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Robust Optimal Investment Strategies with Exchange Rate Risk
and Default Risk

Wei Wang, Qianyan Li, Quan Li and Song Xu *

School of Mathematics and Statistics, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
* Correspondence: xusong@nbu.edu.cn; Tel.: +86-150-8883-2546

Abstract: The problem of robust optimal investment with exchange rate risk and default risk is
studied. We assume that investors are ambiguity averse and they have access not only to the domestic
market but also to the foreign market. The corresponding Hamilton–Jacobi–Bellman (HJB) equations
are first obtained through the robust stochastic optimal control theory. Then, we discuss the optimal
investment problems before and after default, and the value functions and optimal investment
strategies are obtained. Finally, we find that the optimal investment strategies of pre-default are
affected by the intensity of default and the credit spread, and the investors cannot hold defaultable
bonds in the post-default case. Numerical results also show that the exchange rate risk, default risk
and ambiguity aversion have a great effect on the optimal investment strategies.

Keywords: default risk; ambiguity aversion; HJB equation; optimal investment

MSC: 91B05; 91B70; 60H30

1. Introduction

Merton [1,2] first considered the problems of continuous time portfolio optimization. Since
then, the optimal investment portfolio problems have been extensively investigated [3–6]. These
works take the market risk into account when making a portfolio investment decision.
However, a lot of empirical studies have shown that investors are not only risk averse
but also ambiguity averse. In the field of behavioral economics, the investors’ uncertainty
about the probability distribution of random economic factors is called ambiguity aversion.
Anderson et al. [7] first introduced the concept of ambiguity aversion and considered
an optimal investment problem. By adopting a robust control method, the robust op-
timal investment strategies are obtained based on the so-called endogenous worst-case
scenario. Different from Anderson et al. [7], Maenhout [8] presented a homothetic ro-
bustness framework to solve the optimal portfolio optimization problem and derived the
closed-form solutions of robust optimal strategies when the investors have constant relative
risk aversion utility. Many empirical results demonstrate that the financial market has
the regime-switching property. Hence, Elliott and Siu [9] used a continuous time Markov
chain to describe the state of economics and described the price process of the risky as-
set by a Markov-modulated Geometric Brownian. They derived the explicit solution of
optimal investment strategies by using the stochastic differential game. Zheng et al. [10]
consider an optimal portfolio optimization problem for an insurer with ambiguity aversion.
The insurer’s surplus process and the risky asset price process are assumed to follow the
classical Cramer–Lundberg model and constant variance elasticity models, respectively.
They obtained analytical solutions for robust optimal investment and reinsurance strategies
by employing the Hamilton–Jacobi–Bellman (HJB) equations and the verification theorem.
Most of the existing literature assumes that investors can only invest in bonds and stocks.
However, there are many kinds of financial derivatives that can be invested in the market.
Zeng et al. [11] further studied the robust optimal investment problem involving a Euro-
pean derivative with ambiguity aversion. Branger and Larsen [12] considered the jump

Mathematics 2023, 11, 1550. https://doi.org/10.3390/math11061550 https://www.mdpi.com/journal/mathematics1
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phenomenon of the risky asset prices in the financial market and obtained the analytic solu-
tions of optimal investment strategies in the complete and incomplete market. Moreover,
they illustrated that ignoring ambiguity aversion about jump risk is more serious than
ignoring ambiguity aversion about diffusion risk in the complete financial market, and the
opposite holds true in the incomplete financial market.

In the financial market, the default risk has usually important effects on the optimal
investment strategy for an investor. Since the 2008 financial crisis, the default risk has
attracted increasing attention from investors and banking institutions and become one of
the most important sources of financial risks. In fact, the default risk may exist almost in
all financial products. Over the past decades, many kinds of corporate bonds with default
risk appeared in the financial market. These corporate bonds are becoming more and
more popular among investors because of their high yield. Therefore, the optimal portfolio
problems with defaultable bonds are studied by many researchers. Bielecki and Jang [13]
assumed that the financial market has three kinds of assets: a risk free bond, a defaultable
bond and a stock. They considered a portfolio optimization decision problem by the HJB
approach. Bo et al. [14] also considered that the financial market has a defaultable bond
but studied an optimal investment and consumption problem over an infinite horizon time.
Capponi and Figueroa-Lopez [15] used a continuous time Markov chain to describe the
state of economic and obtained an optimal investment strategy with a defaultable bond in
a Markov-modulated market. Deng et al. [16] supposed that an insurer is ambiguity averse
and the stock price follows the constant elasticity of variance model. They employed the
robust control method to study an optimal investment and reinsurance problem with a
defaultable bond. One can refer to [17–20] for more results on the optimal investment with
default risk.

In addition to the default risk, exchange rate risk also plays an important role in
international portfolio investment and other businesses. The reason for arising exchange
rate risk is that the value of the portfolio in local currency changes as the exchange rate
changes. Kozo and Shujiro [21] presented the effect of exchange rate and its volatility on the
investment decision. Guo et al. [22] supposed that there is an interest rate risk, exchange
rate risk and inflation risk in the financial market. They studied the problem of the optimal
reinsurance and investment when the risky assets follow the Geometry Brownian motions.
Fei et al. [23] also assumed that the dynamics of exchange rate risk is described by the
Geometry Brownian motion, but the risky assets price dynamics are modeled by a diffusion
process which depend on time-varying underlying factors. They studied the problem of
optimal investment of a multinational corporation and derived the explicit expression of
the optimal investment strategies.

However, to our best knowledge, no discussion has yet been given on optimal in-
vestment selection problem with default risk, exchange rate risk and model uncertainty.
This paper investigates a robust optimal investment selection problem of an investor with
constant absolute risk aversion (CARA) utility, when the price processes of the defaultable
bond and exchange rate follow the pure jump and Geometric Brownian models, respectively.
The main contribution of our paper is given as follows.

(1) We consider a financial market with four assets, namely, a defaultable bond, a risk-
free bond, a domestic stock and a foreign stock. An optimal portfolio selection problem
with default risk and exchange risk is presented by maximizing the minimal expected
utility of their terminal wealth over a class of probability measures.

(2) Using robust control and dynamic programming principle, we obtain the cor-
responding HJB equations in the pre-default case and post-default case. Solving these
two HJB equations, we derive the explicit expression of the optimal investment strategies
under the constant absolute risk aversion utility. We consider two cases, one with and one
without the ambiguity aversion. Comparing the results of the two cases, we illustrate that
the ambiguity aversion has a significant effect on the optimal investment strategies for
an investor.

2
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(3) For the international investors, they face not only market risk and default risk but
also exchange rate risk. We suppose that the exchange rate is stochastic and study the
joint effect of several kinds of risk and ambiguity aversion on the optimal portfolio choices.
The numerical results show that default risk and exchange risk have different impacts on
four different types of assets.

This article is organized as follows. In Section 2, the financial market model is set up.
In Section 3, we provide an analytical solution to the optimal investment strategies under
CARA utility. In Section 4, we present some numerical results of the optimal investment
strategies and conclude the article in Section 5.

2. Financial Market Model

Suppose that the financial market has no transaction costs or taxes. All trades are
continuously occuring on a finite time period [0, T], where T > 0 is a finite constant. Let(

Ω,F , (Ft)t∈[0,T], P
)

be a filtered complete probability space, where P is a real-world
probability measure and the filtration (Ft)t∈[0,T] is the augmented natural filtration of
a standard three-dimensional Brownian motion W(t) = {W1(t), W2(t), W3(t)}. Let τ be
the first jump time of a Possion process with intensity hp under the probability measure
P, where hp is a positive constant. We use τ to denote the time when the default risk
occurs. For t ∈ [0, T], denote the default process by Z(t) := I{τ≤t}, where I{·} is an
indicator function.

LetH = (Ht; t ∈ [0, T]) be the augmented natural filtration of the default process Z(t)
and Gt = Ht ∨ Ft for all t ∈ [0, T]; then, G = (Gt; t ∈ [0, T]) is the smallest filtration such
that the time of default τ becomes a stopping time. In addition, we define Mp(t) as follows:

Mp(t) = Z(t)−
∫ t

0
hp(1− Z(u))du, (1)

where hp > 0 is the arrival intensity of the default under the probability measure P.
Then, Mp(t) is a (P,G) martingale. Note that Z(t) = I{τ≤t}; then, Mp(t) can be also
represented by

Mp(t) = Z(t)−
∫ t∧τ

0
hpdu.

where M(t) is a compensate process. After the default time τ, the default process Z(t)
remains at the value 1. Hence, there is no need to compensate for the default process Z(t)
after the default time τ.

2.1. Model Assumptions

We assume that the financial market consists of four kinds of assets: a risk-free bond B
and a zero-coupon defaultable bond p in the domestic financial market, a domestic stock
Sd and a foreign stock Sf.

The risk-free bond B := {B(t)}t∈[0,T] whose price processes are given by:

dB(t) = rdB(t)dt, (2)

where rd > 0 represents the risk-free interest rate of the domestic bank.
The stock price processes Sd :=

{
Sd(t)

}
t∈[0,T]

and Sf :=
{

Sf(t)
}

t∈[0,T]
are assumed

to follow Geometric Brownian motions

dSd(t) = Sd(t)(μddt + σddW1(t)), (3)

dSf(t) = Sf(t)(μfdt + σfdW2(t)), (4)

3



Mathematics 2023, 11, 1550

where μd and μf denote the appreciate rate of the stocks Sd and Sf, respectively, σd and σf
denote the volatility of the stocks Sd and Sf, respectively. These parameters are assumed to
be positive constants.

Let R := {R(t)}t∈[0,T] be the exchange rate risk process. As in Amin and Jarrow [24],
the dynamics of the exchange rate is assumed to satisfy the following SDE:

dR(t) = R(t)
(
(μ̂− rf)dt + ρ1θdW1(t) + ρ2θdW2(t) +

√
1− ρ2

1 − ρ2
2θdW3(t)

)
, (5)

where θ > 0 is the volatility of exchange rate risk process, rf is the risk-free interest rate of
the foreign bank and μ̂−rd

θ is the market price of the risk. Furthermore, we consider that the
price dynamics of exchange rate is correlated with the price processes of domestic stock
and foreign stock, ρ1 ∈ [0, 1], ρ2 ∈ [0, 1] are the correlation coefficients, and ρ2

1 + ρ2
2 ∈ [0, 1].

Let μ = μ̂− rd + μ f . If the exchange rate risk process and the foreign stock price process
have the same volatility, μ−rf

θ is the sum of market rice of two kinds of risk since μ−rf
θ =

μ̂−rd
θ +

μ f−rf
θ .

Remark 1. Melino and Turnbull [25] showed that using a diffusion process with stochastic
volatility to describe the exchange rate is more appropriate from empirical results. Johnson and
Schneeweis [26] and Huang and Hung [27] pointed out that a jump diffusion process is more
suitable for capturing the exchange rate price dynamics. For convenience, we assume here that the
exchange rate price dynamics is modeled by a Geometric Brownian motion.

Let S(t) be the price of the foreign stock in the domestic currency. Then, S(t) and Sf(t)
have this relationship, i.e., S(t) = Sf(t)R(t). By using the Itô formula, we have

dS(t) = Sf(t)dR(t) + R(t)dSf(t) + d < Sf, R >t

= S(t)
[
μ̄dt + ρ1θdW1(t) + (σf + ρ2θ)dW2(t) +

√
1− ρ2

1 − ρ2
2θdW3(t)

]
, (6)

where μ̄ = μ− rf + rd + ρ2θσf, < Sf, R >t denotes the quadratic variation process of S(t)
and R(t).

Now, we present the price dynamics of the default bond. The holder of a bond receives
only a portion of its value when a default risk occurs. Let ζ ∈ (0, 1) denote the constant
loss rate; then, 1-ζ is the default recovery rate of a bond. Furthermore, we let T1 denote
the expiration date of the zero-coupon defaultable bond. In addition, we assume T1 ≥ T.
This assumption means that the defaultable bonds have not matured before the end of
the investment, and the defaultable bond can still be traded in the financial market. This
assumption is also reasonable. Generally, the maturity period of the bond is relatively
long. Let Q be a given risk-neutral probability measure which is equivalent to the statistical
probability measure P. By the risk-neutral pricing formula, we have that the price dynamics
of defaultable bond p(t, T1) at time t under Q is given by

p(t, T1) = (1− Z(t))EQ

[
(1− ζ)e−rd(τ−t)Yτ−|Gt

]
+ Z(t)(1− ζ)er−τYτ−. (7)

By using Itô’s formula with jump, the price dynamic of a defaultable bond p(., T1) =
(p(t, T1); t ≥ 0) can be written as follows

dp(t, T1) = p(t, T1)

[
rddt + δ(1− 1

μp
)(1− Z(t))dt− (1− Z(t−))ζdMp(t)

]
, (8)

where μp = hQ

hP denotes the default risk premium, hQ > 0 is the arrival intensity of the
default risk under the probability measure Q, and δ = hQζ denotes the credit spread under
the probability measure Q. For more details of the Formulas (7) and (8), please see the
Proposition 1 in Bo et al. [14].

4
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2.2. The Optimal Investment Problem

Denote by πd
s (t) the dollar amounts invested in the domestic stock Sd at time t.

Similarly, πs(t) denotes the dollar amounts invested in the foreign stock Sf and πp(t)
denotes the dollar amounts invested in the defaultable bond. Denote by Xπ(t) the
wealth process of a portfolio π = {πd

s (t), πs(t), πp(t)}t∈[0,T] at time t. Furthermore,
Xπ(t) − πd

s (t) − πs(t) − πp(t) represents the dollar amounts invested in the risk-free
asset B. Using the self-financing condition, the dynamics of the wealth process associated
with (πd

s (·), πs(·), πp(·)) are given as

dXπ(t) =
πd

s (t)
Sd(t)

dSd(t) +
πs(t)
S(t)

dS(t) +
πp(t)

p(t, T1)
dp(t, T1)

+
Xπ(t)− πd

s (t)− πs(t)− πp(t)
B(t)

dB(t). (9)

Plugging (2), (3), (6) and (8) into (9), then

dXπ(t) =
[
πd

s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf) + πp(t)δ(1− 1
μp

)(1− Z(t))

+ Xπ(t)rd

]
dt + (πd

s (t)σd + πs(t)ρ1θ)dW1(t) + πs(t)(σf + ρ2θ)dW2(t) (10)

+ πs(t)
√

1− ρ2
1 − ρ2

2θdW3(t)− πp(t)(1− Z(t−))ζdMP(t).

By substituting (1) into (10), the price dynamics of the wealth process Xπ(t) is ob-
tained by

dXπ(t) = [Xπ(t)rd + πd
s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf) + πp(t)δ(1− Z(t))]dt

+ (πd
s (t)σd + πs(t)ρ1θ)dW1(t) + πs(t)(σf + ρ2θ)dW2(t) (11)

+ πs(t)
√

1− ρ2
1 − ρ2

2θdW3(t)− πp(t)(1− Z(t−))ζdZ(t).

Remark 2. The wealth Xπ here can be negative, which means that investors are allowed to sell
short. If the short position can not be allowed, we can suppose πp(t) < 1

ζ for all t > 0.

Definition 1. A trading strategy π := {πd
s (t), πs(t), πp(t)}t∈[0,T] is said to be admissible if

(i). πd
s (t), πs(t), πp(t) are Gt progressively measurable;

(ii). EP
[

exp
(∫ T

0 (| πd
s (t) |2 + | πs(t) |2 + | πp(t) |2)dt

)]
< ∞, where EP[·] denotes the expec-

tation under the probability measure P;
(iii). For any t ∈ [0, T], the stochastic differential Equation (11) has a unique strong solution.

An investor hopes to maximize the expected utility of his terminal wealth by choosing
an optimal investment strategy, and the objective functional is naturally defined by

sup
π(t)∈Π

{
EP[U(Xπ(T))|Xπ(t) = x]

}
, (12)

where Π represents the set of all admissible strategies, and EP[·|Xπ(t) = x] denotes
conditional expectation under the probability measure P.

In this article, we suppose that the investor is ambiguous adverse. That is, the investor
cannot believe that the model under the probability measure P is completely correct.
The investor has a certain ambiguity of model estimation under probability measure P. He
needs to consider some alternative models defined by the other probability measures to
replace the original model. These probability measures are defined by the world probability

5
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measure P and the Radon–Nikodym derivatives. For 0 ≤ t ≤ T, we suppose that there
exists a Radon–Nikodym derivative process Λφ(t) defined by

Λφ(t) = exp
{
−
∫ t

0
φ1(u)dW1(u)−

∫ t

0
φ2(u)dW2(u)−

∫ t

0
φ3(u)dW3(u) +

∫ t

0
ln φ4(u−)dZ(u)

−1
2

∫ t

0

(
φ2

1(u) + φ2
2(u) + φ2

3(u)
)

du + hp
∫ t

0
(1− φ4(u))(1− Z(u))du

}
, (13)

where Φ(t) = {φi(t), i = 1, 2, 3, 4} should satisfy the following conditions:

(i). Φ(t) are progressively measurable processes;
(ii). For all t ∈ [0, T], φ4(t) > 0;

(iii). EP
{

exp
[∫ T

0

(
1
2
(
φ2

1(t) + φ2
2(t) + φ2

3(t)
)
+ hp(φ4(t) ln φ4(t)− φ4(t) + 1)

)
dt
]}

< ∞.

Define a probability measure Qφ equivalent to the probability measure P on GT by

dQφ

dP

∣∣∣GT
= Λφ(T).

By Girsanov’s theorem, for i = 1, 2, 3, and 0 ≤ t ≤ T, the processes

dWQφ

i (t) = dWi(t) + φi(t)dt, (14)

are three-dimensional standard Brownian motions under the probability measure Qφ.
Furthermore, Girsanov’s theorem implies that

M̃Qφ
(t) = Z(t)−

∫ t

0
φ4(u)hp(1− Z(u))du (15)

is a Qφ-local martingale. For convenience, we still use hQ to denote the arrival intensity of
the default under the probability measure Qφ.

Furthermore, the price dynamics of the domestic and foreign stocks under the proba-
bility measure Qφ can be written as

dSd(t) = Sd(t)
(
(μd − φ1(t)σd)dt + σddWQφ

1 (t)
)

,

dS(t) = S(t)
[(

μ̄− ρ1θφ1(t)− (σf + ρ2θ)φ2(t)−
√

1− ρ2
1 − ρ2

2θφ3(t)
)

dt

+ρ1θdWQφ

1 (t) + (σf + ρ2θ)dWQφ

2 (t) +
√

1− ρ2
1 − ρ2

2θdWQφ

3 (t)
]

. (16)

Substituting (14) into (11), we have

dXπ(t) =
[

Xπ(t)rd + πd
s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf) + πp(t)δ(1− Z(t))

− (πd
s (t)σd + πs(t)ρ1θ)φ1(t)− πs(t)(σf + ρ2θ)φ2(t)− πs(t)

√
1− ρ2

1 − ρ2
2θφ3(t)

]
dt (17)

+ (πd
s (t)σd + πs(t)ρ1θ)dWQφ

1 (t) + πs(t)(σf + ρ2θ)dWQφ

2 (t)

+ πs(t)
√

1− ρ2
1 − ρ2

2θdWQφ

3 (t)− πp(t)(1− Z(t−))ζdZ(t).

2.3. Robust Optimal Control

We adopt the method of robust optimal control presented in Anderson et al. [7]. The
investor will choose the optimal investment decision to minimize the worst-case loss from a
family of possible models, which is called the robust investment portfolio strategy. Suppose
that the investor has a utility function U(·) over the terminal wealth WT . He maximizes his
expected utility of the terminal wealth by choosing an optimal investment strategy π in the
risky and risk-free assets. Hence, the investor’s indirect utility function is defined by:

6
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J(t, x, z) = sup
π(t)∈Π

{
inf

φ(t)∈Φ
EQφ
[

U(Xπ(T)) +
∫ T

t
Ψ(u, Xπ(u), φ(u))du|Xπ(t) = x, Z(t) = z

]}
, (18)

where the conditional expectation EQφ
[·] is given under the alternative probability measure

Qφ defined by φ. For an investor, he can determine the probability Qφ by choosing φ. His
purpose is considering the worst case, i.e, minimizing the expected utility. As in Branger
and Larsen [12], Ψ(u, Xπ(u), φ(u)) is the penalty term of the model which is given by

Ψ(u, x, φ(u)) =
3

∑
i=1

φ2
i (u)

2ϕi(u, x)
+

hp(φ4(u) ln φ4(u)− φ4(u) + 1)(1− Z(u))
ϕ4(u, x)

, (19)

ϕi(u, x) = − βi
mJ(u, x, z)

, i = 1, 2, 3, 4. (20)

where βi ≥ 0 is the ambiguity aversion coefficient with respect to diffusion and jump risk,
which can be understood as robustness preference or model uncertainty aversion, which
measures investor confidence in the model. In order to avoid having a too complicated
model and calculation, we suppose βi = β for i = 1, 2, 3, 4. In general, we can also suppose
that the βi values are different. In this case, we can use the same method to obtain the
result. The larger the β value, the greater the investor disconfidence in the model. m is a
risk aversion coefficient that measures the investor’s aversion to the market risk.

By using the stochastic dynamic programming principle, the robust Hamilton–Jacobi–
Bellmann equation developed in Anderson et al. [7] can be obtained. Then, the value
function J(t, x, z) satisfies the following HJB equation:

sup
π(t)∈Π

inf
φ(t)∈Φ

(
DΦ,π J(t, x, z)− mJ(t, x, z)

β

[
3

∑
i=1

φ2
i (t)
2

+ (φ4(t) ln φ4(t)− φ4(t) + 1)hp(1− z)

])
= 0, (21)

with boundary condition J(T, x, z) = U(x). The differential operator DΦ,π J(t, x, z) is
given by

DΦ,π J(t, x, z) = Jt + Jx

{
xrd + πd

s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf) + πp(t)δ(1− z)

−
[
πd

s (t)σd + πs(t)ρ1θ
]
φ1(t)− πs(t)(σf + ρ2θ)φ2(t)− πs(t)

√
1− ρ2

1 − ρ2
2θφ3(t)

}
(22)

+
1
2

Jxx

{
[πd

s (t)σd + πs(t)ρ1θ]2 + πs(t)2(σf + ρ2θ)2 + πs(t)2(1− ρ2
1 − ρ2

2)θ
2
}

+
[

J(t, x− πp(t)ζ(1− z), 1)− J(t, x, z)
]

hp(1− z)φ4(t),

where Jt, Jx and Jxx are the partial derivatives of the value function J(t, x, z) with respect to
the corresponding variables t and x.

3. CARA Utility

For an investor, the defaultable bond may default during the investment time periods
[0, T]. In this section, we split the problem (18) into the post-default case (z = 1) and the
pre-default case (z = 0). Moreover, we assume that the investor has constant absolute risk
aversion utility function defined by:

U(x) = − 1
m

e−mx, (23)

7
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where m > 0 is the risk aversion coefficient. The pre-default and post-default value
functions are assumed to satisfy the following:

J0(t, x) = J(t, x, 0),

J1(t, x) = J(t, x, 1).

Next, we discuss the optimal investment strategies with exchange rate risk in both
cases before and after default; the main results are shown in Theorems 1 and 2.

3.1. The Post-Default Case

In this subsection, we consider the optimal investment problem in the post-default
case. If the default risk occurs before time t, that is z = 1. Hence, we write HJB Equation (21)
as follows:

sup
π(t)∈Π

inf
φ(t)∈Φ

(
DΦ,π J1(t, x)−mJ1(t, x)

3

∑
i=1

φ2
i (t)
2β

)
= 0. (24)

Recall from (22) and z = 1, we have

sup
π(t)∈Π

inf
φ(t)∈Φ

{
J1
t + J1

x

[
xrd −

(
πd

s (t)σd + πs(t)ρ1θ
)

φ1(t)− πs(t)(σf + ρ2θ)φ2(t)

+πd
s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf)− πs(t)

√
1− ρ2

1 − ρ2
2θφ3(t)

]
−mJ1(t, x)

3

∑
i=1

φ2
i (t)
2β

(25)

+
1
2

J1
xx

[
(πd

s (t)σd + πs(t)ρ1θ)2 + πs(t)2(σf + ρ2θ)2 + πs(t)2(1− ρ2
1 − ρ2

2)θ
2
]}

= 0.

Theorem 1. Under the exponential utility function, the post-default value function J1(t, x) is
given by

J1(t, x) = − 1
m

e−mxerd(T−t)+A(t), (26)

where

A(t) =
m(T − t)

2σ2
d(m + β)

{
(μd − rd)

2 −M(μ− rf + ρ2θσf)σd

+ M(μd + rd)ρ1θ − 2σ2
dM
[

ρ1θ

σd
− (μ− rf + ρ2θσf)

]}
, (27)

and

M =
(μ− rf + ρ2θσf)σd − (μd + rd)ρ1θ

σ2
f + 2σfρ2θ + (1− ρ2

1)θ
2

. (28)

The optimal investment strategies are given as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
πd∗

s (t) = (μd−rd−ρ1θM)e−rd(T−t)

(m+β)σ2
d

,

π∗s (t) = Me−rd(T−t)

(m+β)σd
,

π∗p(t) = 0.

(29)

Proof. We conjecture that the post-default value function J1(t, x) has the following form:

J1(t, x) = − 1
m

e−mxerd(T−t)+A(t), (30)

8
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with boundary condition A(T) = 0.
The first-order partial derivative of J1(t, x) for t, the first and second-order partial

derivatives of J1(t, x) for x are now calculated as follows:⎧⎪⎪⎨⎪⎪⎩
∂J1(t,x)

∂t = J1(t, x)[rdmxerd(T−t) + At],
∂J1(t,x)

∂x = J1(t, x)[−merd(T−t)],
∂2 J1(t,x)

∂x2 = J1(t, x)[m2e2rd(T−t)],

(31)

where At is the first-order partial derivative of A(t) about t.
Substituting (30) and (31) into (25) and using the first-order optimal condition for φ(t),

we have ⎧⎪⎪⎨⎪⎪⎩
φ∗1 (t) = erd(T−t)(πd

s (t)σd + πs(t)ρ1θ)β,
φ∗2 (t) = erd(T−t)πs(t)(σf + ρ2θ)β,

φ∗3 (t) = erd(T−t)πs(t)
√

1− ρ2
1 − ρ2

2θβ.

(32)

Plugging (32) into (24), we obtain the following equation:

sup
π(t)∈Π

{
At −merd(T−t)

[
πd

s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf)
]
+

1
2

m(m + β)e2rd(T−t)

[
(πd

s (t)σd + πs(t)ρ1θ)2 + πs(t)2(σf + ρ2θ)2 + πs(t)2(1− ρ2
1 − ρ2

2)θ
2
]}

= 0. (33)

According to the first-order optimal condition, π∗(t) = {πd∗
s (t), π∗s (t), π∗p(t)} are

obtained as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
πd∗

s (t) = (μd−rd−ρ1θM)e−rd(T−t)

(m+β)σ2
d

,

π∗s (t) = Me−rd(T−t)

(m+β)σd
,

π∗p(t) = 0.

(34)

Then, we substitute (34) into (32) and obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ∗1 (t) = (μd−rd)β

σd(m+β)
,

φ∗2 (t) = M(σf+ρ2θ)β
(m+β)σd

,

φ∗3 (t) =
M
√

1−ρ2
1−ρ2

2θβ

(m+β)σdd .

(35)

Next, using (33), (34) and (35), we obtain the following equality

At − m
2σ2

d(m + β)
×
[
(μd − rd)

2 − (μ− rf + ρ2θσf)σd + (μd + rd)ρ1θ
]

+
Mm

m + β

[ρ1θ

σd
− (μ− rf + ρ2θσf)

]
= 0. (36)

Finally, we obtain (27) and complete the proof by solving the differential Equation (36).

3.2. The Pre-Default Case

In this subsection, we present the robust optimal investment strategies in the pre-
default case. We first provide a Lemma which is used to prove the Theorem 2.

Lemma 1. Let the function F(x) = hpx + mhp

β x ln x − hQ; then, the equation F(x) = 0 has a
unique positive solution.

9
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Proof. Taking the derivative for F(x) with respect to the variable x, we get

∂F(x)
∂x

= hp +
mhp

β
(ln x + 1).

Hence, it is easy to find that F(x) is a decreasing function when x ∈ (0, e−(1+
β
m )), and it

is an increasing function when x ∈ [e−(1+
β
m ),+∞).

Noting that

lim
x→0+

F(x) = −hQ < 0; lim
x→+∞

F(x) = +∞.

Then, F(x) has a unique positive solution at (0,+∞) according to the zero-point
theorem.

Theorem 2. Under the exponential utility function, the pre-default value function J0(t, x) is
given by:

J0(t, x) = − 1
m

e−mxerd(T−t)+C(t), (37)

C(t) = A(t)ehQ(T−t) +
∫ T

t
H(s)ehQ(T−s)ds, (38)

where A(t) is defined by (27) and

H(t) = −hQ ln
hQ

hpφ∗4 (t)
− mhp

β
(1− φ∗4 (t)). (39)

Furthermore, the optimal investment strategies are given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
πd∗

s (t) = (μd−rd−ρ1θM)e−rd(T−t)

(m+β)σ2
d

,

π∗s (t) = Me−rd(T−t)

(m+β)σd
,

π∗p(t) =
ln hQ

ζhpφ∗4 (t)
+C(t)−A(t)

mζerd(T−t) .

(40)

Proof. We will use the same idea from the proof of Theorem 1. Let z = 0; then, the HJB
Equation (21) is written as

sup
π(t)∈Π

inf
φ(t)∈Φ

(
Dθ,π J0(t, x)− mJ0(t, x)[φ2

1(t) + φ2
2(t) + φ2

3(t)]
2β

−mJ0(t, x)hp[φ4(t) ln φ4(t)− φ4(t) + 1]
β

)
= 0. (41)

where

Dθ,π J0(t, x) = J0
t + J0

x

[
xrd + πd

s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf) + πp(t)δ

−(πd
s (t)σd + πs(t)ρ1θ)φ1(t)− πs(t)(σf + ρ2θ)φ2(t)− πs(t)

√
1− ρ2

1 − ρ2
2θφ3(t)

]
+

1
2

J0
xx

[
(πd

s (t)σd)
2 + 2πd

s (t)πs(t)σdρ1θ + πs(t)2
(

σ2
f + 2ρ2θσf + θ2

)]
+
[

J1(t, x− πp(t)ζ)− J0(t, x)
]

hpφ4(t)

10
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Recalling the (30), we obtain

J1(t, x− πp(t)ζ)− J0(t, x) = J0(t, x)
[

exp{mπp(t)ζerd(T−t) − C(t) + A(t)} − 1
]
. (42)

Hence, (41) can be rewritten as

sup
π(t)∈Π

inf
φ(t)∈Φ

{
J0
t + J0

x

[
xrd + πd

s (t)(μd − rd) + πs(t)(μ− rf + ρ2θσf) + πp(t)δ

−(πd
s (t)σd + πs(t)ρ1θ)φ1(t)− πs(t)(σf + ρ2θ)φ2(t)− πs(t)

√
1− ρ2

1 − ρ2
2θφ3(t)

]
+

1
2

J0
xx

[
(πd

s (t)σd)
2 + 2πd

s (t)πs(t)σdρ1θ + πs(t)2
(

σ2
f + 2ρ2θσf + θ2

)]
(43)

+J0(t, x)
[

exp{mπp(t)ζerd(T−t) − C(t) + A(t)} − 1
]

hpφ4(t)

−mJ0(t, x)[φ2
1(t) + φ2

2(t) + φ2
3(t)]

2β
− mJ0(t, x)hp[φ4(t) ln φ4(t)− φ4(t) + 1]

β

}
= 0.

We guess that the explicit solution of the HJB Equation (43) satisfies the following

J0(t, x) = − 1
m

e−mxerd(T−t)+C(t), (44)

with terminal condition C(T) = 0. Taking the derivatives of J0(t, x) with respect to the
variables t and x, we have⎧⎪⎪⎨⎪⎪⎩

∂J0(t,x)
∂t = J0(t, x)[rdmxerd(T−t) + Ct],

∂J0(t,x)
∂x = J0(t, x)[−merd(T−t)],

∂J0(t,x)
∂x2 = J0(t, x)[m2e2rd(T−t)],

(45)

where Bt is the first derivative of B(t) about t.
Substituting (45) into (43), we obtain the following results by the first-order optimal

condition ⎧⎪⎪⎨⎪⎪⎩
φ∗1 (t) = erd(T−t)

(
πd

s (t)σd + πs(t)ρ1θ
)

β,

φ∗2 (t) = erd(T−t)πs(t)(σf + ρ2θ)β,

φ∗3 (t) = erd(T−t)πs(t)
√

1− ρ2
1 − ρ2

2θβ,

(46)

and [
exp{mπp(t)ζerd(T−t) − C(t) + A(t)} − 1

]
hp − mhp

β
ln φ∗4 (t) = 0. (47)

We apply the first-order optimal condition, (46) and (47) for (43), the optimal invest-
ment strategies are obtained as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

πd∗
s (t) = (μd−rd−ρ1θM)e−rd(T−t)

(m+β)σ2
d

,

π∗s (t) = Me−rd(T−t)

(m+β)σd
,

π∗p(t) =
ln hQ

ζhpφ∗4 (t)
+C(t)−A(t)

mζerd(T−t) .

(48)

11
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Combining (46), (47) and (48), we conclude that⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ∗1 (t) = (μd−rd)β

σd(m+β)
,

φ∗2 (t) = M(σf+ρ2θ)β
(m+β)σd

,

φ∗3 (t) =
M
√

1−ρ2
1−ρ2

2θβ

(m+β)σd
,

(49)

and

hQ − hpφ∗4 (t)−
mhp

β
φ∗4 (t) ln φ∗4 (t) = 0. (50)

Furthermore, Lemma 1 shows that Equation (50) has a unique position root. Then,
we substitute (45), (48) and (49) and (50) into (43), and a differential equation for C(t) is
obtained as follows:

Ct − hQC(t)− m
2σ2

d(m + β)

{
(μd − rd)

2 −M[(μ− rf + ρ2θσf)σd − (μd + rd)ρ1θ]
}

+
Mm

m + β

[ ρ1θ

σd
− (μ− rf + ρ2θσf)

]
+ A(t)hQ − hQ ln

hQ

hpφ∗4 (t)
− mhp

β
(1− φ∗4 (t)) = 0, (51)

where C(T) = 0. By solving the differential Equation (51), we obtain (38). This completes
the proof.

We put the pre-default and post-default together and obtain the following result.

Theorem 3. When the investors have ambiguity aversion, the optimal investment strategies with
default risk and exchange rate risk are given as follows

πd∗
s (t) =

(μd − rd − ρ1θM)e−rd(T−t)

(m + β)σ2
d

, π∗s (t) =
Me−rd(T−t)

(m + β)σd
,

and ⎧⎪⎨⎪⎩
π∗p(t) = 0, 0 < τ ≤ t,

π∗p(t) =
ln hQ

ζhpφ∗4 (t)
+C(t)−A(t)

mζerd(T−t) , τ ∈ (t, T],

where A(t), M, C(t) and φ∗4 (t) are given by (27), (28), (38) and (50), respectively.

Remark 3. If the investors are ambiguity neutral, i.e., β = 0, then the optimal investment
strategies satisfies

πd∗
s (t) =

(μd − rd − ρ1θM)e−rd(T−t)

mσ2
d

, π∗s (t) =
Me−rd(T−t)

m
,

and ⎧⎪⎨⎪⎩
π∗p(t) = 0, 0 < τ ≤ t,

π∗p(t) =
ln δ

ζhpφ∗4 (t)
+C(t)−A(t)

mζerd(T−t) , τ ∈ (t, T],

where A(t), M, C(t) and φ∗4 (t) are given by (27), (28), (38) and (50), respectively.

12
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4. Numerical Analysis

In this section, we provide some numerical results and analyze the impact of some
financial model parameters on the robust optimal investment strategies. For convenience,
we consider the value of the robust optimal investment strategies at time t = 0. In general,
we can also suppose that t is a positive constant. In this case, we can obtain the numerical
results of the optimal investment strategies by using the same method. To be more specific,
we assume that unless stated otherwise, the model’s parameters take the following values:

rd = 0.05, θ = 0.1, μd = 0.08, μf = 0.1, μ̂ = 0.05, σd = 0.02, σf = 0.25, ρ1 = 0.2, ρ2 = −0.2,

μp = 0.4, T = 10, t = 0, β = 1, m = 2, r f = 0.04, hp = 0.4, δ = 0.2, ζ = 0.4.

Figure 1 depicts the plots of the robust optimal investment strategies against the
volatilities σd and θ. From the left panel of Figure 1, we can find that the value of bond
B held in the optimal investment strategy, denoted by πd

s (t), becomes much less as the
volatility σd increases. The greater the volatility, the greater the risk of stock price. Hence,
the investors will naturally reduce their investment in domestic stocks when σd increases.
In addition, the right panel of Figure 1 describes the relationship between θ and πd

s (t).
We can observe that the optimal investment strategy πd

s (t) is an increasing function with
respect to the variable θ. When the volatility of the exchange rate risk increases, the foreign
stock price risk will also increase; thus, the investors will reduce investment in foreign
stocks and increase investment in domestic stocks. Finally, we also compare the optimal
investment strategy in the ambiguity averse case with the corresponding strategy in the
ambiguity neutral case. In Figure 1, β = 1 denotes ambiguity aversion, and β = 0 means
ambiguity neutral. We can see that the value of the optimal investment strategy πd

s (t) at
β = 0 is greater than the value at β = 1. This verifies that the investors with ambiguity
aversion will invest less in risky assets compared with those who are ambiguity neutral.
The reason is that investors with ambiguity aversion are more risk averse, which brings
less money to the risky assets.
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Figure 1. The impact of parameters σd and θ on πd
s (t).

Figure 2 shows how the optimal investment strategy πd
s (t) adjusts in response to the

change of m and μd. In Figure 2, m is a risk aversion coefficient; it measures the level of
investor’s aversion to risk. As shown in the left panel of Figure 2, the optimal investment
strategy πd

s (t) decreases as the risk aversion coefficient m increases. This is because the
investors will reduce their investment amount of the risky asset when the investors with
a lower risk aversion parameter detest risk more. μd is the appreciate rate of the stock
Sd. Since a high appreciate rate μd leads to a high yield, we think that there is a positive
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relationship between μd and πd
s (t). Indeed, it can be seen from the right panel of Figure 3

that πd
s (t) increases as μd increases. Hence, this result is also consistent with our conjecture.
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Figure 2. The impact of parameters m and μd on πd
s (t).
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Figure 3. The impact of parameters m, θ and σf on πs(t).

Figure 3 presents the influence of different θ, m and σf values on the optimal invest-
ment strategy πs(t). We observe that the negative correlation between θ and the optimal
investment strategy πs(t) from the left panel of Figure 3. The cause for such results is
very obvious, the larger θ means the greater volatility of exchange rate risk. The increased
volatility of exchange rate risk may lead to investment losses; then, the investors will reduce
the investment amount in the foreign stocks. Compared with Figure 2, we conclude that
the impact of m on the optimal investment strategy πs(t) is the same as the influence of
the optimal investment strategy πd

s (t). Moreover, we can also find that there is a negative
relationship between σf and the optimal investment strategy πs(t). It implies that the
volatility risk has a significant impact on the number of risky assets held in the optimal
investment strategy πs(t).

From Figure 4, we find that the increase of both domestic and foreign risk-free interest
rates will reduce the amount of investment in the risky assets. This is because the investors
will buy more risk-free assets but less risky assets when the risk-free interest rate increases.
Compared with Figure 3, we can find that the investors will reduce their investment in
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foreign risky assets when the volatility of foreign risky assets increases, and the investors
will choose to buy more foreign risky assets when the volatility of domestic risky assets
increases. The reason is also obvious. When the volatility of domestic risky assets increases,
the domestic risky assets will have a greater market price risk, and the investors will
transfer part of their investment to foreign risky assets.
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Figure 4. The impact of parameters rd, r f and σd on πs(t).

In Figure 5, we study the effect of model parameters δ, ζ, rd and m on the optimal
investment strategy πp(t) in the blue-default case. From the left panel of Figure 5, we
find that the number of defaultable bonds held in the optimal investment strategy will
decrease as the loss rate ζ increases. It is obvious that a higher loss rate will lead to
more potential loss. In order to minimize the investment risk, it is reasonable to reduce the
holding positions in defaultable bonds. Furthermore, we also observe that there is a positive
relationship between πp(t) and δ. Our explanation is as follows: δ = ζhQ is the default
risk spread under the probability measure Qφ, where hQ is the default intensity. A higher
default intensity will lead to a higher yield before the default occurs; thus, the investors
prefer to purchase more defaultable bonds as the default intensity hQ increases. Hence,
πp(t) is an increase function with respect to δ when ζ is fixed. The right panel of Figure 5
plots the graph of the optimal trading strategy πp(t) invested in defaultable bonds as a
function of the risk-free interest rate rd. We observe that the optimal investment strategy is
decreasing with respect to the risk-free interest rate rd; it means that the investors should
reduce the defaultable bond investment when the risk-free interest rate rd is increasing.
This behavior of the optimal investment strategy is consistent with economic intuition.
Moreover, we also present the numerical results of the optimal trading strategy πp(t) by
varying the risk aversion coefficient m. We can find that the optimal trading strategy
πp(t) is a decreasing function with respect to the risk aversion coefficient m. This may be
interpreted as follows: When m is increasing, i.e., the investors are more risk-averse, they
will reduce the investment in defaultable bonds.
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Figure 5. The impact of parameters δ, ζ, rd and m on πp(t).

5. Conclusions

This article focuses on an optimal investment problem with exchange rate risk and
default risk when the investors are ambiguity averse. The price dynamics of exchange
rate and domestic and foreign stocks are modeled by the Geometric Brownian motions,
and meanwhile, the defaultable price process follows a jump process. To obtain the explicit
expression of optimal investment strategy, an optimal portfolio problem framework with
ambiguity aversion is first set up by using the robust control method. Second, the optimal
investment problem is transformed to the corresponding HJB equation by the dynamic
principle. Due to the existence of default risk, the HJB equation is usually too complicated
to solve. Hence, we divide the HJB equation into the pre-default case and the post-default
case. Finally, we derive the analytical solutions of the optimal investment strategies and the
value functions by solving two HJB equations with the first order optimal condition. We
find that the model uncertainty has a significant effect on the optimal investment strategies,
and the investors with ambiguity aversion prefer to invest less risky assets than that of
the investors who are ambiguity neutral. Moreover, we illustrate that if the volatility of
the exchange rate risk increases, the investors will reduce their investment in foreign risky
assets and meanwhile increase investment in domestic risky assets. This implies that an
international investor must not ignore the exchange rate risk. In particular, our results also
show that the optimal investment strategies are affected by the intensity of the default risk
spread in the pre-default case.

The method in our work can also be used to solve other optimal investment portfolio
problems involving default risk and exchange risk and model uncertainty. This article
assumes that the price dynamics of the stocks and exchange rate follows the geometric
Brownian motion. However, the implied volatility curve looks like a “smile”, not a constant.
In the future research, we will incorporate the stochastic volatility into the stocks and
exchange rate price dynamics to capture the volatility smile phenomena. Furthermore, this
article shows that ambiguity aversion, exchange rate risk and default risk have a significant
effect on the optimal investment strategies by some numerical results. It is challenging but
necessary to analyze the impact of these factors on the optimal investment strategy through
empirical analysis in future research.
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Abstract: In this paper, we introduce two new generalized core inverses, namely, the (p, q, m)-core
inverse and the 〈p, q, n〉-core inverse; both extend the inverses of the 〈i, m〉-core inverse, the (j, m)-core
inverse, the core inverse, the core-EP inverse and the DMP-inverse.
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1. Introduction

Throughout this paper, R denotes a unital ring with involution, i.e., a ring with unity
1, and a mapping a �→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗, for all
a, b ∈ R. Let a, x ∈ R, if axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa, then x is called a
Moore–Penrose inverse of a. If such an element x exists, then it is unique and denoted by a†.
The set of all Moore–Penrose invertible elements will be denoted by R†.

An element a ∈ R is said to be Drazin invertible if there exists b ∈ R such that ab = ba,
bab = b and am = am+1b for some integer m. The element b above is unique if it exists and
denoted by aD. The smallest positive integer m is called the Drazin index of a, denoted
by ind(a). The set of all Drazin invertible elements in R will denoted by RD. The DMP-
inverse for a complex matrix was introduced by Malik and Thome [1]. Let A ∈ Cn×n with
ind(A) = m, where Cn×n denotes the set of all n× n matrices over the field of complex
numbers. A matrix X ∈ Cn×n is called a DMP-inverse of A if it satisfies XAX = X,
XA = AD A and AmX = Am A†. It is unique (and denoted by Ad,†). Malik and Thome gave
several characterizations of the core inverse by using the decomposition of Hartwig and
Spindelböck [2].

The notion of the core-EP inverse for a complex matrix was introduced by Manjunatha
Prasad and Mohana [3]. A matrix X ∈ Cn×n is a core-EP inverse of A ∈ Cn×n if X is
an outer inverse of A satisfying R(X) = R(X∗) = R(Am), where m is the index of A
and R(A) stands for the range (column space) of A ∈ Cn×n. It is unique and denoted
by A †©. The core-EP inverse for a complex matrix can be investigated by the Core-EP
decomposition of a complex matrix by Wang [4]. The notion of the core-EP inverse is
extended from the complex matrix to an element in a ring with involution. We will also use
the following notations: aR = {ax : x ∈ R}, Ra = {xa : x ∈ R}, ◦a = {x ∈ R : xa = 0} and
a◦ = {x ∈ R : ax = 0}. Let a ∈ R with ind(a) = k. An element b ∈ R is called the core-EP
inverse of a if it is an outer inverse of a and b is a ∗-EP element satisfies bR = akR.

The notion of the core inverse for a complex matrix was introduced by Baksalary and
Trenkler [5]. In [6], Rakić et al. generalized the core inverse of a complex matrix to the case
of an element in R. More precisely, let a, x ∈ R, if axa = a, xR = aR and Rx = Ra∗, then x
is called a core inverse of a. The core inverse can be investigated by three equations by Xu,
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Chen and Zhang [7]. If such an element x exists, then it is unique and denoted by a #©. The
set of all core invertible elements in R will be denoted by R #©.

In addition, 1n and 0n will denote the n× 1 column vectors all of whose components
are 1 and 0, respectively. The zero matrix of size m× n is denoted by 0m×n (abbr. 0). If S is
a subspace of Cn, then PS stands for the orthogonal projector onto the subspace S. A matrix
A ∈ Cn×n is unitary if AA∗ = In, where In denotes the identity matrix of size n. Let a ∈ R, a
is called idempotent if a2 = a. The symbol N denotes the set of all positive integers.

2. Preliminaries

A related decomposition of the matrix decomposition of Hartwig and Spindelböck [2]
was given in ([8], Theorem 2.1) by Benítez; in [9] a simpler proof of this decomposition can
be found. Let us start this section with the concept of principal angles.

Definition 1 ([10]). Let S1 and S2 be two nontrivial subspaces of Cn. We define the principal
angles θ1, . . . , θr ∈ [0, π/2] between S1 and S2 by

cos θi = σi(PS1 PS2),

for i = 1, . . . , r, where r = min{dim S1, dim S2}. The real numbers σi(PS1 PS2) ≥ 0 are the
singular values of PS1 PS2 .

The following theorem can be found in ([8], Theorem 2.1).

Theorem 1. Let A ∈ Cn×n, r = rk(A), and let θ1, . . . , θp be the principal angles between R(A)
and R(A∗) belonging to ]0, π/2[. Denote by x and y the multiplicities of the angles 0 and π/2 as
a canonical angle between R(A) and R(A∗), respectively. There exists a unitary matrix U ∈ Cn×n

such that

A = U
[

MC MS
0 0

]
U∗, (1)

where M ∈ Cr×r is nonsingular,

C = diag(0y, cos θ1, . . . , cos θp, 1x),

S =

[
diag(1y, sin θ1, . . . , sin θp) 0p+y,n−(r+p+y)

0x,p+y 0x,n−(r+p+y)

]
,

and r = y + p + x. Furthermore, x and y + n− r are the multiplicities of the singular values 1
and 0 in PR(A)PR(A∗), respectively. We call (1) as the CS decomposition of A.

In this decomposition, one has C2 + SS∗ = Ir and C∗ = C. This decomposition can
answer the question “how far is a matrix from being EP”. Moreover, it can be applied to
some partial matrix ordering, such as star ordering and sharp ordering.

3. (p, q, m)-Core Inverse

Let us start this section by introducing the notation of the (p, q, m)-core inverse.

Definition 2. Let a, p, q ∈ R and m ∈ N. If pa = ap and pa is idempotent, then x ∈ R is called a
(p, q, m)-core inverse of a, if it satisfies

x = pax and amx = q. (2)

It will be proved that if x exists, then it is unique and denoted by a�p,q,m.
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Remark 1. If a ∈ R is (p, q, m)-core invertible, then we have pa = ap and pa is idempotent.
Since this property of the (p, q, m)-core inverse is used many times in the sequel, thus we emphasize
it here.

Theorem 2. If equations in (2) have a solution, then it is unique.

Proof. Let x1 and x2 be two candidates (p, q, m)-core inverse of a, that is x1 = pax1,
amx1 = q, x2 = pax2 and amx2 = q. Thus by pa = ap and pa is idempotent, we have

x1 = pmq = pmamx2 = pax2 = x2.

In the following lemma, we will show that q = paq if a is (p, q, m)-core invertible.

Lemma 1. Let a, p, q ∈ R and m, n ∈ N. If a is (p, q, m)-core invertible, then

(1) q = pam+1a�p,q,m;
(2) q = paq;
(3) ana�p,q,m = pm−nq, where m ≥ n.

Proof. (1) and (2). If a is (p, q, m)-core invertible, then we have a�p,q,m = paa�p,q,m and
ama�p,q,m = q. Having in mind that ap = pa and the idempotency of pa, we obtain

q = ama�p,q,m = am(paa�p,q,m) = pam+1a�p,q,m; (3)

a�p,q,m = paa�p,q,m = pmama�p,q,m = pmq. (4)

Thus, by (3) and (4), we have

q = pam+1a�p,q,m = pam+1(pmq) = pm+1am+1q = paq. (5)

(3). If m ≥ n, then ana�p,q,m = an(paa�p,q,m) = an pmama�p,q,m = an pmq = pm−n pnanq =

pm−n paq = pm−nq by the definition of the (p, q, m)-core inverse and (2).

Theorem 3. If the solution of the equations in (2) exists, then the unique solution is x = pmq.

Proof. By Lemma 1, we have q = paq. Having in mind that ap = pa and the idempotency
of pa, we obtain

pax =papmq = pm(paq) = pmq = x

amx =am pmq = paq = q.

Remark 2. If a ∈ RD and ai, aj ∈ R†, then the (p, q, m)-core inverse is the generalizations of
the 〈i, m〉-core inverse and the (j, m)-core inverse [11], respectively. More precisely, we have the
following statements:

(1) If p = aD and q = ai(ai)†, then the (p, q, m)-core inverse coincides with the 〈i, m〉-core
inverse;

(2) If p = aD and q = am(aj)†, then the (p, q, m)-core inverse coincides with the (j, m)-core
inverse.

By Remarks 3.5, 4.7 and 4.8 in [11], we have the 〈m, j〉-core inverse for a complex
matrix, which extends the notions of the core inverse defined by Baksalary and Trenkler [5]
and the core-EP inverse defined by Manjunatha Prasad and Mohana [3], respectively. The
(m, k)-core inverse for a complex matrix, which extends the notions of the core inverse and
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the DMP-inverse defined by Malik and Thome [1], respectively. Therefore, we have the
following remark by Remark 2. We can use generalized inverses to study the system of
constrained matrix equations and Toeplitz matrix, etc. [12,13].

Remark 3. If a ∈ RD and aj ∈ R†, then the (p, q, m)-core inverse is a generalization of the core
inverse, the DMP inverse and the core-EP inverse. More precisely, we have the following statements:

(1) If p = a#, m = 1 and q = aa†, then the (p, q, m)-core inverse coincides with the core inverse;
(2) If p = aD, m = ind(a) and q = ama†, then the (p, q, m)-core inverse coincides with the

DMP inverse;
(3) If p = aD, m = 1, j = ind(a) and q = aj(aj)†, then the (p, q, m)-core inverse coincides with

the core-EP inverse.

Example 1. The (p, q, m)-core inverse is different from the group inverse and the Moore–Penrose

inverse. Let A =

[
1 i
0 0

]
∈ C2×2. Then A# = A by A2 = A, but A is not Moore–Penrose

invertible by AA∗ =
[

1 i
0 0

][
1 0
i 0

]
=

[
0 0
0 0

]
. Note that if A is Moore–Penrose invertible,

then A = AA† A = A(A† A)∗ = AA∗(A†)∗ = 0, but A �= 0. In fact, AA∗ implies A is not

{1, 4}-invertible. If we let p = a#, q =

[
1 2
3 4

]
, then a�p,q,m =

[
1 + 3i 2 + 4i

0 0

]
.

Theorem 4. Let a, p, q ∈ R and m ∈ N. If pa = ap and pa is idempotent, then the following are
equivalent:

(1) a is (p, q, m)-core invertible with a�p,q,m = x;
(2) x = pax and q = pam+1x;
(3) x = pax, aq = am+1x and q = paq.

Proof. (1)⇒ (2) and (1)⇒ (3) are trivial by Lemma 1 and the definition of the (p, q, m)-
core inverse.

(2) ⇒ (1). From amx = am(pax) = pam+1x = q we have that x is the (p, q, m)-core
inverse of a.

(3)⇒ (2). It is sufficient to prove q = pam+1x. We have q = paq = pam+1x.

Remark 4. Note that x = pax iff xR ⊆ paR iff ◦(pa) ⊆ ◦x. Moreover, q = paq iff qR ⊆ paR
iff ◦(pa) ⊆ ◦q. Thus, we can obtain more conditions such that a is (p, q, m)-core invertible in
Theorem 4.

If p = a#, m = 1 and q = aa†, then the (p, q, m)-core inverse coincides with the core
inverse, thus we have the following corollary by Theorem 4.

Corollary 1. Let a ∈ R with a ∈ R# ∩ R†. Then the following are equivalent:

(1) a is core invertible with a #© = x;
(2) x = a#ax and aa† = ax;
(3) x = a#ax and a2a† = a2x.

Since the (p, q, m)-core inverse is a generalization of the core inverse, the core-EP
inverse, the DMP-inverse, 〈i, m〉-core inverse and (j, m)-core inverse, we can obtain some
analogous corollaries as Corollary 1.

Recall that for e = e2 ∈ R, we can represent any a ∈ R as a matrix

a =

[
a11 a12
a21 a22

]
e×e

,

where a11 = eae, a12 = ea(1− e), a21 = (1− e)ae and a22 = (1− e)a(1− e).
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Now we present the result concerning the matrix form of (p, q, m)-core invertible
element a ∈ R.

Theorem 5. Let a, p, q ∈ R and m ∈ N. Then a is (p, q, m)-core invertible if and only if there
exists e ∈ R such that e = e2 ,

a =

[
a1 0
0 a2

]
e×e

, p =

[
p1 0
0 p2

]
e×e

and q =

[
q1 q2
0 0

]
e×e

,

where p1a1 = a1 p1 = (p1a1)
2, p2a2 = a2 p2 = 0, a1 is (p1, q1, m)-core invertible and (p1, q2, m)-

core invertible. The (p, q, m)-core inverse of a is given by

a�p,q,m =

[
(a1)

�
p1,q1,m (a1)

�
p1,q2,m

0 0

]
e×e

=

[
pm

1 q1 pm
1 q2

0 0

]
e×e

.

Proof. Suppose that a is (p, q, m)-core invertible and let e = pa. Then e2 = (pa)2 = pa = e,
ea(1− e) = apa(1− pa) = 0 and (1− e)ae = 0. Hence,

a =

[
a1 0
0 a2

]
e×e

,

where a1 = pa2 and a2 = (1− pa)a. Similarly, we obtain, for p1 = p2a and p2 = (1− pa)p,

p =

[
p1 0
0 p2

]
e×e

.

The equalities pa = ap and (pa)2 = pa give p1a1 = a1 p1 = (p1a1)
2 and p2a2 = a2 p2 =

(1− pa)ap(1− pa) = 0. Set

a�p,q,m =

[
x1 x2
x3 x4

]
e×e

and q =

[
q1 q2
q3 q4

]
e×e

.

From a�p,q,m = paa�p,q,m =

[
p1a1 0

0 0

]
e×e

a�p,q,m, we obtain x1 = p1a1x1, x2 = p1a1x2

and x3 = x4 = 0. Since q = paq, then q3 = q4 = 0. Now, by[
am

1 x1 am
1 x2

0 0

]
e×e

= ama�p,q,m = q =

[
q1 q2
0 0

]
e×e

,

we conclude that am
1 x1 = q1 and am

1 x2 = q2. Hence, a1 is (p1, q1, m)-core invertible and
(p1, q2, m)-core invertible with x1 = (a1)

�
p1,q1,m and x2 = (a1)

�
p1,q2,m.

Conversely, by the assumption p1a1 = a1 p1 = (p1a1)
2 and p2a2 = a2 p2 = 0, we check

that pa = ap = (pa)2. Since a1 is (p1, q1, m)-core invertible and (p1, q2, m)-core invertible,
if we let

x =

[
(a1)

�
p1,q1,m (a1)

�
p1,q2,m

0 0

]
e×e

,

we get x = pax and amx = q. So, a is (p, q, m)-core invertible and x = a�p,q,m.

Under some conditions, we obtain that the (p, q, m)-core inverse of a and the (p, r, m)-
core inverse of b commute.

Lemma 2. Let a, b, p, q, r ∈ R and m ∈ N. If a is (p, q, m)-core invertible, b is (p, r, m)-core
invertible and qpmr = rpmq (or equivalently qb�p,r,m = ra�p,q,m), then a�p,q,mb�p,r,m = b�p,r,ma�p,q,m.
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Proof. Because a�p,q,m = pmq and b�p,r,m = pmr by Theorem 3, we get a�p,q,mb�p,r,m =

pmqpmr = pmrpmq = b�p,r,ma�p,q,m.

Now, we study when the product of one (p, q, m)-core invertible element and one
(p, r, m)-core invertible element is (p2, rq, m)-core invertible.

Theorem 6. Let a, b, p, q, r ∈ R and m ∈ N such that a is (p, q, m)-core invertible, b is (p, r, m)-
core invertible, ab = ba and amr = ram. We have the following statements:

(1) If papmr = pmrap (or equivalently pab�p,r,m = b�p,r,map), then ab is (p2, rq, m)-core invert-
ible and (ab)�p2,rq,m = b�p,r,ma�p,q,m;

(2) If qb�p,r,m = ra�p,q,m, then ab is (p2, rq, m)-core invertible and (ab)�p2,rq,m = b�p,r,ma�p,q,m =

a�p,q,mb�p,r,m.

Proof. Since pa = ap and pb = bp are idempotents and ab = ba, notice that p2ab = abp2

and (p2ab)2 = (pa)2(pb)2 = p2ab. The assumptions ab = ba and amr = ram imply
(ab)mb�p,r,ma�p,q,m = am(bmb�p,r,m)a�p,q,m = (amr)a�p,q,m = r(ama�p,q,m) = rq.

(1). Since papmr = pmrap, ap = pa and bp = pb, we have p2abb�p,r,ma�p,q,m =

pa(pbb�p,r,m)a�p,q,m = (pab�p,r,m)a�p,q,m = b�p,r,m(paa�p,q,m) = b�p,r,ma�p,q,m. Therefore, ab is
(p2, rq, m)-core invertible and (ab)�p2,rq,m = b�p,r,ma�p,q,m.

(2). From qpmr = rpmq we can get that b�p,r,ma�p,q,m = a�p,q,mb�p,r,m by Lemma 2. By
p2abb�p,r,ma�p,q,m = pa(b�p,r,ma�p,q,m) = (paa�p,q,m)b�p,r,m = a�p,q,mb�p,r,m = b�p,r,ma�p,q,m, we de-
duce that (ab)�p2,rq,m = b�p,r,ma�p,q,m = a�p,q,mb�p,r,m.

In the case that ab = ba = 0, the sum of (p, q, m)-core invertible element a and
(p, r, m)-core invertible element b is (p, q + r, m)-core invertible.

Theorem 7. Let a, b, p, q, r ∈ R and m ∈ N such that a is (p, q, m)-core invertible, b is (p, r, m)-
core invertible and ab = ba = 0. Then a + b is (p, q + r, m)-core invertible and (a + b)�p,q+r,m =

a�p,q,m + b�p,r,m.

Proof. First, observe that p(a + b) = (a + b)p and [p(a + b)]2 = p2(a2 + b2) = pa + pb =
p(a + b). Further,

amb�p,r,m = am pbb�p,r,m = pambb�p,r,m = 0

and pab�p,r,m = pm(amb�p,r,m) = 0. Analogously, bma�p,q,m = 0 = pba�p,q,m. Thus,

p(a + b)(a�p,q,m + b�p,r,m) = (pa + pb)(a�p,q,m + b�p,r,m) = paa�p,q,m + pbb�p,r,m = a�p,q,m + b�p,r,m

and

(a + b)m(a�p,q,m + b�p,r,m) = (am + bm)(a�p,q,m + b�p,r,m) = ama�p,q,m + bmb�p,r,m = q + r,

that is, a + b is (p, q + r, m)-core invertible and (a + b)�p,q+r,m = a�p,q,m + b�p,r,m.

Lemma 3. Let a, p, q ∈ R and m ∈ N and a is (p, q, m)-core invertible. Then aa�p,q,m = a�p,q,ma if
and only if pm−1q = pmqa.

Proof. By Lemma 1, we have q = paq. If aa�p,q,m = a�p,q,ma, then pmqa = a�p,q,ma = aa�p,q,m =

apmq = pm−1(paq) = pm−1q. For the opposite implication, we have aa�p,q,m = apmq =

appm−1q = appmqa = pm(paq)a = pmqa = a�p,q,ma.

Proposition 1. Let a, p, q ∈ R and m ∈ N. If a is (p, q, m)-core invertible, then

(1) If qam = am, then a�p,q,m is an inner inverse of am and q is idempotent;
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(2) If aq = qa (or equivalently am+1a�p,q,m = ama�p,q,ma), then aa�p,q,m = a�p,q,ma;
(3) If q is idempotent, then a�p,q,m is an outer inverse of am;
(4) If q = q∗, then ama�p,q,m = (ama�p,q,m)

∗;
(5) If aq = qa and q = q∗, then a�p,q,mam = (a�p,q,mam)∗.

Proof. (1). Since qam = am and q = ama�p,q,m, we have that am = qam = ama�p,q,mam and
q = ama�p,q,m = qama�p,q,m = q2.

(2). It is easy to check that pm−1q = pmqa by aq = qa and q = paq. Thus, we have
aa�p,q,m = a�p,q,ma by Lemma 3.

(3). The condition q = q2 gives a�p,q,mama�p,q,m = a�p,q,mam pmq = a�p,q,m paq = pmq2 =

pmq = a�p,q,m.
(4). By definition of the (p, q, m)-core inverse.
(5). It follows from (2) and (4).

Applying Proposition 1, we obtain the next result.

Corollary 2. Let a, p, q ∈ R and m ∈ N. If a is (p, q, m)-core invertible, then

(1) If qam = am and aq = qa, then am ∈ R# and (am)# = a�p,q,m;
(2) If qam = am, q = q∗ and aq = qa, then am ∈ R# ∩ R† and (am)† = (am)# = a�p,q,m (that is,

am is EP).

4. 〈p, q, n〉-Core Inverse

Definition 3. Let a, p, q ∈ R and n ∈ N. We say that x ∈ R is a 〈p, q, n〉-core inverse of a, if
it satisfies

x = panx and anx = q. (6)

It will be proved that if x exists, then it is unique and denoted by a�p,q,n.

Theorem 8. If equations in (6) have a solution, then it is unique and the unique solution is x = pq.

Proof. Let x satisfy (6). Then x = panq = pq". Observe that this implies the uniqueness of
the equations (6): the unique element in R satisfying (6) is pq.

If a is 〈p, q, n〉-core invertible, then we have a�p,q,n = pana�p,q,n and ana�p,q,n = q and

q = ana�p,q,n = an(pana�p,q,n) = an pana�p,q,n

Thus, we obtain
q = an pana�p,q,n = an pan pq = (an p)2q.

By Theorem 8, we have q = anx = an pq; here, x is the 〈p, q, n〉-core inverse of a (see
next Theorem 11).

Lemma 4. Let a, p, q ∈ R and n ∈ N. If a is 〈p, q, n〉-core invertible, then q = an pana�p,q,n =

(an p)2q.

Remark 5. If a ∈ RD and ai, aj ∈ R†, then the 〈p, q, n〉-core inverse is a generalization of
the 〈i, m〉-core inverse and the (j, m)-core inverse [11]. More precisely, we have the following
statements:

(1) If p = (aD)n and q = ai(ai)†, then the 〈p, q, n〉-core inverse coincides with the 〈i, m〉-core
inverse;

(2) If p = (aD)n and q = am(aj)†, then the 〈p, q, n〉-core inverse coincides with the (j, m)-core
inverse.
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Theorem 9. Let a, p, q ∈ R and n ∈ N. Then the following are equivalent:

(1) a is 〈p, q, n〉-core invertible with a�p,q,n = x;
(2) x = panx and q = an panx;
(3) x = panx, an pq = anx and q = (an p)2q.

Proof. (1)⇒ (2) and (1)⇒ (3) are trivial by Lemma 4 and the definition of the 〈p, q, n〉-
core inverse.

(2)⇒ (1). From q = an panx = anx we have that x is the 〈p, q, n〉-core inverse of a.
(3) ⇒ (2). It is sufficient to prove q = an panx. We have q = (an p)2q = an pan pq =

an panx.

Under certain conditions, the product of a 〈p, q, n〉-core invertible element and a
〈r, s, n〉-core invertible element is 〈pr, sq, n〉-core invertible.

Theorem 10. Let a, b, p, q, r, s ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible, b is 〈r, s, n〉-
core invertible, ab = ba, anr = ran, ans = san and prs = rsp. Then ab is 〈pr, sq, n〉-core
invertible and (ab)�pr,sq,n = b�r,s,na�p,q,n.

Proof. Notice that

(ab)nb�r,s,na�p,q,n = an(bnb�r,s,n)a�p,q,n = (ans)a�p,q,n = s(ana�p,q,n) = sq

and
pr(ab)nb�r,s,na�p,q,n = (prs)q = (rs)(pq) = b�r,s,na�p,q,n

imply ab is 〈pr, sq, n〉-core invertible and (ab)�pr,sq,n = b�r,s,na�p,q,n.

We also study when the sum of a 〈p, q, n〉-core invertible element and a 〈r, s, n〉-core
invertible element is 〈p + r, q + s, n〉-core invertible.

Theorem 11. Let a, b, p, q, r, s ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible, b is
〈r, s, n〉-core invertible, ab = ba = 0, anrs = 0 = bn pq and ps + rq = 0. Then a + b is
〈p + r, q + s, n〉-core invertible and (a + b)�p+r,q+s,n = a�p,q,n + b�r,s,n.

Proof. Let x be the 〈p, q, n〉-core inverse of a and y be the 〈r, s, n〉-core inverse of b, then
by Theorem 8, we have (p + r)(a + b)n(x + y) = (p + r)(q + s) = pq + ps + rq + rs =
pq + rs = x + y.

It is easy to check the following propositions by Definition 3 and Theorem 8.

Proposition 2. Let a, p, q ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible. Then aa�p,q,n =

a�p,q,na if and only if apq = pqa.

Proposition 3. Let a, p, q ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible. Then

(1) If qan = an, then a�p,q,n is an inner inverse of an and q is idempotent;
(2) If q = q2, then a�p,q,nana�p,q,n = a�p,q,n;
(3) If q = q∗, then ana�p,q,n = (ana�p,q,n)

∗;
(4) If apq = pqa and q = q∗, then a�p,q,nan = (a�p,q,nan)∗.

5. How to Compute the (P, Q, m)-Core Inverse and 〈P, Q, n〉-Core Inverse in Cn×n

5.1. How to Compute the (p, q, m)-Core Inverse in Cn×n

Let A, P, Q ∈ Cn×n and m ∈ N. We will assume in this subsection that A is (P, Q, m)-
core invertible.If A ∈ Cn×n is (P, Q, m)-core invertible, then we have PA = AP, PA
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is idempotent, X = PAX and AmX = Q. Assume that A has the form (1). If we let

P = U
[

P1 P2
P3 P4

]
U∗, where P1 ∈ Cr×r, then

PA = U
[

P1MC P1MS
P3MC P3MS

]
U∗; (7)

AP = U
[

MCP1 + MSP3 MCP2 + MSP4
0 0

]
U∗. (8)

From (7) and (8) and PA = AP we obtain P3MC = 0 and P3MS = 0. Then we
have P3MC2 = 0 and P3MSS∗ = 0, thus P3MC2 + P3MSS∗ = P3M(C2 + SS∗) = P3M by
C2 + SS∗ = Ir. The nonsingularity of M implies that P3 is zero matrix, which gives

PA = U
[

P1MC P1MS
0 0

]
U∗ = U

[
P1 0
0 0

][
MC MS

0 0

]
U∗ (9)

Since PA is idempotent, AP = PA and (PA)2 = U
[

(P1MC)2 P1MCP1MS
0 0

]
U∗,

hence
P1MC = MCP1 = (P1MC)2 (10)

By Lemma 1, we have Q = PAQ. If we let Q = U
[

Q1 Q2
Q3 Q4

]
U∗, then by (9) we have

PAQ = U
[

P1MC P1MS
0 0

][
Q1 Q2
Q3 Q4

]
U∗

= U
[

P1MCQ1 + P1MSQ3 P1MCQ2 + P1MSQ4
0 0

]
U∗.

(11)

From Q = PAQ we have that Q3 and Q4 are zero matrices and{
Q1 = P1MCQ1

Q2 = P1MCQ2
(12)

By Theorem 3, we have A�
P,Q,m = PmQ. Since P3 = 0, Q3 = 0 and Q4 = 0, thus we

have P = U
[

P1 P2
0 P4

]
U∗ and Q = U

[
Q1 Q2
0 0

]
U∗, thus Pm = U

[
Pm

1 �
0 Pm

4

]
U∗; the

entries that we are not interested in are marked with �. Therefore

A�
P,Q,m = PmQ = U

[
Pm

1 �
0 Pm

4

][
Q1 Q2
0 0

]
U∗

= U
[

Pm
1 Q1 Pm

1 Q2
0 0

]
U∗.

(13)

By Am = U
[

(MC)m (MC)m−1MS
0 0

]
U∗ and Am A�

P,Q,m = Q, we have

Am A�
P,Q,m = U

[
(MC)m (MC)m−1MS

0 0

][
Pm

1 Q1 Pm
1 Q2

0 0

]
U∗

= U
[

(MC)mPm
1 Q1 (MC)mPm

1 Q2
0 0

]
U∗

= U
[

Q1 Q2
0 0

]
U∗.

(14)
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Thus {
Q1 = (MC)mPm

1 Q1

Q2 = (MC)mPm
1 Q2

(15)

Therefore, by (10), (12), (15) and the definition of the (P, Q, m)-core inverse, we have{
(MC)�P1,Q1,m = Pm

1 Q1

(MC)�P1,Q2,m = Pm
1 Q2

(16)

From (13) and (16) we have

A�
P,Q,m = U

[
(MC)�P1,Q1,m (MC)�P1,Q2,m

0 0

]
U∗.

5.2. How to Compute the 〈p, q, n〉-Core Inverse in Cn×n

Let A, P, Q ∈ Cn×n and n ∈ N. We will assume in this subsection that A is 〈P, Q, n〉-
core invertible. Here we suppose that AP = PA, thus we have P = U

[
P1 P2
0 P4

]
U∗, where

P1 ∈ Cr×r. Moreover, we have
P1MC = MCP1 (17)

and

PAn = U
[

P1(MC)n P1(MC)n−1MS
0 0

]
U∗. (18)

By Lemma 4, we have Q = (AnP)2Q. If we let Q = U
[

Q1 Q2
Q3 Q4

]
U∗, then by (18)

we have

(AnP)2Q = U
[

P1(MC)n P1(MC)n−1MS
0 0

]2[ Q1 Q2
Q3 Q4

]
U∗

= U
[
� �
0 0

]
U∗.

(19)

where we marked with � the entries that we are not interested in. Thus, from Q =
(AnP)2Q we have Q3 and Q4 which are zero matrices. Therefore, we have A�

P,Q,n = PQ =

U
[

P1 P2
0 P4

][
Q1 Q2
0 0

]
U∗ = U

[
P1Q1 P1Q2

0 0

]
U∗. It is not difficult to see that we

have

A�
P,Q,n = U

[
(MC)�P1,Q1,n (MC)�P1,Q2,n

0 0

]
U∗.

6. Conclusions with Some Applications

Two new generalized core inverse are introduced, namely, the (p, q, m)-core inverse
and the 〈p, q, n〉-core inverse. These inverses extend the inverses of the 〈i, m〉-core inverse,
the (j, m)-core inverse, the core inverse, the core-EP inverse and the DMP-inverse. The
(p, q, m)-core inverse and the 〈p, q, n〉-core inverse can used in some areas such as statistics
and matrix generalized inverses. There are a lot of research articles about matrix ordering
and element partial ordering; by using the reverse order of the (p, q, m)-core inverse and the
〈p, q, n〉-core inverse, one can get some suitable applications in statistics, electrical networks,
etc. We can obtain several partial ordering by using different generalized inverses, such
as the minus ordering by using the inner inverse, the sharp ordering by using the group
inverse and the core ordering by using the core inverse. The main results in this paper
as follows:
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If a is (p, q, m)-core invertible, then the (p, q, m)-core inverse of a is pmq. Let a, p, q ∈ R
and m ∈ N. Then a is (p, q, m)-core invertible if and only if there exists e ∈ R such that
e = e2 ,

a =

[
a1 0
0 a2

]
e×e

, p =

[
p1 0
0 p2

]
e×e

and q =

[
q1 q2
0 0

]
e×e

,

where p1a1 = a1 p1 = (p1a1)
2, p2a2 = a2 p2 = 0, a1 is (p1, q1, m)-core invertible and

(p1, q2, m)-core invertible. The (p, q, m)-core inverse of a is given by

a�p,q,m =

[
(a1)

�
p1,q1,m (a1)

�
p1,q2,m

0 0

]
e×e

=

[
pm

1 q1 pm
1 q2

0 0

]
e×e

.

If A ∈ Cn×n is (P, Q, m)-core invertible, then we have PA = AP, PA is idempotent,
X = PAX, AmX = Q and

A�
P,Q,m = U

[
(MC)�P1,Q1,m (MC)�P1,Q2,m

0 0

]
U∗.
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Abstract: In this paper, we consider an insurance risk model with two-sided jumps, where downward
and upward jumps typically represent claim amounts and random gains, respectively. We use the
Laguerre series to expand the Gerber–Shiu function and estimate it based on observed information.
Moreover, we show that the estimator is easily computed and has a fast convergence rate. Numerical
examples are also provided to show the efficiency of our method when the sample size is finite.

Keywords: two-sided jumps; Gerber–Shiu function; Laguerre series; estimator
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1. Introduction

In this paper, the surplus process of an insurance company is described by the classical
risk model

U(t) = u + ct− S(t) = u + ct−
N(t)

∑
i=1

Zi, (1)

where U(0) = u ≥ 0 is the initial surplus and c > 0 is the constant premium rate per
unit time. The claim number process {N(t)}t≥0 is a homogeneous Poisson process with
intensity λ > 0, and the claim sizes {Zi}∞

i=1 form an independent and identically distributed
sequence that may be positive or negative. For later use, the density of Zi is denoted by
f (·). We also assume that {N(t)}t≥0 and {Zi}∞

i=1 are independent. Furthermore, since the
size of each jump Zi can be positive or negative, we can think of it as jumping up or down,
and the upward and downward jumps can be interpreted as company random gains and
random losses, respectively. The size of each upward jump is defined as Xi and its density
function is defined as f+(·), the mean value is μ+. Similarly, the size of each downward
jump is defined as Yi and the corresponding density function is f−(·), the mean value is
μ−. Hence, we have

f (x) = p f+(x)I{x>0} + q f−(−x)I{x<0}, (2)

where p, q > 0, p + q = 1, I{A} is an indicator function of the event A. To this end, we

define N+(t) =
N(t)
∑

i=1
I{Zi>0} to be the number of upward jumps until time t. Similarly, let

Mathematics 2023, 11, 1994. https://doi.org/10.3390/math11091994 https://www.mdpi.com/journal/mathematics29
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N−(t) =
N(t)
∑

i=1
I{Zi<0} be the number of downward jumps until time t. Therefore, the surplus

process (1) can be viewed as a risk model with stochastic premium income

U(t) = u + c− S(t) = u + c +
N−(t)

∑
i=1

Yi −
N+(t)

∑
i=1

Xi, t ≥ 0. (3)

For a more detailed introduction of Equations (1) and (3), please refer to Cheung et al. [1].
Related works can be found in [2–5], among others.

Define the ruin time by τ = in f {t ≥ 0 : U(t) < 0}, and set τ = ∞ if U(t) ≥ 0 for
all t ≥ 0. In this paper, we are interested in the Gerber–Shiu expected discounted penalty
function that is defined as

m(u) := E[e−δτω(U(τ−), |U(τ)|)I{τ<∞}], u ≥ 0.

where δ ≥ 0 is the Laplace transform argument, and ω : [0, ∞)× [0, ∞) → [0, ∞) is a
measurable penalty function of the U(τ−) and |U(τ)|. This function was first introduced
by Gerber and Shiu [6]. It has become an important and standard risk measure in ruin
theory since various quantities of interests in ruin theory can be obtained for different
values of the discount factor δ and different penalty functions ω. Interested readers are
referred to [7–13], among others.

The above-mentioned papers assume that some probability characteristics of the sur-
plus process are known, for example, the probability characteristics of the claim sizes and
claim number process; however, these are usually unknown for an insurance company.
In fact, we can only obtain some discrete data information about the surplus flow levels,
claim numbers, and individual claim sizes (income numbers and individual income sizes).
According to these data, more and more actuarial researchers use different methods to cal-
culate statistical estimations of ruin probability and Gerber–Shiu function. Shimizu [14,15]
used a regularized version of the inverse Laplace transform to estimate the Gerber–Shiu
function in the Lévy risk model and the perturbed compound Poisson risk model, respec-
tively; You and Cai [16] used a regularized version of the inverse Laplace transform to
consider the nonparametric estimation of the survival probability for a spectrally negative
Lévy risk model based on high-frequency data; Zhang and Yang [17,18] estimated the ruin
probability based on high-frequency data and low-frequency data, respectively; Shimizu
and Zhang [19] estimated the Gerber–Shiu function in a Lévy risk model based on high-
frequency data by Fourier inversion transform. In addition, there are some effective
estimation methods. Chau et al. [20,21] used the Fourier-cosine series expansion to esti-
mate ruin probability and Gerber–Shiu function in the Lévy risk models; Yang et al. [22]
applied two-dimensional Fourier cosine series expansion to estimate the discounted den-
sity function of the deficit at ruin; Xie and Zhang [23] applied the Fourier cosine series
expansion to estimate the compound Poisson risk model under a constant barrier dividend
strategy; Zhang [24] proposed a new estimator of the Gerber–Shiu function by Fourier
sinc series expansion in the perturbed compound Poisson risk model; Chan [25,26] pro-
posed a method based on the complex Fourier series expansion and used it in the actuarial
field; Wang et al. [27] considered the pricing problem of variable annuities with guaranteed
minimum death benefit by a complex Fourier series method under regime-switching jump
diffusion models. For more detail on the statistical estimation of risk models, we refer the
interested readers to [28–40].

The main goal of this paper is to use the Laguerre series expansion method to estimate
the Gerber–Shiu function. The Laguerre series expansion method has been used by some
authors for solving some statistical problems. For example, Comte and Genon-Catalot [41]
used the appropriate Laguerre basis to take into account the estimation of the random
strength of the mixed Poisson model; Zhang and Su [42,43] applied Laguerre series to
approximate the Gerber–Shiu function in the class compound Poisson risk model and the
Lévy risk model, respectively; Zhang and Yong [44] studied the valuation of equity-linked
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annuity contracts with guaranteed minimum death benefits by Laguerre series expan-
sion; Cheung and Zhang [45] proposed to use Laguerre series expansion as a function of
the initial earnings level to approximate the ruin probability of the updated risk model; Al-
brecher et al. [46] considered the bivariate Laguerre expansions approach for joint ruin
probabilities in a two-dimensional insurance risk process; Xie and Zhang [47] considered
the finite-time dividend and ruin problems in a class of risk models under the constant
dividend barrier strategy by Laguerre series expansion; Su et al. [48] considered the random
deviation of premium income (or claim loss), so they studied the statistical estimation of
Gerber–Shiu function in the compound Poisson risk model perturbed by diffusion. In the
actual insurance business, the premium income of insurance companies, especially small
companies, is sometimes random. Therefore, this paper considers the two-sided jumps risk
model. For more on the Laguerre series expansion method, we refer the interested readers
to [49–53].

The remainder of this paper is organized as follows: In Section 2, we first briefly
introduce the Laguerre series expansion method, and then derive Laguerre series expan-
sions of m(u). In Section 3, we present how to construct estimators for the aforementioned
quantities based on observed sample of the surplus process, and in Section 4, we study
the consistency rate of our estimator. Finally, numerical examples are given in Section 5 to
illustrate that the performance of the estimator behaves well when the sample size is finite.

2. Preliminaries

2.1. The Laguerre Series Expansion

In this subsection, we present some known results on the Laguerre series expansion
method. Throughout, let L1(R+) and L2(R+) denote the classes of absolutely integrable
functions and square integrable functions on the positive axis, respectively, and denote
by C+ (respectively, C++) those complex numbers that have a non-negative (respectively
positive) real part, that is

C+ := {s ∈ C : Re(s) ≥ 0} and C++ := {s ∈ C : Re(s) > 0}.

For any complex number s, we denote its real part and imaginary part by Re(s) and
Im(s), respectively. For two positive functions f1, f2 with a common domain X ∈ R, we
use f1 � f2 to mean f1(x) ≤ C f2(x) uniformly in x ∈ X . Similarly, we use f1(x) � f2(x) to
mean f1(x) ≥ C f2(x) uniformly in x ∈ X . For two sequences of functions { fk} and {gk},
we use fk � (or �)gk to mean fk(x) ≤ (or ≥)Cgk(x) uniformly in k and x. Denote the
scalar product and L2-norm on L2(R+) by

〈 f , g〉 =
∫ ∞

0
f (x)g(x)dx, ‖ f ‖ =

√∫ ∞

0
f (x)2dx, ∀ f , g ∈ L

2(R+).

For convenience, let C be a generic positive constant that can take different values
from line to line. For any g ∈ L1, we define its Laplace transform and Fourier transform by
Lg(s) =

∫ ∞
0 e−sug(u)du, Re(s) ≥ 0 and Fg(s) =

∫ ∞
0 eisug(u)du s ∈ R. Furthermore, let Ts

be the Dickson–Hipp operator, such that

Ts f (y) =
∫ ∞

y
e−s(x−y) f (x)dx =

∫ ∞

0
e−sx f (x + y)dx, y ≥ 0,

for any integrable real function f . The operator Ts was first introduced in Dickson and Hipp [54]
and has many nice properties, which can be found in Li and Garrido [55]. The Laguerre
functions are given by

ψk(x) =
√

2Lk(2x)e−x, x ≥ 0, k = 0, 1, 2, . . . , (4)
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where {Lk} is a Laguerre polynomial defined as

Lk(x) =
k

∑
j=0

(−1)j
(

k
j

)
xj

j!
, x ≥ 0. (5)

It is follows that the Laguerre functions are uniformly bounded, i.e.,

|ψk| ≤
√

2, ∀ k ≥ 0 and ∀ x ∈ R+. (6)

We also note that, for the Laguerre functions ψk and ψj, the following convolution
formula holds: ∫ x

0
ψk(x− y)ψj(y)dy =

1√
2
[ψk+j(x)− ψk+j+1(x)]. (7)

For more details on the above results, refer to Abramowitz and Stegun [56].

Remark 1. Suppose that the collection {ψk}k≥0 is a complete orthonormal basis of L2(R+) satis-
fying

(1) ‖ψk‖ = 1;
(2) 〈ψk, ψj〉 = 0 for k �= j.

Using the orthonormal property of the Laguerre basis {ψk}k≥0, for any f ∈ L2(R+),
we can develop it on the Laguerre basis

f (x) =
∞

∑
k=0
〈 f , ψk〉ψk(x).

In practical applications, we need to truncate the above infinite sum. Hence, for all
K ≥ 0, we have

f (x) ≈ fK(x) =
K

∑
k=0
〈 f , ψk〉ψk(x).

To evaluate the convergence rate of the bias ‖ fK − f ‖, we introduce the Sobolev–
Laguerre space (see Bongioanni and Torrea [57]) that is defined by

W(R+, r, B) =

{
f : R+ → R, f ∈ L

2(R+),
∞

∑
k=0

kr〈 f , ψk〉2 ≤ B < ∞

}
,

where 0 < r, B < ∞. Suppose that r is a positive integer. If f ∈ L2(R+), then the following
properties are equivalent:

(1)
∞
∑

k=0
kr〈 f , ψk〉2 < ∞.

(2) For function f admits derivatives up to order r− 1, with f (r−1) absolutely continuous
and for m = 0, 1, . . . , r− 1, the functions

x
(m+1)

2 ( f ex)(m+1)e−x = x
(m+1)

2

m+1

∑
j=0

(
m + 1

j

)
f (j) (8)
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belong to L2(R+) (see Comte and Genon-Catalot [41]). If f ∈ W(R+, r, B), using the
orthonormal property of the Laguerre basis {ψk}k≥0 (see Zhang and Su [43] and Zhang
and Yong [44]), we have

‖ fK − f ‖ =
∞

∑
k=K+1

〈 f , ψk〉2 ≤ (K + 1)−r
∞

∑
k=K+1

kr〈 f , ψk〉2 ≤ BK−r.

2.2. The Laguerre Expansion of Gerber–Shiu Function

In this subsection, we show that the Gerber–Shiu function can be expressed by La-
guerre functions. We focus on the Erlang[n, β] distribution, for some β > 0 and a positive
integer n, to model the premium sizes (see Labbé et al. [58]). No specific assumption is
made on the claim’s distribution. For u > 0, conditioning on the time of the first event
(premium or claim), we obtain

m(u) =
∫ ∞

0
λpe−(δ+λ)t

∫ u+ct

0
m(u + ct− y) f+(y)dydt +

∫ ∞

0
λpe−(δ+λ)t

×
∫ ∞

u+ct
ω(u + ct, y− u− ct) f+(y)dydt +

∫ ∞

0
λqe−(δ+λ)t

∫ ∞

0
m(u + ct + y) f−(y)dydt,

hence

m(u) =
∫ u

0
m(u− y) fδ(y)dy + Hδ,w(u), (9)

where

fδ(y) =
pλ

c

⎡⎢⎢⎢⎣(−1)n
n+1

∑
i=1

(β− ρi)
n

n+1
∏

j=1,j �=i
(ρi − ρj)

Tρi f+(y)

⎤⎥⎥⎥⎦, y ≥ 0,

Hδ,w(u) =
pλ

c

⎡⎢⎢⎢⎣(−1)n
n+1

∑
i=1

(β− ρi)
n

n+1
∏

j=1,j �=i
(ρi − ρj)

Tρi η(u)

⎤⎥⎥⎥⎦, u ≥ 0,

η(u) =
∫ ∞

u
ω(u, y− u) f+(y)dy.

For any δ ≥ 0, in the following Lundberg’s fundamental equation (in s)

χ(s) := [λ + δ− cs− pλL f (s)](β− s)n − qλβn = 0, s ∈ C+, (10)

ρi and ρj are the n + 1 roots of the above equation.

Remark 2. Assume, in addition, that n = 1 (i.e., the annuity income amounts follow the exponen-
tial distribution).

χ(s) := [λ + δ− cs− pλL f+(s)](β− s)− qλβ = 0, s ∈ C+. (11)

The above equation has two positives roots, ρ1 ∈ (0, β) and ρ2 ∈ (β, ∞). It is clear
from Equation (11) that the continuous function χ(s) is such that χ(0) = δβ > 0, χ(β) =
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−qλβ < 0 and lim
s→∞

χ(s) = ∞. Thus, the existence of two distinct roots satisfying 0 ≤ ρ1 <

β < ρ2 < ∞ is established.

fδ(y) =
pλ

c

⎡⎢⎢⎢⎣ 2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

Tρi f+(y)

⎤⎥⎥⎥⎦, y ≥ 0,

Hδ,w(u) =
pλ

c

⎡⎢⎢⎢⎣ 2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

Tρi η(u)

⎤⎥⎥⎥⎦, u ≥ 0,

η(u) =
∫ ∞

u
ω(u, y− u) f+(y)dy.

In the following, we suppose that some conditions hold true in this paper, which has
also been considered in Shimizu and Zhang [19].

Condition 1. (Net profit condition.)

ct− E[S(t)] = ct + qλtμ− − pλtμ+ > 0, t > 0.

The above condition guarantees that the expectation of the surplus process will always
be positive at any time t > 0. From a practical point of view, we only consider the case of
c > pλ in this paper.

Condition 2. For the penalty function w, it satisfies∫ ∞

0

∫ ∞

0
(1 + x)ω(x, y) f+(x + y)dydx < ∞.

Condition 3. For the penalty function w, there exist some integers α1, α2 such that

w(x, y) � (1 + x)α1(1 + y)α2 .

In order to use the Laguerre series expansion method to calculate Equation (9), we
need to ensure that m ∈ L2(R+). Using inequality (x + y)2 ≤ 2x2 + 2y2, we obtain

∫ ∞

0
m2(u)du =

∫ ∞

0

(∫ u

0
m(u− y) fδ(y)dy + Hδ,w(u)

)2
du

≤ 2
∫ ∞

0

(∫ u

0
m(u− y) fδ(y)dy

)2
du + 2

∫ ∞

0
(Hδ,w(u))2du.

(12)

As can be seen from Equation (12), in order to determine m ∈ L2(R+), we need some
Lemmas.

Lemma 1. For function fδ, by δ > 0, μ− = 1
β and Condition 1, we have fδ ∈ L2(R+).
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Proof. Because∫ ∞

0
fδ(x)dx =

pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ ∞

x
e−ρi(y−x) f+(y)dydx

=
pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ y

0
e−ρi(y−x) f+(y)dxdy

≤ pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0
y f+(y)dy

=
pλ

c
· μ+ <

λ

c
q
β
+ 1 <

λ + cβ

cβ
.

Note that

fδ(x) ≤ pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0
f+(y)dy <

λ

c
.

Hence, ∫ ∞

0
( fδ(x))2dx ≤ λ

c

∫ ∞

0
fδ(x)dx ≤ λ2 + cλβ

c2β
< ∞. (13)

This completes the proof.

Lemma 2. Under Condition 2, we have Hδ,w ∈ L2(R+).

Proof.

sup
u≥0

Hδ,w(u) ≤ pλ

c

∫ ∞

0
η(u)du =

pλ

c

∫ ∞

0

∫ ∞

0
ω(x, y) f (x + y)dydx < ∞

and∫ ∞

0
Hδ,w(u)du =

pλ

c

2

∑
i=1

(ρi − β)
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ ∞

u

∫ ∞

x
e−ρi(y−x)ω(x, y− x) f (y)dydxdu

≤ pλ

c

∫ ∞

0

∫ ∞

u

∫ ∞

x
ω(x, y− x) f (y)dydxdu

=
pλ

c

∫ ∞

0

∫ ∞

0
xω(x, y) f (x + y)dydx < ∞,

which yield

∫ ∞

0
(Hδ,w(u))2du ≤ sup

u≥0
Hδ,w(u)×

( ∫ ∞

0
Hδ,w(u)du

)
< ∞. (14)

This completes the proof.

Lemma 3. As for m, by Conditions 1 and 2, we obtain m ∈ L2(R+).
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Proof. By Equation (9), we have

∫ ∞

0
m(u)du =

∫ ∞
0 Hδ,w(u)du

1− ∫ ∞
0 fδ(y)dy

< ∞,

i.e., m ∈ L1(R+). According to Theorem 1.4.5 in Stenger [59], we can obtain
∫ u

0 m(u −
x) fδ(x)dx ∈ L2(R+) due to fδ ∈ L2(R+). Furthermore, according to Equations (12) and
(14), we can obtain m ∈ L2(R+).

In the remainder of this paper, suppose that m, fδ, Hδ,w ∈ L2(R+). Then we can
develop them on the Laguerre basis, i.e.,

m(u) =
∞

∑
k=0

Pkψk(u), u ≥ 0, (15)

fδ(x) =
∞

∑
k=0

Qkψk(x), x ≥ 0, (16)

Hδ,w(x) =
∞

∑
k=0

Rkψk(x), x ≥ 0, (17)

where for k = 0, 1, 2, . . .

Pk = 〈m, ψk〉, Qk = 〈 fδ, ψk〉, Rk = 〈Hδ,w, ψk〉.

Plugging the Laguerre series expansion Equations (15)–(17) into the defective renewal
Equation (9) and using the convolution Formula (7), we obtain

∞

∑
k=0

Pkψk(u) =
∫ u

0

∞

∑
k=0

Pkψk(u− x) ·
∞

∑
j=0

Qjψj(x) +
∞

∑
k=0

Rkψk(u)

=
∞

∑
k=0

∞

∑
j=0

PkQj

∫ u

0
ψk(u− x)ψj(x) +

∞

∑
k=0

Rkψk(u)

=
∞

∑
k=0

∞

∑
j=0

1√
2

PkQj[ψk+j(u)− ψk+j+1(u)] +
∞

∑
k=0

Rkψk(u).

(18)

Furthermore, by changing the order of summation we obtain

∞

∑
k=0

∞

∑
j=0

1√
2

PkQjψk+j(u) =
∞

∑
k=0

∞

∑
j=0

1√
2

PjQk−jψk(u)

and

∞

∑
k=0

∞

∑
j=0

1√
2

PkQjψk+j+1(u) =
∞

∑
k=0

∞

∑
j=0

1√
2

PjQk−j−1ψk(u).

As a result, Equation (18) gives

∞

∑
k=0

Pkψk(u) =
[

1√
2

P0Q0 + R0

]
ψ0(u)

+
∞

∑
k=1

(
k−1

∑
j=0

1√
2

Pj(Qk−1 −Qk−j−1) +
1√
2

PkQ0 + Rk

)
ψk(u).

(19)
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After comparing the coefficients for each basis function ψk(u) on both sides of Equation (19),
we obtain an infinite triangular system of linear equations,⎧⎪⎪⎪⎨⎪⎪⎪⎩

P0 =
1√
2

P0Q0 + R0,

Pk =
k−1

∑
j=0

1√
2

Pj(Qk−1 −Qk−j−1) +
1√
2

PkQ0 + Rk, k ≥ 1.
(20)

Furthermore, let�p = (P0, P1, P2, . . .)T,�r = (R0, R1, R2, . . .)T and

A =

⎛⎜⎜⎜⎜⎜⎝
1− 1√

2
Q0 0 0 . . .

1√
2
(Q0 −Q1) 1− 1√

2
Q0 0 . . .

1√
2
(Q1 −Q2)

1√
2
(Q0 −Q1) 1− 1√

2
Q0 . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ := (aij)i,j≥1.

Then we can write Equation (20) in the following matrix form

A�p =�r. (21)

Note that A is a lower triangular Toeplitz matrix, and for the non-zero elements in A,
we have ∣∣∣∣ 1√

2
(Qk −Qk−1)

∣∣∣∣ ≤ 1√
2

∫ ∞

0
fδ(x)|ψk(x)|dx +

1√
2

∫ ∞

0
fδ(x)|ψk−1(x)|dx

≤ 2
∫ ∞

0
fδ(x)dx ≤ 2

(
1 +

qλ

cβ

)
, k ≥ 1.

Furthermore, we have

1− 1√
2

Q0 = 1− 1√
2
〈 fδ, ψ0〉 = 1− 1√

2

∫ ∞

0
fδ(x)ψ0(x)dx

= 1−
∫ ∞

0
fδ(x)e−xdx > 1− pλ

c
> 0,

by Condition 1, then A is nonsingular and explicitly invertible.
Hence, for all K ≥ 0, truncating the infinite dimension vectors and matrix in Equation (21)

leads to

AK�pK =�rK, (22)

where �pK = (P0, P1, P2, . . . , PK)
T,�rK = (R0, R1, R2, . . . , RK)

T, and AK = (aij)
K+1
i,j=1. As a

result, the matrix AK is nonsingular and explicitly invertible. Then we have

�pK = A−1
K �rK. (23)

After solving Equation (23), we can obtain�pK, and for a larger K we can approximate
the Gerber–Shiu function as follows:

m(u) ≈ mK(u) :=
K

∑
k=0

Pkψk(u), u ≥ 0. (24)

3. Estimation Procedure

In this section, we assume that both Poisson intensity and claim size density are
unknown, but we can obtain discrete information about the surplus process and the
aggregate claims. Assume that we can observe the surplus process over a long time interval
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[0, T]. Let� > 0 be a fixed inter-observation interval (or sampling interval). Without loss
of generality, assume that T/� is an integer, and let n = T/�.

(1) Data-set of surplus levels:

{Uj� : j = 0, 1, 2, . . . , n},

where Uj� is the observed surplus level at time t = j�.

(2) Data-set of total claim numbers and claim sizes:

{Nj�, Z1, Z2, . . . , ZNj�}, j = 1, . . . , n.

(3) Data-set of downward jump numbers and random loss sizes:

{N+
j�, X1, X2, . . . , XN+

j�
}, j = 1, . . . , n.

(4) Data-set of upward jump numbers and random income sizes:

{N−j�, Y1, Y2, . . . , YN−j�
}, j = 1, . . . , n.

where Nj� is the total claim number up to time t = j� and Nj� = N+
j� + N−j�.

Next, we shall propose our estimator of the Gerber–Shiu function by Laguerre expansion
based on Equation (24). To this end, we need to estimate the vector�pK, or equivalently, AK
and�rK. By the definitions of AK and�rK, we only need to estimate the following quantities:

Qk, Rk, k = 0, 1, 2, . . . , K.

By the definitions of Qk and Rk and changing the order of integrals, we can write Qk
and Rk as follows:

Qk = 〈 fδ, ψk〉 =
∫ ∞

0
fδ(x)ψk(x)dx =

pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ ∞

x
e−ρi(y−x) f+(y)dyψk(x)dx

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ y

0
e−ρi(y−x)ψk(x)dx f+(y)dy

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E
[∫ X

0
e−ρi(X−x)ψk(x)dx

]
(25)

and

Rk = 〈Hδ,w, ψk〉 =
∫ ∞

0
Hδ,w(u)ψk(x)dx =

pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ ∞

u
e−ρi(y−u)η(y)dyψk(u)du

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ ∞

u

∫ ∞

y
e−ρi(y−u)ω(y, x− y) f+(x)dxdyψk(u)du

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

∫ ∞

0

∫ x

0

∫ x

u
e−ρi(y−u)ω(y, x− y) f+(x)dyψk(u)dudx

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E
[∫ X

0

∫ X

u
e−ρi(y−u)ω(y, X− y)dyψk(u)du

]
.

(26)
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The above two formulae imply that we have to estimate the Poisson intensity λ, p, q, β,
the root ρ1, ρ2, and the expectations appearing in Equations (25) and (26).

According to the property of Poisson distribution, we can estimate p and λ by

p̂ =
N+

T
NT

, q̂ = 1− p̂, λ̂ =
NT
T

.

Since the premium size Y follows the Erlang(1, β) distribution, we have E[Y] = 1/β,
then we can estimate β by

β̂ =
1

1
N−T

N−T
∑

j=1
Yi

,

which are all unbiased estimates. We estimate the root ρ1, ρ2 by ρ̂1, ρ̂2, which is a positive
root of the following estimating equation:[

λ̂ + δ− cs− p̂λ̂L̂ f+(s)
]
(β̂− s)− q̂λ̂β̂ = 0, s ∈ C+ (27)

where L̂ f+(s) =
1

N+
T

N+
T

∑
j=1

e−sXj is an estimate of the Laplace transform L f+(s). It follows

from Equation (25) that we have

Q̂k =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx

=

√
2

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)−xLk(2x)dx

=

√
2

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)
e−ρ̂iXj

∫ Xj

0
e−(1−ρ̂i)x · xm

m!
dx

=

√
2

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂i)m+1

(
k
m

)
e−ρ̂iXj

(
1−

m

∑
l=0

e−(1−ρ̂i)Xj
[(1− ρi)Xj]

l

l!

)
.

(28)

Similarly, we can estimate Rk by

R̂k =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρ̂i(x−u)ω(x, Xj − x)dxψk(u)du. (29)

Now, we define the estimates of AK and�rK by replacing Qk and Rk with Q̂k and R̂k in
their definitions, and denote them by ÂK and�̂rK, respectively. Accordingly, the estimate
of �pK, denoted by �̂pK := (P̂0, P̂1, . . . , P̂K)

T, is defined to be the solution of the following
linear system:

ÂK�̂pK = �̂rK. (30)
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Finally, replacing PK by P̂K in Equation (23), we obtain the following estimate of the
Gerber–Shiu function:

m̂K(u) =
K

∑
k=0

P̂kψk(u), u ≥ 0. (31)

Remark 3. The estimator R̂k given in Equation (29) is expressed in a two-fold integral, which can
be explicitly computed for most of the widely used penalty functions. Here are some examples.

(1) δ = 0 and ω = 1. In this case, the Gerber–Shiu function becomes the ruin probability
and we have ρ̂1 = 0 and ρ̂2 ∈ (β̂, ∞). Then

R̂k =

√
2

cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
Xj

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− (m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

+

√
2

cT
ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.

(2) δ > 0 and ω = 1. In this case, the Gerber–Shiu function becomes the Laplace
transform of ruin time and we have ρ̂1 ∈ (0, β̂) and ρ̂2 ∈ (β̂, ∞). Then

R̂k =

√
2

cT
ρ̂1 − β̂

(ρ̂1 − ρ̂2)ρ̂1

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂1 − β̂

(ρ̂1 − ρ̂2)ρ̂1

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂1)m+1

(
k
m

)
e−ρ̂1Xj

(
1−

m

∑
l=0

e−(1−ρ̂1)Xj
((1− ρ̂1)Xj)

l

l!

)

+

√
2

cT
ρ̂2 − β̂

(ρ̂2 − ρ̂1)ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂2 − β̂

(ρ̂2 − ρ̂1)ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.

(3) δ = 0 and ω(x, y) = x + y. In this case, the Gerber–Shiu function becomes the
expected claim size causing ruin. Then

R̂k =

√
2

cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
X2

j

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− Xj(m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

+

√
2

cT
ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

Xj(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

−
√

2
cT

ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

Xj(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.
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(4) δ = 0 and ω(x, y) = y. In this case, the Gerber–Shiu function reduces to the expected
deficit at ruin. Then

R̂k =

√
2

2cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
X2

j

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− 2Xj(m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

+

√
2

2cT
β̂

ρ̂2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)
(m + 1)(m + 2)

(
1−

m+2

∑
l=0

e−Xj
Xl

j

l!

)

+

√
2

cT
ρ̂2 − β̂

ρ̂2
2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)[
Xj

(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)
− (m + 1)

(
1−

m+1

∑
l=0

e−Xj
Xl

j

l!

)]

−
√

2
cT

ρ̂2 − β̂

ρ̂3
2

N+
T

∑
j=1

k

∑
m=0

(−2)m
(

k
m

)(
1−

m

∑
l=0

e−Xj
Xl

j

l!

)

+

√
2

cT
ρ̂2 − β̂

ρ̂3
2

N+
T

∑
j=1

k

∑
m=0

(−2)m

(1− ρ̂2)m+1

(
k
m

)
e−ρ̂2Xj

(
1−

m

∑
l=0

e−(1−ρ̂2)Xj
((1− ρ̂2)Xj)

l

l!

)
.

4. Consistency Properties

In this section, we study the asymptotic properties of our estimator. We measure
the performance of the estimator m̂K by the L2-norm distance ‖m̂K − m‖. By L2-norm
inequality, we have

‖m̂K −m‖2 = ‖m̂K −mK + mK −m‖2 ≤ 2‖m̂K −mK‖2 + 2‖mK −m‖2, (32)

where ‖mK −m‖ is the series truncation error and ‖m̂K −mK‖ is the error due to statistical
estimation. Now, if m ∈ W(R+, r, B), we have

‖mK −m‖2 =

∥∥∥∥∥ ∞

∑
k=K+1

Pk · ψk

∥∥∥∥∥
2

=
∞

∑
k=K+1

P2
k =

∞

∑
k=K+1

〈m, ψk〉2 ≤ B
(K + 1)r = O(K−r) (33)

due to Remark 1. The polynomial convergence rate in Equation (33) can be improved when
m has an exponential decay rate.

Next, it remains to study the convergence rate for ‖m̂K −mK‖, and we obtain the result
as follows:

Theorem 1. Suppose EX2 < ∞ and Conditions 1–3 hold. If K = o(T
1
2 ), then

‖m̂K −m‖2 ≤ 2‖mK −m‖2 + Op(K2T−1). (34)

Further, if m ∈ W(R+, r, B), then

‖m̂K −m‖2 = O(K−r) + Op(K2T−1). (35)

In the following, we present some notations on matrix (and vector) norms. For a

vector �b = (b1, b2, . . . , bn)T, its 2-norm is defined by ‖�b‖2 =
√

∑n
i=1 |bi|2. For a matrix

B = (bij)
n
i,j=1, its spectral norm is defined by ‖B‖2 =

√
λmax(BTB), where λmax(BTB) is

the largest eigenvalue of BTB. The Frobenius norm of B is defined by

‖B‖F =
√

tr(BTB) =

√√√√ n

∑
i=1

n

∑
j=1
|bi,j|2.

It is known that

‖B�b‖2 ≤ ‖B‖2 · ‖�b‖2, ‖B‖2 ≤ ‖B‖F. (36)
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For two square matrices B1 and B2 with the same dimension, we have ‖B1B2‖2 ≤
‖B1‖2 · ‖B2‖2.

By the inequality (x + y)2 ≤ 2x2 + 2y2 and the first inequality in Equation (36), we obtain

‖m̂K −mK‖2

= ‖
K

∑
k=0

(P̂k − Pk)ψk‖2 =
K

∑
k=0

(P̂k − Pk)
2 = ‖�̂PK −�PK‖2

2

= ‖Â−1
K
�̂rK −A−1

K �rK‖2
2 = ‖(Â−1

K −A−1
K )�̂rK + A−1

K (�̂rK −�rK)‖2
2

≤ 2‖(Â−1
K −A−1

K )�̂rK‖2
2 + 2‖(A−1

K (�̂rK −�rK)‖2
2

≤ 4‖(Â−1
K −A−1

K )(�̂rK −�rK))‖2
2 + 4‖(Â−1

K −A−1
K )�̂rK‖2

2 + 2‖(A−1
K (�̂rK −�rK)‖2

2

≤ 4‖(Â−1
K −A−1

K )‖2
2 · ‖�̂rK −�rK)‖2

2 + 4‖(Â−1
K −A−1

K )‖2
2 · ‖�̂rK‖2

2 + 2‖A−1
K ‖2

2 · ‖�̂rK −�rK‖2
2.

(37)

In order to prove Theorem 1, we can study the convergence rates for the three terms on
the right-hand side of Equation (37). To obtain the convergence rates ‖�rK‖2

2 and ‖�̂rK −�rK‖2
2,

we need the following Lemma:

Lemma 4. Suppose that Condition 2 holds. Then

‖�rK‖2
2 < ‖h‖2 < ∞.

Moreover, if Conditions 1 and 3 hold and EX2 < ∞, we have

‖�̂rK −�rK‖2
2 < ‖h‖2 <= Op(KT−1). (38)

Proof. First, under Condition 2 we have

‖�rK‖2
2 =

K

∑
k=0

R2
k <

∞

∑
k=0

R2
k = ‖h‖2

2 < ∞.

Next, we prove Equation (38). We only consider the case δ > 0. Under Condition 1 and
EX2 < ∞,

ρ̂1 − ρ1 = Op(T−
1
2 ), ρ̂2 − ρ2 = Op(T−

1
2 ).

Because NT is Poisson-distributed with intensity λT and is independent from Xj, we have

Rk =
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E
[∫ X

0

∫ X

u
e−ρi(y−u)w(y, X− y)dyψk(u)du

]
.

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E

⎡⎣ NT

N+
T
· T

NT
· 1

T
·

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

⎤⎦

=
1

cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E

⎡⎣N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

⎤⎦.

(39)

Hence,
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R̂k − Rk =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρ̂i(x−u)w(x, Xj − x)dxψk(u)du

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E

⎡⎣N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

⎤⎦

=
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
(e−ρi(x−u) − e−ρi(x−u))w(x, Xj − x)dxψk(u)du

+

⎛⎜⎜⎜⎝ 1
cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
×

N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

+
1

cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

{ N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

− E

[ N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

]}
:=Ik,1 + Ik,2 + Ik,3.

(40)

Then, using inequality (x + y)2 ≤ 2x2 + 2y2, we have

‖�̂rK −�rK‖2
2 =

K

∑
k=0

(R̂K − RK)
2 ≤ 2

K

∑
k=0

I2
k,1 + 4

K

∑
k=0

I2
k,2 + 4

K

∑
k=0

I2
k,3. (41)

By the mean value theorem, it is easy to see that∣∣∣e−ρ̂i(x−u) − e−ρi(x−u)
∣∣∣ = ∣∣∣(ρ̂i − ρi)(x− u)e−ρ∗i (x−u)

∣∣∣
≤ |ρ̂i − ρi|(x− u), i = 1, 2, (42)

where ρ∗1, ρ∗2 is a random number between ρ̂i and ρi, i = 1, 2. First, to estimate
K
∑

k=0
I2
k,1,
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K

∑
k=0

I2
k,1

=
2

c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2

K

∑
k=0

⎡⎣N+
T

∑
j=1

∫ Xj

0

∫ Xj

u
(e−ρ̂i(x−u) − e−ρi(x−u))w(x, Xj − x)dxψk(u)du

⎤⎦2

=
2

c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2

K

∑
k=0

⎛⎝∫ ∞

0

⎡⎣N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
(e−ρ̂i(x−u) − e−ρi(x−u))w(x, Xj − x)dx

⎤⎦ψk(u)du

⎞⎠2

≤ 2K
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2 ∫ ∞

0

⎡⎣N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
(e−ρ̂i(x−u) − e−ρi(x−u))w(x, Xj − x)dx

⎤⎦2

du

≤ 2K
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2

(ρ̂i − ρi)
2N+

T

∫ ∞

0

N+
T

∑
j=1

[
I(u≤Xj)

∫ Xj

u
(x− u)w(x, Xj − x)dx

]2

du

=
2Kλ̂ p̂

c2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2

(ρ̂i − ρi)
2 1

T

N+
T

∑
j=1

∫ Xj

0

[∫ Xj

u
(x− u)w(x, Xj − x)dx

]2

du.

(43)

It follows from Condition 3 and Markov’s inequality that

1
T

N+
T

∑
j=1

∫ Xj

0

[∫ Xj

u
(x− u)w(x, Xj − x)dx

]2

du = Op(1),

hence

K

∑
k=0

I2
k,1 = Op(KT−1). (44)

As for
K
∑

k=0
I2
k,2, we can obtain
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K

∑
k=0

I2
k,2

=
K

∑
k=0

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝ 1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
N+

T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

⎤⎥⎥⎥⎦
2

≤ 2
K

∑
k=0

2

∑
i=1

⎛⎜⎜⎜⎝ 1
cT

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− 1
cT

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2⎛⎝N+

T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

⎞⎠2

≤ 2
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

K

∑
k=0

⎡⎣∫ ∞

0

( N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
w(x, X− x)dx

)
ψk(u)du

⎤⎦2

≤ 2K
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2 ∫ ∞

0

⎡⎣N+
T

∑
j=1

I(u≤Xj)

∫ Xj

u
w(x, X− x)dx

⎤⎦2

du

≤ 2Kλ̂ p̂
c2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

1
T

N+
T

∑
j=1

∫ Xj

0

(∫ Xj

u
w(x, X− x)dx

)2

du.

(45)

According to β̂− β = Op(T−
1
2 ), ρ̂1 − ρ1 = Op(T−

1
2 ) and ρ̂2 − ρ2 = Op(T−

1
2 ). Then⎛⎜⎜⎜⎝ ρ̂i − β̂

2
∏

j=1,j �=i
(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

= Op(T−1). (46)

Hence,

K

∑
k=0

I2
k,2 = Op(KT−1). (47)

For the summation
K
∑

k=0
I2
k,3, we have
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E

[
K

∑
k=0

I2
k,3

]
=

K

∑
k=0

E[I2
k,3]

=
K

∑
k=0

2
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

Var

⎧⎨⎩
N+

T

∑
j=1

∫ Xj

0

∫ Xj

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

⎫⎬⎭

≤ 2pλ

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

K

∑
k=0

E
[∫ X

0

∫ X

u
e−ρi(x−u)w(x, Xj − x)dxψk(u)du

]2

=
2pλ

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E

{
K

∑
k=0

[∫ ∞

0

(
I(u≤X)

∫ X

u
e−ρi(x−u)w(x, X− x)dx

)
ψk(u)du

]2
}

≤ 2Kpλ

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E

[∫ ∞

0

(
I(u≤X)

∫ X

u
e−ρi(x−u)w(x, X− x)dx

)2

du

]

=
2Kpλ

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E

[∫ X

0

(∫ X

u
e−ρi(x−u)w(x, X− x)dx

)2

du

]

≤ 2Kpλ

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E

[∫ X

0

(∫ X

u
w(x, X− x)dx

)2

du

]
,

(48)

which, together with Condition 3 and Markov’s inequality, yields

K

∑
k=0

I2
k,3 = Op(KT−1). (49)

Finally, we complete the proof.

In order to obtain the convergence rates of ‖ÂK −AK‖2
F, ‖A−1

K ‖2 and ‖Â−1
K −A−1

K ‖2,
we have the following propositions:

Proposition 1. Let Condition 1 hold and EX2 < ∞. Then

‖ÂK −AK‖2
F = Op(K2T−1). (50)

Proposition 2. Suppose that Condition 1 holds. Then for all K ≥ 1,

‖A−1
K ‖2 ≤ 2c

c− λ(pμ+ − qμ−)
. (51)

Proposition 3. Let Condition 1 hold and EX2 < ∞. If K = o(T
1
2 ), then

‖Â−1
K −A−1

K ‖2 = Op(KT−
1
2 ). (52)
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In the rest of the section, we give the proof of Propositions 1, 2 and 3 and Theorem 1.

Proof of Proposition 1. Using the definitions of ÂK and AK, then

‖ÂK −AK‖2
F =

K

∑
k=0

k

∑
j=0

{
1√
2
(Qk−j − Q̂k−j)− 1√

2
(Qk−j−1 − Q̂k−j−1)

}2

=
1
2

K

∑
k=0

k

∑
j=0

{
(Qk−j − Q̂k−j)− (Qk−j−1 − Q̂k−j−1)

}2

≤
K

∑
k=0

k

∑
j=0

{
(Qk−j − Q̂k−j)

2 − (Qk−j−1 − Q̂k−j−1)
2
}

, (53)

where we have put Q−1 = Q̂−1 = 0 for convenience.
Because NT is Poisson-distributed with intensity λT and is independent from Xj,

we have

Qk =
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E
[∫ X

0
e−ρi(X−x)ψk(x)dx

]

=
pλ

c

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E

⎧⎨⎩ NT

N+
T
· T

NT
· 1

T
·

N+
T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

⎫⎬⎭
=

1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E

⎧⎨⎩
N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

⎫⎬⎭.

Then

Q̂k −Qk =
1

cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎛⎝N+
T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx

⎞⎠

− 1
cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

E

⎧⎨⎩
N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

⎫⎬⎭
=

1
cT

2

∑
i=1

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎡⎣N+
T

∑
j=1

∫ Xj

0

(
e−ρ̂i(Xj−x) − e−ρi(Xj−x)ψk(x)dx

)⎤⎦

+
1

cT

2

∑
i=1

⎡⎢⎢⎢⎣ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎤⎥⎥⎥⎦
⎛⎝N+

T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx

⎞⎠

+
1

cT

2

∑
i=1

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎧⎨⎩
N+

T

∑
j=1

∫ Xj

0
e−ρ̂i(Xj−x)ψk(x)dx− E

⎡⎣N+
T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

⎤⎦⎫⎬⎭
:=I Ik,1 + I Ik,2 + I Ik,3.

(54)

Plugging the above result into Equation (48), we obtain
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‖ÂK −AK‖2
F ≤

K

∑
k=0

k

∑
j=0

{
(I Ik−j,1 + I Ik−j,2 + I Ik−j,3)

2 + (I Ik−j−1,1 + I Ik−j−1,2 + I Ik−j−1,3)
2
}

≤ 4
K

∑
k=0

k

∑
j=0

[
I Ik−j,1 + I Ik−j,2 + I Ik−j,3 + I Ik−j−1,1 + I Ik−j−1,2 + I Ik−j−1,3

]
≤ 8K

K

∑
k=0

[
I I2

k,1 + I I2
k,2 + I I2

k,3

]
.

(55)

First, for K
K
∑

k=0
I I2

k,1, we can obtain

K
K

∑
k=0

I I2
k,1 =

K

∑
k=0

2K
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2⎡⎣N+

T

∑
j=1

∫ Xj

0

(
e−ρ̂i(Xj−x) − e−ρi(Xj−x)

)
ψk(x)dx

⎤⎦2

≤ 2K2

c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2 ∫ ∞

0

⎡⎣N+
T

∑
j=1

I(x≤Xj)

(
e−ρ̂i(Xj−x) − e−ρi(Xj−x)

)⎤⎦2

≤ 2K2

c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2

(ρ̂i − ρi)
2N+

T

∫ ∞

0

N+
T

∑
j=1

I(x≤Xj)

∣∣∣(Xj − x)e−ρ∗i (Xj−x)
∣∣∣2dx

≤ 2K2λ̂ p̂
c2

2

∑
i=1

⎛⎜⎜⎜⎝ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

⎞⎟⎟⎟⎠
2

(ρ̂i − ρi)
2

[min{ρi, ρ̂i}]2 ·
1
T

N+
T

∑
j=1

Xj.

(56)

It follows from E

[
1
T

N+
T

∑
j=1

Xj

]
= pλμx < ∞ and Markov’s inequality that 1

T

N+
T

∑
j=1

Xj =

Op(1). Then

K
K

∑
k=0

I I2
k,1 = Op(K2T−1). (57)

Next, to compute I Ik,2, we can obtain
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K
K

∑
k=0

I I2
k,2 = 2K

K

∑
k=0

2

∑
i=1

⎡⎢⎢⎢⎣ 1
cT

ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− 1
cT

ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎤⎥⎥⎥⎦
2⎛⎝N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

⎞⎠2

=
2K

c2T2

K

∑
k=0

2

∑
i=1

⎡⎢⎢⎢⎣ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎤⎥⎥⎥⎦
2⎡⎣∫ ∞

0

N+
T

∑
j=1

I(x≤Xj)
e−ρi(Xj−x)ψk(x)dx

⎤⎦2

≤ 2K2

c2T2

2

∑
i=1

⎡⎢⎢⎢⎣ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎤⎥⎥⎥⎦
2 ∫ ∞

0

⎛⎝N+
T

∑
j=1

I(x≤Xj)

⎞⎠2

dx

≤ 2K2λ̂ p̂
c2

2

∑
i=1

⎡⎢⎢⎢⎣ ρ̂i − β̂
2

∏
j=1,j �=i

(ρ̂i − ρ̂j)

− ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎤⎥⎥⎥⎦
2

1
T

N+
T

∑
j=1

Xj.

(58)

Then,

K
K

∑
k=0

I I2
k,2 = Op(K2T−1), (59)

due to β̂− β = Op(T−
1
2 ), ρ̂1 − ρ1 = Op(T−

1
2 ) and ρ̂2 − ρ2 = Op(T−

1
2 ).

As for I Ik,3, taking expectation, we have

E

[
K

K

∑
k=0

I I2
k,3

]
= K

K

∑
k=0

E
[

I I2
k,3

]
=

K

∑
k=0

2K
c2T2

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

×Var

⎧⎨⎩
N+

T

∑
j=1

∫ Xj

0
e−ρi(Xj−x)ψk(x)dx

⎫⎬⎭
=

2λpK
c2T

K

∑
k=0

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E

[(∫ X

0
e−ρi(X−x)ψk(x)dx

)2
]

≤ 2λpK2

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E
[∫ X

0
e−2ρi(X−x)dx

]

≤ 2λpK2

c2T

2

∑
i=1

⎛⎜⎜⎜⎝ ρi − β
2

∏
j=1,j �=i

(ρi − ρj)

⎞⎟⎟⎟⎠
2

E(X).

(60)
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Due to μX < ∞ and Markov’s inequality, hence

K
K

∑
k=0

I I2
k,3 = Op(K2T−1). (61)

Finally, substituting Equations (57), (59) and (61) into Equation (55) yields the conver-
gence rate.

Proof of Proposition 2. First, let h = λ
c

2
∑

i=1

(ρi−β)
2
∏

j=1,j �=i
(ρi−ρj)

∫ ∞
x e−ρi(y−x)(p f+(y) − q f−(y))dy

and define a sequence {ck}∞
k=0 by

c0 = 1− 1√
2

C0, ck =
1√
2
(Ck−1 − Ck), k = 1, 2, · · ·

where
Ck = 〈h, ψk〉 for k = 0, 1, 2 · · ·

such that C is an infinite lower triangular Toeplitz matrix generated by {ck} similar to A

C =

⎛⎜⎜⎜⎜⎜⎝
1− 1√

2
C0 0 0 . . .

1√
2
(C0 − C1) 1− 1√

2
C0 0 . . .

1√
2
(C1 − C2)

1√
2
(C0 − C1) 1− 1√

2
C0 . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠.

It is easy to see that
‖A−1

K ‖2 ≤ ‖C−1
K ‖2,

where CK = (cij)
K+1
i,j=1.

By Lemma 4.3 in Zhang and Su [42], we know that ck, k ≥ 0 are Fourier coefficients of
the function

c(eiθ) =
∞

∑
k=0

ckeiθk = 1−Lh
(

1 + iθ
1− iθ

)
, θ ∈ R.

Let ζ = {z ∈ C : |z| = 1} denote the complex unite circle. We have

inf
z∈ζ
|c(z)| = inf

z∈ζ

∣∣∣1−Lh
(

1 + iθ
1− iθ

)∣∣∣ ≥ 1− sup
z∈ζ

∣∣∣Lh
(

1 + iθ
1− iθ

)∣∣∣
≥ 1−

∫ ∞

0
h(x)dx = 1− λ

c

2

∑
i=1

(ρi − β)

∏2
j=1,j �=i(ρi − ρj)

∫ ∞

0

∫ ∞

x
e−ρi(y−x)(p f+(y)− q f−(y))dydx

≥ 1− λ

c

∫ ∞

0

∫ ∞

x
p f+(y)− q f−(y)dydx = 1− λpμ+

c
+

λqμ−
c

> 0,

by Condition 1. Then, by Lemma 3.8 in the work of Böttcher and Grudsky [60], we obtain

‖A−1
K ‖2 ≤ ‖C−1

K ‖2 ≤ 2

1− λpμ+
c + λqμ−

c

=
2c

c− λ(pμ+ − qμ−)
.

The proof is completed.
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Proof of Proposition 3. Note that ÂK = AK + ÂK −AK and AK is invertible. By Proposi-
tions 1 and 2,

‖A−1
K · (ÂK −AK)‖2 ≤ ‖A−1

K ‖2 · ‖ÂK −AK‖2 ≤ 2c
c− λ(pμ+ − qμ−)

· ‖ÂK −AK‖2

≤ 2c
c− λ(pμ+ − qμ−)

· ‖ÂK −AK‖F = Op(KT−
1
2 ) = op(1).

Then, by the result of Theorem 2.5 of Stewart and Sun [61], we have

‖Â−1
K −A−1

K ‖2 ≤
‖ÂK −AK‖2 · ‖A−1

K ‖2
2

1− ‖A−1
K · (ÂK −AK)‖2

≤
(

2c
c− λ(pμ+ − qμ−)

)2 ‖ÂK −AK‖F

1− ‖A−1
K · (ÂK −AK)‖2

= Op(KT−
1
2 ). (62)

This completes the proof.

Finally, by the three terms of (37), Lemma 4, and Propositions 1–3, the proof of
Theorem 1 is as follows:

Proof of Theorem 1. By Lemma 4 and Propositions 1–3, we have

‖Â−1
K −A−1

K ‖2
2 · ‖�̂rK −�rK‖2

2 = Op(K3T−2),

‖Â−1
K −A−1

K ‖2
2 · ‖�rK‖2

2 = Op(K2T−1),

‖A−1
K ‖2

2 · ‖�̂rK −�rK‖2
2 = Op(KT−1).

Then,

‖m̂K −mK‖2 = Op(K3T−2) + Op(K2T−1) + Op(KT−1) = Op(K2T−1) (63)

under condition K = o(T
1
2 ). Furthermore, if m ∈ W(R+, r, B), Equation (35) follows from

Equation (34).

Remark 4. Suppose the conditions in Theorem 1. Then, by Equations (33) and (63), we have

‖m̂K −m‖2 = O(K−r) + Op(K2T−1).

We can minimize the error bound O(K−r) +Op(K2T−1) to find the optimal truncation

parameter, say mop, has Op(T−
1
2 ). (See Zhang and Su [43] and Su et al. [49].)

5. Numerical Illustration

In this section, we provide some numerical examples to show the performance of
our estimator when the observed sample size is finite. Throughout this section, we set
c = 1.5, λ = 2, β = 1, p = 0.5, and q = 0.5, and we consider the following three claim
density functions at the same time:

(1) Exponential density function: f+(x) = e−x, x > 0.
(2) Erlang (2) density function: f+(x) = 4xe−2x, x > 0.
(3) Combination-of-exponentials density function: f+(x) = 3e−1.5x − 3e−3x, x > 0.

As in Zhang [24], we estimate the following four classes of Gerber–Shiu functions:
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(1) Ruin probability (RP): w(x, y) ≡ 1, δ = 0.
(2) Laplace transform of ruin time (LT): w(x, y) ≡ 1, δ = 0.1.
(3) Expected claim size causing ruin (ECS): w(x, y) ≡ x + y, δ = 0.
(4) Expected deficit at ruin (ED): w(x, y) ≡ y, δ = 0.

Note that the assumptions of the above three claim density functions all satisfy μ1 = 1,
and through Equations (9) and (11), we can easily obtain the explicit formulae for the
above Gerber–Shiu functions by Laplace inversion. For exponential claim density function,
the explicit formulae for these Gerber–Shiu functions are given by

(1) m(u) = 0.46482e−0.53518u, u ≥ 0.
(2) m(u) = 0.43217e−0.56783u, u ≥ 0.
(3) m(u) = 1.8593e−0.53518u − e−u, u ≥ 0.
(4) m(u) = 0.46482e−0.53518u, u ≥ 0.

For Erlang (2) claim size, the explicit formulae for these Gerber–Shiu functions are
given by

(1) m(u) = 0.53387e−0.747u − 0.06037e−2.819u, u ≥ 0.
(2) m(u) = 0.50866e−0.764u − 0.06266e−2.816u, u ≥ 0.
(3) m(u) = 1.2575e−0.747u + 0.41249e−2.819u − e−2u, u ≥ 0.
(4) m(u) = 0.02046e−2.819u + 0.34454e−0.747u, u ≥ 0.

For combination-of-exponential claim size, the explicit formulae for these Gerber- Shiu
functions are given by

(1) m(u) = 0.49493e−0.707u − 0.04003e−30357u, u ≥ 0.
(2) m(u) = 0.48606e−0.746u − 0.04136e−3.352u, u ≥ 0.
(3) m(u) = 1.3522e−0.707u − 0.6667e−1.5u − 0.3333e−3u + 0.33879e−3.357u, u ≥ 0.
(4) m(u) = 0.35945e−0.707u + 0.01625e−0.3.357u, u ≥ 0.

Here, we consider T = 120, 180, 360. For the cut-off parameter K, we use the result of
Remark 4.1 in Su et al. [49] with K = �5T

1
10 �, where �·� means the integer part. Through

simulation, we find that even if the truncation parameter K is very small, the satisfactory
effect can be obtained. In the case of finite sample size, to test the performance of the
estimator, we consider mean value, mean relative error, and integrated mean square error
(IMSE) based on 300 experiments, which are computed by

1
300

300

∑
j=1

m̂K,j(u),
1

300

300

∑
j=1

m̂K,j(u)
m(u)

− 1,
1

300

300

∑
j=1

∫ 30

0
|m̂K,j(u)−m(u)|2du,

where m̂K,j(u) is the estimate of Gerber–Shiu function in the j-th experiment. For IMSE, we
computed the integral on the finite domain [0, 30] instead of [0, ∞], since when u is large,
both the true value and the estimates are very close to zero.

For Figure 1, we consider the comparison between the 30 estimated curves and the
value curves when T = 180 and the exponential claim size density. It is easily observed
that the estimated curves are close to each other and close to the true value curve, which
indicates that our estimation method has good stability. Next, in Figures 2 and 3, based on
300 experiments, we respectively show the mean value curves and true value curves of the
exponential claim size density and the combination-of-exponentials claim size density at
different observed intervals T. It is easy to see from the figure above that it is difficult to
distinguish the true value curves from the mean value curves when T is larger.
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Figure 1. Estimation of the Gerber–Shiu function for exponential density function: red line (true
values) and green lines (30 estimated curves) when T = 180. (a) Ruin probability; (b) Laplace
transform of ruin time; (c) expected claim size causing ruin; (d) expected deficit at ruin.

Figure 2. Estimation of the Gerber–Shiu function for exponential density function: mean curves.
(a) Ruin probability; (b) Laplace transform of ruin time; (c) expected claim size causing ruin; (d) ex-
pected deficit at ruin.
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Figure 3. Estimation of the Gerber–Shiu function for combination-of-exponentials density function:
mean curves. (a) Ruin probability; (b) Laplace transform of ruin time; (c) expected claim size causing
ruin; (d) expected deficit at ruin.

We also provide the situation of the mean relative error curves at the Erlang (2) claim
size density in Figure 4. It can be noted that (1) the mean relative error curves first increase
and then decrease with the increase in u; (2) when T is larger, the average relative error
curve is smaller. This fact can be explained as follows: (1) when the initial surplus u is small,
the true value m(u) as the denominator is large, which leads to a small mean relative error;
(2) with the increase in u, the true value m(u) decreases, so the mean relative error increases;
(3) as u continues to increase, the estimated value m̂K(u) as the numerator decreases faster
than the true value m(u) as the denominator, which makes the subsequent mean relative
error curve drop below zero level.

In addition, based on the above 300 repeated experiments, we give a series of IMSE val-
ues of Gerber–Shiu function estimation under three kinds of claim distribution assumptions
in Table 1. All the numerical experiments in this paper were completed in MATLAB. Taking
exponential density as an example, when T = 120, we completed 300 independent repeated
experiments in 176.06 s. For each claim density function, the IMSE of the Gerber–Shiu
function decreases as T increases. This conclusion also shows the stability of the estimation
method in this paper. Finally, we compare the Laguerre series expansion method with
FFT method used in Shimizu and Zhang [19]. The parameter setting of FFT is the same
as in Shimizu and Zhang [19]. First, we present the IMSE values for both methods in
Table 2, and we find that the Laguerre series expansion method can lead to smaller IMSEs
compared with the FFT method. Moreover, we set T = 120 and display the mean relative
error curves in Figure 5, and we find that the Laguerre series expansion method can yield
smaller mean relative errors.
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Table 1. IMSEs for the estimated Gerber–Shiu functions.

Claim Size T RP LT ECS ED

120 0.02167 0.00555 0.44172 0.01433
Exponential 180 0.01811 0.00304 0.42494 0.00682

360 0.01649 0.00181 0.39796 0.00468

120 0.00196 0.00707 0.22613 0.32025
Erlang (2) 180 0.00099 0.00153 0.16997 0.24374

360 0.00097 0.00023 0.13564 0.16738

120 0.00394 0.00192 0.02533 0.00501
Combination-of-exponentials 180 0.00271 0.00082 0.02261 0.00108

360 0.00205 0.00055 0.00163 0.00053

Figure 4. Estimation of the Gerber–Shiu function for Erlang (2) density function: mean relative error
curves. (a) Ruin probability; (b) Laplace transform of ruin time; (c) expected claim size causing ruin;
(d) expected deficit at ruin.

Table 2. IMSEs for the estimated Gerber–Shiu functions.

Claim Size T RP LT ECS ED

Laguerre 0.02167 0.00555 0.44172 0.01433Exponential FFT 0.02379 0.00613 0.47373 0.02041

Laguerre 0.00196 0.00707 0.22613 0.32025Erlang (2) FFT 0.00214 0.00813 0.24715 0.41079

Laguerre 0.00394 0.00192 0.02533 0.00501Combination-of-exponentials FFT 0.00424 0.00231 0.03141 0.00673
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Figure 5. Comparing with FFT method for Erlang (2) density function: mean relative error curves.
(a) Ruin probability; (b) Laplace transform of ruin time.

6. Conclusions

This paper introduces how to use the Laguerre series expansion method to estimate
the Gerber–Shiu function of the two-sided jumps risk model and gives the nonparametric
estimation of the corresponding ruin characteristic quantity. First, we prove that the Gerber–
Shiu function of the two-sided jumps risk model can be expanded by Laguerre series, then
Laguerre coefficient can be obtained by solving system of linear equations, and then the
unknown coefficients can be estimated based on sample information on claim numbers
and individual claim sizes. We derive the consistency property of this estimator when the
sample size is large. Finally, when the sample size is limited, we demonstrate the high
accuracy of the estimation method through numerical experiments. More importantly, it
should be noted that our methods are not limited to be applied to the two-sided jumps
risk model, but can be widely applied to other risk models in insurance. In addition,
the following studies could be extended to other mathematical methods and models.
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2010, 26, 575–586. [CrossRef]
8. Xie, J.; Zou, W. On the expected discounted penalty function for the compound Poisson risk model with delayed claims. Comput.

Appl. Math. 2011, 235, 2392–2404. [CrossRef]
9. Preischl, M.; Thonhauser, S. Optimal reinsurance for Gerber-Shiu functions in the Cramér-Lundberg model. Insur. Math. Econ.

2019, 87, 82–91. [CrossRef]
10. Li, S.; Lu, Y.; Sendova, K.P. The expected discounted penalty function: From infinite time to finite time. Scand. Actuar. J. 2019,

2019, 336–354. [CrossRef]
11. Wang, W.; Zhang, Z. Computing the Gerber-Shiu function by frame duality projection. Scand. Actuar. J. 2019, 4, 291–307.

[CrossRef]
12. Peng, X.; Su, W.; Zhang, Z. On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. J.

Ind. Manag. Optim. 2020, 16, 1967–1986. [CrossRef]
13. Wang, W.; Chen, P.; Li, S. Generalized expected discounted penalty function at general drawdown for Lévy risk processes. Insur.
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[CrossRef]
15. Shimizu, Y. Non-parametric estimation of the Gerber-Shiu function for the Winer-Poisson risk model. Scand. Actuar. J. 2012,

1, 56–69. [CrossRef]
16. You, H.; Cai, C. Nonparametric estimation for a spectrally negative Lévy process based on high frequency data. J. Comput. Appl.
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Dyn. Nat. Soc. 2019, 2019, 3607201. [CrossRef]

51. Su, W.; Yu, W. Asymptotically normal estimators of the Gerber-Shiu function in classical insurance risk model. Mathematics 2020,
8, 1638. [CrossRef]

52. Xie, J.; Yu, W.; Zhang, Z.; Cui, Z. Gerber-Shiu analysis in the compound Poisson model with constant inter-observation times.
Probab. Eng. Inf. Sci. 2022, 37, 324–356. [CrossRef]

53. Cheung, E.C.K.; Lau, H.; Willmot, G.E. ; Woo, J.K. Finite-time ruin probabilities using bivariate Laguerre series. Scand. Actuar. J.
2023, 2, 153–190. [CrossRef]

54. Dickson, D.C.M.; Hipp, C. On the time to ruin for Erlang(2) risk processes. Insur. Math. Econ. 2001, 29, 333–344. [CrossRef]
55. Li, S.; Garrido, J. On ruin for the Erlang(n) risk process. Insur. Math. Econ. 2004, 34, 391–408. [CrossRef]
56. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau

of Standards Applied Mathematics Series; Courier Corporation: North Chelmsford, MA, USA, 1964.
57. Bongioanni, B.; Torrea, J.L. What is a Sobolev space for the Laguerre function system? Stud. Math. 2009, 192, 147–172. [CrossRef]
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Abstract: This work investigates whether there uniquely exists a solution to the perturbed skew
diffusion process. We construct the solution by iteration and divide the whole time interval into
parts on which we disperse the perturbed skew diffusion process into two tractable portions, one
for perturbed diffusion process, the other for skew diffusion process. After this disposition, we only
focus on the process in each time interval. Noticing the continuity on every time interval boundaries
generalized by a sequence of stopping times, we acquire the main result of this paper as well as a
time change for the perturbed skew process.
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1. Introduction

This work documents the properties of the solution to the perturbed skew diffusion
process, which writes as

dXt = μ(Xt)dt + σ(Xt)dWt + αd max
0≤s≤t

Xs + (2p− 1)dL̂X
t (0), (1)

where W denotes a standard Brownian motion on a filtered complete probability space (Ω,
F , P) with respect to a filtration {Ft, t ≥ 0}, μ, σ are supposed to be globally Lipschitz, σ
satisfies additionally the Engelbert–Schimdt condition (Lemmas 2 and 3), α < 1, p ∈]0, 1[,
and the symmetric local time L̂X(0) is an increasing process starting from 0 ∈ R such that∫ t

0
1{Xs=0}dL̂X

s (0) = L̂X
t (0).

Brownian motion with skew point was first practiced by Itô and McKean [1] to describe
certain stochastic dynamics related to Feller’s classification. Later Walsh [2] researched the
skew Brownian motion with a discontinuous local time. Afterwards, the classical stochastic
differential equation (SDE) expression was established by Harrison and Shepp [3]. Then,
Le Gall [4] solved the process as a solution of generalized SDE with local time. Recently,
multiskewed Brownian motion was studied by Ramirez [5]. Before arriving at skew point,
skew Brownian motion just behaves as a standard Brownian motion. Once hitting skew
point, skew Brownian motion moves up and down with different probability, being p and
1− p, respectively. Note that skew Brownian motion reduces to standard Brownian motion
(reflected Brownian motion) when p = 0.5 (p = 0 or 1). Naturally, skew Brownian motion
is more flexible than Brownian motion. The reader may consult more details on recent
theoretical development and applications of skew Brownian motion in Lejay [6].

Based on this advantage, the skew diffusion process as a generalization of typical dif-
fusion processes has diverse applications, ranging from mathematical finance in Decamps
et al. [7] and Monte Carlo simulation schemes in Lejay and Martinez [8] to heterogeneous
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media in Freidlin and Sheu [9]. In this paper, the skew diffusion process satisfies the
following SDE

dZt = μ(Zt)dt + σ(Zt)dWt + (2p− 1)dL̂Z
t (0). (2)

Just as the skew diffusion process solving the SDE with the term of symmetric local
time, the perturbed diffusion process arises with the term of maximum

dUt = μ(Ut)dt + σ(Ut)dWt + αd max
0≤s≤t

Us. (3)

This version of perturbed process has attracted a crowd of scholars who have devoted
themselves to creating a rich literature (see e.g., Carmona, Petit, and Yor [10,11], Chaumont
and Doney [12,13], Le Gall and Yor [14,15] and Perman and Werner [16]). Lately, the
existence and pathwise uniqueness of the solution of the perturbed reflected process
and the doubly perturbed jump-diffusion processes have been practiced by Doney and
Zhang [17] and Hu and Ren [18], respectively.

In addition, classical models without skew point have recently failed to capture the
actual dynamics caused by more and more world events. It is easy in Figure 1 to observe
that from 2005 to 2017, the federal funds rate of America expresses a novel trend. The
rate approaches zero from 2008, then stays near zero until 2015. Evidently, a special level
governs such a trend and naturally should be taken into consideration in our setting.
Hence, we introduce skew diffusion process in our setting to show the mean-reverting and
bounded situation.

Figure 1. The federal funds rate from 2005 to 2017.

To our knowledge, because there are no previous works concerning the perturbed
skew diffusion process, we must handle with proving the properties of the solution defined
in Equation (1). However, it seems not easy to prove the result when both perturbed item
and skew item exist. To overcome this obstacle, we divide the whole time interval into
many parts, hence we are able to focus on the perturbed skew diffusion process in these
interval parts, instead of the whole interval. With this division, we disperse the perturbed
skew process into two tractable elements, perturbed diffusion process and skew diffusion
process, respectively. Then we give a clear proof by iteration on these time intervals. In the
meantime, we check the continuity in each time interval, which are generated by a sequence
of stopping times. Hence, the existence and uniqueness of solution to the perturbed skew
diffusion process is proved.

The remainder of our work is arranged as follows. In Section 2, we provide the
iteration lemma as well as prove existence and uniqueness of solution to the perturbed
diffusion process by means of this lemma. Section 3 puts forward the relevant analysis
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about the solution to skew diffusion with the help of signed measure. Section 4 deduces
the basic property of solution to the perturbed skew diffusion process and performs one
time change version for this process.

2. Perturbed Diffusion Process

This section answers the question of whether the solution to the perturbed diffusion
process Equation (3) uniquely exists.

Let {Wt, t ≥ 0} be a standard Brownian motion with respect to the filtration {Ft, t ≥ 0}
on a probability space (Ω, F , P). We consider the following SDE

Ut = U0 +
∫ t

0
μ(Us)ds +

∫ t

0
σ(Us)dWs + α max

0≤s≤t
Us, (4)

with the assumption that the coefficients of perturbed diffusion process satisfy the Lipschitz
continuous condition, i.e., for an existing constant b, the following inequalities hold:

|σ(u)− σ(v)| ≤ b|u− v|

and
|μ(u)− μ(v)| ≤ b|u− v|.

Before obtaining the result of the solution to the perturbed diffusion process, we show
a useful lemma.

Lemma 1. Suppose that there are two continuous functions Ut and Ht. If

Ut = Ht + α max
0≤s≤t

Us,

then
Ut = Ht +

α

1− α
max
0≤s≤t

Hs.

Proof. We write the equation into iteration for two steps,

Ut = Ht + α max
0≤s≤t

Us

= Ht + α max
0≤s≤t

[Hs + α max
0≤s1≤s

Us1 ]

= Ht + α max
0≤s≤t

[Hs + α max
0≤s1≤s

[Hs1 + α max
0≤s2≤s1

Us2 ]].

In order to establish the equality, we need two procedures, as follows.
First, we check the upper bound. It is obvious to see the maximum of the sum is less

than or equal to the sum of the maximum, that is

Ut = Ht + α max
0≤s≤t

[Hs + α max
0≤s1≤s

[Hs1 + · · · ]]
≤ Ht + α max

0≤s≤t
[Hs + α max

0≤s1≤t
[Hs1 + · · · ]]

= Ht + α max
0≤s≤t

[Hs + α max
0≤s≤t

[Hs + · · · ]]
= Ht + α max

0≤s≤t
Hs + α2 max

0≤s≤t
Hs + · · ·

= H(t) +
α

1− α
max
0≤s≤t

Hs.

Second, we check the lower bound, noticing the fact that for any two functions
P(t), Q(t),

max
0≤s≤t

{P(s) + max
0≤s1≤s

Q(s1)} ≥ max
0≤s≤t

{P(s) + Q(s)},
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Thus, we obtain

Ut = Ht + α max
0≤s≤t

[Hs + α max
0≤s1≤s

[Hs1 + α max
0≤s2≤s1

[Hs2 + · · · ]]]
≥ Ht + α max

0≤s≤t
[Hs + α[Hs + α max

0≤s2≤s
[Hs2 + · · · ]]]

≥ Ht + α max
0≤s≤t

[Hs + α[Hs + α[Hs + · · · ]]]

= H(t) +
α

1− α
max
0≤s≤t

Hs.

This proves the lemma.

The following theorem states the existence and uniqueness of the solution to the
perturbed diffusion process.

Theorem 1. Let U0 be a random variable which is independent of W and E[|U0|2] < ∞. Then, for
any fixed T > 0, there uniquely exists a continuous solution Ut (adapted with respect to Ft), t ≥ 0
to (4) satisfying E[ max

0≤s≤T
|Us|2] < ∞.

Proof. Set
U0

t =
U0

1− α
, 0 ≤ t < ∞.

Then, we denote by

Un+1
t = U0 +

∫ t

0
μ(Un

s )ds +
∫ t

0
σ(Un

s )dWs + α max
0≤s≤t

Un+1
s (5)

the unique continuous adapted solution to perturbed diffusion process with n ≥ 0. By
Lemma 1, set Ht = U0 +

∫ t
0 μ(Un

s )ds +
∫ t

0 σ(Un
s )dWs in Equation (5), we have

Un+1
t =

U0

1− α
+
∫ t

0
μ(Un

s )ds +
∫ t

0
σ(Un

s )dWs

+
α

1− α
max
0≤s≤t

[
∫ s

0
μ(Un

η )dη +
∫ s

0
σ(Un

η )dWη ]. (6)

With this iteration expression, as well as the Theorem 2.1 in Doney and Zhang [17], we
complete this proof.

Remark 1. In fact, Theorem 1 is borrowed from Doney and Zhang [17]. Because Equation (6) in
Doney and Zhang [17] is straightly provided, we present more details in Lemma 1.

3. Skew Diffusion Process

This section answers the question of whether the solution to the skew diffusion process
Equation (2) uniquely exists.

When p = 1 or 0 in Equation (2), the skew diffusion process degenerates into the
reflected diffusion process, and the existence and uniqueness of the solution to this reflected
diffusion has been studied by Lions and Sznitman [19]. Therefore, we only study the case
0 < p < 1.

To begin with, consider the stochastic equation with generalized drift as follows

Xt = X0 +
∫

R
L̂X

t (y)ν(dy) +
∫ t

0
b(Xs)dBs, (7)

in which B denotes a Brownian motion, L̂X is the symmetric local time of the unknown
process X, and ν(dy) signifies a signed measure. To help us prove the result, we need the
description in Engelbert and Schmidt [20]. Set Nf = {y ∈ R : f (y) = 0} and Ef = {y ∈ R :
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∫
G f−2(z)dz = +∞}, where G is any open set including y. Here, we introduce two useful

lemmas without proving them.

Lemma 2 (Theorem 4.35 in Engelbert and Schmidt [20]). There exist three equivalent conclu-
sions as follows:
(a) There exists a fundamental solution X to Equation (7).
(b) There exists a solution X to Equation (7).
(c) Eb ⊆ Nb.

Lemma 3 (Theorem 4.37 in Engelbert and Schmidt [20]). (a) The fundamental solution to
Equation (7) is unique.
(b) The solution to Equation (7) is unique if and only if the following condition is satisfied:
If Eb ⊆ Nb then Eb = Nb.

Remark 2. On page 153 in Engelbert and Schmidt [20], it states that “Firstly, we establish the
existence of a unique solution to Equation (7) which spends minimal time at the zeros of the diffusion
coefficient b. We call it fundamental solution. This solution is a strong MARKOV continuous
semimartingale up to the explosion time."

What follows next is the theorem to obtain the existence and uniqueness of the solution
to the skew diffusion process.

Theorem 2. Assume 0 < p < 1 if the coefficient σ �= 0 in Equation (2) satisfies the bounded
condition, i.e., there exists a constant M < +∞ such that for all open sets G containing x,∫

G 1/σ2(x)dx ≤ M and both coefficients μ, σ satisfy the Lipschitz condition. Then, there exists a
unique solution to Equation (2).

Proof. Define a signed measure by

ν(A) �
∫

A

μ(x)
σ2(x)

dx + (2p− 1)δ0(A),

where δ0(·) is the Delta function. By the occupation time formula in Equation (A3) (see
Appendix A), Equation (7) becomes

Z0 +
∫

R
L̂Z

t (y)ν(dy) +
∫ t

0
σ(Zs)dWs

=Z0 +
∫

R
L̂Z

t (y)
μ(y)
σ2(y)

dy +
∫

R
L̂Z

t (y)(2p− 1)δ0(dy) +
∫ t

0
σ(Zs)dWs

=Z0 +
∫ t

0

μ(Zs)

σ2(Zs)
d〈Z〉s + (2p− 1)L̂Z

t (0) +
∫ t

0
σ(Zs)dWs

=Z0 +
∫ t

0
μ(Zs)dZs + (2p− 1)L̂Z

t (0) +
∫ t

0
σ(Zs)dWs

=Zt.

Noticing that let M ∈ [1,+∞), we have a finite signed measure ν defined on B([−M, M]).
As the fundamental assumption in Engelbert and Schmidt [20], |ν({x})| ∈ [0, 1) holds. On
the other hand, because the coefficient σ satisfies the bounded condition, we know that the
set Eσ = {x ∈ R :

∫
G

1
σ2(x)dx = ∞} = ∅. Note that Nσ = {x ∈ R : σ(x) = 0} = ∅, then by

Lemmas 2 and 3, we prove the existence and uniqueness of solution to Equation (2), and
the solution (fundamental solution) is also a strong Markov process.
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4. Perturbed Skew Diffusion Process

With the last two sections devoted to obtaining the results of solutions to the per-
turbed diffusion process and skew diffusion process, respectively, this section answers the
question of whether the solution to the perturbed skew diffusion process in Equation (8)
uniquely exists.

Xt = x +
∫ t

0
μ(Xs)ds +

∫ t

0
σ(Xs)dWs + (2p− 1)L̂X

t (0) + α max
0≤s≤t

Xs, (8)

where the coefficients μ, σ, p, α, and W, L̂X(0) are the same in (1). Because there exists a
big difference under case x = 0 and x �= 0, we study them separately. What follows is the
main result.

Theorem 3. Let x( �= 0) be a random variable which is independent of W and E(|x|2) < ∞. There
exists a unique continuous solution to Equation (8).

Proof. Iterative technique is adopted to prove the solution property parallel to Le Gall and
Yor [15] and Doney and Zhang [17].

Set U0 to be the unique solution to the following equation:

U0
t = x +

∫ t

0
μ(U0

s )ds +
∫ t

0
σ(U0

s )dW0
s + α max

0≤s≤t
U0

s .

Obviously, such a unique solution to the perturbed diffusion process exists from Section 2.
Then, put T1 = inf{t ≥ 0, U0

t = 0}; we know T1 > 0, as x �= 0. Define Xt = U0
t and

L̂X
t (0) = L̂U

t (0) = 0 for t ∈ [0, T1] with W1
t = Wt+T1 −WT1 for t ∈ [0,+∞), as it is known

to all that W1
t denotes a standard Brownian motion independent of FT1 .

Next let us focus on the skew diffusion process⎧⎪⎨⎪⎩
V1

t =
∫ t

0 μ(V1
s )ds +

∫ t
0 σ(V1

s )dW1
s + (2p− 1)L̂V,1

t (0),
V1

0 = 0,
L̂V,1

0 (0) = 0,
∫ t

0 1{V1
s =0}dL̂V,1

s (0) = L̂V,1
t (0).

(9)

It is known that such a unique solution exists from Section 3.
In general, assume that X has been defined in the time interval t ∈ [0, T2n−1]. We

establish X for T2n−1 ≤ t ≤ T2n+1, n ≥ 1, as follows.
First, suppose V2n−1 to be the solution to the skew diffusion process:⎧⎪⎨⎪⎩

V2n−1
t =

∫ t
0 μ(V2n−1

s )ds +
∫ t

0 σ(V2n−1
s )dW2n−1

s + (2p− 1)L̂V,2n−1
t (0),

V2n−1
0 = 0,

L̂V,2n−1
0 (0) = 0,

∫ t
0 1{V2n−1

s =0}dL̂V,2n−1
s (0) = L̂V,2n−1

t (0),

where W2n−1
t = Wt+T2n−1 −WT2n−1 . It should be noted that L̂V,2n−1(0) stands for the

symmetric local time of V2n−1 at 0 for all n ≥ 1. Put T2n = inf{t > T2n−1; V2n−1
t−T2n−1

=

max
0≤s≤T2n−1

Xs} and for T2n−1 ≤ t ≤ T2n, define

{
Xt = V2n−1

t−T2n−1
,

L̂X
t (0) = L̂X

T2n−1
(0) + L̂V,2n−1

t−T2n−1
(0).

(10)

Second, suppose U2n be the solution to the perturbed diffusion process:

U2n
t = (1− α)XT2n +

∫ t

0
μ(U2n

s )ds +
∫ t

0
σ(U2n

s )dW2n
s + α max

0≤s≤t
U2n

s ,
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with W2n
t = Wt+T2n −WT2n . It should be pointed out that XT2n in the above perturbed

diffusion process is known and is exactly equal to max
0≤s≤T2n−1

Xs. Put T2n+1 = inf{t >

T2n; U2n
t−T2n

= 0} and for T2n ≤ t ≤ T2n+1, define{
Xt = U2n

t−T2n
,

L̂X
t (0) = L̂U,2n

T2n
(0).

(11)

By this construction, we obtain a line of nondecreasing stopping times Tn, n ≥ 0. We
put 0 = T0 and T = lim

n→∞
Tn. Then, X is a continuous process defined on the time interval

[0, T] and T is also a stopping time. At this rate, our aim is to show that X defined by
the above construction satisfies Equation (8) for T2n ≤ t ≤ T2n+1, n = 0, 1, 2, ...,. First,
we show the continuity for X on the time interval boundary. To see this, we show the
following equalities.

If X satisfies Equation (10), we obtain⎧⎨⎩ XT2n−1 = V2n−1
T2n−1−T2n−1

= V2n−1
0 = 0,

XT2n = V2n−1
T2n−T2n−1

= max
0≤s≤T2n−1

Xs.

If X satisfies Equation (11), we have{
XT2n+1 = U2n

T2n+1−T2n
= 0,

XT2n = U2n
T2n−T2n

= U2n
0 = XT2n = max

0≤s≤T2n−1
Xs.

Noticing the value of X at the time interval boundaries (Tn, n ≥ 0), the continuity
property follows.

Now, we show that X is the unique solution to Equation (8). For n = 0, e.g., 0 ≤ t ≤ T1,
we know that X is defined by

Xt = U0
t .

Recall the definition that L̂X
t (0) = L̂U

t (0) = 0 for 0 ≤ t ≤ T1, hence

Xt = (1− α)X0 +
∫ t

0
μ(U0

s )ds +
∫ t

0
σ(U0

s )dW0
s + α max

0≤s≤t
U0

s

= (1− α)U0
0 +
∫ t

0
μ(U0

s )ds +
∫ t

0
σ(U0

s )dW0
s + α max

0≤s≤t
U0

s + (2p− 1)L̂X
t (0)

= x +
∫ t

0
μ(U0

s )ds +
∫ t

0
σ(U0

s )dWs + α max
0≤s≤t

U0
s + (2p− 1)L̂X

t (0). (12)

We conclude that X is the solution to the perturbed skew diffusion process in 0 ≤ t ≤ T1.
Then, for n = 1, i.e., T1 ≤ t ≤ T2, X is defined by

Xt = V1
t−T1

.

It is easy to derive

Xt =
∫ t−T1

0
μ(V1

s )ds +
∫ t−T1

0
σ(V1

s )dW1
s + (2p− 1)L̂V,1

t−T1
(0)

= XT1 +
∫ t−T1

0
μ(V1

s )ds +
∫ t−T1

0
σ(V1

s )dW1
s + (2p− 1)L̂V,1

t−T1
(0)

= x +
∫ t

0
μ(Xs)ds +

∫ t

0
σ(Xs)dWs + (2p− 1)L̂X

t (0) + α max
0≤s≤T1

Xs

= x +
∫ t

0
μ(Xs)ds +

∫ t

0
σ(Xs)dWs + (2p− 1)L̂X

t (0) + α max
0≤s≤t

Xs,
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where we use the following facts: max
0≤s≤T1

Xs = max
0≤s≤t

Xs for T1 ≤ t ≤ T2, XT1 = 0, substitute

T1 for t in Equation (12), and the definition by Equation (10). Furthermore, if T1 ≤ t ≤ T2,
we also derive∫ t

0
1{Xs=0}dL̂X

s (0) =
∫ t

T1

1{Xs=0}dL̂V,1
s−T1

(0) =
∫ t−T1

0
1{V1

u =0}dL̂V,1
u (0) = L̂V,1

t−T1
(0) = L̂X

t (0).

Thus, we obtain the solution to the perturbed skew diffusion process for 0 ≤ t ≤ T2. In
general, assume that we establish the solution X to Equation (8) at the time interval [0, T2n].
When T2n ≤ t ≤ T2n+1, from the definition, X takes the form of

Xt = U2n
t−T2n

,

which leads to

Xt = (1− α)XT2n +
∫ t−T2n

0
μ(U2n

s )ds +
∫ t−T2n

0
σ(U2n

s )dW2n
s + α max

0≤s≤t−T2n
Us

= (1− α)(x +
∫ T2n

0
μ(Xs)ds +

∫ T2n

0
σ(Xs)dWs + (2p− 1)L̂X

T2n
(0) + α max

0≤s≤T2n
Xs)

+
∫ t−T2n

0
μ(U2n

s )ds +
∫ t−T2n

0
σ(U2n

s )dW2n
s + α max

0≤s≤t−T2n
Us

= x +
∫ T2n

0
μ(Xs)ds +

∫ T2n

0
σ(Xs)dWs + (2p− 1)L̂X

T2n
(0) + α max

0≤s≤T2n
Xs − αXT2n

+
∫ t−T2n

0
μ(U2n

s )ds +
∫ t−T2n

0
σ(U2n

s )dW2n
s + α max

0≤s≤t−T2n
Us

= x +
∫ t

0
μ(Xs)ds +

∫ t

0
σ(Xs)dWs + (2p− 1)L̂X

t (0) + α max
0≤s≤t

Xs,

Note that XT2n = max
0≤s≤t−T2n−1

Xs, and max
0≤s≤T2n

Xs = max
0≤s≤t−T2n−1

Xs, the expression

max
T2n≤s≤t

Xs = max
0≤s≤t

Xs holds.

Then, X satisfies the equation Equation (8) for T2n ≤ t ≤ T2n+1. In addition, from the
definition of stopping times Tn, we see Xt �= 0, t ∈ [T2n, T2n+1), implying

L̂X
t (0) =

∫ t

0
1{Xs=0}dL̂X

s (0) =
∫ T2n

0
1{Xs=0}dL̂X

s (0) = L̂X
T2n

(0).

In a similar way, we can show the solution X for T2n+1 ≤ t ≤ T2n+2 as well.
Lastly, we prove T = ∞, a.s. With the definition of T2n+1, we have

XT2n+1 = 0.

We can also write XT2n+1 by

XT2n+1 = XT2n+1 + XT2n − XT2n

= max
0≤s≤T2n

Xs +
∫ T2n+1

T2n

μ(Xs)ds +
∫ T2n+1

T2n

σ(Xs)dWs

+ α( max
0≤s≤T2n+1

Xs − max
0≤s≤T2n

Xs) + (2p− 1)(L̂T2n+1(0)− L̂T2n(0)).

Suppose T < ∞ a.s. with positive probability and let n → ∞; we have max
0≤s≤T

Xs = XT2n+1 = 0,

which contradicts the definition of X0 = x
1−α �= 0.

On the other hand, the construction of the processes in every time intervals gives the
uniqueness of the solution, and such a solution is unique in the whole time interval. We
complete the proof.
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Theorem 4. Suppose x = 0, if 0 ≤ α < 1
2 and the coefficient σ satisfies the bounded condition

in the previous section (Theorem 2, Section 3), then there exists a unique continuous solution to
Equation (8).

Proof. We want to use the iteration scheme. Set X0
t = 0, and {Xn+1

t }n≥0 satisfies

Xn+1
t =

∫ t

0
μ(Xn

s )ds +
∫ t

0
σ(Xn

s )dWs + (2p− 1)L̂X,n+1
t (0) + α sup

0≤s≤t
Xn+1

s . (13)

By the reflection principle,

L̂X,n+1
t (0) = − inf

s≤t

{( ∫ s

0
μ(Xn

u)du +
∫ s

0
σ(Xn

u)dWu + α sup
0≤u≤s

Xn+1
u
) ∧ 0

}
. (14)

Now, Equations (13) and (14) lead to

|Xn+1
t − Xn

t | ≤
∣∣ ∫ t

0
(μ(Xn

s )− μ(Xn−1
s ))ds

∣∣+ ∣∣ ∫ t

0
(σ(Xn

s )− σ(Xn−1
s ))dWs

∣∣
+ α| sup

0≤s≤t
Xn+1

s − sup
0≤s≤t

Xn
s |+ (2p− 1)|L̂X,n+1

t (0)− L̂X,n
t (0)|.

As a result,

sup
s≤t
|Xn+1

s − Xn
s | ≤

2p
1− 2αp

sup
s≤t

∣∣ ∫ s

0
(μ(Xn

u)− μ(Xn−1
u ))du

∣∣
+

2p
1− 2αp

sup
s≤t

∣∣ ∫ s

0
σ(Xn

u)− σ(Xn−1
u )dWu

∣∣.
By Burkholder’s inequality,

E
[

sup
s≤t
|Xn+1

s − Xn
s |2
] ≤ Cα,pE

[ ∫ t

0
(σ(Xn

s )− σ(Xn−1
s ))2ds

]
≤ Cα,pE

[ ∫ t

0
(Xn

s − Xn−1
s )2ds

]
.

Thus, we deduce that for any fixed T > 0,

E
[

sup
s≤T

|Xn+1
s − Xn

s |2
] ≤ (Cα,p,T)

n

n!
,

which yields

P
[

max
0≤s≤T

|Xn+1
s − Xn

s | >
1
2n

] ≤ (4Cα,p,T)
n

n!
.

With the lemma of Borel–Cantelli, we can deduce that Xn → X on [0, T] a.s. We can
also obtain the convergence property of

∫ t
0 μ(Xn

s )ds +
∫

σ(Xn
s )dWs a.s. Accordingly, in

Equation (13), it is seen that L̂X,n(0) performs the convergence property to some nonde-
creasing process L̂X(0). Lastly, we have the fact that

L̂X
t (0) = lim

n→∞
L̂X,n

t (0) = lim
n→∞

∫ t

0
1{Xn

s =0}dL̂X,n
s (0) =

∫ t

0
1{Xs=0}dL̂X

s (0).
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Indeed, for any f ∈ C0(0,+∞),
∫ t

0 f (Xs)dL̂X
s (0) = lim

n→∞

∫ t
0 f (Xn

s )dL̂X,n
s (0) holds. Then, we

turn to proving the uniqueness of the solution. Using a similar way as the one above, let
X1 and X2 be two solutions to Equation (13); we find

E[sup
s≤t
|X1

s − X2
s |2] ≤ Cα,pE[

∫ t

0
(X1

u − X2
u)

2du].

By Gronwall’s inequality, it is obvious that X1
t = X2

t . Thus, we complete the proof.

To further explore the time change in the perturbed skew process, we provide the
next corollary.

Corollary 1. Set T0 = 0 and X0 = x. Define Ti(t) = inf{t > Ti−1, Xt > XTi−1}, i ≥ 1 with
T∞(t) = ∞. Define a new process Yt = XTi(t), then Y is a continuous skew diffusion process.
Furthermore, {Ti(t), i ≥ 0} form a sequence of stopping times.

Proof. It is obvious to see that {Ti(t), i ≥ 0} are stopping times depending on t, and for
each time interval [Ti−1(t), Ti(t)] it follows that

max
Ti−1(t)≤s≤Ti(t)

Xs = max
0≤s≤Ti(t)

Xs = XTi(t),

where the last equality comes from the apparent relationships

0 = T0(t) < T1(t) < · · · < T∞(t) = ∞,

and
x = X0 < XT1(t) < · · · < XT∞(t) = ∞.

Then, rewrite Equation (8) by

(1− α)XTi(t) = x +
∫ Ti(t)

0
μ(Xs)ds +

∫ Ti(t)

0
σ(xs)dWs + (2p− 1)L̂X

Ti(t)
(0).

We conclude that Yt = (1− α)XTi(t) is a continuous-time skew diffusion after this time
change, and we prove this corollary.

5. Conclusions and Summary

In this work, we consider a novel dynamic called the perturbed skew diffusion process.
Such a process contains perturbed and skew phenomena. Perturbed phenomenon means
that the model will reflect the maximum of the model in the past time, while the skew
phenomenon reflects different probabilities of the upward and downward movement by
p and 1− p, respectively. We first prove the existence and uniqueness of the solution to
the perturbed skew diffusion process. The idea is to disperse the perturbed skew diffusion
process into the perturbed diffusion and skew diffusion processes, respectively. To learn
more construction about this model, we study the relation between the perturbed skew
diffusion process and skew diffusion process. In the future, perturbed skew diffusion may
be applied to lookback options. Lookback options are options where the return depends
not only on the strike price of the underlying asset but also on the highest or lowest price
of the underlying asset over the life of the option. As with many exotic options, the payoff
structure of a lookback option is related to the maximum or minimum value reached by
the underlying asset price during the term of the contract. Lookback options are also path-
dependent options, which enable the holder to execute an option at the most beneficial
price of the underlying dynamic during the term of an option. A benefit from this exotic
option is that the investor can “look back" or have retrospect on the underlying setting
of such an option after getting into a long or short position, and then they can seek to
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maximize the value of the options. In summary, perturbed phenomena may help investors
know the past maximum dynamics, hence maximizing their benefits.
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Appendix A

Let (Ω,F , P) be a probability space. Denote by a continuous semimartingale {Xt,Ft; 0 ≤
t ≤ ∞} an adapted process which can uniquely be expressed by

Xt = X0 + Mt + Vt.

Mt writes on a continuous martingale (M0 = 0), and Vt is an adapted bounded variation
process with continuous sample trajectory (V0 = 0).

We borrow a similar expression of local times with respect to X in Protter [21]. Denote
by sign(y) the sign function as follows

sign(y) =
{

1, y > 0,
−1, y ≤ 0,

and provide the local time with respect to X defined by

1
2

LX
t (β) = (Xt − β)+ − (X0 − β)+ −

∫ t

0
1(β,+∞)(Xs)dXs,

1
2

LX
t (β) = (Xt − β)− − (X0 − β)− +

∫ t

0
1(−∞,β](Xs)dXs,

LX
t (β) = |Xt − β| − |X0 − β| −

∫ t

0
sign(Xs − β)dXs.

Denote by LX
t (β) (resp. LX

t (β−)) the local time (resp. left local time) for Xt, where
LX(β−) = limc→β,c<β LX(c). Then, the symmetric local time for X at the point β takes the
following form

L̂X
t (β) =

LX
t (β) + LX

t (β−)
2

, (A1)

Pβ-a.s. for every β ∈ R. It is a continuous increasing process in t and is constant on any
interval on which Xt �= β.

Suppose that f is a function whose left and right derivatives are denoted by f ′+ and
f ′− and the second derivative measure μ (μ can be viewed as a general second differential
measure of f (μ = f

′′
in much of the literature)). Then, from the Meyer–Tanaka formula

(see also Salins and Spiliopoulos [22]), we have:

f (Xt) = f (X0) +
1
2

∫ t

0
[ f
′
+(Xs) + f

′
−(Xs)]dXs +

1
2

∫
R

L̂X
t (y)μ(dy). (A2)
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Here, μ has the properties μ((a, b]) = f
′
+(b)− f

′
+(a) and μ({x}) = lima↑x μ((a, x]).

We have almost surely, for every t ≥ 0 and every non-negative measurable function ϕ
on R, ∫ t

0
ϕ(Xs)d〈X, X〉s =

∫
R

ϕ(a)LX
t (a)da. (A3)

For more details on symmetric local time, we refer the reader to Karatzas and Shreve [23]
and Revuz and Yor [24]).
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Abstract: The present work concerns the finite-time ruin probabilities for several bidimensional risk
models with constant interest force and correlated Brownian motions. Under the condition that the
two Brownian motions {B1(t), t ≥ 0} and {B2(t), t ≥ 0} are correlated, we establish new results for
the finite-time ruin probabilities. Our research enriches the development of the ruin theory with
heavy tails in unidimensional risk models and the dependence theory of stochastic processes.

Keywords: bidimensional perturbed risk model; correlated brownian motions; finite-time ruin
probability; heavy-tailed risk model; interest force

MSC: 60H05

1. Introduction

In traditional studies, many researchers have investigated ruin probability problems of
insurers under unidimensional models. For example, ref. [1] studied ruin probability prob-
lems with constant interest force. Other studies about these problems can be found in [2–5].
An assumption behind these models is that the insured businesses homogeneous and can
be described by a unidimensional model; however, this assumption is too strong. Thus,
bidimensional or multidimensional insurance risk models have received growing interest in
recent years, such as [6–8]. Various assumptions have been considered regarding the claim
arrival process and the distribution of claim amounts; see, e.g., [9–12]. Ref. [13] considered
finite-time ruin probabilities for nonstandard bidimensional renewal risk models with
constant interest forces and diffusion generated by Brownian motions; they assumed that
the two Brownian motions {B1(t), t ≥ 0} and {B2(t), t ≥ 0} are mutually independent.
Similar results were obtained by [14], although they considered dependent subexponential
claims. More papers can be found in [15,16], and the references therein. In this paper, we
consider uniform asymptotics for the finite-time ruin probabilities for several bidimensional
risks models with constant interest force and correlated Brownian motions, meaning that
the businesses of the insurer have a relationship with each other. We introduce risk models
and different types of ruin times with corresponding ruin probabilities as follows.

The bidimensional risk model �U(t) = (U1(t), U2(t))τ is the surplus vector of an
insurance company at time t ≥ 0; in this paper, we state this formally as

Ui(t) = uiert +
∫ t

0
er(t−s)dCi(s)−

∫ t

0
er(t−s)dSi(s) + σi

∫ t

0
er(t−s)dBi(s), t ≥ 0, (1)

where �u = (u1, u2)
τ stands for the initial surplus vector and �C(t) = (C1(t), C2(t))τ for

the total premiums received up to time t; here, {C1(t), t ≥ 0}, {C2(t), t ≥ 0} are mu-
tually independent. Moreover, r ≥ 0 stands for the interest rate and (S1(t), S2(t)) =
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(∑
N1(t)
i=1 X1i, ∑

N2(t)
i=1 X2i) for the total amount of claims vector up to time t. Here, �Xi =

(X1i, X2i)
τ , i = 1, 2, · · · denote pairs of claims with arrival times that constitute a count-

ing process vector {�N(t), t ≥ 0}, where �N(t) = (N1(t), N2(t)), while {N1(t), t ≥ 0},
{N2(t), t ≥ 0} are mutually independent. The process {Ni(t), t ≥ 0} is a Poisson pro-
cess with intensity λi > 0, and {�Xi, i = 1, 2, · · · } is a sequence of independent copies
of the random pair �X = (X1, X2)

τ with the joint distribution function F(x1, x2) and the
marginal distribution functions F1(x1) and F2(x2). For all vectors, the �Xis and �C consist of
only non-negative components �C(0) = (0, 0)τ . Moreover, each Ci(t) is a non-decreasing
and right-continuous stochastic process. The vector �B(t) = (B1(t), B2(t))τ denotes a stan-
dard bidimensional Brownian motion with a constant correlation coefficient ρ ∈ [−1, 1],
while σ1 ≥ 0 and σ2 ≥ 0 are constants. For simplicity, we assume that {�Xi, i = 1, 2, · · · },
{�N(t), t ≥ 0} and {�C(t), t ≥ 0} are independent and that both of them are independent
of {�B(t), t ≥ 0}. To avoid the certainty of ruin in each class, we assume that the following
safety loading conditions hold when r = 0:

ECi(t)− λiEXi1 > 0, i = 1, 2.

In this paper, we consider the following four types of ruin probabilities. For a finite
horizon T > 0, we define

ψmax(�u, T) = P(Tmax ≤ T|�U(0) = �u), (2)

where
Tmax = inf{t > 0|max{U1(t), U2(t)} < 0};

ψmin(�u, T) = P(Tmin ≤ T|�U(0) = �u), (3)

where
Tmin = inf{t > 0|min{U1(t), U2(t)} < 0};

and
ψsum(�u, T) = P(Tsum ≤ T|�U(0) = �u), (4)

where
Tsum = inf{t > 0|U1(t) + U2(t) < 0};

ψand(�u, T) = P(Tand ≤ T|�U(0) = �u), (5)

where Tand = max{T1, T2} and

Ti = inf{t > 0|Ui(t) < 0 for some 0 ≤ t ≤ T), i = 1, 2,

with inf ∅ = ∞ by convention.
We remark that the probability in (2) denotes the probability of ruin occurring when

both U1(t) and U2(t) are below zero at the same time within finite time T > 0, the proba-
bility in (3) denotes the probability of ruin occurring when at least one of {Ui(t), i = 1, 2}
is below zero within finite time T > 0, the probability in (4) denotes the probability of ruin
occurring when the total of U1(t) and U2(t) is negativ within finite time T > 0, and the
probability in (5) denotes the probability of ruin occurring when both U1(t) and U2(t) are
below zero, not necessarily simultaneously, within a finite time T > 0. Tand represents a
more critical time than Tmax, and the ruin probability defined by Tsum is reduced to that
in the unidimensional model. The following relation between the four ruin probabilities
defined above holds:

ψmax(�u, T) ≤ ψand(�u, T) ≤ ψmin(�u, T), ψsum(�u, T) ≤ ψmin(�u, T),
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and

ψmin(�u, T) + ψand(�u, T) = P(T1 ≤ T|U1(0) = u1) + P(T2 ≤ T|U2(0) = u2). (6)

The rest of this paper is organized as follows. In Section 2 we review the related results
after briefly introducing preliminaries about heavy-tailed distributions, in Section 3 we
provide several important definitions and lemmas, and the main results and the proof
procedure are presented in Section 4.

2. Review of Related Results

Unless otherwise stated herein, all limit relations are for (u1, u2)→ (∞, ∞). We denote
a � b and a � b if lim sup a/b ≤ 1 and lim sup a/b ≥ 1, respectively, and a ∼ b if both,
where, a(·, ·) and b(·, ·) are two positive functions. Let F1 ∗ · · · ∗ Fn be the convolution of
the distributions F1, · · · , Fn and let F∗n denote the n-fold convolution of a distribution F.

In this section, we review definitions and properties that are relevant to the results of
this paper, considering only the case of the distribution of heavy-tail claims. An r.v. X or
its d.f. F(x) = 1− F(x) satisfying F(x) > 0 for all x ∈ (−∞, ∞) is called heavy-tailed to
the right, or simply heavy-tailed, if E[eγX ] = ∞ for all γ > 0. In the following, we recall
several important classes of heavy-tailed distributions.

F is a long tailed distribution, written as F ∈ L, if lim
x→∞

F(x−t)
F(x)

= 1 holds for some t > 0.

Note that the convergence is uniform over t in compact intervals. If lim
x→∞

F∗n(x)
F(x)

= n holds

(n = 2, 3, · · · ), then F is a subexponential distribution on (0, ∞), written as F ∈ S . For

some 0 < t < 1, if lim sup
x→∞

F(tx)
F(x)

< ∞ holds, F is said to have a dominatedly varying tailed

distribution, written as F ∈ D. We call F a consistently varying tailed distribution, written
as F ∈ C, if

lim
t↓1

lim inf
x→∞

F(tx)
F(x)

= 1, or equivalently if lim
t↑1

lim sup
x→∞

F(tx)
F(x)

= 1

holds. A distribution F is extended regularly-varying tailed, written as F ∈ ERV(−α,−β)

for some 0 ≤ α ≤ β < ∞, if s−β ≤ lim inf
x→∞

F(sx)
F(x)

≤ lim sup
x→∞

F(sx)
F(x)

≤ s−α holds for s ≥ 1.

It is obvious that the following formula holds:

ERV(−α,−β) ⊂ C ⊂ D ∩ L ⊂ S ⊂ L.

There are many other references to heavy-tailed distributions; readers may refer
to [17–22] among others.

The asymptotic behavior of the finite-time ruin probability of bidimensional or multi-
dimensional risk models has previously been investigated by [23]. They proved that under
the conditions F1, F2 ∈ S , N1(t) = N2(t), and σ1 = σ2 = 0, it is the case that r > 0 and the
claim vector �X consist of independent components

ψmax(�u; T) ∼ λ(λ + 1
T )

r2

∫ u1erT

u1

F1(y)
y

dy
∫ u2erT

u2

F2(y)
y

dy, as (u1, u2)→ (∞, ∞).

Under the conditions F1, F2 ∈ S , r = 0, and N1(t) = N2(t), it is the case that Ci(·) are
deterministic linear functions, and both the claim vector �X and the bidimensional Brownian
motion �B consist of independent components. Li et al. [12] found that for each fixed time
T > 0,

ψmax(�u; T) ∼ λT(1 + λT)F1(u1)F2(u2), as (u1, u2)→ (∞, ∞).

Chen et al. [11] investigated the uniform asymptotics of ψand(�u, T) and ψmin(�u, T) for
an ordinary renewal risk model with the claim amounts belonging to the consistently vary-
ing tailed distributions class for large T. Zhang and Wang [24] considered model (1) with
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r = 0 and assumed that all sources of randomness, {X1k, k = 1, 2, · · · }, {X2k, k = 1, 2, · · · },
{N1(t) = N2(t), t ≥ 0}, {B1(t), t ≥ 0} and {B2(t), t ≥ 0} are mutually independent. They
obtained that if F1, F2 ∈ EVR(−α,−β) for some 0 < α ≤ β < ∞, then, for each fixed time
T ≥ 0,

ψmax(�u; T) ∼ λT(1 + λT)F1(u1)F2(u2), as (u1, u2)→ (∞, ∞).

The analogous result for multidimensional risk models can be found in Asmussen and
Albrecher [17].

3. Some Lemmas

Before providing the main results, we first provide several lemmas.

Lemma 1. If F ∈ S , then for each ε > 0 there exists some constant Cε > 0 such that the inequality

F∗n(x) ≤ Cε(1 + ε)nF(x)

holds for all n = 1, 2, · · · and x ≥ 0.

Proof. See Lemma 1.3.5 of Embrechts et al. [25].

Lemma 2. Let G1 and G2 be two distribution functions. If G1 ∈ S and G2(x) = o(G1(x)), then
we have G1 ∗ G2(x) ∼ G1(x) as x → ∞.

Proof. See Proposition 1 of Embrechts et al. [25].

Lemma 3. Consider a unidimensional risk model

Ui(t) = ui + Ci(t)− Si(t) + σiBi(t), t ≥ 0, i = 1, 2. (7)

If Fi ∈ S , then the ruin probability with finite-horizon T satisfies

ψi(ui; T) = P(Ui(t) < 0 for some t ≤ T|Ui(0) = ui) ∼ λTFi(ui), ui → ∞.

Proof. Clearly, on the one hand,

ψi(ui; T) ≥ P(Si(T) ≥ ui + Ci(T) + σi sup
0≤t≤T

Bi(t))

=
∫ ∞

0
P(Si(T) ≥ ui + Ci(T) + σiz)dP( sup

0≤t≤T
Bi(t)) ≤ z)

= P(Si(T) ≥ ui)
∫ ∞

0

∫ ∞

0

P(Si(T) ≥ ui + li + σiz)
P(Si(T) ≥ ui)

dP( sup
0≤t≤T

Bi(t)) ≤ z)

×dP(Ci(T) ≤ li)

∼ P(Si(T) ≥ ui), (8)

where we have used the fact that P(Si(T) ≥ ui + li + σiz) ≤ P(Si(T) ≥ ui) and the
dominated convergence theorem.

On the other hand,

ψi(ui; T) ≤ P(Si(T) + σi sup
0≤t≤T

(−Bi(t)) ≥ ui)

∼ P(Si(T) ≥ ui), (9)

where we have used Lemma 2 and the fact that

P(σi sup
0≤t≤T

(−Bi(t)) ≥ ui) = o(P(Si(T) ≥ ui)).
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Per Lemma 1 and dominated convergence theorem, we have

P(Si(T) ≥ ui) ∼ Fi(ui)
∞

∑
n=1

nP(N(T) = n) = λTFi(ui), as ui → ∞.

The result follows from (8) and (9).

Lemma 4. Consider a unidimensional risk model

Ui(t) = uiert +
∫ t

0
er(t−s)Ci(ds)−

∫ t

0
er(t−s)dSi(s) + σi

∫ t

0
er(t−s)dBi(s), t ≥ 0, i = 1, 2.

If Fi ∈ S , then the ruin probability with finite-horizon T satisfies

ψi(ui; T) = P(Ui(t) < 0 for some t ≤ T|Ui(0) = ui) ∼ λ

r

∫ uierT

ui

Fi(y)
y

dy, ui → ∞.

Proof. By simply modifying the proof of Lemma 3, we have

ψi(ui; T) ∼ P

(
N(T)

∑
j=1

Xije
−rτj ≥ ui

)
∼ λ

∫ T

0
P(Xi1e−rz > ui)dz, ui → ∞,

where in the last step we use (28) from [26]. Here, τj are the arrival times of the Poisson
process N(t). In fact,

z =
1
r

log
y
ui

,

and we have that

dz = d
(

1
r

log
y
ui

)
=

1
r
· ui

y
· 1

ui
dy =

1
ry

dy.

Then,

λ
∫ T

0
P(Xi1 > uierz)dz =

λ

r

∫ uierT

ui

Fi(y)
y

dy.

Upon a trivial substitution, the required result is implied.

Definition 1.

(i) Two processes {X1(t); t ≥ 0} and {X2(t); t ≥ 0} are said to be positively associated if

Cov( f (X1(t1), X2(t2)), g(X1(t1), X2(t2))|X1(0) = x1, X2(0) = x2) ≥ 0

for all non-decreasing real valued functions f and g such that covariance exists, all t1, t2 ≥ 0,
and all x1, x2 ∈ R.

(ii) Two processes {X1(t); t ≥ 0} and {X2(t); t ≥ 0} are said to be negatively associated if

Cov( f (X1(t1)), g(X2(t2))|X1(0) = x1, X2(0) = x2) ≤ 0,

for all non-decreasing real valued functions f and g such that covariance exists, all t1, t2 ≥ 0,
and all x1, x2 ∈ R.

Definition 2. Two processes {X1(t); t ≥ 0} and {X2(t); t ≥ 0} are said to be positively (nega-
tively) quadrant-dependent if

P(X1(t1) > y1, X2(t2) > y2|X1(0) = x1, X2(0) = x2)

≥ (≤)P(X1(t1) > y1|X1(0) = x1)P(X2(t2) > y2|X2(0) = x2) (10)

for all t1, t2 ≥ 0 and for all y1, y2, x1, x2 ∈ R.
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It is well known (cf. Ebrahimi [27]) that (X1(t), X2(t)) being positively (negatively) associated
implies that X1(t) and X2(t) are positively (negatively) quadrant-dependent.

Let �B(t) = (B1(t), B2(t))τ be a standard bidimensional Brownian motion with constant correlation
coefficient ρ ∈ (−1, 1). For notional convenience, for t ≥ 0 we write Bi(t) = inf0≤s≤t Bi(s), Bi(t) =
sup0≤s≤t Bi(s), i = 1, 2. It is well known that P(Bi(t) < −x) = P(Bi(t) > x) = 2P(Bi(t) > x)
for x > 0. The following lemma is essential to proving our main results. Moreover, it is of
independent interest.

Lemma 5. For any x1 > 0, x2 > 0, if ρ ∈ [0, 1), then

P(B1(t) > x1, B2(t) > x2) ≥ P(B1(t) > x1)P(B2(t) > x2), (11)

and
P(B1(t) < −x1, B2(t) < −x2) ≥ P(B1(t) < −x1)P(B2(t) < −x2); (12)

If ρ ∈ (−1, 0], then

P(B1(t) > x1, B2(t) > x2) ≤ P(B1(t) > x1)P(B2(t) > x2), (13)

and
P(B1(t) < −x1, B2(t) < −x2) ≤ P(B1(t) < −x1)P(B2(t) < −x2). (14)

Proof. For any t1, t2 ≥ 0, we have Cov(B1(t1), B2(t2)) = ρ min{t1, t2}. It follows from the
Theorem in Pitt [28] that ρ ≥ 0 is necessary and sufficient for (B1(t), B2(t))τ to be positively
associated, as (B1(t1), B2(t2))

τ is bivariate normal, which implies that (B1(t), B2(t))τ is pos-
itively quadrant-dependent. Thus, (11) holds. To prove (12), we use (11) and the facts that
− sup0≤s≤t Bi(s) = inf0≤s≤t(−Bi(s)) and (−B1(t),−B2(t))τ is a standard bidimensional
Brownian motion with correlation coefficient ρ. Inequalities (13) and (14) can be proved
similarly. This completes the proof.

For r ≥ 0, consider a bidimensional Gaussian process (
∫ t

0 e−rsdB1(s),
∫ t

0 e−rsdB2(s))τ ,
where �B(t) = (B1(t), B2(t))τ is a standard bidimensional Brownian motion with constant
correlation coefficient ρ ∈ (−1, 1). For t ≥ 0, we can write

Δi(t) = inf
0≤s≤t

∫ s

0
e−rldB1(l), Δi(t) = sup

0≤s≤t

∫ s

0
e−rldB2(l), i = 1, 2.

The following lemma is an extension of Lemma 5.

Lemma 6. For any x1 > 0, x2 > 0, if ρ ∈ [0, 1), then

P
(
Δ1(t) > x1, Δ2(t) > x2

) ≥ P
(
Δ1(t) > x1

)
P
(
Δ2(t) > x2

)
,

and
P(Δ1(t) < −x1, Δ2(t) < −x2) ≥ P(Δ1(t) < −x1)P(Δ2(t) < −x2);

If ρ ∈ (−1, 0], then

P
(
Δ1(t) > x1, Δ2(t) > x2

) ≤ P
(
Δ1(t) > x1

)
P
(
Δ2(t) > x2

)
,

and
P(Δ1(t) < −x1, Δ2(t) < −x2) ≤ P(Δ1(t) < −x1)P(Δ2(t) < −x2).

Remark 1. Several distributions of interest are available in closed form (see, e.g., He, Keirstead,
and Rebholz [29]). These include the joint distributions of (X1(t), X2(t)), (X1(t), X2(t)), (X1(t),
X1(t)), and so on. However, those closed-form results cannot apply our proofs to the main results.
The results of Lemmas 5 and 6 cannot be obtained from the results of Shao and Wang [30].

76



Mathematics 2023, 11, 2767

Lemma 7. Let {N(t), t ≥ 0} be a Poisson process with arrival times τk, k = 1, 2, · · · . Considering
N(T) = n for arbitrarily fixed T > 0 and n = 1, 2, · · · , the random vector (τ1, · · · , τn) is equal
in distribution to the random vector (TU(1,n), · · · , TU(n,n)), where U(1,n), · · · , U(n,n) denote the
order statistics of n i.i.d. (0, 1) uniformly distributed random variables U1, · · · , Un.

Proof. See Theorem 2.3.1 of Ross [26].

Lemma 8. Let X and Y be two independent and non-negative random variables. If X is subex-
ponentially distributed while Y is bounded and non-degenerate at 0, then the product XY is
subexponentially distributed.

Proof. See Corollary 2.3 of Cline and Samorodnitsky [19].

The following result is due to Tang [1].

Lemma 9. Let X and Y be two independent random variables with distributions FX and FY.
Moreover, let Y be non-negative and non-degenerate at 0. Then,

FX−Y ∈ L ⇔ FX ∈ L ⇔ FX−Y(x) ∼ FX(x).

4. Main Results and Proofs

In this paper, we establish new results for the finite-time ruin probabilities. Unlike
the above-motioned articles, we assume that the two Brownian motions {B1(t), t ≥ 0}
and {B2(t), t ≥ 0} are correlated with a constant correlation coefficient ρ ∈ (−1, 1). The
following are the main results of this paper.

Theorem 1. Consider the insurance risk model introduced in Section 1. Assume that
N1(t) = N2(t) = N(t), ρ ∈ (−1, 0], r = 0 and that {X1k, k = 1, 2, · · · }, {X2k, k = 1, 2, · · · },
{C1(t), t ≥ 0}, {C2(t), t ≥ 0}, {N(t), t ≥ 0}, {(B1(t), B2(t)), t ≥ 0} are mutually independent.

(a) If F1, F2 ∈ S , then, for each fixed time T ≥ 0,

ψmax(�u; T) ∼ λT(1 + λT)F1(u1)F2(u2), as (u1, u2)→ (∞, ∞), (15)

ψmin(�u; T) ∼ λT
(

F1(u1) + F2(u2)
)
, as (u1, u2)→ (∞, ∞). (16)

(b) If F1 ∗ F2 ∈ S , then, for each fixed time T ≥ 0,

ψsum(�u; T) ∼ λT
(

F1(u1 + u2) + F2(u1 + u2)
)
, as u1 + u2 → ∞. (17)

Proof. First, we establish the asymptotic upper bound for ψmax(�u; T). Clearly,

ψmax(�u; T) ≤ P

(
N(T)

∑
i=1

�Xi −
(

σ1B1(T)
σ2B2(T)

)
> �u

)

=
∞

∑
n=0

P(N(T) = n)P

(
n

∑
i=1

�Xi −
(

σ1B1(T)
σ2B2(T)

)
> �u

)

=
∞

∑
n=0

P(N(T) = n)
∫ ∞

0

∫ ∞

0
P(

n

∑
i=1

�Xi ∈ d�z)

×P
(
�z−
(

σ1B1(T)
σ2B2(T)

)
> �u
)

. (18)
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Because ρ ∈ (−1, 0], by using (14) we have

P
(
�z−
(

σ1B1(T)
σ2B2(T)

)
> �u
)

≤ P(z1 − σ1B1(T) > u1)P(z2 − σ2B2(T) > u2). (19)

Using the independence of {X1k, k = 1, 2, · · · } and {X2k, k = 1, 2, · · · }, we have

P

(
n

∑
i=1

�Xi ∈ �z

)
= P

(
n

∑
i=1

X1i ∈ dz1

)
P

(
n

∑
i=1

X2i ∈ dz2

)
. (20)

Substituting (19) and (20) into (18) and using the dominated convergence theorem,
we obtain

ψmax(�u; T) ≤
∞

∑
n=0

P(N(T) = n)P

(
n

∑
i=1

X1i − σ1B1(T) > u1

)
P

(
n

∑
i=1

X2i − σ2B2(T) > u1

)

∼
∞

∑
n=0

P(N(T) = n)n2F1(u1)F2(u2)

= λT(1 + λT)F1(u1)F2(u2), as (u1, u2)→ (∞, ∞), (21)

where in the second step we have used Lemma 2 and the fact that

P

(
σj sup

0≤t≤T
(−Bj(t)) ≥ uj

)
= o

(
P(

n

∑
i=1

Xji ≥ uj)

)
, j = 1, 2.

Next, we establish the asymptotic lower bound for ψmax(�u; T). Clearly,

ψmax(�u; T) ≥ P

(
N(T)

∑
i=1

�Xi − �C(T)−
(

σ1B1(T)
σ2B2(T)

)
> �u

)

=
∞

∑
n=0

P(N(T) = n)P

(
n

∑
i=1

�Xi −
(

σ1B1(T)
σ2B2(T)

)
− �C(T) > �u

)

≡
∞

∑
n=0

P(N(T) = n)I1, (22)

where I1 can be written as

I1 =
∫ ∞

0

∫ ∞

0
P(B1(T) ∈ dy1, B2(T) ∈ dy2)J1 J2. (23)

Here,

J1 = P

(
n

∑
i=1

X1i − C1(T)− σ1y1 > u1

)
,

and

J2 = P

(
n

∑
i=1

X2i − C2(T)− σ2y2 > u2

)
.

For large constants a > 0 and b > 0, we can further write I1 as

I1 =

(∫ a

0

∫ b

0
+
∫ a

0

∫ ∞

b
+
∫ ∞

a

∫ b

0
+
∫ ∞

a

∫ ∞

b

)
P(B1(T) ∈ dy1, B2(T) ∈ dy2)J1 J2

≡ k1 + k2 + k3 + k4. (24)
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First, we consider k1. Then, per Lemma 9, it holds uniformly for all y1 ∈ [0, a] that

J1 ∼ nF1(u1), as u1 → ∞ (25)

and it holds uniformly for all y2 ∈ [0, b] that

J2 ∼ nF2(u2), as u2 → ∞. (26)

Using Lemma 1 and the dominated convergence theorem, we obtain

k1 ∼ n2F1(u1)F2(u2)
∫ a

0

∫ b

0
P(B1(T) ∈ dy1, B2(T) ∈ dy2), as (u1, u2)→ (∞, ∞).

Thus,

lim
(a,b)→(∞,∞)

lim
(u1,u2)→(∞,∞)

k1

n2F1(u1)F2(u2)
= 1. (27)

Now, we consider k2. Using (25), Lemma 1, and the dominated convergence theorem,

k2 ∼ nF1(u1)
∫ a

0

∫ ∞

b
P(B1(T) ∈ dy1, B2(T) ∈ dy2)J2

≤ nF1(u1)P

(
n

∑
i=1

X2i − C2(T)− σ2b > u2

)∫ a

0

∫ ∞

b
P(B1(T) ∈ dy1, B2(T) ∈ dy2)

∼ n2F1(u1)F2(u2)
∫ a

0

∫ ∞

b
P(B1(T) ∈ dy1, B2(T) ∈ dy2), as (u1, u2)→ (∞, ∞).

Thus,

lim
(a,b)→(∞,∞)

lim
(u1,u2)→(∞,∞)

k2

n2F1(u1)F2(u2)
= 0. (28)

Likewise,

lim
(a,b)→(∞,∞)

lim
(u1,u2)→(∞,∞)

k3

n2F1(u1)F2(u2)
= 0. (29)

Finally, we deal with k4:

k4 ≤ P

(
n

∑
i=1

X1i − C1(T)− σ1a > u1

)
P

(
n

∑
i=1

X2i − C2(T)− σ2b > u2

)

×
∫ ∞

a

∫ ∞

b
P(B1(T) ∈ dy1, B2(T) ∈ dy2)

∼ n2F1(u1)F2(u2)
∫ ∞

a

∫ ∞

b
P(B1(T) ∈ dy1, B2(T) ∈ dy2), as (u1, u2)→ (∞, ∞),

from which we obtain

lim
(a,b)→(∞,∞)

lim
(u1,u2)→(∞,∞)

k4

n2F1(u1)F2(u2)
= 0. (30)

From (23) and (27)–(30), we obtain

lim
(u1,u2)→(∞,∞)

I1

n2F1(u1)F2(u2)
= 1. (31)

Now, it follows from (22), (31), and the dominated convergence theorem that

lim
(u1,u2)→(∞,∞)

ψmax(�u; T)
λT(1 + λT)F1(u1)F2(u2)

≥ 1,

from which, along with (21), we obtain (15).
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Note that

ψand(�u; T) ≤ P

(
N(T)

∑
i=1

X1i − σ1B1(T) > u1,
N(T)

∑
i=1

X2i − σ2B2(T) > u2

)
,

from which, along with (18) and (21), we have

lim
(u1,u2)→(∞,∞)

ψand(�u; T)
F1(u1) + F2(u2)

≤ lim
(u1,u2)→(∞,∞)

λT(1 + λT)F1(u1)F2(u2)

F1(u1) + F2(u2)
= 0.

Thus, it is the case that ψand(�u; T) ∼ 0, as (u1, u2)→ (∞, ∞). From (6), we have

ψmin(�u; T) ∼ P(T1 ≤ T | U1(0) = u1) + P(T2 ≤ T | U2(0) = u1) = ψ1(u1; T) + ψ2(u2; T).

From Lemma 3, we can obtain (16).
Next, we prove relation (17). Using Theorem 7.2 in Ikeda and Watanabe [31] (and see

Yin and Wen [32]), for all t ≥ 0 we have√
σ2

1 + σ2
2 + 2ρσ1σ2W(t) d

= σ1B1(t) + σ2B2(t),

where ‘ d
=’ denotes equality in distribution, W is a standard Brownian motion independent

of {X1k, k = 1, 2, · · · }, {X2k, k = 1, 2, · · · }, {C1(t), t ≥ 0}, {C2(t), t ≥ 0}, and {N(t), t ≥ 0}.
Thus, for all t ≥ 0, U1(t) + U2(t) can be written as

U1(t) + U2(t)
d
= u1 + u2 + C1(t) + C2(t)−

N(t)

∑
i=1

(X1i + X2i) +
√

σ2
1 + σ2

2 + 2ρσ1σ2W(t).

Applying Lemma 3 to this model, we find that if F1 ∗ F2 ∈ S , then

ψsum(�u; T) ∼ λTF1 ∗ F2(u1 + u2) ∼ λT(F1(u1 + u2) + F2(u1 + u2)), u1 + u2 → ∞,

where, in the last step, we have relied on the statement in [33] (and see Geluk and Tang [34]) that

F1 ∗ F2 ∈ S if and only if P(X1 + X2 > x) ∼ F1(x) + F2(x).

This ends the proof of Theorem 1.

Remark 2. Letting {Ci(t) = cit, i = 1, 2 and ρ = 0 in Theorem 1, we obtain Theorem 1 in [12].

Theorem 2. Consider the insurance risk model introduced in Section 1. Assume that N1(t) =
N2(t) = N(t), ρ ∈ (−1, 0], r > 0 and that {X1k, k = 1, 2, · · · }, {X2k, k = 1, 2, · · · }, {C1(t), t ≥
0}, {C2(t), t ≥ 0}, {N(t), t ≥ 0}, {(B1(t), B2(t)), t ≥ 0} are mutually independent.

(a) If F1, F2 ∈ S , then for each fixed time T ≥ 0,

ψmax(�u; T) ∼ λ(λ + 1
T )

r2

∫ u1erT

u1

F1(y)
y

dy
∫ u2erT

u2

F2(y)
y

dy, as (u1, u2)→ (∞, ∞), (32)

ψmin(�u; T) ∼ λ

r

(∫ u1erT

u1

F1(y)
y

dy +
∫ u2erT

u2

F2(y)
y

dy

)
, as (u1, u2)→ (∞, ∞). (33)

(b) If F1 ∗ F2 ∈ S , then for each fixed time T ≥ 0,

ψsum(�u; T) ∼ λT
∫ 1

0
F1 ∗ F2(erTz(u1 + u2))dz, as u1 + u2 → ∞. (34)
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In particular, if there are two positive constants l1 and l2 such that Fi(x) ∼ liF(x), i = 1, 2, then

ψsum(�u; T) ∼ λT
(∫ 1

0
F1(erTz(u1 + u2)) +

∫ 1

0
F2(erTz(u1 + u2))

)
, as u1 + u2 → ∞. (35)

Proof. We can write ψmax(�u; T) as

ψmax(�u; T) = P(e−rtUi(t) < 0, i = 1, 2 for some 0 < t ≤ T|�U(0) = �u).

For t ∈ [0, T] and each i = 1 or 2, we have

ui −
∫ t

0
e−rsdSi(s) + σi

∫ t

0
e−rsdBi(s) ≤ e−rtUi(t) ≤ ui +

∫ T

0
e−rsdCi(s)

−
∫ t

0
e−rsdSi(s) + σi

∫ t

0
e−rsdBi(s).

It follows that ψmax(�u; T) satisfies

ψmax(�u; T) ≤ P

(
N(T)

∑
i=1

�Xie−rτi −
(

σ1Δ1(T)
σ2Δ2(T)

)
> �u

)
)

≤
∞

∑
n=0

P(N(T) = n)P

(
n

∑
i=1

�Xie−rτi −
(

σ1Δ1(T)
σ2Δ2(T)

)
> �u
∣∣N(t) = n

)

≤
∞

∑
n=0

P(N(T) = n)
∫ ∞

0

∫ ∞

0
P

(
n

∑
i=1

�Xie−rTUi ∈ d�z

)

×P
(
�z−
(

σ1Δ1(T)
σ2Δ2(T)

)
> �u
)

. (36)

where we have used Lemma 7 in the last steps. Because ρ ∈ (−1, 0], using Lemma 6,
we have

P
(
�z−
(

σ1Δ1(T)
σ2Δ2(T)

)
> �u
)

≤ P(z1 − σ1Δ1(T) > u1)P(z2 − σ2Δ2(T) > u2). (37)

Using the independence of {X1k, k = 1, 2, · · · } and {X2k, k = 1, 2, · · · }, we have

P

(
n

∑
i=1

�Xie−rTUi ∈ d�z

)
=

∫ 1

0
· · ·
∫ 1

0
P

(
n

∑
i=1

X1ie−rTvi ∈ dz1

)
P

(
n

∑
i=1

X2ie−rTvi ∈ dz2

)

×
n

∏
j=1

P(Uj ∈ dvj). (38)

Substituting (37) and (38) into (36) and using

P

(
n

∑
i=1

X1ie−rTvi − σ1Δ1(T) > u1

)
∼ P

(
n

∑
i=1

X1ie−rTvi > u1

)
, u1 → ∞,

and

P

(
n

∑
i=1

X2ie−rTvi − σ2Δ2(T) > u2

)
∼ P

(
n

∑
i=1

X2ie−rTvi > u2

)
, u2 → ∞,
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uniformly for (v1, · · · , vn) ∈ [0, 1]n, we obtain

ψmax(�u; T) �
∞

∑
n=0

P(N(T) = n)P

(
n

∑
i=1

X1ie−rTUi > u1,
n

∑
i=1

X2ie−rTUi > u2

)

≡
∞

∑
n=0

P(N(T) = n)k5. (39)

We apply Proposition 5.1 of Tang and Tsitsiashvili [22], which says that for i.i.d.
subexponential random variables {Xk} and for arbitrarily a and b where 0 < a ≤ b < ∞,
the relation

P

(
n

∑
i=1

ciXi > x

)
∼

n

∑
i=1

P(ciXi > x)

holds uniformly for (c1, · · · , cn) ∈ [a, b] × · · · × [a, b]. Hence, by conditioning on
(U1, · · · , Un), we find that where

k5 ∼ n2P
(

X11e−rTU1 > u1

)
P
(

X21e−rTU1 > u2

)
, (40)

by substituting (40) into (39) and using the dominated convergence theorem, we obtain

lim sup
(ui ,u2)→(∞,∞)

ψmax(�u; T)
λ(λ+ 1

T )

r2

∫ u1erT

u1

F1(y)
y dy

∫ u2erT

u2

F2(y)
y dy

≤ 1. (41)

Next, we establish the asymptotic lower bound for ψmax(�u; T). Clearly,

ψmax(�u; T) ≥ P

(
N(T)

∑
i=1

�Xie−rτi −
∫ T

0
e−rsd�C(s)−

(
σ1Δ1(T)
σ2Δ2(T)

)
> �u

)

=
∞

∑
n=0

P(N(T) = n)P

(
n

∑
i=1

�Xie−rTUi −
(

σ1Δ1(T)
σ2Δ2(T)

)
−
∫ T

0
e−rsd�C(s) > �u

)

≡
∞

∑
n=0

P(N(T) = n)I2, (42)

where, for some positive constants c and d,

I2 =

(∫ c

0

∫ d

0
+
∫ c

0

∫ ∞

d
+
∫ ∞

c

∫ d

0
+
∫ ∞

c

∫ ∞

d

)
P(Δ1(T) ∈ dy1, Δ2(T) ∈ dy2)J3 J4.

Here,

J3 = P

(
n

∑
i=1

X1ie−rTUi −
∫ T

0
e−rsdC1(s)− σ1y1 > u1

)
,

and

J4 = P

(
n

∑
i=1

X2ie−rTUi −
∫ T

0
e−rsdC2(s)− σ2y2 > u2

)
.

Per Lemma 8, we know that ∑n
i=1 Xjie−rTUi ∈ S , j = 1, 2, as all Xji ∈ S . Then, invoking

Lemma 9, we obtain

J3 ∼ nP(X11e−rTU1 > u1), as u1 → ∞, J4 ∼ nP(X21e−rTU1 > u2) as u2 → ∞

uniformly for all y1 ∈ [0, c] and y2 ∈ [0, d], respectively. Now, using the same argument by
which we reached (31), we have

lim
(u1,u2)→(∞,∞)

I2

n2P(X11e−rTU1 > u1)P(X21e−rTU1 > u2)
= 1. (43)
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Now, it follows from (42), (43), Lemma 1, and the dominated convergence theorem that

lim
(ui ,u2)→(∞,∞)

ψmax(�u; T)
λT(1 + λT)P(X11e−rTU1 > u1)P(X21e−rTU1 > u2)

≥ 1,

or, equivalently,

lim
(ui ,u2)→(∞,∞)

ψmax(�u; T)
λ(λ+ 1

T )

r2

∫ u1erT

u1

F1(y)
y dy

∫ u2erT

u2

F2(y)
y dy

≥ 1,

from which, along with (41), we obtain (32).
The relation (33) follows from (6) and Lemma 4 because, as above,

lim
(u1,u2)→(∞,∞)

ψand(�u; T)∫ u1erT

u1

F1(y)
y dy +

∫ u2erT

u2

F2(y)
y dy

≤ lim
(u1,u2)→(∞,∞)

λ(λ+ 1
T )

r2

∫ u1erT

u1

F1(y)
y dy

∫ u2erT

u2

F2(y)
y dy∫ u1erT

u1

F1(y)
y dy +

∫ u2erT

u2

F2(y)
y dy

= 0.

From (6), we have

ψmin(�u; T) ∼ ψ1(u1; T) + ψ2(u2; T), as (u1, u2)→ (∞, ∞).

From Lemma 4, we have

ψi(ui; T) ∼ λ

r

∫ uierT

ui

Fi(y)
y

dy, ui → ∞, i = 1, 2.

Then,

ψmin(�u; T) ∼ λ

r

(∫ u1erT

u1

F1(y)
y

dy +
∫ u2erT

u2

F2(y)
y

dy

)
, as (u1, u2)→ (∞, ∞).

Thus, we have completed the proof of (33).
Next, we prove relation (34). Similarly, for all t ≥ 0, we have

U1(t) + U2(t)
d
= (u1 + u2)ert +

∫ t

0
er(t−s)d(C1(s) + C2(s))

−
∫ t

0
er(t−s)d

N(s)

∑
i=1

(X1i + X2i)

+
√

σ2
1 + σ2

2 + 2ρσ1σ2

∫ t

0
er(t−s)dW(s), (44)

where {W(t), t ≥ 0} is a standard Brownian motion independent of {X1k, k = 1, 2, · · · },
{X2k, k = 1, 2, · · · }, {C1(t), t ≥ 0}, {C2(t), t ≥ 0}, and {N(t), t ≥ 0}.

From Lemma 4, we have

ψsum(�u; T) ∼ λ

r

∫ (u1+u2)erT

u1+u2

F1 ∗ F2(y)
y

dy, u1 + u2 → ∞.
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Let y = (u1 + u2)erTz; then, dy = rT(u1 + u2)erTzdz. Therefore,

ψsum(�u; T) ∼ λ

r

∫ 1

0

F1 ∗ F2((u1 + u2)erTz)

(u1 + u2)erTz rT(u1 + u2)erTzdz

= Tλ
∫ 1

0
F1 ∗ F2((u1 + u2)erTz)dz, as (u1, u2)→ (∞, ∞).

This completes the proof of (34). The result (35) follows from (34) and Lemma 3.1 in [5].
This ends the proof of Theorem 2.

Remark 3. When letting {Ci(t) = cit, i = 1, 2, ρ = 0, σ1 = 0, σ2 = 0 in Theorem 2, we obtain
the result in Liu et al. [23].

Theorem 3. Consider the insurance risk model introduced in Section 1. Assume that ρ ∈ (−1, 0],
r = 0 and {X1k, k = 1, 2, · · · }, {X2k, k = 1, 2, · · · }, {C1(t), t ≥ 0}, {C2(t), t ≥ 0}, {Ni(t), t ≥
0}, and i = 1, 2, {(B1(t), B2(t)), t ≥ 0} are mutually independent.
(a) If F1, F2 ∈ S , then for each fixed time T ≥ 0,

ψmax(�u; T) ∼ λ1λ2T2F1(u1)F2(u2), as (u1, u2)→ (∞, ∞), (45)

ψmin(�u; T) ∼ T
(
λ1F1(u1) + λ2F2(u2)

)
, as (u1, u2)→ (∞, ∞). (46)

(b) If FξX11+(1−ξ)X21
∈ S , where ξ is a random variable independent of {X1k, k = 1, 2, · · · } and

{X2k, k = 1, 2, · · · } and P(ξ = 1) = 1− P(ξ = 0) = λ1
λ1+λ2

; then, for each fixed time T ≥ 0,

ψsum(�u; T) ∼ T
(
λ1F1(u1 + u2) + λ2F2(u1 + u2)

)
, as u1 + u2 → ∞. (47)

Proof. As the proof is similar to that of Theorem 1, we only provide the main steps. First,
we establish the asymptotic upper bound for ψmax(�u; T). Clearly,

ψmax(�u; T) ≤ P

⎛⎝(∑
N1(T)
i=1 X1i

∑
N2(T)
i=1 X2i

)
−
(

σ1B1(T)
σ2B2(T)

)
>

(
u1

u2

)⎞⎠
=

∫ ∞

0

∫ ∞

0
P

(
N1(T)

∑
i=1

X1i ∈ dz1

)
P

(
N2(T)

∑
i=1

X2i ∈ dz2

)

×P
((

z1

z2

)
−
(

σ1B1(T)
σ2B2(T)

)
>

(
u1

u2

))
. (48)

Because ρ ∈ (−1, 0], using (14), we have

P
((

z1

z2

)
−
(

σ1B1(T)
σ2B2(T)

)
>

(
u1

u2

))
≤ P(z1 − σ1B1(T) > u1)P(z2 − σ2B2(T) > u2). (49)

Substituting (49) into (48), we obtain

ψmax(�u; T) ≤ P

(
N1(T)

∑
i=1

X1i − σ1B1(T) > u1

)
P

(
N2(T)

∑
i=1

X2i − σ2B2(T) > u1

)
∼ λ1λ2T2F1(u1)F2(u2), as (u1, u2)→ (∞, ∞), (50)

where in the last step we have used Lemma 3.
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Next, we establish the asymptotic lower bound for ψmax(�u; T). Clearly,

ψmax(�u; T) ≥ P

⎛⎝(∑
N1(T)
i=1 X1i

∑
N2(T)
i=1 X2i

)
−
(

C1(T)
C2(T)

)
−
(

σ1B1(T)
σ2B2(T)

)
>

(
u1

u2

)⎞⎠
=

∞

∑
n=0

P(N1(T) = n)
∞

∑
m=0

P(N1(T) = m)I3, (51)

where

I3 = P

((
∑n

i=1 X1i

∑m
i=1 X2i

)
−
(

C1(T)
C2(T)

)
−
(

σ1B1(T)
σ2B2(T)

)
>

(
u1

u2

))
.

Using the same arguments as those used to prove (31), we obtain

lim
(u1,u2)→(∞,∞)

I3

nmF1(u1)F2(u2)
= 1,

from which, together with (51), we have

lim
(u1,u2)→(∞,∞)

ψmax(�u; T)
λ1λ2T2F1(u1)F2(u2)

≥ 1.

The proof of (46) is straightforward, and is omitted here. Next, we prove (47). Using
the properties of two independent compound Poisson processes and two independent
Brownian motions, for all t ≥ 0 we have

U1(t) + U2(t)
d
= u1 + u2 + C1(t) + C2(t)−

N0(t)

∑
i=1

(ξX1i + (1− ξ)X2i)

+
√

σ2
1 + σ2

2 + 2ρσ1σ2W(t),

where {W(t), t ≥ 0} is a standard Brownian motion, {N0(t), t ≥ 0} is a Poisson process
with intensity λ1 + λ2, and ξ is a Bernoulli random variable with P(ξ = 1) = 1− P(ξ =

0) = λ1
λ1+λ2

. Moreover, ξ, {W(t), t ≥ 0}, {N0(t), t ≥ 0}, {X1k, k = 1, 2, · · · }, {X2k, k =

1, 2, · · · }, {C1(t), t ≥ 0}, {C2(t), t ≥ 0}, and {N(t), t ≥ 0} are independent. Applying
Lemma 3 to this model, we obtain

ψsum(�u; T) ∼ (λ1 + λ2)TFξX11+(1−ξ)X21
(u1 + u2), u1 + u2 → ∞,

and result (47) follows (c.f. Kaas et al. [35].)

P(ξX11 + (1− ξ)X21 > u1 + u2) =
λ1

λ1 + λ2
F1(u1 + u2) +

λ2

λ1 + λ2
F2(u1 + u2).

This ends the proof of Theorem 3.

Theorem 4. Consider the insurance risk model introduced in Section 1. Assume that ρ ∈ (−1, 0],
r > 0, and that {X1k, k = 1, 2, · · · }, {X2k, k = 1, 2, · · · }, {C1(t), t ≥ 0}, {C2(t), t ≥ 0},
{Ni(t), t ≥ 0}, i = 1, 2, and {(B1(t), B2(t)), t ≥ 0} are mutually independent.
(a) If F1, F2 ∈ S , then for each fixed time T ≥ 0,

ψmax(�u; T) ∼ λ1λ2

r2

∫ u1erT

u1

F1(y)
y

dy
∫ u2erT

u2

F2(y)
y

dy, as (u1, u2)→ (∞, ∞), (52)
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ψmin(�u; T) ∼ 1
r

(
λ1

∫ u1erT

u1

F1(y)
y

dy + λ2

∫ u2erT

u2

F2(y)
y

dy

)
, as (u1, u2)→ (∞, ∞). (53)

(b) If FξX11+(1−ξ)X21
∈ S , where ξ is defined as in Theorem 3, then for each fixed time T ≥ 0,

ψsum(�u; T) ∼ 1
r

(
λ1

∫ (u1+u2)erT

u1+u2

F1(y)
y

dy + λ2

∫ (u1+u2)erT

u1+u2

F2(y)
y

dy

)
, as u1 + u2 → ∞. (54)

Proof. As in the proof of Theorem 2, we have

ψmax(�u; T) ≤ P

⎛⎝(∑
N1(T)
i=1 X1ie−rτi

∑
N2(T)
i=1 X2ie−rτi

)
−
(

σ1Δ1(T)
σ2Δ2(T)

)
> �u

⎞⎠
≤

∞

∑
n=0

P(N1(T) = n)
∞

∑
m=0

P(N2(T) = m)

×P
((

∑n
i=1 X1ie−rτi

∑m
i=1 X2ie−rτi

)
−
(

σ1Δ1(T)
σ2Δ2(T)

)
> �u
)

�
∞

∑
n=0

∞

∑
m=0

nmP(N(T) = n)P(N2(T) = m)P
(

X11e−rTU1 > u1

)
P
(

X21e−rTU1 > u2

)
= λ1λ2T2P

(
X11e−rTU1 > u1

)
P
(

X21e−rTU1 > u2

)
.

It follows that

lim sup
(ui ,u2)→(∞,∞)

ψmax(�u; T)
λ1λ2

r2

∫ u1erT

u1

F1(y)
y dy

∫ u2erT

u2

F2(y)
y dy

≤ 1.

The asymptotic lower bound for ψmax(�u; T) can be established similarly.
The relation (53) follows from (6), Lemma 4, and the fact that

lim(u1,u2)→(∞,∞)
ψand(�u; T)

λ1
∫ u1erT

u1

F1(y)
y dy + λ2

∫ u2erT

u2

F2(y)
y dy

≤ lim
(u1,u2)→(∞,∞)

λ1λ2
r2

∫ u1erT

u1

F1(y)
y dy

∫ u2erT

u2

F2(y)
y dy

λ1
∫ u1erT

u1

F1(y)
y dy + λ2

∫ u2erT

u2

F2(y)
y dy

= 0.

Finally, we prove (54). Using the same arguments as above, we have

U1(t) + U2(t)
d
= (u1 + u2)ert +

∫ t

0
er(t−s)d(C1(s) + C2(s))

−
∫ t

0
er(t−s)d

N0(t)

∑
i=1

(ξX1i + (1− ξ)X2i)

+
√

σ2
1 + σ2

2 + 2ρσ1σ2

∫ t

0
er(t−s)dW(s), t ≥ 0, (55)

where ξ, {W(t), t ≥ 0}, {N0(t), t ≥ 0} are the same as in the proof of Theorem 3. It follows
from Lemma 4 that

ψsum(�u; T) ∼ λ1 + λ2

r

∫ (u1+u2)erT

u1+u2

FξX11+(1−ξ)X21
(y)

y
dy, u1 + u2 → ∞,
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and the result (54) follows, as

FξX11+(1−ξ)X21
(y) =

λ1

λ1 + λ2
F1(y) +

λ2

λ1 + λ2
F2(y).

This completes the proof of Theorem 4.

5. Conclusions

In this paper, we have investigated a bidimensional risk model that describes the
surplus process of an insurer. We provide new results for the different types of finite-time
ruin probabilities under the circumstance of that the Brownian motions are correlated with
a constant correlation coefficient. We remark that the extension to multidimensional models
is more complicated. However, multidimensional models can better describe different
insurance businesses. In addition, we might consider the relationship between different
businesses in the future research, which could be an even more interesting problem.
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Abstract: This work deals with an optimal asset allocation problem for a defined contribution (DC)
pension plan during its accumulation phase. The contribution rate is assumed to be proportional
to the individual’s salary. The salary follows a Heston stochastic volatility model with jumps, and
there exists common shock dependence between the salary and the volatility. Since the time horizon
of pension management is quite long, the influence of inflation is considered in the given context.
The aim of the pension plan described in this paper is to reduce fluctuations in terminal wealth by
investing in the bond and the stock. Through the dynamic programming principle, the Hamilton–
Jacobi–Bellman equation is shown. The explicit expression of the investment decision is derived by
solving the Hamilton–Jacobi–Bellman equation. In the last part, a numerical analysis is shown to
illustrate the impacts of different parameters on the optimal investment policy.

Keywords: DC pension plan; stochastic volatility; Poisson process; common shock dependence;
inflation; Hamilton–Jacobi–Bellman equation
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1. Introduction

A pension fund is an important financial instrument for individuals to reallocate in-
comes and sustain consumption after retirement. Generally, according to the determination
of benefits, there are two typical types of pension plans: defined benefit (DB) and defined
contribution (DC) pension plans. In DB plans, benefits are fixed in advance, while, in the
DC case, contributions are fixed by the trustee. There are two phases in a pension scheme:
the accumulation phase, which is the period from the entry time to the retirement time, and
the decumulation phase, which is the period from the retirement time to death.

Next, we review the literature relevant to our paper. In the accumulation phase of a DC
pension scheme, the contributor contributes part of his/her salary to the fund. Since the salary
is related to the profitability of the company, the works of Bodie et al. [1] and Dybvig and Liu [2]
assume that the salary process is spanned by the stock price. In addition, Guan and Liang [3]
and Li and Wang [4] describe the salary process using a Heston stochastic volatility model, i.e.,
the salary is correlated with the volatility of the stock. Furthermore, Zeng et al. [5] assume that
the salary process is related to stochastic volatility. Based on [3–5], we add an independent
random process to the stochastic salary process to be closer to the reality.

It is appropriate to insert a jump process in the stochastic salary due to a promotion and
job-hopping. Moreover, it is realistic to introduce jumps in volatility, which represent some
unexpected events, such as an economic crisis or policy adjustments by the government. In
our model, the contribution rate of the pension scheme is proportional to the salary of the
individual, the dynamics of which follows a Heston stochastic volatility model with jumps.
In addition, salary and variance are correlated by means of a common shock. In reality, a
common component may depict an event that has an impact on both salary and volatility.

Mathematics 2023, 11, 2954. https://doi.org/10.3390/math11132954 https://www.mdpi.com/journal/mathematics89
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Common shock models are widely used in the area of actuarial science. For instance, in
Liang et al. [6], the insurance risk model is modulated by a compound Poisson process, and
the two-jump-number processes are correlated through a common shock. Liang et al. [7]
assume that jumps in both the risky asset and insurance risk process are correlated through
common shock dependence.

Since the period of a pension scheme is usually long, the inflation risk should be con-
sidered during the optimization phase. There are various studies focused on the stochastic
optimization problem for DC pension plans under the inflation risk. For example, ref. [8]
explores the optimal asset allocation problem with downside protection and stochastic
inflation risk. Yao et al. [9] solve an optimal portfolio decision problem under the inflation
risk and mean-variance criterion. Other relevant works on optimal control under inflation
risk can be found in [10,11]. The inflation risk is also involved in our model. Instead of
a pure diffusion process, we introduce a jump diffusion process to model the nominal
price level of a representative bundle of commodity goods in the market. In other words,
the dynamics of the price index given by Zhang et al. [12] and Zhang and Ewald [13] are
extended in our model, and a Poisson jump is included in the evolution of the index price.

Stochastic processes are commonly used to model the uncertainty in the financial
market. For further study of stochastic processes, we refer interested readers to [14–20]. In
our paper, we assume that the pension manager is allowed to invest in two types of assets:
the bond and the stock. The dynamics of the bond price follows a geometric Brownian
process. The stock price is driven by a drifted Brownian motion and a Poisson jump. The
similar asset model is widely used in various asset allocation problems. For example,
Merton [21] considers Poisson jumps in an optimal dynamic portfolio decision problem.
In a DC pension funding framework, Sun et al. [22] deal with the pre-commitment and
equilibrium investment strategies by incorporating jumps into the risky asset process. More
relevant works on jump diffusion asset allocation problems in pension management can be
found in [23–28].

The aim of pension management is to find the optimal investment and minimize the
expected distance between the terminal wealth and two given targets. To find the optimal
policy, the dynamic programming principle is used to derive the Hamilton–Jacobi–Bellman
(HJB) equation. From the classical optimal control theory, once a continuously differentiable
solution of the HJB equation is explicitly solved, the optimal value function and the optimal
policy can be derived. In our paper, by solving the HJB equation, we show the explicit
form of the optimal investment policy and the optimal value function. The dynamic
programming principle and HJB equation are applicable to various optimization problems.
However, the drawback is that if there is no explicit solution for the HJB equation, then
the dynamic programming principle fails to solve the problem. In our paper, there is a
continuously differentiable solution for the HJB equation, since there is only one specific
boundary condition in the HJB equation. If there are more than two boundary conditions
for the optimization problem, it will be more difficult to find the explicit expression for the
value function as well as the optimal policy. When there is no explicit solution for the HJB
equation, it is more appropriate to adopt the maximum principle, Martingale approach or
viscosity solution.

The rest of the paper is structured as follows. Section 2 describes the financial market
with the jump diffusion price index, as well as two tradable assets that are of interest for
pension management. This section also gives the pension model. Section 3 deals with a
stochastic optimal control problem in order to minimize the fluctuation in the final real
wealth over a finite horizon. The closed form of the investment strategy is given by solving
the HJB equation. Finally, Section 4 gives the sensitivity analysis and Section 5 establishes
the conclusions.

2. Model Assumptions and Notations

Consider a probability space (Ω, F ,P), with P as the real-world probability mea-
sure on Ω and F = F W ∨F N . The filtration F W =

{
F W

t
}

t≥0 is generated by a
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five-dimensional standard Brownian motion (Wr, WΠ, WS, WL, WV), i.e., F W
t = σ{(Wr(s),

WΠ(s), WS(s), WL(s), WV(s)); 0 ≤ s ≤ t}, t ≥ 0, which represents the risk sources of the
interest rate, inflation, stock price, salary and its volatility, respectively. Wr and WΠ are
correlated, which is captured by the coefficient ρΠr ∈ (−1, 1). WL and WV are also corre-
lated, which is captured by the coefficient ρLV ∈ (−1, 1). Let the filtration F N =

{
F N

t
}

t≥0
be generated by a five-dimensional Poisson process (NΠ, NS, NL, NV , Nc) with intensity
(λΠ, λS, λL, λV , λc), where λΠ, λS, λL, λV , λc ∈ R+, i.e., F N

t =
σ{NΠ(s), NS(s), NL(s), NV(s), Nc(s); 0 ≤ s ≤ t}, t ≥ 0, which represent the jumps in in-
flation, stock price, salary, volatility and common shocks between two jumps, respectively.
Suppose that Poisson processes are mutually independent. Moreover, Brownian motions
are independent of Poisson processes on (Ω, F ,P).

2.1. The Financial Market

Following the work of Eisenberg [29], we assume that the discount factor is a geometric
Brownian motion:

exp
[
r + mt + ζWr(t)

]
,

where r, m ∈ R+, and ζ ∈ R.
The financial market consists of two underlying instruments that are traded continu-

ously over time and perfectly divisible. Suppose that there are no transaction costs or taxes
in the given context. The bond S0(t) evolves according to the the following dynamics:

dS0(t)
S0(t)

= (m +
ζ2

2
)dt + ζdWr(t), (1)

with initial price S0(0) = er.
Besides the cash account, the trustee also has the opportunity to invest the fund into a

stock with the dynamics

dS(t)
S(t−) = μS(t)dt + σSS(t)dWS(t) + ηS(t)dNS(t), (2)

where μS(t) is the appreciation rate for the stock. σSS(t) is the volatility associated with the
diffusion component of the stock price. ηS(t) denotes the magnitude of a jump. We state
that ηS(t) > −1 to prevent the process from jumping to a value below zero. WS describes
the fluctuation, and NS describes the jump in the stock price. For simplicity, it is assumed
that WS and NS are independent stochastic processes.

2.2. The Pension Model

This paper considers the accumulation phase of a DC-type pension plan. Assume that
the entry time of a pensioner is the initial time 0, and his/her retirement time is the terminal
time in our model. We denote the pensioner’s death time as τ, which is a positive random
variable defined on the probability space (Ω, F ,P). The mortality rate λ(t) is defined as

λ(t) = lim
�t→0

P(t < τ < t +�t | τ > t)
�t

.

In a general pension plan, the pensioner pays contributions before the retirement time
T, where T ∈ R+. The level of the contribution rate is usually defined as a proportion
ξ(0 ≤ ξ ≤ 1) of the pensioner’s salary. In previous works, such as refs. [3–5], it is assumed
that the stochastic salary is driven by the Heston stochastic volatility model, i.e., the salary
process has stochastic volatility and the salary return variance is governed by a mean-
reverting process. To be more realistic, we add a Brownian motion WL in the salary process
to describe the fluctuation in the salary itself. In addition, we also assume that there are
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possible common Poisson jumps between the salary process and the stochastic variance.
The dynamics of the investor’s salary L(t) follow⎧⎨⎩

dL(t)
L(t−) = μL(t)dt + σLS(t)dWS(t) +

√
V(t)dWL(t) + ηLL(t)dNL(t) + ηLc(t)dNc(t),

L(0) = L0,
(3)

while the stochastic volatility V(t) is governed by

dV(t) = κ(δ−V(t))dt + σV

√
V(t)dWV(t) + ηVV(t)dNV(t) + ηVc(t)dNc(t). (4)

Regarding the parameters in (3), μL(t) denotes the instantaneous expected rate of the
salary, and σLS(t) is the instantaneous volatility scale factor measuring how the risk source
of the stock price affects the salary. ηLL(t)(> −1) and ηLc(t)(> −1) denote the magnitude
of the jumps associated with Poisson processes NL(t) and Nc(t), respectively. NL describes
the jump in the salary itself, and Nc describes the possible common jumps between the
salary (given by Equation (3)) and the stochastic volatility V(t) (given by Equation (4)). As
introduced earlier, we state that the Brownian motion WL in Equation (3) and the Brownian
motion WV in Equation (4) are correlated with the coefficient ρLV ∈ (−1, 1).

Regarding the parameters in (4), κ denotes the mean-reversion rate, δ denotes the
long-run mean, and σV is the volatility coefficient. The assumption 2κδ > σ2

V is proposed
to guarantee the volatility process V(t) > 0. The Brownian motion WV describes the
fluctuation in the volatility, and the Poisson process NV describes the jump in the volatility.
We state that ηVV > −1 and ηVc > −1 to prevent the process V(t) from jumping to a
value below zero. It should be noted that all Poisson processes are mutually independent.
Moreover, Brownian motions are independent of Poisson processes.

3. The Optimal Portfolio

The aim of the stochastic control problem is to find the optimal investment decision.
The pension trustee continuously decides on the weights invested into the cash account
and the stock. We denote the nominal wealth at time t as X(t). Under the investment policy
chosen, it is easy to obtain the following stochastic differential equation, which describes
the evolution of the wealth:

dX(t) = X(t)(1− π(t))
dS0(t)
S0(t)

+ X(t−)π(t)
dS(t)
S(t−) + ξ(t)L(t)dt, (5)

with X(0) = X0 > 0. π(t) denotes the weight invested into the stock at time t. The
remainder, 1 − π(t), is the proportion invested into the cash account. Borrowing and
short-selling are permitted in the given context. A negative value of π(t) means that the
pension trustee takes a short position in the stock, while a negative value of 1−π(t) reflects
that the trustee borrows money from the bank to purchase the risky asset.

By substituting Equations (1) and (2) into Equation (5), we obtain that

dX(t) = X(t)
[
(m +

ζ2

2
) + π(t)(μS(t)− (m +

ζ2

2
))
]
dt + ξ(t)L(t)dt

+X(t)(1− π(t))ζ(t)dWr(t) + X(t)π(t)σSS(t)dWS(t) + X(t−)π(t−)ηS(t)dNS(t).

As mentioned in Section 1, the time horizon for the accumulation phase of a pension
fund (in our model, from time 0 to T) is usually long; hence, the influence of inflation is
considered in the given context.

The price index at time t is denoted by Π(t), which refers to the purchase power per
unit of money. The dynamics are driven by a jump diffusion process of the following type:

dΠ(t)
Π(t−) = μΠ(t)dt + σΠ(t)dWΠ(t) + ηΠ(t)dNΠ(t), (6)
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with initial value Π(0) = Π0 > 0. μΠ(t) is the instantaneous expected inflation rate. σΠ(t)
is the instantaneous volatility associated with the diffusion component, and ηΠ(t) denotes
the magnitude of a jump with the condition ηΠ > −1 to ensure that the price index remains
strictly positive. In Equation (6), WΠ and NΠ are independent stochastic processes.

Next, we define the corresponding real salary process as the following:

Definition 1. The real salary process is defined by

L(t) =
L
Π
(t).

Applying the quotient rule of Itô’s formula, L is given by

dL(t) = d
[ L

Π

]
(t)

= L(t)(μL(t)− μΠ(t) + σ2
Π(t))dt + L(t)σLS(t)dWS(t) + L(t)

√
V(t)dWL(t)

−L(t)σΠ(t)dWΠ(t) + L(t−)ηLL(t)dNL(t) + L(t−)ηLc(t)dNc(t)
+L(t−)(η2

Π(t)− ηΠ(t))dNΠ(t).

(7)

with initial value L(0) = L0/Π0 � L0.
Then, the real wealth process with the consideration of inflation follows

dX(t) = d
[X

Π

]
(t)

= X(t)
[
(m +

ζ2

2
) + π(t)(μS(t)− (m +

ζ2

2
) + ζσΠ(t)ρΠr(t))− μΠ(t) + σ2

Π(t)

−ζσΠ(t)ρΠr(t)
]
dt + ξ(t)L(t)dt + X(t)(1− π(t))ζdWr(t) + X(t)π(t)σSS(t)dWS(t)

−X(t)σΠ(t)dWΠ(t) + X(t−)π(t)ηS(t)dNS(t) + X(t−)(η2
Π(t)− ηΠ(t))dNΠ(t),

(8)

with initial condition X(0) = X0/Π0 � X0.
Next, we restrict the strategies in order to fulfil some technical conditions. We call a

strategy π(·) an admissible control process if it is Ft-measurable, Markovian and stationary
and satisfies the condition

E

{∫ ∞

0
π2(t)dt

}
< ∞. (9)

Denote AX0,L0
the set of all admissible controls, i.e., it is the set of all measurable pro-

cesses {π(t)}t≥0, which satisfies Equation (9). Next, we try to find the optimal investment
strategy for the DC pension plan manager under AX0,L0

.
Assume that the pension trustee has a preference to minimize the expected value of

the fluctuations in the terminal wealth until time τ ∧ T, where T is the terminal time of the
control problem. The objective is to minimize

J(t, X, L, V) = Et

[[
α1 + β1(X(T)− X∗1 )

]2 · �{τ>T} +
[
α2 + β2(X(τ)− X∗2 )

]2 · �{τ≤T}
∣∣∣τ > t

]
, (10)

with Et as the conditional expectation given the filtration {Ft}t≥0. X∗1 and X∗2 are two
positive constants representing the target funds of the plan at time T and τ, respectively.
The deviation between the actual fund and the target fund is called the discontinuity risk;
see Wang et al. [30].

In quadratic loss functions (10), any deviations between X and X∗1 (or X∗2 ) are penalized.
To be more specific, we assumed that α1, α2 > 0 and β1, β2 < 0 in Equation (10) to
characterize that under-funding is more penalized than over-funding. A similar setting can
be seen in Devolder, Janssen and Manca [31] and Zhang and Guo [32].

For a better understanding, we use a flowchart to describe the whole research process
in Figure 1.
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Figure 1. Research process.

According to

Et

[[
α1 + β1(X(T)− X∗1 )

]2 · {τ>T}
∣∣∣τ > t

]
= Et

[[
α1 + β1(X(T)− X∗1 )

]2e−
∫ T

t λ(u)du
]

,

and

Et

[[
α2 + β2(X(τ)− X∗2 )

]2 · {τ≤T}
∣∣∣τ > t

]
= Et

[∫ T

t

[
α2 + β2(X(s)− X∗2 )

]2
λ(s)e−

∫ s
t λ(u)duds

]
,

the objective function with an uncertain lifetime can be converted into the following
deterministic horizontal function:

J(t, X, L, V)

= Et

[∫ T

t

[
α2 + β2(X(s)− X∗2 )

]2
λ(s)e−

∫ s
t λ(u)duds +

[
α1 + β1(X(T)− X∗1 )

]2e−
∫ T

t λ(u)du
]

.

The dynamic programming approach is used to solve the stochastic optimization
problem. Define the value function as

ϕ(t, X, L, V) = min
{π}
{

J(t, (X, L, V); π) : subject to (8), (7), (4)
}

.

In stochastic optimal control theory, the HJB equation accomplishes the connection
between the value function and the optimal control; see, for instance, the books [33–37] and
the papers [38–40]. The HJB equation is

min
{π}

Ψ(π) = 0, (11)

where
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Ψ(π)

= ϕt + λ
[
α2 + β2(X− X∗2 )

]2 − λϕ + ϕXX
[
(m +

ζ2

2
) + π(μS − (m +

ζ2

2
) + ζσΠρΠr)

−μΠ + σ2
Π − ζσΠρΠr

]
+ ϕXξL +

1
2

ϕX XX2
[
(1− π)2ζ2 + π2σ2

SS + σ2
Π − 2(1− π)

·ζσΠρΠr

]
+ ϕLL(μL − μΠ + σ2

Π) +
1
2

ϕL LL2
(σ2

LS + V + σ2
Π) + ϕVκ(δ−V) +

1
2

ϕVVσ2
VV

+ϕX LX L
[
πσSSσLS + σ2

Π − (1− π)ζσΠρΠr

]
+ϕLV LVσVρLV+λS

[
ϕ(t, X(1+πηS), L, V)

−ϕ(t, X, L, V)
]
+ λL

[
ϕ(t, X, L(1 + ηLL), V)− ϕ(t, X, L, V)

]
+ λV

[
ϕ(t, X, L, V + ηVV)

−ϕ(t, X, L, V)
]
+ λC

[
ϕ(t, X, L(1 + ηLc), V + ηVc)− ϕ(t, X, L, V)

]
+λΠ

[
ϕ(t, X(1 + (η2

Π − ηΠ)), L(1 + (η2
Π − ηΠ)), V)− ϕ(t, X, L, V)

]
,

(12)

with terminal condition ϕ(T, X, L, V) =
[
α1 + β1(X(T) − X∗1 )

]2. ϕt, ϕX, ϕL, ϕV , ϕX X,
ϕL L, ϕVV , ϕX L and ϕLV denote the first- and second-order partial derivatives of the value
function ϕ with respect to t, X, L and V, respectively.

If there exists a twice continuously differentiable solution of Equation (12), strictly
convex, then the minimizer of the investment strategy is obtained by the optimal functional
π∗, which satisfies the following necessary conditions:

Ψ(π∗) = 0, (13)

dΨ
dπ

(π∗) = 0. (14)

We shall frequently use the following notations. Define

�1 = μS − (m +
ζ2

2
) + ζσΠρΠr + λSηS, (15)

�2 = ζσΠρΠr + σSSσLS, (16)

�3 = ζσΠρΠr − ζ2, (17)

�4 = ζ2 + σ2
SS + λSη2

S. (18)

By using the first-order condition and solving the HJB equation, the explicit form of
the optimal investment decision is given by the following theorem.

Theorem 1. (Main result) The optimal investment strategy on the stock is given by

π∗(t) = −2ϕ1(t)X + ϕ2(t) + ϕ5(t)L
2ϕ1(t)X

· �1

�4
− ϕ5(t)L

2ϕ1(t)X
· �2

�4
− �3

�4
.

The value function is

ϕ(t, X, L, V) = ϕ1(t)X2
+ ϕ2(t)X + ϕ3(t, V)L2

+ ϕ4(t)L + ϕ5(t)X L + ϕ6(t).

In the above equations,

ϕ1(t) = λβ2
2

∫ T

t
e
∫ s

t a1(u)duds + β2
1e
∫ T

t a1(s)ds, (19)
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ϕ2(t) = 2λ(α2β2 − β2
2X∗2 )

∫ T

t
e
∫ s

t a2(u)duds + 2β1(α1 − β1X∗1 )e
∫ T

t a2(s)ds, (20)

ϕ3(t, V) =
∫ T

t
ϕ̃31(t; τ)eϕ̃32(t;τ)Vdτ, (21)

ϕ4(t) =
∫ T

t
e
∫ s

0 [a4(u)+λcηLc ]du
[
ξϕ2(s)− ϕ2(s)ϕ5(s)

2ϕ1(s)
· �1(�1 + �2)

�4

]
ds · e−

∫ t
0[a4(s)+λcηLc ]ds, (22)

ϕ5(t) = 2
∫ T

t
e
∫ s

0 [a5(u)+λcηLc ]duξ ϕ1(s)ds · e−
∫ t

0[a5(s)+λcηLc ]ds, (23)

ϕ6(t) =
∫ T

t
e
∫ s

t a1(u)du
[
λ(α2 − β2X∗2 )2 − ϕ2

2
4ϕ1

· �2
1

�4

]
ds + (α1 − β1X∗1 )

2e
∫ T

t a1(s)ds, (24)

where a1, a2, ϕ̃31, ϕ̃32, a4 and a5 are given by Equation (A6), Equation (A7), Equation (A28),
Equation (A27), Equation (A8) and Equation (A9), respectively.

Proof. See Appendix A.

4. Sensitivity Analysis

In order to investigate the influence of the parameters on the optimal investment
decision, we provide a sensitivity analysis in this section. Unless otherwise stated, the
employed parameters of the model are based on the following annualized benchmark
values presented in Table 1. In what follows, we mainly explore the impacts of the volatility
σLS, the jump magnitude ηLL and the jump intensity λL, λc on optimal dividend policy π∗.

Table 1. Model parameters.

T X0 L0 X∗
1 X∗

2 α1 α2 β1 β2 λ ζ m ξ μΠ μS

35 1 1 100 100 0.1 0.1 −0.01 −0.01 0.01 0.05 0.01 0.02 0.2 0.1

μL σΠ σSS σLS σV ηΠ ηS ηLL ηVV ηLc ηVc λΠ λS λL λc

0.1 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Figure 2 gives a possible path simulation of the optimal investment decision π∗.
Denoting the optimal wealth process by X∗, a possible path simulation is given in Figure 3.
As we can see, the path simulation of the wealth of the pension fund is increasing as time
passes, which highly coincides with reality.

Figure 4 analyzes the relationship between the optimal investment decision π∗ and
the stock volatility σLS. First, we can see that the optimal investment decision π∗ is always
negative under the given parameters in Table 1, which means that the pension manager
prefers to be a short-seller and invests more money in less risky bonds. From Figure 4,
we can also see that when σLS increases, the optimal investment policy π∗ increases. This
can be explained by the fact that as σLS increases, the risk and return of the pension fund
simultaneously increase. To achieve the given target value X∗1 and X∗2 , the manager prefers
to take more risks as well as achieve more profits.
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Figure 2. A path of π∗.

Figure 3. A path of X∗.

Figure 4. Impact of σLS on π∗.

In Figure 5, as ηLL increases, the optimal investment policy π∗ also increases. This
phenomenon can be explained as follows. The parameter ηLL measures the jump magnitude
of the salary. When ηLL is positive and increasing, which means that there is a higher jump
in the pensioner’s salary surplus, or, in other words, the pensioner will input more money
into the pension fund and eventually the manager of the pension fund will increase the
investment amount for the risky stocks to achieve higher profits.
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Figure 5. Impact of ηLL on π∗.

Figures 6 and 7 show the impact of the Poisson intensity λL, λc on optimal policy π∗,
respectively. As we can see, as λL, λc increase, the optimal investment amount π∗ increases.
This can be explained as follows. λL, λc represent the intensity of a positive jump in salary
surplus. If λL (or λc) increases, then the pensioner will be more positive about the future
and will make more contributions to the pension fund. Eventually, the pension manager is
able to invest more money in the risky asset.

Figure 6. Impact of λL on π∗.

Figure 7. Impact of λc on π∗.
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Figure 6 depicts the impact of λL on the optimal policy under different parameters
ηLL = 0.30, 0.32, 0.34. Figure 7 depicts the impact of λL on the optimal policy under
different parameters ηLc = 0.30, 0.32, 0.34. Both figures show the same conclusion, i.e., that
the higher the salary jump magnitude, the more money should be invested in the stock
market. The impact of ηLc on π∗ is similar to that of ηLL since ηLc and ηLL both measure
the jump magnitude of the salary.

Figure 8 depicts the impact of the jump magnitude of the salary on the optimal
policy π∗ with different μL. As we can see, as μL increases, the investment policy π∗ also
increases. This can be explained as follows: if the average wage of society increases, then
the investment enthusiasm will increase. Figure 9 depicts the impact of ηLc with different
σLS. The increasing σLS leads to an increase in investment policy π∗. This shows that if the
volatility of the salary is high, then the optimal choice is to increase the investment in the
risky asset to reach the desired target as soon as possible, to avoid possible losses. From the
above analysis, from the perspective of the government, an increase in salary will increase
the investment in risky assets. On the other hand, to encourage the pension manager to
invest more money in a risk-less bond, the government should be reduce the intensity of
wage growth.

Figure 8. Impact of ηLc with different μL.

Figure 9. Impact of ηLc with different σLS.

5. Conclusions

This paper analyzes the optimal investment strategy for a DC-type pension scheme
during its accumulation phase, where the price of the risky asset follows a jump diffusion
process. The price index as well as the common shock between the salary and the variance
are involved. The aim of pension management is to minimize the fluctuations in terminal
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wealth, and the dynamic programming technique is used to derive the HJB equation. By
solving an explicit continuously differentiable solution for the HJB equation, we give a
classical expression for the optimal value function as well as the optimal policy. Sensitivity
analysis shows the impact of different parameters on the investment policy, from which we
conclude that several essential factors (the volatility of the salary process, the magnitude of
salary jumps, the intensity of salary jumps, the jump intensity of the volatility of the salary,
the expected rate of salary) control the investment in the risky and risk-less assets. We
suggest that the government should regulate income levels, wage increases and financial
market volatility to stabilize the pension market. If it is necessary to stimulate pension
managers to buy risk-less assets such as treasury bonds, then the optimal policy is to reduce
the magnitude of salary jumps and the intensity of salary jumps.

It is also important to study the optimization problem in a defined benefit pension
plan during the accumulation phase or decumulation phase. We will use the CIR model to
describe the interest rate and mortality rate in a further study.
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Appendix A

The proof of Theorem 1.
From the HJB Equation (11), we conjecture that the solution of (11) takes a quadratic

homogeneous form with ϕ ∈ C1,2 and ϕX X > 0, as the following:

ϕ(t, X, L, V) = ϕ1(t, V)X2
+ ϕ2(t, V)X + ϕ3(t, V)L2

+ ϕ4(t, V)L + ϕ5(t, V)X L + ϕ6(t, V), (A1)

where ϕ1(·, ·), ϕ2(·, ·), ϕ3(·, ·), ϕ4(·, ·), ϕ5(·, ·), and ϕ6(·, ·) are six suitable functions with
terminal conditions ϕ1(T, V) = β2

1, ϕ2(T, V) = 2β1(α1 − β1X∗1 ), ϕ3(T, V) = ϕ4(T, V) =
ϕ5(T, V) = 0 and ϕ6(T, V) = (α1 − β1X∗1 )

2.
Differentiating Equation (A1) with respect to t, X, L, V, we have

ϕt = ϕ1tX
2
+ ϕ2tX + ϕ3tL

2
+ ϕ4tL + ϕ5tX L + ϕ6t, ϕX = 2ϕ1X + ϕ2 + ϕ5 L,

ϕX X = 2ϕ1, ϕL = 2ϕ3L + ϕ4 + ϕ5 X, ϕL L = 2ϕ3, ϕX L = ϕ5,
ϕV = ϕ1V X2

+ ϕ2V X + ϕ3V L2
+ ϕ4V L + ϕ5V X L + ϕ6V ,

ϕVV = ϕ1VV X2
+ ϕ2VV X + ϕ3VV L2

+ ϕ4VV L + ϕ5VV X L + ϕ6VV ,

(A2)

where ϕ1t, ϕ1V and ϕ1VV denote the first- and second-order derivatives of ϕ1 with respect to
t and V, respectively. The derivatives of ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 are defined in the same way.

Substituting Equations (A1) and (A2) into Equations (11) and (12), and rearranging
the terms by the order of π, we obtain that
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min
{π}

ϕ1X2
�4π2 + (2ϕ1X + ϕ2 + ϕ5 L)X�1π + ϕ5X L�2π + 2ϕ1X2

�3π + ϕ1X2
(ζ2

−2ζσΠρΠr)− ϕ5X LζσΠρΠr + ϕ1tX
2
+ ϕ2tX + ϕ3tL

2
+ ϕ4tL + ϕ5tX L + ϕ6t + λβ2

2X2

+2λ(α2β2 − β2
2X∗2 )X + λ(α2 − β2X∗2 )2 − λ(ϕ1X2

+ ϕ2X + ϕ3L2
+ ϕ4L + ϕ5X L + ϕ6)

+(2ϕ1X + ϕ2 + ϕ5 L)X
[
(m +

ζ2

2
)− μΠ + σ2

Π − ζσΠρΠr

]
+ (2ϕ1X + ϕ2 + ϕ5 L)Lξ

+ϕ1X2
σ2

Π + (2ϕ3L + ϕ4 + ϕ5X)L(μL − μΠ + σ2
Π) + ϕ3L2

(σ2
LS + V + σ2

Π) + (ϕ1V X2

+ϕ2V X + ϕ3V L2
+ ϕ4V L + ϕ5V X L + ϕ6V)κ(δ−V) +

1
2
(ϕ1VV X2

+ ϕ2VV X + ϕ3VV L2

+ϕ4VV L + ϕ5VV X L + ϕ6VV)σ
2
VV + ϕ5X Lσ2

Π + (2ϕ3V L + ϕ4V + ϕ5V X)LVσVρLV

+ϕ3L2
λLη2

L + (2ϕ3L2
+ ϕ4L + ϕ5 X L)λLηL + λV

[
(ϕ1(t, V + ηVV)− ϕ1(t, V))X2

+(ϕ2(t, V + ηVV)− ϕ2(t, V))X + (ϕ3(t, V + ηVV)− ϕ3(t, V))L2
+ (ϕ4(t, V + ηVV)

−ϕ4(t, V))L + (ϕ5(t, V + ηVV)− ϕ5(t, V))X L + (ϕ6(t, V + ηVV)− ϕ6(t, V))
]

+λc

[
(ϕ1(t, V + ηVc)− ϕ1(t, V))X2

+ (ϕ2(t, V + ηVc)− ϕ2(t, V))X + (ϕ3(t, V + ηVc)

−ϕ3(t, V))L2
+ ϕ3(t, V + ηVc)(η

2
Lc + 2ηLc)L2

+ (ϕ4(t, V + ηVc)− ϕ4(t, V))L

+ϕ4(t, V + ηVc)ηLcL + (ϕ5(t, V + ηVc)− ϕ5(t, V))X L + ϕ5(t, V + ηVc)ηLcX L

+(ϕ6(t, V + ηVc)− ϕ6(t, V))
]
+ λΠ

[
ϕ1(t, V)((η2

Π − ηΠ)2 + 2(η2
Π − ηΠ))X2

+ϕ2(t, V)(η2
Π − ηΠ)X + ϕ3(t, V)((η2

Π − ηΠ)2 + 2(η2
Π − ηΠ))L2

+ ϕ4(t, V)(η2
Π − ηΠ)L

+ϕ5(t, V)((η2
Π − ηΠ)2 + 2(η2

Π − ηΠ))X L
]
= 0.

(A3)

where �1, �2, �3 and �4 are given by Equation (15), Equation (16), Equation (17) and
Equation (18), respectively. By Equations (13) and (14), we have

π∗(t, V) = −2ϕ1(t, V)X + ϕ2(t, V) + ϕ5(t, V)L
2ϕ1(t, V)X

· �1

�4
− ϕ5(t, V)L

2ϕ1(t, V)X
· �2

�4
− �3

�4
, (A4)

where π∗ denotes the optimal investment decision regarding the risky asset. Substituting
π∗ into Equation (A3), and rearranging the terms by the order of X2, L2 and X L, we obtain
the following bivariate polynomial function of X and L:
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[
ϕ1t + a1(t)ϕ1 + κ(δ−V)ϕ1V +

1
2

σ2
VVϕ1VV + λV(ϕ1(t, V + ηVV)− ϕ1(t, V))

+λc(ϕ1(t, V + ηVc)− ϕ1(t, V)) + λβ2
2

]
X2

+

[
ϕ2t + a2(t)ϕ2 + κ(δ−V)ϕ2V +

1
2

σ2
VVϕ2VV + λV(ϕ2(t, V + ηVV)− ϕ2(t, V))

+λc(ϕ2(t, V + ηVc)− ϕ2(t, V)) + 2λ(α2β2 − β2
2X∗2 )

]
X

+

[
ϕ3t + (a3(t) + V)ϕ3 + (κ(δ−V) + 2σVρLVV)ϕ3V +

1
2

σ2
VVϕ3VV + λV(ϕ3(t, V + ηVV)

−ϕ3(t, V)) + λc(ϕ3(t, V + ηVc)− ϕ3(t, V)) + λc ϕ3(t, V + ηVc)(η
2
Lc + 2ηLc)−

ϕ2
5

4ϕ1

· (�1 + �2)
2

�4
+ ξϕ5

]
L2

+

[
ϕ4t + a4(t)ϕ4+(κ(δ−V)+σVρLVV)ϕ4V+

1
2

σ2
VVϕ4VV+λV(ϕ4(t, V + ηVV)− ϕ4(t, V))

+λc(ϕ4(t, V + ηVc)− ϕ4(t, V)) + λc ϕ4(t, V + ηVc)ηLc − ϕ2 ϕ5

2ϕ1
· �1(�1 + �2)

�4
+ ξ ϕ2

]
L

+

[
ϕ5t + a5(t)ϕ5 + λcηLc ϕ5(t, V + ηVc) + (κ(δ−V) + σVρLVV)ϕ5V +

1
2

σ2
VVϕ5VV

+λV(ϕ5(t, V + ηVV)− ϕ5(t, V)) + λc(ϕ5(t, V + ηVc)− ϕ5(t, V)) + 2ξ ϕ1

]
XL

+

[
ϕ6t − λϕ6 + κ(δ−V)ϕ6V +

1
2

σ2
VVϕ6VV + λV(ϕ6(t, V + ηVV)− ϕ6(t, V))

+λc(ϕ6(t, V + ηVc)− ϕ6(t, V))− ϕ2
2

4ϕ1
· �2

1
�4

+ λ(α2 − β2X∗2 )2
]
= 0,

(A5)

where

a1(t) = ζ2 − 4ζσΠρΠr − λ + 2((m +
ζ2

2
)− μΠ + σ2

Π) + σ2
Π + λΠ((η2

Π − ηΠ)2

+2(η2
Π − ηΠ))− (�1 + �3)

2

�4
,

(A6)

a2(t) = (m +
ζ2

2
)− μΠ + σ2

Π − ζσΠρΠr − λ + λΠ(η2
Π − ηΠ)− �1(�1 + �3)

�4
, (A7)

a3(t) = 2(μL − μΠ + σ2
Π) + σ2

LS + σ2
Π − λ + λLη2

L+2λLηL+λΠ((η2
Π − ηΠ)2 + 2(η2

Π − ηΠ)),

a4(t) = μL − μΠ + σ2
Π − λ + λLηL + λΠ(η2

Π − ηΠ), (A8)

a5(t) = (m +
ζ2

2
)− 2μΠ + 3σ2

Π − 2ζσΠρΠr + μL + λLηL + λΠ((η2
Π − ηΠ)2 + 2(η2

Π − ηΠ))

−λ− �2
1 + �1�2 + �1�3 + �2�3

�4
,

(A9)

Since Equation (A5) holds for every X and L, the following six PDEs hold with the
boundary conditions:
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⎧⎪⎪⎨⎪⎪⎩
ϕ1t + a1(t)ϕ1 + κ(δ−V)ϕ1V +

1
2

σ2
VVϕ1VV + λV(ϕ1(t, V + ηVV)− ϕ1(t, V))

+ λc(ϕ1(t, V + ηVc)− ϕ1(t, V)) + λβ2
2 = 0,

ϕ1(T, V) = β2
1,

(A10)

⎧⎪⎪⎨⎪⎪⎩
ϕ2t + a2(t)ϕ2 + κ(δ−V)ϕ2V +

1
2

σ2
VVϕ2VV + λV(ϕ2(t, V + ηVV)− ϕ2(t, V))

+ λc(ϕ2(t, V + ηVc)− ϕ2(t, V)) + 2λ(α2β2 − β2
2X∗2 ) = 0,

ϕ2(T, V) = 2β1(α1 − β1X∗1 ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ3t + (a3(t) + V)ϕ3 + (κ(δ−V) + 2σVρLVV)ϕ3V +
1
2

σ2
VVϕ3VV + λV(ϕ3(t, V + ηVV)

− ϕ3(t, V)) + λc(ϕ3(t, V + ηVc)− ϕ3(t, V)) + λc ϕ3(t, V + ηVc)(η
2
Lc + 2ηLc)−

ϕ2
5

4ϕ1

· (�1 + �2)
2

�4
+ ξϕ5 = 0,

ϕ3(T, V) = 0,

(A11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ4t + a4(t)ϕ4 + (κ(δ−V) + σVρLVV)ϕ4V +

1
2

σ2
VVϕ4VV + λV(ϕ4(t, V + ηVV)− ϕ4(t, V))

+ λc(ϕ4(t, V + ηVc)− ϕ4(t, V)) + λc ϕ4(t, V + ηVc)ηLc − ϕ2 ϕ5

2ϕ1
· �1(�1 + �2)

�4
+ ξ ϕ2 = 0,

ϕ4(T, V) = 0,

(A12)

⎧⎪⎪⎨⎪⎪⎩
ϕ5t + a5(t)ϕ5 + λcηLc ϕ5(t, V + ηVc) + (κ(δ−V) + σVρLVV)ϕ5V +

1
2

σ2
VVϕ5VV

+ λV(ϕ5(t, V + ηVV)− ϕ5(t, V)) + λc(ϕ5(t, V + ηVc)− ϕ5(t, V)) + 2ξ ϕ1 = 0,

ϕ5(T, V) = 0,

(A13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕ6t − λϕ6 + κ(δ−V)ϕ6V +

1
2

σ2
VVϕ6VV + λV(ϕ6(t, V + ηVV)− ϕ6(t, V))

+ λc(ϕ6(t, V + ηVc)− ϕ6(t, V))− ϕ2
2

4ϕ1
· �2

1
�4

+ λ(α2 − β2X∗2 )2 = 0,

ϕ6(T, V) = (α1 − β1X∗1 )
2.

(A14)

Next, we solve the above equations, from Equation (A10) to Equation (A14), one by
one. First, we solve Equation (A10). Assume that ϕ̃1(t, V) is the solution of the following
system:⎧⎪⎪⎨⎪⎪⎩

ϕ̃1t + a1(t)ϕ̃1 + κ(δ−V)ϕ̃1V +
1
2

σ2
VV ϕ̃1VV + λV(ϕ̃1(t, V + ηVV)− ϕ̃1(t, V))

+ λc(ϕ̃1(t, V + ηVc)− ϕ̃1(t, V)) = 0,

ϕ̃1(T, V) = β2
1,

(A15)

which has the following form

ϕ̃1(t, V) = eϕ̃11(t)+ϕ̃12(t)V , (A16)
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with terminal condition ϕ̃1(T, V) = β2
1. Thus,

ϕ̃1t = (ϕ̃′11 + ϕ̃′12V)ϕ̃1, ϕ̃1V = ϕ̃12 ϕ̃1, ϕ̃1VV = ϕ̃2
12 ϕ̃1,

ϕ̃1(t, V + ηVV)− ϕ̃1(t, V) =
[
eϕ̃12(t)ηVV − 1

]
ϕ̃1,

ϕ̃1(t, V + ηVc)− ϕ̃1(t, V) =
[
eϕ̃12(t)ηVc − 1

]
ϕ̃1,

(A17)

Substituting Equations (A16) and (A17) into Equation (A15), we obtain

ϕ̃′11 + ϕ̃′12V + a1(t) + κ(δ−V)ϕ̃12 +
1
2

σ2
VV ϕ̃2

12 + λV
[
eϕ̃12ηVV − 1

]
+ λc

[
eϕ̃12ηVc − 1

]
= 0. (A18)

Since Equation (A18) holds for every V, the following two equation systems hold:⎧⎨⎩ϕ̃′12 − κϕ̃12 +
1
2

σ2
V ϕ̃2

12 = 0,

ϕ̃12(T) = 0,{
ϕ̃′11 + a1(t) + κδϕ̃12 + λV

[
eϕ̃12ηVV − 1

]
+ λc

[
eϕ̃12ηVc − 1

]
= 0,

ϕ̃11(T) = ln β2
1.

Solving the above two systems, we have ϕ̃11(t) = ln β2
1 +
∫ T

t a1(s)ds and ϕ̃12(t) = 0;
thus, ϕ̃1(t, V) is independent of the variable V, which can be written as

ϕ̃1(t) = β2
1e
∫ T

t a1(s)ds,

and the system (A15) can be rewritten as{
ϕ̃1t + a1(t)ϕ̃1 = 0,

ϕ̃1(T) = β2
1.

Now, we solve Equation (A10). Let T be a variable in ϕ̃1, i.e., ϕ̃1(t) = ϕ̃1(t, T) =
eϕ̃11(t,T), where ϕ̃11(t, s) = ln β2

1 +
∫ s

t a1(u)du. We conjecture that

ϕ1(t) = ϕ̃1(t, T) +
[ ∫ T

t
ϕ̃1(t, s)λβ2

2ds
]

β−2
1 , (A19)

thus

ϕ1t = ϕ̃1t +
[ ∫ T

t
ϕ̃1t(t, s)λβ2

2ds
]

β−2
1 − λβ2

2. (A20)

Substituting Equations (A19) and (A20) into the left-hand side of Equation (A10), we
have

ϕ̃1t +
[ ∫ T

t
ϕ̃1t(t, s)λβ2

2ds
]

β−2
1 − λβ2

2 + a1(t)
[

ϕ̃1(t, T) +
[ ∫ T

t
ϕ̃1(t, s)λβ2

2ds
]

β−2
1

]
+ λβ2

2

= ϕ̃1t + a1(t)ϕ̃1(t, T) +
[ ∫ T

t

[
ϕ̃1t(t, s) + a1(t)ϕ̃1(t, s)

]
λβ2

2ds
]

β−2
1

= 0.

Thus, ϕ1(t) given by Equation (A19) is the solution of system (A10), which is finally
given by Equation (19). Similarly, ϕ2(t) is given by Equation (20) and ϕ6(t) is given by
Equation (24).

Next, we solve Equation (A13). Since the coefficient of ϕ5 and the constant term 2ξ ϕ1
are both independent of V, we suppose that ϕ5(t, V) is independent of V and rewrite it as
ϕ5(t). Thus, Equation (A13) can be rewritten as

ϕ5t + (a5(t) + λcηLc)ϕ5 + 2ξ ϕ1 = 0,
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with terminal value ϕ5(T) = 0, and ϕ5(t) is given by Equation (23).
Next, we solve Equation (A12). Since ϕ1, ϕ2 and ϕ5 are all independent of V, and the

coefficient a4 is only dependent on time t, we assume that ϕ4 is also independent of V,
which satisfies the following system:⎧⎨⎩ϕ4t + (a4(t) + λcηLc)ϕ4 − ϕ2 ϕ5

2ϕ1
· �1(�1 + �2)

�4
+ ξ ϕ2 = 0,

ϕ4(T) = 0,

thus, ϕ4 is given by Equation (22).
Since ϕ1 and ϕ5 are both independent of V, set

f3(t) = − ϕ2
5

4ϕ1
· (�1 + �2)

2

�4
+ ξ ϕ5.

Let ϕ̃3 = ϕ̃3(t, V; τ) be the solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ̃3t(t, V; τ) + (a3(t) + V)ϕ̃3(t, V; τ) + (κ(δ−V) + 2σVρLVV)ϕ̃3V(t, V; τ)

+
1
2

σ2
VV ϕ̃3VV(t, V; τ) + λV(ϕ̃3(t, V + ηVV ; τ)− ϕ̃3(t, V; τ)) + λc(ϕ̃3(t, V + ηVc; τ)

− ϕ̃3(t, V; τ)) + λc ϕ̃3(t, V + ηVc; τ)(η2
Lc + 2ηLc) = 0,

ϕ̃3(τ, V; τ) = f3(τ),

(A21)

and we have the following proposition.

Proposition A1. The solution of Equation (A11) can be expressed as

ϕ3(t, V) =
∫ T

t
ϕ̃3(t, V; τ)dτ. (A22)

Proof. First, we have ϕ3(T, V) =
∫ T

T
ϕ̃3dτ = 0. Set τ = t in the second equation of

Equation (A21); thus, we have ϕ̃3(t, V; t) = f3(t). Differentiating Equation (A22) with
respect to t and V, respectively, we have

ϕ3t =
∫ T

t
ϕ̃3t(t, V; τ)dτ − ϕ̃3(t, V; t) =

∫ T

t
ϕ̃3t(t, V; τ)dτ − f3(t),

ϕ3V =
∫ T

t
ϕ̃3V(t, V; τ)dτ, ϕ3VV =

∫ T

t
ϕ̃3VV(t, V; τ)dτ.

Substituting ϕ3t, ϕ3V and ϕ3VV into Equation (A11)

∫ T

t
ϕ̃3t(t, V; τ)dτ − f3(t) + (a3(t) + V)

∫ T

t
ϕ̃3(t, V; τ)dτ + (κ(δ−V) + 2σVρLVV)

·
∫ T

t
ϕ̃3V(t, V; τ)dτ +

1
2

σ2
VV
∫ T

t
ϕ̃3VV(t, V; τ)dτ + λV

∫ T

t
ϕ̃3(t, V + ηVV ; τ)− ϕ̃3(t, V; τ)dτ

+λc

∫ T

t
ϕ̃3(t, V + ηVc; τ)− ϕ̃3(t, V; τ)dτ + λc

∫ T

t
ϕ̃3(t, V + ηVc; τ)dτ(η2

Lc + 2ηLc) + f3(t)

=
∫ T

t
0dτ = 0.

Now, we start solving Equation (A21). Suppose ϕ̃3 = ϕ̃3(t, V; τ) = ϕ̃31(t; τ)eϕ̃32(t;τ)V ,
with terminal value ϕ̃3(τ, V; τ) = ϕ̃31(τ)eϕ̃32(τ)V = f3(τ). Thus,
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ϕ̃3t =

[
ϕ̃
′
31

ϕ̃31
+ ϕ̃

′
32V
]

ϕ̃3, ϕ̃3V = ϕ̃32 ϕ̃3, ϕ̃3VV = ϕ̃2
32 ϕ̃3,

ϕ̃3(t, V + ηVV ; τ)− ϕ̃3 = (eϕ̃32ηVV − 1)ϕ̃3, ϕ̃3(t, V + ηVc; τ) = eϕ̃32ηVc ϕ̃3.
(A23)

Substituting Equation (A23) into Equation (A21) with the consideration of the terminal
value, we obtain the following two systems:⎧⎨⎩ϕ̃

′
32 + 1 + (2σVρLV − κ)ϕ̃32 +

1
2

σ2
V ϕ̃2

32 = 0,

ϕ̃32(τ) = 0,
(A24)

⎧⎪⎨⎪⎩
ϕ̃
′
31

ϕ̃31
+ a3 + κδϕ̃32 + λV(eϕ̃32ηVV − 1) + λc(eϕ̃32ηVc − 1) + λceϕ̃32ηVc(η2

Lc + 2ηLc) = 0,

ϕ̃31(τ) = f3(τ).
(A25)

We solve system (A24) first. Rewrite the first equation as

ϕ̃
′
32 = −1

2
σ2

V ϕ̃2
32 − (2σVρLV − κ)ϕ̃32 − 1.

Let�3 = (2σVρLV − κ)2− 2σ2
V be the discriminant of the following quadratic equation

−1
2

σ2
V ϕ̃2

32 − (2σVρLV − κ)ϕ̃32 − 1 = 0. (A26)

If�3 > 0, then the two real roots h1,2 of Equation (A26) can be expressed as

h1,2 =
(2σVρLV − κ)−√�3

σ2
V

.

Thus,

ϕ̃32(t) =
h1h2e−

√�3(τ−t) − h1h2

h1e−
√�3(τ−t) − h2

.

If�3 = 0, then we have

ϕ̃32(t) =
2σVρLV − κ

σ2
V +

1
2

σ2
V(τ − t)(2σVρLV − κ)

− 2σVρLV − κ

σ2
V

. (A27)

If�3 < 0, then

ϕ̃32(t) =

√
−�3

σ4
V

tan

[
arctan

[
2σVρLV − κ√−�3

]
+

1
2

√
−�3(τ − t)

]
− 2σVρLV − κ

σ2
V

.

The solution of system (A25) is

ϕ̃31(t) = e
∫ τ

t f31(s)ds · f3(τ),

where

f31(t) = a3 + κδϕ̃32 + λV(eϕ̃32ηVV − 1) + λc(eϕ̃32ηVc − 1) + λceϕ̃32ηVc(η2
Lc + 2ηLc), (A28)

thus, ϕ3(t, V) is given by Equation (21).
It is obvious that 2ϕ1(t) > 0. Inserting ϕ1, ϕ2 and ϕ5 into Equation (A4), the optimal

investment strategy is given by Theorem 1.
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Abstract: Generalized Linear Models (GLMs) are the standard tool used for pricing in the field of
automobile insurance. Generalized Additive Models (GAMs) are more complex and computationally
intensive but allow taking into account nonlinear effects without the need to discretize the explanatory
variables. In addition, they fit perfectly into the mental framework shared by actuaries and are easier
to use and interpret than machine learning models, such as trees or neural networks. This work
compares both the GLM and GAM approaches, using a wide sample of policies to assess their
differences in terms of quality of predictions, complexity of use, and time of execution. The results
show that GAMs are a powerful alternative to GLMs, particularly when “big data” implementations
of GAMs are used.

Keywords: automobile insurance; generalized additive models; splines; tariff analysis
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1. Introduction: The Classical Tariff Analysis in the Actuarial Field

Since their original development by J. A. Nelder and R. W. M. Wedderburn [1], Gener-
alized Linear Models (GLMs) have become a key methodology in applied statistics. GLMs
burst onto the insurance scene in the early 1990s in works such as [2,3] and became part of the
set of tools commonly used by actuaries, with a number of monographs devoted to showing
their application, as well as those of their extensions, to the field of insurance [4–6].

The GLM provides a common framework that includes a broad range of regression
models (ordinary least squares, logistic, Poisson, etc.) previously lacking a unified treatment.
The essential requirement for a particular model that can be treated as a GLM is that the
probability distribution of the variable analyzed belongs to the class of the exponential
family [7,8]. In a GLM, the expectation of the dependent variable, μ = E(y), is modeled
as a function of the linear predictor η = ∑ βixi, which includes the explanatory variables
xi. Therefore, we have that μ = l−1(η) or, conversely, that η = l(μ). The function l()
is called a link function and can be selected with a certain degree of flexibility [9]. The
variance var(y) is customarily expressed in the GLM setting as a function of the mean in
the following manner: var(y) = ϕ

A V(μ). In this expression, V(μ) is the so-called variance
function, ϕ is the dispersion parameter or dispersion for short, and A is the known weight
of each observation.
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For instance, in the case of a Poisson regression model, the dependent variable, y, is the
number of occurrences of an event in a time interval. By defining μ = E(y) = λ and taking,
as is usually the case, a log link, the model becomes log(λ) = ∑ βixi. Also, if the weights
are A = 1, and because of the equality of mean and variance in a Poisson-distributed
random variable, we obtain var(y) = λ = μ = ϕV(μ), which implies that the dispersion
parameter is ϕ = 1 and the variance function is V(μ) = μ.

In any case, the explanatory variables enter the model through the linear predictor
η = ∑ βixi, and therefore their effects are linear, making GLMs “linear” models. A classical
ordinary least-squares model (OLS) is a GLM with V(μ) = 1 as the variance function
and the identity as the link function. This means that the parameter modeled is the mean
of the dependent variable, μ, as a linear function of the covariates xi : μ = ∑ βixi. If xi are
continuous, their eventual nonlinear effects can be included in an OLS model, adding to
the linear predictor of the corresponding quadratic, cubic, etc., terms, so that the linear
predictor has the form η = β1x1 + β2x2 + β3x2

1 + β4x2
2 + . . ., or, likewise, in the case of a

GLM, l(η) = β1x1 + β2x2 + β3x2
1 + β4x2

2 + . . ..
Another, simpler way to introduce nonlinear effects into a GLM is by discretizing the

continuous variables xi.
The discretization implies an information loss regarding the original variable and

requires the determination of the number of categories and the intervals that define the
bins, which can be complex and subject to some degree of arbitrariness. Nevertheless,
the discretization of an explanatory variable can help in applying and interpreting the
model and provides a straightforward procedure to take into account an eventual nonlinear
effect of the variable. Also, the discretization of the variable increases the number of
parameters to be estimated. For a categorical variable with k levels, k − 1 parameters
should be estimated. This provides enough flexibility for the model to be capable of
including nonlinearities.

In the classical tariff analysis in the automobile insurance line of business, the cus-
tomary practice consists of discretizing all the continuous explanatory variables used to
estimate the risk associated with a policy (like the driver’s age, horsepower of the vehi-
cle, etc.) and generating, through the Cartesian product of the levels of these discretized
variables, a set of “cells” or “policy groups”. The cell a policy belongs to determines the
premium that is charged. This simplifies the tariff application (the calculus of the premium
of a new policy merely consists of identifying the cell that corresponds to it). The pure
premium of a cell is usually estimated as the product of the claim frequency and the claim
severity associated with the cell. Both the claim frequency and claim severity share the
same structure, and they are quotients between a risk measure and a risk exposure [10].
The claim frequency is the ratio between the total number of claims in a cell and the total
exposure of the cell, which is the total time that the policies in the cell have been in force.
The claim severity is the mean claim size, i.e., the quotient between the total size of the
claims in a cell and the number of claims originated by the policies in the cell.

The claim frequency is usually modeled as a rate model, i.e., a Poisson regression
model where the number of claims in each cell is the dependent variable and the exposure
(in this case, the total time the policies are in force) is taken as an offset [2,10], i.e., an
explanatory variable whose coefficient is not estimated but taken as 1 [7].

With regard to the claim severity, as this is a continuous and positive variable, it
is customarily modeled as the dependent variable in a Gamma regression in which the
exposure (number of claims) is introduced as a weight for each observation, i.e., for each
cell in this case [2,10]. Usually, both for the claim frequency and the claim severity, the link
function of the regression model is the logarithm. This means that the risk and the associated
premium corresponding to a cell can be expressed as the product of a factor specific to the
cell multiplied by the risk of the cell taken as a baseline or reference. In the motor insurance
field, this multiplicative effects model is generally considered more suitable for calculating
premiums than an additive effects model [2,10].
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These kinds of models are widely used for the claim frequency and the claim severity
and can be considered standard in the automobile insurance field. A drawback is the
need to determine how to discretize the explanatory variables, which can be somewhat
arbitrary and may also require a huge amount of trial and error to find a discretization
that groups the policies in sufficiently homogenous cells, but at the same time keeps low
enough the number of cells so that the number of parameters in the model does not become
unmanageable. Another problem is that the within-cell variability neglected by the model
can be appreciable unless the cell size becomes very small and the number of cells becomes
very high.

There exists, however, the possibility of working with the original non-discretized
continuous variables. The main problem with this approach is how to treat nonlinear
effects, for example, that of the driver’s age, which does not show a linear relationship with
the claim risk.

The most traditional way is to include polynomial terms (quadratic, cubic, etc.) as
regressors to deal with the nonlinearities of the data, but this is far from being satisfactory
because polynomials, in a regression context, tends to cause problems [11–14]. These
problems are a consequence of the fact that polynomial regression is an ill-conditioned
problem because its matrix model includes a Vandermonde matrix, and it is well-known
that Vandermonde matrices have a very high condition number and pose serious problems
of numerical instability [15–18]. Hence, polynomial regression should be used with caution,
and the order of the polynomials should be kept as low as possible.

However, there are more elaborate alternatives that can solve these problems, which
are based on the use of splines with Generalized Additive Models (GAM). The GAM [19] is
a generalization of the GLM that introduces the explanatory variables in the linear predictor,
not directly but through a spline of the variable, i.e., through a continuous piecewise poly-
nomial of the variable that allows for the modeling of nonlinearities, thereby eliminating
the problems associated with the simpler and more conventional polynomial terms. These
models have been suggested as a reasonable alternative to the traditional pricing models
based on discretized risk factors [10,20]. Instead of laboriously and somewhat arbitrarily
calculating the values according to which each variable will be divided into a series of
levels, GAMs allow this to be done automatically and maintain the traditional structure of
regression models, which is easy to understand and interpret. For this reason, the aim of
this work is to compare a classical model of tariff analysis in the automobile insurance field
estimated using a GLM and discretized explanatory variables to a similar model estimated
using a GAM, with its explanatory variables retaining their original, continuous, and non-
discretized form. Our goal is to assess the improvement achieved by the greater amount of
information supplied by the continuous variables and evaluate if this improvement exceeds
the greater complexity, both conceptual and computational, of the GAM model.

Another kind of method widely used for tariff analysis in automobile insurance is de
Bonus–Malus Systems (BMSs). A BMS includes a posteriori information about the track
record of each policy or each policyholder in the portfolio. With this information, the
policies are classified into different risk levels. Some a priori rating variables, like age, cubic
capacity of the car, etc., can also be included in the model. Examples of this approach can
be found in [21,22]. Nevertheless, we do not consider the Bonus–Malus Systems here.

The main finding of this work is that a Generalized Additive Model is a tool for
calculating premiums in the field of automobile insurance that can take into account the
nonlinear effect of some of the pricing variables in an automatic way and without the need
to identify the intervals in which to divide the values of the rating factors, similar to a
traditional GLM.

The rest of the work is organized as follows. Section 2 briefly reviews the scientific
literature on GAM usage in several fields. Section 3 provides an overview of the theoretical
foundations of Generalized Additive Models. Section 4 compares the results obtained
using GAMs and GLMs for motor insurance ratings with a large sample from a Spanish
insurance company. Finally, Section 5 presents the main results obtained in this work.
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2. Literature Review

One possibility for addressing nonlinearities in data is to use modern methods from
the field of machine learning and neural networks. For example, an early attempt by
Mulquiney [23] to compare GLMs to MARS (Multivariate Adaptive Regression Splines) [24],
MARTs (Multiple Additive Regression Trees) [25], and neural networks achieved mixed
results but ultimately favored GLMs. Furthermore, a comparison between XGBoost and
GLMs (logistic regression) for predicting motor insurance claims in [26] also favored GLMs.
In contrast, Henckaerts and colleagues [27] found that carefully crafted Boosted Trees
outperformed classical GLMs for insurance pricing. Ticconi [28] compared GLMs to neural
networks and Support Vector Machines (SVMs) for credit insurance analysis, with the
results demonstrating the superiority of SVMs. Baillargeon and colleagues [29] used a
Hierarchical Attention Network (a type of neural network for document classification)
to analyze risk factors from a textual dataset describing car accidents, using a GLM as a
baseline for comparison. Delong and Wüthrich [30] trained a neural network to develop
models for the process of claim payments and claims incurred for property or bodily injury.
They used GLMs, Generalized Additive Models, and Regression Trees as starting models
to feed into the neural network. A good overview of other applications of machine learning
tools to actuarial science can be found in [31].

As GAMs are particularly suitable for modeling nonlinear relationships between
variables, they have been widely and routinely used in several research fields since their
inception. For example, in the field of biology, they have been used to analyze the spatial
distribution of fishes and vegetal species [32–40]. Comparisons of the relative performance
of models estimated using GLMs or GAMs can be found in [41–45]. GAMs have also
been frequently combined or compared to GLMs in environmental sciences [46–49], cli-
matology [50], meteorology [51], neuroscience [52,53], and genetics [54]. In the actuarial
literature, some works have applied the GAM methodology to various problems in the
insurance field [55–60].

3. Generalized Additive Models

A Generalized Additive Model (GAM) is very similar to a GLM but with the key
difference that the explanatory variables are introduced in the model through an “additive”
predictor of the form η = β0 + f1(x1) + . . . + fp

(
xp
)
. This predictor replaces the linear

predictor of the form η = β0 + β1x1 + . . . + βpxp, typical of a GLM. The result is that
some smooth functions fk(xk) of the independent variables replace the simpler linear
terms of the form βkxk, typical of a GLM. The functions fk() can be selected from different
function spaces, provided that they are flexible enough to approximate any functional
shape; however, usually, they are some type of spline or kernel smoother [13,14,19]. Also,
the fact that each explanatory variable enters the model through a specific additive term
in the predictor, enables individualizing and clearly analyzing its effect on the response,
independently of the other variables. Efficient algorithms for estimating these models can
be found in [19].

In each model, the specific peculiarities of the functions fk() are evaluated as part of the
fitting process. The model loses the “parametric” character of the GLM and becomes what
is usually termed a “semiparametric” model [61]. These semiparametric models are a good
compromise between a fully parametric model (simpler to fit and interpret but less flexible
in incorporating nonlinear effects) and a totally nonparametric one, where the functions
fk() are a priori entirely arbitrary. A nonparametric model has enormous flexibility but is
very difficult to fit and interpret [62]. In the semiparametric case, the functions fk() are
usually constructed, as mentioned previously, using some kind of kernel smoother or, more
frequently, splines.

A kernel smoother enables the implementation of “local” regression: the estimated
value in a point x0 is calculated using the observed values at points close to it. To do
this, a weight is assigned to every point x. The weight is determined by a kernel K(x0, x),
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and the closer x is to x0, the greater the weight value. Different kinds of kernels are used in
practice. Some good revisions of this kind of technique can be found in [63,64].

A spline is a linear combination of polynomials, each defined over a specific bounded
interval and null outside of this interval. In this way, it is possible to address one of the
key problems of polynomials when used in interpolation and estimation: their non-local
character, i.e., the fact that they are defined over the entire real line, so small changes in
their values in one region can result in big changes in other, very distant regions. The most
frequently used splines are cubic ones, composed of third-order polynomials. Splines are
widely used in statistics and numerical analysis, and there is a huge amount of literature
devoted to them. A classical reference on the subject is [65].

The boundaries of the intervals in which the splines are defined are a set of points
termed knots. Given a set of knots ξ1 ≤ ξ2 . . . ≤ ξn belonging to an interval [a, b], a cubic
spline is a function based on a set of cubic polynomials, each one defined in one of the
intervals (a, ξ1), (ξ1, ξ2), . . . , (ξn, b) and null in the rest of them. The spline is defined so
that it is continuous, and with first- and second-order derivatives, it is also continuous at
the knots [13]. With these conditions, it can be easily seen that given n knots, a cubic spline
is defined by n + 4 parameters. A natural cubic spline is a cubic spline that satisfies the four
additional conditions that its second and third derivatives at the points a and b are zero. A
natural cubic spline is defined by n parameters. In fact, given n knots in an interval [a, b],
the set of splines in this interval and with these knots forms a vector space of dimension
n + 4 in the case of cubic splines, or n in the case of natural cubic ones.

There are many different ways to express the basis of these vector spaces. One of them
is the basis of truncated powers of the space of cubic splines [14]. This basis includes the
four monomial terms 1, x, x2, and x3 plus a set of n (one for each knot) third powers of
the positive part functions of the form

(
X− ξ j

)3
+

. The positive part function
(
X− ξ j

)
+

is
defined as: {

0, if X− ξ j < 0
X− ξ j, if X− ξ j > 0

(1)

Independently of the basis selected, if we denote sj() as the functions of the basis
of the cubic splines defined over an interval (and with a specified set of knots), we find
that every smooth function defined over such an interval can be approximated with a
linear combination of sj. In this way, the functions fk() of the predictor of a GAM can
be expressed as linear combinations of the functions of the basis fk(xk) ≈ ∑j β jsj(xk),
and the estimation of fk() reduces to the estimation of the coefficients β j of these linear
combinations. If the GAM reduces to an OLS model (because the dependent variable is
normally distributed, and the link function is the identity), β j can be estimated using least
squares by minimizing the quantity ‖ Y−∑ β jsj(x) ‖2 in the usual way. This is completely
analogous to the minimization of ‖ Y−∑ β jxj ‖2 in the case of a polynomial regression,
where the monomials xj play the role of the sk(x) basis functions.

This approach generalizes straightforwardly when the GAM corresponds to a Gener-
alized Linear Model (i.e., when the variable is not normal or the link function is not the
identity). Thus, the estimation of a GAM would be similar to that of a GLM, with the only
change being the replacement of xj with the splines sk(x). These types of splines, with the
knots fixed in advance, are often called regression splines [14]. When used, the complexity
or roughness of the model is controlled by adding or removing knots. The use of regression
splines is very simple because it is merely a slight generalization of a conventional regres-
sion model. However, they pose the problem that one has to select the number and location
of the knots, and the results can be quite sensitive to this choice. Moreover, the models
constructed by adding and removing knots are not nested, which makes it difficult to select
the most appropriate model.

It is possible to eliminate the problem of selecting knots through regularization, i.e., by
adding a quadratic additional term that penalizes the curvature of the estimated functions
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fk to the quantity to be minimized, ‖ Y − ∑ β jsj(x) ‖2. Usually, this term is of the form∫
( f ′′(x))2dx. In this case, a penalized regression spline is obtained, which controls the

complexity or roughness of the model through the weight assigned to the quadratic pe-
nalization term: the more the weight, the lesser the roughness. In the case of penalized
regression splines, it is still necessary to choose the knots, but this selection has little impact
on the final results, provided that the number of knots selected is high enough to lead to a
good fitting of the model.

An additional generalization is provided by smoothing splines. In this case, the set of
knots is maximal: every available value of the independent variable for which there is an
observation becomes a knot. Such a model has an exceedingly high number of parameters
and perfectly interpolates all the observations. This model lacks any interest, so it is neces-
sary to reduce its complexity through regularization. This is done by selecting a function f
from a determined function spaceH that minimizes the sum of a term penalizing curvature,
along with another term that, for example, in the case of an OLS model, represents the sum
of squared errors:

min
f∈H

{
∑(yi − f (xi))

2 + λ
∫ (

f ′′(x)
)2dx
}

(2)

The value of the smoothing parameter λ is chosen a priori and controls the amount of
penalization of the curvature of f, so that the greater its value, the smoother the estimated
model. If the function space H consists of differentiable functions with an absolutely
continuous first derivative in an interval that contains the observations, it can be proven
that the solution to the minimization problem above is a natural cubic spline with knots at
the observations [13]. The function f () , the solution to the minimization problem, can thus
be represented as a linear combination of the basis elements of the vector space of natural
cubic splines, f = ∑ βisi. Therefore, the minimization problem becomes the following:
minβ(y− Sβ)′(y− Sβ) + λβ′Ωβ.

Here, we have that S is a matrix whose elements are Sij = sj(xi); Ω is a matrix
of the elements Ωij =

∫
s′′i s′′j dx; β is a vector whose elements are the parameters βi

that we want to estimate; and y is the vector with the observed values of the depen-
dent variable. Formulated in this way, the problem is easily solved, and its solution is
β̂ = (S′S + λΩ)−1S′y [13,14].

The conclusion is that the smoothing spline that best fits the data is the natural cubic
spline with knots at the observations, which can be expressed as f̂ = ∑ β̂isi. The values
predicted by the model are ŷ = Sβ̂ = S(S′S + λΩ)−1S′y = Hy. They are obtained as a
linear transformation, Hy, of the observations. The matrix H = S(S′S + λΩ)−1S′ plays
a similar role to that of the hat matrix in an OLS regression. In OLS, the trace of the hat
matrix provides the dimension of the linear subspace over which it projects the vector y
of the observations. This dimension indicates the number of parameters, or degrees of
freedom, of the model. Similarly, in the case of smoothing splines, the trace tr(H) also
indicates the “effective” degrees of freedom of the model. In general, they are not integer
numbers, depend on the value of the smoothing parameter λ, and provide a measure of
the complexity of the model. A high value of λ strongly penalizes the curvature of the
spline f, which, therefore, tends to approach a straight line. Conversely, a low value of λ
implies that the effective degrees of freedom of the model are high, and f becomes rougher,
more complex, and “wrinkled”. In fact, the complexity of the model can be controlled by
selecting both the value of λ and the number of effective degrees of freedom.

The smoothing splines tend to be computationally expensive, but other than this, they
have a good number of desirable properties and also easily generalize to higher dimensions.
For example, in two dimensions, the term that penalizes the curvature of the spline becomes∫ ∫ [( ∂2 f

∂x2
1

)2
+ 2
(

∂2 f
∂x1∂x2

)
+

(
∂2 f
∂x2

2

)2
]

dx1dx2 (instead of
∫
( f ′′(x))2dx). These smoothing

splines in two or more dimensions are usually termed thin-plate splines [66].

114



Mathematics 2023, 11, 3906

4. Comparing the Two Approaches

As mentioned, the aim of this work is to compare the traditional approach to tariff
analysis in the automobile insurance field, i.e., the one based on GLMs with discretized
explanatory variables—the rating factors—with the one based on GAMs, which allows for
the introduction of nonlinearities in a very flexible way and without discretizing the rating
factors. To do this, we used data from the automobile policy portfolio of a Spanish insurance
firm for the year 2005. The data were slightly cleaned, discarding some extremely atypical
or clearly erroneous values; otherwise, they were used as found in the insurer’s database.
From the full portfolio, five random training samples, each containing 500,000 policies,
were extracted. With each of these samples, the GLMs and GAMs were estimated and
compared. Also, five additional random samples of 200,000 policies were extracted and
used as test samples. Each one of these test samples was paired with one of the training
samples to check the predictive accuracy of the estimated models. Initially, two kinds of
models were estimated: one for the number of claims using Poisson regressions, and one
for the claim size using Gamma regressions. The rating factors used as the independent
variables in the models are described in Table 1.

Table 1. Rating Factors.

Name Variable Characteristics

TYPE_VE Type or category of vehicle Categorical variable with 6 levels.

USAGE Usage of the vehicle Categorical variable with 20 levels.

NATURE Nature of the vehicle Categorical variable with 2 levels.

PLACES Number of seats Count variable; treated as categorical with 8 levels.

AMBIT Circulation area of the vehicle Categorical variable with 8 levels.

VEH_AGE Age of the vehicle Continuous variable. Discretized with 16 levels.

DRI_AGE Age of the driver Continuous variable. Discretized with 11 levels.

LIC_YEARS Number of years of the driving license Continuous variable. Discretized with 9 levels.

WEIGHT_POW Power-to-weight ratio Continuous variable. Discretized with 3 levels.

GENDER Gender of the driver Categorical variable with 2 levels (male/female).

ZONA The different Spanish regions and some big cities Categorical variable with 65 levels.

DIESEL Does the vehicle have a diesel engine? Categorical variable with 2 levels (diesel/gasoline).

For the Generalized Linear Models, the continuous rating factors were discretized in
the same way as the insurance firm did. The levels of the rating factors defined a set of
cells, and within these cells, the values of the dependent variable (number of claims and
claim size) were aggregated. In this manner, all the explanatory variables used in the GLMs
were categorical. Additionally, a set of “naïve” GLMs was also estimated. In these models,
the rating factors were discretized, but not according to the levels used by the insurance
firm (levels that reflect its ample experience in policy pricing and require a long process of
fine-tuning to find the most appropriate discretization of the variables), but using a set of
categories obtained simply from the quantiles of each variable. Nevertheless, the number
of levels chosen for the discretization was the same as that used by the insurer, so the
discretization was not fully “naïve”, as it included some of the insurer’s ratings.

For the GAMs, the continuous explanatory variables were introduced into the models
using splines.

For each of the five training samples of 500,000 policies, three models (a GLM, a naive
GLM, and a GAM) were estimated. These models were used to predict the values of
the dependent variables for the test sets, calculating the sum of their respective absolute
prediction errors as a measure of predictive power. The absolute prediction errors obtained
for the test samples of 200,000 observations are shown in Table 2.
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Table 2. Absolute prediction errors.

Poisson

Sample Naïve GLM GLM
GAM BAM

k = 10 k = 15 k = 20 k = 30 k = 50 k = 30

1 15,785.96 15,774.31 15,772.9 15,770.87 15,771.02 15,770.24 15,770.84 15,772.34

2 16,065.91 16,050.05 16,050.54 16,048.58 16,048.20 16,047.72 16,046.31 16,048.67

3 15,792.93 15,779.81 15,780.58 15,778.65 15,778.43 15,777.71 15,777.37 15,778.17

4 15,765.74 15,750.54 15,750.68 15,748.98 15,749.11 15,748.74 15,748.12 15,749.06

5 15,883.12 15,872.55 15,868.71 15,867.85 15,867.50 15,867.49 15,868.31 15,868.63

Gamma

Sample Naïve GLM GLM
GAM BAM

k = 4 k = 10 k = 15 k = 20 k = 30 k = 50 k = 4

1 3,085,250 3,069,263 3,056,845 3,076,293 3,077,411 3,091,096 3,106,039 3,118,692 * 3,056,219

2 3,053,085 3,045,601 3,037,337 3,043,671 3,052,295 3,062,141 3,072,514 3,083,956 * 3,038,045

3 3,175,236 3,167,669 3,155,742 3,166,577 3,177,928 3,182,010 3,189,077 3,206,048 * 3,153,131

4 2,887,690 2,884,199 2,880,680 2,882,199 2,885,353 2,890,385 2,897,359 2,911,412 * 2,880,103

5 3,225,151 3,216,130 3,203,817 3,209,767 3,215,150 3,219,094 3,234,659 3,239,390 * 3,203,398

(*) A spline with k = 30 has been used for VEH_AGE.

The GLMs were estimated using the standard R function, glm. For the GAMs, the
gam function of the R mgcv package [67] was used with thin-plate regression splines
and different values of the parameter k. This value indicated the maximum allowable
dimension of the spline space and hence its degrees of freedom. Also, Table 2 shows the
sums of the absolute prediction errors for these different values of k. For the Poisson
models, in general, the smallest prediction error was reached for k = 50. Note that the
huge differences between the values for the Poisson and Gamma models are due to the
nature of the dependent variables (number of claims in the Poisson case, claim size in the
Gamma case).

The mgcv package includes a “big data” function (bam) used to estimate the GAMs.
This is very similar to the gam function but is designed to work with very big datasets
and use multiple CPU cores in parallel, resulting in very efficient memory usage and
shorter execution times. With the bam function, it is not advisable to use thin-plate splines
because of their high computational complexity [68], so other types of splines, like the
cubic regression ones that we used here, are preferable. Although these splines may lead to
slightly worse results, they are much quicker to evaluate. We can see in Table 2 that, in fact,
for k = 4, the prediction errors of the GAMs evaluated with the bam function are very close
to those of the gam function, but the execution times are, as discussed below, a lot shorter
and comparable to those of the GLM models.

In Table 2, the values corresponding to the Gamma regressions with k = 50 are marked
with an asterisk because, in this case, the continuous variable VEH_AGE does not have
enough different values to use a spline with k = 50 (the covariate has fewer unique values
than the specified maximum degrees of freedom). Hence, we used a spline with k = 30 for
this variable, and splines with k = 50 for the rest of the continuous variables (DRI_AGE,
LIC_YEARS, and WEIGHT_POW).

To check if the improvement in the absolute prediction error obtained when using a
GAM, instead of a GLM or naïve GLM, was statistically significant, we followed [69], which
recommended conducting a Kolmogorov–Smirnov test. Although this test was used in [69]
in a time-series prediction context, nothing prevents its usage in the more general case of
comparing the prediction errors of two different models. Table 3 summarizes the p-values
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of the Kolmogorov–Smirnov tests for the null hypothesis that the absolute prediction errors
obtained with the GAM are not stochastically lesser than the errors obtained with the
corresponding GLM or naïve GLM. Therefore, rejecting the null hypothesis means that
the cumulative distribution function (cdf) of the absolute error (AE) of the prediction of
the GAM lies above and to the left of the corresponding cdf of the AE of the GLM or
naïve GLM. This would mean that the bulk of the distribution of the GAM prediction
errors concentrates on values significantly smaller than those of the GLM or naïve GLM
prediction errors.

Table 3 shows the p-values obtained by comparing the prediction errors of the GAMs to
those of the corresponding GLMs and checking the hypothesis that the errors of the GAMs
were not (stochastically) less than those of the GLMs. The lower the p-values, the greater
the confidence that the GAMs outperformed the GLMs in terms of the absolute prediction
error. In general, the absolute prediction errors of the GAMs were significantly better than
those of the GLMs (at a 95% or 90% confidence level), except in the case of the Poisson
regression models, where the absolute errors of the GAMs were not significantly better
than those of the GLMs (although they were significantly better than those of naïve GLMs).

Table 3. p-values of the Kolmogorov–Smirnov tests.

Poisson Gamma

Sample GAM vs. Naïve GLM GAM vs. GLM GAM vs. Naïve GLM GAM vs. GLM

1 0.0256 0.0966 0.0092 0.0033

2 0.0561 0.1624 0.0351 0.0651

3 0.0246 0.2012 0.0971 0.0499

4 0.0804 0.3357 0.1945 0.0202

5 0.0335 0.1716 0.0131 0.09861

A problem that was found in the Poisson GAMs was that of overdispersion, but this
can be treated in a similar manner to that in the case of the more conventional GLMs.
Among these solutions, the mgcv package enables estimating, for example, a negative
binomial, a quasi-likelihood model, etc.

A relatively simple way of estimating the dispersion parameter and checking if it is
close to 1, as it should be, is by using the quotient between the sum of the squared Pearson
residuals and the degrees of freedom of the model [70]. In our case, for all the samples and
models estimated, the values of this quotient ranged between 1.17 and 1.21, and therefore
the overdispersion did not cause a serious problem in any case.

As for the Gamma regressions, it appears that there is a certain overfitting, both for
the default value of k (k = 10) and the rest of the values used (k = 15, 20, 30, and 50).
This can be seen in Figure 1, that depicts the values taken by the splines of the continuous
rating factors for the Gamma regressions with a value of k = 30 (the red lines, with a 95%
confidence band in grey around them). In this figure, there is a series of oscillations in the
splines that do not reflect any foreseeable effect of the explanatory variables, but are a mere
consequence of a too-high value for the degrees of freedom allowed in the splines.

As the absolute prediction errors shown in Table 2 grew with the value of k, different
values of this parameter, smaller than the default value k = 10, were tested. The value of k
with the lesser value of the absolute prediction error was k = 4. Figure 2 shows the splines
for the continuous independent variables of the Gamma regression models with k = 4. One
can see that the apparent oscillations visible in the models with higher values of k, like the
ones displayed in Figure 1, have disappeared.
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Figure 1. Overfitting in Gamma regression with k = 30.

In general, the results were very similar for the GAMs and the more classical GLMs
with the “sophisticated” discretization of the continuous variables implemented by the
insurance firm. Both kinds of models yielded results that outperformed those obtained with
the GLMs with “naive” discretization, so they can be considered alternative solutions to
the problem of coping with nonlinear effects in the automobile insurance field. The GLMs
with discretized rating factors require fine-tuning, which can be painstaking and tedious,
to determine how to discretize the continuous explanatory variables, i.e., to determine
the number of levels and the intervals that define them. As for the GAMs, they are more
complex models, but the fine-tuning process is more “automated” and quick, and in
practice, it reduces to check that the complexity of the model, as measured by the degrees
of freedom of the splines used, is high enough to properly reflect the nonlinear effect of
every independent variable.

A problem with the GAMs was that their higher complexity entailed greater require-
ments in terms of RAM and significantly longer CPU execution times. Table 4 shows the
execution times (in seconds) for a set of Poisson and Gamma regressions, with different
sample sizes, both for GLMs and GAMs.

The aforementioned bam function of the mgcv package not only makes more efficient
use of the RAM and is faster than the gam function but is also designed to be executed in
parallel using multiple threads or multiple cores through the parallel package [71]. In our
case, it was executed using three cores in a single computer. It can be seen in Table 3 that the
execution times of the bam function are comparable to those of the GLMs and one order of
magnitude lower than those of the gam function. Moreover, their predictive performance,
as measured with the absolute prediction error, is only slightly worse than that of the GAMs
with thin-plate splines. This clearly shows that the bam function provides a neat and quick
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alternative for estimating GAMs since it is as fast as the more conventional glm function
for GLMs with discretized variables. It should be noted that the sample sizes in Table 4 are
far smaller for the Gamma than for the Poisson models because the former were estimated
using the observations with at least one claim, and thus the vast majority of policies, that is,
the ones with zero claims, were discarded. In practice, only one out of twenty-five policies
has one or more claims per year. We chose sample sizes according to this proportion.
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Figure 2. Gamma regression with k = 4.

Table 4. Execution times (in seconds).

Poisson Gamma

Sample Size GLM GAM BAM Sample Size GLM GAM BAM

125,000 136.19 1591.18 201.77 5000 3.59 183.75 36.12

250,000 259.34 2326.81 348.30 10,000 6.39 289.92 36.08

375,000 370.55 3505.14 457.88 15,000 9.61 440.50 37.47

500,000 506.30 4793.21 616.93 20,000 12.48 763.18 40.33

625,000 640.68 6128.69 780.73 25,000 13.10 1014.32 54.19

750,000 757.25 8707.59 865.03 30,000 17.87 1570.21 56.51

Figure 3 shows a graphical image of the runtimes. Although these times increased
exponentially with the sample size for the GAMs, with the bam function, they were almost
identical to the times for estimating a GLM using the glm function.
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Figure 3. Execution times.

5. Conclusions

GLMs are the basic pricing tool used in the field of automobile insurance. Usually, they
are used by taking the continuous rating factors and discretizing them. This implies the
definition of a series of “cells”, so that each policy belongs to one of them, and its premium is
the one corresponding to that cell (all the policies in the same cell have the same premium).
This facilitates the computation of the premium of a new policy because it reduces, in
practice, to determine the cell the new policy belongs to. It also enables taking into account
in a very simple manner the eventual nonlinear effects of the rating factors. As a drawback,
the discretization of the rating factors implies a certain amount of information loss and also
entails a certain amount of arbitrariness in the choice of the number of levels and intervals
that define the discretized variables. A careful analysis and choice of these levels are,
therefore, absolutely necessary to obtain an acceptable tariff model.

As a more sophisticated alternative to discretization, it is possible to replace the GLMs
with their generalization, the GAMs. The latter are more computationally intensive and
with them, it is no longer possible to compute the premium by merely looking at the cell
the policy belongs to (since there are no cells at all), but they enable taking into account
the nonlinear effects of the rating factors in a very straightforward fashion and without
discretizing them. Consequently, there is no information loss, as happens in the case of
GLMs with discretized explanatory variables, and it is possible to model the relationship
between the rating factors and the key ratios (claim frequency, claim severity, etc.) the
insurer is interested in with greater detail. The downsides of the GAMs are the greater
complexity in the models, the greater computational load, and, therefore, the longer CPU
time required for their estimation. Furthermore, it is not possible to determine the premium
for a new policy simply by using a table that shows the set of premium values according
to the levels of the rating factors. In contrast, in the case of GAMs, the calculation of the
premium for a new policy requires determining the value predicted by the model for the
specific values of the rating factors of that policy.

5.1. Discussion and Future Lines of Work

In this work, we compared both approaches—traditional GLMs with discretized vari-
ables and more sophisticated GAMs without discretization—with the aim of determining
whether the use of GAMs, which are more complex and computationally intensive, is
advantageous enough in comparison to GLMs to justify their utilization. To do this, we
used a huge sample of car policies from a Spanish insurer and estimated and compared
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a series of GLMs and GAMs for the two key ratios, claim frequency and claim severity,
commonly used for tariff analysis in the automobile insurance field. As is conventional,
Poisson regressions were used to model the claim frequency, and Gamma regressions were
used to model the claim severity.

Regarding the quality of the predictions of both types of models, the most relevant
issue is that the prediction errors for the GAMs were, in general, slightly better (i.e., minor)
than those for the GLMs (see Table 2). Also, in the case of the Poisson regressions, the re-
duction in the prediction error when passing from GLMs to GAMs was notably smaller
(approximately 25% on average) than the reduction when passing from naive GLMs to
GLMs (we used this last reduction as a reference). In the case of the Gamma regressions,
the reduction in the prediction error when passing from GLMs to GAMs was slightly
greater (16.6% on average) than the reduction when passing from naive GLMs to GLMs,
although we needed to manually adjust the degrees of freedom of the models (through the
value of k) to avoid overfitting.

Table 5 shows the improvements in the prediction error when moving from GLMs
to GAMs, relative to the improvement in the error when moving from naïve GLMs to
GLMs (i.e., the values recorded in the table are of the form error GAM−error GLM

error GLM−error naı̈ve ). We can see
in this table that the improvement in the predictions’ quality (measured by the absolute
prediction error) is not very appealing when considered in absolute terms, but compared
to the improvement experienced when moving from naive GLMs to GLMs, one can see
that the error reduction is very noticeable, especially in the case of the Gamma regressions.

Table 5. Improvement in the prediction error.

Sample
Mean Standard Deviation

1 2 3 4 5

Poisson 0.3494 0.1469 0.1601 0.1184 0.4787 0.2507 0.1567

Gamma 0.7768 1.1042 1.5762 1.0080 1.3649 1.1660 0.3115

With regard to execution times, the greater complexity of the GAMs implies longer
execution times compared to the GLMs. According to Table 3, in the case of the Poisson
regressions, these times were, on average, approximately ten times higher for the GAMs
than for the GLMs and about 61 times higher in the case of the Gamma regressions. These
differences in the execution times are large enough to pose a serious problem when working
with big samples and tilt the balance in favor of the less demanding GLMs. Nevertheless,
these differences almost vanish if the bam function of the same R package (mgcv) is used
instead of the gam (especially for the Poisson regressions). The bam function was designed
to deal with big datasets, and its results were very similar to those obtained with the
gam function but with a dramatic reduction in execution times. Also, this function can
be executed in parallel in a cluster with multiple CPUs, speeding up the calculations and
providing additional reductions in execution times. Table 3 shows that the execution
times of the bam function were very similar and of the same order of magnitude as those
of the gam function in the case of the Poisson regressions, and only about five times
greater (instead of 61 times if the bam function was not used) for the Gamma regressions.
Thus, GAMs estimated using the bam function are a competitive alternative to GLMs.

The rise of modern machine learning and deep learning methods offers a novel
and powerful alternative to traditional, regression-based methods for rate analysis in
insurance. Many of these new tools, such as those based on trees (random forest, for
example) and those based on neural networks (deep learning), lack the interpretability of
classical methods and are also very computationally intensive, but their success in areas
such as image analysis and natural language processing clearly shows that they will be
increasingly important in the future in the actuarial field. A natural way of extending this
work is to compare GAMs and their ability to deal with nonlinearities to methods such as
deep learning. Some work has been carried out in this direction, for example in [72,73].
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5.2. Managerial Implications

As for the managerial implications, we can conclude that GAMs should be considered
a powerful and realistic choice for tariff analysis in the automobile insurance field. They
improve the quality of the models by reducing the prediction errors but at the expense
of a higher complexity of the models and longer execution times. When using GAMs, it
is no longer necessary to discretize the continuous risk factors, which saves a significant
amount of work in determining the levels of the discretized variables and fine-tuning
the models. Nevertheless, in exchange for this capability of working directly with the
continuous variables, we lose the possibility of assigning a premium to a new policy by
simply searching in a table that collects the premiums corresponding to each level of the
rating factors.

Moreover, the use of GAMs is not completely automatic (in the sense that one could
trust the results obtained using the default values of the parameters), but sometimes it is
necessary for some manual fine-tuning of the models, as seen in the case of the Gamma
regressions, where there was certain overfitting that forced us to manually choose the
models’ degrees of freedom.

Broadly speaking, the nonlinearities observed in the rating factors’ effects on the
key ratios (claim frequency and claim severity) used in car insurance do not seem very
pronounced, as can be seen, for example, in Figure 2. This means that GAMs will not be
as useful for modeling these nonlinearities as they are in certain fields of natural sciences
where they are commonly used, as previously mentioned, and where the nonlinear effects
of the explanatory variables are noticeably more pronounced. Nonetheless, nonlinearities
exist, and GAMs prove to be a very useful tool and more sophisticated than traditional
GLMs with discretized variables, which, nowadays, is standard practice in automobile
insurance pricing.
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Abstract: We consider the Cox–Ingersoll–Ross (CIR) model in time-dependent domains, that is,
the CIR process in time-dependent domains reflected at the time-dependent boundary. This is a
very meaningful question, as the CIR model is commonly used to describe interest rate models,
and interest rates are often artificially set within a time-dependent domain by policy makers. We
consider the most fundamental question of recurrence versus transience for normally reflected CIR
process with time-dependent domains, and we examine some precise conditions for recurrence versus
transience in terms of the growth rates of the boundary. The drift terms and the diffusion terms of
the CIR processes in time-dependent domains are carefully provided. In the transience case, we
also investigate the last passage time, while in the case of recurrence, we also consider the positive
recurrence of the CIR processes in time-dependent domains.

Keywords: transience; recurrence; CIR model; time-dependent region; reflection

MSC: 60J60; 60K35; 60J80; 60J10

1. Introduction

In mathematical finance, especially in the field of interest rate theory, the
Cox–Ingersoll–Ross (CIR for short) model explains the evolution of interest rates. The
CIR model is a type of one-factor model (short-rate model), as it describes interest rate
movements as driven by only one source of market risk. The model was introduced by [1]
as an extension of the Vasicek’s interest rate model, and it has the following stochastic
differential equation (SDE for short):

dX(t) = (a− bX(t))dt + σ
√

X(t)dW(t), (1)

where W(t) is a Wiener process (modeling the random market risk factor) and a, b, and
σ are positive constants. The parameter a is the mean level or long-term interest rate
constant, the parameter b is the speed of the mean reversion and corresponds to the speed
of adjustment to the mean a, and σ regulates the volatility. The drift factor, (a− bX(t)),
is the same as in the Vasicek model; see [2]. It ensures the mean reversion of the interest
rate towards the long-run value a, with the speed of adjustment governed by the strictly
positive parameter b. The stochastic volatility term σ

√
X(t)dW(t) has a standard deviation

that is proportional to the square root of the current rate. This implies that as the interest
rate increases, its standard deviation increases, and as it falls and approaches zero, the
stochastic volatility term also approaches 0.

In the following section, we mainly study the Equation (1) as the CIR model or CIR
process. The same process is used in the Heston model, see [3], to model stochastic volatility.
The SDE (1) has no explicit solution in general, even though its mean and variance can be
calculated explicitly, and the probability transition density can be easily determined by
using the time–space transformation. This CIR process X(t) can be defined as a sum of
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squared Ornstein–Uhlenbeck process or be constructed using a BESQ process of dimension
d = 4a

σ2 ; see [4]. Refs [5,6] proved that the CIR process is an affine process and the semigroup
of every stochastic continuous affine process is a Feller semigroup; hence, the CIR process
is a regular Feller process on the interval (0,+∞). The CIR process X(t) is an ergodic
process, and it possesses a stationary distribution. Furthermore, the CIR process is positive
recurrent and nonexplosive on the interval (0,+∞).

Some diffusion processes in time-dependent domains have always been the focus of
scholars’ attention in the field of probability, and some various sample path properties
involving diffusion processes in the time domain are constantly being discovered. The
time-dependent domain problem that this article focuses on is actually a domain problem
with deterministic moving boundaries, also known as noncylindrical domains. This type
of time-dependent domain problem originates from both random environment problems
and classic PDE problems with various boundary conditions; see [7]. In [8], the authors
provided motivation for studying this issue of diffusion processes in time-dependent
domains, through the theoretical explanation of a partial differential equation, and they
focused on the heat equation in the time-dependent domain with Neumann rather than
Dirichlet boundary conditions, that is, Brownian motion reflected on rather than killed
at the boundary of a time-dependent domain. In [9], the most fundamental question of
recurrence versus transience for normally reflected Brownian motion with time-dependent
domains has been carefully studied, and the authors provided some sharp criterions for the
recurrence versus transience of normally reflected Brownian motion in terms of the growth
rate of the boundary. In [10] the author provided precise conditions for the recurrence
versus transience of one-dimensional Brownian motion with a locally bounded drift, which
belongs to the time-dependent domain with a normal reflection at the time-dependent
boundary, and the precise conditions provided by the author naturally depend on the
growth rates of the boundary and the drift terms of the diffusion processes.

Considering that the CIR model in time-dependent domains has important practical
significance and value in the financial field, due to the fact that the evolution of interest rates
is often limited to a regional scope, it often changes with the policies of interest rate makers
or government management departments. In addition, this CIR model in time-dependent
domains has theoretical significance in the field of mathematics and also promotes the
research of the properties of transience versus recurrence for stochastic processes. Table 1
below gives the related progress in this field of transience versus recurrence for stochastic
processes in time-dependent domains through the aid of the expression of the generator
corresponding to the one-dimensional diffusion process. For more topics on the aspect of
transience versus recurrence for stochastic processes, please refer to [11–14]. It should be
pointed out that, in addition to transience versus recurrence for the conservative random
walk, scaling limits for the conservative random walk have also been studied in the work
of [11]. However, we did not address scaling limits for stochastic processes in this article.

Table 1. L = 1
2 σ2(x) d2

dx2 + b(x) d
dx .

σ2(x) b(x) Ref.

1 0 [8,9]

1 bxγ [10]

σ2x a− bx This paper

Here, we need to emphasize that in [8–10], they not only deal with one-dimensional
situations, but also with multidimensional situations. For more detailed conclusions, please
refer to the literature above for interested readers. In this paper, we only deal with the
one-dimensional situations for technical reasons, but we deal with situations where σ2(x)
is not a constant. At present, in this paper, we only deal with the case where σ2(x) = σ2x is
linear, and of course, we can also consider the nonlinear case (which is not the CIR model).
This problem will also be considered in a future work.
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When a ≤ 0, the CIR process hits zero repeatedly but after each hit becomes positive
again; this behavior of hitting zero will also occur even if a < 1

2 σ2. Therefore, we do
not intend to handle this simple situation; we will only consider a > 0. At this point,
the CIR process will have an upward positive constant slope a, and the evolution of the
CIR process will still have a mean reversion property when b > 0. However, when we
started considering b < 0, we saw that the CIR process will have a completely positive
slope, which will encourage the CIR process to continuously move upwards and hit our
constantly changing time-dependent upper boundary. If there are no time-dependent
boundary restrictions, this will cause the CIR process to explode, thus possessing the
property of transience. How is it possible to conduct the CIR process so as not to explode?
In other words, how is it possible to transfer from transience to recurrence for the CIR
process when b < 0? A natural idea is to add a boundary to the explosion diffusion process,
just like the boundary of a time-dependent domain we mentioned above, and when this
diffusion process hits the boundary, it will reflect back to our time-dependent domain. This
is the main research topic of this paper, which is a fundamental problem in the field of
probability, that is, recurrence versus transience, for this normally reflected CIR process
with time-dependent domains.

In addition, in the transience case, we also investigate the last passage time, which
plays an important and increasing role in financial modelling. The theory of the last passage
time is a very important topic in the field of mathematical finance. In this paper, we only
provide the probability distribution of the last passage time through the scale function,
without exploring its application in the financial modelling field. See [15], as well as [16],
for the applications the last passage time to hazard processes and models of default risk.

Let us briefly explain the analytical method we used to prove recurrence versus
transience for this normally reflected CIR process with time-dependent domains. The first
major tool is the well-known Feynman–Kac formula of diffusion process, which provides
the stochastic representation for the solution to the boundary value problem. It is worth
noting here that the common Feynman–Kac formula is a boundary value problem with a
Dirichlet condition or Cauchy condition; however, we still need the Feynman–Kac formula
for the boundary value problem with a Neumann boundary condition here, as we need
to handle the normally reflected CIR process with time-dependent domains. The second
tool we use is the criticality theory of second-order elliptic operators; in particular, the
maximum principle or comparison theorem is frequently used in our proofs. It is worth
mentioning that some comparison theorems are not clearly found in the literature, and
we provide detailed proofs of them in the Appendix. Regarding the criticality theory, we
refer the reader to [17] for more details. Due to the need to obtain precise conditions for
coefficients in the CIR process, the selection of certain parameters is also crucial in our
proof process.

This paper is structured as follows. In Section 2, we give some basic notations used
throughout this paper and provide some auxiliary results about the moment generating
function of the first hitting time. In Section 3, we prove the results of two recurrent
properties, recurrence and positive recurrence, and provide the precise conditions that
the coefficients of the CIR process should meet for recurrence and positive recurrence
in terms of the growth rates of the boundary, the drift terms, and the diffusion terms of
the CIR processes in time-dependent domains. In Section 4, we prove the result of the
transient for the CIR process in time-dependent domains and also provide the precise
conditions that the coefficients of the CIR process should meet. Section 5 concludes, and in
Appendix A, we provide some comparison theorems of second-order ordinary differential
equations with nonconstant coefficients. in Appendix B, the exact solution of a second-order
ordinary differential equation with nonconstant coefficients is given by transforming it into
one-dimensional Riccati equation.
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2. Auxiliary Results

We will first introduce some notations, which we will frequently use in the following
sections. Let X(t) denote a canonical, continuous, real-valued path, and let Tα = inf{t ≥ 0 :
X(t) = α}. We introduce some generators for some diffusion processes:

Lbxγ =
1
2

d2

dx2 + bxγ d
dx

;

LD =
1
2

d2

dx2 + D
d

dx
;

LCIR =
1
2

σ2x
d2

dx2 + (a− bx)
d

dx
.

Let P∗;Re f←:β
x and E∗;Re f←:β

x denote probabilities and expectations for diffusion process
corresponding to the generator L∗ on [1, β], starting from x ∈ [1, β], with a reflection at β

and stopped at 1. Let P∗;Re f→:α
x and E∗;Re f→:α

x denote the probabilities and expectations
for diffusion process corresponding to the generator L∗ on [α, ∞), starting from x ∈ [α, ∞),
with a reflection at α.

2.1. Moment-Generating Functions

Next, we will provide some auxiliary results about the moment-generating function
of the first hitting time using some diffusion process without proofs. Actually, these
conclusions can be easily obtained from the well-known Feynman–Kac formula and the
criticality theory of second-order elliptic operators after simple calculations.

(A) It follows from the Feynman–Kac formula that

u(x) = ED;Re f→:1
x [e

D2
2 Tβ ]

solves the boundary value problem⎧⎨⎩ (LD + D2

2 )u = 0, in (1, β),
u′(1) = 0,
u(β) = 1.

The solution of this linear equation is given by the function

u(x) =
1

1 + D(β− 1)
(1 + D(x− 1))eD(β−1).

According to the criticality theory of second-order elliptic operators, for instance, see [17],
it follows that the principal eigenvalue λ1 for −LD satisfies

λ1(−LD) ≥ D2

2
.

(B) It follows from the Feynman–Kac formula that

u(x) = ED;Re f←:β
x [e−λTα ]

solves the boundary value problem, λ > 0:⎧⎨⎩
(LD − λ)u = 0, in (α, β),
u(α) = 1,
u′(β) = 0
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The solution of this linear equation is given by the function

u(x) =
r1er2x−r1β + r2e−r1x+r2β)

r1er2α−r1β + r2e−r1α+r2β)
,

where r1 = D +
√

D2 + 2λ, r2 = −D +
√

D2 + 2λ.
(C) It follows from the Feynman–Kac formula that

u(x) = ED;Re f→:1
x [eDTβ ]

solves the boundary value problem⎧⎨⎩
(LD + D)u = 0, in (1, β),
u′(1) = 0,
u(β) = 1.

The solution of this linear equation is given by the function

u(x) =
r1e−(r2x+r1) − r2e−(r1x+r2)

r1e−(r2β+r1) − r2e−(r1β+r2)
,

where r1 = D−√D2 − 2D, r2 = D +
√

D2 − 2D.
(D) It follows from the Feynman–Kac formula that

u(x) = ED;Re f→:1
x [eλTβ ]

solves the boundary value problem⎧⎨⎩
(LD + λ)u = 0, in (1, β),
u′(1) = 0,
u(β) = 1.

The solution of this linear equation is given by the function

u(x) =
r1e−r2x−r1 − r2e−r1x−r2

r1e−r2β−r1 − r2e−r1β−r2
,

where r1 = D−√D2 − 2λ, r2 = D +
√

D2 − 2λ.

2.2. Moment-Generating Function for CIR Model

Consider the following CIR model:

dXt = (a− bXt)dt + σ
√

XtdWt,

with its operator

LCIR =
1
2

σ2x
d2

dx2 + (a− bx)
d

dx
.

Lemma 1. (i) The function

uλ(x) := ECIR;Re f←:β
x eλTα

satisfies the following boundary value problem⎧⎨⎩
(LCIR + λ)u = 0, in (α, β),
u(α) = 1,
u′(β) = 0.
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(ii) For α ∈ [1, β] and λ ≤ λ̂(α, β),

ECIR;Re f←:β
x eλTα ≤ 2,

where x ∈ [α, β], and

λ̂(α, β) = − b
σ2 e−

2(1+a−bα)

ασ2 (β−α)
= − b

σ2 e(
2b
σ2− 2(1+a)

ασ2 )(β−α).

Proof. It is easy to obtain (i) from the well-known Feynman–Kac formula, and we will only
prove that (ii) holds. Consider the function

u(x) = 2− e−r(x−α), α ≤ x ≤ β,

where r > 0. Choose − 1
2 σ2r < b < 0. Then,

er(x−α)(LCIR + λ)u = −r(b +
1
2

σ2r)x + ar− λ + 2λer(x−α)

≤ −r(b +
1
2

σ2r)α + ar− λ + 2λer(β−α)

= −1
2

ασ2r2 + (a− bα)r + λ(2er(β−α) − 1).

Next, we solve the following inequality,

−1
2

ασ2r2 + (a− bα)r + λ(2er(β−α) − 1) ≤ 0

and λ(2er(β−α) − 1) ≤ 1
2

ασ2r2 − (a− bα)r = (
1
2

ασ2r− (a− bα))r,

so that we obtain

λ ≤ ( 1
2 ασ2r− (a− bα))r

2er(β−α) − 1
.

Hence, we have
(LCIR + λ)u ≤ 0, in (α, β),

if

0 ≤ λ ≤ ( 1
2 ασ2r− (a− bα))r

2er(β−α) − 1
.

Let
1
2

ασ2r− (a− bα) = 1,

and we can choose

r =
2(1 + a− bα)

ασ2 = − 2b
σ2 +

2(1 + a)
ασ2 .

Obviously, r satisfies r > − 2b
σ2 . After tedious calculations,

( 1
2 ασ2r− (a− bα))r

2er(β−α) − 1

=
r

2er(β−α) − 1
=

2(1+a−bα)
ασ2

2er(β−α) − 1

≥
2(1+a−bα)

ασ2

2er(β−α)
≥

−bα
ασ2

er(β−α)
=
−b
σ2 e−r(β−α),
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and choosing

r =
2(1 + a− bα)

ασ2 ,

we can obtain

( 1
2 ασ2r− (a− bα))r

2er(β−α) − 1
≥ − b

σ2 e−
2(1+a−bα)

ασ2 (β−α) := λ̂(α, β),

Here, we provide the definition of λ̂(α, β), which we will frequently use below.
We have thus shown that there exists a function u > 0 on [α, β] satisfying⎧⎨⎩

(LCIR + λ̂)u ≤ 0, in (α, β),
u(α) = 1,
u′(β) ≥ 0.

Let λ1(−L) be the principal eigenvalue of the second-order elliptic operator for −L;
according to the criticality theory of the second-order elliptic operators, it follows that the
principal eigenvalue λ1(−LCIR) satisfies

λ1(−LCIR) ≥ λ̂,

where the second-order elliptic operator LCIR satisfies⎧⎨⎩
LCIRu = 0, in (α, β),
u(α) = 1,
u′(β) = 0.

According to the Feynman–Kac formula, if λ ≤ λ1(−LCIR), then the function

uλ(x) := ECIR;Re f←:β
x eλTα

satisfies the following boundary value problem⎧⎨⎩
(LCIR + λ)u = 0, in (α, β),
u(α) = 1,
u′(β) = 0.

According to the generalized maximum principal, it follows from λ ≤ λ1(−LCIR) that

uλ ≤ u,

where, u satisfies ⎧⎨⎩
(LCIR + λ)u ≤ 0, in (α, β),
u(α) = 1,
u′(β) ≥ 0,

(2)

Obviously, u(x) = 2− e−r(x−α) satisfies (2). Hence, in particular, we have

ECIR;Re f←:β
x eλTα = uλ(x) ≤ u(x) ≤ 2.

This completes the proof of this lemma.

3. Recurrence of the CIR Model When b < 0

Transience recurrence dichotomous issues are central to the study of stochastic pro-
cesses and help describe the stochastic process’s overall structure. There are many equiva-
lent definitions of transience versus recurrence dichotomy in many of the literature; here,
we can refer to [18,19].
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Definition 1. The stochastic process X(t) is recurrent if X(t) belongs to O at arbitrarily large
times t, with a probability of one, and is transient if X(t) belongs to O at arbitrarily large times t,
with a probability of zero, for any set O.

In this section, we prove the results of two recurrent properties, that is, recurrence and
positive recurrence. The definition of positive recurrence for a stochastic process X(t) is
given in the following subsection.

3.1. Recurrence

Theorem 1. Consider the CIR model corresponding to the generator

1
2

σ2x
d2

dx2 + (a− bx)
d

dx

in the time-dependent region [1, f (t)] with reflection at both the fixed endpoint and the time-
dependent one. Let σ > 0, b < 0, and a > 0 satisfy that there is an a0 < 1

2 and an a ≤ a0, where

a0 solves 2a = e
2b
σ2− 2(1+a)

σ2 . Assume that f (t) ≤ ln t for sufficiently large t. If

b > −σ2

2
,

or if

b = −σ2

2
and a <

σ2

2
,

then the CIR model is recurrent.

Proof. Let j0 ≥ 3 and tj = ej. Then, we have f (tj) > 2 for j ≥ j0. For j ≥ j0, let Aj+1 denote
the event that the CIR process hits 1 at some time t ∈ [tj, tj+1]. The conditional version of
the Borel–Cantelli lemma shows that if

∞

∑
j=j0

P1(Aj+1|Ftj) = ∞, a.s., (3)

then P1(Aj, i.o.) = 1, and thus the CIR process is recurrent. Thus, to show recurrence of the
CIR process, it suffices to show (3).

Since up to time tj, the largest that the CIR process can be is f (tj), and since up to time
tj+1, the time-dependent region is contained in [1, f (tj+1)], it follows by comparison that

P1(Aj+1|Ftj) ≥ P
CIR;Re f←: f (tj+1)

f (tj)
(T1 ≤ tj+1 − tj), a.s. (4)

Now, we estimate P
CIR;Re f←: f (tj+1)

f (tj)
(T1 ≤ tj+1 − tj). Let

σ
(j)
0 = 0,

τ
(j)
i = inf{t ≥ σ

j
i−1|X(t) = f (tj+1)},

σ
(j)
i = inf{t > τ

(j)
i |X(t) = f (tj)}, j ≥ j0, i = 1, 2, · · · .

For any lj ∈ N,

{T1 < σ
(j)
lj
} − {σ

(j)
lj
} > tj+1 − tj} ⊂ {T1 < tj+1 − tj}.
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It follows from the strong Markov property that

P
CIR;Re f←: f (tj+1)

f (tj)
(T1 < σ

(j)
lj
) = 1−

(
P

CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj

.

Thus, we have

P
CIR;Re f←: f (tj+1)

f (tj)
(T1 ≤ tj+1 − tj)

≥ 1−
(

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj − P

CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj).

We then will obtain P1(Aj i.o.) = 1, and thus recurrence, if we can select {lj}∞
j=1 such that

∞

∑
j=j0

(
1−
(

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj

)
= ∞, (5)

and
∞

∑
j=j0

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj) < ∞. (6)

Define
φ(x) :=

∫ ∞

x
t−

2a
σ2 e

2b
σ2 (t−1)dt.

Obviously,
LCIRφ(x) = 0.

According to the standard probabilistic potential theory, it follows that

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)

=
φ(1)− φ( f (tj))

φ(1)− φ( f (tj+1))

= 1− φ( f (tj))− φ( f (tj+1))

φ(1)− φ( f (tj+1))
.

We compute using L’Hôpital’s rule that

lim
x→∞

φ(x)
−φ′(x)

= −σ2

2b
,

and, we get, as x → ∞,

φ(x) ∼ σ2

2b
φ′(x) = −σ2

2b
x−

2a
σ2 e

2b
σ2 (x−1),

where ∼ indicates asymptotic equality in the sense that the ratio of the two sides goes to 1
as x → ∞. Using the fact that

(1− t)l ≤ e−lt ≤ 1− lt +
1
2
(lt)2 ≤ 1− 1

2
lt,

if l, t ≥ 0 and lt ≤ 1, we have

1−
(

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj ≥ 1

2
lj

φ( f (tj))− φ( f (tj+1))

φ(1)− φ( f (tj+1))
, (7)
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for sufficiently large j, if limj→∞ ljφ( f (tj)) = 0. Obviously, we can choose a C0 ∈ (0, 1) such
that φ( f (tj+1)) ≤ C0φ( f (tj)) for all large j. Thus, for all sufficiently large j, we have

φ( f (tj))− φ( f (tj+1))

φ(1)− φ( f (tj+1))
≥ C1φ( f (tj)) ≥ C2 j−

2a
σ2 e

2b
σ2 (j−1),

for some constants C1, C2 > 0. Now, we choose lj ∈ N according to

lj :=
[ 1

log j
j

2a
σ2−1e−

2b
σ2 (j−1)

]
.

Hence, we obtain

∞

∑
j=j0

(
1−
(

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj

)

≥
∞

∑
j=j0

Clj j
− 2a

σ2 e
2b
σ2 (j−1)

≥
∞

∑
j=j0

C
1

j log j

= ∞,

for the constant C > 0.
With lj chosen as above, we now analyze the second term

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj).

It follows from the strong Markov property that

σ
(j)
lj

=

lj

∑
i=1

Xi +

lj

∑
i=1

Yi,

where {Xi}∞
i=1 is an independent and identically distributed sequence distributed accord-

ing to Tf (tj+1)
under PCIR;Re f→:1

f (tj)
, {Yi}∞

i=1 is an independent and identically distributed

sequence distributed according to Tf (tj)
under P

CIR;Re f←: f (tj+1)

f (tj+1)
, and the two sequences are

independent of one another.
For any λ > 0, according to Markov’s inequality,

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> t)

≤ e−λtE
CIR;Re f←: f (tj+1)

f (tj)
[e

λσ
(j)
lj ]

= e−λtE
CIR;Re f←: f (tj+1)

f (tj)
[eλ ∑

lj
i=1 Xi eλ ∑

lj
i=1 Yi ]

= e−λt
(

ECIR;Re f→:1
f (tj)

[e
λTf (tj+1) ]

)lj
(

E
CIR;Re f←: f (tj+1)

f (tj+1)
[e

λTf (tj) ]
)lj

. (8)

According to Lemma 1,

E
CIR;Re f←: f (tj+1)

f (tj+1)
[e

λTf (tj) ] ≤ 2, (9)
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for λ ≤ λ̂( f (tj), f (tj+1)), where λ̂(·, ·) is as in Lemma 1. Using the fact that f (tj) = ln(ej) = j,
it is easy to check that there exists a λ̂0 > 0 such that λ̂( f (tj), f (tj+1)) ≥ λ̂0 for all j ≥ 1. In
fact, by the definition of λ̂(·, ·) in Lemma 1,

λ̂( f (tj), f (tj+1)) = − b
σ2 e

2b
σ2− 2(1+a)

σ2 j → − b
σ2 e

2b
σ2

as j → ∞ if 1 + a > 0. Hence, we obtain

λ̂0 = − b
σ2 e

2b
σ2− 2(1+a)

σ2 > 0.

By choosing λj = − 2ab
σ2 j , there exists a j0, and we have λj ≤ λ̂0 for all j ≥ j0. By choosing

λ = λ1 = − 2ab
σ2 , we have λ ≤ λ̂0 if a satisfies the following inequality:

a ≤ 1
2

e
2b
σ2− 2(1+a)

σ2 ,

that is, there is a a0 < 1
2 , a ≤ a0, where a0 solves 2a = e

2b
σ2− 2(1+a)

σ2 .

Using Lemma A6, we substitute x = f (tj) = j and β = f (tj+1) = (j + 1) in the
expression on the right-hand side of (A11); the resulting expression is bounded in j. In fact,
it follows from (A11) that

u(j) = e
− 2b

σ2 j exp

(
−
∫ j+1

j

exp(− 2b(y−1)
σ2 j )y−

2a
σ2∫ y

1 exp(− 2b(t−1)
σ2 j )t−

2a
σ2 dt− σ2 j

2b

dy

)

≤ e
− 2b

σ2 j exp

(
−
∫ j+1

j

exp(− 2b(j−1)
σ2 j )(j + 1)−

2a
σ2∫ j+1

1 exp(− 2b(t−1)
σ2 j )t−

2a
σ2 dt− σ2 j

2b

dy

)

≤ e
− 2b

σ2 j exp

(
−

exp(− 2b(j−1)
σ2 j )(j + 1)−

2a
σ2∫ j+1

1 exp(− 2bj
σ2 j )dt− σ2 j

2b

)

= e
− 2b

σ2 j exp

(
−

exp(− 2b(j−1)
σ2 j )(j + 1)−

2a
σ2∫ j+1

1 exp(− 2b
σ2 )dt− σ2 j

2b

)

≤ e
− 2b

σ2 j exp

(
−

exp(− 2b(j−1)
σ2 j )(j + 1)−

2a
σ2

(j + 1) exp(− 2b
σ2 )− σ2

2b (j + 1)

)

= e
− 2b

σ2 j exp

(
− 1

(j + 1)1+ 2a
σ2 exp(− 2b

σ2 j )− σ2

2b exp( 2b(j−1)
σ2 j )(j + 1)1+ 2a

σ2

)
.

Obviously, notice that when b < 0,

lim
j→∞

1

(j + 1)1+ 2a
σ2 exp(− 2b

σ2 j )− σ2

2b exp( 2b(j−1)
σ2 j )(j + 1)1+ 2a

σ2
= 0.

Hence, we have

u(j) ≤ e
− 2b

σ2 j ≤ e−
2b
σ2 ,

for sufficiently large j ≥ 1 when b < 0.
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By letting M := e−
2b
σ2 > 1 be an upper bound, it follows that

ECIR;Re f→:1
f (tj)

e
λTf (tj+1) = ECIR;Re f→:1

f (tj)
e
− 2ab

σ2 Tf (tj+1) ≤ M. (10)

By noting that tj+1 − tj = ej+1 − ej ≥ ej, it follows from (8) that

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj) ≤ e
2ab
σ2 ej

(2M)lj , (11)

for sufficiently large j. Recalling the expression of lj, we can have

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj)

≤ e
2ab
σ2 ej

(2M)
1

log j j
2a
σ2 −1

e
− 2b

σ2 (j−1)

= e
2ab
σ2 ej

e
1

log j j
2a
σ2 −1

e
− 2b

σ2 (j−1)
log 2M, (12)

for sufficiently large j. It follows that the right-hand side of (12) is summable in j if 1 > − 2b
σ2 ,

that is,

b > −σ2

2
,

or if

b = −σ2

2
and a ≤ σ2

2
.

Thus, (6) holds for this range of a, b and σ. This completes the proof of this theorem.

Remark 1. In the time-independent region case, it is known that the drift a− bXt ensures a mean
reversion of the CIR model towards the long-term value a

b . In the time-dependent region case,

however, the CIR model can reflect at the fixed endpoint 1. Obviously, a ≤ 1
2 e

2b
σ2 < 1

2 . This
guarantees that the CIR model can down-cross the boundary 1; hence, the CIR model can reflect at
the fixed point 1 infinitely often.

3.2. Positive Recurrence

Now that we have the recurrence of the CIR model, it is natural to consider the positive
recurrence in the following sense. The following definition of positive recurrence for a
stochastic process can be found in [18].

Definition 2. We say that a one-dimensional process is a positive recurrence if, starting from
x > 1, the expected value of the first hitting time of 1 is finite, that is,

ExT1 < ∞.

Theorem 2. Consider the CIR model corresponding to the generator

1
2

σ2x
d2

dx2 + (a− bx)
d

dx

in the time-dependent region [1, f (t)], with reflection at both the fixed endpoint 1 and the time-
dependent endpoint f (t) at time t. Let σ > 0, b < 0, and a > 0 satisfy that there is an a0 < 1

2 and

an a ≤ a0, where a0 solves 2a = e
2b
σ2− 2(1+a)

σ2 . Assume that f (t) ≤ ln t, for sufficiently large t. If

b > −σ2

2
,
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then the CIR model is positive recurrent.

Proof. Let P2 and E2 denote probabilities and expectations for the process starting from
x = 2 at time 0. Let tj = ej as in the proof of Theorem 1. We have

E2T1 ≤ t1 +
∞

∑
j=1

tj+1P2(T1 ≥ tj) = e +
∞

∑
j=1

ej+1P2(T1 ≥ tj).

Let Aj+1 denote the event that the process hits 1 at some time t ∈ [tj, tj+1]. We have, for
j ≥ j0 + 1,

P2(T1 ≥ tj) ≤ P2(∩j−1
i=j0

Ac
i+1)

≤
j−1

∏
i=j0

(
1− P

CIR;Re f←: f (tj+1)

f (tj)
(T1 ≤ ti+1 − ti)

)
. (13)

If we show that
lim
j→∞

P
CIR;Re f←: f (tj+1)

f (tj)
(T1 ≤ tj+1 − tj) = 1,

then it will certainly follow that
E2T1 < ∞,

thereby proving positive recurrence. In order to prove this, it suffices from

P
CIR;Re f←: f (tj+1)

f (tj)
(T1 ≤ tj+1 − tj)

≥ 1−
(

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj − P

CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj).

to prove that for some choice of positive integers {lj}∞
l=j0

,

lim
j→∞

(
P

CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj

= 0, (14)

and
lim
j→∞

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj) = 0. (15)

According to the standard probabilistic potential theory, we have

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)

=
φ(1)− φ( f (tj))

φ(1)− φ( f (tj+1))

= 1− φ( f (tj))− φ( f (tj+1))

φ(1)− φ( f (tj+1))
, (16)

Here, we have φ(x) as in the proof of Theorem 1, that is,

φ(x) :=
∫ ∞

x
t−

2a
σ2 e

2b
σ2 (t−1)dt.

Thus, for all sufficiently large j, by combining (16) with

φ( f (tj))− φ( f (tj+1))

φ(1)− φ( f (tj+1))
≥ C1φ( f (tj)) ≥ C2 j−

2a
σ2 e

2b
σ2 (j−1),
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we obtain

P
CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)

= 1− φ( f (tj))− φ( f (tj+1))

φ(1)− φ( f (tj+1))

≤ 1− C2 j−
2a
σ2 e

2b
σ2 (j−1),

Hence, (
P

CIR;Re f←: f (tj+1)

f (tj)
(Tf (tj+1)

< T1)
)lj ≤

(
1− C2 j−

2a
σ2 e

2b
σ2 (j−1)

)lj

=
(

1− C2

j
2a
σ2 e−

2b
σ2 (j−1)

)lj
.

We choose
lj :=

[
j

2a
σ2 log je−

2b
σ2 (j−1)

]
.

It follows from the fact that

lim
y→∞

(1− 1
y
)yg(y) = 0, if lim

y→∞
g(y) = ∞,

that (14) holds. With this choice of lj, we have, by (11),

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj)

≤ e
2ab
σ2 ej

(2M)lj

= e
2ab
σ2 ej

ej
2a
σ2 log je

− 2b
σ2 (j−1)

log(2M). (17)

Thus, if

a > 0 and − 2b
σ2 < 1, (i.e., b > −σ2

2
),

it follows from (17) that

lim
j→∞

P
CIR;Re f←: f (tj+1)

f (tj)
(σ

(j)
lj

> tj+1 − tj) = 0.

This completes the proof of the theorem.

4. Transience of the CIR Model When b < 0

Theorem 3. Consider the CIR model corresponding to the generator

1
2

σ2x
d2

dx2 + (a− bx)
d

dx

in the time-dependent region [1, f (t)], with reflection at both the fixed endpoint and the time-
dependent one. Let σ > 0, b < 0, and a > 0 satisfy that there is an a0 < 1

2 and an a ≤ a0, where

a0 solves 2a = e
2b
σ2− 2(1+a)

σ2 . Assume that f (t) ≥ ln t, for sufficiently large t. If

b < −σ2,

then the CIR model is transient.
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Proof. Let j1 = e2 + 1; then, f (j) = ln j > 2 for all j ≥ j1. Let B1 be the event that the CIR
process hits 1 sometimes between the first time it hits f (j) and the first time it hits f (tj+1):

Bj := {X(t) = 1, for some t ∈ (Tf (tj)
, Tf (tj+1)

)}.

If we show that
∞

∑
j=j1

P1(Bj) < ∞, (18)

then, according to the Borel–Cantelli lemma, it will follow that P1(Bj, i.o.) = 0, and
consequently the CIR process is transient.

To consider whether or not the event Bj occurs, we first wait until time Tf (tj)
. Hence,

we have Tf (j) ≥ j, since f (j) is not accessible to the process before time j. Since we may
have Tf (j) < j + 1, the point f (j + 1) may not be accessible to the process at time Tf (j).
However, when we wait for one unit of time, then after that, the point f (j + 1) certainly
will be accessible because of Tf (j) + 1 ≥ j + 1.

Let Mj < f (j)− 1. So, the process never got to the level f (j)−Mj in that one unit of

time; then, the probability of Bj occurring is no more than PCIR;Re f←: f (j+1)
f (j)−Mj

(T1 < Tf (j+1)).

By comparison with the process that is reflected at the fixed point f (j), the probability that
the process will get to the level f (j)−Mj in that one unit of time is bounded from above

by PCIR;Re f←: f (j)
f (j) (Tf (j)−Mj

≤ 1). From these considerations above, we have

P1(Bj) ≤ PCIR;Re f←: f (j+1)
f (j)−Mj

(T1 < Tf (j+1)) + PCIR;Re f←: f (j)
f (j) (Tf (j)−Mj

≤ 1). (19)

It follows by standard probabilistic potential theory that

PCIR;Re f←: f (j+1)
f (j)−Mj

(T1 < Tf (j+1)) =
φ( f (j)−Mj)− φ( f (j + 1))

φ(1)− φ( f (j + 1))
. (20)

We choose Mj =
1
2 f (j) because of Mj < f (j)− 1. Recall that f (j) ≥ log j. Then, we have

φ( f (j)−Mj) = φ(
1
2

f (j)) = φ(
1
2

log j)

∼ −σ2

2b
(

1
2

log j)−
2a
σ2 e

2b
σ2 (

1
2 log j)

= −σ2

2b
(

1
2

log j)−
2a
σ2 j

b
σ2 .

By the assumption that b < −σ2, we have

− b
σ2 > 1.

Hence, it follows from (20) that

∞

∑
j=j1

PCIR;Re f←: f (j+1)
f (j)−Mj

(T1 < Tf (j+1)) < ∞. (21)

We now estimate
PCIR;Re f←: f (j)

f (j) (Tf (j)−Mj
≤ 1),

where Mj =
1
2 f (j). According to Markov’s inequality, we have, for λ > 0,

PCIR;Re f←: f (j)
f (j) (Tf (j)−Mj

≤ 1) ≤ eλECIR;Re f←: f (j)
f (j) [e

−λTf (j)−Mj ]. (22)
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By comparison, we have

ECIR;Re f←: f (j)
f (j) [e

−λTf (j)−Mj ] ≤ E
a−bα
σ2β

;Re f←:β

β exp
(
− λ

σ2β
Tα

)
. (23)

According to Lemma A5 with α = f (j)−Mj =
1
2 f (j) and β = f (j), we have

PCIR;Re f←: f (j)
f (j) (Tf (j)−Mj

≤ 1)

≤ eλ (r1 + r2)e
−2 a−bβ

σ2β
(β−α)

r1e−r1(β−α) + r2er2(β−α)

= eλ (r1 + r2)e
−2 a−b f (j)

σ2 f (j)
Mj

r1e−r1 Mj + r2er2 Mj

≤ eλ (r1 + r2)e
−2 a−b f (j)

σ2 f (j)
Mj

r2er2 Mj

= eλ(1 +
r1

r2
)e
−r2 Mj−2 a−b f (j)

σ2 f (j)
Mj .

Due to the complexity of r1
r2

, we handle it separately. By substituting the specific expressions
of r1 and r2 from Lemma A5 into r1

r2
, after some calculations, we obtain

r1

r2
=

√(
a−bβ
σ2β

)2
+ 2λ

σ2β
+ a−bβ

σ2β√(
a−bβ

σ2β

)2
+ 2λ

σ2β
− a−bβ

σ2β

=

√(
a−b f (j)
σ2 f (j)

)2
+ 2λ

σ2 f (j) +
a−b f (j)
σ2 f (j)√(

a−b f (j)
σ2 f (j)

)2
+ 2λ

σ2 f (j) −
a−b f (j)
σ2 f (j)

=

(√(
a−b f (j)
σ2 f (j)

)2
+ 2λ

σ2 f (j) +
a−b f (j)
σ2 f (j)

)2

(
a−b f (j)
σ2 f (j)

)2
+ 2λ

σ2 f (j) − ( a−b f (j)
σ2 f (j) )

2

=
σ2 f (j)

2λ

(√( a− b f (j)
σ2 f (j)

)2
+

2λ

σ2 f (j)
+

a− b f (j)
σ2 f (j)

)2

=
σ2

2λ

(√( a
σ2
√

f (j)
− b
√

f (j)
σ2

)2
+

2λ

σ2 +
a

σ2
√

f (j)
− b
√

f (j)
σ2

)2

≤ σ2

2λ

[
4(

a
σ2
√

f (j)
− b
√

f (j)
σ2 )2 + 2(

2λ

σ2 )
]

≤ σ2

2λ

[
8(

a
σ2
√

f (j)
)2 + 8(

b
√

f (j)
σ2 )2 + 2(

2λ

σ2 )
]

=
σ2

2λ

[ 8a2

σ4 f (j)
+

8b2 f (j)
4σ4 +

4λ

σ2

]
=

1
λσ2

[ 4a2

f (j)
+ b2 f (j) + 2λ2σ2

]
.
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Hence, we have

PCIR;Re f←: f (j)
f (j) (Tf (j)−Mj

≤ 1)

= eλ(1 +
r1

r2
) exp

(
−
(√( a

σ2 f (j)
− b

σ2

)2
+

2λ

σ2 f (j)

−
( a

σ2 f (j)
− b

σ2

)
+ 2

a− b f (j)
σ2 f (j)

)
Mj

)
= eλ(1 +

r1

r2
) exp

(
−
(√( a

σ2 f (j)
− b

σ2

)2
+

2λ

σ2 f (j)

+
( a

σ2 f (j)
− b

σ2

))
Mj

)
∼ eλ(1 +

1
λσ2

[
b2 f (j) + 2λ2

]
) exp

(2b
σ2 Mj

)
= eλ(1 +

1
λσ2

[
b2 f (j) + 2λ2

]
) exp

( b
σ2 f (j)

)
= eλ(1 +

1
λσ2

[
b2 ln j + 2λ2

]
)j

b
σ2 .

By the assumption b < −σ2, we have

− b
σ2 > 1.

Then, we have
∞

∑
j=j0

PCIR;Re f←: f (j)
f (j) (Tf (j)−Mj

≤ 1) < ∞. (24)

Now, (19), (21), and (24) give us (18), and this completes the proof of the theorem.

Remark 2. By comparing Theorems 1–3, we clearly find that there is a gap for b, that is, −σ2 ≤
b < − σ2

2 . We expect that the CIR process is also recurrent in this gap of b. However, we cannot
confirm this assertion because the estimates we use here cannot guarantee it.

Last Passage Time

In the transient case, it is natural to consider the last passage time, which is a random
time but not a stopping time. In recent years, last passage time has also played an increasing
role in financial modeling, such as in models of default risk, models of insider trading, and
the prices of European put and call options.

For the case of diffusion in the form of the CIR model, a differentiable increasing scale
function is

s(x) =
∫ x

c
exp
(
− 2
∫ u

c

b(v)
σ2(v)

dv
)

du

for some choice of c ∈ (0, ∞). Here in the CIR model, the drift coefficient b(x) = a− bx and
the diffusion coefficient σ(x) = σ

√
x; hence, we obtain the scale function

s(x) = C
∫ x

c
u−

2a
σ2 e

2b
σ2 udu, (25)

as well as the constants b < 0 and C = c
2a
σ2 e−

2b
σ2 c.

Theorem 4. Let X be a transient CIR process in Theorem 3 such that Xt → +∞ when t → ∞,
and the last time that X hits y is defined as

Γy := sup{t : Xt = y}.
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Then,

Px(Γy > t|Ft) =
s(Xt)

s(y)
∧ 1,

and the scale function is given in (25).

Proof. The following proof is classic and can be found in many classic textbooks of stochas-
tic process, such as in [20,21], as well as [22]. Observe that Px(Γy > t|Ft) = Px(infs≥t Xs <
y|Ft); it follows from the Markov property of X that

Px

(
inf
s≥t

Xs < y|Ft

)
= PXt

(
inf
s≥0

Xs < y
)
= PXt

(
sup
s≥0

(−s(Xs)) > −s(y)
)

.

In the following fact, let M be a positive continuous local martingale such that
M0 = x, Mt ≥ 0, and limt→∞ Mt = 0; then,

sup
t≥0

Mt
d
=

x
U

,

where U is a random variable with a uniform law on [0, 1]. Hence,

Px(Γy > t|Ft) = PXt

(
sup
s≥0

(−s(Xs)) > −s(y)
)
=

s(Xt)

s(y)
∧ 1.

This completes the proof of this theorem.

5. Conclusions

This paper studies the transience/recurrence for CIR process when b < 0. By adding
boundaries to a time-dependent domain, we obtained a CIR process when b < 0 with the
transient property that became a CIR with a property of recurrence; however, the bound-
aries continue to grow over time. We have specified the conditions that the coefficients of
the CIR process must meet when it is recurrent, positive recurrent and transient.
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Appendix A

We assume that u′(x) ≤ 0 and v′(x) ≤ 0 for all x ∈ [1, β].

Lemma A1. For λ > 0, ⎧⎨⎩
1
2 u′′ + bxγu′ + λu = 0, in (1, β)
u′(1) = 0,
u(β) = 1,

(A1)

and ⎧⎨⎩
1
2 v′′ + Dv′ + λv = 0, in (1, β)
v′(1) = 0,
v(β) = 1,

(A2)
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Then, D ≤ minx∈[1,β] bxγ implies that

u(x) ≤ v(x), for all x ∈ [1, β].

Proof. Assume that the conclusion is false. According to u, v ∈ C2, we assume u(x) > v(x)
for all x ∈ [1, β) WLOG.

So, u(1) > v(1), u′(1) = v′(1) = 0 implies u′′(1) < v′′(1) according to (A3) and (A4).
Then, it follows that u′(x) < v′(x) in (1, c), with 1 < c ≤ β and u′(c) = v′(c). Then, it
follows from

u′(c)− u′(c− h)
h

>
v′(c)− v′(c− h)

h
that u′′(c) ≥ v′′(c).

u(c) > v(c), u′(c) = v′(c) and u′′(c) ≥ v′′(c), which are contradictory to (A3) and (A4).

Lemma A2. For λ > 0, ⎧⎨⎩
1
2 u′′ + bxγu′ + λuu = 0, in (1, β)
u′(1) = 0,
u(β) = 1,

(A3)

and ⎧⎨⎩
1
2 v′′ + Dv′ + λvv = 0, in (1, β)
v′(1) = 0,
v(β) = 1,

(A4)

Then, D ≤ minx∈[1,β] bxγ and λu ≥ λv imply that

u(x) ≤ v(x), for all x ∈ [1, β].

Proof. This proof is similar to the one in Lemma A1, so we omit it.

Lemma A3. Let u be the solution to the ODE⎧⎨⎩
1
2 u′′ + a−bx

σ2x u′ − λ
σ2x u = 0, in (α, β)

v(α) = 1,
v′(β) = 0,

(A5)

and let v be the solution to the ODE⎧⎪⎨⎪⎩
1
2 v′′ + a−bβ

σ2β
v′ − λ

σ2β
v = 0, in (α, β)

v(α) = 1,
v′(β) = 0.

(A6)

Then,
u(x) ≤ v(x), ∀x ∈ [α, β].

Proof. Assume that the conclusion is false. According to u, v ∈ C2, we assume u(x) > v(x)
for all x ∈ (α, β] WLOG.

So, u(β) > v(β), u′(β) = v′(β) = 0 implies that u′′(β) < v′′(β) according to
(A5) and (A6). Then, it follows that u′(x) < v′(x) in (c, β), with α ≤ c < β and u′(c) = v′(c).
Then, it follows from

u′(c)− u′(c + h)
h

>
v′(c)− v′(c + h)

h
that u′′(c) ≥ v′′(c).
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u(c) > v(c) > 0 implies that− λ
σ2β

v(c) < − λ
σ2x u(x)|x=c, and u′(c) = v′(c) < 0 implies

that a−bβ
σ2β

v′(c) ≤ a−bx
σ2x u′(x)|x=c, together with u′′(c) ≥ v′′(c), which are contradictory to

(A5) and (A6).

Let Tα = inf{t ≥ 0 : X(t) = α}. Let

LCIR =
1
2

σ2x
d2

dx2 + (a− bx)
d

dx
,

and

LΓ =
1
2

d2

dx2 + Γ
d

dx
.

Let PCIR;Re f←:β
x and ECIR;Re f←:β

x denote the probabilities and expectations, respectively, for
the CIR model corresponding to LCIR on [1, β], starting from x ∈ [1, β], with reflection at β

and stopped at 1; let PCIR;Re f→:α
x and ECIR;Re f→:α

x denote the probabilities and expectations,
respectively, for the CIR model corresponding to LCIR on [α, ∞), starting from x ∈ [α, ∞],
with reflection at α. We will sometimes work for LΓ with only a constant drift, which we
will denote by Γ, in which case Γ will replace the CIR in all of the above notions.

The following lemma comes from the Proposition 2.3 in [10]; for the convenience of
readers, we will now provide a proof of this lemma.

Lemma A4. For λ > 0 and 1 < α < β,

EΓ;Re f←:β
β exp(−λTα) =

(r1 + r2)e−2Γ(β−α)

r1e−r1(β−α) + r2er2(β−α)
,

where r1 =
√

Γ2 + 2λ + Γ and r2 =
√

Γ2 + 2λ− Γ.

Proof. According to the Feynman–Kac formula, for any x ∈ [α, β],

w(x) = EΓ;Re f←:β
x exp(−λTα),

solves the boundary value problem (LΓ − λ)w = 0 in (α, β), with the Dirichlet boundary
condition at α and the Neumann boundary condition at β, that is,⎧⎨⎩

(LΓ − λ)w = 0, in (α, β)
w(α) = 1,
w′(β) = 0,

(A7)

The solution of this linear equation is given by

w(x) =
r1e−r1(β−α)er2(x−α) + r2er2(β−α)e−r1(x−α)

r1e−r1(β−α) + r2er2(β−α)
,

where r1 =
√

Γ2 + 2λ + Γ and r2 =
√

Γ2 + 2λ− Γ.
Substituting x = β completes the proof.

Lemma A5. For λ > 0 and 1 < α < β,

E
a−bβ

σ2β
;Re f←:β

β exp
(
− λ

σ2β
Tα

)
=

(r1 + r2)e
−2 a−bβ

σ2β
(β−α)

r1e−r1(β−α) + r2er2(β−α)
,

where

r1 =

√( a− bβ

σ2β

)2
+

2λ

σ2β
+

a− bβ

σ2β
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and

r2 =

√( a− bβ

σ2β

)2
+

2λ

σ2β
− a− bβ

σ2β
.

Proof. This lemma can be directly obtained from Lemma A4 by simply replacing λ with
λ

σ2β
and replacing Γ with a−bβ

σ2β
.

Appendix B

Lemma A6. For x ∈ [1, β] and λ = − 2ab
σ2 > 0,

u(x) = e−
2b
σ2 (β−x) exp

(
−
∫ β

x

exp(− 2b(y−1)
σ2 )y−

2a
σ2∫ y

1 exp(− 2b(t−1)
σ2 )t−

2a
σ2 dt− σ2

2b

dy

)
(A8)

solves the following equation ⎧⎨⎩
(LCIR + λ)u = 0, in (1, β)
u(β) = 1,
u′(1) = 0,

(A9)

that is,
1
2

σ2xu′′ + (a− bx)u′ + λu = 0

with the Dirichlet boundary condition at β and u(β) = 1 and the Neumann boundary condition at
1 and u′(1) = 0.

Proof. For the eigenvalue λ = − 2ab
σ2 > 0 (due to b < 0), obviously, u(x) = e

2b
σ2 x is a

eigenfunction of Equation (A9).
Using the transformation

r(x) =
u′(x)
u(x)

, i.e., u(x) = exp
( ∫ x

1
r(t)dt

)
,

the linear differential equation of the second order

1
2

σ2xu′′ + (a− bx)u′ + λu = 0,

i.e.,

u′′ + a− bx
1
2 σ2x

u′ + λ
1
2 σ2x

u = 0

can be transformed into the Riccati differential equation

r′ + r2 +
a− bx
1
2 σ2x

r +
λ

1
2 σ2x

= 0,

where λ = − 2ab
σ2 > 0. Obviously, r0 = 2b

σ2 is a solution of the Riccati equation. If a solution
r0 of the Riccati equation is known, then all of the other solutions can be obtained in the
form

r(x) = r0 +
1

z(x)
,

where z(x) ia an arbitrary solution of the following linear equation

z′ −
[ a− bx

1
2 σ2x

+ 2r0

]
z = 1.
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Since u′(1) = 0, we have r(1) = u′(1)
u(1) = 0; hence,

z(1) = − 1
r0

= −σ2

2b
.

Next, we will solve the following Bernoulli’s equation

z′ −
[2(a− bx)

σ2x
+

4b
σ2

]
z = 1,

with the Dirichlet boundary condition at 1, i.e., z(1) = − σ2

2b . The general solution to the
homogeneous equation is

z0(x) = C exp
(2b(x− 1)

σ2

)
x

2a
σ2 ,

from which a particular solution z1 of the nonhomogeneous equation can be obtained

z1(x) = exp(
2b(x− 1)

σ2 )x
2a
σ2

∫ x

1
exp(−2b(y− 1)

σ2 )y−
2a
σ2 dy.

Thus, z(1) = − σ2

2b , C = − σ2

2b can be immediately obtained. The general solution of the
Bernoulli’s equation is

z(x) = z0(x) + z1(x)

with C = − σ2

2b .
Hence, the general solution of the original Riccati equation is now obtained in

the form

r(x) = r0 +
1

z(x)
= r0 +

1
z0(x) + z1(x)

=
2b
σ2 +

exp(− 2b(x−1)
σ2 )x−

2a
σ2∫ x

1 exp(− 2b(t−1)
σ2 )t−

2a
σ2 dt− σ2

2b

. (A10)

So, we obtain the solution of the linear differential equation of the second order (A9):

u(x) = C exp
( ∫ x

1
r(y)dy

)
= Ce

2b
σ2 (x−1) exp

(∫ x

1

exp(− 2b(y−1)
σ2 )y−

2a
σ2∫ y

1 exp(− 2b(t−1)
σ2 )t−

2a
σ2 dt− σ2

2b

dy

)
.

Since u(β) = 1,

C = e−
2b
σ2 (β−1) exp

(
−
∫ β

1

exp(− 2b(y−1)
σ2 )y−

2a
σ2∫ y

1 exp(− 2b(t−1)
σ2 )t−

2a
σ2 dt− σ2

2b

dy

)

can be obtained. Therefore, we obtain that

u(x) = e−
2b
σ2 (β−x) exp

(
−
∫ β

x

exp(− 2b(y−1)
σ2 )y−

2a
σ2∫ y

1 exp(− 2b(t−1)
σ2 )t−

2a
σ2 dt− σ2

2b

dy

)
,

solves the Equation (A9). This completes the proof of the lemma.
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Lemma A7. For x ∈ [1, β] and λj = − 2ab
σ2 j > 0, then for all j ≥ 1,

u(x) = e
− 2b

σ2 j
(β−x)

exp

(
−
∫ β

x

exp(− 2b(y−1)
σ2 j )y−

2a
σ2∫ y

1 exp(− 2b(t−1)
σ2 j )t−

2a
σ2 dt− σ2 j

2b

dy

)
(A11)

solves the following equation ⎧⎨⎩
(LCIR;j + λj)u = 0, in (1, β)
u(β) = 1,
u′(1) = 0,

(A12)

that is
1
2

σ2xu′′ + (a− b
j

x)u′ + λju = 0

with the Dirichlet boundary condition at β and u(β) = 1 and the Neumann boundary condition at
1 and u′(1) = 0.

Proof. This lemma can be directly obtained from Lemma A6.
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Abstract: The robust and sparse portfolio selection problem is one of the most-popular and -frequently
studied problems in the optimization and financial literature. By considering the uncertainty of the
parameters, the goal is to construct a sparse portfolio with low volatility and decent returns, subject
to other investment constraints. In this paper, we propose a new portfolio selection model, which
considers the perturbation in the asset return matrix and the parameter uncertainty in the expected
asset return. We define three types of stationary points of the penalty problem: the Karush–Kuhn–
Tucker point, the strong Karush–Kuhn–Tucker point, and the partial minimizer. We analyze the
relationship between these stationary points and the local/global minimizer of the penalty model
under mild conditions. We design a penalty alternating-direction method to obtain the solutions.
Compared with several existing portfolio models on seven real-world datasets, extensive numerical
experiments demonstrate the robustness and effectiveness of our model in generating lower volatility.

Keywords: portfolio optimization; robustness; sparsity; uncertainty set; penalty-alternating-direction
method

MSC: 91G10; 90C90; 90C30

1. Introduction

In 1952, Harry M. Markowitz [1] published the classic “Portfolio Selection” in The Jour-
nal of Finance, which ushered in a new era of financial mathematical analysis. Markowitz
pointed out that investors who care about return and risk should hold portfolios located
at the efficient boundary of mean-variance, which is the famous mean-variance portfolio
(MVP) selection model. Since then, many portfolio selection strategies have been proposed
by referring to the MVP and its variants. However, MVPs exhibit instability due to estima-
tion errors in the input parameters [2], especially in large-scale conditions. The instability
means that the solution obtained under sample fluctuation may be optimal for a given
sample, but it is not optimal from the perspective of risk. For more comments on this model,
we refer to [3–6] and the references therein.

This paper focuses attention on sample fluctuations and parameter uncertainty in the
portfolio selection problem. We now review some relevant methods for the parameter
uncertainty. Among various approaches, the attractive one is the robust portfolio (RP),
which corresponds to a robust optimization, since it does not use any information about the
probability distribution of the uncertain parameters. RP we considered is a conservative
approach that minimizes the loss function within an uncertainty set and then solves the
problem under the worst-case scenario. In the last two decades, robust portfolio selection
problems have gained the increasing interest of researches. These researches constructed
well-known optimal portfolios from the perspective of robust optimization [7–10]. In this
way, Goldfarb and Iyengar [11] formulated and solved RP problems. They introduced the
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uncertainty structures for the input parameters, then they showed that the RP problems
corresponding to the second-order cone programs and these uncertainty structures cor-
respond to confidence regions employed to estimate the market parameters. Given the
uncertainty in the mean and covariance matrix of the asset return, Lobo and Boyd [12]
computed the maximum risk of a portfolio in a numerically efficient way. They proved
that this is a semi-definite programming problem and is readily solved by interior-point
methods for convex optimization. Min et al. [13] proposed the hybrid RP models under
ellipsoidal uncertainty sets, and they considered both the best-case and the worst-case
counterparts. Won and Kim [14] considered RP problems involving a trade-off between the
worst-case utility and the worst-case regret, or the largest difference between the best utility
achievable under the model and that achieved by a given portfolio. They showed that the
entire optimal trade-off curve can be found via solving a series of semi-definite programs
under the ellipsoidal uncertainty model. Some research works [15,16] concentrated on the
application of robust optimization on basic mean-variance, mean value-at-risk (mean-VaR),
and mean conditional-value-at-risk (mean-CVaR) problems, but did not consider variants
of the problem like robust index tracking, robust and sparse portfolio selection problems,
and so on. More relevant works can be found in [17–20] and the references therein.

RPs have a wide range of applications, among these, one essential step is the con-
struction of uncertainty sets. Two types of uncertainty sets are widely used, namely
the box uncertainty set and the ellipsoidal uncertainty set. Tütüncü and Koenig [21]
used symmetric box uncertainty sets defined as Uμ = {μ ∈ Rn|μL ≤ μ ≤ μU} and
UΣ = {Σ ∈ Rn×n|ΣL ≤ Σ ≤ ΣU , Σ  0}, where μL ∈ Rn and μU ∈ Rn are the lower
and upper bounds of mean vector μ, ΣL ∈ Rn×n and ΣU ∈ Rn×n are the lower and the
upper bounds of the covariance matrix Σ, respectively, and Σ is positive semi-definite.
Khodamoradi et al. [22] used box uncertainty sets for a cardinal-constrained mean-variance
portfolio problem which allows short selling. Swain and Ojha [10] analyzed the robust
version of the mean-variance portfolio problem and mean-semi-variance portfolio problem
with box uncertainty sets. Alternatively, Fabozzi et al. [23] defined an ellipsoidal uncertainty
set for the expected asset return as Uμ = {μ|(μ− μ)Σ−1(μ− μ)! ≤ ε2}, where μ is the
nominal asset return and ε2 is a small scalar, which controls the size of the uncertainty set.
However, they did not consider the uncertainty of the covariance matrix, thus the solution
was robust only against perturbations in the asset return vector. Pıinar [24] developed a
multi-period robust mean-variance portfolio problem with an ellipsoidal uncertainty set
while allowing short selling. As we all know, the estimation error is more sensitive to the
mean vector than the covariance matrix. On the other hand, dealing with the uncertainty
in the covariance matrix is more complicated than dealing with the uncertainty set of
the mean vector. Thus, in this paper, we consider two types of uncertainty sets for the
mean vector.

Financial data have some remarkable features, such as multicollinearity and a heavy
tail. Therefore, the perturbations of these data should not be underestimated. By referring
to Brodie et al. [2], who transferred the MVP into a Lasso-type portfolio, we consider
the perturbations in the asset return matrix and design its uncertainty set. In addition,
from the perspective of transaction costs and administrative expenses, more assets are
not always better. Therefore, it is also necessary to consider sparsity when constructing
a portfolio [25–27]. After these discussions, a natural question follows: How do we find
better RPs that not only reduce the undesired impact of parameter uncertainty, but also
improve sparsity and reduce cost?

Following the above considerations, this paper proposes a sparsity constrained robust
portfolio optimization model with parameter uncertainty and data perturbation. Specifi-
cally, we consider the perturbation in the asset return matrix and the parameter uncertainty
in the expected asset return. By using the equivalence of robustness and regularization,
the Lasso-type objective function can be converted into the sum of a square root and the
�1 norm. We consider two kinds of uncertainty sets: the box uncertainty set and the ellip-
soidal uncertainty set. For its penalty model, we define three types of stationary points:
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the Karush–Kuhn–Tucker (KKT) point, the strong KKT point, and the partial minimizer.
Under mild constraint qualification (CQ), we prove that any local minimizer of the penalty
model is a KKT point. Moreover, the global minimizer of the penalty model is proven
to be a partial minimizer and, then, a stronger KKT point under Slater’s CQ. Finally, a
penalty alternating direction method is proposed to obtain a portfolio, and its convergence
is established. We confirm the effectiveness of our approach by comparing with nine widely
studied portfolio models on seven real-world data sets. The numerical results show that
the portfolios we proposed have less volatility, that is less risk. Moreover, our portfolio
strategies can yield higher Sharpe ratios when the appropriate parameters are selected.

This paper is organized as follows. Some notations and preliminaries used in this
paper are given in the next section. The model of robust and sparse portfolios and the
analysis of their optimization theory are stated in Section 3. Two types of uncertainty sets
of mean vectors are presented in Section 4. The optimization algorithm named the penalty
alternating direction method is established in Section 5. Extensive numerical experiments
are conducted in Section 6. Conclusions are drawn in Section 7.

2. Notations and Preliminary

We use R and Rn and Rm×n to denote the set of real numbers and the n-dimensional
and m× n-dimensional Euclidean space. We use boldfaced small letters to denote vectors,
e.g., w ∈ Rn is a column vector with n elements wi, i = 1, . . . , n. The transpose of w is
denoted as wT , which is a row vector. In particular, 1n is the vector of all ones of size n.
For a vector a ∈ Rn, we define its absolute value vector by |a| := (|a1|, · · · , |an|). We use
capital letters to denote matrices, e.g., A ∈ Rm×n and aij denote the (i, j)-th entry of A.
Given an index Γ ⊂ {1, . . . , n}, aΓ denotes the sub-vector of a. We write the Euclidean
norm of w by ‖w‖2, the �1 norm by ‖w‖1, and the infinity norm by ‖w‖∞. For two vectors
a ∈ Rn and b ∈ Rn, 〈a, b〉 denotes the standard inner product.

We now provide some existing results of optimization that are crucial for the theory of
this paper. For the convenience of expression, we define the following convex programming:

min
x∈Rn

f (x),

s.t. gi(x) ≥ 0, i = 1, . . . , m, x ∈ Ω,
(1)

where Ω is a nonempty convex set, f is a convex function, and the gi(x)s are concave
functions. For problem (1), Slater’s CQ builds a bridge between its solution and the KKT
point (the point satisfying the conditions in Theorem 1).

Definition 1 ([28], Definition 4.17). Slater’s CQ holds in problem (1) if there exists u ∈ Ω such
that gi(u) > 0 for all i = 1, . . . , m.

Theorem 1 ([28], Theorem 4.18). Suppose that Slater’s CQ holds in problem (1). Then, x∗ is
an optimal solution to problem (1) if and only if there exist non-negative Lagrange multipliers
(λ1, . . . , λm) ∈ Rm such that

0 ∈ ∂ f (x∗)−
m

∑
i=1

λi∂gi(x
∗) + N(x∗; Ω)

and λi∂gi(x
∗) = 0 for all i = 1, . . . , m, where ∂ f (x∗) denotes the classical sub-differential set ([28],

Definition 2.30) of f at x∗ and N(x∗; #) denotes the classical normal cone ([28], Definition 2.9) of #
at x∗.
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We also introduce some crucial terminologies and results for sparsity nonlinear pro-
gramming:

min
x∈Rn

f (x)

s.t. gi(x) ≥ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , l,

‖x‖0 ≤ s,

(2)

where f is a convex function and g and h are continuously differentiable. A restricted linear
independence constraint qualification (R-LICQ) used for sparsity nonlinear programming
(2) was defined by [29] as follows.

Definition 2 ([29], Definition 2.4). We say that the R-LICQ holds at x∗, where x∗ is feasible for
the problem (2):

• When ‖x∗‖0 = s, ∇gi(x
∗), i ∈ I(x∗), ∇hj(x

∗), j = 1, . . . , l, are linearly independent.
• When ‖x∗‖0 < s, ∇Γ∗gi(x

∗), i ∈ I(x∗), ∇Γ∗hj(x
∗), j = 1, . . . , l, are linearly independent.

Based on the R-LICQ, the following decomposition result holds.

Theorem 2 ([29], Proposition 2.5). Let x∗ be a feasible point of problem (2) and the R-LICQ hold
at x∗. Then,

N̂(x∗; S ∩Q) = N̂(x∗; S) + N̂(x∗; Q),

where S := {x : ‖x‖0 ≤ s}, Q := {x : gi(x) ≥ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , l}, and
N̂(x∗; #) denotes the Frechét normal cone ([30], Definition 6.3) of # at x∗, which degenerates into
the classical norm cone described in Theorem 1 if # is a convex set.

For the partial problem (10) of the portfolio model (6) in Section 3.1, the R-LICQ
holds automatically at x∗, where m = 0, l = 1, and h(x) := 1Tx− 1. Next, we establish
the relationship between the local minimizer of problem (2) and its KKT point (the point
satisfying the KKT system in Theorem 3).

Theorem 3. Suppose that x∗ is a local minimizer of problem (2) and the R-LICQ holds at x∗.
Then, there exist non-negative Lagrange multipliers (λ∗1, . . . , λ∗m) ∈ Rm

+ and (μ∗1, . . . , μ∗m) ∈ Rl

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ∈ ∂ f (x∗)−∑m

i=1 λi∂gi(x
∗) + ∑l

j=1 λi∂hj(x
∗) + N̂(x∗; S),

gi(x) ≥ 0, λigi(x) = 0, i = 1, . . . , m,
hj(x) = 0, j = 1, . . . , l,
‖x‖0 ≤ s.

(3)

Proof. It follows from Theorem 6.12 of [30] that

0 ∈ ∂ f (x∗) + N̂(x∗; S ∩Q).

Combing Theorem 2 with the proof of Theorem 3.2 of [29], this result holds.

This result is different from Theorem [29]. We allow the objective function of problem
(2) to be non-differentiable. The analysis process of this result is completely consistent with
that of Theorem [29].

3. Model and Optimization Theory

In this section, we first propose a robust and sparse portfolio model (4) with an
uncertainty set constraint and a sparsity constraint. For the convenience of the numerical
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calculation, we consider its �1 norm penalization variant (6). We define three types of
stationary points of the penalization variant: the KKT point, the strong KKT point, and
the partial minimizer. The relationships of these stationary points and the local/global
minimizer of the penalization problem (6) are established in Section 3.2.

3.1. Robust and Sparse Portfolio Model

Consider n risky assets, denoting the asset return at period t by rt = (r1, ..., rn)! ∈ Rn.
The expected return vector of different assets is denoted by E(rt) = μ, and the covariance
matrix is denoted by E[(rt − μ)(rt − μ)!] = V. In the traditional Markowitz portfolio
selection problem, the portfolio construction is based on the trade-off between risk and
return. For a given level of acceptable portfolio return ρ = w!μ, the mean-variance
optimization can be formulated as

min
w∈Rn

1
2

w!Vw, s.t. w!μ = ρ, w!1n = 1,

and its aim is to find a portfolio that has minimal risk for a given expected return. A
significant model that has been developed from the Markowitz model is the Lasso-type
portfolio proposed by Brodie et al. [2], which is given as:

min
w∈Rn

1
T
‖ρ1T − Rw‖2

2 + α‖w‖1, s.t. w!μ = ρ, w!1n = 1,

where μ = 1
T ∑T

t=1 rt, α is the penalty parameter, and R ∈ RT×n is the asset return matrix.
Brodie et al. [2] confirmed that the �1 norm can produce a sparse portfolio, and this method
can stabilize the problem. In this paper, we start with the square root Lasso-type portfolio,
while adding more consideration about the perturbation in asset return matrix R and
the parameter uncertainty in μ. We propose the following robust and sparse portfolio
selection model:

min
w∈Rn

max
Δ∈U0

‖ρ1T − (R + Δ)w‖2

s.t. min
μ∈U

wTμ ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s,

(4)

where Δ is the data perturbation matrix and U0 = {Δ ∈ RT×n : ‖Δi‖2 ≤ α, ∀i ∈ {1, ..., n}}.
The uncertainty set of the asset return is denoted by U, and we will discuss two selections
of U in the last section.

In [31] (Chapter 2), they showed the equivalence of robustness and regularization.
Specifically, they precisely characterized the conditions on the model of uncertainty and
loss function under which robustness is equivalent to regularization for linear regression.

Definition 3. Let g : RT → R and h : Rn → R be the norm, then the induced norm ‖ · ‖(h,g) is
defined as

‖Δ‖(h,g) = max
w∈Rn

g(Δw)

h(w)
.

Theorem 4 ([31], Chapter 2). If r, q ∈ [1, ∞], then

min
w

max
Δ∈U(�q ,�r)

‖y− (R + Δ)w‖r = min
w

‖y− Rw‖r + α‖w‖q,

where U(�q ,�r) = {Δ : ‖Δ‖(�q ,�r) ≤ α}. Moreover, if U0 = {Δ : ‖Δi‖2 ≤ α, ∀i ∈ {1, ..., n}}, then
U(�1,�2)

= U0, and this implies
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min
w

max
‖Δi‖2≤α

‖y− (R + Δ)w‖2 = min
w

‖y− Rw‖2 + α‖w‖1.

From the relationship of the robustness and the regularization, problem (4) can be
rewritten as

min
w∈Rn

‖ρ1T − Rw‖2 + α‖w‖1

s.t. min
μ∈U

wTμ ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s.

(5)

Under this transformation, the problem (5) actually enjoys robustness. We plan to use
an alternating penalty method to solve problem (5). To ensure the implementation of the
alternating penalty method, we add a copy constraint w = v to the problem (5) and, then,
move it to the objective function by means of the �1 norm penalty, then the penalization
formulation is

min
w,v∈Rn

f (w, v) := ‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v‖1

s.t. w ∈ Ω1 := {w|min
μ∈U

wTμ ≥ ρ, w ≥ 0}

v ∈ Ω2 := {v|vT1n = 1, ‖v‖0 ≤ s}.

(6)

We conduct its optimality analysis in the next subsection.

3.2. Optimization Theory

We now analyze the optimality of the penalization problem (6). Obviously, the objec-
tive function of the problem (6) is a lower semi-continuous and coercive function. Theorem 5
in the next subsection provides the existence of optimal solutions. The selection of the
uncertainty set U is discussed in Section 4.

This subsection provides a few theoretical results of the problem (6) including the
existence of the solution and three classes of the first-order necessary optimal condition.

Theorem 5. For any given α ∈ R+ and β ∈ R+, the optimal solutions of the problem (6) can
be attained.

Proof. It is clear that f is a proper, closed, and coercive function and Ω1×Ω2 is a nonempty
closed set satisfying Ω1 ×Ω2 ∩ dom( f ) �= ∅. It follows from Theorem 2.14 of [32] that this
theorem holds.

We now define a class of KKT points of the problem (6). For the convenience of
expression and the generality of optimality, we write minμ∈U wTμ ≥ ρ as g(w) ≥ 0 and
suppose that g is a concave function and is not necessarily differentiable. Indeed, the
quadratic uncertainty set and the absolute uncertainty set introduced in Section 4 satisfy
these terminologies.

Definition 4. The point (w∗, v∗) ∈ Ω1 ×Ω2 is called a KKT point of the problem (6), if there
exist Lagrange multipliers λ∗1 ∈ R+ and λ∗2 ∈ R such that the following system holds:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 ∈ ∂w f (w∗, v∗)− λ∗1∂wg(w∗) + N(w∗;R+),
0 ∈ ∂v f (w∗, v∗)− λ∗21 + N̂(v∗; S),
g(w∗) ≥ 0, λ∗g(w∗) = 0,
1Tv∗ = 1, ‖v∗‖0 ≤ s.

(7)
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Although the functions corresponding to the quadratic uncertainty set and the absolute
uncertainty set introduced in Section 4 are all concave and may both be non-differentiable
and Slater’s CQ automatically holds for both functions, we still considered Slater’s CQ as a
condition of Theorem 6 for the sake of generality. Moreover, it is stated in Section 2 that the
R-LICQ of Ω2 holds at every point. Then, only under the condition that Slater’s CQ holds,
the relationship between the local minimizer of the problem (6) and the KKT point of the
problem (6) can be established.

Theorem 6. Let (w∗, v∗) ∈ Ω1 ×Ω2 be a local minimizer of the problem (6). If Slater’s CQ holds
on Ω1, then it is a KKT point of the problem (6).

Proof. On the one hand, since (w∗, v∗) ∈ Ω1 ×Ω2 is a local minimizer of the problem (6),
w∗ is a local minimizer of the following optimization:

min
w∈Rn

f (w, v∗) = ‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v∗‖1

s.t. w ∈ Ω1.
(8)

Notice that f (w, v∗) is a convex function about w and Ω1 is a convex set. Then, problem (8)
is a convex optimization. Since Slater’s CQ holds on Ω1, it follows from Theorem 1 that
there exists a Lagrange multiplier λ∗1 ∈ R+ such that{

0 ∈ ∂w f (w∗, v∗) + λ∗1∂wg(w∗) + N(w∗;R+),
g(w∗) ≥ 0, λ∗1 g(w∗) = 0.

(9)

On the other hand, v∗ is a local minimizer of the following optimization:

min
v∈Rn

f (w∗, v) = ‖ρ1T − Rw∗‖2 + α‖w∗‖1 + β‖w∗ − v‖1

s.t. v ∈ Ω2.
(10)

Since the R-LICQ of Ω2 holds at every point, it follows from Theorem 3 that there exists a
Lagrange multiplier λ∗2 ∈ R such that{

0 ∈ ∂v f (w∗, v∗) + λ∗21 + N̂(v∗; S),
1Tv∗ = 1, ‖v∗‖0 ≤ s.

(11)

Combing the system (9) and (11), this theorem holds.

Again, problem (10) can be simply written as

min
v∈Rn

‖w∗ − v‖1

s.t. v ∈ Ω2,

and it has a closed-form solution; see [33], i.e.,

v∗i =

{ w∗i
(w∗s )T1s

, if i ∈ I∗s
0, otherwise,

(12)

where I∗s := {i | w∗〈1〉 ≥ . . . ≥ w∗〈s〉} and w∗〈i〉 denotes the i-th largest absolute value among
the n elements of w∗. Thus, we can define a class of strong KKT points of the problem (6)
as follows.

Definition 5. The point (w∗, v∗) ∈ Ω1 ×Ω2 is called a strong KKT point of the problem (6), if
there exists a Lagrange multiplier λ∗ ∈ R+ such that the following system holds:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ∈ ∂w f (w∗, v∗) + ∂wg(w∗) + N(w∗;R+),
g(w∗) ≥ 0, λ∗g(w∗) = 0,

v∗i =

{ w∗i
(w∗s )T1s

, if i ∈ I∗s
0, otherwise.

(13)

It is easy to prove that, if (w∗, v∗) is a strong KKT point of the problem (6), then it is a
KKT point of the problem (6). The following result provides the relationship between the
global minimizer of the problem (6) and the strong KKT point of the problem (6).

Theorem 7. Let (w∗, v∗) ∈ Ω1 ×Ω2 be a global minimizer of the problem (6). If Slater’s CQ
holds on Ω1 at w∗, then it is a strong KKT point of the problem (6).

Proof. The part of w∗ in (13) follows from (7). We only need to discuss the part of v∗ in
(13). Since v∗ is the global minimizer of (10), it follows from (12) that the part of v∗ in
(13) holds.

Note that the local minimizer of the problem (6) cannot be guaranteed to be a strong
KKT point.

Finally, we introduce the third stationary point of the problem (6), which is called the
partial minimizer.

Definition 6. The point (w∗, v∗) ∈ Ω1 ×Ω2 is called a partial minimizer of the problem (6), if
it satisfies

f (w∗, v∗) ≤ f (w, v∗), ∀ w ∈ Ω1, f (w∗, v∗) ≤ f (w∗, v), ∀ v ∈ Ω2.

Clearly, any global minimizer of the problem (6) is a partial minimizer. Moreover, on
the one hand, the partial problem (8) is a convex optimization, and Slater’s CQ ensures that
its KKT point and global minimizer are consistent. On the other hand, the partial problem
(10) has a closed-form solution. Thus, the equivalence relationship between the KKT point
of the problem (6) and the partial minimizer of the problem (6) can be established under
Slater’s CQ.

Theorem 8. Let (w∗, v∗) ∈ Ω1 ×Ω2 be a feasible point of the problem (6). Suppose that Slater’s
CQ holds on Ω1. Then, (w∗, v∗) is a partial minimizer of the problem (6) if and only if (w∗, v∗) is
a strong KKT point of the problem (6).

Proof. Suppose that (w∗, v∗) is a strong KKT point of the problem (6), then

0 ∈ ∂w f (w∗, v∗) + ∂wg(w∗) + N(w∗;R+), g(w∗) ≥ 0, and λ∗1 g(w∗) = 0.

Since Slater’s CQ holds at w∗, w∗ is a global minimizer of the problem (8). Then, we have
that f (w∗, v∗) ≤ f (w, v∗) ∀ w ∈ Ω1. Moreover, it follows from the definition of the strong
KKT point of the problem (6) that v∗ is a global minimizer of the problem (10). Then,
we have that f (w∗, v∗) ≤ f (w∗, v), ∀v ∈ Ω2. Thus, (w∗, v∗) is a partial minimum of the
problem (6). The opposite conclusion clearly holds.

4. The Uncertainty Set U

In Subsection 3.2, we rewrite the uncertainty set constraint as g(w) ≥ 0, where
g is a generalized concave function and is not necessarily differentiable. This section
introduces two mainstream formulations for the uncertainty set in asset mean return vector
μ (see [34]), which corresponds to the quadratic uncertainty set and the absolute uncertainty
set, respectively.
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4.1. The Quadratic Uncertainty Set

The first one is the quadratic formulation, U = {μ|(μ− μ)TΩ(μ− μ) ≤ κ2}, where μ
is the nominal expected return and κ is the error. Assume that asset returns are independent
and identically distributed and μ− μ follows a normal distribution with mean value 0

and covariance matrix Ω, where Ω is the covariance matrix of errors in the expected asset
return. In Yin et al. [35], they discussed the choice of uncertainty matrix Ω in the quadratic
uncertainty set and proposed the selection criteria. In the quadratic uncertainty case,
minμ∈U wTμ in problem (5) is equivalent to the following problem:

max
μ∈U

wTμ−wTμ.

Solving the above problem, we obtain

μ = μ−
√

κ2

wTΩw
Ωw.

Then, the problem (5) is rewritten as

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1

s.t. μTw− κ
√

wTΩw ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s.

(14)

Here, g(w) = μTw− κ
√

wTΩw− ρ. The penalization form of problem (14) can be rewrit-
ten as

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v‖1

s.t. w ∈ Ω1 = {w | κ‖
√

Ωw‖2 ≤ μTw− ρ, w ≥ 0}
v ∈ Ω2 = {v | vT1n = 1, ‖v‖0 ≤ s}.

According to the proposition of Yin et al. [35], we choose Ω ∝ diag(V). By using this
uncertainty matrix, it is expected to reduce the sensitivity to the inputs, as well as keep the
original volatility unchanged.

4.2. The Absolute Uncertainty Set

Fabozzi et al. [23] used the absolute uncertainty set in mean returns that ask that the
sum of absolute spreads between estimated and possible mean returns should not be too
large. The absolute formulation is U = {μ|∑i |μi − μi| ≤ κσ√

T
}. In this case,

μTw− μTw ≥ −∑
i
|μi − μi|max(|wi|) ≥ − κσ√

T
max(|wi|);

thus,

μTw ≥ μTw− κσ√
T

max(|wi|).
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Then, the problem (5) is equivalent to

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1

s.t. μTw− κσ√
T

max(|wi|) ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s.

(15)

Here, g(w) = μTw− κσ max(|wi|)/
√

T − ρ. Similarly, the penalization from of problem
(15) can be written as

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v‖1

s.t. w ∈ Ω1 = {w | |wi| ≤
√

T
κσ

(wTμ− ρ), i = 1, ..., n, w ≥ 0}
v ∈ Ω2 = {v | vT1n = 1, ‖v‖0 ≤ s}.

5. Optimization

This section introduces a penalty alternating direction method (PADM) to solve prob-
lem (5).

5.1. Alternating Direction Methods

We first discuss the optimization of the problem (6). Due to the complexity of this
problem, alternating direction methods (ADMs) can be used to solve this problem. The
framework of ADMs is described as follows:

Next, we state the general convergence result of Algorithm 1, and one can refer to
Geissler et al. [36] for a proof (Theorem 8) and for further details about this method.

Algorithm 1 ADM: Alternating Direction Method.

1: Set the problem parameters: α, κ, ρ, T > 0, asset return matrix R ∈ RT×n, and nominal
expected return vector μ ∈ Rn. Initialize ε > 0, (w0, v0) and penalty parameter β > 0.
Set the iteration index k := 0, 1, ....

2: Compute
wk+1 ∈ arg min

w
{ f (w, vk) : w ∈ Ω1}, (16)

and
vk+1 ∈ arg min

v
{ f (wk+1, v) : v ∈ Ω2}. (17)

3: If ‖wk+1−wk‖2+‖vk+1−vk‖2
‖wk‖2+‖vk‖2

≤ ε, then stop with (wk, vk) being an output point of (6).

Theorem 9. Let {(wk, vk)} be a sequence generated by Algorithm 1. Then, the following holds:

(a) {(wk, vk)} is bounded.
(b) Any limiting point {(w∗, v∗)} of {(wk, vk)} is a partial minimizer of the problem (6).
(c) If Slater’s CQ holds on Ω1, the limiting point of {(wk, vk)} is also a strong KKT of the

problem (6).

Proof. (a) It follows from Algorithm 1 that

f (wk+1, vk+1) ≤ f (wk+1, vk) ≤ f (wk, vk).

Since f is a coercive function, then the level set of f is bounded. Thus, {(wk, vk)} is
bounded.
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(b) Clearly, { f (wk, vk)} is a decreasing sequence and f (wk, vk) ≥ 0, then there exists a
value f ∗ such that limk→∞ f (wk, vk) = f ∗. Suppose that {(w∗, v∗)} is a limiting point of
{(wk, vk)}. Then, there exists a sequence {kj} such that limj→∞ kj = ∞, limj→∞(wkj , vkj) =

(w∗, v∗) and limj→∞ f (wkj , vkj) = f (w∗, v∗) = f ∗, where the last equality holds since
limk→∞ f (wk, vk) = f ∗. Without loss of generality, let limk→∞(wk, vk) = (w∗, v∗). It
follows from Algorithm 1 that

wk+1 ∈ arg min
w∈Ω1

f (w, vk).

Since f is continuous with respect to w, then taking k → ∞, we have that

w∗ ∈ arg min
w∈Ω1

f (w, v∗).

Similarly,
v∗ ∈ arg min

v∈Ω2
f (w∗, v).

Thus, the limiting point {(w∗, v∗)} of {(wk, vk)} is a partial minimizer of the problem (6).
(c) Under Slater’s CQ, the partial minimizer of the problem (6) is a strong KKT point

of the problem (6) and the opposite also holds. Thus, this result holds.

5.2. The Optimization for the Partial Problem (8)

We now discuss the optimization of the partial problem (8) at the k-th iteration of the
ADM. Some non-exact penalty methods and smoothing methods can be used to solve this
problem. Here, we obtain wk+1 by solving the following optimization:

min
w∈Rn

f (w, vk) = ‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− vk‖1 + γ|g(w)−|
s.t. w ≥ 0,

(18)

where γ > 0 is a penalty parameter. Let

ψμ(t) =

{
|t|, |t| ≥ μ,
t2

2μ + μ
2 , |t| < μ,

φμ(t) =
1
2
(t +

√
t2 + μ),

where μ > 0 is a smoothing parameter. Then, a class of the smoothing optimization of
problem (18) can be given as follows:

min
w∈Rn

fμ(w, vk) =
√
‖ρ1T − Rw‖2

2 + μ+

α
n

∑
i=1

ψμ(wi) + β
n

∑
i=1

ψμ(wi − vk
i ) + γφμ(−g(w))

s.t. w ≥ 0.

(19)

The projection gradient method (PGM) can be used to solve the problem (19), and its
iteration formula is

wj+1,k = PR+
(wj,k + η∇ fμ(w

j,k, vk)),

where η > 0 denotes the step length at the j-th iteration of the PGM at the k-th iteration of
the ADM and P#(t) denotes the projection point of t onto #. The framework of the above
method is called the penalty projection gradient method (PPGM) and can be described in
Algorithm 2.
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Algorithm 2 PPGM: Penalty Projection Gradient Method.

1: Set the problem parameters: α, κ, ρ, T, β, γmax > 0, asset return matrix R ∈ RT×n, and
nominal expected return vector μ ∈ Rn. Initialize penalty parameters γ0 > 0, τ > 1.
Set the iteration index j = 0, 1, · · · .

2: Computing wj+1,k = PR+
(wj−1,k + η∇ fμ(w, vk)).

3: If wj+1,k satisfies ‖wj+1,k−wj,k‖2
‖wj,k‖2

≤ ε and g(wj,k) ≥ −ε, then stop and wk = wj,k.

4: If ‖wj+1,k−wj,k‖2
‖wj,k‖2

≤ ε and g(wj,k) < −ε, then choose new penalty parameter γ =

min{τγ, γmax}. Otherwise, return to Step 2.

5.3. Penalty Alternating Direction Method

At the end of this section, we describe the PADM for the general problem (5). At
iteration l, set the value of penalty parameter βl and obtain (wl , vl) by the ADM with βl . If
the inequality ‖wl − vl‖1 ≤ tol holds, where tol is a small positive constant, we stop with a
feasible solution of problem (6). Otherwise, the penalty parameter βl is updated to βl+1. In
this way, the PADM generates a sequence of the partial minimizer of problem (6) with βl .
The framework of the PADM is formally stated in Algorithm 3.

Algorithm 3 PADM: Penalty Alternating Direction Method.

1: Set the problem parameters: α, κ, ρ, T, βmax > 0, asset return matrix R ∈ RT×n, and
nominal expected return vector μ ∈ Rn. Initialize penalty parameters β0 > 0, τ > 1.
Set the iteration index l = 0, 1, · · · .

2: Obtain (wl , vl) by the ADM with βl .
3: If (wl , vl) satisfies ‖wl − vl‖1 ≤ tol, then stop with (wl , vl). Otherwise, choose new

penalty parameter βl+1 = min{τβl , βmax}, and return to Step 2.

6. Numerical Results

This section shows extensive numerical experiments. In Section 6.1, we first present
six real data sets, explain some existing models to be compared with and describe the
performance measures to be used. In Section 6.2, we demonstrate that our methods lead to
robust and sparse portfolios. In Section 6.3, we compare nine popular portfolios in terms of
out-of-sample (OOS) performance measures. Finally, in Section 6.4, we show the cumulative
return of different portfolio strategies. All of our computations are conducted in the Matlab
R2019a environment, on a PC with an Intel(R) Core(TM) i5-7200U CPU (2.50 GHz, 4 CPUs)
and 4G RAM processors.

6.1. Models of Comparison, Data, and Performance Measures

(a) Eleven portfolio models compared. We compare the OOS performance of 11
portfolio models across six real data sets of weekly and monthly returns. Those models
are well studied, and we divide them into four groups, which are summarized in Table 1.
The first group is the robust and sparse portfolio strategies developed in this paper. The
second group includes some well-studied portfolio strategies. The third group includes
three benchmark portfolio strategies. The last group consists of two portfolios that use the
shrinkage technique to estimate the covariance matrix.
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Table 1. List of portfolio strategies considered.

Group Model Abbr. Re f er.

(1) Robust and sparse portfolios with
quadratic uncertainty set RSQ this paper
absolute uncertainty set RSA this paper

(2) Some well-studied portfolio strategies with
�1 regularization L1 Brodie et al. [2]
�1,2 regularization L12 Zhao et al. [37]
Elastic Net regularization EN Yen and Yen [38]
upper and lower bound Box Behr et al. [39]

(3) Benchmarks’ portfolio strategies with
short-sales constrained SC Jagannathan and Ma [5]
short-sales unconstrained SU Jagannathan and Ma [5]
equally weighted (1/N) portfolio EW DeMiguel et al. [40]

(4) Shrinkage of covariance
sample covariance and identity matrix SCID Olivier and Wolf [41]
sample covariance and 1-factor matrix SC1F Olivier and Wolf [3]

(b) Seven data sets tested. Table 2 lists some real-world data sets: DJIA [42], NAS-
DAQ [43], S&P [44,45], Russell2000 [46], Russell3000 [47], and FF100 [38]. All the data are
obtained from Yahoo finance (https://finance.yahoo.com/, accessed on 10 January 2023)
and Ken French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html, accessed on 10 January 2023). In all cases, we remove those assets that
have missing values.

Table 2. Information of the seven real data sets.

# Data Sets Stocks Time Period Source Frequency

1 DJIA 29 01/10/2017–30/10/2022 Yahoo finance Weekly
2 NASDAQ 95 01/10/2017–30/10/2022 Yahoo finance Weekly
3 SP500 336 01/10/2017–30/10/2022 Yahoo finance Weekly
4 Russell2000 1340 01/10/2017–30/10/2022 Yahoo finance Weekly
5 Russell3000 2166 01/10/2017–30/10/2022 Yahoo finance Weekly
6 SP100 71 01/10/2017–30/10/2022 Yahoo finance Weekly
7 FF100 100 11/1999–06/2022 K.French Monthly

(c) Measuring the OOS performance and its setup. We largely follow the “rolling-
window” procedures in [2,37] to conduct our comparison. Let T be the length of a data
set and τ be the window length (e.g., τ = 120) used to construct the optimal portfolio by
a model. In each period (t + 1), t = τ, ..., T− 1, we compute different portfolios over the
previous τ periods. We then compute the OOS return in the (t + 1)-th period based on
the obtained portfolio. We repeat this procedure until we reach the end of the data set.
In this way, we will obtain a series of (T − τ) portfolio vectors for each model listed in
Table 1. To make it precise, let ws

t be the optimal portfolio obtained by the portfolio strategy
s over the date from t− τ + 1, . . . , t. The OOS return in the t + 1 period is computed as
rs

t+1 = ws
t
ᵀrt+1, where rt+1 is the return in the (t + 1)-th period. Thus, we obtain a time

series of (T− τ− 1) periods OOS returns for all strategies. Note that we use the traditional
“rolling-window” procedures for the numerical analysis, and some new methods could
provide new ideas for the analysis of portfolio selection problems, see [48].

The OOS performance of each portfolio strategy is assessed by using four quantities:
(i) the OOS portfolio variance (σ̂2), (ii) the OOS portfolio Sharpe ratio (ŜR), (iii) portfolio
turnover (TURN), and (iv) the average short positions (ASP). The specific definitions can
be found in DeMiguel et al. [6], Yen and Yen [38], and Zhao et al. [37]. We evaluate the
cumulative return (CR). The CR of a portfolio scores the total payoffs that are yielded by
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the investment strategy across the investment periods without considering any risk or
cost, see Shen et al. [49]. We also consider some quantities studied in [38] on the profiles
of the portfolio weights: PAP represents the proportion of active positions and PZP is

the proportion of zero positions, respectively, defined as PAPt =
|S1

t |
N , PZPt =

|S0
t |

N , where
S1

t = {i : wi,t �= 0} and S0
t = {i : wi,t = 0}.

6.2. Robust and Sparse Portfolio

This section shows the weight of robust and sparse portfolios. We use the DJIA data
set and the sparse levels s1 = #30%n$ and s2 = #50%n$. The parameter α = β = 10λ, and
the value of λ varies from 10−2 to 101.

Figure 1 shows the portfolio weights, PAP, and PZP. The two plots in the top panel
correspond to a robust portfolio under the quadratic uncertainty set, and the sparsity is
s1. The two plots in the bottom panel correspond to a robust portfolio under the absolute
uncertainty set, and the sparsity is s2. With the increase of penalty parameter λ, the portfolio
weights tended to be sparse. The PAP and PZP indicate that we can obtain sparse portfolios
that satisfy the specified sparsity.

Figure 1. Portfolio weights.

Figure 2 shows the sparse portfolio. We use four different data sets. The sparsity level
on DJIA is s1 = #30%n$, on NASDAQ and FF100 is s2 = #10%n$, and on Russell2000 is
s3 = #1%n$. We solve the robust portfolio under the quadratic uncertainty set to show the
results. We obtain the portfolio with the specified sparsity and the distribution of different
asset weight values.

6.3. Out-of-Sample Performance

The Sharpe ratio considers return and risk at the same time; it is a comprehensive
measurement for us to observe the performance of a portfolio. Thus, we first test the Sharpe
ratio of different portfolio strategies. We use the SP100 data set. The parameter α = 2β and
the value of β varies from 10 to 101.5. The sparsity level s1 = #15%n$ and s2 = #5%n$.

By comparing with two benchmark portfolios, Figure 3 shows that the RSQ and RSA
can produce a higher Sharpe ratio when choosing a suitable penalty parameter.
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Figure 2. Sparse solutions.

Figure 3. The Sharpe ratio.

Table 3 reports the OOS performance by using four quantities defined in Section 6.1.
We set α = β = 10 and the sparsity level s1 == #30%n$ (on the DJIA, NASDAQ, SP500,
and FF100 data sets) and s2 == #30%n$ (on the Russell2000 and Russell3000 data sets).
We can observe that the RSA and RSQ portfolios achieve the smallest variances across
all portfolio strategies, i.e., on average with 10.84(%)2 and 11.09(%)2, respectively. This
means they are less volatile, i.e., less risky. SU, SC1F, and SCID have the highest variance
on average, 995.73(%)2, 442.81(%)2 and 404.20(%)2 in this setting. The variance of the
remaining portfolio strategies is 11.94(%)2 (L1), 11.98(%)2 (EN), 16(%)2 (L12), 27.78(%)2

(SC), 28.71(%)2 (EW), and 71.11(%)2 (Box), respectively. In addition, we observe that the
Sharpe ratios of the various portfolios on average are 12.34% (SC), 11.82% (EW), 11.77%
(RSA), 11.70% (RSQ), 11.61% (L12), 11.21% (EN), 11.18% (L1), 10.58% (SCID), 10.09% (SC1F),
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9.23% (Box), and 7.92% (SU). We see that the RSA and RSQ portfolios do not result in a
significantly different OOS Sharpe ratio when compared with SC and EW; however, they
are higher than the rest of the portfolio strategies.

Table 3. Portfolio out-of-sample variance (σ̂2) ((%)2), Sharpe ratio (ŜR), turnover (TURN), and the
average short positions (ASP).

DJIA NASDAQ SP500 Russell2000 Russell3000 FF100

n = 29 n = 95 n = 336 n = 1340 n = 2166 n = 100

var 5.3741 5.9065 11.5604 12.1813 12.7837 17.2215
RSA SR 0.0703 0.1807 0.1008 0.0063 0.0267 0.3215

TURN 0.1194 0.1721 0.1430 0.1033 0.1021 0.1698
ASP −1.11e-18 2.22e-18 0 −3.08e-18 −4.01e-18 −6.28e-18

var 5.3949 5.8633 12.5936 12.7041 12.7702 17.2097
RSQ SR 0.0737 0.1889 0.0863 0.0059 0.0258 0.3216

TURN 0.1063 0.1711 0.1334 0.1112 0.1003 0.1698
ASP −6.66e-18 −3.33e-18 −1.43e-17 −9.25e-18 −9.25e-18 0

var 9.5931 7.1442 32.1907 14.8927 13.7879 18.3918
L12 SR 0.0860 0.1768 0.1000 0.0072 0.0295 0.2971

TURN 0.0220 0.0286 0.0369 0.0675 0.0605 0.0296
ASP −0.0216 −0.0209 −0.0240 −0.0057 −0.0050 −0.0276

var 8.0373 6.7078 13.1228 14.2679 13.0166 16.4937
L1 SR 0.0864 0.1831 0.0414 0.0042 0.0279 0.3279

TURN 0.1063 0.0677 0.0369 0.1250 0.1136 0.0629
ASP −0.0036 −0.0012 −0.0124 −0.0039 0.0020 −0.0195

var 8.5871 6.5362 12.9449 14.2074 13.0817 16.5823
EN SR 0.0911 0.1790 0.0418 0.0029 0.0402 0.3181

TURN 0.0256 0.0472 0.0408 0.1208 0.1181 0.0510
ASP −0.0257 −0.0198 −0.0272 0.0015 0.0011 −0.0257

var 9.9181 8.7749 3.59e+02 7.3636 7.0004 34.5878
BOX SR 0.0250 0.0768 −0.1204 −0.0495 −0.0023 0.6244

TURN 0.8322 1.7146 3.2709 0.2820 0.2973 5.1895
ASP 1.1172 2.7850 6.5137 0.5744 0.5886 8.4327

var 10.0132 8.0089 86.1291 24.3110 16.9741 21.2942
SC SR 0.0871 0.1891 0.1202 0.0233 0.0399 0.2812

TURN 0.0388 0.0313 0.0411 0.0512 0.0481 0.0247
ASP 1.38e-16 1.23e-16 −1.52e-16 3.12e-16 −4.19e-16 0

var 9.9181 15.0721 5.91e+03 12.1721 9.9999 17.2369
SU SR 0.0250 0.1800 −0.1270 −0.0482 −0.0167 0.4624

TURN 0.8322 2.7947 3.9150 0.3919 0.3722 5.2429
ASP 1.1172 2.5580 5.8870 0.5542 0.5494 6.3456

var 11.1339 8.1780 89.8252 21.3370 19.5742 22.2346
EW SR 0.0701 0.1790 0.1151 0.0194 0.0337 0.2922

TURN 0.0208 0.0253 0.0400 0.0429 0.0381 0.0252
ASP 1.13e-16 1.13e-16 −1.12e-16 4.52e-16 −3.39e-16 0

var 6.9600 6.9782 2.38e+03 7.3676 7.0304 16.8727
SCID SR 0.0294 0.1097 −0.1259 −0.0497 −0.0025 0.6740

TURN 0.4115 0.8589 0.9940 0.2803 0.2884 1.5393
ASP 0.6362 1.6735 2.8275 0.5727 0.5871 3.5605

var 6.2670 6.5347 2.6140e+03 7.3790 7.0367 15.6203
SC1F SR 0.0380 0.0902 −0.1253 −0.0510 −0.0034 0.6570

TURN 0.3032 1.1648 0.8972 0.2964 0.2962 1.5858
ASP 0.4690 1.3556 2.1771 0.5722 0.5863 2.8086
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As for the portfolio turnover, unsurprisingly, the EW portfolio strategy exhibit the
lowest turnover of all portfolio strategies, amounting to 3.20%. The RSA and RSQ portfolio
strategies have moderate levels of turnover on average, 13.49% and 13.20%. The highest
average turnover is generated by the SU portfolio and, then, by the Box portfolio, amounting
on average to 225.81% and 193.10%, meaning that they are very costly. The turnover of the
remaining portfolio strategies range between 11.85% (L12), 25.76% (L2), 16.66% (L1), and
13.98% (EN), respectively. The high turnover of SU and Box was reflect in the enormous
average short positions of over 283.52% and 333.52% on average across the six data sets. The
second two highest average short positions are by SCID and SC1F, respectively, amounting
to 164.29% and 132.81%. The average short positions of the SC and EW portfolios are
on average approximately 0% across the six data sets. The average short positions of the
RSQ and RSA portfolio strategies also tend to zero. Therefore, considering the moderate
turnover and the average short positions, the proposed RSQ and RSA strategies represent a
practically implementable method that outperform the portfolio strategies listed in Table 1.

6.4. Cumulative Return

In this subsection, we show the CR of several portfolio strategies. We use the FF100
data set. The sparsity level s = #10%n$. The parameter α = β = 10. According to the OOS
performance, we choose RSQ, RSA, L12, L1, EN, EW, and SC to compare the CR.

Figure 4 shows the curves of the CR over the corresponding investment periods for
the different portfolio strategies. Apparently, RSQ and RSA outperform the others with
visible margins. However, RSA and RSQ do not produce significant differences. This result
suggest that, compared with the other portfolios, the sparse portfolios RSA and RSQ grow
more steadily together with a reduced volatility across most of the investment periods.

Figure 4. The cumulative return.

7. Conclusions

Portfolio selection has been a fertile area for robust optimization techniques. We
proposed a robust and sparse portfolio selection optimization model by considering the
perturbation in the asset return matrix and the parameter uncertainty in the expected
asset return. We used the equivalence of robustness and regularization to deal with the
perturbation in the asset return matrix. To deal with the uncertainty in the expected asset
return, we considered two kinds of uncertainty sets and solved the worst-case scenario.
We defined three types of stationary points of the penalty problem and then analyzed
the relationship between these stationary points and local/global minimizers. Then, we
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designed the penalty alternating direction method to solve each problem. Although there
is no theoretical guarantee for the equivalence between problems (5) and (6), as well as
problems (8) and (18), we confirmed the effectiveness of our approach by comparing with
nine widely studied portfolio models on seven real-world data sets. Extensive numerical
experiments confirm that the portfolios we proposed have lower volatility, that is less risk.
Moreover, our portfolio strategies can yield higher Sharpe ratios when the appropriate
parameters are selected.

We note that the robust optimization (RO) mainly consider the uncertainty sets of
parameters and thus it do not consider any distribution information of the data. This char-
acteristic makes RO attractive, but at the same time, this method loses the comprehensive
characterization of the data. Recently, distributed robust optimization (DRO) has attracted
widespread attention and research. Although DRO takes into account the distribution
information of the data, the cost paid is that it is difficult to solve. We will consider how to
apply DRO to sparse portfolio problems, while considering the distribution information
of financial data and improving the sparsity. The most direct extension is the distributed
robust portfolio optimization with the �0 norm constraint, which is a worthwhile and
challenging issue.
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Abstract: This study considers the optimal debt ratio and dividend payment policies for an insurer
concerned about model misspecification. We assume that the insurer can invest all of its asset to the
financial market and the ambiguity may exist in the risky asset. Taking into account the ambiguous
situation, the insurer aims to maximize the expected utility of a discounted dividend payment until it
ruins. Under some assumption, we prove that there exists classical solutions of the optimal debt ratio,
dividend payment policies, and value functions that show that the existence of ambiguity can affect
the optimal debt ratio and dividend policies significantly.

Keywords: dividend payment; model ambiguity; optimal debt ratio
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1. Introduction

Both dividends and debt are crucial factors in an insurance company. Dividends are
a critical component of shareholder returns. Their demonstration shows the company’s
financial strength and ability to generate profits. Dividends also serve as a signal to in-
vestors about the company’s future prospects. If the dividend payout ratio is consistent and
reliable, it indicates a stable and profitable business model. On the other hand, insurance
company debt is also crucial. It is a crucial element in risk management and a key factor in
ensuring solvency. The debt-to-asset ratio indicates how well the company manages its
balance sheet and risks. A debt ratio that is too high may indicate a leveraged balance sheet
and potentially increase the default risk. Conversely, a debt ratio that is too low may indi-
cate underutilized capital and potentially missed opportunities for growth. Therefore, both
dividends and debt are important factors to consider when analyzing insurance company
performance and financial health.

Due to the nature of their insurance product, insurers sometimes collect substantial
sums of cash, cash equivalents, and pursue capital gains in order to cover future claims
and prevent bankruptcy. The appropriate debt level and prospective insurance liabili-
ties is of great importance for an insurer. In actuarial science, the appropriate debt level
and prospective insurance liabilities of an insurance company should be discussed in
detail. Many researchers have investigated the optimal debt policy of an insurer in the
last decade. For example, Jin et al. (2015) [1] studied the optimal debt ratio problem
considering reinsurance, where they used the subsolution–supersolution method to deal
with the existence of solutions of the optimal debt ratio policy. Zhao et al. (2018) [2]
considered optimal debt ratio policies for an insurer with a regime-switching model.
Qian et al. (2018) [3] investigated the optimal liability ratio under catastrophic risk. In
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continuous-time setting, Li et al. (2023) [4] researched a state-dependent optimal asset–
liability management problem. The optimal debt ratio problem can be seen in other words
such as Zhu and Yin (2018) [5], Zhang et al. (2020) [6], Meng and Bi (2020) [7], Abid and
Abid (2023) [8], and the references therein.

The seminal work of De Finetti (1957) [9] has led to the classical problem of optimal
dividend payment in insurance mathematics. Paulsen and Gjessing (1997) [10] analyzed
a risk process with stochastic return on investments and obtained the optimal dividend
barrier policy. Cai et al. (2006) [11] investigated the Ornstein–Uhlenbeck-type model with
credit and debit interest for the optimal dividend problem. Cheung and Wong (2017) [12]
studied the dividend payment in the dual risk model considering delays. Xie and Zhang
(2021) [13] researched the finite-time dividend problems in a Levy risk model under periodic
observation. Chakraborty et al. (2023) [14] considered a diffusive model for optimally
distributing dividends under the situation of Knightian model ambiguity. For more studies
on the optimal dividend problem for an insurer, we refer the reader to Avanzi (2009) [15],
Yao et al. (2011) [16], Yin and Wen (2013) [17], Bi and Meng (2016) [18], Marciniak and
Palmowski (2016) [19], Feng et al. (2021) [20], and so on.

Actuarial research has recently revealed a pattern of diverse development. It is
clear that there are growing connections between risk theory and mathematics and some
optimum control issues are also becoming more significant and fascinating. As a result,
scholars have studied the optimal debt ratio combined with optimal dividend problems
in great detail. For example, see Meng et al. (2016) [21], Jin et al. (2022) [22], etc. In the
above studies, the scholars did not consider the existence of ambiguity and assumed that
the models used are exactly true. In reality, the insurance business uses a wealth of data
and a variety of technology to predict actuarial models. It is clear that the insurer is unsure
whether a model is the correct model or whether there is a misspecification error. Thus, the
aim of this study is to analyze the optimal debt ratio and dividend payment policies for an
insurer that is concerned about model misspecification. We assume that the insurer has
the ability to invest all of its assets in the financial market and that there may be ambiguity
in the risky asset. The insurer’s goal is to maximize the expected utility of a discounted
dividend payment until it ruins, taking into account the ambiguous situation. Based on
some assumptions, we prove that there exists classical solutions of the optimal debt ratio,
dividend payment policies, and value functions.

2. Model Formulation

We firstly describe an insurer’s surplus process as follows

X(t) = K(t)− L(t), (1)

where K(t) and L(t) denote asset value and liabilities at time t, respectively. Denote πt as a
debt ratio, i.e.,

πt =
L(t)
X(t)

. (2)

Then, we have

1 + πt =
K(t)
X(t)

. (3)

Intuitively, if the insurer holds a liability, it will earn premium. Denote α as the premium
rate, which means that the insurer can earn α dollars when it has provided a dollar insurance
protection. Thus, the increase in the asset value of insurance sales during [t, t + dt] can be
determined by αL(t)dt. Consequently, the insurer aims to know how much of the debt
ratio is suitable. For the sake of simplicity, we assume that there is only one risky asset in
the financial market. Thus, the price of the risky asset M(t) satisfies that

dM(t)
M(t)

= μdt + σdB1(t), (4)
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where μ > 0 and σ > 0 are real numbers. We assume that the insurer invests all of its asset
value K(t) into the financial market. Without considering claims and dividend payment,
the surplus process of the insurer can be written as

dX1(t) = dK(t) = [αL(t) + K(t)][μdt + σdB1(t)]. (5)

Then, we assume the accumulated claims up to time t are proportional to the insurer’s
liabilities L(t), denoted as S(t),

S(t) =
∫ t

0
c(s)L(s)dt. (6)

where c(t) is served as a claim rate which can be described by a diffusion process as

dc(t) = h(c(t))dt + υdB2(t), (7)

with c(0) = c, where h(c(t)): R → R is an expected claim rate, and υ > 0 is the volatility of
the claim rate. Cov(B1(t), B2(t)) = ρt, −1 < ρ < 1 represents the correlation between the
future claims and the risky asset. Using Gaussian linear regression, we can obtain that

dB1(t) = ρdB2(t) +
√

1− ρ2dB3(t), (8)

where B3(t) is a standard Brownian motion, and B2(t) and B3(t) are independent.
What is more, we also consider the dividend payment in this paper, and we denote

D(t) as accumulated dividend payments up to time t,

dD(t) = ztX(t)dt, with D(0−) = 0. (9)

where 0 < zt < M is Ft-adapted, and M is a positive constant. Thus, the wealth process of
the insurer considering claims and dividend payments can be given in the following

dX(t) = dX1(t)− dS(t)− dD(t), X(0) = x. (10)

Substituting (5)–(8) into (10), we have

dX(t)
X(t)

= (απt + πt + 1)μdt− c(t)πtdt− ztdt + (απt + πt + 1)σρdB2(t) + (απt + πt + 1)σ
√

1− ρ2dB3(t). (11)

The value function is usually set to maximize the expected utility of a discounted dividend
payment until it ruins (for example, see Jin et al. (2015) [1]).

V1(x, c) = sup
π,z

EP
[∫ τ

0
U(zsX(s))ds

∣∣X(0) = x, c(0) = c
]

, (12)

where τ is the time of ruin and τ = inf{t ≥ 0 : X(t) < 0}, where EP denotes the expectation
operator under probability measure P, U is a utility function satisfying U′ > 0, U′′ < 0, π,
and z are some admissible policies that will be described later. The insurer’s understanding
of the true probability measure (P) used in computing the equation above is the basic
assumption behind this model. The assumption being too strong has been argued by some
researchers. Insurers should be permitted to consider optimal policies for other measures
of probability. Otherwise, if an insurer ignores the ambiguity of the probability measure
and trusts P completely, the insurer may make some mistakes in some decision problems.
It is our assumption that the insurer’s ambiguity about the financial market model is only
due to its limited information about the financial market. The purpose of this paper is to
examine the optimal debt ratio and dividend strategy policy with ambiguity in the model
against the financial market only. The model ambiguity in our optimal control problem is
presented in the following.
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We are aware that the probability measure P mentioned above is created using the
insurer’s limited information. The insurance company computes P by utilizing a vast
amount of data and various technologies. This P is referred to as the reference model or
reference probability. It is clear that the insurer is unsure whether P is the correct model
or whether there was a misspecification error. Naturally, the insurer would take other
models into account. We call the aforementioned phenomenon ambiguity. Additionally,
we presumptively believe that the model ambiguity is limited to the financial market. The
alternative models that the insurer considers should then be identical to the reference
model and cannot affect the (7) that corresponds to the claims’ arrival rate, so we define the
alternative models by a class of probability measures that are equivalent to P:

Q := {Q|Q ∼ P, Q will not change (7)},∼ means equivalent (13)

In a probability space, two measures, P and Q, are equivalent, denoted by Q ∼ P, if they
have same null sets, i.e., Q(A) = 0, if and only if P(A) = 0)

By Girsanov’s theorem (Klebaner (2008) [23]), Q satisfies the following conditions

dQ
dP

(B3[0, T]) = Λ(T), (14)

where

Λ(t) = exp
{∫ t

0
m(s)dB3(s)− 1

2

∫ t

0
m(s)2

}
is a P-martingale with filtration {Ft}t∈[0,T], and m(t) is a regular adapted process satisfying
Novikov’s condition, i.e.,

EP
[

exp
(

1
2

∫ T

0
[m(t)]2ds

)]
< ∞.

Then, we have
dB3(t) = m(t)dt + dBQ

3 (t), (15)

where BQ
3 (t) is the standard Brownian motion corresponding to the probability measure Q.

We use relative entropy to calculate the difference between each alternative model and
the reference model in order to take the alternative model Q into consideration. Relative
entropy is a tried-and-true method for calculating the difference between Q and P. Relative
entropy has been employed to measure it in numerous research; for examples, see Uppal
and Wang (2003) [24], Maenhout (2004) [25], and Yi et al. (2013) [26]. The following is the
relative entropy between Q and P.

H(Q ‖ P) = EQ
[

ln
dQ
dP

]
= EQ

{∫ T

0
m(s)dB3(s)− 1

2

∫ T

0
m(s)2ds

}
= EQ

{∫ T

0
m(s)dBQ

3 (s) +
1
2

∫ T

0
m(s)2ds

}
.

Given that standard Brownian motion is defined by BQ
3 (t) under the probability measure

Q, we have

H(Q ‖ P) = EQ
{∫ T

0
Z(s)ds

}
=
∫ T

0

1
2

m(s)2ds, (16)

where Z(t) = 1
2 m(t)2. Therefore, the H(Q ‖ P) is measured by Z(t). A penalty is charged

if the insurer chooses to use the alternative model Q instead of the reference model P.
Naturally, the penalty is increased by the size of the H(Q ‖ P). In a manner similar to
Uppal and Wang (2003) [24], the following is how we design a robust control problem:
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V(x, c) = sup
π,z∈V

inf
Q∈Q

EQ
c,x

[∫ τ

0
[ξφ(V(x, c))Z(s) + U(zsX(s))ds]

]
, (17)

where EQ
c,x[·] = EQ[·|c(0) = c, X(0) = x]. The standardizing function φ(V(t, x)) > 0

converts the penalty to the same order of magnitude as V(x, c), where this specific version
of φ(·) is typically chosen for analytical simplicity. The size of the ξ indicates how confident
the insurer is in the reference model P, where the larger the ξ is, the more confident the
insurer is in P, which we assume as 0 < ξ < ∞ in this paper. The inf term shows the
insurer’s aversion to ambiguity. In other words, the insurer is conservative and will take
into account the worst outcome with ambiguity; it will be further explained that the V is
the set of admissible policies.

3. Main Results

For the purpose of solving (17), the wealth process should be derived under Q. Substi-
tuting (15) into (11), we can obtain that

dX(t)
X(t)

= (απt + πt + 1)μdt− c(t)πtdt− ztdt + (απt + πt + 1)σm(t)
√

1− ρ2dt

+(απt + πt + 1)σρdB2(t) + (απt + πt + 1)σ
√

1− ρ2dBQ
3 (t). (18)

The authors of (18) show that the alternative models only change the drift coefficient, which
exactly corresponds to the use of Girsanov’s theorem. Let the generator of (18) be

A f (x, c) =

[
(απt + πt + 1)μdt− cπt − zt + (απt + πt + 1)σm(t)

√
1− ρ2

]
x

∂

∂x
f (x, c)

+
1
2
(απt + πt + 1)2σ2x2 ∂2

∂x2 f (x, c) + h(c)
∂

∂c
f (x, c) +

1
2

υ2 ∂2

∂c2 f (x, c)

+(απt + πt + 1)συρx
∂2

∂c∂x
f (x, c). (19)

We also provide a definition of the set that includes all admissible policies.

Definition 1. V = {πt, zt} is admissible, if

(i) The process z = {zt, t ≥ 0} is a predictable and satisfy that 0 ≤ zt ≤ M;
(ii) The process π = {πt, t ≥ 0} is a predictable and satisfy that

EQ
∫ T

0
π2

s ds < ∞, 0 < T < ∞, Q ∈ Q;

(iii) The stochastic differential Equation (18) determines a unique strong solution.

Additionally, we state that a pair of policies (π, z) is admissible if (π, z) ∈ V.

It is obvious that zt = 0 for t ≥ τ. So, we rewrite function (17) as

V(x, c) = sup
π,z∈V

inf
Q∈Q

EQ
c,x

[∫ ∞

0
[ξφ(V(x, c))Z(s) + U(zsX(s))ds]

]
, (20)

The Hamilton–Jacobi–Bellman(HJB) (See Fleming and Soner (2006) [27]) equation, which is
satisfied by the value function (20), can be given as follows.

max
π,z

inf
m

{
AV(x, c)− rV(x, c) + U(ztx) +

1
2

ξφ(V(x, c))m2
}

= 0 (21)
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Let Gt := απt + πt + 1, then πt = Gt−1
α+1 . Additionally, as previously noted, we select a

suitable form of φ(·) (the form has been employed in Uppal and Wang (2003) [24] and other
instances),

φ(V(x, c)) = V(x, c).

Hence, the Equation (21) can be simplified as

max
G,z

inf
m

{[
Gtμdt− c(Gt − 1)

α + 1
− zt + Gtσm(t)

√
1− ρ2

]
x

∂

∂x
V(x, c)

+
1
2

G2
t σ2x2 ∂2

∂x2 V(x, c) + h(c)
∂

∂c
V(x, c) +

1
2

υ2 ∂2

∂c2 V(x, c)

+Gtσυρx
∂2

∂c∂x
V(x, c)− rV(x, c) + U(ztx) +

1
2

ξV(x, c)m2
}

= 0 (22)

Since 1
2 ξV(x, c) > 0, the function m∗ minimizes (22) according to the first-order condition,

which takes the following form.

m∗ =
−Gtσ

√
1− ρ2x ∂

∂x V(x, c)
ξV(x, c)

. (23)

Substituting (23) into (22) yields

max
G

{
1
2

G2
t σ2x2 ∂2

∂x2 V(x, c)− G2
t σ2(1− ρ2)x2[ ∂

∂x V(x, c)]2

2ξV(x, c)
+ [Gtμ− cGt

α + 1
]x

∂

∂x
V(x, c)

+Gtσυρx
∂2

∂c∂x
V(x, c)

}
+ max

z

{
− ztx

∂

∂x
V(x, c) + U(ztx)

}
+

1
2

υ2 ∂2

∂c2 V(x, c) + h(c)
∂

∂c
V(x, c)− rV(x, c) +

cx
α + 1

∂

∂x
V(x, c) = 0 (24)

Assume that the utility function has the following form

U(x) =
xγ

γ
, (25)

where 0 < γ < 1. We speculate that the value function has the following form given the
utility function.

V(x, c) = Y(c)
xγ

γ
, (26)

where Y(c) is a function of c. To determine Y(c), we derive the following functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
V(x, c) = Y(c)xγ−1,

∂2

∂x2 V(x, c) = Y(c)(γ− 1)xγ−2,

∂

∂c
V(x, c) = Y′(c) xγ

γ
,

∂2

∂c2 V(x, c) = Y′′(c) xγ

γ
,

∂2

∂x∂c
V(x, c) = Y′(c)xγ−1.

(27)

Substituting (27) into (24) and simplifying it, we can obtain that
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max
G

{
1
2

G2
t [σ

2(γ− 1)Y(c)− γ

ξ
σ2(1− ρ2)Y(c)] + Gt

[
(μ− c

α + 1
)Y(c) + συρY′(c)

]}
+max

z

{
− ztY(c) +

zγ
t

γ

}
+

1
2

υ2Y′′(c) 1
γ
+ h(c)Y′(c) 1

γ
− rY(c)

1
γ
+

c
α + 1

Y(c) = 0. (28)

According to the first-order conditions, we can obtain that⎧⎪⎪⎨⎪⎪⎩
Gt∗ =

(μ− c
α+1 )Y(c) + σνρY′(c)

σ2Y(c)[(1− γ) + (1−ρ2)γ
ξ ]

,

z∗t = Y(c)
1

γ−1 .

(29)

Substituting (29) into (28), we have

1
2
[(μ− c

α+1 )Y(c) + σνρY′(c)]2

σ2Y(c)[(1− γ) + (1−ρ2)γ
ξ ]

+ (
1
γ
− 1)Y(c)

γ
γ−1

+
1
2

υ2Y′′(c) 1
γ
+ h(c)Y′(c) 1

γ
− rY(c)

1
γ
+

c
α + 1

Y(c) = 0. (30)

Multiplying both sides by γ in the above equation and simplifying it, (30) can be represented
as

1
2

ν2Y′′(c) +
[
h(c) +

νργ(μ− c
α+1 )

σ[(1− γ) + γ(1−ρ2)
ξ ]

]
Y′(c) +

[1
2

γ(μ− c
α+1 )

2

σ2[(1− γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1
− r
]
Y(c)

+
1
2

ν2ρ2γ

(1− γ) + (1−ρ2)γ
ξ

Y′(c)2

Y(c)
+ (1− γ)Y(c)

γ
γ−1 = 0. (31)

For the sake of simplicity, denote Λ(c) = ln Y(c). Additionally, let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(c) = h(c) +
νργ(μ− c

α+1 )

σ[(1− γ) + γ(1−ρ2)
ξ ]

,

K(c) =
1
2

γ(μ− c
α+1 )

2

σ2[(1− γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1
,

L =
1
2

ν2ρ2γ

(1− γ) + (1−ρ2)γ
ξ

.

(32)

Then (31) can be represented as

1
2

ν2Λ′′(c) + H(c)Λ′(c) + [L +
ν2

2
]Λ′(c)2 + N(c) = 0, (33)

where N(c) = K(c)− r + (1− γ)e
Λ(c)
γ−1 . Next, we will verify the existence of the classical

solution of Λ(c). Naturally, from Y(c) = eΛ(c), we can also obtain Y(c). In order to obtain
the classical solution of (33), we apply the method that Jin et al. (2015) [1] used named
subsolution and supersolution. The definition of subsolution and supersolution can be
presented in the following.
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Definition 2. A solution Λ1(c) is said to be a subsolution of (33) if ∀c ∈ R, Λ1(c) ∈ C2(R) and
Λ1(c) satisfies

1
2

ν2Λ′′1 (c) + H(c)Λ′1(c) + [L(c) +
ν2

2
]Λ′1(c)

2 + N(c) ≥ 0 (34)

A solution Λ2(c) is said to be a supersolution of (33) if ∀ c ∈ R, Λ2(c) ∈ C2(R) and Λ2(c) satisfies

1
2

ν2Λ′′2 (c) + H(c)Λ′2(c) + [L(c) +
ν2

2
]Λ′2(c)2 + N(c) ≤ 0. (35)

Furthermore, if ∀c ∈ R Λ1(c) ≤ Λ2(c), we say Λ1(c) and Λ2(c) are an ordered pair of subsolution
and supersolution, respectively.

In order to obtain the existence of the classical solution of (33), we give the following
lemmas.

Lemma 1. Suppose that

r > γ[μ−
σ2(1− γ) + (1−ρ2)γ

ξ

2
], (36)

then

Λ = (γ− 1) ln
{

2
γ− 1

[r− γ(μ−
σ2(1− γ) + (1−ρ2)γ

ξ

2
)]

}
(37)

is a subsolution of (33).

Proof. Since

K(c) =
1
2

γ(μ− c
α+1 )

2

σ2[(1− γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1

=
γ
(
μ− c

α+1 − σ2[(1− γ) + (1−ρ2)γ
ξ ]

)2
2σ2[(1− γ) + (1−ρ2)γ

ξ ]
+ γμ−

γσ2[(1− γ) + (1−ρ2)γ
ξ ]

2

≥γμ−
γσ2[(1− γ) + (1−ρ2)γ

ξ ]

2
, (38)

hence

N(c) =K(c)− r + (1− γ)e
Λ(c)
γ−1 ≥ γμ−

γσ2[(1− γ) + (1−ρ2)γ
ξ ]

2
− r + 2[r− γ(μ−

σ2(1− γ) + (1−ρ2)γ
ξ

2
)]

=r− [γμ−
γσ2[(1− γ) + (1−ρ2)γ

ξ ]

2
] > 0. (39)

Combining with 1
2 ν2Λ′′ + H(c)Λ′ + [L + ν2

2 ]Λ
′2 = 0, we complete the proof.

Let

l1 = 2ν2(
γρ2

1− γ + γ(1−ρ2)
ξ

+ 1),

l2 = −2
νργ 1

α+1

σ[(1− γ) + γ(1−ρ2)
ξ ]

+ 2κ,

l3 =
γ

2σ2(1− γ + (1−ρ2)γ
ξ )(α + 1)2

,
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where κ > νργ

σ[(1−γ)+
γ(1−ρ2)

ξ ](α+1)
−

ν

√
γ[γρ2+1−γ+

γ(1−ρ2)
ξ ]

σ[1−γ+
(1−ρ2)γ

ξ ](α+1)
. Then the equation l1k2 + l2k + l3 =

0 has two positive real roots denoted by k1 and k2.
Obviously, l1, l3 > 0, l2 < 0 and l2

2 − 4l1l3 > 0. So the equation has two positive roots.

Lemma 2. Let k0 = k1+k2
2 , then k0 > 0. Additionally, assume that h′(c) < κ and

r > K1(k0), (40)

where K1(k0) will be given later. Then

Λ̃(c) = k0c2 + K0 (41)

is a supersolution of (33), where K0 is a constant which is large enough such that Λ̃(c) > Λ1 and
satisfies that K0 > (γ− 1) ln

( r−K1(k0)
1−γ

)
.

Proof. From (33) and (41), we have

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2

= k0ν2 + 2H(c)k0c + [L +
ν2

2
](2k0c)2

= k0ν2 + [2h(c) + 2
νργ(μ− c

α+1 )

σ[(1− γ) + γ(1−ρ2)
ξ ]

]k0c + [
ν2ρ2γ

(1− γ) + (1−ρ2)γ
ξ

+ ν2]2k2
0c2

= 2k2
0c2ν2[

ρ2γ

(1− γ) + (1−ρ2)γ
ξ

+ 1] + k0ν2 + 2k0c[
νργ(μ− c

α+1 )

σ[(1− γ) + γ(1−ρ2)
ξ ]

] + 2h(c)k0c (42)

We know that ∃ ĉ s.t.
h(c) = h(0) + ch′(ĉ) < h(0) + cκ. (43)

Hence,

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2

< 2k2
0c2ν2[

ρ2γ

(1− γ) + (1−ρ2)γ
ξ

+ 1] + k0ν2 + 2k0c[
νργ(μ− c

α+1 )

σ[(1− γ) + γ(1−ρ2)
ξ ]

] + 2(h(0) + cκ)k0c.

= c2(k2
0l1 + k0l2) + 2k0c[

νργμ

σ[(1− γ) + γ(1−ρ2)
ξ ]

+ h(0)] + k0ν2. (44)

So

176



Mathematics 2024, 12, 40

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2 + N(c)

< c2(k2
0l1 + k0l2) + 2k0c[

νργμ

σ[(1− γ) + γ(1−ρ2)
ξ ]

+ h(0)] + k0ν2

+
1
2

γ(μ− c
α+1 )

2

σ2[(1− γ) + (1−ρ2)γ
ξ ]

+
cγ

α + 1
− r + (1− γ)e

Λ̃(c)
γ−1

= c2(k2
0l1 + k0l2) + 2k0c[

νργμ

σ[(1− γ) + γ(1−ρ2)
ξ ]

+ h(0)] + k0ν2

+
1
2

γ

{
c2

(α+1)2 +
{

μ− σ2[1− γ + (1−ρ2)γ
ξ ]

}2 − 2c
α+1
{

μ− σ2[1− γ + (1−ρ2)γ
ξ ]

}}
σ2[(1− γ) + (1−ρ2)γ

ξ ]

+γ(μ− c
α + 1

)−
γσ2[1− γ + (1−ρ2)γ

ξ ]

2
+

cγ

α + 1
− r + (1− γ)e

Λ̃(c)
γ−1

= c2 ϕ2
1 + cϕ2 + ϕ3 − r + (1− γ)e

Λ̃(c)
γ−1 , (45)

where

ϕ1 = k2
0l1 + k0l2 + l3,

ϕ2 = 2k0[
νργμ

σ[(1− γ) + γ(1−ρ2)
ξ ]

+ h(0)]−
γ[μ− σ2[(1− γ) + (1−ρ2)γ

ξ ]]

σ2[(1− γ) + (1−ρ2)γ
ξ ](α + 1)

,

ϕ3 = k0ν2 +
1
2

γ
{

μ− σ2[1− γ + (1−ρ2)γ
ξ ]

}2

σ2[(1− γ) + (1−ρ2)γ
ξ ]

+ γμ−
γσ2[1− γ + (1−ρ2)γ

ξ ]

2
.

Let K1(k0) = ϕ3 − ϕ2
2

4ϕ1
, we obtain that

1
2

ν2Λ̃′′(c) + H(c)Λ̃′(c) + [L +
ν2

2
]Λ̃′(c)2 + N(c)

< K(k0)− r + (1− γ)e
k0c2+K0

γ−1

< (r− K(k0))[e
k0c2

γ−1 − 1] < 0 (46)

By Lemmas 1 and 2 , we have Theorem 1.

Theorem 1. There exists a classical solution of (33) denoted by Λ̂(c) such that

Λ ≤ Λ̂(c) ≤ Λ̃(c). (47)

Proof. An ordered pair of subsolution and supersolution of (42) are obtained by
Lemmas 1 and 2. Then the existence of a classical solution can be proved by Theorem 3.4
in Jin et al. (2015) [1].

Then, the value function, optimal debt ratio strategy and optimal dividend strategy
are given as follows.
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Theorem 2. Suppose that a function Λ̂(c) solves (33), then there exists Ŷ(c) that solves (31).
Additionally, assume that (36) and (40) hold. Then,

(i)

V̂(x, c) = Ŷ(c)
xγ

γ
, (48)

is the value function of (20);

(ii) The optimal debt ratio and optimal dividend policies are given by⎧⎪⎨⎪⎩
π∗t =

G∗t − 1
α + 1

,

z∗t = Ŷ(c)
1

γ−1 ,
(49)

where G∗t =
(μ− c

α+1 )Ŷ(c)+σνρŶ′(c)

σ2Ŷ(c)[(1−γ)+
(1−ρ2)γ

ξ ]
.

Remark 1. We can see that in Theorem 2, the optimal policies and the value function can be affected
by the ambiguity parameter ξ, which means that the existence of the ambiguity can affect the optimal
debt ratio and dividend policies and that insurers cannot ignore the existence of ambiguity when
making their decisions.

4. Conclusions

In the modern field of actuarial science, optimal debt ratio decisions and dividend
problems are extremely important. Most of the existing works only deal with this interesting
topic under the assumption of an accurate model. We investigate the optimal debt ratio
and dividend payment policies for an insurer concerned about model misspecification
and prove that there exists classical solutions of the optimal debt ratio, dividend payment
policies, and value functions.
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Abstract: This paper describes the results from a study designed to illustrate the use of machine
learning analytical techniques from a household consumer perspective. The outcome of interest
in this study is a household’s degree of financial preparedness as indicated by the presence of an
emergency fund. In this study, six machine learning algorithms were evaluated and then compared
to predictions made using a conventional regression technique. The selected ML algorithms showed
better prediction performance. Among the six ML algorithms, Gradient Boosting, kNN, and SVM
were found to provide the most robust degree of prediction and classification. This paper contributes
to the methodological literature in consumer studies as it relates to household financial behavior by
showing that when prediction is the main purpose of a study, machine learning techniques provide
detailed yet nuanced insights into behavior beyond traditional analytic methods.

Keywords: financial preparedness; emergency fund; machine learning; consumer studies
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1. Introduction

As is the case with nearly all fields of study that fall under the area of the social
sciences, much of the body of knowledge in the field of consumer studies is based on
statistical results from conventional data methodological approaches, with regression
procedures dominating the way researchers attempt to describe variable relationships and
explain phenomena. Traditional regression techniques are designed to identify the marginal
effects of specified and pre-selected factors based on theory and the existing literature.
Conventional analytical techniques have been refined over the past half-century to increase
explanatory power; however, even with advancements, conventional approaches remain
limited in their explanatory power. Factors that might be possibly related to an outcome
of interest, but have not been reported in the literature or thought to be theoretically
relevant, are generally excluded from subsequent analyses. This means that the amount
of explained variance across a wide number and variety of consumer studies outcomes
is inevitably limited.

Big data analytical techniques, which tend to be atheoretical, have increasingly gained
traction across the social sciences to acquire a deeper understanding of human attitudes
and behaviors. Machine learning (ML)—a type of artificial intelligence application—is both
a field of study and an umbrella term that describes algorithms that are built in such a
way that hidden layers of information can be identified through a learning process based
on training data and computational proofs. ML approaches are intended to supplement
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the role of researchers by showing that variables that might have once been discarded
in previous studies or not included at all in an empirical analysis can add insight into
describing and explaining outcomes.

The purpose of this study is to illustrate the use of ML from a consumer studies
perspective to improve data descriptions when compared to a conventional regression
approach. The outcome of interest in this study is a household’s degree of financial pre-
paredness as indicated by the presence of an emergency fund (i.e., a measure based on
household liquidity). As will be discussed later in this paper, numerous researchers have
examined factors associated with holding an emergency fund, explaining the components
of emergency savings, and predicting which households are most likely to meet liquidity
ratio guidelines. A unique feature of much of the existing literature is that regardless of the
research purpose, analysts tend to use similar variables when describing and predicting
household emergency funds. These variables have come to represent the basis of many
consumer-focused financial recommendations. A cursory review of this literature sug-
gests, however, that other variables or relationships among variables is needed to gain
a more comprehensive understanding of consumer financial preparedness to improve
prediction rates.

When asked, financial service professionals, financial counselors, and financial ed-
ucators tend to agree that managing household emergency funds involves the ongoing
management of interacting variables. This is one reason why ecological systemic theory is
prominently mentioned as a key explanatory model when emergency fund analyses are
conducted at the household level [1,2]. As previously mentioned, much of the existing
research has primarily sought to understand emergency funds within the confines of eco-
nomic or financial theories using a delimited number of factors such as financial status or
sociodemographic variables (e.g., [3,4]). While such studies have contributed positively to
the literature by reinforcing existing theories and research findings, they may overlook the
potential relevance of variables highly pertinent to how households manage emergency
funds in practice. Methodologically, this signifies the need for an approach centered on
pattern recognition and classification, as opposed to the identification of linear relationships
upon which conventional studies have been based (e.g., [3–5]). Consequently, the combi-
nation of ecological systemic theory, pattern recognition, and classification underscores
the necessity to consider complex system science models [6,7]. Furthermore, in the context
of the social sciences and economics, where complex system science models are gaining
acceptance, there is a need for research in personal finance utilizing ML techniques [6,8].

This study adds to the existing literature in several important ways. First, it employs
ML in the context of a consumer studies topic. While some prior attempts within the field
have been made (e.g., [9–15]), these efforts have been limited in their ability to compare
various ML methods comprehensively. Another limitation is that some prior studies have
relied on macro, rather than micro or household, data, which produce outcomes that are
disconnected from a household’s actual financial management activities. Consequently,
this study is one of the few initial attempts to explain emergency fund management by
integrating various ML techniques at the household level.

Second, previous studies have been limited to the assessment of a few central variables,
including financial factors and sociodemographic factors, when studying emergency funds
(e.g., [3,4]); this study is more expansive. Specifically, the analyses conducted in this study
relied on a diverse set of variables that align with the research objectives. For instance, in
addition to financial and sociodemographic factors, this study introduces a broad array of
variables, including financial education, psychological factors, COVID-19-related factors,
distance to financial service providers, and types of loans. This approach aligns well with
the strengths of ML, which are designed to enhance predictive capabilities by combining
numerous variables when classifying and describing relationships [16]. This study carries
the potential to discover meaningful variables that have been previously unnoticed in
existing research by supplementing ML predictions with additional variables potentially
related to the management of emergency funds at the household level.
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Third, as mentioned earlier, previous studies have typically assumed that variable
relationships are linear, even when this assumption may not be practically relevant. Rather
than rely on a linear assumption, this study is premised on pattern recognition and classifi-
cation, distinct from models based on linear assumptions. Specifically, this study utilizes six
ML algorithms as complex systems science models. While the six ML methods in this study
have been widely used in empirical studies, their application in comparison to traditional
linear assumption-based analytical methods is limited, particularly in relation to personal
finance and consumer studies topics.

In summary, this paper contributes to the methodological literature in consumer
studies by showing that when prediction is the main purpose of analysis (i.e., for use
when making policy, creating education interventions, and advice giving), conventional
analytical techniques may not always be the best solution. ML incorporating a larger set
of variables that accounts for interactions between and among factors can offer a more
robust and powerful way to increase predictive validity. In this regard, the research
questions associated with this study are (a) What is the optimal ML algorithm to predict
the presence of an emergency fund? (b) How do ML predictions perform when compared
to a conventional logistic regression analysis? and (c) What are the most important factors
associated with holding an emergency fund when viewed with an ML algorithm lens?

This study consists of sub-sections to arrive at the answer to these questions and
deliver contributory points. Section 2 includes a background discussion about emergency
funds and the methodological background of ML. Section 3 introduces the empirical model
based on the background and methodological review. Section 4 describes the data and
measurements utilized in the ML and logistic models. Section 5 illustrates the findings
from each ML and the logistic model. Section 6 discusses the results. This paper concludes
by describing this study’s implications in Section 7.

2. Background

2.1. Household Emergency Funds

The ability of households to pay for unexpected emergencies and situations associated
with unanticipated unemployment is a topic of interest to those who study and research
consumer issues [17]. Household financial ratio analysis originates in consumer studies
research that began in earnest in the last two decades of the 20th century. Johnson and
Widdows [18] are generally given credit for being the first to adapt traditional business val-
uation ratios for use with households [19]. The liquidity ratio, also known as the emergency
fund ratio, appears prominently in the early literature as a marker of household financial
preparedness. Prather and Hanna [20] were among the first to publish standards and norms
associated with the liquidity ratio, which is defined as the number of months a household
can viably meet expenses in an emergency. The most commonly applied liquidity ratio
formula is: Liquid Assets/(Minimum Monthly Fixed + Monthly Variable Expenses). The
ratio indicates the number of months a household can weather an emergency. According
to Lytton et al. [19], a household’s goal should be to maintain an emergency fund equal
to three months of living expenses (see also [21]). Based on this guideline, it has been
estimated that less than one-third of U.S. households can adequately meet a financial
emergency [22].

Gaining a unified understanding of the factors associated with holding an emergency
fund that meets the liquidity ratio guideline can be complicated. Hanna et al. [23] noted that
savings can be influenced directly by a household’s stage in the lifecycle, which implies that
the role of certain variables in describing savings patterns may differ across the lifecycle.
Lifecycle theory suggests that households that expect higher income uncertainty should al-
locate more assets to precautionary saving [24]. Beyond anticipatory behavior, the literature
also indicates that a number of personal and household characteristics are associated with
an adequately funded emergency account. Bi and Montalto [22] reviewed the literature
and they found age, education, income, race/ethnicity, spending behavior, risk tolerance, a
willingness to borrow, holding negative economic expectations, motivation, diversification
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of household income, the presence of other savings (e.g., retirement accounts), home equity,
and available lines of credit provide needed information when attempting to describe who
does or does not hold an emergency fund. In their study, Bi and Montalto concluded that
the ability to save was more important than documenting a need to save when explaining
emergency fund holdings. Others have identified factors such as financial confidence and
financial knowledge as important when explaining emergency fund saving behavior.

2.2. An Introduction to Machine Learning

As the previous discussion highlights, the literature describing the characteristics
associated with household emergency fund holdings has a long and robust history. Almost
all previous studies that have been undertaken to describe the characteristics associated
with holding emergency funds have been conducted using conventional linear-based
modeling techniques. What has emerged from this literature is a common set of factors that
are thought to be associated with the decision to build and maintain emergency fund assets
(see [22]). An important caveat when evaluating the existing literature is the general lack of
a description of the effect sizes of significant variable associations and very little discussion
regarding the degree of model-explained variance. A careful examination of existing studies
shows that while all the models described in the literature are statistically significant, the
amount of explained variance rarely exceeds 40%. This means that other variables (or
variable relationships) that have yet to be identified or used in models contribute significant
explanatory power. What these variables are or how these variables interact is yet unknown.

Researchers are increasingly using ML techniques because it is now known that artifi-
cial intelligence algorithms can provide a deeper insight into the mechanisms underlying
human attitudes and behaviors. ML algorithms can be used to identify what are sometimes
referred to as hidden layers within data. Within these hidden layers are functions that
may not be linearly related to the outcome of interest but are, nonetheless, important
when viewed holistically in combination with other variables in a network [6]. A now
ubiquitous example illustrates how hidden layers and networks perform in practice. In
this example, assume a researcher wants to understand how people identify faces when
viewed as an image. When the researcher shows study participants extracts of a subject’s
face (e.g., one eye, a tooth, nose), the researcher finds that these independent factors fail to
reach statistical significance and thus do not provide enough information to describe a face
accurately. In this example, the researcher wrongly concludes that people fail to use some
visual cues when creating descriptions. What a person actually does is compile, through
hidden layers of analyses, all relevant snippets of information to derive an identification.
A single viewpoint cannot provide enough information to build a valid description, nor
can eliminating some pieces of information improve validity. Similarly, researchers relying
solely on conventional linear statistical techniques may inadvertently dismiss variables as
irrelevant or unimportant when describing or predicting a social science outcome. Some
researchers may dismiss potential explanatory variables altogether. Like limited pictorial
extracts used when describing a face, traditional analytical techniques rarely provide more
than a rough outline of an outcome or phenomenon.

This is where ML adds explanatory power beyond what can be obtained from most
conventional data analysis methodologies. Kudyba and Kwaitinetz [25] and Thompson [26]
described ML as improving classification by identifying patterns within large datasets.
ML is generally used when a project aims to improve predictions. As with any statistical
approach, the reliability of ML protocols depends on the data source and how variables
are coded [27]. Numerous ML algorithms and models have been proposed and tested
over the past two decades. Examples of early ML approaches include Naïve Bayes, Linear
Discriminant Analysis, logistic regression, k-Nearest Neighbors, decision trees, Supportive
Vector Machine, adaptive boosting, and Gradient Boosting methodologies. It is important
to note that ML approaches do not always outperform conventional approaches. When
an outcome is measured continuously, linear, polynomial, lasso, and ridge regressions
sometimes provide a more robust level of prediction compared to more complex ML
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techniques. According to Abiodun et al. [28], however, the sophistication of ML approaches
has increased exponentially over the past decade, resulting in increasingly higher levels of
reliability and robust prediction levels.

In this study, six ML algorithms are introduced and tested using the Orange package
with Python [29] and then compared to predictions made using a conventional regression
technique. The algorithms evaluated in this study included (a) k-Nearest Neighbor (kNN),
(b) Gradient Boosting, (c) Naïve Bayes, (d) Support Vector Machine (SVM), (e) Stochastic
Gradient Descent (SGD), and (f) Neural Networks (NN) (for more information about these
techniques, see [28,30–32]). By comparing these six ML techniques, this study adds to the
consumer studies methodology literature by illustrating how hidden connections can bring
new and interesting variable associations that describe and predict consumer attitudes and
behaviors to light.

2.3. Methodological Background: Machine Learning (ML) Algorithms and Their Applications in
Financial and Consumer Research

As noted above, six ML algorithms were tested in this study. More than one algorithm
was chosen because the literature shows that each offers unique advantages and disad-
vantages. A particular ML algorithm may perform well when the outcome is financial
distress or bankruptcy but perform less well when applied to a credit scoring situation. The
following discussion reviews the six ML algorithms tested in this study.

2.3.1. k-Nearest Neighbor (kNN)

As the name implies, kNN utilizes instance-based learning as a classification tool [33,34].
Instance-based learning means that the algorithm utilizes the vector space (i.e., space between
objects) model, which makes kNN different from other classification algorithms. Because it
relies on the vector space model, kNN can be utilized with cross-sectional data [35]. Various
approaches can be used when assessing vector space [36]. When the outcome variable is
categorical, Hamming distance can be utilized as shown in Equation (1):

Hamming distance = ∑I
i=1 Int(xi �= yi) (1)

where i indicates each observation; I is a set of observations i; xi and yi are the predictor
and the outcome value with ith observation. When the outcome variable is a continuous
variable, Euclidean distance, using the root of squared differences among observed samples,
can be applied [37], or the Manhattan distance, using the absolute value of differences, can
also be utilized as shown in Equations (2) and (3).

Euclidean distance =

√√√√ I

∑
i=1

(xi − yi)
2 (2)

Manhattan distance =
I

∑
i=1
|xi − yi| (3)

The combination of predictors and the outcome can be shown as (xi,yi) where i means
the ith observation from the data (i = 1, 2, 3, . . . I). By using ascending order of distance,
the observations can be allocated on a matrix as d(x1, y1) ≤ · · · ≤ d(xi, yi), where d is
the distance from Equations (1), (2), or (3). When the outcome variable is categorical, the
most frequent occurrence indicates the highest probability of belonging to the category
shown in Equation (4). By using the probability, the expected category of the outcome is
the maximum value from Function (4), as indicated in Equation (5):

p̂k =
∑I

i=1(yi=k)
∼
i

(4)
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ŷ = argmaxp̂k (5)

where a predictor is a categorical variable from 1 to K, k means the kth category; p̂k is the
probability to be founded; and i is observed as the optimal observation (ith). In the case
that the outcome variable is a continuous variable, a certain number of observations are
selected (n = i) from d(x1, y1) ≤ · · · ≤ d(xI , yI). The selected observations are utilized to
calculate the inverse distance weighted average, which produces the predicted value of an
outcome from Equation (6):

ŷ =
∑I

i=1
1

d(xi ,x)
yi

i
(6)

As a classification algorithm, kNN is widely used for forecasting underweighted regres-
sion conditions. When kNN is combined with fuzzy vectoring, Östermark [38] suggested
that kNN can be a useful tool for detecting data outliers, specifically when forecasting using
finance and economic datasets. Because of the usability of kNN when making forecasts,
this classification method has been adopted in various financial studies [39]. For instance,
Meng et al. [33] adopted kNN to predict internet financial risk. They found an optimal
number of categories for internet financial institutions. Phongmekin and Jarumaneeroj [40]
utilized various algorithms (i.e., logistic regression, decision trees, Linear Discriminant
Analysis, and kNN) to forecast stock exchange returns in Thailand. They found that kNN
offers the best performance when predicting stock returns.

2.3.2. Gradient Boosting

Gradient Boosting was introduced by Breiman [41], which was then merged with
a regression algorithm developed by Friedman [42]. Gradient boosting is an ensemble
modeling technique that combines classification and regression methods [42,43]. As the
term ‘boosting’ implies, weak patterns from a dataset can be strengthened through a
learning process when the goal is to find the highest probability of prediction [38]. ‘Gradient’
means an error from each strengthened stage gradually decreases until the lowest error level
is reached [44]. The basic learning process begins by measuring the error (i.e., residuals)
between a predicted value and an observed value [45], as shown in Equation (7), which is
called a loss function:

l(yi, f (xi)) =
1
2
(yi − f (xi))

2 (7)

where i is the ith observation. The negative gradient format of Equation (7) produces
residuals like those in Equation (8), which is a derivative of l(yi, f (xi)):

− δ(yi, f (xi))

δ f (xi)
= yi − f (xi) (8)

As shown in Equation (8), the negative gradient produces a function similar to that
of a regression residual (i.e., the difference between the predicted outcome and the actual
outcome), which is how the name Gradient Boosting originated. Until the residuals are
minimized, Gradient Boosting is iterated to make weak learners be combined, as shown in
Equation (9):

ŷ = f (x) = ∑K
k=1 Lk + e (9)

where k indicates each predictor; K is the optimal number to minimize the residual; and
Lk is each different weak learner. Usually, the weak learner is a tree model developed
using a predictor.

In practice, there are multiple types of Gradient Boosting, including categorical Gra-
dient Boosting, scikit-learn Gradient Boosting, Extreme Gradient Boosting, and Extreme
Gradient Boosting with random forest. Categorical Gradient Boosting utilizes features as
categories [46]. Scikit-learn gradient boosting is a type of Gradient Boosting algorithm
offered in Python (https://scikit-learn.org/stable/ accessed on 1 November 2023), whereas
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Extreme Gradient Boosting is the most recent version of Gradient Boosting [9,47]. Each
method was evaluated in this study.

The use of Gradient Boosting fits well with the research of interest in this study. Gradi-
ent Boosting is an ensemble model, which makes it particularly useful when conducting
finance and business analyses [10,15]. Consider the work of Zhang and Haghni [15]. They
utilized Gradient Boosting to improve travel time prediction in the transportation business.
Specifically, they compared autoregressive integrated moving averages, random forest,
and Gradient Boosting and concluded that Gradient Boosting showed better performance
prediction. Guelman [10] investigated loss costs from Canadian insurers by comparing
Gradient Boosting and a generalized linear model. Gradient Boosting was found to offer
better performance in terms of prediction. Gradient Boosting has also been utilized in
credit analyses. For instance, Chang et al. [44] compared various ML algorithms (i.e., group
method of data handling, logistic, SVM, and Extreme Gradient Boosting). They observed
Extreme Gradient Boosting to have outstanding performance when predicting credit risk.
The approach has also been used to predict financial distress. Liu et al. [45] compared
logistic, random forest, NN, SVM, and Gradient Boosting and noted that Gradient Boosting
outperformed financial distress predictions. Carmona et al. [9] found the most impactful
factors associated with bank failures using Gradient Boosting. Specifically, they compared
bank failure prediction performance across logistic, random forest, and Extreme Gradient
Boosting. They noted that Gradient Boosting provided the most meaningful insight when
understanding bank failures.

2.3.3. Naïve Bayes

As the name implies, Naïve Bayes relies on Bayes’ theorem; sometimes researchers
refer to the approach as Bayes or independent Bayes [48]. In practical applications, Naïve
Bayes is useful for clustering and classification purposes [49]. All variables or features in
a prediction model are assumed to be independent [50]. Naïve Bayes utilizes conditional
probability modeling by combining various predictors ( Xk & x1, x2, . . . , xk) with a set of
probabilities (p(Cm|Xk)), where k is the number of predictors and m means the number
of probabilities found. Because Naïve Bayes assumes the independence of all predictors,
the maximized probability of having a certain value (or category) can be found using
Equations (10) and (11):

p(Cm|Xi) =
1
Z

p(Cm)∏K
k=1 p(xk|Cm) (10)

ŷ = argmaxm∈{1,...,M}p(Cm)∏K
k=1 p(xk|Cm) (11)

Some researchers have criticized the approach because the independent assumption
is unnatural and unrealistic [51]. This is the reason that the approach is termed naïve.
However, because of the assumption of independence, Naïve Bayes offers a mathematical
transformation advantage, making the dataset analysis more predictable [51].

Naïve Bayes has been utilized in various financial studies as a classification algorithm.
Jadhav et al. [12] compared the efficacy of SVM, kNN, and Naïve Bayes as algorithms
to predict credit ratings. After comparing the algorithms, they concluded that Naïve
Bayes performed best. Deng [52] utilized Naïve Bayes to detect fraudulent financial state-
ments in auditing. Deng noted that Naïve Bayes can provide unique insights. Similarly,
Viaene et al. [14] utilized Naïve Bayes to detect financial fraud (i.e., consumers’ faulty
insurance claims). They concluded that the approach can improve prediction rates. Naïve
Bayes has also been utilized in text classifications, such as when conducting a finan-
cial news analysis. Shihavuddin et al. [53] collected news articles about the Financial
Times Stock Exchange 100 (FTSE100). Using Naïve Bayes, they concluded that not only
does Naïve Bayes improve classification, but the approach can also be used to predict
stock prices.
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2.3.4. Support Vector Machine (SVM)

SVM classification is based on the concept of a hyperplane, which combines two sepa-
rate classes [30]. The easiest way to understand classification by SVM is that a hyperplane
is drawn among total samples. By drawing the hyperplane, two separate groups can be
identified (e.g., upper and lower hyperplanes) as shown in Equations (12) and (13):

y = 1, when [B∑ xk + a] > 0 (12)

y = −1, when [B∑ xk + a] < 0 (13)

where k means each predictor and a is the constant in each hyperplane. Because of the
complexities built into most datasets, the hyperplane is generally not well specified. There-
fore, SVM sets the hyperplane by considering the maximum margin, the nearest vector
from the potential hyperplane [54]. To draw a hyperplane when the maximum margin is
found (Max M), SVM secures the optimal prediction performance. The function is shown
in Equation (14), where B and a are assumed to be 1.00:

Max M, where yk
(

B∑ xk + a
) ≥ M (14)

In addition to a hyperplane and maximum margin in SVM, kernel functioning is often
used to help classify samples when the dataset and vectors are highly dimensional [54].
Because one straight hyperplane cannot easily be optimally identified when the dataset is
highly dimensional, different types of hyperplanes can be utilized, including linear (i.e.,
straight), polynomial, radial basis function (RBF), and sigmoid. These types function in the
hyperplane, called a kernel [30]. In the current study, four types of kernels were utilized.

SVM has been utilized widely in credit risk studies [55]. For example, the approach
has been employed to predict credit scores [56,57]. Baesens et al. [58] compared various
algorithms (i.e., SVM, logistic, discriminant analysis, kNN, Neural Networks (NN), and
decision trees) to predict credit scores. They found that SVM and NN showed the best
prediction performance compared to the other algorithms. Yang [59] introduced an adaptive
credit-scoring system using a kernel-based SVM. Yang noted that the non-linear feature
of datasets can be managed through kernel transformation. Kim and Ahn [60] utilized
various ML algorithms (i.e., multiple discriminant analysis, multinomial logistic analysis,
case-based reasoning, and an artificial neural network) to examine corporate credit rates.
They found that SVM outperformed in detecting multiclass classification of corporate
credit ratings. Similar findings have been reported by Chaudhuri and De [61], Chen and
Hsiao [62], and Hsieh et al. [63] when making bankruptcy and financial distress predictions.

2.3.5. Stochastic Gradient Descent (SGD)

SGD emerged as an extension of previous theories, including the theory of adaptive
pattern classifiers [64,65]. SGD is primarily used to help with data classifications. SGD
begins by minimizing the errors (i.e., residuals) between predicted and observed values [66].
Specifically, SGD employs multiple iterations to minimize the errors in each gradient
step [67] using Equation (15):

= 8− η∇ J( ) (15)

where is the parameters of all networks from predictors; J( ) is the loss function by
using ; and η is the size of the learning rate. By repeating Equation (15), the parameters
to minimize the value of the loss function can be estimated. SGD is popular because
it is mathematically tractable and scalable [67]. Researchers like SGD because it helps
solve optimization issues through stochastic approximation [68]. Because SGD relies on
minimizing errors, regularization needs to be considered. Ridge and lasso are popular
regularizations [69]. Elastic regularization can also be utilized [70]. The SGD approach can
be employed when pre-selection or the transformation of explanatory variables is required
and in situations where predictive machine learning scenarios are needed. The technique
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showcases robustness against outliers, as the steepest gradient algorithm emphasizes
the correct classification of data points closely aligned with their true labels. As such,
SGD extends beyond a mere method for optimizing objective functions with appropriate
smoothness properties. SGD applies to a diverse set of machine learning prediction methods
(e.g., [71,72]).

Similar to the other ML algorithms, SGD has been used in various consumer and
finance studies. Deepa et al. [69] utilized SGD to predict the early onset of diabetes.
Compared to logistic models, SGD showed a better prediction outcome. Using SGD
algorithms, they noted that SGD can be used to enhance prediction rates.

2.3.6. Neural Networks (NN)

NN is unquestionably the most mature of all algorithms within the ML area. NN
offers flexibility when attempting to make classifications and when the goal of a project is to
engage in future pattern recognition [25,26]. The uniqueness of NN is the approach’s use of
neurons as hidden layers. Neurons resemble the human brain architecture [73]. Because of
the unique architecture, all inputs (i.e., features or variables) are assumed to be connected
to all neurons. All neurons are also assumed to be connected to all expected outcomes [6].
The basic function of NN is shown in Equation (16):

y = a(∑K
k=1 wkxk + e) (16)

where k denotes the predictors; wk is each predictor’s weight; and a is e bias like the
error terms. Because of the complex connectivity through neurons between inputs and
outcomes, NN can be expected to improve the prediction rate of outcomes. For instance, if
five variables are used as inputs to predict two outcomes, employing four neurons, then
there are 20 connections between the five variables and four neurons and an additional
eight connections between the four neurons and two outcomes. This interconnectedness
means 160 possible pathways from the five variables to the two outcomes through the
four neurons. As this example illustrates, neurons make all connectivity from inputs to
outcomes so that the prediction of outcomes can be improved.

The first step when conducting an NN analysis is to define the optimal number of
neurons. Because NN can employ any possible number of neurons, the number of neurons
should be tested first to find the best performing model [74]. In this study, the number of
neurons was first tested, and then the optimal number of neurons was employed in the
final model.

As noted above, NN is a very popular ML technique. NN has been utilized to
predict credit scores and other consumer behaviors. Baesens et al. [58] compared various
algorithms, including SVM, logistic, discriminant analysis, kNN, NN, and decision trees,
to conclude that SVM and NN show the best prediction performance compared to the
other algorithms. Some researchers have utilized NN to detect financial fraud (e.g., fraud
reporting, fraudulent use of credit cards, fraudulent financial statements, fraud claims)
(e.g., [74–76]), whereas others have utilized NN for the prediction of bankruptcy and
financial distress [57,77,78]. Heo et al. [11] applied NN to predict the savings-to-income
and debt-to-asset ratios among U.S. households. They compared the prediction accuracy
between NN and conventional regression models and found that NN provides a deeper
and more meaningful insight into the savings-to-income ratio and the debt-to-asset ratio.

2.3.7. Comparison Analysis

As alluded to in the preceding discussion, it is common for researchers to check
whether ML algorithms enhance predictions by comparing outcomes to the results gen-
erated from a conventional analytic tool. When the outcome variable is binary, a logistic
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regression model [79] is most often the comparison. A logistic regression model can be
estimated from Equation (17):

ln
(

p(x)
1− p(x)

)
= a + ∑K

k=1 xk (17)

where k denotes the predictors. This approach was taken in this study. Specifically, the
ML algorithms’ predictions were compared to those predictions made using a maximum
likelihood logistic regression.

3. Empirical Model Flow

3.1. Research Purpose and Analysis Structure

The overarching purpose of this study was to determine which modeling technique
offers the best prediction rate when describing the presence of an emergency fund. As
noted above, this study employed and compared various ML algorithms. A four-step
analytical process was used, and the steps are described below.

Step 1: Find the best parameters across the various ML algorithms

Multiple sub-algorithms exist within nearly all ML algorithms (Naïve Baynes is an
exception). For instance, in terms of kNN, the Euclidean method and the Manhattan method
can be used to measure distance. For Gradient Boosting, four sub-algorithms are widely
used: categorical, Extreme, Extreme with random forest, and scikit-learn. In the case of
SVM, the kernel can be assumed to be linear, polynomial, RBF, or sigmoid. Three sub-
algorithms exist for SGD (i.e., elastic, lasso, and ridge). At this step of the analytical process,
each sub-algorithm was tested. For the conventional analysis (i.e., logistic regression), three
types of feature selection were utilized (i.e., all variables, forward stepwise selection, and
backward stepwise selection).

In addition to sub-algorithms, each ML algorithm can be affected by internal settings
(i.e., parameter settings). Based on the parameter setting, the same algorithm may exhibit
different degrees of performance robustness [80]. To account for this possibility, this study
tested different parameters for each algorithm. For kNN, normally, the number of neighbors
can affect classification performance. Therefore, different numbers of neighbors (i.e., from
1 to 100) were employed and compared to find the best tuning for the kNN algorithm.
Regarding Gradient Boosting, the learning rate may affect the algorithm’s performance.
As such, various learning rate settings (i.e., 0.10, 0.15, 0.20, 0.25, and 0.30) were employed
and compared to find the best application. For SVM, cost values are known to affect
classification performance. To account for this, different cost values (i.e., 0.10, 1.00, 5.00,
10.00, 50.00, and 100.00) were employed and compared. It is also known that in terms of
SGD, the learning rate may affect the algorithm’s performance. To deal with this possibility,
various learning rate settings (i.e., 0.001, 0.005, 0.010, 0.050, and 1.000) were employed
and compared. For NN, the number of neurons can change the algorithm’s performance.
Therefore, different settings of neurons (i.e., 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,
75, 80, 85, 90, 95, and 100) were utilized and compared to find the best performance outcome.
As shown in Figure 1 (Part A and Part B and Line a), the first step in the analysis involved
selecting the best performing sub-algorithms and the best tuning for each algorithm.

Step 2: Find the best ML prediction algorithm among the various ML algorithms

It is important to note that assuming that one specific ML algorithm will ever show
a dominant performance across predictions and classifications is unrealistic. Rather, by
the topical issue type and the predictive dataset’s nature, diverse ML algorithms can be
expected to show better/worse prediction and classification performance [27]. Given the
binary feature of the dependent variable in this study, various classification algorithms
were selected, as explained above. As shown in part A with line b in Figure 1, the second
step in the analytical process involved finding the optimal ML algorithm from the selected
six ML algorithms. The best prediction performance was selected as the most appropriate
for use within the dataset.
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Step 3: Check whether ML accuracies are higher than those offered by a conven-

tional analysis

Even if a selected ML algorithm shows excellent performance across tested ML al-
gorithms, the prediction function may actually offer a lower level of prediction when
compared to a conventional analytical technique like logistic regression. Therefore, the
third step involves comparing the prediction performance of the selected ML algorithm
and the conventional analysis (see parts A and B with line b, Figure 1).

Step 4: Determine which factors are associated with holding an emergency fund

Assuming the selected ML algorithm performs better than the conventional analysis,
the influencing rank of input factors can be found by evaluating algorithm outcomes. The
influencing rank can be viewed similarly to the significant variable list from a regression
model, or the rank can differ. By checking the similarity or differences between the rank
of influencing factors (ML algorithm) and the significant factors (logistic regression), it is
possible to establish variable importance and possible linkages across variables that can
then be examined at a later date. This step in the analytical process is crucial because some
variables that emerge from an ML algorithm may not be significant in a traditional sense.
Therefore, as shown in Figure 1 (line c for both parts A and B), the final step involves
checking the variable list generated from the ML algorithms and the logistic analysis.

Figure 1. Analytic Structure for the Research (Abbreviations: kNN, k-Nearest Neighbor; NN, Neural
Networks; SGD, Stochastic Gradient Descent; SVM, Support Vector Machine).

3.2. Analytic ML and the Conventional Analysis Process

Each ML algorithm test was conducted by dividing the sample into a training dataset
and a test dataset. As shown in Figure 2, using the training dataset, each ML algorithm
was used to identify the best prediction model. Data were split into training and testing
datasets using a 50:50 random split ratio. As noted by Joseph [81], the split ratio varies
by study and typically ranges from 80:20 division, 70:30, 60:40, and 50:50. The literature
shows a conspicuous absence of definitive guidelines delineating the optimal or preferred
data split ratio for a given dataset. As such, based on the comparatively small size of the
dataset used in this study, the research team concluded that a 50:50 ratio was appropriate
(see also [82,83]). Moreover, this ratio split allowed for robust validation of the data (i.e.,
k-fold validation). After a model was identified, the test dataset was utilized to validate the
results from the test. If the model still showed a robust prediction outcome, the model was
defined as optimal. The Python with Orange 3 visualization tool was used for all the tests.
The conventional analysis utilized a similar procedure. A logistic regression model was
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estimated utilizing the training dataset. Results were validated using the test dataset. Stata
17.0 was used to estimate the models.

Figure 2. Analytic Process with ML Algorithms and Logistic Regression.

3.3. The Accuracy Estimation Method

To measure prediction accuracy, a receiver operator characteristics curve (ROC curve)
and the area under the ROC curve (AUC) methodological approaches were utilized. An
ROC curve is produced using two inputs: a true positive (TP) rate and a false positive (FP)
rate [84]. The TP rate is calculated as the ratio between positive (i.e., correct) classifications
and total positives. The FP rate is calculated using the ratio between negative (i.e., incorrect)
classifications and total negatives. This indicates a more precise estimate when the TP rate
is close to 1.00. The approach is also more precise when the FP rate is close to zero. An ROC
curve shows the TP rate on the vertical axis and the FP rate on the horizontal axis. When
an ROC curve shows a convex shape upward to the left, the accuracy is considered to be
more precise. Additionally, the area under the curve is called the AUC, which indicates the
power of the ROC (i.e., measured as 0.00 to 1.00) [44]. If the ROC curve has a vertical axis
with a TP rate (i.e., zero to 1.00) and a horizontal axis with a FP rate (i.e., zero to 1.00), the
area can be calculated from zero (zero times zero) to 1.00 (one times one).

3.4. The Factor Ranking Method

In Step 4, the rank of variables, in terms of prediction, is represented numerically
(i.e., RReliefF). Whereas predictors in a logistic analysis can be evaluated using signifi-
cance/insignificance estimates and marginal effects (i.e., coefficients), identifying high-
ranking predictors using ML algorithms is more complex. For example, in the case of NN,
all input variables connect to the outcome variable through neurons. Multiple weights are
connected between a particular input variable and the outcome variable. There is not a
specific number. As such, the evaluation of ML algorithms tends to focus on the complex
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combinations of input factors and the effects of variables on an outcome variable instead of
the unique association between an input variable and the outcome variable.

For this study, variable ranks were identified using RReliefF. RReliefF is an advanced
version of Relief [85] and ReliefF [86], which are generally accepted attribute estimators.
Relief is the baseline of RReliefF. Robnik-Šikonja and Kononenko [87] introduced RReliefF,
which was developed from Relief. The diff function, as shown below, can be used to better
understand the baseline of RReliefF. The diff function is used to measure the distance
among instances, which can be used to identify the nearest neighbors [87]. Equation (18) is
used for categorical attributes, and Equation (19) is for continuous attributes:

di f f (A, I1, I2) =

{
0; value (A, I1) = value (A, I2)

1; otherwise
(18)

di f f (A, I1, I2) =
|value (A, I1)− value (A, I2)|

max(A)−min(A)
(19)

These equations are used when investigating a dataset that comprises multiple exam-
ples, denoted as I1, I2, ..., In, situated within an instance space. Each example is charac-
terized by a set of attributes, represented as Ai, where attributes are associated with each
example. By using the diff function, the weight (W) of attribute A can be estimated as Relief
by following Equation (20) [86]

  
(20) 

Based on the fundamental Relief framework, regressional ReliefF was introduced
using Equation (21):

  
(21) 

Compared to other attribute estimators (e.g., the root mean of squared error and mean
absolute error), the RReliefF estimator uses a factor measured by considering interactions
with other factors. RReliefF measures a factor’s estimator contextually. A higher RReliefF
number for a specific variable indicates that the factor is expected to predict the outcome
with better (optimized) performance. Therefore, in this study, RReliefF was used to check
the factors’ ranking.

4. Data and Measurement

4.1. Data

Data were collected in 2021 using an online survey distributed in the United States. A
survey agency invited 5900 consumer households to participate in this study;
1000 respondents answered all the questions; however, 13 respondents provided inac-
curate information (e.g., reporting two years old for their age), which resulted in a useable
sample of 987. Descriptive information for the sample is shown in Appendix A Table A1.

4.2. Measurement

The outcome variable was whether a respondent held an emergency fund or not. The
variable was coded dichotomously (Have = 1; Not have = 0) based on an answer to the
following question, “Have you set aside emergency or rainy day funds that would cover your
expenses for three months, in case of sickness, job loss, economic downturn, or other emergencies?”.

The input variables (i.e., predictors) were split into the following five categories in
alignment with [88] and [89]: (a) financial statements and resources, (b) financial literacy
and education, (c) psychological factors, (d) demographic factors, and (e) COVID-associated
factors (used to account for the period of data collection).
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The following binary-coded variables comprised the financial statements and resources
category: (a) have auto loan or not; (b) have student loan or not; (c) have farm loan or not;
(d) have equity loan or not; (e) have mortgage loan or not; (f) own house or not; (g) have
saving account or not; (h) have checking account or not; (i) own term life insurance or not;
(j) own whole life insurance or not; (k) ever use payday loan; and (l) have health insurance
or not. In addition, a categorical variable was included to account for the possibility of
receiving financial advice for making financial decisions (i.e., 1 = have; 2 = do not know;
3 = no). Finally, a respondent’s physical distance from their closest financial professional
was asked and coded as follows: 1 = less than 5 miles; 2 = 5 to 10 miles; 3 = 10 to 20 miles;
4 = 20 to 50 miles; 5 = over 50 miles; and 6 = n/a or do not know.

Three variables comprised the financial literacy and education category: (a) had
financial courses in high school (1 = Yes; 0 = otherwise); (b) had financial courses in college
(1 = Yes; 0 = otherwise); and (c) objective financial literacy. The objective financial literacy
variable was based on answers to three true/false questions [90], resulting in scores that
could range from 0 (no correct answers) to 3 (all correct answers).

The psychological factors category was comprised of the following variables:
(a) financial risk tolerance; (b) financial satisfaction; (c) financial stress; (d) financial self-
efficacy; (e) locus of control; (f) life satisfaction; (g) the Rosenberg self-esteem scale; and
(h) job insecurity. Financial risk tolerance was assessed using the Grable and Lytton’s
risk-taking propensity scale [91]. Scores ranged from 13 to 42. Financial satisfaction was
measured using seven items on a five-point scale (min = 7; max = 35) (see [92]). Financial
stress was measured using 24 items on a five-point scale (min = 24; max = 120) (see [88]).
Financial self-efficacy was measured using six items, also on a five-point scale (min = 6;
max = 30) (see [93]). Locus of control was measured using seven items on a five-point scale
(min = 7; max = 35) (see [94]). Higher scores were representative of an external locus of
control. Life satisfaction was measured using seven items on a seven-point scale (min = 5;
max = 35) (see [95]). Self-esteem was measured with Rosenberg’s 10-item scale that was
assessed using a four-point scale (see [96]). Finally, job insecurity was measured using
seven items on a five-point scale (min = 7; max = 35) (see [97]).

Demographic factors included (a) a variable representing the region of the country
where a respondent lived, (b) work status, (c) agricultural working status, (d) education
level, (e) marital status, (f) gender, (g) age, (h) whether a respondent lived in an urban
area, (i) ethnicity, (j) income level, (k) number of children in a respondent’s household,
and (l) perceived health status. The region represented a respondent’s state of residence.
Work status was coded categorically as 1 = Full-Time; 2 = Part-Time; 3 = Self-Employed;
4 = Homemaker; 5 = Full-Time Student; and 6 = Not Working. Agriculture working status
was coded as a categorical variable (1 = farm; 2 = ranch; 3 = agri-business; and 4 = not
working in agriculture). Education level was coded categorically as 1 = high school or
lower; 2 = some college; 3 = college; and 4 = postgraduate. Gender was coded as female
or otherwise. Marital status was coded as a binary variable (i.e., single or otherwise).
Age was measured in years. Living in an urban area was coded categorically as follows:
1 = urbanized area of 50,000 or more people; 2 = suburban area, near urbanized area
with at least 2500 and less than 50,000 people; and 3 = rural area, all population, housing,
and territory not included within any urban areas). Ethnicity was coded as a categor-
ical variable, where 1 = White or Caucasian; 2 = Hispanic or Latino/a; 3 = Black or
African American; 4 = Asian; 5 = Pacific Islander/Native American or Alaskan Native; and
6 = Other. Income level was coded categorically as 1 = Less than USD 15,000; 2 = USD
15,000 to USD 25,000; 3 = USD 25,000 to USD 35,000; 4 = USD 35,000 to USD 50,000;
5 = USD 50,000 to USD 75,000; 6 = USD 75,000 to USD 100,000; 7 = USD 100,000 to USD
150,000; and 8 = Over USD 150,000. The number of children living in a respondent’s
household was measured as a reported number. Finally, the perceived health status of a
respondent was measured as a categorical variable (i.e., 1 = Excellent; 2 = Good; 3 = Fair;
and 4 = Poor).
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Finally, COVID factors were measured with items that asked how a respondent was
affected by the COVID-19 virus and pandemic, how long a respondent expected the COVID-
19 pandemic to last, and the receipt and timing of a stimulus check. The following items
were used to evaluate perceptions of the COVID-19 pandemic: (a) how a respondent’s
financial situation was affected by COVID-19; (b) how a respondent’s health condition
was affected by COVID-19; (c) how a respondent’s general well-being was affected by
COVID-19; and (d) how a respondent’s work–life balance was affected by COVID-19.
Answers were coded as 1 = almost no impact to 4 = serious impact. Perceptions about
the duration of the pandemic were assessed by asking if (a) my financial situation will get
better, get worse, or stay the same in three months; (b) my financial situation will get better,
get worse, or stay the same in six months; or (c) my financial situation will get better, get
worse, or stay same in one year. Answers were coded as 1 = get better; 2 = get worse; or
3 = stay the same. The timing of receiving a stimulus check was measured nominally as
1 = get stimulus check in April; 2 = get stimulus check in May; 3 = get stimulus check in
June; 4 = get stimulus check in July; 5 = get stimulus check after July; 6 = do not know;
7 = do not want to answer; 8 = had not received stimulus check yet; and 9 = not eligible for
a stimulus check.

5. Results

5.1. Identify the Best Parameters among the Various ML Algorithms

The first step in the ML analyses began by finding the best parameters and tuning the
algorithms. Across the six ML algorithms, various parameters were tested and tuned. The
tuning procedure is shown in Appendix B.

5.2. Results for Step 2: Find the Best ML Prediction Method among the Various ML Algorithms

It was determined that kNN and NN overfit the data somewhat. For example, the
prediction accuracy (AUC) of both algorithms were strong when the models were built;
however, the prediction accuracy was weakened when tested. Gradient Boosting offered
the best performance with categorical consideration and a learning rate of 0.10 (see Table 1).
However, kNN and SVM were still robust. Figure 3 shows the selected algorithms’ ROC
curves from the six ML algorithms.

Table 1. Prediction Accuracy Comparison across ML Algorithms.

ML
Selected
Algorithm

Selected
Parameter

Training Test

kNN Neighbor = 6 1.000 0.844
Gradient Boosting Categorical L.R. = 0.10 0.988 0.849
Naïve Bayes 0.871 0.818
SVM Sigmoid cost = 0.10 0.836 0.826
SGD Lasso/Ridge L.R. = 0.001 0.919 0.802
NN Neuron = 30 1.000 0.793

Abbreviation: L.R., learning rate.
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Figure 3. ROC Curves from the Best Predictions from Six ML Algorithms.
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5.3. Results for Step 3: Check Whether the Accuracy of the ML Algorithms Is Higher Than the
Accuracy Offered by a Logistic Regression

Table 2 shows the results from the logistic regression. As shown in Table 2, none of
the variables had a significant effect in describing whether a respondent held an emer-
gency fund. However, when the variables were added using a stepwise variable selection
approach, several variables (i.e., savings account, mortgage loan, whole life insurance,
no access to financial advisor, financial course in high school, financial satisfaction, finan-
cial self-efficacy, life satisfaction, number of children, and financial situation during the
COVID-19 pandemic) were observed to be statistically significant.

Table 2. Logistic Regression Results (n = 475, 50% Random Splitting).

Variables
Logistic Regression with

All Variables
Logistic Regression with

Forward Stepwise
Logistic Regression with

Backward Stepwise

Coefficient SE Coefficient SE Coefficient SE
Auto loan 0.40 0.46
Student loan −0.61 0.47
Farm loan −0.04 0.80
Equity loan 0.22 0.66
Mortgage loan −1.48 0.51 −0.69 * 0.31
Own house 0.50 0.51
Saving acct. −1.86 0.51 −1.40 *** 0.29 −1.28 *** 0.30
Checking acct. −0.33 0.57
Term L.I. −0.08 0.41
Whole L.I. −1.02 0.51 −0.90 ** 0.33 −0.81 * 0.34
FA do not know −1.27 0.64
FA no −1.82 0.53 −1.12 *** 0.28 −1.14 *** 0.28
Payday loan −0.66 0.56
Health insurance 0.61 0.52
FP Dist. 10 miles 0.49 0.56
FP Dist. 20 miles 1.06 0.61
FP Dist. 50 miles 1.08 0.91
FP Dist. Over 50 1.40 1.19
FP Dist. na −0.21 0.57 −0.70 * 0.29 −0.80 ** 0.30
Fin course in H.S. −0.81 0.45 −1.01 ** 0.29 −0.95 ** 0.30
Fin course in Col. −0.47 0.53
Obj. Fin Knw. −0.08 0.21
Fin R.T. 0.04 0.05
Fin Satisfaction 0.09 0.04 0.07 ** 0.02 0.06 * 0.03
Fin Stress 0.02 0.01
Fin Self-efficacy −0.19 0.06 −0.08 * 0.03
L.O.C. −0.05 0.05
S.W.L.S. 0.08 0.03 0.08 *** 0.02 0.08 *** 0.02
Self-esteem 0.01 0.05
Job insecurity 0.05 0.04
WS Part-time 0.20 0.71
WS Self-empl. 1.31 0.70
WS Homemaker −1.36 1.00
WS Full stud. 0.28 0.82
WS Not working 0.11 0.58
Agri. Work 0.92 1.67
Agri. R.Busi. −0.77 1.02
Agri. No. −0.03 0.90
Ed AA 0.44 0.50
Ed BA 0.93 0.55
Ed Grad. 0.66 0.74
Single 0.22 0.45
Female 0.12 0.41
Age 0.02 0.02
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Table 2. Cont.

Variables
Logistic Regression with

All Variables
Logistic Regression with

Forward Stepwise
Logistic Regression with

Backward Stepwise

Suburban 0.42 0.44
Rural 0.95 0.59
Ethn. Hispanic 0.16 0.59
Ethn. Black −0.22 0.52
Ethn. Asian 0.42 0.55
Ethn. Pacific −0.13 1.07
Ethn. Others −0.98 0.87
Inc. 15 k to 25 k −0.71 0.68
Inc. 25 k to 35 k −1.12 0.70
Inc. 35 k to 50 k −1.09 0.73
Inc. 50 k to 75 k −0.27 0.72
Inc. 75 k to 100 k −0.95 0.86
Inc. 100 k to 150 k −1.27 0.85
Inc. > 150 k 1.26 1.27
No. of Child −0.66 0.20 −0.26 * 0.12 −0.27 * 0.12
Hth. Good −0.24 0.49
Hth. Fair −1.17 0.68
Hth. Poor 0.36 1.23
Fin Situation −0.48 0.23 −0.32 * 0.13
H.Situation −0.10 0.26
WB.Situation 0.03 0.28
Work. Situation 0.32 0.26
3 months expect −0.31 0.29
6 months expect 0.14 0.27
1 year expect 0.31 0.25
Stim. May 0.58 0.77
Stim. Jun. −1.24 0.91
Stim. Jul. 0.94 0.99
Stim. Aft. Jul. −0.74 0.66
Stim. Dk −0.72 0.72
Stim. Na −0.62 1.06
Stim. No get −1.10 0.74
Stim. No elig. −0.44 0.81
Constant 8.47 3.90 3.93 *** 1.06 5.28 *** 1.25

R2 0.54 0.41 0.41
F 352.60 264.57 *** 268.99 ***

Note. Reference group for auto loan, student loan, farm loan, equity loan, mortgage loan, own house, saving
account, checking account, term life insurance, whole life insurance, financial course from high school, financial
course from college are those who do not have them; male is the reference group for gender; ever had financial
advice before is the reference group for experience of financial advice; distance to the accessible financial profession
within 5 miles is the reference group for accessibility of financial professionals; full-time working status is the
reference group for working status; working on a farm is the reference group for agriculture working status; high
school or lower degree is the reference group for education level; living in urban area is the reference group for
urban/suburban/rural living; lower than USD 15,000 is the reference group for income level; excellent health
status is the reference group for health status; reference group for stimulus check is receiving stimulus check in
April; the results for region (i.e., states) were omitted because the number of states and territories is too large to
report while the sample size per location is too small. Significance level: * p < 0.1, ** p < 0.05, *** p < 0.01.

Based on a sample size of 477, ROC graphs and AUCs (i.e., predictions made from
the test dataset) are shown in Figure 4. The predictions resembled convex curves. The
upper left ROC was made when all variables were included in the prediction; the lower left
ROC was estimated when backward stepwise was utilized; the right upper ROC was made
when forward stepwise was utilized.
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Figure 4. ROC Curves Based on Logistic Regression Modeling.

As shown in Table 3, AUC was under 0.800, which was lower than the ML AUC
predictions. Even the worst performing ML exhibited a better AUC (i.e., 0.793 when ML
was NN) compared to results from the logistic regression models (i.e., 0.754 when the
variable list was determined via backward stepwise variable selection). This means that
conventional analysis is proper when the research goal involves identifying significant
variables; however, when the research goal involves maximizing prediction performance,
ML algorithms provide a more robust insight into behavior (i.e., prediction accuracy can be
maximized using ML techniques).

Table 3. AUC Comparison between ML Algorithms and Logistic Predictions.

ML AUC from Test Logistic Regression AUC from Test

kNN 0.844 With all variables 0.703
Gradient Boosting 0.849 Forward stepwise 0.741
Naïve Bayes 0.818 Backward stepwise 0.754
SVM 0.826
SGD 0.802
NN 0.793

Table 3 indicates that machine learning (ML) offers more (i.e., efficient) predictive per-
formance than a logistic regression methodology. However, this does not necessarily mean
that ML provides a better explanation. As previously explained, ML has the advantage of
making better predictions by including more variables, as it incorporates the covariances
inherent in each variable into a prediction. This means that some important features with
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higher prediction weights are selected based on the covariance with other features. On the
other hand, generalized linear models like logistic regression exclude covariances other
than the unique covariance between an outcome and input variables. Traditional regression
techniques focus on finding precise explanations for individual variables. This ultimately
leads to an increase in explanatory power but a decrease in predictive power. Therefore,
the results shown in Table 3 signify an improvement in the predictive power of ML but do
not necessarily mean that the explanatory power of individual variables has improved.

For example, when looking at Table 2 (i.e., results from the logistic regression), vari-
ables that have a significant relationship with holding an emergency fund are easily iden-
tified. Most of these variables, including a household’s financial situation, number of
children, and holding a savings account, match with what has been reported in the previ-
ous literature. The explanatory power of these variables remains valid. However, Table 4
shows how different variables influenced these predictive performances. When comparing
Tables 2 and 4, it becomes apparent that variables that were significant in Table 2 do not
always have high predictive weights in Table 4. This indicates that in the case of the
important variables shown in Table 4, various variables, as assumed by complex system
science models and ecological system theory, contribute to better predictions. Therefore,
the high predictive power in Table 3 and the variable rankings in Table 4 can play a role in
identifying variables that conventional analyses, such as logistic regression, may overlook
conceptually or theoretically. While ML may provide high predictive power, variables
that were not statistically significant in the logistic regression (e.g., region, education level,
financial self-efficacy, having a financial advisor, and farm loan) should be reconsidered
as potentially important variables based on their high predictive weights, despite being
overlooked in previous studies.
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5.4. Results for Step 4: Determine Which Factors Are Associated with Holding an Emergency Fund

Table 4 shows the ranking importance of the best fitting ML algorithm (i.e., Gradient
Boosting) across the variables evaluated in this study (i.e., RReliefF). Education level and
having completed a financial course while in college ranked highly. This implies that
educational attainment is important in helping someone gauge the need for an emergency
fund. In addition, this indicates that promoting financial education, both in formal academic
settings and through specialized courses, can be an effective strategy when encouraging
individuals to (a) recognize the importance of emergency funds and (b) take proactive steps
to establish emergency savings. Policy makers and educators should consider expanding
financial education programs to enhance financial preparedness.

In addition, some financial-related psychological factors (i.e., financial satisfaction,
financial self-efficacy, and financial stress) were found to be important. This implies that
these factors are associated with holding an emergency fund. Financial institutions, finan-
cial service providers, and financial educators should incorporate psychological aspects
into their financial literacy and counseling programs. Fostering financial satisfaction and
self-efficacy while addressing financial stress is likely to help individuals develop positive
emergency fund attitudes and behaviors.

Interestingly, COVID-19-related factors were not particularly important predictors
in the model. This suggests that households are unlikely to change their emergency
fund saving behavior even in the context of situational influences like a challenging
economic situation.

Although Gradient Boosting was deemed to be the best model, the other ML algo-
rithms produced comparable results. For instance, owning whole life insurance was an
important variable when describing who holds an emergency fund across the model. This
indicates that those who own whole life insurance are more concerned about their future
self and the financial welfare of other household members (i.e., individuals who own life
insurance generally exhibit a heightened awareness of their long-term financial security and
the financial well-being of their family). Financial service providers can use this insight to
emphasize the importance of comprehensive financial planning, including both insurance
and emergency fund considerations. Similarly, educational factors (i.e., education level,
completing a financial course in high school, or a financial course while in college) were
found to be important predictors across the ML algorithms.

The ML results differed in significant ways from the logistic regression estimates.
Compared to the Gradient Boosting model, taking a financial course in college and financial
stress were unimportant in the logistic regression. Even so, there were some similarities.
For instance, owning whole life insurance, taking a financial course in high school, and
financial satisfaction ranked highly across the models. This indicates theoretical connec-
tions between these variables and holding an emergency fund. This study illustrates that
combining insights from different analytical approaches can lead to a more comprehensive
understanding and effective promotion of emergency fund savings.

6. Discussion

ML and big data analytical techniques have, over the past decade, garnered increasing
attention among researchers, educators, and policy makers as a way to obtain deeper
insight into social science phenomena. This study adds to the growing consumer studies
methodological literature by illustrating how ML techniques can be applied to assess-
ing household consumer attitudes and behaviors and how ML methods can improve
prediction rates.

The outcome variable in this study was whether a household held an emergency fund,
which was used to indicate a household’s degree of financial preparedness. The existing
financial ratio literature is relatively consistent in reporting that those who hold emergency
savings share a common demographic profile [3,4]. They tend to have high income, are
more educated, and have greater wealth. It is important to note, however, that nearly
all profiles reported in the literature were constructed using traditional methodologies,
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primarily regression techniques. At the outset of this paper, it was hypothesized that
while existing profiles may remain valid, other variables might also be influential in
describing who does and does not hold emergency savings. Traditional regression modeling
techniques do not account for hidden layers between and among variables. While it is
possible to create moderation and mediation models, to do so with large data is nearly
impossible when the constraints associated with regression modeling are applied. This
study’s methodological approach dealt with this issue by showing that when prediction
or profiling is the main purpose of a study, ML algorithms can provide a more nuanced
insight into consumer behavior compared to more commonly used statistical analysis
techniques [7,16].

This study compared and tested several ML algorithms to determine which offers
the most robust prediction rate. The ML algorithm outputs were compared to estimates
derived from logistic regression models. Several takeaways emerged from these analyses.
First, those using ML techniques must know that parameter tuning is not optional. Incor-
rect parameter tuning results in lowered prediction and classification rates. Those who
adopt ML algorithms in consumer studies should consider this point and compare tuning
performance when conceptualizing studies. Second, sub-algorithms should be considered.
Using an incorrect sub-algorithm will almost always lower prediction and classification
validity. Third, when evaluating ML algorithm outputs, it is important to remember that
ML algorithms do not show marginal effects. Instead, ML algorithms provide a ranked
ordering of predictors. As such, the interpretation of an ML analysis should not be consid-
ered deterministic. Instead, the interpretation of an ML output needs to be conceptualized
as more in line with an explorative introduction.

In this study, Gradient Boosting, kNN, and SVM were found to provide the most robust
degrees of prediction and classification. Gradient Boosting offered the best prediction
rate, which aligns with what others have reported in the literature (e.g., [9,10,15,44]).
Gradient boosting is an ensemble modeling technique that integrates classification and
regression methods [42,43]. The ensemble of classification and regression estimation
works well when optimizing prediction accuracy [31] and minimizing error levels [44].
What is particularly interesting in this study is that income and wealth—factors generally
considered the most descriptive of financial preparedness—were not highly ranked in
the Gradient Boosting algorithm, nor with kNN or SVM. This insight differs from what is
generally shown using regression techniques [3]. However, educational factors and the
existence of financial obligations were more important. It appears that a consumer must
possess the financial literacy to anticipate the need for emergency savings, formulate a
plan to build an emergency fund, and implement the plan. The consumer must also have
an objective reason to hold emergency fund assets. The existence of loans is one reason a
consumer may opt to hold assets in an emergency fund. Likewise, a consumer needs to
hold an attitudinal disposition that values one’s future self or the well-being of household
members. The consistently high ranking of life insurance in the ML algorithms suggests
that the ability to plan for the future is an important characteristic among those holding
emergency fund assets. The region variable in the kNN model is worthy of future research.
The variable represents the state where a respondent resided at the time of the survey. It
appears that some consumers are more likely than others to take financial preparedness
steps. Specifically, those living in rural areas who also hold existing debt, are predicted to
be more likely to hold an emergency fund.

This study represents a noteworthy advancement in consumer studies literature,
particularly in the domains of personal finance and financial planning. This paper illustrates
the value of ML techniques when predicting behavior. While numerous researchers have
utilized ML methodologies with social science datasets (e.g., [9–15]), these efforts have
sometimes suffered from limitations, such as their inability to comprehensively compare
diverse ML methods or their focus on non-household factors. This means that the practical
relevance of findings about household financial management has notable limitations. This
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paper is one of the few studies to comprehensively analyze the nuances associated with
holding an emergency fund at the household level.

Another significant contribution of this paper is the expanded scope of variables
that were used to predict holding an emergency fund. Rather than rely on a limited set
of preexisting variables as described in the literature (i.e., primarily financial factors and
sociodemographic attributes) (e.g., [3,4]), this study introduced a broader range of variables,
including financial education, psychological aspects, COVID-19-related factors, distance to
financial service providers, and holding various types of loans. This approach aligns well
with ML’s capacity to leverage multiple variables [16], potentially unveiling overlooked
variables that could significantly contribute to understanding the dynamics of emergency
fund management.

Moreover, this study departs from the prevailing practice of assuming linear relation-
ships between and among variables. The ML technique uses a pattern recognition and
classification approach, making it possible to move beyond traditional linear assumptions.
To achieve this, six distinct ML algorithms were employed as complex systems science
models. The application of these algorithms allowed for a comprehensive investigation
of the potential contributions of ML to the field of consumer studies. Notably, each ML
algorithm underwent meticulous parameter tuning and calibration, extending beyond
algorithmic utilization to demonstrate the application of ML techniques to address complex
questions. The comprehensive approach in this study underscores the commitment to
advancing the understanding of emergency fund management dynamics and enhancing
the practical applicability of ML in consumer studies.

In summary, the results from this study advance the methodological body of literature
for those working in the consumer studies field. This study shows that ML algorithms can
be used to improve predictions and classifications of consumer attitudes and behaviors.
Future research should align the results from this study with existing models and profiles
of those who hold emergency savings. Information from such studies can be used by
financial educators, consumer advocates, and policy makers when helping households
achieve greater levels of financial preparedness.

7. Conclusions

This study is noteworthy in making significant theoretical, practical, and methodologi-
cal contributions to consumer studies. The theoretical contribution lies in its application of
ML techniques to the study of household financial decision making. Unlike traditional lin-
ear models, this study used a pattern recognition and classification methodology, shedding
light on the intricate complexities underlying emergency fund management. The findings
from this study challenge conventional beliefs by highlighting the importance of financial
literacy, financial obligations, and a positive attitude towards future financial well-being as
key factors in predicting who is more likely to hold emergency savings, with income and
wealth taking a secondary role.

On a practical level, findings from this study underscore the critical importance of
parameter tuning and sub-algorithm selection when employing ML techniques in con-
sumer studies. This paper offers valuable insights into the use of ML algorithms when
predicting and classifying consumer attitudes and behaviors, which can have direct appli-
cations for financial service providers, financial educators, consumer advocates, and policy
makers. Moreover, this study expands the spectrum of variables considered, incorporating
financial education, psychological factors, COVID-19-related variables, and others, thereby
enhancing the predictive capacity of models to understand the dynamics of emergency
fund management.

Even in the context of these significant contributions, limitations need to be acknowl-
edged. ML techniques, while improving prediction rates, do not readily provide straight-
forward marginal effects. Thus, some researchers use ML algorithms as a starting point in
identifying key variables for use in secondary models. While this study evaluated six robust
ML algorithms, including Gradient Boosting, kNN, and SVM, further research is needed
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to determine when one particular approach should be used to address a specific research
question. Further advanced ML algorithms, such as Generative Adversarial Network, Re-
current Neural Network, or Convolutional Neural Network, should be evaluated in future
studies. In the context of this study, additional research is needed to decipher regional
variations in holding an emergency fund. Future studies should also aim to integrate the
findings with existing models and profiles of emergency savings holders. Doing so will
contribute to a better understanding of the financial preparedness of households. In addi-
tion, the current ML algorithms are all well-known algorithms. Even in the context of these
limitations and opportunities for future work, this study advances the consumer studies
methodological landscape by showcasing how ML techniques can enrich the field’s compre-
hension of consumer attitudes and behaviors, particularly within the context of holding an
emergency fund.
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Appendix A

Table A1. Descriptive Table (N = 987).

Category Variable Frequency Percentage Mean SD

Outcome Em. Fund (=Have) 538 54.51%

Financial
Factors

Auto loan (=Have) 355 35.97%
Student loan (=Have) 307 31.10%
Farm loan (=Have) 156 15.81%
Equity loan (=Have) 181 18.34%
Mortgage loan (=Have) 320 32.42%
Own house 487 49.34%
Saving acct. 650 65.86%
Checking acct. 807 81.76%
Term L.I. 418 42.35%
Whole L.I. 289 29.28%
FA have 330 33.43%
FA do not know 143 14.19%
FA no 514 52.08%
Payday loan 274 27.76%
Health insurance 776 78.62%
FP Dist. 5 miles 216 21.88%
FP Dist. 10 miles 229 22.29%
FP Dist. 20 miles 140 14.18%
FP Dist. 50 miles 67 6.79%
FP Dist. Over 50 44 4.46%
FP Dist. na 300 30.40%

Financial
Education

Fin course in H.S. (=Have) 363 36.78%
Fin course in Col. (=Have) 296 29.99%
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Table A1. Cont.

Category Variable Frequency Percentage Mean SD

Obj. Fin Knw. 1.56 1.00

Psych.
Factors

Fin R.T. 22.70 4.71
Fin Satisfaction 22.54 7.31
Fin Stress 66.95 27.71
Fin Self-efficacy 15.59 5.22
L.O.C. 18.57 6.27
S.W.L.S. 21.56 8.73
Self-esteem 28.38 5.05
Job insecurity 19.69 4.55

Demo.
Factors

WS Full-time 396 40.12%
WS Part-time 93 9.42%
WS Self-empl. 80 8.11%
WS Homemaker 59 5.98%
WS Full stud. 78 7.90%
WS Not working 281 28.47%
Agri. Farm 113 11.45%
Agri. Ranch 21 2.13%
Agri. R.Busi 66 6.69%
Agri. No 787 79.74%
Ed High 279 28.27%
Ed AA 269 27.25%
Ed BA 269 27.25%
Ed Grad. 170 17.22%
Single 503 50.96%
Female 501 50.76%
Age 38.86 15.29
Urban 419 42.45%
Suburban 396 40.12%
Rural 172 17.43%
Ethn. White 357 36.17%
Ethn. Hispanic 135 13.68%
Ethn. Black 250 25.33%
Ethn. Asian 149 15.10%
Ethn. Pacific 38 3.85%
Ethn. Others 58 5.88%
Inc. < 15 k 175 17.73%
Inc. 15 k to 25 k 118 11.96%
Inc. 25 k to 35 k 138 13.98%
Inc. 35 k to 50 k 127 12.87%
Inc. 50 k to 75 k 148 14.99%
Inc. 75 k to 100 k 98 9.93%
Inc. 100 k to 150 k 110 11.14%
Inc. > 150 k 73 7.40%
No. of Child 0.74 1.08
Hth. Excellent 280 28.37%
Hth. Good 468 47.42%
Hth. Fair 190 19.25%
Hth. Poor 49 4.96%
Region - -
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Table A1. Cont.

Category Variable Frequency Percentage Mean SD

C-19 Factors

Fin Situation 2.33 1.08
H.Situation 2.00 1.05
WB.Situation 2.29 1.07
Work. Situation 2.27 1.09
3 months expect 2.06 0.90
6 months expect 1.91 0.89
1 year expect 1.72 0.88
Stim. Apr. 164 16.62%
Stim. May. 101 10.23%
Stim. Jun. 78 7.90%
Stim. Jul. 61 6.18%
Stim. Aft. Jul. 159 16.11%
Stim. Dk 133 13.48%
Stim. Na 39 3.95%
Stim. No get 129 13.07%
Stim. Not elig. 123 12.46%

Abbreviation: Em. Fund, emergency fund; acct., account; L.I., life insurance; FA have, ever have financial advice;
FA do not know, not knowing whether have financial advice; FA no, never have financial advice; FP Dist. 5 miles,
financial professionals are accessible within 5 miles; FP Dist. 10 miles, financial professionals are accessible within
10 miles; FP Dist. 20 miles, financial professionals are accessible within 20 miles; FP Dist. 50 miles, financial
professionals are accessible within 50 miles; FP Dist. Over 50, financial professionals are accessible over 50 miles;
FP Dist. na, the accessibility of financial professionals is not known; Fin course in H.S., financial course from
high school; Fin course in Col., financial course from college; Obj. Fin Knw., objective financial knowledge; Psych.
Factors, psychological factors; Fin R.T., financial risk tolerance; Fin Satisfaction, financial satisfaction; Fin Stress,
financial stress; Fin Self-efficacy, financial self-efficacy; L.O.C., locus of control; S.W.L.S., satisfaction with life scale;
Demo., demographic; WS Full-time, working status as full-time worker; WS Part-time, working status as part-time
worker; WS Self-empl., working status as self-employed; WS Homemaker, working status as homemaker; WS Full
stud., working status as full- time student; WS Not working, working status as not working; Agri. Farm, working
in agriculture as farm worker; Agri. Ranch, working in agriculture as ranch worker; Agri. R.Busi., working in
agriculture as rural business; Agri. No., not working in agriculture; Ed High, education level as high school or
lower; Ed AA, some college with associate degree; Ed BA, college with Bachelors’ degree; Ed Grad., education
level as graduate or higher degree; Ethn. White, ethnic group as White or Caucasian; Ethn. Hispanic, ethnic group
as Hispanic or Latino(a); Ethn. Black, ethnic group as black or African American; Ethn. Asian, ethnic group as
Asian; Ethn. Pacific, ethnic group as Pacific Islander, Native American, or Alaskan Native; Ethn. Others, ethnic
group as others; Inc. < 15 k, income level as lower than USD 15,000; Inc. 15 k to 25 k, income level between
USD 15,000 and USD 25,000; Inc. 25 k to 35 k, income level between USD 25,000 and USD 35,000; Inc. 35 k to
50 k, income level between USD 35,000 and USD 50,000; Inc. 50 k to 75 k, income level between USD 50,000 and
USD 75,000; Inc. 75 k to 100 k, income level between USD 75,000 and USD 100,000; Inc. 100 k to 150 k, income
level between USD 100,000 and USD 150,000; Inc. > 150 k, income level over USD 150,000; # Child, number
of children in a household; Hth Excellent, health status as excellent health status; Hth Good, health status as
good health status; Hth Fair, health status as fair health status; Hth Poor, health status as poor health status;
C-19 Factors, COVID-19 factors; Fin Situation, the financial situation affected by COVID-19; H.Situation, the
health situation affected by COVID-19; WB.Situation, general well-being affected by COVID-19; Work. Situation,
work-balance affected by COVID-19; 3 months expect, the expected financial situation in 3 months; 6 months
expect, the expected financial situation in 6 months; 1 year expect, the expected financial situation in 1 year; Stim.
Apr., getting stimulus check in April; Stim. May., getting stimulus check in May; Stim. Jun., getting stimulus
check in June; Stim. Jul., getting stimulus check in July; Stim. Aft. Jul., getting stimulus check after July; Stim. Dk,
do not know whether get stimulus check or not; Stim. Na, do not want to answer; Stim. No get, the respondent
did not get stimulus check; Stim. Not elig., the respondent is not eligible to get stimulus check.

Appendix B

ML Tuning: Identify the Best Parameters among the Various ML Algorithms
Tables A2–A7 and Figures A1–A6 show each ML algorithm’s accuracy given the

constraints of each algorithm’s settings. In the case of kNN, both the Euclidean and
Manhattan models showed robust predictions in the training dataset. However, when the
models were checked using the test dataset, the Manhattan distance algorithm exhibited a
better prediction rate. Regarding parameter tuning, the Manhattan model showed the best
performance when there were three to eight neighbors. It was determined that the best
parameter distance was six (6).
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Table A2. Algorithm and Parameter Selection—kNN.

Training Test
Number of Euclidean Manhattan Euclidean Manhattan
Neighbors AUC AUC AUC AUC

1 1.000 1.000 0.686 0.835
2 1.000 1.000 0.742 0.834
3 1.000 1.000 0.754 0.840
4 1.000 1.000 0.775 0.840
5 1.000 1.000 0.779 0.840
6 1.000 1.000 0.785 0.844
7 1.000 1.000 0.786 0.838
8 1.000 1.000 0.786 0.842
9 1.000 1.000 0.786 0.838
10 1.000 1.000 0.794 0.836
20 1.000 1.000 0.809 0.828
30 1.000 1.000 0.810 0.825
40 1.000 1.000 0.807 0.818
50 1.000 1.000 0.811 0.809
60 1.000 1.000 0.802 0.806
70 1.000 1.000 0.803 0.799
80 1.000 1.000 0.801 0.776
90 1.000 1.000 0.799 0.708
100 1.000 1.000 0.795 0.834

Note. AUC represents the prediction accuracy of the model. AUC ranges in value from 0.00 to 1.00, and the higher
the AUC, the better the model predicts. Abbreviation: AUC, area under the curve.

Figure A1 shows the representative ROC curves for kNN. The upper left graph is
the ROC graph for the Euclidean model with 30 neighbors; the left lower graph is the
ROC graph for the Euclidean model with 50 neighbors; the right upper graph is the ROC
graph for Manhattan model with six neighbors; the lower right graph is the ROC graph for
Manhattan model with eight neighbors. The dark section under the curve is the area used
to calculate AUC. As shown in Figure A1, the ROC curves were convex, indicating that
kNN performed well in prediction. The AUC was maximized when kNN was performed
using the Manhattan model with six neighbors.

In the case of Gradient Boosting, the four sub-algorithms exhibited prediction robust-
ness with the training dataset. However, when the algorithms were checked using the
test dataset, categorical Gradient Boosting showed better prediction. Regarding parameter
tuning, categorical Gradient Boosting showed the best performance when the learning rate
was 0.10, as shown in Table A3.

Table A3. Algorithm and Parameter Selection—Gradient Boosting.

Training Test
Cat. Ext. Ext. RF Scikit Cat. Ext. Ext. RF Scikit

L.R. AUC AUC AUC AUC AUC AUC AUC AUC

0.10 0.988 1.000 1.000 0.968 0.849 0.842 0.842 0.836
0.15 1.000 1.000 1.000 0.981 0.835 0.840 0.840 0.838
0.20 0.998 1.000 1.000 0.985 0.827 0.840 0.840 0.842
0.25 1.000 1.000 1.000 0.991 0.838 0.834 0.834 0.833
0.30 0.999 1.000 1.000 0.994 0.833 0.838 0.838 0.829

Abbreviation: Cat., Categorical Gradient Boosting; Ext., Extreme Gradient Boosting; Ext. RF, Extreme Gradient
Boosting with random forest; L.R., learning rate; Scikit, Scikit version of Gradient Boosting.
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Figure A1. ROC Curves for Algorithm and Parameter Selection—kNN.

Figure A2 shows the representative ROC curves for the Gradient Boosting algorithms.
The upper left graph is the ROC illustration for Categorical Gradient Boosting with a
learning rate of 0.10; the left lower graph is the ROC graph for Extreme Gradient Boosting
with a learning rate of 0.10; the right upper graph is the ROC graph for Extreme Gradient
Boosting with random forest with a learning rate of 0.10; the lower right graph is the ROC
graph for Scikit Gradient Boosting with a learning rate of 0.10. AUC was calculated using
the dark area under the curve. As shown in Figure A2, the ROC curves were convex,
suggesting that prediction was robust with Gradient Boosting. The AUC was the largest
when Categorical Gradient Boosting was performed with a learning rate of 0.10.
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Figure A2. ROC Curve for Algorithm and Parameter Selection—Gradient Boosting.

There are no comparable sub-algorithms and parameter tuning estimates in the case
of Naïve Bayes. Table A4 and Figure A3 show the Naïve Bayes’ AUC and ROC curves. The
dark area under the curve is the area used to estimate AUC.

Table A4. Algorithm and Parameter Selection—Naïve Bayes.

Training Test
AUC AUC

0.871 0.818
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Figure A3. ROC Curve for Algorithm and Parameter Selection—Naïve Bayes.

Table A5 shows the Support Vector Machine (SVM) algorithm accuracy. In the case
of SVM, the Radial Basis Function (RBF) kernel model exhibited the best prediction with
the training dataset. As an optimal parameter setting, the cost was set between 5 and 100.
However, when the algorithm was checked using the test dataset, optimal performance by
RBF was overfit (i.e., better performance in training but worse performance when tested). It
was determined that the sigmoid model was better in terms of prediction (i.e., the outcomes
were similar between the training (0.836) and the test (0.826) datasets). The sigmoid
kernel model with cost = 0.10 showed stable prediction (i.e., no overfitting issue) and
optimal performance.

Table A5. Algorithm and Parameter Selection—SVM.

Training Test
Linear Poly. RBF Sigmoid Linear Poly. RBF Sigmoid

c AUC AUC AUC AUC AUC AUC AUC AUC

0.10 0.584 0.944 0.901 0.836 0.442 0.822 0.812 0.826
1.00 0.754 0.982 0.969 0.774 0.719 0.778 0.825 0.773
5.00 0.754 0.977 0.997 0.769 0.720 0.762 0.784 0.747
10.00 0.754 0.977 0.996 0.765 0.720 0.762 0.803 0.738
50.00 0.754 0.977 0.996 0.759 0.720 0.762 0.803 0.733
100.00 0.754 0.977 0.996 0.754 0.280 0.762 0.803 0.729

Abbreviation: c, cost; Linear, SVM with linear kernel; Poly., SVM with polynomial kernel; RBF, SVM with radial
based function kernel; Sigmoid, SVM with sigmoid kernel.

Figure A4 shows the representative ROC curves for SVM. The upper left graph is the
ROC graph for the linear SVM with a cost of 0.10; the left lower graph is the ROC graph for
the polynomial SVM with a cost of 0.10; the right upper graph is the ROC graph for the
RBF SVM with a cost of 0.10; the lower right graph is the ROC graph for the sigmoid SVM
with a cost of 0.10. The dark area under the curve was used to calculate AUC. As shown in
Figure A4, the ROC curves were convex, indicating that three of the SVMs performed well
in prediction. When SVM was performed using a linear assumption, the prediction was
suboptimal, as indicated by the concave graph. The AUC was optimized when SVM was
performed with sigmoid with a cost of 0.10.
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Figure A4. ROC Curve for Algorithm and Parameter Selection—SVM.

In the Stochastic Gradient Descent (SGD) shown in Table A6, reasonably good pre-
diction rates were observed under three assumptions in the training dataset with learning
rates of 0.001 and 0.005. However, when the algorithms were checked, the learning rate of
0.001 showed the best level of prediction. The type of assumption used when modeling did
not lead to significant differences between the models as long as the learning rate remained
at 0.001.

Table A6. Algorithm and Parameter Selection—SGD.

Training Test
Elastic Lasso Ridge Elastic Lasso Ridge

L.R. AUC AUC AUC AUC AUC AUC

0.001 0.919 0.919 0.919 0.801 0.802 0.802
0.005 0.924 0.924 0.924 0.790 0.786 0.785
0.010 0.923 0.922 0.922 0.778 0.780 0.787
0.050 0.896 0.896 0.895 0.713 0.759 0.770
0.100 0.870 0.890 0.877 0.759 0.774 0.659

Abbreviation: L.R., learning rate.
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Figure A5 shows the representative ROC curves for SGD. The upper left graph is the
ROC graph for lasso SGD with a learning rate of 0.001; the left lower graph is the ROC
graph for ridge SGD with a learning rate of 0.001; the right upper graph is the ROC graph
for lasso SGD with a learning rate of 0.05; the lower right graph is the ROC graph for elastic
SGD with a learning rate of 0.001. As with the other analyses, the dark area under the
curve was used to calculate AUC. As shown in Figure A5, the ROC curves were convex,
indicating that each SGD performed well in prediction. The AUC was the largest when
SGD was performed, with lasso/ridge with a learning rate of 0.001.

 
Figure A5. ROC Curve for Algorithm and Parameter Selection—SGD.

The best NN algorithm was identified in the training dataset when the number of
neurons was over 15. However, in the test dataset, NN showed the best performance when
the number of neurons was 30, 35, 55, and 60. The optimal number of neurons, as shown in
Table A7, was 30.

Figure A6 shows the representative ROC curves for NN. The upper left graph is the
ROC graph for NN with one neuron; the left lower graph is the ROC graph for NN with
50 neurons; the right upper graph is the ROC graph for NN with 30 neurons; the lower right
graph is the ROC graph for NN with 100 neurons. AUC was estimated by examining the
dark area under the curve. As shown in Figure A6, the ROC curves were convex, indicating
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that the NN algorithms performed well in prediction. The AUC was the largest when NN
was performed with 30 neurons.

Figure A6. ROC Curve for Algorithm and Parameter Selection—NN.

Table A7. Algorithm and Parameter Selection—NN.

Number of
Neuron

Training Test
AUC AUC

1 0.843 0.720
5 0.958 0.791
10 0.994 0.781
15 1.000 0.790
20 1.000 0.779
25 1.000 0.779
30 1.000 0.799
35 1.000 0.786
40 1.000 0.783
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Table A7. Cont.

Number of
Neuron

Training Test
AUC AUC

45 1.000 0.776
50 1.000 0.776
55 1.000 0.793
60 1.000 0.781
65 1.000 0.787
70 1.000 0.780
75 1.000 0.768
80 1.000 0.785
85 1.000 0.783
90 1.000 0.780
95 1.000 0.790
100 1.000 0.787
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Abstract: This study investigates ambiguity aversion within the framework of a utility-maximizing
investor under a modified constant-elasticity-of-volatility (M-CEV) model for the underlying asset.
We derive closed-form solutions of a non-affine type for the optimal allocation and value function via
a Cauchy problem. This work generalizes previous results in non-ambiguous settings by extending
existing work to Hyperbolic Absolute Risk Aversion utility (HARA), correcting some typos in the
literature for Constant Relative Risk Aversion utility (CRRA). Helpful details and derivations are also
included in the manuscript.
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1. Introduction

Portfolio optimization in continuous time is a constantly evolving line of research,
with both practitioners and academics actively seeking more realistic objective functions,
improved models, and refined stylized facts to enhance decision-making. All of these
efforts are essential to keep pace with the growing complexity of financial markets and
social interactions.

In this study, we embrace the widely utilized framework of expected utility theory
(EUT) as the objective function for investors. EUT provides a fruitful ground for ana-
lytical solutions and is, therefore, more easily interpretable, as pioneered in the seminal
work by Merton [1]. This early achievement relied on simple geometric Brownian motion
(GBM) to describe the underlying asset price with considerations only for risk aversion.
Although many extensions have been considered in the literature, the vast majority in-
volve more than one source of risk in explaining asset prices. Examples include stochastic
volatility models and the addition of jumps, as evidenced in references [2,3]. However,
incorporating multiple risk sources often leads to inaccuracies in the estimation and evalu-
ation methodologies, thereby partially affecting their benefits. To preserve the simplicity
of a single source of risk while generalizing the GBM, this study uses a new member of
the family of CEV models (see the seminal work of Cox in [4]); the so-called modified
constant elasticity of variance (M-CEV). This model, explored for pricing purposes in
the reference [5], has been adapted to expected utility optimization in the recent work of
Muravei in [6]. Additionally, refer to the references [7,8] for portfolio optimization results
on two other types of CEV models: CEV and LVO-CEV.

The primary innovation in our work lies in considering ambiguity in the model,
thereby introducing ambiguity aversion in the decision-making of the investor. The as-
sumption of model ambiguity can be traced back to the experimental studies of Ellsberg [9]
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and more recently the work in [10], who demonstrate that individuals are averse to ambi-
guity (unknown probability) in addition to their well-known aversion to risk. A crucial
framework for analytical solutions was presented in Maenhout [11], leading to a Hamilton-
Jacobi-Bellman (HJBI) representation of the solution in the GBM case. Most extensions of
this work consider multiple sources of risk (e.g., the reference [12] for stochastic volatility
and jumps). This study is the first to extend the analysis to a member of the CEV family
of models.

For clarity, we list the main contributions of our work as follows:

1. We solve the expected utility portfolio problem for a HARA (Hyperbolic Absolute
Risk Aversion) investor in the absence of ambiguity aversion. This solution can be
reinterpreted as a constant proportion portfolio insurance (CPPI), a strategy widely
employed in the financial industry (see the reference [13]).

2. As a by-product of solving HARA, we identified and rectified a few typos in the
literature regarding the solution for the embedded Constant Relative Risk Aversion
(CRRA) case.

3. We find closed-form solutions for the optimal allocation, optimal reference model,
value function, and optimal wealth process for an investor exhibiting both risk and
ambiguity aversion within HARA utilities. Numerical and empirical studies with our
findings will be conducted in a follow-up paper.

The remainder of this paper is organized as follows. Section 2 outlines the mathe-
matical and financial settings and formulates the problem. In Section 3, we present the
derived solutions and delve into details of various embedded cases that hold significance
for readers. The appendix provides additional details that are organized into subsections
related to the main proposition.

2. Problem Formulation

We consider the general price process St given by the following stochastic differential
equation (SDE):

dSt

St
=
(

r + λ̄σSψ
t

)
dt + σSβ

t dZt, s0 > 0, (1)

where r and λ̄ are positive real numbers and s0 is the initial asset price value. In this
general setting, Sβ

t represents the volatility of the risky asset return, and β is the elasticity of
variance with respect to the stock price. We assume ψ = 2β and β �= 0, hence Equation (1)
becomes the M-CEV model (see the manuscripts [6,14]).

We assume a market consisting of money market account B and risky asset St (such as
a stock). These prices follow the following dynamics:

dBt

Bt
= rdt, (2)

dSt

St
=
(

r + λ̄σS2β
t

)
dt + σSβ

t dZt, s0 > 0, (3)

where r is a constant risk-free interest rate. As explained in the references [5,6,8], the M-CEV
allows for a non-zero probability of the underlying touching zero (default) if β > 1, which
makes it realistic for pricing and portfolio problems.

We refer to model (3) as the reference model. Our investors face uncertainty regarding
the probability distribution associated with the reference model and consider a set of
plausible alternative models when making investment decisions. Specifically, the investors
are uncertain about the distribution of S. This formulation enables us to capture the
uncertainty regarding the drift in stock prices and the prices of risk in the stock market.
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Let e := eS
t denote an R-valued Ft-progressively measurable process. The Radon–

Nikodym derivative process is defined as follows:

ζe
t = E

[
dPe

dP
|Ft

]
= exp

(
−
∫ t

0

(eS
τ)

2

2
dτ + eτdZτ

)
. (4)

According to Girsanov’s theorem, the process can be expressed as

Z̃t =
∫ t

0
eS

τdτ + Zt. (5)

We denote the set of all Ft-progressively measurable processes such that the process
given by (4) is a well-defined Radon–Nikodym derivative process as E [0, T]. This process,
denoted by Z̃t, represents the Wiener process under probability measure Pe. The reference
model is generally regarded as the most accurate representation of available data for an
agent. However, viable alternative models pose a challenge in terms of statistical differ-
entiation from reference models. Alternative models were generated via the perturbation
process eS

t as follows:

dSt

St
=
(

r + λ̄σS2β
t − eS

tσSβ
t

)
dt + σSβ

t dZt. (6)

In the model setup, it is important to acknowledge that this ambiguity stems from
an investor’s inability to capture the expected returns precisely in the probability laws
governing the stock price process. This assumption aligns with the perspectives presented
in seminar studies, such as the work by Merton [15], and more recently shown in Tables 1
and 2 in reference [8] on the large standard errors in estimating the parameter λ̄.

Let π represent the investment strategy applied from time t to time T in model (3). We
define space U [0, T] as the set of admissible strategies π that satisfy the following conditions:

1. π is an Ft-progressively measurable process.
2. Under π, the wealth Xt of the investor remains non-negative for t ∈ [0, T].
3. The integrability conditions necessary for the expectation operator in (7) to be well-

defined are satisfied.

We consider an investor with a preference for Hyperbolic Absolute Risk Aversion
(HARA) utility on terminal wealth with risk-aversion level γ. The utility function for
terminal wealth XT is defined as:

u(XT) =
(XT − F)γ

γ
.

The goal is to examine an ambiguous agent with HARA utility who aims to construct
an investment strategy for the time interval [0, T] that maximizes the expected utility for
terminal wealth XT . In line with this objective, we define the reward functional realized by
the investor when selecting an alternative model specified by e as follows:

we(x, t; π, c) = E
Pe

x,t

[
(XT − F)γ

γ

]
, (7)

where −∞ < γ < 1, γ �= 0, and denotes the constant relative aversion parameter. Then,
the indirect utility function is given by:

J(x, t) = sup
π∈U

inf
e∈E [t,T]

(
we(x, t; π) +E

Pe
[ ∫ T

t

(eS
τ)

2

2Ψ(τ, Xτ)
dτ

])
, (8)

where space U consists of admissible controls {πt}t∈[0,T] with πt ∈ R and satisfies the
standard conditions.
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According to reference [16], investors consider alternative models that are statistically
challenging to distinguish from reference models. To address this issue, the value function
incorporates a penalty term designed to discourage significant deviations from the reference
model. This penalty term, which appears as the last expectation term in the problem (8), is
computed based on relative entropy. The perturbations eS

t in the penalty term were scaled
by Ψ(τ, Xτ). Function Ψ reflects the level of ambiguity or uncertainty associated with the
models and is used to adjust the penalties accordingly. Higher values of Ψ indicate smaller
penalties for deviating from the reference model, signifying greater uncertainty on the part
of the investor.

By incorporating the penalty term, the investor considers both model ambiguity
and the associated diffusion risk. This approach allows investors to make decisions that
weigh the potential benefits of alternative models while accounting for the risks and
uncertainties involved.

For the sake of analytical tractability, we maintain the assumption proposed in refer-
ence [11], that the ambiguity aversion parameter φ is related to the value function J(x, t)
and the risk aversion level γ by the expression

Ψ =
φ

γJ(x, t)
, (9)

where φ > 0 denotes the level of ambiguity aversion. This assumption allows us to
incorporate the degree of ambiguity into the model and analyze its impact on investors’
decision-making processes.

In summary, the value function considers investors’ preferences for terminal wealth
while also considering the uncertainty associated with alternative models. The penalty
term within the value function discourages significant deviation from the reference model.
Scaling factor Ψ is a key component that reflects investors’ level of ambiguity aversion.
Higher values of Ψ indicate greater uncertainty and ambiguity regarding the alternative
models, which corresponds to smaller penalties for deviations from the reference model.
By incorporating this penalty term and adjusting it based on the level of ambiguity, investors
can make decisions that balance their preferences with the associated uncertainties in the
alternative models.

3. Optimal Investment Strategies

In this section, we address the problem described in (8) by employing the stochastic
control approach for the M-CEV model with ambiguity. Our objective is to derive closed-
form solutions to the investment problem. The solution will provide insights into the
impact of ambiguity aversion levels on investors’ decision-making processes.

3.1. The Hamilton-Jacobi-Bellman-Isaacs (HJBI) Equation

Assuming that πt represents the fraction of wealth invested in stock St, the remaining
portion of wealth (1 − πt) is invested in the risk-free money account with a constant
interest rate r. For mathematical benefits, our focus is on the investor’s position in the
stock, denoted by ψt (i.e., the number of units of the asset held). Then, investor wealth
Xt is governed by the following stochastic differential equation (SDE) derived from a
self-financing condition:

dXt = Xt

[
πt

dSt

St
+ (1− πt)rdt

]
= Xt

(
r + πtλ̄σS2β

t − πteS
tσSβ

t

)
dt + πtσSβ

t XtdZt. (10)

221



Mathematics 2024, 12, 440

Since ψt = πt
Xt
St

, we can express Equation (10) as follows:

dXt = ψtdSt + r(Xt − ψtSt)dt

=
[
ψtrSt + ψtλ̄σS2β+1

t − ψteS
tσSβ+1

t + r(Xt − ψtSt)
]
dt + ψtσSβ+1

t dZt

=
(

rXt + ψtλ̄σS2β+1
t − ψteS

tσSβ+1
t

)
dt + ψtσSβ+1

t dZt. (11)

Consequently, the expression for the value function (8) should be modified to:

J(X, S, t) = sup
ψ∈U

inf
e∈E [t,T]

(
we(X, S, t; ψ) +E

Pe
[∫ T

t

(eS

τ)
2

2Ψ(τ, Xτ , Sτ)
dτ

])
, (12)

where J(X, S, t) satisfies a HJBI equation.
Define

θt := πtσSβ
t , (13)

where θt represents the portfolio exposure to the fundamental risk factor Zt, and πt is the
portfolio weight that determines the allocation of wealth in the M-CEV model. Expres-
sion (13) illustrates how the investor’s desired exposure to the risk factor is calculated,
depending on the portfolio weight πt and the volatility of the asset return σ, which is
scaled by Sβ

t . The portfolio weight determines the portion of investor wealth allocated to
the risky asset, thereby influencing the overall exposure to the risk factor. As before, we
can represent (13) as:

θt :=
ψtSt

Xt
σSβ

t

= ψtX−1
t σSβ+1

t . (14)

This means that we can also state that the number of units of the asset dictates the
allocation of the investor’s wealth to the risky asset, thus impacting overall exposure.
To simplify our analysis, we shift our focus to these exposures rather than investor position
ψ in stock. As a result, the transformation of model (11) is given by:

dXt =
(

rXt + ψtλ̄σS2β+1
t − ψteS

tσSβ+1
t

)
dt + ψtσSβ+1

t dZt

= Xt

(
r + λ̄θtS

β
t − eS

tθt

)
dt + θtXtdZt. (15)

Accordingly, the value function (12) satisfies the Hamilton (Jacobi)-Isaacs equation:

sup
θ

inf
eS

{
Jt + x

(
r + λ̄Sβθ − eSθ

)
Jx +

1
2

x2θ2 Jxx

+
(

rS + λ̄σS2β+1 − eS
tσSβ+1

)
Js +

1
2

σ2S2β+2 Jss + xσSβ+1θ Jxs +
(eS)2

2Ψ

}
= 0, (16)

where Jt, Jx, Js, Jxx, Jss, and Jxs denote the partial derivatives of the first and second order
with respect to time, stock and wealth, respectively. Moreover, Ψ = φ

γJ (see (9)), where φ is
a positive ambiguity-aversion parameter.

We first find the infimum, denoted as eS∗ , and then differentiate (16) to obtain the
optimal exposure as: {

θ∗ = eS∗ Jx−λ̄Sβ Jx−σSβ+1 Jxs
xJxx

.

The solution to (16) is provided in the next section.
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3.2. Closed-Form Solutions for Hara Utility

To obtain the optimal strategy, we solve HJBI Equation (16) (for additional details,
refer to Appendix A). The main proposition is presented below.

Proposition 1. Assume that β < 0, φ > 0, and φ �= γ − 1. The solution to Problem (16) is
as follows:

1. The indirect utility function of an ambiguity and risk averse investor is given by

J(x, S, t) =

(
x− Fe−r(T−t)

)γ

γ
g1/α(S, T − t), (17)

where α = γ−φ
γ(φ−γ+1) , and we have the following properties:

(a) Function g(S, T − t) is determined by solving the Cauchy problem:

⎧⎨⎩Lg ≡ −gt +
1
2 σ2S2β+2gss + αS

(
r γ(φ−γ+1)

γ−φ + λ̄γσS2β

γ−φ

)
gs +

αγ
(

λ̄Sβ
)2

2(φ−γ+1) g + αγrg = 0,

g(S, 0) = 1 when t = T.
(18)

(b) Solution g(S, T − t) can be represented as:

g(S, T − t) = eRτ̃+zB(τ̃)Dδ(τ̃) Γ(η−δ+1/2)
Γ(1+2η)

e− z
2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃)), (19)

where z = ωS−2β, τ̃ = σ2β2ω(T − t), Γ(x) is the gamma function, Mδ,η(x) is the
Whittaker function with parameters

δ = −1
2
− 1

2β

(
1
2
− αλ̄γ

σ(γ− φ)

)
, η =

√(
δ +

1
2

)2
+

αγλ̄2

4σ2β2(γ− φ− 1)
.

Meanwhile, the remaining constants and functions are given by

ω = r
σ2|β| , Q = r

σ2βω
, R = rαγ

σ2β2ω
− 2Qδ, (20)

A(τ̃) = 1
2 sinh2 τ̃(coth τ̃+Q)

, B(τ̃) = Q2−1
2(coth τ̃+Q)

, D(τ̃) = Q2−1
4A(τ̃)B(τ̃) . (21)

2. The optimal exposure to the risk factor Zt is

θ∗ = (x−Fe−r(T−t))Sβ

x

[
λ̄

φ−γ+1 + σS
(

B(τ̃) + δ+η+ 1
2

z
Mδ+1,η

(
zA(τ̃)

)
Mδ,η

(
zA(τ̃)

) ) dz
dS

]
, (22)

which is equivalent to writing

θ∗ = (x−Fe−r(T−t))Sβ

x

[
λ̄

φ−γ+1 − 2σωβS−2βB(τ̃)− 2σβ
(

δ + η + 1
2

)Mδ+1,η

(
ωA(τ̃)S−2β

)
Mδ,η

(
ωA(τ̃)S−2β

) ]. (23)

3. The worst-case measure is determined by:

es∗ =
φλ̄Sβ

φ− γ + 1
+

φσSβ+1

γ− φ

[
B(τ̃) +

δ + η + 1
2

z
Mδ+1,η

(
zA(τ̃)

)
Mδ,η
(
zA(τ̃)

) ] dz
dS

, (24)

which can also be written as follows:

es∗ = φλ̄Sβ

φ−γ+1 + φσSβ

φ−γ

[
−2ωβS−2βB(τ̃)− 2β(δ + η + 1

2 )
Mδ+1,η

(
ωA(τ̃)S−2β

)
Mδ,η

(
ωA(τ̃)S−2β

) ]. (25)
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Proof. The proof is divided into several steps, all of which are presented in Appendix A.
Appendix A.1 derives the solution to the HJBI equation up to the Cauchy representa-

tion of g.
Appendix A.2 details the solution to the Cauchy equation. In particular, Appendix A.2.1

provides the scaling transformations needed to obtain an equation for a new function h.
Appendix A.2.2 finds the PDE for h. Appendix A.2.3 applies a Laplace transform to solve
the PDE for h. Appendix A.2.4 combines all results to obtain g. Lastly, Appendix A.2.5
computes a ratio involving derivatives of g needed for the next step.

Appendix A.3 uses the previous results to derive the optimal exposure and worst-case
measure, denoted as θ∗ and es∗ , respectively, which are dedicated to the Whittaker function.

As indicated by reference [6], in the absence of ambiguity and for CRRA, it is cru-
cial to emphasize that assuming a risk-free interest rate r of zero leads to the following
simplifications:

ω = z = τ̃ = 0,
Q = R = 0.

Meanwhile, the limit values from the expressions (21) are provided by:

limω−→0 D(τ̃) = 1,
limω−→0 zB(τ̃) = 0,
limω−→0 Rτ̃ = 0,

ϕ(S, t) := limω−→0 zA(τ̃) = 1
2 σ−2β−2S−2β(T − t)−1.

Consequently, function g(S, t) in Proposition 1 can be simplified, resulting in the
following corollary.

Corollary 1. Assume that the risk-free interest rate of r = 0, β < 0, φ > 0, and φ �= γ− 1.

1. The indirect utility function is given by:

J(x, S, t) =
(x− F)γ

γ
g1/α(S, T − t), α =

γ− φ

γ(φ− γ + 1)
, (26)

and we have the following properties:

(a) Function g(S, T − t) solves the Cauchy problem⎧⎨⎩Lg ≡ −gt +
1
2 σ2S2β+2gss +

αλ̄γσS2β+1

γ−φ gs +
αγ
(

λ̄Sβ
)2

2(φ−γ+1) g = 0,

g(S, 0) = 1.
(27)

(b) Solution g(S, T − t) is given by

g(S, T − t) =
Γ(η − δ + 1/2)

Γ(1 + 2η)
e−

1
2 ϕ(S,t)ϕδ(S, t)Mδ,η(ϕ(S, t)), (28)

where Γ(x) is the gamma function, Mδ,η(x) is the Whittaker function with parameters

δ = −1
2
− 1

2β

(
1
2
− αλ̄γ

σ(γ− φ)

)
, η =

√(
δ +

1
2

)2
+

αγλ̄2

4σ2β2(γ− φ− 1)
,

and there is a limit value

ϕ(S, t) = lim
ω−→0

zA(τ̃) =
1
2

σ−2β−2S−2β(T − t)−1. (29)
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2. The optimal exposure is determined by:

θ∗ = (x− F)Sβ

x

[
λ̄

φ− γ + 1
− 2σβ(δ + η +

1
2
)

Mδ+1,η
(

ϕ(S, t)
)

Mδ,η
(

ϕ(S, t)
) ]. (30)

3. The worst-case measure can be obtained as:

es∗ =
φλ̄Sβ

φ− γ + 1
− 2φσβSβ(δ + η + 1

2 )

γ− φ

Mδ+1,η
(

ϕ(S, t)
)

Mδ,η
(

ϕ(S, t)
) . (31)

Proof. The proof is available in Appendix A.4.

For further simplicity, we set F equal to 0; this would effectively be a CRRA utility
setting. Assuming a risk-free interest rate of r = 0, we obtain an even simpler case.

Corollary 2. Consider risk-free interest rates of r = 0, β < 0, φ > 0, and φ �= γ− 1. We have
the following properties.

1. The indirect utility function of an ambiguity and risk averse investor is given by:

J(x, S, t) =
xγ

γ
g1/α(S, T − t), α =

γ− φ

γ(φ− γ + 1)
, (32)

where the function g(S, t) is identical to those in parts (a) and (b) of Corollary 1.

2. The optimal exposure to the risk factor Zt is determined by:

θ∗ = λ̄Sβ

φ− γ + 1
− 2σβSβ(δ + η +

1
2
)

Mδ+1,η
(

ϕ(S, t)
)

Mδ,η
(

ϕ(S, t)
) . (33)

Proof. The proofs are analogous to those presented in Corollary 1.

Note that the Cauchy problem and worst-case scenario are the same as those in Corollary 1

3.3. Corrections to the Crra Case

Our work extends the results of the previous study in presented in reference [14] and in
the formal publications [6]. However, discrepancies were identified in the Cauchy problem
(2.13), as well as in parameters (3.5) and (3.6). This is related to Theorems 1 and 2 in the
manuscript [6]. In this section, we address and rectify these inaccuracies by amalgamating
the corrections for the aforementioned issues.

Corollary 3. (Correction) For the M-CEV model, the value function J(x, S, t) is given by:

J(x, S, t) =
xγ

γ
f

1
δ (S, t), δ =

1
1− γ

.

1. The function f solves the Cauchy problem,

{
L f (S, t) ≡ ft +

a2S2β+2

2 fss + δS
(
α− γr + ca2S2β

)
fs +

δ(δ−1)
2a2

[
(α− r)S−β + ca2Sβ

]2 f + rγδ f = 0,
f (S, T) = 1.

(34)

2. The solution of boundary-value problem (34) is the function

f (S, t) = eRτ+zB(τ)Dλ(τ)
Γ(η − λ + 1

2 )

Γ(1 + 2η)
e−

zA(τ)
2 (zA(τ))λ Mλ,η(zA(τ)), (35)
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where z = ΛS−2β, τ = a2β2Λ(T− t), Γ(z) is the gamma function, Mλ,η(z) is the Whittaker
function with parameters

λ = −1
2
− 1

2β

(
1
2
− δc
)

, η =

√(
λ +

1
2

)2
+

δ(1− δ)c2

4β2 .

The remaining constants and functions are given by:

Λ =
√

δ
a2|β|
√

α2 − γr2, Q = δ(α−γr)
Λa2β

, R = rγδ
a2β2Λ − 2Qλ− δ(1−δ)(α−r)c

Λa2β2 ,

A(τ) = 1
2 sinh2 τ(coth τ+Q)

, B(τ) = Q2−1
2(coth τ+Q)

, D(τ) = Q2−1
4A(τ)B(τ) .

3. The optimal investor strategy is:

π∗(X, S, t) = X
[

δ α−r+ca2S2β

a2S2β+1 +

(
B(τ) +

(
λ+η+ 1

2

)
Mλ+1,η

(
A(τ)z

)
zMλ,η

(
A(τ)z

) )
dz
dS

]
. (36)

Based on the remark in reference [6], and assuming that α = r
√

γ, it is easy to see that

α2 − γr2 = 0. Consequently, Λ =
√

δ
a2|β|
√

α2 − γr2 = 0. Therefore, the corrected outcomes
are as follows:

Corollary 4. If α = r
√

γ, Formulas (35) and (36) are simplified. In this case, the following
properties exist:

1.
Λ = τ = z = 0,

and the limit values are

limΛ−→0 D(τ) = 1, θ(S, t) = limΛ−→0 zA(τ) = 0.5a−2β−2S−2β(T − t)−1,

Ω(S, t) = limΛ−→0 zB(τ) = 1
2S2β

δ2(α−γr)2(T−t)

a2
[

1+βδ(α−γr)(T−t)
] ,

Ψ(t) = limΛ−→0 Rτ = rγδ(T − t)− 2δβλ(α− γr)(T − t)− δ(1−δ)c(α−r)(T−t)
a2 .

2. The solution f (S, t) is given by:

f (S, t) =
Γ(η − λ + 1

2 )

Γ(1 + 2η)
eΨ(t)+Ω(S,t)− 1

2 θ(S,t)θλ(S, t)Mλ,η(θ(S, t)). (37)

3. The optimal policy is:

π∗(X, S, t) = X

[
δ

α− r + ca2S2β

a2S2β+1 − 2β
(
λ + η + 1

2
)

S
Mλ+1,η

(
θ(S, t)

)
Mλ,η

(
θ(S, t)

) ].

4. Discussion

Our findings reveal closed-form solutions to all elements of interest to a financial
investor: optimal investment allocation on the risky asset, optimal alternative model due
to ambiguity, optimal wealth process evolution, and finally, the expression for the value
function (i.e., the value of the objective function at the optimal). This is very rare outside
exponentially linear structures, which are also known as affine solutions.

Our choice of model, the M-CEV, has the advantage of keeping only one source of risk,
and therefore, a lower parametric space; this is ideal for practitioners, always searching for
a combination of realism and simplicity.

Our methodology to find the solution involved many transformations of the original
PDE problem (from the HJBI equation), resulting in analytical expressions for a non-trivial
Cauchy problem. The details provided in our work can serve as a foundation for future
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research in dealing with complex PDEs and boundary conditions. Thanks to the detailed
analysis, we could detect and correct problems in previously known solutions to embedded
problems (M-CEV in the absence of ambiguity with a CRRA utility).

This work has the potential for many extensions and applications. First, other CEV
models in the literature have provided solutions (in some cases, approximations) to the
embedded problem of CRRA with no ambiguity. The methodology developed here can be
used to solve such problems analytically, while extending to HARA and ambiguity. Once
this is achieved, an empirical comparison would help shed light on the importance of the
various models in the presence/absence of ambiguity as well as in the presence/absence of
a floor on wealth (HARA versus CRRA).
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Appendix A. Proof of Proposition 1

Appendix A.1. Proof of Proposition 1 up to the Cauchy Equation

We now solve the HJBI Equation (16) to determine the optimal investment strategy in
the M-CEV model. To facilitate the solution later, we parameterize the change in measure,
defined as

εt :=
eS

t

Sβ
t

.

The modified SDEs (6) and (15) can be rewritten as

dSt

St
=
[
r +
(
λ̄− εt

)
σS2β

t

]
dt + σSβ

t dZt, (A1)

dXt = Xt

(
r + λ̄θtS

β
t − εtθtS

β
t

)
dt + θtXtdZt

= Xt

(
r + (λ̄− εt)θtS

β
t

)
dt + θtXtdZt. (A2)

Accordingly, the HJBI Equation (16) becomes

sup
θ

inf
ε

{
Jt + x

(
r + λ̄Sβθ − εSβθ

)
Jx +

1
2

x2θ2 Jxx

+
(

rS + λ̄σS2β+1 − εσS2β+1
)

Js +
1
2

σ2S2β+2 Jss + xσSβ+1θ Jxs +
(εSβ)2

2Ψ

}
= 0. (A3)

First and foremost, we begin by solving the minimization problem as follows:

− xSβθ Jx − σS2β+1 Js +
εS2β

Ψ
= 0

=⇒ ε∗ = Ψ
(
xθS−β Jx + σSJs

)
. (A4)
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Substituting the value of ε∗ into Equation (A3) yields

sup
θ

{
Jt +
(

xr + xλ̄Sβθ − xΨ
(
xθS−β Jx + σSJs

)
Sβθ
)

Jx +
1
2

x2θ2 Jxx

+
[
rS + λ̄σS2β+1 −Ψ

(
xθS−β Jx + σSJs

)
σS2β+1

]
Js +

1
2

σ2S2β+2 Jss + xσSβ+1θ Jxs

+
Ψ2(xθS−β Jx + σSJs

)2S2β

2Ψ

}
= 0

=⇒ sup
θ

{
Jt + xrJx + xλ̄Sβθ Jx −Ψx2θ2 J2

x −ΨxσθSβ+1 Js Jx +
1
2

x2θ2 Jxx

+ rSJs + λ̄σS2β+1 Js −ΨxσθSβ+1 Jx Js −Ψσ2S2β+2 J2
s +

1
2

σ2S2β+2 Jss + xσSβ+1θ Jxs

+
Ψ
2

(
x2θ2 J2

x + σ2S2β+2 J2
s + 2xθσSβ+1 Jx Js

)}
= 0. (A5)

Applying the Bellman principle, the value function satisfies the HJBI equation with the

terminal condition J(x, T) = (x−F)γ

γ . Since Ψ = φ
γJ where φ > 0 (as shown in Formula (9)),

substituting this into Equation (A5) results in

sup
θ

{
Jt + xrJx + xλ̄Sβθ Jx − 1

2
φ

γJ
x2θ2 J2

x −
φ

γJ
xσθSβ+1 Js Jx +

1
2

x2θ2 Jxx

+ rSJs + λ̄σS2β+1 Js − 1
2

φ

γJ
σ2S2β+2 J2

s +
1
2

σ2S2β+2 Jss + xσSβ+1θ Jxs

}
= 0. (A6)

Hence, the first-order conditions lead to

xλ̄Sβ Jx − φ

γJ
x2 J2

xθ − φ

γJ
xσSβ+1 Js Jx + x2 Jxxθ + xσSβ+1 Jxs = 0

⇐⇒ θ =
xλ̄Sβ Jx − φ

γJ xσSβ+1 Js Jx + xσSβ+1 Jxs
φ
γJ x2 J2

x − x2 Jxx

=
γλ̄Sβ Jx J − φσSβ+1 Js Jx + γσSβ+1 Jxs J

φxJ2
x − γxJxx J

. (A7)

Now, substituting back into Equation (A6) gives

Jt + xrJx +
γλ̄2S2β Jx J − φλ̄σS2β+1 Js Jx + γλ̄σS2β+1 Jxs J

φJ2
x − γJxx J

Jx

− 1
2

φ

γJ

(
γλ̄Sβ Jx J − φσSβ+1 Js Jx + γσSβ+1 Jxs J

φJ2
x − γJxx J

)2

J2
x

− φ

γJ
γλ̄σS2β+1 Jx J − φσ2S2β+2 Js Jx + γσ2S2β+2 Jxs J

φJ2
x − γJxx J

Js Jx

+
1
2

(
γλ̄Sβ Jx J − φσSβ+1 Js Jx + γσSβ+1 Jxs J

φJ2
x − γJxx J

)2

Jxx + rSJs + λ̄σS2β+1 Js − 1
2

φ

γJ
σ2S2β+2 J2

s

+
1
2

σ2S2β+2 Jss +
γλ̄σS2β+1 Jx J − φσ2S2β+2 Js Jx + γσ2S2β+2 Jxs J

φJ2
x − γJxx J

Jxs = 0. (A8)

To find the solution, we employ the separation ansatz

J(x, S, t) =

(
x− Fe−r(T−t))γ

γ
g1/α(S, T − t), α =

γ− φ

γ(φ− γ + 1)
, (A9)
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where φ �= γ− 1, and the function g(S, T − t) satisfies the boundary condition g(S, 0) = 1
when t = T.

Thus, the derivatives of the function J(x, S, t) are computed as

Jt = −rFe−r(T−t)
(

x− Fe−r(T−t)
)γ−1

g1/α(S, T − t)

− α−1 gt(S, T − t)
g(S, T − t)

(
x− Fe−r(T−t))γ

γ
g1/α(S, T − t)

=

(
−rFe−r(T−t)γ

x− Fe−r(T−t)
− α−1 gt

g

)
J,

Jx =
(

x− Fe−r(T−t)
)γ−1

g1/α(S, T − t) =
γ

x− Fe−r(T−t)
J,

Jxx = (γ− 1)
(

x− Fe−r(T−t)
)γ−2

g1/α(S, T − t) =
γ(γ− 1)(

x− Fe−r(T−t)
)2 J,

Js = α−1 gs(S, T − t)
g(S, T − t)

(
x− Fe−r(T−t))φ−γ

φ− γ
g1/α(S, T − t) = α−1 gs

g
J,

Jss = α−1 gs

g
Js + α−1

(
gss

g
− g2

s
g2

)
J = α−2 g2

s
g2 J + α−1

(
gss

g
− g2

s
g2

)
J

=

[
(α−2 − α−1)

g2
s

g2 + α−1 gss

g

]
J,

Jxs =
γ

x− Fe−r(T−t)
Js = α−1 gs

g

(
γ

x− Fe−r(T−t)

)
J.

Referring to (A7), we denote the A and B as shown below for ease of computation:

A := γλ̄Sβ Jx J − φσSβ+1 Js Jx + γσSβ+1 Jxs J,
B := φxJ2

x − γxJxx J.

It follows that

A = γλ̄Sβ Jx J − φσSβ+1 Js Jx + γσSβ+1 Jxs J
=
(

γ

x−Fe−r(T−t)

)(
γλ̄− φσα−1S gs

g + γσα−1S gs
g

)
Sβ J2, and

B = φxJ2
x − γxJxx J

= γ2φx−γ2x(γ−1)

(x−Fe−r(T−t))
2 J2,

which implies that the optimal exposure to the risk factor Zt is given by

θ∗ = γλ̄Sβ Jx J − φσSβ+1 Js Jx + γσSβ+1 Jxs J
φxJ2

x − γxJxx J
=

A
B

=

( γ

x−Fe−r(T−t)

)(
γλ̄− φσα−1S gs

g + γσα−1S gs
g
)
Sβ J2

γ2φx−γ2x(γ−1)

(x−Fe−r(T−t))
2 J2

=

[
γλ̄Sβ − (φ− γ)σα−1Sβ+1 gs

g
]

γ(φ− γ + 1)

(
x− Fe−r(T−t)

)
x

. (A10)
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Next, we substitute (A9) and its corresponding partial differential equations into
Equation (A8) to derive (only the key steps are shown).(−rFe−r(T−t)γ

x−Fe−r(T−t) − α−1 gt
g

)
J + γxr

(x−Fe−r(T−t))
J

+

⎡⎢⎣ γλ̄2S2β γ

(x−Fe−r(T−t))
J2−(φ−γ)λ̄σα−1S2β+1 gs

g
γ

(x−Fe−r(T−t))
J2

φ γ2

(x−Fe−r(T−t))
2 J2− γ2(γ−1)

(x−Fe−r(T−t))
2 J2

⎤⎥⎦ γ

(x−Fe−r(T−t))
J

− φ
2γJ

⎡⎢⎣ γλ̄Sβ γ

(x−Fe−r(T−t))
J2−(φ−γ)σα−1Sβ+1 gs

g
γ

(x−Fe−r(T−t))
J2

φ γ2

(x−Fe−r(T−t))
2 J2− γ2(γ−1)

(x−Fe−r(T−t))
2 J2

⎤⎥⎦
2

γ2

(x−Fe−r(T−t))
2 J2

− φ
γJ

⎡⎢⎣ γλ̄σS2β+1 γ

(x−Fe−r(T−t))
J2−(φ−γ)σ2α−1S2β+2 gs

g
γ

(x−Fe−r(T−t))
J2

φ γ2

(x−Fe−r(T−t))
2 J2− γ2(γ−1)

(x−Fe−r(T−t))
2 J2

⎤⎥⎦ α−1 gs
g γ

(x−Fe−r(T−t))
J2

+ 1
2

⎡⎢⎣ γλ̄Sβ γ

(x−Fe−r(T−t))
J2−(φ−γ)σα−1Sβ+1 gs

g
γ

(x−Fe−r(T−t))
J2

φ γ2

(x−Fe−r(T−t))
2 J2− γ2(γ−1)

(x−Fe−r(T−t))
2 J2

⎤⎥⎦
2

γ(γ−1)

(x−Fe−r(T−t))
2 J

+rSα−1 gs
g J + λ̄σα−1S2β+1 gs

g J − 1
2

φ
γJ σ2α−2S2β+2 g2

s
g2 J2 + 1

2 σ2S2β+2
[
(α−2 − α−1) g2

s
g2 + α−1 gss

g

]
J

+

⎡⎢⎣ γλ̄σS2β+1 γ

(x−Fe−r(T−t))
J2−(φ−γ)σ2α−1S2β+2 gs

g
γ

(x−Fe−r(T−t))
J2

φ γ2

(x−Fe−r(T−t))
2 J2− γ2(γ−1)

(x−Fe−r(T−t))
2 J2

⎤⎥⎦ α−1 gs
g γ

(x−Fe−r(T−t))
J = 0

=⇒
(−rFe−r(T−t)γ

x−Fe−r(T−t) − α−1 gt
g

)
+ γxr

(x−Fe−r(T−t))

+

⎡⎢⎣ γλ̄2S2β γ

(x−Fe−r(T−t))
−(φ−γ)λ̄σα−1S2β+1 gs

g
γ

(x−Fe−r(T−t))

φ γ2

(x−Fe−r(T−t))
2− γ2(γ−1)

(x−Fe−r(T−t))
2

⎤⎥⎦ γ

(x−Fe−r(T−t))

− φ
2γ

⎡⎢⎣ γλ̄Sβ γ

(x−Fe−r(T−t))
−(φ−γ)σα−1Sβ+1 gs

g
γ

(x−Fe−r(T−t))

φ γ2

(x−Fe−r(T−t))
2− γ2(γ−1)

(x−Fe−r(T−t))
2

⎤⎥⎦
2

γ2

(x−Fe−r(T−t))
2

− φ
γ

⎡⎢⎣ γλ̄σS2β+1 γ

(x−Fe−r(T−t))
−(φ−γ)σ2α−1S2β+2 gs

g
γ

(x−Fe−r(T−t))

φ γ2

(x−Fe−r(T−t))
2− γ2(γ−1)

(x−Fe−r(T−t))
2

⎤⎥⎦ α−1 gs
g γ

(x−Fe−r(T−t))

+ 1
2

⎡⎢⎣ γλ̄Sβ γ

(x−Fe−r(T−t))
−(φ−γ)σα−1Sβ+1 gs

g
γ

(x−Fe−r(T−t))

φ γ2

(x−Fe−r(T−t))
2− γ2(γ−1)

(x−Fe−r(T−t))
2

⎤⎥⎦
2

γ(γ−1)

(x−Fe−r(T−t))
2

+rSα−1 gs
g + λ̄σα−1S2β+1 gs

g − 1
2

φ
γ σ2α−2S2β+2 g2

s
g2 +

1
2 σ2S2β+2

[
(α−2 − α−1) g2

s
g2 + α−1 gss

g

]
+

⎡⎢⎣ γλ̄σS2β+1 γ

(x−Fe−r(T−t))
−(φ−γ)σ2α−1S2β+2 gs

g
γ

(x−Fe−r(T−t))

φ γ2

(x−Fe−r(T−t))
2− γ2(γ−1)

(x−Fe−r(T−t))
2

⎤⎥⎦ α−1 gs
g γ

(x−Fe−r(T−t))
= 0

=⇒ −α−1 gt
g + γr +

γλ̄2S2β−(φ−γ)λ̄σα−1S2β+1 gs
g

φ−γ+1 − φ
2γ

[
γλ̄Sβ−(φ−γ)σα−1Sβ+1 gs

g
φ−γ+1

]2

− φ
γ

⎡⎣ γλ̄σα−1S2β+1 gs
g −(φ−γ)σ2α−2S2β+2 g2

s
g2

φ−γ+1

⎤⎦+ γ−1
2γ

[
γλ̄Sβ−(φ−γ)σα−1Sβ+1 gs

g
φ−γ+1

]2

+
(
rSα−1 + λ̄σα−1S2β+1) gs

g − 1
2

(
φ
γ σ2α−2S2β+2 − σ2α−2S2β+2 + σ2α−1S2β+2

)
g2

s
g2

+ 1
2 σ2α−1S2β+2 gss

g +
γλ̄σα−1S2β+1 gs

g −(φ−γ)σ2α−2S2β+2 g2
s

g2

φ−γ+1 = 0
=⇒ −α−1 gt

g + γr +
(
rSα−1 + λ̄σα−1S2β+1) gs

g + 1
2 σ2α−1S2β+2 gss

g

+

(
γ2λ̄2S2β + (γ− φ)2σ2α−2S2β+2 g2

s
g2 + 2γλ̄(γ− φ)σα−1Sβ+1 gs

g

)
1

2γ(φ−γ+1)

− 1
2

(
φ
γ σ2α−2S2β+2 − σ2α−2S2β+2 + σ2α−1S2β+2

)
g2

s
g2 = 0

=⇒ − gt
g + 1

2 ασ2α−1S2β+2 gss
g + α

(
rSα−1 + λ̄σα−1S2β+1

φ−γ+1

)
gs
g + α

γ
(

λ̄Sβ
)2

2(φ−γ+1) + αγr

+α
[
(γ−φ)σ2α−2S2β+2

2γ(φ−γ+1) − 1
2 σ2α−1S2β+2

]
g2

s
g2 = 0
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=⇒ −gt +
1
2

σ2S2β+2gss + αS
(

r
γ(φ− γ + 1)

γ− φ
+

λ̄σγS2β

γ− φ

)
gs +

αγ
(
λ̄Sβ
)2

2(φ− γ + 1)
g + αγrg = 0, (A11)

where φ− γ + 1 �= 0, and the boundary condition is g(S, 0) = 1.
Notably, when φ = 0, Equation (A11) is simplified to the following form:

−gt +
1
2

σ2S2β+2gss + αS
(

r− γr + λ̄σS2β
)

gs +
α(α− 1)

2
(
λ̄Sβ
)2g + rγαg = 0 (A12)

where 1− γ �= 0. This corresponds to the corrected Cauchy problem (34) in Corollary 3
which was also documented in the reference [14]. The following notations are used from
the source to our notation: a = σ, δ = α, α = r, and c = λ̄

σ . Thus, our robustness problem
can be reduced to a non-robust scenario within the context of the M-CEV model by forcing
et = 0 or equivalently φ = 0.

In accordance with Theorem 2 from the reference [6], we can establish that function
g(S, T − t) satisfies the Cauchy problem defined by Equation (A11) when the terminal
function is set as g(S, 0) = 1. To facilitate a connection to the source, we can define
f (S, t) = g(S, T − t). The Cauchy problem (A11) can be rewritten as⎧⎨⎩L f (S, t) ≡ ft +

1
2 σ2S2β+2 fss + αS

(
r γ(φ−γ+1)

γ−φ + λ̄γσS2β

γ−φ

)
fs +

αγ
(

λ̄Sβ
)2

2(φ−γ+1) f + αγr f = 0,

f (S, T) = 1.
(A13)

Appendix A.2. Solving Cauchy Problem (A13) for the M-CEV Case with Ambiguity

Appendix A.2.1. Scaling Transformation

In Appendix A.1, we derive the Cauchy problem (A13). Assume that f (S, t) is the
solution to Cauchy problem (A13). To simplify our analysis, we introduce scaled space and
inverse variables, denoted as z and τ̃, respectively. At first, let

z = ωSx =⇒ S =
( z

ω

) 1
x , ω =?, τ̃ = B(T − t) =⇒ t = T − τ̃

B ,
∂z
∂S = xωSx−1, ∂τ̃

∂t = −B,
∂
∂t f = ∂

∂τ̃ f ∂τ̃
∂t = −B ∂

∂τ̃ f ,
∂

∂S f = ∂
∂z f ∂z

∂S = xωSx−1 ∂
∂z f = xω

( z
ω

)1− 1
x ∂

∂z f = xω
1
x z1− 1

x ∂
∂z f ,

∂2

∂S2 f = xω
1
x

(
z1− 1

x ∂
∂z f
)

S
= xω

1
x

[
z1− 1

x

(
∂
∂z f
)

S
+ ∂

∂z f
(

z1− 1
x

)
S

]
= xω

1
x

[
z1− 1

x ∂2

∂z2 f ∂z
∂S + ∂

∂z f
(

1− 1
x

)
z1− 1

x−1 ∂z
∂S

]
= x2ω

2
x z2− 2

x ∂2

∂z2 f +
(
x2 − x

)
ω

2
x z1− 2

x ∂
∂z f .

According to (A13), the scaling transformed PDE of f (S, t) is given by (only the key steps
are shown):

∂
∂t f (S, t) + 1

2 σ2S2β+2 ∂2

∂S2 f (S, t) + αS
(

rα−1 + λ̄γσ
γ−φ S2β

)
∂

∂S f (S, t)

+ αγλ̄2

2(φ−γ+1)S2β f (S, t) + αγr f (S, t) = 0

=⇒ (−B) ∂
∂τ̃ f
(( z

ω

) 1
x , T − τ̃

B

)
+ σ2

2
( z

ω

) 1
x (2β+2)x2ω

2
x z2− 2

x ∂2

∂z2 f
(( z

ω

) 1
x , T − τ̃

B

)
+ σ2

2
( z

ω

) 1
x (2β+2)(x2 − x

)
ω

2
x z1− 2

x ∂
∂z f
(( z

ω

) 1
x , T − τ̃

B

)
+

[
α
( z

ω

) 1
x rα−1 + α

( z
ω

) 1
x λ̄γσ

γ−φ

( z
ω

) 2β
x

]
xω

1
x z1− 1

x ∂
∂z f
(( z

ω

) 1
x , T − τ̃

B

)
+ αγλ̄2

2(φ−γ+1)

( z
ω

) 2β
x f
(( z

ω

) 1
x , T − τ̃

B

)
+ αγr f

(( z
ω

) 1
x , T − τ̃

B

)
= 0
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=⇒B
∂

∂τ̃
f

(( z
ω

) 1
x , T − τ̃

B

)
− σ2

2
x2ω

2
x− 1

x (2β+2)z
1
x (2β+2)+2− 2

x
∂2

∂z2 f

(( z
ω

) 1
x , T − τ̃

B

)

− σ2

2

(
x2 − x

)
ω

2
x− 1

x (2β+2)z
1
x (2β+2)+1− 2

x
∂

∂z
f

(( z
ω

) 1
x , T − τ̃

B

)

−
(

rxz + xω−
2β
x z1+ 2β

x
αλ̄γσ

γ− φ

)
∂

∂z
f

(( z
ω

) 1
x , T − τ̃

B

)

− αγλ̄2

2(φ− γ + 1)
ω−

2β
x z

2β
x f

(( z
ω

) 1
x , T − τ̃

B

)
− αγr f

(( z
ω

) 1
x , T − τ̃

B

)
= 0. (A14)

Denote

F(z, τ̃) := f

(( z
ω

) 1
x , T − τ̃

B

)
,

and then Equation (A14) can be rewritten as

∂

∂τ̃
F(z, τ̃)− σ2

2B
x2ω−

2β
x z

2β
x +2︸ ︷︷ ︸

term 2

∂2

∂z2 F(z, τ̃)

−
[

σ2

2B

(
x2 − x

)
ω−

2β
x z

2β
x +1 +

1
B

(
rxz + xω−

2β
x z1+ 2β

x
αλ̄γσ

γ− φ

)]
︸ ︷︷ ︸

term 3

∂

∂z
F(z, τ̃)

−
[

αγλ̄2

2B(φ− γ + 1)
ω−

2β
x z

2β
x +

αγr
B

]
︸ ︷︷ ︸

term 4

F(z, τ̃) = 0. (A15)

To make Equation (A15) simplest, we assume

x = −2β

so that z
2β
x +1 = z−1+1 = z0 = 1 in term 3. Thus, the spatial variables can be scaled as

z = ωS−2β =
ω

S2β
,

where ω is an unknown parameter. We will determine it later.
As a result, Equation (A15) can be rewritten as

∂

∂τ̃
F(z, τ̃)− 2σ2β2ω

B
z︸ ︷︷ ︸

term 2

∂2

∂z2 F(z, τ̃)−
[

σ2(4β2 + 2β
)

2B
ω− 2βrz

B
− 2βωαλ̄γσ

B(γ− φ)

]
︸ ︷︷ ︸

term 3

∂

∂z
F(z, τ̃)

−
[

αγλ̄2

2B(φ− γ + 1)
ωz−1 +

αγr
B

]
︸ ︷︷ ︸

term 4

F(z, τ̃) = 0. (A16)

To simplify Equation (A16), we assume B = σ2β2ω. That is, we can scale the inverse
time variable as follows:

τ̃ = σ2β2ω(T − t).
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Therefore, the PDE for (A16) can be expressed as

∂

∂τ̃
F(z, τ̃)− 2z

∂2

∂z2 F(z, τ̃)−
[

2β + 1
β

− 2r
σ2βω

z− 2αλ̄γ

σβ(γ− φ)

]
∂

∂z
F(z, τ̃)

−
[

αγλ̄2

2σ2β2(φ− γ + 1)
z−1 +

αγr
σ2β2ω

]
F(z, τ̃) = 0. (A17)

We determined two scaled variables, z and τ̃. However, we have not yet specified
parameter ω. We require this degree of freedom to simplify the PDEs.

Appendix A.2.2. Finding the Representation of f (S, t) and the PDE of the Function h

In Appendix A.2.1, we discuss how to determine the two scaled variables z and τ̃.
For convenience, we use these two scaled space and inverse time variables, i.e.,

z =
ω

S2β
, τ̃ = σ2β2ω(T − t), ω =?

in the process of solving the Cauchy problem (A13).
As per Equation (A17), if denoted as

F(z, τ̃) := f (S, t) = f

((ω

z

) 1
2β , T − τ̃

a2β2ω

)
.

we then re-express (A13) as⎧⎪⎪⎨⎪⎪⎩
∂

∂τ̃ F(z, τ̃)− 2z ∂2

∂z2 F(z, τ̃)−
[

2β+1
β − 2r

σ2βω
z− 2αλ̄γ

σβ(γ−φ)

]
∂
∂z F(z, τ̃)

−
[

αγλ̄2

2σ2β2(φ−γ+1) z−1 + αγr
σ2β2ω

]
F(z, τ̃) = 0,

F(z, 0) = 1. when τ̃ = 0.

(A18)

To solve (A18) with the initial function F(z, 0) = 1 , we employ the Laplace transfor-
mation method to find its solution. The following steps outline this process:

Step I: Assume that the solution f (S, t) for the Cauchy problem is represented as fol-
lows:

f (S, t) := F(z, τ̃) = zδ exp{c + xτ̃ + yz}h(z, τ̃). (A19)

At this point, the parameters δ, c, x and y are currently considered to be unknown,
and their expression or values will be determined later.

From (A19) we have

∂

∂τ̃
F = xF + zδ exp

{
c + x ˜̃τ + yz

} ∂

∂τ
h = xF + zδ exp{c + xτ̃ + yz}h

1
h

∂

∂τ̃
h

=

(
x +

hτ̃

h

)
F,

∂

∂z
F = zδ exp{c + xτ̃ + yz} ∂

∂z
h + yF + δzδ−1 exp{c + xτ̃ + yz}h

=

(
hz

h
+ y +

δ

z

)
F,

∂2

∂z2 F =

(
1
h

∂

∂z
h + y +

δ

z

)2
F +

(
∂

∂z

(
1
h

∂

∂z
h
)
− δ

z2

)
F

=

[
y2 + 2y

δ

z
+

(
δ2 − δ

)
z2 +

(
2y + 2

δ

z

)
hz

h
+

hzz

h

]
F.
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Substituting these into (A18) and dividing by F to yield(
x + hτ̃

h

)
− 2z
[

y2 + 2y δ
z +

(δ2−δ)
z2 +

(
2y + 2 δ

z

)
hz
h + hzz

h

]
−
[

2β+1
β − 2r

σ2βω
z− 2αλ̄γ

σβ(γ−φ)

](
hz
h + y + δ

z

)
−
[

αγλ̄2

2σ2β2(φ−γ+1) z−1 + αγr
σ2β2ω

]
= 0.

Multiplying by h gives:

hzz − 1
2z

[(
2r

σ2βω
− 4y

)
z +

2αλ̄γ

σβ(γ− φ)
− 2β + 1

β
− 4δ

]
hz (A20)

+

⎡⎣ (2y2 − 2ry
σ2βω

)
1
2 +
[
2(δ2 − δ) + αγλ̄2

2σ2β2(φ−γ+1) +
(2β+1)δ

β − 2αλ̄γδ
σβ(γ−φ)

]
1

2z2

+
(

4yδ− x + αrγ
σ2β2ω

+ y 2β+1
β − 2rδ

σ2βω
− y 2αλ̄γ

σβ(γ−φ)

)
1
2z

⎤⎦h =
1
2z

hτ̃ .

Step II: The goal is to cancel the hz term:
In order to eliminate the term of hz, we set(

2r
σ2βω

− 4y
)

z +
2αλ̄γ

σβ(γ− φ)
− 2β + 1

β
− 4δ = 0.

This can be achieved by choosing appropriate values for δ and Q:

2αλ̄γ

σβ(γ− φ)
− 2β + 1

β
− 4δ = 0

=⇒ δ =
2αλ̄γ

4σβ(γ− φ)
− 2β + 1

4β
=

αλ̄γ

2σβ(γ− φ)
− 1

2
− 1

4β

= −1
2
− 1

4β
+

αλ̄γ

2σβ(γ− φ)

=⇒ δ = −1
2
− 1

2β

(
1
2
− αλ̄γ

σ(γ− φ)

)
, (A21)

and

2r
σ2βω

− 4y = 0

=⇒ y =
2r

4σ2βω
=

1
2

r
σ2βω

.

We denote

Q :=
r

σ2βω
. (A22)

Then,

y =
1
2

Q (A23)
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Remark A1. When φ = 0 (i.e., without ambiguity), the parameters δ and Q in (A21) and (A22)
are identical to those presented in the reference [6]. Specifically, referring to [6], these two parameters
were defined as follows:

λ = − 1
2 − 1

2β

(
1
2 − δc

)
,

Q = δ(α−γr)
Λa2β

.

It should be noted that the expressions for δ and Q mentioned above correspond to the definitions
provided in the reference [6]

We substitute (A21)–(A23), into Equation (A20) to obtain:

hzz − 1
2z

[(
2r

σ2βω
− 2Q

)
z +

2αλ̄γ

σβ(γ− φ)
− 2β + 1

β
− 4δ

]
hz︸ ︷︷ ︸

term 2

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
Q2

2
− rQ

σ2βω

)
1
2︸ ︷︷ ︸

term 3

+

[
2(δ2 − δ) +

αγλ̄2

2σ2β2(φ− γ + 1)
+

(2β + 1)δ
β

− 2αλ̄γδ

σβ(γ− φ)

]
1

2z2︸ ︷︷ ︸
term 4

+

(
2Qδ− x +

αrγ

σ2β2ω
+ Q

2β + 1
2β

− 2rδ

σ2βω
−Q

2αλ̄γ

2σβ(γ− φ)

)
1
2z︸ ︷︷ ︸

term 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
h = 1

2z hτ̃ .

Based on the previous steps, it is clear that the coefficient of hz is zero, allowing us to
eliminate term 2. Therefore, the above equation can be expressed as

hzz +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
Q2

2
− rQ

σ2βω

)
1
2︸ ︷︷ ︸

term 3

+

[
2(δ2 − δ) +

αγλ̄2

2σ2β2(φ− γ + 1)
+

(2β + 1)δ
β

− 2αλ̄γδ

σβ(γ− φ)

]
1

2z2︸ ︷︷ ︸
term 4

+

(
2Qδ− x +

αrγ

σ2β2ω
+ Q

2β + 1
2β

− 2rδ

σ2βω
−Q

2αλ̄γ

2σβ(γ− φ)

)
1
2z︸ ︷︷ ︸

term 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
h =

1
2z

hτ̃ . (A24)

Step III: Now, we have an unknown parameter ω in term 3. It has been observed that
we can choose an appropriate parameter ω to transform Equation (A24), which governs
the function h, into the well-known Whittaker equation. Hence, we assume that term 3 is
equal to − 1

4 , i.e., (
Q2

2
− rQ

σ2βω

)
1
2
= −1

4

=⇒Q2

2
− rQ

σ2βω
= −1

2

=⇒
(

Q2

2
+

1
2

)
− rQ

σ2βω
= 0. (A25)

It is known that Q = r
σ2βω

in (A22). Substituting this into Equation (A25) yields

r2

2σ4β2ω2 +
1
2
−

r r
σ2βω

σ2βω
= 0

=⇒ω =
r

σ2 | β | , (A26)

where the parameter ω is determined.
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Remark A2. With the correspondence in notation from the source to our notation α = r, δ = α and
Λ = ω, the formula for the parameter ω in our M-CEV case is the same as that in the reference [6].
In that study, the Λ is given by

Λ =

√
δ(α2 − γr2)

a4β2 =

√
δ

a2 | β |
√

α2 − γr2.

Step IV: To determine that the coefficient in term 4 is appropriate for Equation (A24),
we begin by assuming that the coefficient of z−2 in term 4 is represented by an unknown
parameter, denoted as k. That is

k =
1
2

(
2(δ2 − δ) +

αγλ̄2

2σ2β2(φ− γ + 1)
+

(2β + 1)δ
β

− 2αλ̄γδ

σβ(γ− φ)

)
(A27)

= δ2 − δ +
αγλ̄2

4σ2β2(φ− γ + 1)
+

(2β + 1)δ
2β

− 2αλ̄γδ

2σβ(γ− φ)
. (A28)

Due to δ = αλ̄γ
2σβ(γ−φ)

− 2β+1
4β , we have from Equation (A28)

k = δ2 − δ−
[

2
αλ̄γδ

2σβ(γ− φ)
− 2

(2β + 1)
4β

δ

]
+

αγλ̄2

4σ2β2(φ− γ + 1)

= −δ2 − δ +
αγλ̄2

4σ2β2(φ− γ + 1)

=⇒ 1
4
− k =

(
δ +

1
2

)2
+

αγλ̄2

4σ2β2(γ− φ− 1)
. (A29)

To obtain the form of the Whittaker equation, we introduce a new parameter η
defined as

η2 =

(
δ +

1
2

)2
+

αγλ̄2

4σ2β2(γ− φ− 1)

=⇒ η =

√(
δ +

1
2

)2
+

αγλ̄2

4σ2β2(γ− φ− 1)
. (A30)

Accordingly, we rewrite Equation (A29) as

1
4 − k = η2

=⇒ k = 1
4 − η2,

which implies that Equation (A27) can be expressed as

1
2

(
2(δ2 − δ) +

αγλ̄2

2σ2β2(φ− γ + 1)
+

(2β + 1)δ
β

− 2αλ̄γδ

σβ(γ− φ)

)
=

1
4
− η2.

Remark A3. When φ = 0, the parameter η (see Formula (A30)) is different from the reference [6]:

η =

√(
λ +

1
2

)2
+

δ(1− δ)c2

4a4β2 .

This is because of the difference in the Cauchy problem.
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Step V: We aim to make the coefficient of z−1 zero in term 5 by selecting an appropriate
parameter, x in Equation (A24). To determine the appropriate parameter x, we initially
assume that the coefficient of term 5 is equal to zero, which can be expressed as[

2Qδ− x +
αrγ

σ2β2ω
+ Q

2β + 1
2β

− 2rδ

σ2βω
−Q

2αλ̄γ

2σβ(γ− φ)

]
1
2
= 0

=⇒x = 2Qδ +
αγ

σ2β2ω
r− 2Q

αλ̄γ

2σβ(γ− φ)
+ Q

2β + 1
2β

− 2
rδ

σ2βω
. (A31)

From (A21) and (A22), we know that δ = αλ̄γ
2σβ(γ−φ)

− 2β+1
4β and Q = r

σ2βω
, then

Equation (A31) can be written as

x = 2Qδ + αγ
σ2β2ω

r− 2Q αλ̄γ
2σβ(γ−φ)

+ 2Q 2β+1
4β − 2 r

σ2βω
δ

= 2Qδ + αγ
σ2β2ω

r− 2Qδ− 2Qδ

= rαγ
σ2β2ω

− 2Qδ.

Denote

R∗ := −2Qδ. (A32)

This means
x =

rαγ

σ2β2ω
+ R∗.

Remark A4. When α = r, the R∗ for (A32) is not the same as the reference [6]. We obtained

R∗ = −2Qλ− δ(1− δ)(α− r)c
Λa2β2 .

As opposed to

R = −2Qλ− δ(1− δ)(α− r)c
Λa4β2 .

Next, we determine the unknown parameter c:

Let d := c + xτ̃. Because τ̃ = σ2β2ω(T − t) and the assumed representation of the
solution F(z, τ̃) is given by

F(z, τ̃) = zδ exp{c + xτ̃ + yz}h(z, τ̃)
= zδ exp{d + yz}h(z, τ̃),

then
d = c + xτ̃ = c +

(
rαγ

σ2β2ω
+ R∗

)
τ̃

= c + rαγT − rαγt + R∗τ̃.

As a result, the educated guess of c can be given by

c = −rαγT,

which implies
d = −rαγt + R∗τ̃.
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Consequently, we can represent its solution f (S, t) for the Cauchy problem as

f (S, t) = zδ exp
{
−rαγt + R∗τ̃ +

Q
2

z
}

h(z, τ̃), (A33)

where z = ωS−2β and τ̃ = σ2β2ω(T − t) with parameters

ω = r
σ2|β| , δ = − 1

2 − 1
2β

(
1
2 − αλ̄γ

σ(γ−φ)

)
,

η =

√(
δ + 1

2

)2
+ αγλ̄2

4σ2β2(γ−φ−1) ,

Q = r
σ2βω

, R∗ = −2Qδ.

After ensuring the five terms in (A24), we express the PDE for (A24) as follows:

hzz +

⎡⎣−1
4
+

(
1
4 − η2

)
z2

⎤⎦h =
1
2z

hτ̃ (A34)

with initial condition

h(z, 0) =
F(z, 0)

zδ exp
{

Q
2 (z)
} = z−δ exp

{
rαγT − Q

2
z
}

, (A35)

which indicates that Equation (A34) is a Whittaker equation. Solving the Whittaker equation
is provided below.

Let us denote the corresponding operator as

Lhh(z, τ̃) = hzz +

[
−1

4
+

(
1
4
− η2

)
1
z2

]
h− 1

2z
hτ̃ .

Appendix A.2.3. Applying the Laplace Transform G(x; ζ) to Find the Solution h(z, τ̃)

In Appendix A.2.2, we established the representation (A33) of the function f (S, t) as
follows:

f (S, t) = zδ exp
{
−rγδt + R∗τ̃ +

Q
2

z
}

h(z, τ̃),

where h(z, τ̃) is the solution to the Cauchy problem in Equation (A34). In the following
steps, our objective is to determine the solution for h(z, τ̃):

Step 1: Find the Laplace transform of h(z, τ̃), and produce its ODE.
According to the definition of the Laplace transform, we denote the Laplace transform

of h(z, τ̃) by G(z; ζ). That is,

G(z; ζ) := LLh(z, τ̃) =
∫ ∞

0
e−ζτ̃h(z, τ)dτ̃

with Re(ζ) > 0.
Using the properties of Laplace transform methods, we know that the transform of a

derivative w. r. t. z is a just differentiating the transformed function.

LLhz(z, τ̃) =
∫ ∞

0 exp{−ζτ}hz(z, τ̃)dτ

= d
dz G(z; ζ) = Gz(z; ζ),

and
LLhzz(z, τ̃) =

∫ ∞
0 exp{−ζτ̃}hzz(z, τ̃)dτ̃

= d2

dz2 G(z; ζ) = Gzz(z; ζ).
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To transform the derivative in τ̃, we use the common rules (see the reference [17])

LLhτ̃(z, τ̃) = ζG(z; ζ)− h(z, 0),

where

h(z, 0) =
F(z, 0)

zδ exp
{

Q
2 (z)
} = z−δ exp

{
rαγT − Q

2
z
}

Thus, we use the Laplace transform in Equation (A34) and produce the following ODE:

Gzz +

⎡⎣−1
4
+

(
1
4 − η2

)
z2

⎤⎦G =
1
2z

(
ζG− z−δ exp

{
rαγT − Q

2
z
})

=⇒Gzz +

⎡⎣−1
4
−

ζ
2
z
+

(
1
4 − η2

)
z2

⎤⎦G = −χ(z) (A36)

where denoting

χ(z) :=
1
2

z−1−δ exp
{

rαγT − Q
2

z
}

. (A37)

Step 2: Solve the ODE for G(z; ζ).
In ODE (A36), the homogeneous equation for G is known as the Whittaker equation:

Gzz +

⎡⎣−1
4
+
−ζ/2

z
+

(
1
4 − η2

)
z2

⎤⎦G = 0,

with two linearly independent solutions, namely the Whittaker functions M− ζ
2 ,η(z) and

W− ζ
2 ,η(z) (see the reference [18]) .

Hence, the general solution of the homogeneous equation is given by

G0(z; ζ) = C1M− ζ
2 ,η(z) + C2W− ζ

2 ,η(z).

Let us return to the non-homogeneous Equation (A36). We seek its solution in the form:

G(z; ζ) = C1(z)M− ζ
2 ,η(z) + C2(z)W− ζ

2 ,η(z). (A38)

The functions C1(z) and C2(z) can be determined from the following system of equations:⎧⎨⎩C′1(z)M− ζ
2 ,η(z) + C′2(z)W− ζ

2 ,η(z) = 0,

C′1(z)M′
− ζ

2 ,η
(z) + C′2(z)W ′

− ζ
2 ,η

(z) = −χ(z).
(A39)

We express the derivative C′1(z) from the first equation

C′1(z) = −C′2(z)
W− ζ

2 ,η(z)

M− ζ
2 ,η(z)

.
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Substituting back into the second equation, we find the derivative C′2(z):

− C′2(z)
W− ζ

2 ,η(z)

M− ζ
2 ,η(z)

M′
− ζ

2 ,η
(z) + C′2(z)W ′

− ζ
2 ,η

(z) = −χ(z)

=⇒C′2(z) = −
χ(z)M− ζ

2 ,η(z)

M− ζ
2 ,η(z)W

′
− ζ

2 ,η
(z)−W− ζ

2 ,η(z)M′
− ζ

2 ,η
(z)

. (A40)

It can be seen that the denominators M− ζ
2 ,η(z)W

′
− ζ

2 ,η
(z)−W− ζ

2 ,η(z)M′
− ζ

2 ,η
(z) in (A40)

are the Wronskians for these two Whittaker functions (see the reference [19]), which is
given by

W
{

M− ζ
2 ,η(z), W− ζ

2 ,η(z)
}

= M− ζ
2 ,η(z)W

′
− ζ

2 ,η
(z)−W− ζ

2 ,η(z)M′
− ζ

2 ,η
(z)

= − Γ(1+2η)

Γ( 1
2+η+ ζ

2 )
�= 0.

Denote
Ξ
(
− ζ

2 , η
)

:= − 1

W
{

M− ζ
2 ,η

(z),W− ζ
2 ,η

(z)
}

=
Γ( 1

2+η+ ζ
2 )

Γ(1+2η)
,

and then it follows that

M− ζ
2 ,η(z)W

′
− ζ

2 η
(z)−W− ζ

2 ,η(z)M′
− ζ

2 ,η
(z) = − 1

Ξ
(
− ζ

2 , η
) .

Thus,

C1(z) =
∫ ∞

z

χ(ψ)W− ζ
2 ,η

(ψ)

W
{

M− ζ
2 ,η

(ψ),W− ζ
2 ,η

(ψ)

}dψ = −Ξ
(
− ζ

2 , η
) ∫ ∞

z χ(ψ)W− ζ
2 ,η(ψ)dψ,

= Ξ
(
− ζ

2 , η
) ∫ z

0 χ(ψ)W− ζ
2 ,η(ψ)dψ

C2(z) = − ∫ ∞
z

χ(ψ)M− ζ
2 ,η

(ψ)

W
{

M− ζ
2 ,η

(ψ),W− ζ
2 ,η

(ψ)

}dψ = Ξ
(
− ζ

2 , η
) ∫ ∞

z χ(ψ)M− ζ
2 ,η(ψ)dψ.

From (A38) the solution G(z; ζ) can be obtained as

G(z; ζ) = C1(z)M− ζ
2 ,η(z) + C2(z)W− ζ

2 ,η(z)

= M− ζ
2 ,η(z)Ξ

(
− ζ

2
, η

) ∫ z

0
χ(ψ)W− ζ

2 ,η(ψ)dψ + W− ζ
2 ,η(z)Ξ

(
− ζ

2
, η

) ∫ ∞

z
χ(ψ)M− ζ

2 ,η(ψ)dψ

= Ξ
(
− ζ

2
, η

)(
M− ζ

2 ,η(z)
∫ z

0
χ(ψ)W− ζ

2 ,η(ψ)dψ + W− ζ
2 ,η(z)

∫ ∞

z
χ(ψ)M− ζ

2 ,η(ψ)dψ

)
. (A41)

See the references [20,21] (such as [20]: 6.669.4], the following relationship exists
between Whittaker functions and modified Bessel functions:

∫ ∞
0 e− 1

2 (a1+a2)t cosh x[coth
( x

2
)]2ν I2μ

(
t
√

a1a2 sinh x
)
dx =

Γ( 1
2+μ−ν)

t
√

a1a2Γ(1+2μ)
Wν,μ(a1t)Mν,μ(a2t),[

Re
(

1
2 + μ− ν

)
> 0, Re(μ) > 0, a1 > a2

]
.

Hence, when ν = − ζ
2 , a1t = ψ and a2t = z, we have
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Γ( 1
2+η+ ζ

2 )√
ψzΓ(1+2η)

W− ζ
2 ,η(ψ)M− ζ

2 ,η(z) =
∫ ∞

0 e− 1
2 (ψ+z) cosh Ψ

[
coth

(
Ψ
2

)]2(− ζ
2 ) I2η

(√
ψz sinh Ψ

)
dΨ

=⇒ Ξ
(
− ζ

2 , η
)

W− ζ
2 ,η(ψ)M− ζ

2 ,η(z) =
√

ψz
∫ ∞

0 e−
ψ+z

2 cosh Ψ
[
tanhζ

(
Ψ
2

)]
I2η

(√
ψz sinh Ψ

)
dΨ,[

Re
(

1
2 + η + ζ

2 )
)
> 0, Re(η) > 0, ψ > z

]
.

It follows that

G(z; ζ) = Ξ
(
− ζ

2
, η

)(
M− ζ

2 ,η(z)
∫ z

0
χ(ψ)W− ζ

2 ,η(ψ)dψ + W− ζ
2 ,η(z)

∫ ∞

z
χ(ψ)M− ζ

2 ,η(ψ)dψ

)
= Ξ
(
− ζ

2
, η

)(
M− ζ

2 ,η(z)
∫ z

0

1
2

ψ−1−δerαγT− Q
2 ψW− ζ

2 ,η(ψ)dψ + W− ζ
2 ,η(z)

∫ ∞

z

1
2

ψ−1−δerαγT− Q
2 z M− ζ

2 ,η(ψ)dψ

)
=

√
z

2

( ∫ ∞

0

∫ ∞

0

√
ψψ−1−δerαγT− Q

2 ψe−
ψ+z

2 cosh Ψ
[

tanhζ

(
Ψ
2

)]
I2η

(√
ψz sinh Ψ

)
dψdΨ

=

√
z

2
erαγT

( ∫ ∞

0

∫ ∞

0
e−

z cosh Ψ
2 ψ−

1
2−δe−

Q+cosh Ψ
2 ψ I2η

(√
ψz sinh Ψ

)
tanhζ

(
Ψ
2

)
dψdΨ. (A42)

Again, we know the relationship formula (6.643.2) in the reference [20]∫ ∞
0 xμ− 1

2 e−αx I2ν(2b
√

x)dx =
Γ(μ+ν+ 1

2 )
Γ(2ν+1) b−1e

b2
2α α−μ M−μ,ν

(
b2

α

)
,[

Re
(

μ + ν + 1
2

)
> 0
]
.

Based on (A42), we have∫ ∞

0
ψ

1
2−δe−αψ I2η

(
2λ
√

ψ
)
dψ = Ξ(δ, η)λ−1e

λ2
2α αδ Mδ,η

(
λ2

α

)
,[

Re
(

1
2
− δ + η

)
> 0
]

. (A43)

with α = cosh Ψ+Q
2 and λ =

√
z sinh Ψ

2 .
From (A42) and (A43), the representation for G(z; ζ) is given by

G(z; ζ) = erαγTΞ(δ, η)

√
z

2

( ∫ ∞

0
e−

z cosh Ψ
2 λ−1e

λ2
2α αδ Mδ,η

(
λ2

α

)
tanhζ

(
Ψ
2

)
dΨ

= erαγTΞ(δ, η)

( ∫ ∞

0
e−

z cosh Ψ
2 + z sinh2 (Ψ)

4(cosh Ψ+Q) tanhζ

(
Ψ
2

)(
cosh Ψ + Q

2

)δ

Mδ,η

(
z sinh2 Ψ

2(cosh Ψ + Q)

)
dΨ

sinh Ψ
. (A44)

Appendix A.2.4. Finding the Solution f (S, t) for the Cauchy Problem

We achieved the function G(z; ζ) as shown in (A44) in Appendix A.2.3. For conve-
nience, it can also be written as

e
Qz
2 G(z; ζ)

= erαγTΞ(δ, η)

( ∫ ∞

0
e

Qz
2 e−

z cosh Ψ
2 +2 z sinh2 (Ψ)

4(cosh Ψ+Q) e−
z sinh2 (Ψ)

4(cosh Ψ+Q) tanhζ

(
Ψ
2

)(
cosh Ψ + Q

2

)δ

Mδ,η

(
z sinh2 Ψ

2(cosh Ψ + Q)

)
dΨ

sinh Ψ
. (A45)

Let Y(Ψ) := Q
2 − cosh Ψ

2 + 2 sinh2 (Ψ)
4(cosh Ψ+Q)

, and we simplify Y(Ψ) to obtain

Y(Ψ) = Q
2 + sinh2 (Ψ)

2(cosh Ψ+Q)
− cosh Ψ

2

= Q2−1
2(cosh Ψ+Q)

.
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Thus, Equation (A45) can be expressed as

zδe
Qz
2 G(z; ζ) = erαγTΞ(δ, η)

( ∫ ∞

0
ezY(Ψ)Zδ(Ψ) tanhζ

(
Ψ
2

)
(zI(Ψ))λe−

zI(Ψ)
2 Mλ,η(zI(Ψ))

dΨ
sinh Ψ

, (A46)

where

I(Ψ) =
sinh2 Ψ

2(cosh Ψ + Q)
, Y(Ψ) =

Q2 − 1
2(cosh Ψ + Q)

, Z(Ψ) =
(cosh Ψ + Q)2

sinh2 Ψ
.

Let the integration variable v = ln tanh (Ψ
2 ). Since

dv = 1
tanh ( Ψ

2 )
d

d( Ψ
2 )

tanh
(

Ψ
2

)
d

dΨ

(
Ψ
2

)
= cosh Ψ+1

sinh Ψ
1

2 cosh2 ( Ψ
2 )

dΨ,

ev = tanh
(

Ψ
2

)
= sinh Ψ

cosh Ψ+1 = cosh Ψ−1
sinh Ψ ,

e−v =
(

tanh
(

Ψ
2

))−1
= cosh Ψ+1

sinh Ψ = sinh Ψ
cosh Ψ−1 ,

e−v − ev = sinh Ψ
cosh Ψ−1 − cosh Ψ−1

sinh Ψ = 2(cosh Ψ−1)
(cosh Ψ−1) sinh Ψ = 2

sinh Ψ ,

ev + e−v = cosh Ψ−1
sinh Ψ + sinh Ψ

cosh Ψ−1 = 2 cosh2 Ψ−2 cosh Ψ
(cosh Ψ−1) sinh Ψ = 2 cosh Ψ

sinh Ψ ,

it follows that

dv = cosh Ψ+1
sinh Ψ

1
2 cosh2 ( Ψ

2 )
dΨ = cosh Ψ+1

sinh Ψ
1

2 cosh Ψ+1
2

dΨ

= cosh Ψ+1
sinh Ψ

1
cosh Ψ+1 dΨ = dΨ

sinh Ψ ,
1

sinh (−v) = − 1
sinh (v) =

2
e−v−ev = 2

2
sinh Ψ

= sinh Ψ

=⇒ sinh Ψ = 1
sinh (−v) ,

coth (−v) = − coth v = ev+e−v

e−v−ev =
2 cosh Ψ
sinh Ψ

2
sinh Ψ

= cosh Ψ

=⇒ cosh Ψ = coth (−v).

And yet,

I(Ψ) = sinh2 Ψ
2(cosh Ψ+Q)

=
1

sinh2 (−v)
2(coth (−v)+Q)

= 1
2 sinh2 (−v)(coth (−v)+Q)

,

Y(Ψ) = Q2−1
2(cosh Ψ+Q)

= Q2−1
2(coth (−v)+Q)

,

Z(Ψ) = (cosh Ψ+Q)2

sinh2 Ψ
= 4(coth (−v)+Q)(coth (−v)+Q)

4 1
sinh2 (−v)

= 1
4

(
Q2−1

1
2 sinh2 (−v)(cosh (−v)+Q)

Q2−1
2(cosh (−v)+Q)

)
= Q2−1

4A(−v)B(−v) .

Then, denote
A(−v) := 1

2 sinh2 (−v)(coth (−v)+Q)
,

B(−v) = Q2−1
2(coth (−v)+Q)

,

D(−v) := Q2−1
4A(−v)B(−v) .

Subsequently, introducing the integration variable v = ln tanh (Ψ
2 ) results in

dΨ
sinh Ψ

= dv, sinh Ψ =
1

sinh (−v)
, cosh Ψ = coth (−v),

I(Ψ) = A(−v), Y(Ψ) = B(−v), Z(Ψ) = D(−v), (A47)
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and

tanhζ

(
Ψ
2

)
=

(cosh Ψ− 1)ζ

sinhζ (Ψ)
=

(coth (−v)− 1)ζ

1
sinhζ (−v)

= [sinh (−v)(coth (−v)− 1)]ζ

=

(
e−v + ev − e−v + ev

2

)ζ

= eζv. (A48)

By (A47) and (A48) we rewrite Equation (A46) as

zδe
Qz
2 G(z; ζ) = erαγTΞ(δ, η)

∫ ∞
0 ezY(Ψ)Zδ(Ψ) tanhζ

(
Ψ
2

)
(zI(Ψ))δe−

zI(Ψ)
2 Mδ,η(zI(Ψ)) dΨ

sinh Ψ

=⇒ zδe
Qz
2 G(z; ζ) = erαγTΞ(δ, η)

∫ 0
−∞ ezB(−v)− zA(−v)

2 +ζvDδ(−v)(zA(−v))δ Mδ,η(zA(−v))dv.

Applying the following inverse Laplace transform

h(z, τ̃) = L−1{G(z; ζ)}(τ̃) = 1
2πi limT−→∞

∫ N+iT
N−iT eζτ̃G(z; ζ)dζ

= 1
2πi
∫ N+i∞

N−i∞ eζτ̃G(z; ζ)dζ

= z−δerαγT− Qz
2

Ξ(δ,η)
2πi
∫ N+i∞

N−i∞

∫ 0
−∞ ezB(−v)− zA(−v)

2 +ζv+ζτ̃ Dδ(−v)(zA(−v))δ Mδ,η(zA(−v))dvdζ

to the function (A33), we obtain

f (S, t) = zδe−rαγt+R∗ τ̃+ Q
2 zh(z, τ̃)

=
Ξ(δ, η)

2πi
erαγ(T−t)+R∗ τ̃

∫ N+i∞

N−i∞

∫ 0

−∞
ezB(−v)− zA(−v)

2 +ζ(v+τ̃)(zD(−v)A(−v))δ Mδ,η(zA(−v))dvdζ, (A49)

where N is chosen such that all singularities of the integrand expression are to the left of
the straight line (N − i∞, N + i∞) in the complex plane.

Additionally, as we know, by analytic continuation of the Fourier transform, the Laplace
transform of the delta-function satisfies∫ ∞

0
δ(t− a)e−stdt = e−sa.

By using the inverse Laplace transform, the Dirac delta function for the M-CEV case with
ambiguity is given by

1
2πi

∫ N+i∞

N−i∞
ezζdζ = δ(z),

and changing the order of integration in (A49) yields

f (S, t) =
Ξ(δ, η)

2πi
erαγ(T−t)+R∗ τ̃

∫ N+i∞

N−i∞

∫ 0

−∞
ezB(−v)− zA(−v)

2 eζ(v+τ̃)(zD(−v)A(−v))δ Mδ,η(zA(−v))dvdζ

= Ξ(δ, η)erαγ(T−t)+R∗ τ̃
∫ 0

−∞
δ((−v)− τ̃)ezB(−v)− zA(−v)

2 (zD(−v)A(−v))δ Mδ,η(zA(−v))d(−v). (A50)

Note that τ̃ ≥ 0, the integration interval can be extended to the entire line. Using the
properties of the delta-function∫ ∞

−∞
δ(ζ − z)g(ζ)dζ = g(z), (A51)
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we express (A50) as

f (S, t) = Ξ(δ, η)erαγ(T−t)+Rτ̃ezB(τ̃)− zA(τ̃)
2 (zD(τ̃)A(τ̃))δ Mδ,η(zA(τ̃))

= erαγ(T−t)+R∗ τ̃+zB(τ̃)Dδ(τ̃)
Γ(η − δ + 1

2 )

Γ(1 + 2η)
e−

zA(τ̃)
2 (zA(τ̃))δ Mδ,η(zA(τ̃)). (A52)

Due to T − t = τ̃
σ2β2ω

, the expression (A52) can be written as

f (S, t) = e
rαγ

σ2β2ω
τ̃+R∗ τ̃+zB(τ̃)

Dδ(τ̃)
Γ(η−δ+ 1

2 )
Γ(1+2η)

e−
zA(τ̃)

2 (zA(τ̃))δ Mδ,η(zA(τ̃))

= e
(

rαγ

σ2β2ω
+R∗
)

τ̃+zB(τ̃)
Dδ(τ̃)

Γ(η−δ+ 1
2 )

Γ(1+2η)
e−

zA(τ̃)
2 (zA(τ̃))δ Mδ,η(zA(τ̃)).

Denote
R :=

rαγ

σ2β2ω
+ R∗.

Again since (see (A32))
R∗ = −2Qδ,

it follows that
R =

rαγ

σ2β2ω
− 2Qδ. (A53)

Therefore, we obtain the solution f (S, t) for Cauchy problem (A13) as follows:

f (S, t) = eRτ̃+zB(τ̃)Dδ(τ̃)
Γ(η − δ + 1

2 )

Γ(1 + 2η)
e−

zA(τ̃)
2 (zA(τ̃))δ Mδ,η(zA(τ̃)), (A54)

where z = ωS−2β, τ̃ = σ2β2ω(T − t), Γ(z) is the gamma function, Mδ,η(z) is the Whittaker
function with parameters

δ = −1
2
− 1

2β

(
1
2
− αλ̄γ

σ(γ− φ)

)
, η =

√(
δ +

1
2

)2
+

αγλ̄2

4σ2β2(γ− φ− 1)
.

The remaining constants and functions are given by

ω = r
σ2|β| , Q = r

σ2βω
, R = rαγ

σ2β2ω
− 2Qδ,

A(τ̃) = 1
2 sinh2 τ̃(coth τ̃+Q)

, B(τ̃) = Q2−1
2(coth τ̃+Q)

, D(τ̃) = Q2−1
4A(τ̃)B(τ̃) .

To compute the optimal exposure, we must determine the ratio fS
f in the next section.

Appendix A.2.5. Calculating the Ratio fS(S,t)
f (S,t)

As documented in the reference [22], the ratio fs
f can be determined using the differen-

tial rules for Whittaker functions, i.e.,(
z

d
dz

z
)n(

e−
z
2 zk−1Mk,μ(z)

)
=

Γ(μ + k + n + 1
2 )

Γ(μ + k + 1
2 )

e−
z
2 zk+n−1Mk+n,μ(z).

When n = 1, it follows that(
z d

dz z
)(

e− z
2 zk−1Mk,μ(z)

)
=

Γ(μ+k+ 1
2+1)

Γ(μ+k+ 1
2 )

e− z
2 zk+1−1Mk+1,μ(z)

=⇒
(

z d
dz

)(
e− z

2 zk−1+1Mk,μ(z)
)
=

(μ+k+ 1
2 )Γ(μ+k+ 1

2 )

Γ(μ+k+ 1
2 )

e− z
2 zk Mk+1,μ(z)

=⇒ d
dz

(
e− z

2 zk Mk,μ(z)
)
=
(
μ + k + 1

2
)
e− z

2 zk−1Mk+1,μ(z).
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In the previous section, we derived the solution f (S, t) that satisfies the following
expression (that is, function (A54)):

f (S, t) = eRτ̃+zB(τ̃)Dδ(τ̃)
Γ(η − δ + 1

2 )

Γ(1 + 2η)
e−

z
2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃)),

where Γ(z) is the Euler gamma function, Mλ,η(z) is the Whittaker M-function, and functions
A(τ̃), B(τ̃), and D(τ̃) are obtained in Appendix A.2.4; namely,

A(τ̃) = 1
2 sin h2(τ̃)

(
coth (τ̃)+Q

) ,

B(τ̃) = Q2−1
2
(

coth (τ̃)+Q
) , D(τ̃) = Q2−1

4A(τ̃)B(τ̃) .

For convenience in calculations, denote

G := Dδ(τ̃)
Γ(η − λ + 1

2 )

Γ(1 + 2η)

and thus, we rewrite the function (A54) as

f (S, t) = GeRτ̃+zB(τ̃)e−
z
2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃)). (A55)

The derivative of the function f (S, t) with respect to S is given by

fs(S, t) = G
[

∂eRτ̃+zB(τ̃)

∂S

(
e− z

2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃))
)
+ eRτ̃+zB(τ̃) ∂

∂S

(
e− z

2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃))
)]

= GeRτ̃+zB(τ̃)e− z
2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃))

[
B(τ̃) +

(
η+δ+ 1

2

)
z

Mδ+1,η(zA(τ̃))

Mδ,η(zA(τ̃))

]
dz
dS .

Consequently,

gs

g
:=

gs(S, T − t)
g(S, T − t)

=
fs(S, t)
f (S, t)

=

GeRτ̃+zB(τ̃)e− z
2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃))

[
B(τ̃) +

(
η+δ+ 1

2

)
z

Mδ+1,η(zA(τ̃))

Mδ,η(zA(τ̃))

]
dz
dS

GeRτ̃+zB(τ)e− z
2 A(τ̃)(zA(τ̃))δ Mδ,η(zA(τ̃))

=

[
B(τ̃) +

δ + η + 1
2

z
Mδ+1,η

(
zA(τ̃)

)
Mδ,η
(
zA(τ̃)

) ] dz
dS

. (A56)

Appendix A.3. The Optimal Exposure and Worse-Case Measure

Building upon the preceding analysis, we derive the following optimal exposure
from (A10):

θ∗ = λ̄Sβ

(φ− γ + 1)

(
x− Fe−r(T−t))

x
+ σSβ+1

(
x− Fe−r(T−t))

x
gs

g
. (A57)

Substituting dz
dS = −2βωS−2β−1 and (A56) into (A57), we can determine the portfolio’s

optimal exposure to the fundamental risk factor Zt as follows:
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θ∗ = λ̄Sβ

(φ− γ + 1)

(
x− Fe−r(T−t))

x
+ σSβ+1

(
x− Fe−r(T−t))

x

[
B(τ̃) +

δ + η + 1
2

z
Mδ+1,η

(
zA(τ̃)

)
Mδ,η
(
zA(τ̃)

) ] dz
dS

=
λ̄Sβ

(φ− γ + 1)

(
x− Fe−r(T−t))

x
− 2σωβS−β

[
B(τ̃) +

δ + η + 1
2

z
Mδ+1,η

(
zA(τ̃)

)
Mδ,η
(
zA(τ̃)

) ] (x− Fe−r(T−t))
x

=
x− Fe−r(T−t)

x

[
λ̄Sβ

φ− γ + 1
− 2σωβS−βB(τ̃)− 2σβSβ

(
δ + η +

1
2
)Mδ+1,η

(
ωA(τ̃)S−2β

)
Mδ,η
(
ωA(τ̃)S−2β

) ]. (A58)

By Formulas (A4) and (A57), we have

ε∗ = φ

γJ

[
xS−β

(
λ̄Sβ

(φ− γ + 1)

(
x− Fe−r(T−t))

x
+ σSβ+1

(
x− Fe−r(T−t))

x
gs

g

)
γ(

x− Fe−r(T−t)
) J + σSα−1 gs

g
J
]

=
φλ̄

φ− γ + 1
+

φσS
γ− φ

gs

g
. (A59)

We substitute (A56) into (A59) to obtain

ε∗ = φλ̄
φ−γ+1 + φσS

γ−φ

[
B(τ̃) + δ+η+ 1

2
z

Mδ+1,η

(
zA(τ̃)

)
Mδ,η

(
zA(τ̃)

) ] dz
dS

= φλ̄
φ−γ+1 + φσS

γ−φ

[
− 2ωβS−2β−1B(τ̃)− 2β(δ+η+ 1

2 )
S

Mδ+1,η

(
ωA(τ̃)S−2β

)
Mδ,η

(
ωA(τ̃)S−2β

) ].
As a result, the worse-case measure is given by

es∗ = ε∗Sβ

=
φλ̄Sβ

φ− γ + 1
+

φσSβ+1

γ− φ

[
B(τ̃) +

δ + η + 1
2

z
Mδ+1,η

(
zA(τ̃)

)
Mδ,η
(
zA(τ̃)

) ] dz
dS

(A60)

=
φλ̄Sβ

φ− γ + 1
+

φσSβ

φ− γ

[
− 2ωβS−2βB(τ̃)− 2β

(
δ + η +

1
2
)Mδ+1,η

(
ωA(τ̃)S−2β

)
Mδ,η
(
ωA(τ̃)S−2β

) ] (A61)

Appendix A.4. Special Case: Zero Interest-Free Rate

By assuming an interest-free rate, r = 0, we can simplify the solution f (S, t) and the
optimal exposure θ∗. In this special case, we have ω = τ̃ = z = 0, and the constants Q and
R are both zero. The limit values are

(a)

lim
ω−→0

D(τ̃) = lim
ω−→0

Q2 − 1
4A(τ)B(τ̃)

= lim
ω−→0

−1
4 1

2 sinh2 τ̃(coth τ̃)
−1

2(coth ˜̃τ)

= lim
ω−→0

cosh2 τ̃ =

(
e0 + 1

2e0

)2

=

(
1 + 1

2

)2
= 1. (A62)

(b)

ϕ(S, t) = limω−→0 zA(τ̃) = limω−→0
z

2 sinh2 τ̃(coth τ̃+Q)
= limω−→0

ωS−2β

2 sinh2 τ̃ coth τ̃

= limω−→0
S−2β

2σ2β2(T−t) cosh2 τ̃+2σ2β2(T−t) sinh2 τ̃

= 1
2 σ−2β−2S−2β(T − t)−1,
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because of sinh τ̃ = eτ̃−e−τ̃

2 .
(c)

Ω(S, t) = limω−→0 zB(τ̃) = limω−→0
z(Q2−1)

2(coth τ̃+Q)
= limω−→0

ωS−2β( r2

σ4β2ω2−1)

2(coth τ̃+ r
σ2βω

)

= limω−→0
(−2ωσ4β2S−2β) sinh τ̃+(S−2βr2−ω2σ4β2S−2β)σ2β2(T−t) cosh τ̃

2σ4β2 cosh τ̃+2σ4β2σ2β2(T−t)ω sinh τ̃+2rσ2βσ2β2(T−t) cosh τ̃

= limω−→0−
(

2rσ2|β|S−2β sinh τ̃

2σ2 cosh τ̃+2σ4β2(T−t)ω sinh τ̃+2rσ2β(T−t) cosh τ̃

)
= 0

2σ2 = 0.

(d)

Ψ(t) = lim
ω−→0

Rτ̃ = lim
ω−→0

(
rγα

σ2β2ω
− 2Qδ

)
σ2β2ω(T − t)

= lim
ω−→0

[
rγα

σ2β2ω
σ2β2ω(T − t)− 2

rδ

ωβσ2 σ2β2ω(T − t)
]

= lim
ω−→0

[
rγα(T − t)− 2rδβ(T − t)

]
= 0. (A63)

Thus, the solution f (S, t) is given by

f (S, t) = eRτ̃+zB(τ̃)Dδ(τ̃)
Γ(η−δ+ 1

2 )
Γ(1+2η)

e−
zA(τ̃)

2
(
zA(τ̃)

)δ Mδ,η
(
zA(τ̃)

)
=

Γ
(

η−δ+ 1
2

)
Γ(1+2η)

eΨ(t)+Ω(S,t)− ϕ(S,t)
2 ϕδ(S, t)Mδ,η

(
ϕ(S, t)

)
= Ξ(δ, η)e−

ϕ(S,t)
2 ϕδ(S, t)Mδ,η

(
ϕ(S, t)

)
.

Then,

gs
g = fs(S,t)

f (S,t)

=

Ξ(δ,η)e−
ϕ(S,t)

2 ϕδ(S,t)Mδ,η

(
ϕ(S,t)

)[
B(τ̃)+

(
η+δ+ 1

2

)
z

Mδ+1,η (ϕ(S,t))

Mδ,η (ϕ(S,t))

]
dz
dS

Ξ(δ,η)e−
ϕ(S,t)

2 ϕδ(S,t)Mδ,η(ϕ(S,t))

= − 2β
(

δ+η+ 1
2

)
S

Mδ+1,η

(
ϕ(S,t)

)
Mδ,η

(
ϕ(S,t)

)
and thereby, if r = 0, we have

θ∗ = λ̄Sβ

(φ− γ + 1)
(x− F)

x
+ σSβ+1 (x− F)

x
gs

g

=
(x− F)Sβ

x

[
λ̄

φ− γ + 1
− 2σβ

(
δ + η +

1
2
)Mδ+1,η

(
ϕ(S, t)

)
Mδ,η
(

ϕ(S, t)
) ]. (A64)

Meanwhile,
ε∗ = φλ̄

φ−γ+1 + φσS
γ−φ

gs
g

= φλ̄
φ−γ+1 −

2φσβ
(

δ+η+ 1
2

)
γ−φ

Mδ+1,η

(
ϕ(S,t)

)
Mδ,η

(
ϕ(S,t)

) ,
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which implies that the worse case is given by

es∗ = ε∗Sβ

=
φλ̄Sβ

φ− γ + 1
− 2φσβSβ

(
δ + η + 1

2
)

γ− φ

Mδ+1,η
(

ϕ(S, t)
)

Mδ,η
(

ϕ(S, t)
) . (A65)
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Abstract: Measuring systemic risk plays an important role in financial risk management to control
systemic risk. By means of a vine copula grouped-CoES method, this paper aims to measure the
systemic risk of Chinese financial markets. The empirical study indicates that the banking industry
has a low risk and a strong ability to resist risks, but also contributes the most of the systemic risk. On
the other hand, insurance companies and securities have high ES but low ΔCoES, indicating their low
risk tolerance and small contribution to the systemic risk. Furthermore, this study employs a sliding
window in Monte Carlo simulation to forecast systemic risk. The findings of this paper suggest that
different types of financial industries should adopt different systemic risk measures.

Keywords: vine copula grouped model; CoES; systemic risk; rolling of Monte Carlo simulation
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1. Introduction

A risk measure is to evaluate the risk of financial positions. Artzner [1] first introduced
the coherent risk measures by an axiomatic approach. Later, Föllmer and Schied [2] and
Frittelli and Rosazza Gianin [3] introduced a broader class of convex risk measures. Risk
measures have been extensively studied in the literature. For a comprehensive literature
overview, we refer to Föllmer and Schied [4]. At the same time, multivariate risk measures
were initiated by Burgert and Rüschendorf [5], see also Wei and Hu [6]. A multivariate risk
measure is to evaluate not only the risks of components of a portfolio separately, but also
the joint risk of the portfolio caused by the possible dependence of components. For a
comprehensive literature overview, we refer to Rüschendorf [7].

While univariate and multivariate risk measures are blooming, systemic risk measures
have been attracting more and more researchers’ attention. Chen et al. [8] first studied
systemic risk measures by an axiomatic approach. Kromer et al. [9] further studied systemic
risk measures on general measurable spaces. A systemic risk measure is to evaluate the
risk of a whole financial system which consists of finitely many financial institutions.
As a simple risk measure, value at risk (VaR) has been commonly adopted by financial
institutions to evaluate the risk of financial positions. However, VaR is not sensitive to
extreme events. By an extreme event, we mean an event that has a very small probability of
occurring but has a huge potential loss. To accurately measure the systemic risk, Adrian and
Brunnermeier [10] first proposed CoVaR (Conditional Value at Risk) based on VaR and also
initiated the concept of CoES. CoVaR measures the risk spillover effect from a single
institution to other financial institutions and the financial system in an extreme financial
situation. CoVaR has been widely used since it was proposed. Many researchers choose to
calculate CoVaR by quantile regression or the GARCH model. Using CoVaR and quantile
regression, Bai and Shi [11] studied the impact of the risk of each financial institution on
the systemic risk at different time periods, where the financial institution includes banks,
securities, trust, and insurance companies. Based on CoVaR, Zhu et al. [12] introduced
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state variables to simulate the time-varying risk, and studied the systemic risk of banking,
insurance and securities industries via quantile regression. By constructing a multivariate
GARCH model, Girardi and Ergün [13] estimated the systemic risk contribution of four
financial industry groups consisting of a large number of institutions. Zhang et al. [14]
measured the systemic risk using CoES and quantile regression. By constructing a CoES
model and using quantile regression, Cui [15] evaluated the impact of risk of each financial
institution on the financial system. Note, that either the GARCH model or the quantile
regression can only describe the linear risk spillover, and hence can not describe the
nonlinear risk spillover.

In order to describe the structure of dependence among financial institutions, copula
is widely used in the GARCH model. Copula proposed by Sklar [16] is an effective
tool to describe the dependence between financial assets. The Copula-CoES model can
enable a more comprehensive assessment of systemic risk and enhance the accuracy of
measuring systemic risk. However, the CoES is not used in dependency-based systemic
risk measures in the literature. Currently, studies on measuring systematic risk based
on copula still mainly focus on CoVaR. Yang et al. [17] employed the copula-CoVaR to
calculate risk spillover between corporate and bank sector bonds. Li [18] constructed
an ARFIMA-APARCH-GPD-SKST marginal distribution combined with a copula-CoES
model to measure the risk spillover effect of the index of Chinese pillar industries and
the CSI 300 index. Using an MSGARCH-Mixture copula model combined with CoVaR
and CoES models, Li et al. [19] measured the risk spillover between off-shore and on-
shore RMB interbank lending rates. In the above studies, the copula is limited to two
variables. On the other hand, in order to evaluate the systemic risk of the financial system,
multivariate copula are needed. Bedford and Cooke [20] introduced the so-called vine
copula to describe the possible dependence structure between financial institutions. By
constructing an R-vine-copula-CoVaR model, Lin et al. [21] measured the risk spillover
effects between the international crude oil market, the international gold market, the U.S.
stock market, the Chinese stock market and the foreign exchange market. Shahzad et al. [22]
implemented a C-vine copula-CoVaR model to analyze the downside and upside spillover
effects, systemic and tail dependence risks of the DJ World Islamic (DJWI) and DJ World
Islamic Financial (DJWIF) indices. Based on the GARCH-R vine copula-CoVaR model,
Zhang et al. [23] constructed the direct spillover matrix of systemic risk and further explored
the indirect spillover path through R-vine. Zhu et al. [24] utilized an R-vine copula-CoES
to measure the risk spillover effects among the carbon markets of Guangdong, Hubei,
and Shenzhen.

Although the traditional vine copula can better describe the dependence of variables,
the traditional vine copula does not reflect the mixed operation. That is, the traditional
one can only consider the whole financial market as a whole, and ignore the different
dependency structures for different financial industries. A copula-based grouped model
proposed by Zhou et al. [25] groups the basic risks. Based on this model, the aggregated
risk faced by a financial body under mixed operations can be measured. By dividing the
industries, the copula-based grouped model effectively reduces the dimensionality and
improves the accuracy of the dependency description. However, Zhou et al. [25] only
divided the risk factors into two categories, and each category has only two basic risks. In
reality, there are far more than the two categories of either financial industry or the number
of financial institutions within each industry. To address this issue, Chen and Hao [26]
proposed a vine copula-grouped model to describe the structure of interdependence within
the financial market and demonstrated the advantage of the vine copula-grouped model.
After that, based on the vine copula grouped model, Chen and Hao [27] constructed a
mean-CVaR model to study the optimal portfolio selection. In addition, Hao and Chen [28]
measured the systemic risk of financial markets by constructing a vine copula grouped-
CoVaR model.

This paper investigates systemic risk measured by CoES in the Chinese financial
market. To be precise, we combine the GJR-GARCH model and the vine copula grouped
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model. This combination enables us to describe the dependency structure among three
key industries: banking, securities and insurance. These three industries are of a high
degree of mixed operation. Specifically, while constructing the marginal distribution, we
account for volatility asymmetry and leverage effects by utilizing the GJR-GARCH(1,1)
model. This allows us to accurately characterize the distribution of the data and better
understand the underlying dynamics of the system. Moreover, this paper employs the
sliding window algorithm to estimate the parameters of the dependency model. Monte
Carlo simulation is performed to calculate the VaR and ES of each financial industry and
the whole financial system. Finally, CoES is used to measure the systemic risk. Our results
show that the GJR-Vine Copula grouped-CoES can enhance the accuracy of measuring
financial systemic risk.

2. Methodology

In this section, we introduce the models and methods used in this paper, including
the AR-GJR-GARCH model for constructing the marginal distribution and the distribution
obeyed by the standardized residuals to be selected, the vine copula grouped model for
describing the dependence structure, the definition of the risk measures VaR, ES and CoES,
and the rolling Monte Carlo method for calculating the risk measures.

2.1. Marginal Distribution Modeling

Since financial time series are usually characterized by conditional fat-tailed, non-
normality, skewed distribution, leverage effect, and volatility clustering, many studies have
employed AR-GARCH models to capture these features. However, in the GARCH model,
historical data affect future volatility in the form of squares, thus the effect of increase
or decrease on future volatility is the same. In 1993, Glosten et al. [29] showed that the
same degree of positive news and negative news have significantly different effects on
the volatility of financial assets, i.e., there is a leverage effect. We know that the negative
shocks can lead to an increase in leverage, and thus increases risk. Therefore, we choose
the GJR-GARCH model to capture the asymmetry of volatility.

It has been shown that during modeling the volatility of returns, using an excessively
high model order makes parameter estimation difficult, and does not provide significant
practical meaning. In the first-order model, since the current value indirectly contains
all the historical information in the past, it has high accuracy, and thus is also close to
the prediction results of higher-order models (Lamoureux and Lastrapes [30], Lin [21]).
Therefore, we use the AR(1)-GJR-GARCH(1,1) model to describe the marginal distributions.
After filtering the logarithmic returns by the AR(1)-GJR-GARCH(1,1) model, we select the
student distribution, the skewed student distribution, the generalized error distribution
(GED), and the skewed generalized error distribution (SGED) as the candidate distributions
of the standard deviation. The AR(1)-GJR-GARCH(1,1) model can be represented as follows:

rt = μ + crt−1 + εt, (1)

εt = σtZt, (2)

σ2
t = ω + αε2

t−1 + βσ2
t−1 + γε2

t−1 I(εt−1 < 0), (3)

where rt and rt−1 are the log returns at day t and day t− 1, respectively, μ is the conditional
mean of the log returns rt, εt is the residual, σ2

t is the conditional variance of εt, and Zt is the
standard Gaussian residual. I(εt−1 < 0) is the indicator function of the event of εt−1 < 0.
γ is an asymmetric parameter to measure the leverage effect. When γ > 0, it indicates
a negative leverage effect, while γ < 0 indicates a positive leverage effect. When γ = 0,
GJR degenerates to a GARCH model. Due to the significant non-normality of the financial
time series, we abandon the normal distribution. Instead, we use the four distributions
aforementioned to describe the distribution of the normalized residual series.
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2.2. Joint Distribution Modeling
2.2.1. R Vine Copula

In 2001, Bedford and Cooke [20] proposed a regular vine copula model to model the
dependency of assets through the graph theory. Vine copula uses pair copula as the base
module to construct multidimensional models, which can compensate for the deficiency of
traditional multivariate copula in portraying the flexibility of interdependence. Therefore,
vine copula is often used to describe the dependence among high-dimensional variables
and has significant superiority in portraying the risk contagion relationship among high-
dimensional assets. Compared to the C-vine and D-vine, the R-vine is constructed based on
the actual dependence of each edge, which makes the R-vine more flexible in describing the
dependence of assets. The vine copula function decomposes the traditional multivariate
copula function into a series of binary copula. The vine structure consists of nodes, edges
and trees. Each level of the tree consists of edges with two nodes, where the two nodes of
each edge can be described by the copula function. In fact, the different vine structures
are different decompositions of the multidimensional copula density function. For an
n-component R-vine model, there are n− 1 trees and n nodes. According to Bedford and
Cooke [20], an n-dimensional R-vine density function can be expressed as follows:

f (x1, x2, · · · , xn)

=
n

∏
k=1

fk(xk)
n−1

∏
k=1

∏
e∈Ek

cj(e),i(e)|D(e)

(
F
(

xj(e) | xD(e)

)
, F
(

xi(e) | xD(e)

))
, (4)

where Ek = {ek1, . . . , ekk} is the set of all edges of the k-th tree, j(e) and c(e) are the two
nodes connecting edge e, D(e) is the condition set, cj(e),c(e)|D(e) is the copula density function
corresponding to e, and F(· | ·) is the conditional distribution function.

2.2.2. Vine Copula Grouped Model

Accurately describing the dependence structure is a prerequisite for accurately measur-
ing systemic risk. Taking into account that the financial institutions may belong to different
industries, Chen and Hao [26] proposed a vine copula grouped model to describe the
dependence among financial assets. They first divided the financial institutions based on
their respective industries and then used the vine copula model to describe the dependence
structure among financial institutions belonging to the same industry and the dependence
structure between different industries, respectively. In this process, the asset return of one
industry can be obtained from the weighted sum of the asset returns of financial institutions
in the industry. Then, the asset returns of each industry are treated as the new variables.
Finally, the asset return of the whole financial system is obtained from the weighted sum
of these new variables. According to Chen and Hao [26], the structure of the vine copula
grouped model can be shown in Figure 1:

Figure 1. The structure of vine copula grouped model.

252



Mathematics 2024, 12, 1233

where Xi1, · · · , Xini are the asset returns of the financial institutions and Fi1, · · · , Fini are
the marginal distribution functions corresponding to each financial institution in the i-th
industry group for 1 	 i 	 N. Xi, i = 1, · · · , N is the asset return of the i-th industry group,
S = ∑N

i=1 ∑ni
k=1 wikXik is the asset return of the whole financial system, wik is the weight

of the k-th financial institution in the i-th industry. CXi , i = 1, · · · , N is the vine copula
within the i-th industry group, respectively, and CX is the vine copula between the whole
industry groups.

In most of the aforementioned literature, a vine copula affects the dependence among
all the financial institutions since all the financial institutions are considered as a whole.
However, from the viewpoint of practice, the dependence of the financial institutions
belonging to the same industry is not necessarily the same as the one of the financial insti-
tutions belonging to different industries. In 2016, Zhou et al. [25] divided the aggregated
risk faced by all the financial institutions into several groups according to the different
kinds of industries. Therefore, the vine copula grouped model can not only reduce the
dimensionality to make the structure clearer but also has more practical significance.

2.3. The Definitions of VaR, ES and CoES

Let (Ω, F , P) be a fixed probability space, and X be a random variable that represents
the loss of a financial institution. VaR (Value at risk) is an important risk measure, which
refers to the maximum expected loss within a certain confidence level over a certain period
of time. The definition of VaR at the confidence level 1− c can be given as:

VaRc,t(X) = −in f {r ∈ R : P(X 	 r | Ωt−1) > c}, (5)

where Ωt−1 is the set of information at the moment t− 1.
VaR can be used widely in different markets to measure the risk of positions, and

provides a numerical value to quantify the potential loss. However, it does not satisfy the
subadditivity of the coherent risk measure proposed by Artzner et al. [1]. More seriously,
VaR only focuses on the extreme losses corresponding to the specified confidence level,
while it ignores the severity of losses beyond the VaR level. In 2002, Acerbi et al. [31]
proposed the expected shortfall (ES), which measures the average loss exceeding VaR
under a certain confidence level. More importantly, ES satisfies the subadditivity, thus it is a
coherent risk measure. In recent decades, the ES has replaced VaR as the measure metric to
determine the minimum capital requirements for the financial market by the Basel Accord.
ES is defined as:

ESc(X) = E[X | X < VaRc,t(X)] =
∫ VaRc,t(X)

−∞
x fX(x)dx, (6)

where fX(x) is the probability density function of the risk position X, and 1− c is the
confidence level.

It is well known that once an individual institution is exposed to a crisis, systemic
risk may occur. Both VaR and ES are difficult to accurately measure systemic risk. In 2016,
Adrian and Brunnermeier [10] proposed CoVaR to measure the systemic risk, and proposed
the initial idea of CoES. While CoVaR only focuses on the single quantile of the loss random
variable, CoES pays more attention to tail average loss. Thus, CoES can be used as a risk
measure to take into account the maximum tail average loss. CoVaRj|i

c can be denoted by
the VaR of the j-th financial industry is conditional on some event C(Xi) of the i-th financial
industry. Its definition is given by

Pr
(

Xj 	 CoVaRj|i
c | C

(
Xi
))

= c. (7)

The calculation formula for CoVaRj|i
c is:

CoVaRj|Xi	VaRi
c

c = VaRj
c | VaRi

c = α̂i
c + β̂i

c VaRi
c, (8)
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where α̂i
c and β̂i

c are quantile regression coefficients, and 1− c is the confidence level of VaR.
As Adrian and Brunnermeier [10] illustrated, CoVaR can be adopted for the co-

expected shortfall (CoES). CoESj|i
c represents the expected shortfall of industry j (or system)

due to industry i being under an abnormal extreme risk. CoESj|i
c is defined by the expecta-

tion over the c-tail of the conditional probability distribution:

CoESj|i
c = E

[
Xj | Xj 	 CoVaRj|i

c ,C
(

Xi
)]

. (9)

The contribution of the i-th financial industry to the j-th financial industry is denoted
by ΔCoESj|i

c , where ΔCoESj|i
c represents the difference between the ES of the j-th financial

industry j (or system) under the condition of distress in industry i (c) and the ES of industry
j (or system) when industry i is in a normal state (c = 50%).

ΔCoESj|i
c is the difference between the ES of industry j (or system) conditional on the

distress of industry i and the ES of industry j (or system) when industry i is in a normal
state (c = 50%). ΔCoESj|i

c is defined as

Δ CoESj|i
c = E

[
Xj | Xj 	 CoVaRj|i

c ,C
(

Xi
)]
− E
[

Xj | Xj 	 CoVaRj|i
50%

]
. (10)

2.4. Estimation Methods
2.4.1. CoES with Vine Copula Grouped Model

Monte Carlo simulation plays a significant role in the measurement of financial risk.
When calculating CoES, CoVaR is first computed through Equation (8), followed by utilizing
Equation (9) to calculate CoES. In this paper, the vine copula grouped model is used to
describe the dependency among financial institutions (or financial industries). Unlike the
traditional Monte Carlo simulation method which is based on the vine copula, in this paper,
we utilize a vine copula-grouped model. Therefore, during the Monte Carlo simulation it is
necessary to distinguish between intra-group copulas and inter-group copulas for multiple
simulations. The specific steps are as follows:

Step 1: The Monte Carlo method is employed to simulate random numbers within
the range (0,1) according to the n-dimensional vine copula. The probability integration
inverse transformation is applied to obtain the sequence of normalized residuals based on
the distribution followed by the normalized residuals of each marginal distribution. Then
the residuals of each series are obtained by Equation (2), and thus the return series of each
institution are obtained by Equation (1). Finally, the industry (or system) return rates are
obtained by the weighted sum of the simulated rates of return.

Step 2: Sort the obtained return rates of the industries in an increasing order. From
Equations (5) and (6), the VaR value of the industry (or system) is equal to the generated
random numbers m multiplied by the selected significance level. ES value of the industry
(or system) is equal to the average of the return rates smaller than the VaR.

Step 3: The CoVaR is calculated by quantile regression, and the CoES is calculated by
CoVaR according to Equation (9). To obtain more accurate and robust results, the above
steps can be repeated several times and then averaged.

2.4.2. Rolling of Monte Carlo Simulation Based on a Vine Copula Grouped Model

In this paper, we use the rolling of Monte Carlo simulation to simulate the marginal
distributions of the vine copula grouped model, and then calculate VaR, ES and CoES. In
simple terms, calculating the returns of the financial industries and the financial system
in the rolling Monte Carlo simulation is to repeat the above method multiple times. With
the rolling Monte Carlo method, we can obtain multiple sets of data, which is more
advantageous for analyzing systemic risk and observing changes in risk measures more
clearly. At the same time, the data obtained from frequent forecasting are more consistent
with the current state of the financial markets. The specific steps are as follows:
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Step 1: We divide the overall sample (t = 1, 2, 3, . . . , 1460) into an “estimation sample”
and “prediction sample” where the first 1300 samples are selected as “estimation sample”
and the last 160 samples are “prediction sample”. After constructing the marginal distri-
butions for the entire population, we utilize the data from t = 1, 2, 3, . . . , 1300 as the first
estimation sample to build a vine copula, and estimate the parameters using the probability
integral transformation (PIT) series.

Step 2: By the above Monte Carlo simulation based on the vine copula grouped model
with the simulated parameters, we obtain the value of VaR, ES, CoVaR and CoES.

Step 3: Keeping the length of the estimated sample interval, and shifting the estimated
sample interval backward by one day. That is, using data from t = 2, 3, 4, . . . , 1301 as the
second rolling estimation sample interval and repeating the Monte Carlo simulations again.
Thus, we can obtain the simulated return rates for the 1301st day and the risk measures.

Step 4: Repeat the above steps until the simulated return rate and risk measures for
the last day are obtained.

3. Data and Descriptive Statistics

We conduct an empirical study on the systemic risk of the Chinese financial industry
based on the multiple financial institutions belonging to different financial industries. To
ensure a certain level of representativeness of the selected financial institutions and to con-
sider data availability, we selected 20 financial institutions from the industry classification
of the China Securities Regulatory Commission in 2012, including 10 banking institutions,
7 securities institutions, and 3 insurance institutions (see Table 1). We obtain the daily
closing prices of the selected financial institutions from the CSMAR database, covering the
period from 13 October 2016 to 14 October 2022. After removing the unmatched data among
the daily closing prices of the 20 financial institutions, we obtain a total of 1460 observations.
To ensure the stationarity of the data, we used logarithmic returns as the variable. The
calculation formula for logarithmic returns is as follows:

Xi,t = ln Pi,t − ln Pi,t−1, (11)

where Pit is the daily closing price of stock i at time t.

Table 1. Financial institutions selected in each industry.

Industry Financial Institutions

Banking Industrial and Commercial Bank of China (601398), China Construction Bank (601939), Agricultural Bank of China
(601288), Bank of China (601988), Bank of Communications (601328), China Merchants Bank (600036), Industrial
Bank (601166), China Citic Bank (601998), China Minsheng Bank (600016), China Everbright Bank (601818)

Securities Citic Securities (600030), Huatai Securities (601688), Guotai Junan (601211), China Merchants Securities (600999),
Haitong Securities (600837), GF Securities (000776), Guosen Securities (002736)

Insurance China Life (601628), Ping An Insurance (601318), China Pacific Insurance Company (601601)

Notes: The numbers in ( ) is the stock code of each financial institution.

After applying the logarithm transformation to the samples, we obtain a total of 1460
sets of logarithmic returns. Due to space limitations, only the descriptive statistics of
industry returns are presented here. The data in Table 2 represent the descriptive statistical
characteristics of the logarithmic returns for each financial industry. Table 2 shows that the
skewness of all financial industry returns is non-zero, and the excess kurtosis is greater than
zero, indicating the presence of the typical “peak and fat-tailed” distribution. Specifically,
the mean of logarithmic returns for every industry is close to zero, and the standard
deviation of the banking industry is smaller than that of the securities and insurance
industries. Therefore, the banking industry is relatively more stable compared to the other
two industries, and this is consistent with the general perception of the Chinese financial
market. The securities industry has the highest maximum value and the lowest minimum
value among the three industries. This is because stock prices experience significant
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increases during bull markets, and decreases during bear markets, which leads to high
volatility. In contrast, the banking industry has the largest minimum extreme value and the
smallest maximum extreme value, as bank stocks exhibit stable fluctuations regardless of
whether the overall market is in a bull or bear market. Even in a bear market, the decline in
bank stocks is relatively smaller compared to the overall market, reflecting the stability of
bank stocks. Besides, the skewness of all three financial industries is greater than 0, which
means they all exhibit a right-skewed distribution. This suggests that positive returns are
more likely to be observed in the selected time period for all three financial industries.

Except for the descriptive statistics, Table 2 also shows the test statistics for the normal-
ity test, autocorrelation test, ARCH effect test and stationarity test. The daily logarithmic
returns for all financial industries significantly reject the assumption of normality. The
results of the L-BQ test indicate the autocorrelation in the three industries, with the banking
industry exhibiting the strongest autocorrelation. The ARCH-LM test results demonstrate
significant volatility clustering in all industries. Furthermore, to avoid spurious regression,
we conduct a stationarity test on the log returns of each industry. The results of the ADF test
are all significant, indicating that the data series are stationary, which ensures the stability
of the proposed model.

Table 2. Financial institutions selected in each industry.

Banking Securities Insurance

Mean −0.000088 −0.000222 0.000048
Std 0.010453 0.017625 0.018187
Max 0.081269 0.095291 0.092121
Min −0.064432 −0.105246 −0.087806
Kurtosis 5.743234 5.528226 2.325904
Skewness 0.336056 0.445978 0.281523
J-B 1170.4 *** 1584.6 *** 265.97 ***
Q (15) 42.877 *** 30.104 ** 27.483 **
LM (5) 65.612 *** 55.915 *** 55.669 ***
ADF −11.512 *** −10.998 *** −11.491 ***
*** Indicate significance at 1% level. ** Indicate significance at 5% level.

4. Empirical Results

In this section, we conduct an empirical analysis based on the aforementioned method-
ology. First, we estimate the marginal distribution of each financial institution (or industry)
with an AR(1)-GJR-GARCH(1,1) model and choose the distribution for the standardized
residuals of each institution’s (or industry’s) returns based on the maximum likelihood
estimation. Then, we divide the standardized residual series of the samples into estimation
and prediction samples. We perform a rolling Monte Carlo estimation of the model based
on the vine copula grouped model to calculate the values of the prediction interval for VaR,
ES, CoVaR, CoES and ΔCoES.

4.1. Constructing Marginal Model

First, focusing on the industry internally, descriptive statistics of financial institutions
within each industry indicate that the industry returns exhibit common characteristics of
financial data, including non-normality, autocorrelation and volatility clustering. Therefore,
after estimating the institutional returns using the AR(1)-GJR-GARCH(1,1) model, we fit
the standardized residuals with Student’s t distribution, skewed Student’s t distribution,
generalized error distribution and skewed generalized error distribution, respectively. Then,
we select the distribution with the maximum likelihood value based on the maximum
likelihood criterion. Due to the large number of institutions, only the distributions of
the standardized residuals are shown in Table 3. From Table 3, we can observe that
the standardized residuals of most financial institutions follow the skewed Student t-
distribution or the skewed generalized error distribution, while only the standardized
residuals of the logarithmic returns of Agricultural Bank of China follow the generalized
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error distribution. Therefore, we can conclude that, except for the Agricultural Bank of
China, the residual series of other financial institutions exhibit heavy tails and asymmetry.

Table 3. Distribution of standardized residuals by financial institution.

sstd ged sged

Banking 601398, 601939, 601328, 601166, 601998, 600016,
601818

601288 601988,
600036

Securities 600030, 601688, 601211, 600999, 600837, 000776,
002736

- -

Insurance 601628 - 601318,
601601

Notes: For simplicity, each financial institution is represented by its stock code.

After grouping the financial institutions within each industry, we obtain the logarith-
mic returns of each financial industry by weighting the logarithmic return of the financial
institutions within each industry. Based on the descriptive statistical characteristics of each
financial industry provided in the previous section, we can understand the heavy-tailed
and asymmetric characteristics of the financial industry returns. Then, after estimating the
industry returns using the AR(1)-GJR-GARCH(1,1) model, we fit the standardized residual
series with the four candidate distributions mentioned above, and the parameter estimation
results are shown in Table 4. According to the leverage parameter estimation results of the
GJR-GARCH, the leverage parameters for the banking industry and securities industry
are both less than 0, indicating that positive news has a greater impact on the banking and
securities industries compared to negative news. In terms of the magnitude of the coeffi-
cients, positive news has a greater impact on the banking industry than on the securities
industry. On the other hand, the leverage coefficient for the insurance industry is greater
than 0, suggesting that negative news has a greater impact on the insurance industry than
positive news. The last row in Table 4 displays the selected distribution for the standardized
residuals based on the maximum likelihood criterion. We can observe that the standardized
residuals of the banking and securities industries follow a skewed Student’s t distribution,
while the standardized residuals of the insurance industry follow a skewed generalized
error distribution. Overall, most parameters are significant with high likelihood function
estimates, indicating reasonable estimation of the marginal distributions.

Table 4. Parameter estimation results of the marginal distribution models.

Banking Securities Insurance

μ 0.0001 (0.0002) −0.0002 (0.0003) 0.0003 (0.0005)
c −0.0092 (0.0261) −0.0681 *** (0.0226) −0.0333 (0.0252)
ω 0.0000 *** (0.0000) 0.0000 (0.0000) 0.0000 ** (0.0000)
α 0.1144 *** (0.0203) 0.0555 *** (0.0144) 0.0589 *** (0.0138)
β 0.8359 *** (0.0182) 0.9423 *** (0.0134) 0.9160 *** (0.0000)
γ −0.0292 (0.0349) −0.0052 (0.0192) 0.0132 (0.6225)
skew 1.0887 *** (0.0378) 1.1035 *** (0.0384) 1.1124 *** (0.0348)
shape 4.5762 *** (0.5386) 3.2217 *** (0.3045) 1.2184 *** (0.0593)
LL 4744.27 4049.919 3877.209
Zt sstd sstd sged
*** Indicate significance at 1% level. ** Indicate significance at 5% level.

4.2. Constructing Vine Copula Grouped Model

After modeling the marginal distribution of each return series with the AR(1)-GJR-
GARCH(1,1) model, we obtain the standardized residual sequences. Then, we estimate the
skewness parameters and degrees of freedom parameters for each standardized residual
sequence according to the corresponding candidate distribution. We perform probability
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integral transforms based on the obtained parameters. The transformed sequences followed
a uniform distribution on (0,1), which serve as the input variables for the vine copula
grouped model. We construct intra-group vine copula with PIT (Probability Integral
Transform) sequences of financial institutions with t = 1, 2, 3, . . . , 1300 within each industry
separately. Thus, we built inter-group vine copulas using the PIT sequences of each financial
industry. Consequently, the vine copula grouped model is obtained for the first rolling
estimation. By keeping the estimation interval fixed and shifting it one day backward at
a time, we obtain the vine copula combination grouped for the second rolling estimation.
Repeat the above steps until the last day. We can obtain all the vine copula grouped models.
It is worth noting that only the vine structure of the first rolling estimation is shown here,
and the vine copula among financial industries may not follow the same structure in
subsequent vine copula estimations.

In constructing the vine copula, we choose the flexible R-vine copula to describe the
dependency structure among the returns of financial institutions within groups and the de-
pendency structure across financial industries. From Figure 2, we observe the inter-industry
dependency structure generated by the first rolling estimate, where this three-dimensional
R-vine comprises two trees. T1 has two edges (C12, C13), and the two edges represent the
dependence between the banking and securities industries and the dependence between
the banking and insurance industries, respectively. T2 has one edge (C23|1), representing
the conditional dependence relationship between the securities industry and the insurance
industry conditioned on the banking industry.

Figure 2. R-vine structure among industries.

In Table 5, we present the results of the inter-industry vine copula estimation from
the first rolling estimation. The parameters are estimated according to the AIC criterion
and the maximum likelihood estimation method. Based on the estimated parameters of
the inter-industry vine copula, in the first estimation interval, the dependence among the
three industries is dominated by the banking industry, and the dependence relationships
between industries are described by t copulas. This indicates that there is fat-tailedness
and symmetry in the dependence relationships among the industries. In addition, the one
between the banking and insurance industries is stronger than the one between the banking
and the securities industry. This suggests that the dependence relationship between the
banking industry and the insurance industry is stronger than the dependence relationship
between the banking industry and the securities industry.

Table 5. Estimation of vine copula among industries.

Tree Edge Copula Par Par2

T1 (1,2) t 0.57 7.49
(3,1) t 0.73 4.84

T2 (3,2;1) t 0.29 8.57

4.3. CoES Results

In this section, we first analyze the systemic risk among different financial industries
and then proceed to examine the risk spillover of each financial industry to the whole
financial system. We calculate the VaR and ES of each industry, as well as CoVaR, CoES

258



Mathematics 2024, 12, 1233

and ΔCoES of the systemic risk measures at 97.5% confidence level and 99% confidence
level, respectively.

4.3.1. The CoES between Financial Industries

After constructing the dependency model, we use the Monte Carlo method to calculate
risk measures such as VaR, ES, CoES and ΔCoES. The results of the first rolling estimate of
the risk measures are presented in Table 6. Taking the banking industry as an example, to
calculate the risk values for the banking industry, we employ the aforementioned Monte
Carlo method to simulate 10,000 sets of 10-dimensional return rate sequences and calculate
the weighted sum. This yields 10,000 sets of industry returns. Then, we sort the industry
returns and calculate the VaR and ES according to the corresponding significance levels.
Similarly, VaR and ES values for other industries are calculated. Once the VaR of each
financial industry was calculated, we can use Equations (8) and (9) to calculate the systemic
risk between each pair of industries separately.

According to Table 6, we know that at the same significance level, the banking industry
has the lowest inherent risk, while the insurance industry has the highest inherent risk.
Specifically, the banking industry has the smallest VaR and ES, which implies that the
banking industry faces the least potential loss when the entire financial system experiences
negative shocks. This means that the banking industry is relatively more stable compared to
other sectors when facing adverse events. At the same significance level, the ES for all three
industries is greater than VaR. The reason is that VaR ignores extreme risks, potentially
leading to an underestimation of the actual risk. Additionally, the lower the significance
level, the larger the gap between VaR and ES. Comparing the ES and CoES of each industry,
we find that the risk of all industries is less than the systemic risk, indicating that the risk
exposure of each industry is greater than the systemic risk of the industry. Furthermore,
as the significance level decreases, the difference between the individual inherent risk and
systemic risk becomes larger. Therefore, systemic risk in the financial market should receive
more attention.

Table 6. VaR, ES, CoVaR, CoES, ΔCoES for industries.

Industry c VaR ES CoVaR CoES Δ CoES

Banking 2.5% −0.0195 −0.0283
1% −0.0266 −0.0372

Banking to Securities 2.5% −0.0502 −0.0734 −0.0631
1% −0.0647 −0.0966 −0.0863

Banking to Insurance 2.5% −0.0438 −0.0562 −0.0428
1% −0.0607 −0.0750 −0.0617

Securities 2.5% −0.0294 −0.0439
1% −0.0407 −0.0590

Securities to Banking 2.5% −0.0255 −0.0367 −0.0297
1% −0.0360 −0.0511 −0.0441

Securities to Insurance 2.5% −0.0423 −0.0547 −0.0413
1% −0.0590 −0.0732 −0.0598

Insurance 2.5% −0.0362 −0.0475
1% −0.0461 −0.0584

Insurance to Banking 2.5% −0.0289 −0.0416 −0.0346
1% −0.0386 −0.0546 −0.0476

Insurance to Securities 2.5% −0.0477 −0.0698 −0.0595
1% −0.0680 −0.1022 −0.0919

Similarly, CoES exceeds CoVaR for all three industries. Additionally, as the significance
level decreases, the disparity between CoVaR and CoES widens. This suggests that CoVaR
may underestimate systemic risk, and such underestimation can lead to significant losses.
Therefore, in this paper, CoES is used as a measure of systemic risk. In addition to having
the lowest inherent risk, the banking industry has the highest systemic risk, indicated
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by the inverse relationship between CoES and ES. More specifically, we find that the risk
spillover effect from banking to securities is stronger than from insurance to securities.
Similarly, the risk spillover effect from banking to insurance is stronger than from securities
to insurance. Therefore, in the first estimation interval the banking industry plays a major
role in the financial industry linkages, which is consistent with the constructed vine copula
results. The CoES values of the banking industry to the other two industries are greater
than 0.05, and the ΔCoES values are greater than 0.04 at the significance level of 2.5%, which
is a significant contribution to inter-industry systemic risk. On the other hand, the risk
spillover measures from other industries to the banking industry are relatively smaller,
with CoES ranging from 0.03 to 0.05 at a significance level of 2.5%. Compared to the risk
spillover from the securities industry to the banking industry, the risk spillover from the
insurance industry to the banking industry is greater, which is consistent with the higher
dependency between the insurance and banking industries mentioned earlier.

4.3.2. The CoES between the Financial System and the Financial Industries

We perform Monte Carlo simulations to obtain the financial system returns. After
obtaining the simulated returns for the system, we rank the returns to calculate the VaR
and ES of the financial system. Then, using the VaR of each industry, the systemic risk
CoVaR and CoES of each financial industry are calculated by Equations (8) and (9).

In Table 7, we present the first rolling estimate of the financial industry’s risk spillover
to the financial system in terms of the CoES measure at significance levels of 2.5% and
1%. From Table 7, we can see that banking has the highest risk spillover effect on the
financial system, followed by insurance and finally securities. At the 2.5% significance level,
the banking industry’s risk contribution ΔCoES to the financial system exceeds 0.04, while
those of the insurance and securities industries are below 0.04. In addition, the insurance
industry’s risk contribution to the financial system is greater than the securities industry’s
risk contribution to the financial system. The findings align with the conclusions by
Zhang et al. [14] and Cui [15].

Table 7. CoVaR, CoES, ΔCoES for financial industries and financial system.

Industry to System c CoVaR CoES ΔCoES

Banking to System 2.5% −0.0423 −0.0554 −0.0442
1% −0.0531 −0.0699 −0.0588

Securities to System 2.5% −0.0318 −0.0405 −0.0303
1% −0.0461 −0.0566 −0.0464

Insurance to System 2.5% −0.0348 −0.0479 −0.0396
1% −0.0472 −0.0639 −0.0556

4.4. Dynamic CoES
4.4.1. The Dynamic CoES among Industries

In this section, we combine the vine copula grouped model and the rolling Monte Carlo
method to calculate the out-of-sample ES of the financial industries and the CoES between
industries over a period of 160 days, which can be displayed visually in Figures 3–5.

In a two-by-two comparison of ES and two-way CoES across industries, it can be
observed that the fluctuation trends of ES and CoES are consistent for each financial
industry. However, there are large differences in the magnitude of the fluctuations. In
terms of individual industry risk during the forecast period, the banking industry has the
lowest value of risk, while the securities and insurance industries have similar levels of
risk. From the perspective of the fluctuation of risk, the banking industry has the smallest
fluctuation in its own risk, followed by the securities industry, and the insurance industry
has the largest fluctuation in risk, which is in accordance with the order of the standard
deviation of the three industries’ logarithmic returns. Most of the time, the systemic risk of
all industries exceeds their individual risk values. In other words, the risk exposure of the
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financial system as a whole is greater than the financial industry’s own risk. This situation
can be attributed to the high interdependence within the financial system, especially
considering that the selected three financial industries are highly integrated within the
Chinese financial system.

Figure 3. The CoES between banking and securities.

Figure 4. The CoES between banking and insurance.

From the perspective of risk spillover between industries, the banking industry is
the least affected by other industries. Moreover, the risk spillover effects on the banking
industry are smaller than the risks faced by financially distressed industries, and the
magnitude of the fluctuation in the risk spillover effect on the banking industry is smaller
than that of the financially distressed industry. This indicates that the risk spillover effects
of other industries in financial distress do not affect the banking industry to a greater extent.
The reason for the above situation is that the size of banks occupies a dominant position in
the Chinese financial system. In general, the risk spillover effect of the insurance industry
to the securities industry is greater than the risk spillover effect of the securities industry to
the insurance industry.

This suggests that the risk spillover effects generated by financially distressed in-
dustries do not have a significant impact on the banking industry. We can observe that
the fluctuations in risk spillover effects from the banking industry to other industries are
highly similar to the fluctuations in their own risks. Therefore, once the banking industry
experiences a crisis, it can easily influence other industries. The underlying reason for this
phenomenon might be the banking industry’s overwhelming dominance in scale within the
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Chinese financial system. The difference in risk spillover volatility between the securities
industry and the insurance industry is relatively small. However, in general, the securities
industry has a greater risk spillover effect on the insurance industry.

Figure 5. The CoES between securities and insurance.

4.4.2. The Dynamic CoES between Industries and System

In Figure 6, we present the dynamic CoES of each financial industry to the financial
system throughout the forecast interval. Consistent with the low ES and high CoES
characteristics of the banking industry in the previous section, this indicates that the
banking industry demonstrates greater resilience to risk autonomously. However, once
the banking industry is in financial distress, it could generate a large risk spillover to the
whole financial system. We observe that the banking industry demonstrates the largest risk
spillover effect on the whole financial system in comparison to other financial industries.
This observation is likely related to the strong development and dominance of the banking
industry in the Chinese financial market. Furthermore, the risk spillover effects of the
three financial industries on the financial system have the same trend, while the banking
industry has the largest change in risk spillover effects on the financial system, followed
by the insurance industry and finally the securities industry. Despite exhibiting a high
level of their own risk and weaker resistance to risk, we observe that the securities industry
contributes less to the systemic risk of the whole financial system when it experiences a
crisis itself.

Figure 6. The CoES between industries and system.
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4.5. A Comparison between Dynamic CoVaR and Dynamic CoES

In this section, we compare out-of-sample dynamic CoVaR and dynamic CoES. The
specific arrangement involves comparing dynamic CoVaR and dynamic CoES across in-
dustries first, followed by comparing the impact of different industries on the financial
system’s dynamic CoVaR and dynamic CoES.

4.5.1. The CoVaR and CoES between Industries

In Figures 7–9, we present the comparison between the dynamic CoES and dynamic
CoVaR among financial industries at a significance level of 2.5%. It is evident from the
graphs that the measured values of CoES which account for the presence of extreme risks
are significantly higher than CoVaR.

In terms of the magnitude of changes in the indicators, CoES exhibits a larger vari-
ation compared to CoVaR. By comparing CoVaR and through the comparison of CoVaR
and CoES, it is evident that CoVaR has the flaw of underestimating risk spillover effects.
Underestimating these effects may lead to erroneous risk management decisions, whereby
risks are further amplified through inter-industry dependencies, ultimately causing the
entire financial system to fall into crisis and affecting the stability and development of the
country and society.

Specifically, the difference between CoVaR and CoES for the spillover effects from the
securities industry to the banking industry is relatively small, while the difference is slightly
larger for the spillover effects from the insurance industry to the banking industry. This
is because the insurance industry can experience extreme losses due to natural disasters,
which also have a significant impact on the banking industry. Additionally, for the banking
industry to be less affected by spillover risks, the magnitude of variation in CoES is
comparable to CoVaR, once again indicating the strong resilience of the banking industry
to extreme risk spillovers. Regarding spillover risks between the insurance and securities
industries, the magnitudes of CoVaR are similar, but there is a significant difference in the
magnitudes of CoES. The insurance industry’s CoES for spillover to the securities industry
is noticeably larger, primarily due to the insurance industry’s susceptibility to natural
disasters. CoVaR fails to account for this extreme risk spillover phenomenon, resulting in
comparable measurements and underestimation of spillover effects.

Figure 7. The CoVaR and CoES between banking and securities.
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Figure 8. The CoVaR and CoES between banking and insurance.

Figure 9. The CoVaR and CoES between securities and insurance.

4.5.2. The CoVaR and CoES between Industries and System

In Figure 10, this paper presents a comparison of CoVaR and CoES for risk spillover
effects of different financial industries on the financial system. The figure clearly shows
that the CoES values of different financial industries on the financial system are greater
than their CoVaR values. Overall, due to the presence of extreme losses, the fluctuations
in CoES measurements are slightly larger than those in CoVaR, but they are still relatively
robust and can be used to measure financial risk spillover effects.

In terms of the differences in indicator values, the banking industry exhibits the
greatest disparity between CoVaR and CoES values for risk spillover to the financial
system, followed by the insurance industry, and finally the securities industry. This is
because the banking industry plays a dominant role in the entire Chinese financial market,
and the extreme loss situation in the banking industry can have a significant impact on
overall financial risk. However, CoVaR overlooks these extreme losses, leading to an
underestimation of financial risk spillover effects. The insurance industry, due to its
business characteristics and its role in providing insurance to other financial industries to
share risks, leads to increased risk spillover to other industries. If the insurance industry
experiences extreme losses, it can affect the risk transfer to other industries to a certain
extent, thereby impacting the entire financial system and causing disruptions.

Overall, CoVaR underestimates risk spillover effects due to its neglect of extreme risks.
However, the existence of extreme risks can potentially plunge the entire financial system
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into crisis. Thus, underestimating financial risk spillover effects can affect the accuracy and
effectiveness of risk management decisions.

Figure 10. The CoVaR and CoES for financial industries on the financial system.

5. Conclusions

With the rapid development of the Chinese financial markets, there has been an
increasing level of dependency among financial industries within the financial system. In
this paper, using Monte Carlo simulation based on the dependency structure of the financial
system described by the vine copula grouped model, we calculate the VaR, ES, CoVaR and
CoES of the Chinese financial markets. We draw the following conclusions: First, judging
from the risks faced by the financial industry itself, the banking industry exhibits the lowest
level of risk while the securities industry and the insurance industry face nearly equal
levels of risk. However, most of the time, the insurance industry faces greater risk. Second,
the banking industry makes the greatest contribution to systemic risk, signifying the most
significant risk spillover effect on other financial industries and the whole financial system,
and thus makes itself the primary systemic risk driver. Third, the insurance industry’s
risk fluctuation is the largest of the three industries which is consistent with the insurance
industry having the largest standard deviation of log returns.
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Video Website
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Abstract: In this paper, we consider a queuing system with impatient customers, which includes
infinite servers and two types of customers. During the service process, Type-1 customers may
leave the system or upgrade to be Type-2 customers due to their impatience. By solving the partial
differential equations, we obtain the generating functions of the transient distribution of the queue
length, and many stationary performance measures are further derived. Then, as an application,
we formulate an expected profit function for a video website, and maximize it by determining the
optimal pricing strategy. Finally, numerical examples are provided to demonstrate the impacts of
parameters on the optimal website profit.
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1. Introduction

Queuing systems with impatient customers have been studied extensively, and have
applications in a wide range of areas, such as call centers. In such systems, customers may
become impatient and leave the system during their waiting time or service processes.
Barrer [1,2] firstly considered customers’ psychology in queuing systems. He analyzed
M/M/1 and M/M/c queuing systems with constant impatience time, and obtained the
stationary distributions of the queue length, respectively. Since then, more and more
scholars have focused on the queuing systems with impatient customers. Phung-Duc [3]
studied an Markovian multi-server retrial queue, in which a blocked customer has two
opportunities for abandonment. The tail asymptotics formulae for the joint stationary
distribution of the number of customers in the system and for those in the orbit are
obtained. Kim and Kim [4] studied a single queuing system in which customers wait for
service for a fixed time, and if the time is expired, customers leave the system instantly.
By constructing the age process, they derived the stationary distribution of the queue
length, the loss probability and the waiting time distribution. Adan et al. [5] investigated a
queuing system with two classes of impatient customers, and obtained system performance
measures by introducing a virtual waiting time process instead of a queue length process.
These systems with impatient customers are exemplified by studies like [6–9] and others.

With the development of technology, many stochastic service systems in real life
operates with large service capacity so that all customers in the system can access to
service immediately upon their arrival. Such service systems are regarded as the queuing
systems with an infinite number of servers and are investigated in many studies. Jackson
and Aspden [10] studied a finite number of M/M/∞ queues in series and proposed a
novel method to derive the time dependent solution of a multistage nonqueuing process.
Sato et al. [11] constructed an M/D/∞ queuing model to characterize a direct-sequence
spread spectrum multiple access unslotted ALOHA with fixed packet length. Shi et al. [12]
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took the online service as a background, and considered a queuing system with free
experience service. The closed form of the expected numbers of informed and uninformed
customers in steady-state are derived by solving nonhomogeneous linear partial differential
equations. Hassin and Ravner [13] studied the probabilistic properties of a queuing system
with infinite servers by considering the overflows from subsystems with finite servers.

Recently, scholars prefer to study from an economic perspective rather than classical
queuing system performance analyses. Game theory and pricing theory are two main
problems in economic queuing studies. Burnetas and Economou [14] discussed customers’
equilibrium strategies in an Markovian queue model with four different levels of system
information. Economou and Kanta [15] studied the equilibrium balking strategies in an
observable M/M/1 queuing system with breakdowns and repairs. Recently, more studies
about the equilibrium strategies in queuing models can be found in [16–20]. Addition-
ally, the pricing problem is an important research subject in economic queuing. Lee and
Ward [21] considered how to jointly set the static price and capacity to maximize the steady
state mean profit in a GI/GI/1 queue with a high rate of prospective customer arrivals.
Bai et al. [22] proposed a queuing model with server sharing and determine an optimal
admission policy to maximize managers’ profit function.

However, few papers focus on the pricing problem of two-sided markets based on the
queuing theory. Rochet and Tirole [23], Armstrong [24] studied the pricing strategy for a
two-sided market from the point of externality. Most studies are developed and explored
based on these two papers. Zeithammer and Thomadsen [25] analyzed price and quality
competition in a vertically differentiated duopoly in which consumers have a preference
for variety. See references [26–29] for more knowledge about two-sided markets. In this
paper, we take the video website as an application to analyze the profit function of website
and maximize it by determining optimal pricing strategy.

The rest of this paper is organized as follows. The transient and steady state probability
generating function of the queue length and several stationary performance measures are
derived in Section 2. Then, we study the optimal pricing strategy of a website profit function
in Section 3, and discuss the impacts of the customers’ potential value and advertisement
negative effect on the optimal pricing strategy. Finally, numerical examples are provided
to illustrate the impacts of parameters, such as advertising time and membership reward
gaps, on the optimal website profit in Section 4.

2. Transient and Stationary State Analysis

We first describe the basic setting of our queuing system, the working mechanism of
which is presented in Figure 1.

Figure 1. Working mechanism of this system.

• Arrival: There are two types of customers, Type-1 and Type-2, and they arrive the
system according to the Possion processes with rate λ1 and λ2, respectively.

• Service: Infinite severs are provided for each type customers, and the service time
of Type-1 (Type-2) customers is assumed to be an exponential random variable with
mean value 1/μ1 (1/μ2).
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• Impatience: A Type-1 customer may become impatient during their service process,
and the time between two successive impatience events are supposed to follow the
exponential distribution with mean value 1/α. The impatient customer leaves the
system directly with probability p, or otherwise upgrades to be a Type-2 customer.

From the description of the model, the state of the system at time t can be described
by the stochastic process {(N1(t), N2(t)), t ≥ 0}, where Nk(t) is the number of Type-k
customers in the system at time t, k = 1, 2. The corresponding state space is given by

Ω = {0, 1, 2 · · · } × {0, 1, 2 · · · }.

Define the following joint probabilities that there are i Type-1 customers and j Type-2
customers in the system at time t,

Pi,j(t) = P{N1(t) = i, N2(t) = j}, (1)

where i, j ∈ {0, 1, 2 · · · }.
According to the forward and backward Kolmogorov differential equations, we have:

1. N2(t) = 0,

P′0,0(t) = −(λ1 + λ2)P0,0(t) + (μ1 + αp)P1,0(t) + μ2P0,1(t), (2)

P′i,0(t) = −(λ1 + λ2 + iμ1 + iα)Pi,0(t) + λ1Pi−1,0(t)

+(i + 1)(μ1 + αp)Pi+1,0(t) + μ2Pi,1(t), (3)

where i = 1, 2, · · · .
2. N2(t) = j, j = 1, 2, · · · ,

P′0,j(t) = −(jμ2 + λ1 + λ2)P0,j(t) + λ2P0,j−1(t) + αpP1,j−1(t)

+(μ1 + αp)P1,j(t) + (j + 1)μ2P0,j+1(t), (4)

P′i,j(t) = −(jμ2 + λ1 + λ2 + iμ1 + iα)Pi,j(t) + λ2Pi,j−1(t) + (i + 1)αpPi+1,j−1(t)

+λ1Pi−1,j(t) + (i + 1)(μ1 + αp)Pi+1,j(t) + (j + 1)μ2Pi,j+1(t), (5)

where i = 1, 2, · · · .
We define the partial generating functions as follows:

gj(x, t) =
∞

∑
i=0

Pi,j(t)xi, j = 0, 1, 2, · · · , (6)

G(x, y, t) =
∞

∑
j=0

gj(x, t)yj. (7)

Multiplying (3) by xi, summing over all possible values of i, and combining with (2),
we obtain the following result:

∂g0(x, t)
∂t

= −(λ1 + λ2 − λ1x)g0(x, t) + (μ1 + αp− αx− μ1x)
∂g0(x, t)

∂x
+ μ2g1(x, t). (8)

Multiplying (5) by xi, summing over all possible values of i, and combining with (4), we
arrive at

∂gj(x, t)
∂t

= −(jμ2 + λ1 + λ2 − λ1x)gj(x, t) + λ2gj−1(x, t) + (j + 1)μ2gj+1(x, t)

+αp
∂gj−1(x, t)

∂x
+ (μ1 + αp− αx− μ1x)

∂gj(x, t)
∂x

, (9)

where j = 1, 2, · · · .
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Multiplying (9) by yj and summing over all j, together with (8), we have

(λ1 + λ2 − λ1x− λ2y)G(x, y, t) = −∂G(x, y, t)
∂t

+ μ2(1− y)
∂G(x, y, t)

∂y
(10)

+(μ1 + αp− αx− μ1x + αpy)
∂G(x, y, t)

∂x
.

Equation (10) is a first-order linear partial differential equation. Its characteristic
equations are given by

dt
−1

=
dx

μ1 + αp− αx− μ1x + αpy
=

dy
μ2(1− y)

=
dG(x, y, t)

(λ1 + λ2 − λ1x− λ2y)G(x, y, t)
(11)

Deriving from the first three items in (11), we have

ξ = (1− y)e−μ2t, (12)

η =

[
x− 1− αp

μ2 − μ1 − α
(1− y)

]
e−(μ1+α)t. (13)

Putting (12) and (13) into (10), we have the following equation related to ξ and η:

∂G(ξ, η, t)
∂t

=

[
λ1

(
ηe(μ1+α)t +

αp
μ2 − μ1 − α

ξeμ2t
)
− λ2ξeμ2t

]
G(ξ, η, t). (14)

Integrating the above equation leads to

G(ξ, η, t) = C(ξ, η)exp
{(

αpλ1

μ2(μ2 − μ1 − α)
− λ2

μ2

)
ξeμ2t +

λ1

μ1 + α
ηe(μ1+α)t

}
, (15)

where C is an undefined binary function and C(ξ, η) is the function value when ξ and η are
taken as the independent variables.

According to the boundary condition G(x, y, 0) = xkyb, which means that there are k
customers of Type-1 and b customers of Type-2 in the system at the beginning, we obtain

C(ϑ, γ) exp
{(
−λ2

μ2
+

λ1αp
μ2(μ2 − μ1 − α)

)
ϑ +

λ1

μ1 + α
γ

}
= xkyb, (16)

where ϑ and γ are the values when t = 0 in (12) and (13), i.e.,

ϑ = 1− y, (17)

γ = x− 1− αp
μ2 − μ1 − α

(1− y). (18)

Then, we have the formula for the function C,

C(ϑ, γ) = (1− ϑ)b(γ + 1 +
αp

μ2 − μ1 + α
ϑ)k

× exp
{(

λ2

μ2
− λ1αp

μ2(μ2 − μ1 + α)

)
ϑ− λ1

μ1 + α
γ

}
, (19)

and

C(ξ, η) = (1− ξ)b(η + 1 +
αp

μ2 − μ1 + α
ξ)k

× exp
{(

λ2

μ2
− λ1αp

μ2(μ2 − μ1 + α)

)
ξ − λ1

μ1 + α
η

}
. (20)
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Thus,

G(x, y, t) = C(ξ, η) exp
{(
−λ2

μ2
− αpλ1

μ2(μ1 + α)

)
(1− y) +

λ1

μ1 + α
(x− 1)

}
. (21)

Theorem 1. The probability generating function of the two-dimensional Markov chain {(N1(t),
N2(t)), t ≥ 0}, in the transient state is

G(x, y, t) = C(ξ, η) exp
{(
−λ2

μ2
− αpλ1

μ2(μ1 + α)

)
(1− y) +

λ1

μ1 + α
(x− 1)

}
, (22)

where

C(ξ, η) = (1− ξ)b(η + 1 +
αp

μ2 − μ1 + α
ξ)k

× exp
{(

λ2

μ2
− λ1αp

μ2(μ2 − μ1 + α)

)
ξ − λ1

μ1 + α
η

}
. (23)

Furthermore, noting that there are always enough servers for arriving customers,
and there is no congestion and waiting, this queuing system is always stable. Let t → ∞
in (2)–(5). We can obtain steady-state equations and compute the probability generating
function with the normalization condition, which is provided by the following theorems.

Theorem 2. The probability generating function of the two-dimensional Markov chain {(N1(t),
N2(t)), t ≥ 0} in the steady state is

Q(x, y) = exp
{
−
(

αpλ1

μ2(μ1 + α)
+

λ2

μ2

)
(1− y)− λ1

μ1 + α
(1− x)

}
. (24)

Theorem 3. The stationary distribution of this model is given as follows:

πi,j =
ai
i!

bj

j!
exp
{
− αpλ1

μ2(μ1 + α)
− λ2

μ2
− λ1

μ1 + α

}
, (25)

where ai =

(
λ1

μ1 + α

)i
, bj =

(
αpλ1

μ2(μ1 + α)
+

λ2

μ2

)j
.

Corollary 1. There are i Type-1 customers in the system with probability P1i,

P1i =
ai
i!

exp
{
− λ1

μ1 + α

}
.

There are j Type-2 customers in the system with probability P2j,

P2j =
bj

j!
exp
{
− αpλ1

μ2(μ1 + α)
− λ2

μ2

}
.

There are no customers in the system with probability P00,

P00 = exp
{
− αpλ1

μ2(μ1 + α)
− λ2

μ2
− λ1

μ1 + α

}
.

Corollary 2. The mean number of Type-1 customers in the system is

E1 =
λ1

μ1 + α
.
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The mean number of Type-2 customers in the system is

E2 =
αpλ1

μ2(μ1 + α)
+

λ2

μ2
.

Remark 1. E1 can be seen as the mean queue length of an M/M/∞ queue with arrival rate λ1
and service rate μ1 + α. E2 can be explained by two terms: the first term is the average number of
customers who are transferred from impatient Type-1 customers, and the second term means the
mean queue length of an M/M/∞ queue with arrival rate λ2 and service rate μ2.

3. Application: The Optimal Pricing Strategy of a Video Website

For a video website, viewers can be divided into two types, free memberships and
premium memberships, which correspond to Type-1 and Type-2 in the queuing system.
The viewing time is supposed to be customers’ service time. Seeing that free memberships
need to watch advertisements in addition to programs, we assume μ1 < μ2. Annoyed by
advertisements and other factors, free memberships may leave the system or upgrade to be
premium memberships.

We formulate the profit function of a website based on the queuing system perfor-
mances, and study the pricing strategy to optimize the profit function. Specifically, the
website collects membership fees from premium memberships, who can watch the program
directly, and charges advertisement fees from advertisers. Collections from membership
fees are related to both the population of premium memberships and membership fees, so
too high a membership fee with a small number of premium memberships or too low a
membership fee with a large population may both lead to the deviation from the maximal
website profit. For the price charged for advertisers, a high price may block the entry of
advertisers, while a low price goes against the purpose of maximizing website profit. Thus,
an appropriate pricing strategy should be designed to maximize the overall profit of the
video website.

We first define some parameters as follows:

• P: the price charged from advertisers per unit time.
• s: the price charged from per premium member, i.e., the membership fee.
• Rk: the utility obtained by a Type-k customer when they leave the system with service

completed.
• θ: the degree of each customer’s satisfaction for the website content.
• δ: the cost of the negative effect on a Type-1 customer per unit advertising time.
• β: the potential value of each Type-1 customer for advertisers.
• ck: the service cost per type-k customer.

When customers are going to enter the website, the expected utility functions of Type-1
and Type-2 customers are assumed to be

u1 = θR1 − δ

(
1

μ1
− 1

μ2

)
, (26)

u2 = θR2 − s, (27)

where 1
μ1
− 1

μ2
is the average advertising time.

Additionally, the utility is assumed to be zero for balking customers. In order to
describing the customers’ comment heterogeneity, we assume that θ is a uniform random
variable in [0, 1]. In Figure 2, when the preference for website content is θ1, customers are
indifference to balking or visiting the website. Similarly, there is no difference between
having a free or premium membership for a customer with the preference value θ2 for the
website content.
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Figure 2. The degree of satisfaction.

Thus, we have the following equations for θ1 and θ2:

θ1R1 − δ

(
1

μ1
− 1

μ2

)
= 0, (28)

θ2R1 − δ

(
1

μ1
− 1

μ2

)
= θ2R2 − s, (29)

and solving the above equations yields

θ1 =
δ
(

1
μ1
− 1

μ2

)
R1

, (30)

θ2 =
s− δ

(
1

μ1
− 1

μ2

)
R2 − R1

. (31)

Thus, a new visitor may balk with probability θ1, visit as a free membership with
probability θ2 − θ1 and obtain a premium membership with probability 1− θ2. That is to
say, when the total potential visitors arrive following a Poisson process with rate λ, the
Type-1 and Type-2 customers arrive following a Poisson process with rate λ1 = (θ2 − θ1)λ,
λ2 = (1− θ2)λ, respectively.

The utility function of advertisers is as follows:

uad = βE1 − P
(

1
μ1
− 1

μ2

)
. (32)

Then, we have the profit function of this video website,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

s,P
W = P + sλ2 − c1E1 − c2E2,

subject to
0 ≤ θ1 ≤ θ2 ≤ 1,
βE1 − P

(
1

μ1
− 1

μ2

)
≥ 0.

(33)

Furthermore, the optimal pricing strategy can be obtained by solving problem (33).

Theorem 4. For the profit function model (33),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
s,P

W = −P + As2 − Bs− C,

subject to
P− k1s + b1 ≤ 0,
−(k2s + b2) + θ1 ≤ 0,
k2s + b2 − 1 ≤ 0,

(34)

the optimal pricing strategy (s∗, P∗) is given by

s∗ =
B + k1

2A
,

P∗ = k1
B + k1

2A
+ b1,
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where

A = k2λ,

B = λ(1− b2)− c1k2λ

μ1 + α
− c2α p̄k2λ

μ2(μ1 + α)
+

c2k2λ

μ2
,

C =

(
− λc1

μ1 + α
− c2α p̄λ

μ2(μ1 + α)

)
(b2 − θ1)− c2λ

μ2
(1− b2),

k1 =
βλ

μ1 + α

μ1μ2

μ2 − μ1
k2,

b1 = − βλ

μ1 + α

μ1μ2

μ2 − μ1
b2,

k2 =
1

R2 − R1
,

b2 = − δ

R2 − R1
(

1
μ1
− 1

μ2
).

Proof. According to the Karush–Kuhn–Tucker condition, we have the following Lagrange
function and necessary conditions for the optimal solution:

L = (−P + As2 − Bs− C) + γ1(P− k1s + b1) + γ2(−(k2s + b2) + θ1)

+γ3(k2s + b2 − 1),

(sL = 2As− B− γ1k1 − γ2k2 + γ3k2 = 0, (35)

(PL = −1 + γ1 = 0, (36)

γ1(P− k1s + b1) = 0, (37)

γ2(−(k2s + b2) + θ1) = 0, (38)

γ3(k2s + b2 − 1) = 0. (39)

It is easy to see that γ1 = 1 and P = k1s − b1 from Equations (36) and (37). Then, we
discussed the KKT point in the following situations:

(1) When γ2 = 0 and γ3 = 0, solving Equations (35)–(39) yields the following possible
optimal solution:

s1 =
B + k1

2A
,

P1 = k1
B + k1

2A
− b1.

(2) When γ2 = 0 and k2s + b2 − 1 = 0, combining with the KKT condition, we obtain
an alternative optimal solution:

s2 =
1− b2

k2
,

P2 = k1
1− b2

k2
− b1.

(3) When−(k2s+ b2) + θ1 = 0 and γ3 = 0, another optional optimal solution is given by

s3 =
θ1 − b2

k2
,

P3 = k1
θ1 − b2

k2
− b1.
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Next, we need to find the optimal solution from three candidates. According to
condition (37), we have P = k1s− b1, and substituting it into the profit function, we obtain

W = −As2 + (B + k1)s + C− b1, (40)

based on which it is obvious that the optimal solution for this profit function model is
(s1, P1).

Corollary 3.

∂s∗

∂δ
=

1
2

(
1

μ1
− 1

μ2

)
> 0,

∂s∗

∂β
=

λk2

2A
> 0.

Remark 2. It follows from Corollary 3 that when the negative effect on free memberships becomes
larger, the membership fee increases. This implies that when customers become more annoyed with
advertisements and more prone to skip them, the website will exploit this to charge a higher member-
ship fee.

When the potential value of a free membership for advertisers increases, the website tends to
increase the membership fee. The reason is that the website can provide more free memberships
for advertisers with a higher membership fee, and optimize its profit by charging a high price
for advertisers.

Corollary 4.

∂P∗

∂δ
=

k1

2

(
1

μ1
− 1

μ2

)
+

βλ

(R2 − R1)(μ1 + α)
> 0,

∂P∗

∂β
=

λμ1μ2k2s∗

(μ1 + α)(μ2 − μ1)
+

k1

2
− λμ1μ2b2

(μ1 + α)(μ2 − μ1)
> 0.

Remark 3. When the negative effect on free memberships becomes larger, the website will increase
the cost of advertisers to protect memberships’ utilities. With the increasing potential value of a free
membership, the website will set a higher price of advertisement to maximize their own revenue.

Corollary 5. The optimal profit W∗ is a quadratic function with respect to both δ and β, the
symmetry axes of which are on the right and left side of the origin, respectively. The relationship of
advertising negative effect (free memberships’ potential value) and optimal website profit is shown
in Figure 3 (Figure 4).

Remark 4. According to Corollary 5, it is easy to observe that the website profit is a convex function
in terms of advertising’s negative effect on free memberships, which means that when δ is small,
as the advertising negative effect increases, the number of free memberships decreases, and then
the website profit decreases. However, when δ reaches a certain value, more and more viewers may
choose to be premium members with an increasing negative advertising effect, thus the website
gains more from membership fees and the website profit increases. In addition, the increasing of
free memberships’ potential value leads to a higher price for advertisements, thus the website’s
profit increases.
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Figure 3. The optimal website profit versus advertising negative effect.

Figure 4. The optimal website profit versus free membership’s potential value.

4. Numerical Examples

In this section, we will present the impacts of parameters on the optimal website profit
using figures, and try to give some management insights.

Recall our basic setting, where 1/μ2 is the average program time, and 1/μ1 is the
average program and advertising time; thus, we suppose that 1/μ1 − 1/μ2 is the average
advertising time. In Figure 5, when the advertising time is short, the optimal website profit
declines quickly, as the advertising time becomes longer. We find that a sharp decline in
the number of free memberships, resulting from the increasing advertising time, leads to
the decrease in advertising fees and website profits. When the profit hits the bottom, it
rebounds. As the advertising time increases, the number of premium memberships grows
gradually, which results in an increase in website profit.
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μ

μ

μ

Figure 5. The optimal website profit versus advertising time for λ = 50, α = 0.6, p = 0.5, δ = 0.2,
β = 1, c1 = 4, c2 = 6, R1 = 1, R2 = 2.

Figure 6 shows the impact of the reward gap between free and premium memberships
on the website’s profit. It is clear that what mainly affects the optimal profit is the difference
between the two rewards instead of the specific value of the two rewards. When there is little
difference between the two rewards, viewers prefer free memberships, and advertising revenue
is a major part of website profit. As the gap increases, the number of free memberships declines
rapidly and the advertising revenue falls, as well as the website profit. When the reward
gap reaches a certain value, it is worthy for viewers to upgrade to be premium memberships
at some appropriate membership fee. Thus, the membership fee becomes the major part of
website profit, which rebounds and grows with the increasing reward gap.

Figure 6. The optimal website profit versus reward gap for λ = 50, μ1 = 1, μ2 = 5, α = 0.6, p = 0.5,
δ = 0.2, β = 1, c1 = 1, c2 = 4.

The impact of the impatience rate on the optimal website profit is provided by Figure 7.
With the impatience rate increasing, the number of free memberships decreases, which
leads to a fall in the price for advertisers and a slight growth in the number of premium
memberships. In addition, from Figure 7, for a fixed impatience rate, a larger arrival rate λ
corresponds to a larger optimal website profit, which implies more potential viewers and
means more profit.
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λ

λ

λ

Figure 7. The optimal website profit versus impatience rate for μ1 = 1, μ2 = 3, p = 0.5, δ = 0.2,
β = 1, c1 = 4, c2 = 6, R1 = 1, R2 = 2.

Observing Figure 8, we find that when the service cost gap is small, the optimal
website profit decreases with the increasing service cost gap. While the gap increases, the
number of premium memberships and the corresponding service costs should be controlled
to maximize website profit. Thus, a higher membership fee leads to more free memberships
and a high price for advertisers. And then, as shown in Figure 8, the optimal website profit
grows with the increasing service cost gap, when the gap is more than a certain value.

Figure 8. The optimal website profit versus cost gap between two memberships for λ = 50, μ1 = 3,
μ2 = 5, α = 0.6, p = 0.5, δ = 0.2, β = 1, R1 = 1, R2 = 2.

5. Conclusions

In this paper, we investigated a queuing system with two types of customers and
infinite servers. Transient and steady state probability generation functions are obtained,
based on which several performance measures are derived. As an application of the
queuing system, we build an optimal price decision model for a video website based
on the system performances. The impacts of negative advertising effects and customers’
potential value on the optimal pricing strategy are investigated, and numerical examples
are presented to illustrate the impacts of parameters, such as advertising time and reward
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gap, on the optimal website profit. To obtain the optimal profit of the website, the prices for
the advertisers and premium members need to be designed delicately. The optimal profit is
very sensitive when the advertising time is short, and as the time gets longer, the optimal
profit increases steadily. Increasing the reward gap between the two types of customers is
helpful for obtaining high profits from the website. The optimal pricing for video websites
is very complex, and what we worked out in this paper is limited, and there are many
problems can be further discussed. For example, we can consider the pricing problem in a
system where the serving devices have limited service capacity, then more congestion and
complex impatient problems should be included for investigation. Moreover, the service
for the free memberships can be discussed more finely, which means the service time can
be divided into two parts, namely the advertising time and the video time.
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