.116 0.112 0.126 0.114 0.112 0.118 0.116 0.112 0.126 0.118 0.118 0.118

X ± 2σX 0.116 0.114 0.116 0.118 0.118 0.114 0.124 0.114 0.116 0.114 0.112 0.116

12 X ± 0.25σX 0.114 0.112 0.114 0.122 0.120 0.116 0.116 0.118 0.122 0.118 0.116 0.120

X ± 0.5σX 0.112 0.114 0.112 0.112 0.118 0.112 0.116 0.118 0.114 0.120 0.118 0.116

X ± σX 0.112 0.108 0.112 0.116 0.112 0.114 0.116 0.114 0.118 0.118 0.120 0.116

X ± 2σX 0.110 0.114 0.112 0.120 0.116 0.118 0.116 0.118 0.114 0.118 0.114 0.112

(∗) Notes: See notes to Table 1.
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Table 3: Simulated Density Based Specification Test Rejection Frequencies - Empirical Power(∗)

Data Generated using the CIR Model
τ (u, u) S,l

10T,5 20T,5 30T,5 10T,10 20T,10 30T,10 10T,20 20T,20 30T,20 10T,50 20T,50 30T,50
Panel A: T = 400

1 X ± 0.25σX 0.342 0.352 0.388 0.344 0.356 0.356 0.448 0.454 0.446 0.422 0.424 0.456

X ± 0.5σX 0.382 0.354 0.374 0.378 0.342 0.348 0.464 0.466 0.448 0.432 0.458 0.452

X ± σX 0.272 0.268 0.262 0.254 0.278 0.248 0.322 0.344 0.334 0.344 0.328 0.326

X ± 2σX 0.288 0.232 0.248 0.244 0.252 0.238 0.328 0.338 0.314 0.336 0.322 0.356

2 X ± 0.25σX 0.356 0.358 0.398 0.348 0.346 0.368 0.442 0.456 0.438 0.468 0.436 0.426

X ± 0.5σX 0.378 0.378 0.368 0.378 0.376 0.382 0.448 0.448 0.432 0.456 0.464 0.478

X ± σX 0.288 0.262 0.278 0.236 0.278 0.256 0.344 0.332 0.358 0.358 0.358 0.352

X ± 2σX 0.248 0.264 0.248 0.272 0.242 0.236 0.328 0.354 0.328 0.322 0.332 0.354

4 X ± 0.25σX 0.374 0.382 0.368 0.344 0.378 0.346 0.436 0.434 0.468 0.448 0.442 0.444

X ± 0.5σX 0.368 0.344 0.378 0.348 0.372 0.378 0.442 0.458 0.428 0.458 0.426 0.448

X ± σX 0.246 0.254 0.246 0.234 0.262 0.234 0.318 0.348 0.356 0.316 0.352 0.316

X ± 2σX 0.256 0.236 0.264 0.264 0.236 0.276 0.358 0.338 0.358 0.322 0.332 0.336

12 X ± 0.25σX 0.368 0.368 0.342 0.374 0.348 0.398 0.432 0.458 0.468 0.438 0.452 0.454

X ± 0.5σX 0.378 0.364 0.358 0.374 0.368 0.358 0.464 0.438 0.426 0.424 0.458 0.432

X ± σX 0.244 0.252 0.238 0.258 0.248 0.238 0.328 0.316 0.348 0.348 0.368 0.356

X ± 2σX 0.278 0.246 0.268 0.272 0.256 0.242 0.314 0.358 0.328 0.354 0.318 0.318
Panel B: T = 800

1 X ± 0.25σX 0.868 0.938 0.912 0.838 0.806 0.832 0.938 0.886 0.806 0.916 0.932 0.848

X ± 0.5σX 0.824 0.802 0.878 0.854 0.926 0.934 0.822 0.844 0.952 0.802 0.928 0.898

X ± σX 0.704 0.802 0.722 0.712 0.734 0.838 0.872 0.816 0.842 0.940 0.816 0.814

X ± 2σX 0.734 0.774 0.718 0.754 0.766 0.752 0.910 0.868 0.906 0.912 0.934 0.814

2 X ± 0.25σX 0.858 0.846 0.818 0.928 0.908 0.918 0.898 0.864 0.852 0.862 0.864 0.928

X ± 0.5σX 0.928 0.938 0.944 0.806 0.816 0.886 0.886 0.934 0.884 0.818 0.902 0.818

X ± σX 0.714 0.798 0.754 0.838 0.766 0.776 0.920 0.936 0.932 0.946 0.918 0.882

X ± 2σX 0.796 0.836 0.834 0.724 0.746 0.802 0.836 0.906 0.824 0.914 0.818 0.838

4 X ± 0.25σX 0.922 0.806 0.908 0.858 0.856 0.878 0.832 0.924 0.938 0.848 0.824 0.832

X ± 0.5σX 0.858 0.942 0.918 0.856 0.888 0.864 0.818 0.896 0.878 0.916 0.906 0.858

X ± σX 0.714 0.788 0.768 0.832 0.776 0.716 0.936 0.884 0.814 0.838 0.918 0.858

X ± 2σX 0.738 0.726 0.786 0.738 0.822 0.728 0.866 0.918 0.806 0.882 0.928 0.944

12 X ± 0.25σX 0.878 0.852 0.928 0.916 0.924 0.838 0.884 0.926 0.836 0.904 0.85 0.934

X ± 0.5σX 0.862 0.928 0.898 0.874 0.932 0.862 0.944 0.902 0.882 0.892 0.848 0.834

X ± σX 0.756 0.786 0.798 0.724 0.722 0.818 0.938 0.816 0.840 0.816 0.814 0.834

X ± 2σX 0.808 0.728 0.842 0.742 0.756 0.754 0.822 0.834 0.850 0.804 0.916 0.816

(∗) Notes: See notes to Table 1.
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Table 4: Simulated Density Based Specification Test Rejection Frequencies - Empirical Power(∗)

Data Generated using the OU Model
τ (u, u) S,l

10T,5 20T,5 30T,5 10T,10 20T,10 30T,10 10T,20 20T,20 30T,20 10T,50 20T,50 30T,50
Panel A: T = 400

1 X ± 0.25σX 0.414 0.414 0.424 0.388 0.418 0.432 0.462 0.488 0.466 0.466 0.462 0.484

X ± 0.5σX 0.386 0.416 0.384 0.398 0.424 0.404 0.502 0.478 0.474 0.508 0.466 0.512

X ± σX 0.312 0.344 0.348 0.324 0.342 0.318 0.418 0.428 0.406 0.408 0.418 0.428

X ± 2σX 0.368 0.362 0.362 0.318 0.358 0.332 0.436 0.408 0.436 0.392 0.428 0.408

2 X ± 0.25σX 0.394 0.392 0.402 0.394 0.426 0.412 0.498 0.518 0.508 0.506 0.492 0.466

X ± 0.5σX 0.418 0.428 0.392 0.428 0.418 0.404 0.498 0.518 0.508 0.502 0.496 0.464

X ± σX 0.328 0.336 0.322 0.318 0.314 0.332 0.402 0.436 0.426 0.428 0.412 0.398

X ± 2σX 0.358 0.346 0.352 0.312 0.352 0.352 0.43 0.404 0.434 0.418 0.426 0.412

4 X ± 0.25σX 0.388 0.426 0.398 0.394 0.428 0.406 0.494 0.508 0.504 0.464 0.474 0.512

X ± 0.5σX 0.384 0.398 0.388 0.398 0.428 0.406 0.462 0.492 0.478 0.482 0.478 0.468

X ± σX 0.314 0.314 0.354 0.338 0.338 0.316 0.398 0.436 0.438 0.406 0.408 0.414

X ± 2σX 0.334 0.346 0.338 0.328 0.312 0.314 0.406 0.398 0.416 0.436 0.408 0.438

12 X ± 0.25σX 0.426 0.402 0.382 0.382 0.422 0.384 0.474 0.466 0.504 0.488 0.486 0.506

X ± 0.5σX 0.418 0.418 0.384 0.412 0.382 0.428 0.474 0.472 0.468 0.482 0.508 0.468

X ± σX 0.352 0.342 0.358 0.352 0.328 0.344 0.402 0.412 0.392 0.422 0.404 0.394

X ± 2σX 0.328 0.314 0.334 0.358 0.358 0.326 0.418 0.436 0.438 0.396 0.432 0.426
Panel B: T = 800

1 X ± 0.25σX 0.812 0.854 0.858 0.834 0.928 0.804 0.838 0.914 0.828 0.828 0.902 0.906

X ± 0.5σX 0.842 0.886 0.818 0.878 0.942 0.928 0.892 0.936 0.838 0.888 0.894 0.872

X ± σX 0.726 0.786 0.756 0.802 0.806 0.792 0.858 0.932 0.918 0.888 0.878 0.902

X ± 2σX 0.846 0.716 0.828 0.826 0.806 0.728 0.918 0.944 0.828 0.958 0.846 0.946

2 X ± 0.25σX 0.942 0.816 0.872 0.844 0.822 0.934 0.946 0.906 0.896 0.914 0.958 0.818

X ± 0.5σX 0.872 0.932 0.898 0.864 0.828 0.862 0.802 0.828 0.858 0.878 0.948 0.958

X ± σX 0.772 0.782 0.802 0.732 0.726 0.846 0.878 0.928 0.826 0.904 0.826 0.918

X ± 2σX 0.846 0.762 0.722 0.822 0.718 0.812 0.858 0.854 0.818 0.802 0.804 0.838

4 X ± 0.25σX 0.878 0.834 0.858 0.864 0.886 0.884 0.936 0.894 0.918 0.882 0.918 0.846

X ± 0.5σX 0.868 0.898 0.896 0.948 0.818 0.808 0.898 0.818 0.948 0.896 0.822 0.852

X ± σX 0.752 0.702 0.702 0.716 0.718 0.726 0.886 0.844 0.882 0.882 0.946 0.948

X ± 2σX 0.826 0.722 0.722 0.834 0.798 0.832 0.828 0.864 0.874 0.936 0.874 0.862

12 X ± 0.25σX 0.918 0.812 0.848 0.902 0.906 0.888 0.828 0.848 0.946 0.848 0.902 0.918

X ± 0.5σX 0.828 0.928 0.924 0.802 0.918 0.932 0.946 0.838 0.942 0.802 0.932 0.908

X ± σX 0.772 0.742 0.704 0.794 0.848 0.724 0.856 0.918 0.932 0.808 0.904 0.894

X ± 2σX 0.776 0.804 0.712 0.732 0.764 0.772 0.884 0.944 0.916 0.804 0.808 0.898

(∗) Notes: See notes to Table 1.
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Table 5: Summary Statistics and Estimation Results(∗)

Jan-6-71 to Apr-8-05 Jan-3-90 to Apr-8-05
Panel A: Summary Statistics

Mean 0.06827 0.04464
Std. Dev. 0.03477 0.01977
Skewness 0.94406 -0.15232
Kurtosis 4.43616 2.18807

Panel B: CIR Model Estimation Results
φ1 0.3864 0.5275

(0.2196) (0.1682)
α1 0.0684 0.0527

(0.0017) (0.0020)
σ1 0.1118 0.1115

(0.0482) (0.0141)
Panel C: OU Model Estimation Results

φ2 0.1481 0.2095
(0.0928) (0.1432)

α2 -2.8329 -3.2444
(0.0373) (0.0429)

σ2 0.3404 0.3079
(0.1010) (0.1175)

(∗) Notes: This table reports summary statistics, estimated parameters, and parameter standrd errors (in brackets) using the
1-month Eurodollar deposit rate, for the periods January 6, 1971 - April 8, 2005 and January 3, 1990 - April 8, 2005. See
Section 6 for a discussion of the CIR and OU models, and Section 6.1 for a discussion of estimation methodology.
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Table 6a: Specification Test Results - CIR Model(∗)

Sample Period: 06-Jan-71 to 08-Apr-05
τ (u,u) S = T S = 2T S = 3T

VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV

Panel A: l = 5

1 X±0.25σX 2.96*** 2.24 2.07 1.71 2.84*** 2.25 2.06 1.72 2.98*** 2.25 2.07 1.72

X±0.5σX 4.98*** 4.23 4.19 4.09 4.95*** 4.43 4.26 4.11 4.95*** 4.31 4.27 4.19

X±σX 3.03*** 1.62 1.49 1.13 3.02*** 1.60 1.45 1.12 3.03*** 1.62 1.48 1.13

X±2σX 2.05*** 1.11 1.08 0.81 2.02*** 1.10 1.09 0.85 2.03*** 1.13 1.09 0.83

2 X±0.25σX 2.89*** 1.97 1.91 1.66 2.95*** 2.01 1.97 1.67 2.96*** 2.00 1.96 1.63

X±0.5σX 4.76*** 4.01 3.73 3.15 4.65*** 4.02 3.74 3.17 4.64*** 4.03 3.74 3.18

X±σX 3.02*** 1.93 1.57 1.51 3.03*** 1.97 1.61 1.49 3.03*** 1.95 1.61 1.54

X±2σX 1.94*** 1.38 1.36 1.28 1.92*** 1.38 1.35 1.27 2.11*** 1.39 1.35 1.27

4 X±0.25σX 2.91** 2.94 2.79 2.51 2.98*** 2.88 2.75 2.55 2.97*** 2.89 2.78 2.55

X±0.5σX 4.92** 5.02 4.44 4.28 4.79** 5.04 4.42 4.36 4.85** 5.08 4.47 4.42

X±σX 3.03** 3.05 2.98 2.96 3.03 3.15 3.09 3.03 3.02* 3.17 3.09 2.98

X±2σX 1.94* 1.96 1.94 1.79 1.84* 2.03 1.98 1.82 1.96* 2.18 2.02 1.81

12 X±0.25σX 2.77*** 2.71 2.41 2.25 2.79*** 2.74 2.36 2.23 2.84*** 2.75 2.34 2.20

X±0.5σX 4.84*** 4.53 4.44 4.19 4.99*** 4.51 4.46 4.14 4.78*** 4.45 4.43 4.04

X±σX 3.16 3.94 3.57 3.25 3.17 3.73 3.34 3.18 3.19* 3.81 3.38 3.08

X±2σX 1.72 1.84 1.79 1.74 1.72 1.91 1.87 1.80 1.68 1.92 1.87 1.81

Panel B: l = 10

1 X±0.25σX 2.96*** 2.27 1.87 1.83 2.84*** 2.12 1.96 1.79 2.98*** 2.15 2.07 1.74

X±0.5σX 4.98*** 3.32 2.94 2.25 4.95*** 2.54 2.22 2.17 4.95*** 2.29 2.25 1.98

X±σX 3.03*** 1.91 1.79 1.59 3.02*** 1.55 1.49 1.20 3.03*** 1.45 1.44 1.36

X±2σX 2.05*** 1.04 1.02 0.84 2.02*** 0.93 0.84 0.82 2.03*** 1.49 1.03 0.97

2 X±0.25σX 2.89*** 2.18 1.86 1.68 2.95*** 1.36 1.34 1.18 2.96*** 2.66 2.61 2.21

X±0.5σX 4.76*** 3.71 3.46 2.93 4.65*** 3.55 3.29 3.23 4.64*** 3.18 2.85 2.49

X±σX 3.02*** 2.08 2.04 1.97 3.03*** 1.71 1.67 1.39 3.03*** 1.97 1.94 1.77

X±2σX 1.94*** 1.13 1.11 1.08 1.92*** 1.18 1.10 0.92 2.11*** 1.87 1.51 1.08

4 X±0.25σX 2.91*** 2.79 2.21 1.85 2.98*** 2.13 2.04 1.87 2.97*** 2.24 2.23 2.01

X±0.5σX 4.92*** 4.51 4.46 4.22 4.79*** 3.15 3.06 2.73 4.85*** 2.76 2.71 2.65

X±σX 3.03*** 2.25 2.15 2.08 3.03*** 2.61 2.28 2.13 3.02*** 2.59 2.56 2.11

X±2σX 1.94*** 1.25 1.13 1.11 1.84*** 1.28 1.24 1.13 1.96*** 1.81 1.54 1.47

12 X±0.25σX 2.77*** 2.73 2.69 2.55 2.79** 2.88 2.48 2.35 2.84*** 2.8 2.38 2.21

X±0.5σX 4.84* 5.22 4.92 4.55 4.99*** 4.54 4.37 4.31 4.78*** 4.54 4.27 4.12

X±σX 3.16 3.95 3.84 3.78 3.17 4.17 4.12 3.78 3.19 3.68 3.64 3.53

X±2σX 1.72 2.92 2.64 2.54 1.72 2.92 2.64 2.54 1.68 2.32 2.12 1.94

Panel C: l = 20

1 X±0.25σX 2.96*** 1.64 1.30 1.18 2.84*** 2.28 2.01 1.97 2.98*** 2.03 1.81 1.11

X±0.5σX 4.98*** 2.35 2.16 2.09 4.95*** 2.21 2.02 1.65 4.95*** 1.98 1.89 1.60

X±σX 3.03*** 1.91 1.69 1.56 3.02*** 1.86 1.62 1.46 3.03*** 1.96 1.94 1.35

X±2σX 2.05*** 0.82 0.78 0.55 2.02*** 0.81 0.77 0.71 2.03*** 1.29 1.01 0.93

2 X±0.25σX 2.89*** 1.49 1.15 0.86 2.95*** 2.63 2.21 1.26 2.96*** 1.87 1.53 1.06

X±0.5σX 4.76*** 3.07 2.47 2.25 4.65*** 2.74 2.44 2.06 4.64*** 2.79 2.77 2.23

X±σX 3.02*** 2.16 2.03 1.68 3.03*** 2.21 1.93 1.75 3.03*** 2.12 1.95 1.51

X±2σX 1.94*** 1.05 0.75 0.74 1.92*** 0.88 0.82 0.61 2.11*** 1.32 1.08 0.83

4 X±0.25σX 2.91*** 2.72 2.36 1.96 2.98*** 2.38 2.17 2.11 2.97*** 1.68 1.58 1.44

X±0.5σX 4.92*** 3.37 3.26 2.37 4.79*** 2.84 2.68 2.55 4.85*** 4.09 3.77 3.17

X±σX 3.03*** 2.14 2.11 1.69 3.03*** 2.38 2.31 1.89 3.02*** 1.98 1.95 1.75

X±2σX 1.94*** 1.01 0.97 0.82 1.84*** 1.05 0.93 0.84 1.96*** 1.29 1.23 0.82

12 X±0.25σX 2.77*** 2.37 2.36 2.11 2.79*** 2.76 2.23 2.21 2.84** 2.86 2.59 2.13

X±0.5σX 4.84*** 4.39 4.11 3.62 4.99*** 4.19 4.13 3.51 4.78*** 4.26 3.87 3.63

X±σX 3.16*** 3.07 2.97 2.81 3.17** 3.17 2.77 2.72 3.19* 3.49 3.21 2.62

X±2σX 1.72*** 1.61 1.59 1.54 1.72*** 1.43 1.39 1.31 1.68*** 1.48 1.39 1.33
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Table 6a (continued): Specification Test Results - CIR Model(∗)

Sample Period: 06-Jan-71 to 08-Apr-05
τ (u,u) S = T S = 2T S = 3T

VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV

Panel D: l = 50

1 X±0.25σX 2.96** 3.07 2.40 1.71 2.84*** 2.03 2.02 1.68 2.98** 3.07 2.40 1.71

X±0.5σX 4.98*** 3.02 2.39 2.31 4.95*** 3.47 2.67 2.40 4.95*** 2.83 2.60 2.30

X±σX 3.03*** 2.11 2.08 1.83 3.02*** 2.39 2.37 2.27 3.03** 4.19 2.60 2.16

X±2σX 2.05*** 1.69 1.64 1.22 2.02*** 1.19 1.15 1.06 2.03*** 1.66 1.16 0.94

2 X±0.25σX 2.89* 3.96 3.19 2.24 2.95*** 2.55 2.44 1.86 2.96* 3.96 3.19 2.24

X±0.5σX 4.76*** 3.22 2.87 2.44 4.65*** 3.58 3.39 2.69 4.64*** 2.98 2.48 2.18

X±σX 3.02*** 2.02 1.97 1.73 3.03*** 2.52 2.51 2.37 3.03** 3.73 2.43 2.27

X±2σX 1.94*** 1.63 1.53 1.15 1.92*** 1.23 1.22 1.04 2.11*** 1.66 1.28 1.03

4 X±0.25σX 2.91* 4.54 3.01 2.28 2.98** 3.07 2.65 2.16 2.97* 4.54 3.01 2.28

X±0.5σX 4.92*** 3.31 2.97 2.87 4.79*** 3.57 3.23 3.05 4.85*** 3.02 3.01 2.55

X±σX 3.03*** 2.26 2.11 1.78 3.03*** 2.78 2.77 2.37 3.02** 3.56 2.67 2.27

X±2σX 1.94*** 1.23 1.19 1.04 1.84*** 1.37 1.18 0.98 1.96*** 1.58 1.44 1.13

12 X±0.25σX 2.77* 4.04 3.30 2.20 2.79* 3.38 3.05 2.58 2.84* 4.04 3.30 2.20

X±0.5σX 4.84*** 3.91 3.59 3.00 4.99*** 4.16 4.06 3.99 4.78*** 4.14 3.80 3.41

X±σX 3.16*** 2.23 2.18 1.97 3.17*** 3.07 2.92 2.31 3.19*** 3.12 2.84 2.66

X±2σX 1.72*** 1.34 1.33 1.08 1.72*** 1.23 1.15 0.84 1.68*** 1.12 1.12 0.93

(∗) Notes: Entries in the table are test statistics and 5constructed using intervals given in the second column of the table,
and for τ =1,2, 4, 12 . Single, double, and triple starred entries denote rejection at the 20The simulation periods considered
is denoted by S, and T denotes the number of observations in the sample. Block lengths considered are l = (5,10,20,50).
Empirical bootstrap distributions are constructed using 100 bootstrap replications, Note additionally that X and σX are the

mean and variance of the sample of historical observations. See Section 6.2 for further details.
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Table 6b: Specification Test Results - CIR Model(∗)

Sample Period: 03-Jan-90 to 08-Apr-05
τ (u,u) S = T S = 2T S = 3T

VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV

Panel A: l = 5

1 X±σX 3.79*** 1.58 1.44 1.27 3.83*** 1.40 1.35 1.27 3.83*** 1.88 1.58 1.36

2 X±σX 3.80*** 2.14 1.97 1.77 3.79*** 2.00 1.93 1.78 3.86*** 2.24 2.10 2.00

4 X±σX 3.73*** 3.72 3.50 3.32 3.79*** 3.58 3.3 3.12 3.76*** 3.59 3.58 3.28

12 X±σX 3.48 3.84 3.79 3.71 3.39 3.74 3.61 3.46 3.45 3.81 3.76 3.66

Panel B: l = 10

1 X±σX 3.79*** 2.18 2.15 1.34 3.83*** 1.85 1.72 1.61 3.83*** 1.53 1.48 1.27

2 X±σX 3.8*** 2.21 1.95 1.43 3.79*** 2.00 1.87 1.67 3.86*** 1.59 1.54 1.30

4 X±σX 3.73*** 2.38 2.19 1.99 3.79*** 2.69 2.67 2.29 3.76*** 2.11 1.98 1.84

12 X±σX 3.48 4.52 4.22 3.62 3.39 3.78 3.77 3.71 3.45 4.12 4.09 3.73

Panel C: l = 20

1 X±σX 3.79*** 1.72 1.70 1.65 3.83*** 1.54 1.47 1.26 3.83*** 2.20 1.68 1.56

2 X±σX 3.80*** 2.01 1.94 1.80 3.79*** 2.02 1.63 1.51 3.86*** 2.40 1.88 1.67

4 X±σX 3.73*** 2.16 1.94 1.73 3.79*** 2.02 2.01 1.61 3.76*** 2.42 1.75 1.59

12 X±σX 3.48*** 3.06 2.85 2.74 3.39* 3.48 3.45 3.36 3.45*** 3.21 3.08 2.73

Panel D: l = 50

1 X±σX 3.79*** 2.54 2.49 1.80 3.83*** 2.15 2.12 1.91 3.83*** 2.53 2.27 1.97

2 X±σX 3.80*** 2.69 2.49 1.91 3.79*** 1.85 1.76 1.74 3.86*** 2.68 2.14 1.89

4 X±σX 3.73*** 2.64 2.58 1.91 3.79*** 2.20 2.07 1.80 3.76*** 2.74 2.05 1.83

12 X±σX 3.48*** 3.30 3.07 2.46 3.39*** 3.11 2.98 2.81 3.45*** 3.31 3.03 2.63

(∗) Notes: See notes to Table 6a.
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Table 7a: Specification Test Results - OU Model(∗)

Sample Period: 06-Jan-71 to 08-Apr-05
τ (u,u) S = T S = 2T S = 3T

VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV

Panel A: l = 5

1 X±0.25σX 2.84*** 1.75 1.74 1.25 2.88*** 1.35 1.27 1.15 2.84*** 1.47 1.43 1.24

X±0.5σX 4.98** 5.82 4.18 3.92 5.07** 5.47 5.06 4.66 4.99*** 4.95 4.85 3.78

X±σX 3.14*** 2.82 2.81 2.45 3.03** 3.14 2.83 2.59 3.03*** 2.85 2.79 2.33

X±2σX 2.05*** 0.71 0.66 0.48 2.02*** 0.61 0.59 0.52 2.00*** 0.88 0.85 0.71

2 X±0.25σX 2.82*** 1.91 1.83 1.71 2.86*** 2.19 2.18 2.12 3.01*** 1.98 1.85 1.72

X±0.5σX 4.82* 6.01 5.64 4.61 4.76* 4.97 4.93 4.15 4.77* 5.61 5.09 4.51

X±σX 3.11* 3.13 3.12 2.97 3.14** 3.21 3.09 2.95 3.13** 3.19 3.02 2.91

X±2σX 2.00*** 0.89 0.86 0.69 1.98*** 1.21 1.16 1.09 2.01*** 1.21 1.16 1.04

4 X±0.25σX 2.77** 2.77 2.56 2.46 2.67*** 2.64 2.54 2.28 2.77** 2.78 2.69 2.65

X±0.5σX 4.78 5.90 5.88 5.43 4.98 5.80 5.74 5.39 4.68 5.97 5.44 5.38

X±σX 3.09 3.60 3.52 3.47 2.99 3.81 3.68 3.52 3.01 3.61 3.44 3.12

X±2σX 1.98*** 1.52 1.46 1.31 2.02*** 1.82 1.68 1.56 2.02*** 1.42 1.35 1.31

12 X±0.25σX 3.16** 3.37 3.15 2.71 3.39*** 3.17 2.88 2.71 3.39*** 3.11 2.75 2.56

X±0.5σX 4.69 6.02 5.56 5.49 4.93 5.54 5.36 5.25 4.92 5.98 5.85 5.77

X±σX 3.09 4.33 4.25 4.01 3.09 4.45 4.29 4.07 3.06 4.23 4.01 3.86

X±2σX 1.87*** 1.55 1.39 1.33 1.72*** 1.66 1.47 1.35 1.87*** 1.47 1.42 1.41

Panel B: l = 10

1 X±0.25σX 2.84*** 2.56 2.19 1.93 2.88*** 2.41 2.02 1.43 2.84*** 2.34 2.33 2.09

X±0.5σX 4.98*** 3.34 2.66 2.35 5.07*** 3.69 3.25 3.14 4.99*** 4.45 4.45 3.45

X±σX 3.14*** 1.75 1.66 1.65 3.03*** 1.91 1.74 1.34 3.03*** 2.12 1.93 1.74

X±2σX 2.05*** 0.78 0.74 0.69 2.02*** 0.74 0.63 0.45 2.00*** 0.72 0.71 0.69

2 X±0.25σX 2.82*** 1.75 1.31 1.29 2.86*** 2.39 2.36 1.61 3.01*** 2.02 1.69 1.42

X±0.5σX 4.82*** 4.81 4.17 3.99 4.76*** 4.31 4.14 3.92 4.77* 5.95 4.79 4.58

X±σX 3.11*** 2.98 2.88 2.48 3.14*** 2.97 2.71 2.57 3.13** 3.24 3.05 2.66

X±2σX 2.00*** 0.68 0.67 0.64 1.98*** 1.07 0.98 0.79 2.01*** 0.96 0.89 0.76

4 X±0.25σX 2.77*** 2.45 2.14 1.84 2.67** 2.69 2.38 2.25 2.77*** 2.54 2.45 1.91

X±0.5σX 4.78*** 4.64 4.51 4.18 4.98*** 4.63 4.59 4.19 4.68** 4.73 4.51 4.21

X±σX 3.09* 3.45 3.39 3.03 2.99** 3.14 2.77 2.71 3.01** 3.21 2.98 2.89

X±2σX 1.98*** 1.52 1.41 1.24 2.02*** 1.28 1.19 0.76 2.02*** 1.41 1.38 0.98

12 X±0.25σX 3.16** 3.17 3.08 2.89 3.39* 3.78 3.41 3.12 3.39** 3.49 3.34 3.02

X±0.5σX 4.69 5.68 5.51 5.02 4.93 5.87 5.76 5.52 4.92 5.57 5.46 5.18

X±σX 3.09 4.14 4.09 3.99 3.09 4.98 4.61 4.28 3.06 4.62 4.45 4.03

X±2σX 1.87*** 1.53 1.52 1.33 1.72* 1.95 1.81 1.67 1.87*** 1.78 1.66 1.49

Panel C: l = 20

1 X±0.25σX 2.84*** 2.42 2.29 2.06 2.88*** 2.48 2.20 1.70 2.84** 3.24 2.35 2.08

X±0.5σX 4.98*** 3.07 2.70 2.34 5.07*** 3.40 3.02 2.57 4.99*** 2.38 2.35 2.32

X±σX 3.14*** 2.27 1.98 1.68 3.03*** 1.97 1.75 1.68 3.03*** 2.17 2.12 1.78

X±2σX 2.05*** 1.32 1.04 0.79 2.02*** 0.95 0.77 0.66 2.00*** 0.69 0.67 0.53

2 X±0.25σX 2.82*** 1.90 1.71 1.51 2.86*** 2.16 2.12 1.62 3.01*** 2.60 2.43 2.15

X±0.5σX 4.82*** 4.29 3.64 3.25 4.76*** 4.49 3.76 3.21 4.77*** 3.91 3.56 3.33

X±σX 3.11*** 2.79 2.24 1.78 3.14*** 2.34 2.06 1.75 3.13*** 2.48 2.47 2.26

X±2σX 2.00*** 1.41 0.81 0.57 1.98*** 0.86 0.78 0.55 2.01*** 0.79 0.74 0.52

4 X±0.25σX 2.77*** 2.16 2.07 1.89 2.67*** 1.82 1.69 1.48 2.77*** 2.61 2.01 1.92

X±0.5σX 4.78* 5.10 4.85 4.40 4.98** 5.25 4.59 4.30 4.68*** 4.25 4.20 3.95

X±σr 3.09** 3.34 2.78 2.62 2.99* 3.45 3.17 2.59 3.01* 3.54 3.41 2.09

X±2σr 1.98*** 1.31 1.07 0.85 2.02*** 0.83 0.74 0.71 2.02*** 0.76 0.74 0.73

12 X±0.25σr 3.16* 3.85 3.44 2.43 3.39*** 3.31 3.08 2.52 3.39** 3.43 2.95 2.40

X±0.5σr 4.69*** 4.30 4.20 4.14 4.93** 5.44 4.88 4.72 4.92** 5.13 4.46 3.99

X±σr 3.09** 3.36 3.01 2.96 3.09** 3.16 2.85 2.24 3.06** 3.14 2.93 2.36

X±2σr 1.87*** 1.68 1.55 1.35 1.72*** 1.33 1.22 1.16 1.87*** 1.33 1.32 0.97
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Table 7.a (continued): Specification Test Results - OU Model(∗)

Sample Period: 06-Jan-71 to 08-Apr-05
τ (u,u) S=T S=2T S=3T

VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV

Panel D: l=50

1 X±0.25σr 2.84*** 1.75 1.59 1.24 2.88*** 2.00 1.92 1.46 2.84*** 2.36 2.33 1.67

X±0.5σr 4.98*** 2.99 2.97 2.63 5.07*** 3.05 2.72 2.18 4.99*** 2.99 2.72 2.06

X±σr 3.14** 3.23 2.98 2.59 3.03*** 2.40 2.16 1.97 3.03*** 2.80 2.69 2.00

X±2σr 2.05*** 1.54 1.15 0.95 2.02*** 2.00 1.96 1.45 2.00*** 1.75 1.45 0.98

2 X±0.25σr 2.82** 2.82 2.15 1.75 2.86*** 1.92 1.89 1.53 3.01*** 2.27 2.26 1.99

X±0.5σr 4.82*** 2.80 2.70 2.60 4.76*** 3.10 3.01 2.61 4.77*** 3.11 2.80 2.75

X±σr 3.11*** 2.20 2.16 1.97 3.14*** 2.47 2.22 1.99 3.13*** 3.01 2.92 2.54

X±2σr 2.00*** 1.41 1.38 0.72 1.98*** 1.90 1.80 1.21 2.01*** 1.73 1.49 1.01

4 X±0.25σr 2.77** 3.42 2.14 1.51 2.67*** 2.13 1.96 1.32 2.77** 2.84 2.58 2.01

X±0.5σr 4.78*** 3.62 3.17 2.82 4.98*** 3.72 3.19 2.96 4.68*** 4.17 3.43 2.97

X±σr 3.09*** 2.78 2.63 2.20 2.99*** 2.24 1.97 1.95 3.01*** 2.99 2.95 2.38

X±2σr 1.98*** 1.40 1.20 0.65 2.02*** 1.51 1.47 1.21 2.02*** 1.71 1.22 1.05

12 X±0.25σr 3.16** 3.51 2.66 2.39 3.39*** 2.63 2.44 2.03 3.39** 3.75 2.50 1.99

X±0.5σr 4.69** 4.85 4.15 3.36 4.93* 5.60 5.09 3.97 4.92** 5.69 4.65 3.29

X±σr 3.09* 3.53 3.30 2.86 3.09* 3.52 3.17 2.97 3.06* 3.93 3.82 2.89

X±2σr 1.87*** 1.23 1.11 0.94 1.72*** 1.37 1.25 1.15 1.87*** 1.46 1.41 1.25

(∗) Notes: See notes to Table 6a.
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Table 7b: Specification Test Results - OU Model(∗)

Sample Period: 03-Jan-90 to 08-Apr-05
τ (u,u) S = T S = 2T S = 3T

VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV VT 5% CV 10% CV 20% CV

Panel A: l = 5

1 X±σr 3.83*** 3.50 3.36 2.76 3.86*** 3.28 3.23 2.93 3.84*** 2.71 2.50 2.22

2 X±σr 3.77*** 3.55 3.19 2.94 3.79*** 2.87 2.84 2.80 3.81*** 3.05 2.96 2.64

4 X±σr 3.67** 3.70 3.51 3.48 3.70** 3.80 3.66 3.59 3.73* 3.83 3.78 3.67

12 X±σr 3.30 4.57 4.21 4.04 3.25 4.18 4.15 4.06 3.27 4.31 4.25 4.12

Panel B: l = 10

1 X±σr 3.83*** 3.17 2.90 2.61 3.86*** 3.38 3.29 3.03 3.84*** 3.67 3.04 2.86

2 X±σr 3.77*** 3.42 3.33 2.83 3.79*** 2.49 2.45 2.23 3.81*** 3.27 3.22 2.83

4 X±σr 3.67*** 3.10 2.73 2.55 3.70*** 3.42 3.28 2.61 3.73*** 3.44 3.08 2.69

12 X±σr 3.30 4.44 4.41 4.23 3.25 4.78 4.53 4.30 3.27 4.28 4.20 4.11

Panel C: l = 20

1 X±σr 3.83*** 2.97 2.92 2.37 3.86*** 2.09 1.88 1.73 3.84*** 2.97 2.48 2.36

2 X±σr 3.77*** 2.86 2.78 2.54 3.79*** 3.18 3.10 2.89 3.81*** 2.47 2.47 2.31

4 X±σr 3.67*** 3.05 3.05 2.83 3.70*** 2.82 2.60 2.36 3.73*** 3.31 2.89 2.67

12 X±σr 3.30** 3.76 3.13 3.06 3.25*** 3.01 2.97 2.87 3.27** 3.74 3.21 2.75

Panel D: l = 50

1 X±σr 3.83*** 2.27 2.19 1.82 3.86*** 2.16 1.99 1.87 3.84*** 2.69 2.23 1.83

2 X±σr 3.77*** 2.56 2.39 2.27 3.79*** 2.26 2.17 1.94 3.81*** 3.17 2.68 2.18

4 X±σr 3.67*** 3.02 2.83 2.47 3.70*** 2.92 2.90 2.44 3.73*** 3.15 2.89 2.73

12 X±σr 3.30*** 2.74 2.33 2.17 3.25*** 2.62 2.46 1.99 3.27*** 3.16 2.64 2.22

(∗) See notes to Table 6a.
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Figure 1: 1-month Eorodollar Deposit Rate Observed Series

Panel 1: 1-month Eorodollar Deposit Rate, 06-Jan-71 to 08-Apr-05
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Figure 2: Historical and Simulated Empirical Densities

06-Jan-71 to 08-Apr-05
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Figure 3: Historical and Simulated Empirical Densities

03-Jan-90 to 08-Apr-05
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