
Stark, Oded; Kosiorowski, Grzegorz

Article  —  Published Version

A pure theory of population distribution when preferences
are ordinal

The Annals of Regional Science

Provided in Cooperation with:
Springer Nature

Suggested Citation: Stark, Oded; Kosiorowski, Grzegorz (2022) : A pure theory of population
distribution when preferences are ordinal, The Annals of Regional Science, ISSN 1432-0592,
Springer, Berlin, Heidelberg, Vol. 71, Iss. 2, pp. 317-342,
https://doi.org/10.1007/s00168-022-01194-y

This Version is available at:
https://hdl.handle.net/10419/312516

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00168-022-01194-y%0A
https://hdl.handle.net/10419/312516
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


The Annals of Regional Science (2023) 71:317–342
https://doi.org/10.1007/s00168-022-01194-y

O R I G I N A L PA P E R

A pure theory of population distribution when preferences
are ordinal

Oded Stark1,2 · Grzegorz Kosiorowski3

Received: 23 January 2022 / Accepted: 3 November 2022 / Published online: 22 December 2022
© The Author(s) 2022, corrected publication 2023

Abstract
We model an environment in which individuals prefer to be in a space in which
their rank is higher, be it a social space, a geographical space, a work environment,
or any other comparison sphere which we refer to in this paper, and without loss
of generality, as a region. When the individuals can choose between more than
two regions, we inquire: (i) whether a steady-state distribution of the population is
reached; (ii) how long it will take to reach a steady state; and (iii) if a steady state
obtains, whether at the steady state social welfare is maximized. Despite the fact that
when there are three or more regions the mobility paths are more intricate than when
there are only two regions, we prove that a steady-state distribution of the population
across the regions is reached; we identify the upper bound of the number of time
periods that it will take to reach the steady-state distribution; and we show that the
steady-state distribution maximizes social welfare. This last result is surprising: even
though the individuals act of their own accord, they achieve the socially preferred
outcome.
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“The desire of . . . obtaining rank among our equals, is, perhaps, the strongest of all
our desires” (Smith, 1759, Part VI, Section I, Paragraph 4).

1. Introduction

A large number of empirical works demonstrate that when people are ranked low, they
take action to improve their rank. Studies showing this are, for example, of workers
(Falk and Ichino, 2006; Mas and Moretti, 2009; Bandiera et al., 2010; Cohn et al.,
2014), and of students (Sacerdote, 2001; Hanushek et al., 2003; Azmat and Iriberri,
2010; Bursztyn and Jensen, 2015; Garlick, 2018; Dobrescu et al., 2021). Heffetz
and Frank (2011) review the significance of social status (rank) in economic affairs.
Noy and Sin (2021) document the importance of rank for happiness, whether the
reference group consists of neighbors or of co-workers. Drawing on data from New
Zealand, Noy and Sin find that while ordinal (rank) comparisons matter for subjective
wellbeing, cardinal (absolute income) comparisons do not. (Noy and Sin provide
many references to studies that establish the importance of rank in the determination
of wellbeing.) It is not difficult to conceptualize the choice of a comparison sphere as
a response to dislike of being ranked low. Other things being equal, people will prefer
to be in a space in which their rank is higher, be it a social space, a geographical space,
a work environment, or any other comparison sphere which we refer to henceforth
in this paper, and without loss of generality, as a region. Relocation can take them
there.

In “Migration when social preferences are ordinal: Steady-state population
distribution and social welfare” Stark (2017) studies the decisions of individuals as
to which of two regions to locate to when the choice is governed by ordinal social
preferences, specifically by a distaste for low rank in the hierarchy of incomes. What
is meant by rank is the rung occupied by an individual in the hierarchy of the incomes
in the region in which the individual is located. Thus, in a given region, the individual
whose income is the highest occupies the top rank, namely his rank is first, the rank
of the individual whose income is the second highest is second, namely he occupies
a rung that is just below the top rung, and so on.

There are three core claims of Stark’s (2017) model. These claims pertain to issues
of the steady-state distribution of the population between the regions, and to social
welfare.

Claim 1 considers rational but not sophisticated individuals in the sense that they
do not form expectations as to how other individuals will behave; the individuals
optimize their own utility, but they do not take into consideration that other
individuals do likewise. We refer to these individuals as “near-sighted.” There are
n ≥ 4 (n is a finite natural number) individuals who are initially all located in the
same region. Claim 1 establishes that a steady-state distribution is reached by time

period
n

2
if n is even, or by time period

n − 1

2
if n is odd. At the steady state,

the individuals are distributed between the two regions evenly or evenly but for
one.
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Claim 4 in Stark’s model refers to an alternative setting in which the individuals
are “far-sighted:” in considering a move between regions, individuals who are
“far-sighted” figure out and take into account the decisions that will be taken by
other individuals who are higher up in the hierarchy of the income distribution. The
claim states that in that setting, a steady-state distribution is reached in just one time
period, and that at the steady state, the individuals are distributed evenly, or evenly
but for one, between the two regions. In both cases, namely when the individuals
are “near-sighted,” and when the individuals are “far-sighted,” it is shown that the
steady-state distribution maximizes social welfare, where social welfare is defined
as the negative of the sum of the ranks of the individuals. (For example, when two
individuals with different incomes are located in the same region with ranks first and
second, social welfare is (−3); if they locate in different regions so that each is ranked
first, social welfare is higher at (−2).)

In Claim 5 in Stark’s model it is stated that any allocation of the individuals
in which they are distributed evenly (or evenly but for one) between the two
regions constitutes the social optimum. This claim is intriguing because although
the individuals act of their own accord,1 they achieve the socially preferred
outcome.

The aim of the current paper is to inquire whether the core claims of Stark’s
2017 model are robust to settings of more than two regions. A setting of three or
more regions is closer to reality than a setting of two regions, but is more difficult to
handle.2 The main outcome of the current paper’s analysis is robustness of the core
claims of Stark’s 2017 model, that the paths leading to the steady-state distributions
are harder to chart notwithstanding. To demonstrate this robustness, we proceed
as follows. In Sub-section 2.1 we list our modeling assumptions and several key
concepts. In Sub-section 2.2 we comment briefly, first, on a setting in which there
are three or more regions and two individuals and, second, on a setting in which
there are three or more regions and three individuals. In these two settings, it does
not matter whether the individuals are “near-sighted” or “far-sighted:” steady-state
distributions are obtained, and they are the same for both types of individuals. In
Sub-section 2.3 we study the case of more than three “near-sighted” individuals, and
in Sub-section 2.4 we study the case of more than three “far-sighted” individuals. In
both cases we find that the individuals’ behavior adds up to steady-state distributions,
and we characterize both the processes that lead to the steady-state distributions,
and the steady-state distributions themselves. Whereas in these two respects the two
cases differ, in terms of reaching a steady-state distribution, the cases do not differ.
In Section 3 we analyze social welfare. In Section 4 we address complementary
reflections. In Section 5 we present concluding remarks.

1After all, by their location choices, the individuals create negative externalities in that the very nature
of the dynamics of their movement is to decrease the rank-utility of every lower-ranked individual in the
region to which they move.
2An early example of modeling location choice when there are three locations to choose from is a study
by Shukla and Stark (1986).
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2. An economy of three or more regions: Steady-state distributions

2.1 Assumptions and concepts

We let n individuals (numbered 1,2, . . . , n) move between k regions where n and k

are finite natural numbers, n ≥ 2, and k ≥ 3.3 The regions are not arranged in a spatial
structure, and in all relevant aspects they are identical. Thus, the results obtained in
this paper are invariant to arbitrary permutation of the labels (names) of the regions.
The individuals have given incomes (individual 1 with income x1, individual 2 with
income x2, and so on, where 0<x1 <x2 < . . .<xn). The individuals are concerned
about their rank, namely their position in the hierarchy of incomes: the rank of
individual i ∈{1,2, . . . , n} in a region is the number of individuals in the region whose
incomes are higher than the income of individual i plus one. For example, the rank of
the individual with the highest income in a region is first, and if among the individuals
residing in the same region as individual i there are exactly four individuals whose
income exceeds his income, then the rank of individual i is 5. Improvement in rank
is the sole reason for considering moving from one region to another. The individuals
can move between regions at no cost. (In Section 4 we provide conditions under
which the reported results are invariant to a relaxation of the no-cost assumption.)
When residing in any other region is not more appealing than residing in a given
region, the individuals do not move. The region in which an individual is located is the
individual’s exclusive sphere of comparison. Using a slightly different terminology,
the region where an individual resides is the individual’s “isolated” environment in
which rank comparisons take place. Disutility arises when an individual’s rank is any
but the top one, and is proportional to the number of individuals who occupy higher
ranks in the individual’s region. An individual can move from one region to another
as many times as he wishes. A move from one region to another region takes one
time period. Because, as already noted, movement between the regions is cost free,
if an individual finds that a move results in a worse outcome, he can correct for that
by moving back, or by moving to a different region. Reallocation to another region
implies an association with a different hierarchy of incomes, but involves no rise in
income; improving rank is the sole motive. In any time period, the individuals know
the incomes and the locations of all the other individuals, but they are not informed
about each other’s moving plans.

We consider two possible mechanisms or procedures by which individuals assess
whether to move, and where to move to in any given time period. In the base
model (Sub-section 2.3), the individuals are rational but not sophisticated; they
do not form expectations as to how other individuals will behave, and they move
to the region in which they would have the best rank if no one else moves. We
refer to these individuals as “near-sighted,” and to the associated dynamics as
“near-sightedness.” In a subsequent model (Sub-section 2.4), the “near-sightedness”
assumption is replaced by the assumption of “far-sightedness:” in considering a move
between regions, individuals who are “far-sighted” figure out and take into account
the decisions that will be taken by other individuals who are positioned higher up

3The case of k = 2 is studied thoroughly in Stark (2017).
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in the hierarchy of the income distribution. These individuals move to a region in
which they can improve their rank after figuring out the anticipated movement of
other individuals. The nature of the information processed by the individuals differs
between the two settings. In the “near-sighted” setting the individuals respond ex-post
to information that they obtain from observing the whereabouts of individuals who
are higher up in the hierarchy of the income distribution. In the “far-sighted” setting
the individuals anticipate the whereabouts of individuals who are higher up in the
hierarchy of the income distribution; they respond to that information ex ante. In
both settings the individuals’ decision to move is based on the location of individuals
higher up in the hierarchy, whether this location is observed or anticipated. Detailed
explanations of the decision-making mechanisms are presented in the respective
sub-sections.

Additionally, we assume that, to begin with, all the individuals are in the same
region, which we label as A in the case of three regions, and as A1 in the general
case of multiple (three or more) regions. We make this assumption for two reasons: it
happens to yield the most complex case, so once we deal with that case, the analysis of
other cases follows smoothly; and drawing on this assumption simplifies the notation
considerably. However, the reported results are invariant to the initial distribution
of the individuals between the regions: the assumption that at the outset all the
individuals reside in the same region is not necessary for obtaining our results. In
Section 4 we discuss the implication of relaxing this assumption. We show that when
the assumption is discarded, the only change is that the final distribution is reached
faster.

2.2 Two or three individuals: The cases of “near-sighted” individuals, and of
“far-sighted” individuals

We let n = 2 or n = 3 individuals be in region A. Then two or more other regions that
in all relevant respects are identical to region A become available.

If n = 2, then a steady state is reached in just one time period (henceforth we
label the stages of the process as time periods): individual 1 whose rank is second
in region A moves to any of the other regions. Individual 2 who has nothing to gain
from moving does not move. This result obtains regardless of whether the individuals
are “near-sighted” or “far-sighted.”

If n = 3, then in the first time period, individuals 2 and 1 move. Individual 3 who
has nothing to gain from moving to another region does not move and remains in
region A. When individuals 2 and 1 move, they either locate to different regions,
in which case a steady-state distribution is reached with one individual located in
each of three regions, or individuals 2 and 1 happen to move to the same region, say
region B . In this second case, individual 1 will subsequently move to yet another
region, say region C (individual 1 will not move back to region A because whereas
in region C - meaning any region other than regions A and B - he will occupy
the top rank, in region A he will be ranked second), at which time a steady-state
distribution of the three individuals is reached, again with one individual in each
of the populated regions, and with the other regions remaining uninhabited. In this
second case, reaching the steady state takes longer, however: two time periods rather
than one. In this n = 3 case, as in the n = 2 case, the result obtains regardless of
whether the individuals are “near-sighted” or “far-sighted.”
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Naturally, the really interesting and quite challenging cases to study are those in
which there are more individuals than regions. We examine these cases next. We
separate our treatment of the “near-sighted” case from that of the “far-sighted” case
because in terms of the number of time periods that it takes to reach a steady-state
distribution and in terms of the steady-state distribution itself, the two cases differ.

2.3 Four or more individuals: The case of “near-sighted” individuals

Let {1,2, . . . , n} be a set of n ≥ 4 “near-sighted” individuals, and let there be k ≥ 3
regions: A1,A2, . . . ,Ak . In proceeding, we illustrate our considerations by means of
examples of k = 3 regions, in which case we use the notation A1 = A, A2 = B ,
and A3 = C. We term (X1,X2, . . . ,Xk) a distribution if X1,X2, . . . ,Xk are the
sets of individuals who reside, respectively, in regions A1,A2, . . . ,Ak . In particular,
X1 YX2 Y . . .YXk = {1,2, . . . , n}. When i ∈ X, we denote by R(i,X) the rank of
individual i in the set X.

Definition 1. A “near-sighted” mobility trajectory is a sequence of distributions
(Tm)

∞
m=0 = (Xm

1 ,Xm
2 , . . . ,Xm

k
)∞
m=0 such that:

(i) T0 = ({1,2, . . . , n},∅, . . . ,∅) namely in time period 0 all the individuals reside
in region A1.

(ii) If i ∈ Xm+1
α

for α ∈ {1,2, . . . , k} and m ≥ 0, then
R(i,Xm

α
Y {i}) = min

j∈{1,2,...,k}
R(i,Xm

j
Y {i}).

(iii) If i ∈ Xm
α

for α ∈ {1,2, . . . , k}, m ≥ 0 and R(i,Xm
α
) = min

j∈{1,2,...,k}
R(i,Xm

j
Y {i}),

then i ∈ Xm+1
α

.

Definition 1 lists three attributes of the dynamics of mobility. Attribute (i) states
that to begin with, all the individuals are in the same region A1. Attribute (ii) states
that each individual in each time period chooses a region in which he can obtain his
best possible rank (conditional on him assuming - recalling that he is “near-sighted” -
that no one else moves). Attribute (iii) states that in each time period an individual
who resides in the region where he already obtains his best possible rank does not
move. Given the opening distribution of the individuals as per (i), a mobility trajectory
has to follow attributes (ii) and (iii).

Definition 2. A mobility trajectory (Tm)
∞
m=0 reaches a steady state in l time periods

(l ∈N) if Tl−1 /=Tl and Ti = Tl for i ≥ l. (Although it is quite obvious that when i = l,
Ti = Tl , resorting to a weak inequality is more accommodating, as can be seen in the
next example.)

Example 1

Let n = 4 and k = 3. Then there exist eight possible mobility trajectories. In each of
these cases, the initial distribution is one in which the four “near-sighted” individuals
reside in region A, namely condition (i) above, T0 = ({1,2,3,4},∅,∅), holds. Then:

(i) T1 = ({4}, {3,2,1},∅) and Ti = ({4}, {3}, {2,1}) for i ≥ 2.

(ii) T1 = ({4}, {3,2}, {1}) and Ti = ({4}, {3}, {2,1}) for i ≥ 2.
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(iii) Ti = ({4}, {3,1}, {2}) for i ≥ 1.

(iv) Ti = ({4}, {2,1}, {3}) for i ≥ 1.

(v) T1 = ({4},∅, {3,2,1}) and Ti = ({4}, {2,1}, {3}) for i ≥ 2.

(vi) T1 = ({4}, {1}, {3,2}) and Ti = ({4}, {2,1}, {3}) for i ≥ 2.

(vii) Ti = ({4}, {2}, {3,1}) for i ≥ 1.

(viii) Ti = ({4}, {3}, {2,1}) for i ≥ 1.

Three characteristics stand out. First, each of the eight trajectories of the mobility
dynamics reaches a steady state. Second, the number of time periods that it takes to
reach a steady state is one or two. Third, there are multiple steady states. Naturally,
the following questions arise: do the mobility trajectories for any n ≥ 4 and k ≥ 3
reach a steady state? And if they do, what will be the maximal number (the upper
bound) of the time periods that it will take to reach a steady-state distribution of the
individuals across the regions? In the case of n = 4 and k = 3 of Example 1 we have
seen that the maximal number is two. As will be shown in our first claim, it is also
possible, albeit more challenging, to identify the maximal number of time periods
that it will take to reach a steady-state distribution in the case of any n ≥ 4 and k ≥ 3.

Claim 1. Let there be n ≥ 4 “near-sighted” individuals, and let there be k ≥ 3
regions. Then a steady state is reached. In the steady state, the difference between the
numbers of individuals in the regions is at most one. The biggest (maximal) number

of time periods that it takes to reach a steady state is

⌊
k − 1

k
n

⌋
.

Proof. The proof is in the appendix.

In the remainder of this sub-section we show how the formula

⌊
k − 1

k
n

⌋
can

be obtained heuristically. A consideration to bear in mind is that in order to “hit”
the largest number of time periods that it will take to reach a steady state, when
individuals face multiple, equally-attractive mobility possibilities, the individuals
elect to move to the same region all in the same time period.

In time period 1, individual n, who has nothing to gain from moving, stays in
region A1, whereas all the other individuals move to another region, say to region A2

so as to obtain a higher rank. Next, each of the individuals n − 2, n − 3, n − 4, . . . ,1
reasons that he can obtain a higher rank if he moves to yet another region,
that is, to a region other than A1 and A2. Thus, in time period 2, individuals
n − 2, n − 3, n − 4, . . . ,1 move to the same region, say to region A3, so that in time
period 2 the distribution of the individuals is n in region A1, n − 1 in region A2, and
the remainder of the individuals are in region A3.

(i) If
n

k
≤ 1, then in time period n − 1, all the individuals are evenly distributed

between the regions such that every individual has rank 1. A steady-state distribution
is reached in n − 1 time periods because in each time period one individual ceases
moving, and because individual n never moves.
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(ii) If 1 <
n

k
≤ 2, then in time period k all the regions will be inhabited by one

individual each, and individual n− k will elect to stay in region Ak . The remainder of
the individuals will continue moving from one region to another in “a herd” fashion
as described above, until the difference between the numbers of individuals in the
regions is at most one. However, because exactly one individual ceases moving in
every time period other than time period k, because in time period k two individuals
cease moving, and because individual n never moves, a steady-state distribution is
achieved in n − 2 time periods.

(iii) If 2 <
n

k
≤ 3, then the same procedure as before is in place: one individual

ceases moving in every time period other than k and 2k − 1, two individuals cease
moving in time periods k and 2k − 1, and individual n never moves. As a result,
a steady-state distribution is achieved in n − 3 time periods.

We thus see a pattern: when individuals move in the manner described above and
n

k
is an integer, then the general formula of the maximal number of time periods that

it takes to reach a steady state is n − n

k
. Clearly, n need not be a multiple of k. But

then (namely when
n

k
is not an integer), we can easily adjust the n − n

k
formula by

applying the floor function to n − n

k
so that the maximal number of time periods that

it takes to reach a steady state is

⌊
n − n

k

⌋
. An example is in (the caption of) Figure 1.

By a simple transformation we get that

⌊
n − n

k

⌋
=

⌊
kn − n

k

⌋
=

⌊
k − 1

k
n

⌋
, where

the last term is as stated in the claim.
In Figure 1, the preceding account is illustrated by means of an example of a

“maximal” trajectory.

Figure 1. “Near-sighted” individuals: An example of a “maximal near-sighted” mobility trajectory
(
T̂m

)5

m=0
for n = 8 and k = 3. A steady-state distribution is reached in

⌊
k − 1

k
n

⌋
=

⌊
2

3
n

⌋
= 5 time

periods, and T̂k = T̂5 for k > 5.
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2.4 Four or more individuals: The case of “far-sighted” individuals

In the “near-sighted” setting, individuals do not take into account the actions of
others; they assume that in a subsequent time period all the other individuals will
stay in the region in which they happen to be located. In this sub-section we consider
instead individuals who are “far-sighted:” as already noted in Sub-section 2.1, in
contemplating their mobility behavior, these individuals figure out and take into
account the decisions that will be taken by other individuals who are higher up
in the hierarchy of the income distribution. In other words, the assumption that
the individuals base their mobility decisions on the observed current state without
forming expectations as to how other individuals will behave simultaneously can also
be relaxed.

When individuals do form such expectations, we characterize them as
“far-sighted.”4 In terms of the number of time periods it takes to reach a steady-state
distribution and in terms of the steady-state distribution itself, it is easy to see
the differences between “near-sightedness” and “far-sightedness” by looking at the
simple case of four individuals and three regions.

Example 2

We use here the same notation that we used in Sub-section 2.3. Let n = 4 and
k = 3. In time period 0, the four “far-sighted” individuals reside in region A. Because
individual 4 knows that in any region he will be ranked top, he has no reason to move
from region A. Individual 3, being “far-sighted,” is aware of individual 4’s reasoning
and, hence, knows that by moving to either region B or region C he will definitely
raise his rank. Therefore, in time period 1 he moves to one of these regions and stays
there. Individual 2, being “far-sighted,” is aware of the reasoning of individuals 4
and 3, and thus he knows that if he moves away from region A and manages to
avoid being in the same region as individual 3, he will be ranked top in his region.
Otherwise, he will be ranked second in his region. Therefore, in time period 1 he
moves either to region B or to region C, and in time period 2 he moves to the
other of these two regions if he finds out that he happens to be in the same region
as individual 3; otherwise, he stays in his region. After time period 2, he is ranked
top in his region, so he does not move again. Individual 1 can reason similarly to
individuals 4, 3, and 2 and thus knows that in the “long term” (namely after two time
periods or later on), there will be exactly one higher ranked individual in each of
regions A, B , and C, so he will be ranked second in any region. Therefore, he cannot
improve his rank by moving from region A, so he stays there.

Summing up: from the initial distribution θ0 = ({1,2,3,4},∅,∅), four
“far-sighted” mobility trajectories (θm)

∞
m=0 = (Xm

1 ,Xm
2 , . . . ,Xm

k
)∞
m=0 can emerge:

(i) θ1 = ({4,1}, {3,2},∅) and θi = ({4,1}, {3}, {2}) for i ≥ 2.

(ii) θ1 = ({4,1},∅, {3,2}) and θi = ({4,1}, {2}, {3}) for i ≥ 2.

4A formal definition of the “far-sighed” mobility dynamics turns out to be long and tedious, while not
conferring additional insight. We have therefore elected not to include this definition in the paper. However,
we have constructed such a definition, and it is available on request.
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(iii) θi = ({4,1}, {3}, {2}) for i ≥ 1.

(iv) θi = ({4,1}, {2}, {3}) for i ≥ 1.

The basic characteristics are the same as in the case of the “near-sighted” dynamics
of Example 1: each of the trajectories of the mobility dynamics reaches a steady
state in one or two time periods. However, we can also see the features that
distinguish between the “far-sighted” setting and the “near-sighted” setting. First, in
the “far-sighted” setting there are fewer possible trajectories: four rather than eight.
Second, in the “far-sighted” setting individuals are more likely to stay where they
are: for example, whereas in time period 1 of the “near-sighted” dynamics every
individual other than individual 4 moves from region A, in the “far-sighted” dynamics
individual 1 stays in region A. As a consequence, the steady states differ: individual
1 is in region A in every steady state if he is “far-sighted” whereas he does not end
up in region A if he is “near-sighted.”

A “near-sighted” individual experiences, so to speak, the whereabouts of higher
ranked individuals and then adjusts to that. A “far-sighted” individual anticipates
the movement of higher ranked individuals and then adjusts to that. As a result
of this difference, convergence to a steady-state distribution of “far-sighted”
individuals between the regions requires fewer time periods than convergence to a
steady-state distribution of the “near-sighted” individuals. Intuitively, if we could
prove convergence to a steady-state distribution in the case of “near-sightedness” -
a distribution that individuals with a limited capacity to figure out what is best for
them still manage to reach - then it is quite reasonable to expect that convergence to a
steady-state distribution will be reached when individuals have a greater capacity
for this. These considerations simplify considerably the treatment of a general
“far-sightedness” case, to which we attend next.

To begin with, and as before, we assume that all the individuals know that
individual n will not move, so other than him, all of them move. We show that in
this “far-sightedness” setting, a steady state is reached in no more than k − 1 time
periods.

Claim 2. Let there be n ≥ 4 individuals who are “far-sighted,” and let there be
k ≥ 3 regions. Then a steady state is reached as follows. Individuals n − kl for any
l ∈ N do not move, while all the other individuals move. These other individuals are
distributed between regions A2,A3, . . . ,Ak in such a way that each of the individuals
n − kl − (k − 1), n − kl − (k − 2) up to n − kl − 1 ends up in a different region. This
steady state is obtained after no more than k − 1 time periods. In the steady state, the
difference between the numbers of individuals in the regions is at most one.

Proof. The proof is in the appendix.

Example 3

Let k = 3. Then in steady state, the number of individuals in regions A, B , and C are,
respectively, as follows.

When n = 3q , q ∈N: q , q , and q .
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When n = 3q + 1, q ∈ N: q + 1, q , and q .

And when n = 3q + 2, q ∈N: either q + 1, q , and q + 1; or q + 1, q + 1, and q .

3. An economy of three or more regions: Social welfare

As noted in the Introduction, in assessing social welfare we follow the measure
introduced in Stark (2017).

Definition 3. Social welfare under rank preferences is the negative of the sum of the
ranks of the individuals.

For example, and as illustrated in the Introduction, when two individuals with
different incomes are in region A, then the sum of the first rank of one of the
individuals and of the second rank of the other individual is 1 + 2 = 3; when the
lower-ranked individual moves to empty region B , then the sum of the ranks is
1 + 1 = 2. Social welfare in the latter case at (−2) is higher than social welfare
in the former case at (−3).

Claim 3. The objective of bringing social welfare under ordinal preferences
(rankings) to a maximum is achieved upon any distribution of the individuals in which
they are arranged evenly or evenly but for one between the regions. Both steady-state
outcomes (for “near-sighted” individuals and for “far-sighted” individuals) yield the
social optimum.

Proof. The proof is in the appendix.

We note that the socially optimal distributions are also Pareto-efficient: under a
socially optimal distribution, no individual can improve his rank without lowering
the rank of at least one other individual. Otherwise it would be possible to improve
the level of social welfare of a distribution by improving the rank of an individual,
which contradicts the notion of optimality. Therefore, by Claim 3, all steady-state
outcomes for both types of dynamics are Pareto-efficient.

However, a Pareto-efficiency of a distribution does not imply that the distribution
is socially optimal, nor that it is a steady-state distribution. For example, when there
are three regions then the distribution of n = 8 individuals {{8,1}, {7,2}, {6,5,4,3}}
is Pareto-efficient (if any individual moves and thereby improves his rank, the
rank of at least one other individual deteriorates), but this distribution is neither
socially optimal nor a steady state for any of our representations of dynamics.
(Recall Figure 1.) Therefore, the results that we obtain are “stronger” than a mere
Pareto-efficiency of steady states.

Example 4

Let k = 3. Then in a steady state, the level of social welfare is as follows.
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When n = 3q , q ∈N:

s(XA,XB,XC) = −3

2
(q2 + q).

When n = 3q + 1, q ∈ N:

s(XA,XB,XC) = −1

2
(q2 + 3q + 2) − (q2 + q) = −3

2
q2 − 5

2
q − 1.

And when n = 3q + 2, q ∈N:

s(XA,XB,XC) = −(q2 + 3q + 2) − 1

2
(q2 + q) = −3

2
q2 − 7

2
q − 2.

4. Complementary reflections

To discover that the sum total of the behavior of individuals whose actions are guided
by a desire to improve their own wellbeing yields the optimal social outcome is
an intriguing result. When individuals act in such a manner so as to improve their
wellbeing without taking into consideration the consequences of their actions for
the wellbeing of others, social welfare is not expected to be maximal. After all, and
typically, selfish behavior is the source of negative externalities, such that the gains of
some are the pain of others. We showed that regardless of whether the choice of region
is by “near-sighted” individuals or by “far-sighted” individuals, the choice results
in a steady-state distribution of the population, and that this distribution maximizes
social welfare. These findings align with results reported in Stark’s (2017) model of
two regions. The analysis conducted in the current paper informs us that the earlier
results are not the outcome of a relatively simple choice of location between two
regions. In short, the main results obtained in the current paper are that as in the
original analysis of two regions, a steady-state distribution is reached, and that the
steady-state distribution maximizes social welfare.

Reaching a steady-state distribution and obtaining optimal social welfare can
occur even when mobility is not cost-free. We show this by means of a simple
example. Suppose that the cost, c, of every move is 0 < c < 1, and that the benefit
from gaining one rank is 1, that the benefit from gaining two ranks is 2, and so
on. Suppose that there are four “far-sighted” individuals whose incomes, and hence
ranks, are 4, 3, 2, and 1, and that there are three regions: A, B , and C. To begin
with, if moving is costless, then in the first time period individual 4 stays in region A,
and the other three individuals move to empty regions B and C. Suppose that they
move in such a way that individuals 3 and 1 are in region B , and individual 2 is in
region C. No one then has an incentive to move any further; a steady-state distribution
is reached in which two regions are inhabited by one individual each, and one region
is inhabited by two individuals. The three moving individuals gained: individual 3
gained one rank, individual 2 gained two ranks, and individual 1 gained two ranks.
If, however, the cost of move is 0 < c < 1, then the same moves will occur; the gain
to each of the three individuals is bigger than the cost. A positive yet relatively small
cost of a move can leave the prediction of the cost-free setting as is.

Reaching a steady-state distribution need not occur when absolute income matters
too, yet a rank consideration matters more. Let there be two individuals: n and n − 1
(n is always wealthier than n − 1), let there be two regions, A and B , and let it be
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the case that because of a synergy effect, both individuals will be more productive
(and, thus, wealthier) when they are in the same region (working together) than when
they are in separate regions (operating alone). In such a setting, individual n will
prefer to be in the same region as individual n − 1, say in region A. However, if
for individual n − 1 the displeasure from having a worse wealth rank (when he is
in the same region as individual n rather than when he is in a region all by himself)
outweighs the pleasure gained from having a higher level of wealth, then individual
n − 1 will prefer to be in region B . Individual n will then prefer to move to region B

himself. But then, individual n − 1 will be better off by moving to region A. And so
on. While individual n − 1 “runs away” from individual n, individual n “runs after”
individual n − 1; a never-ending chase results, with no convergence to a steady state.

The essential results reported in the preceding sections do not depend on the
attribute that, to begin with, all the individuals reside in the same region. Even
when we discard part (i) of Definition 1, then every “near-sighted” trajectory reaches
a steady state such that the difference between the numbers of the individuals in
the regions is at most one.5 Also, Claims 2 and 3 and their proofs are the same
for different starting distributions.6 Quite intuitively, the only difference is that the
maximal number of time periods needed to reach a steady state might be smaller
when to begin with, not all the individuals reside in the same region. We know that
at a steady state the individuals are distributed between the regions as equally as
possible. Therefore, there is no initial distribution that is farther from a steady state
than the one we considered in the preceding sections; under more “favorable” initial
conditions, convergence to a steady state can only be faster. We end this section with
k = 3 and n = 8 configurations that help seeing this result.

Example 5

From Claim 1 and Figure 1, we know that the trajectory of “herd movement to the
next available region” in the case of “near-sighted” individuals for k = 3 and n = 8
reaches a steady state after five time periods. In general, when we discard the attribute
that to begin with, all the individuals reside in the same region, we may just as well
end up lowering the number of time periods needed to reach a steady state, possibly
all the way down to 0. For example, if the starting distribution of the eight individuals
in the three regions is (X0

A
,X0

B
,X0

C
) = ({7,4,2}, {8,3,1}, {6,5}), then no individual

has an incentive to move, so we are in a steady state right from the start.
Another possibility is illustrated in Figure 2 where we assume that to begin with,

even-numbered individuals are in region A and that odd-numbered individuals are
in region B . Then, in time period 1, all the individuals other than 8 and 7 move to
region C, so the resulting distribution is the same as the one that we obtained after
two time periods of a “maximal” trajectory when the starting distribution was of all
the individuals residing in region A (recalling Figure 1). When the initial distribution
of the individuals is as per Figure 2, the time that it takes to reach a steady state is

5The reasoning that leads to this conclusion is the same as the one presented in the proof of Claim 1 for
the case in which, to begin with, all the individuals are in region A1.
6With regard to Claim 2 we need merely to add the assumption (which we can make without any loss of
generality) that to begin with, individual n resides in region A1.
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shorter by one time period compared to when the initial distribution is as portrayed
in Figure 1.

Figure 2. “Near-sighted” individuals: An example of a “maximal near-sighted” mobility trajectory for
n=8 and k =3 when the initial distribution of the individuals is (X0

A,X0
B,X0

C)= ({8,6,4,2}, {7,5,3,1},∅).
A steady-state distribution is reached in four time periods.

That being said, we hasten to add that for some initial distributions, the maximal
number of time periods needed to reach a steady state can remain the same as when
the initial distribution is such that all the individuals reside in the same region.
Considering once again k = 3 and n = 8, we illustrate this possibility in Figure 3.

Figure 3. “Near-sighted” individuals: An example of a “maximal near-sighted” mobility trajectory for
n=8 and k =3 when the initial distribution of the individuals is (X0

A,X0
B,X0

C)= ({8,7,6,5,4,3,2}, {1},∅).
A steady-state distribution is reached in five time periods.

In Figure 3, we assume that to begin with, all the individuals but for individual 1
reside in region A, and that individual 1 resides in region B . If we follow the rules
of “herd mobility to the next region,” then in time period 1, all the individuals from
region A other than individual 8 move to region B so that the resulting distribution is
the same as the one that we obtained after one time period of the “maximal” trajectory
when the starting distribution was of all the individuals residing in region A (recalling
Figure 1). When the initial distribution of the individuals is as per Figure 3, the time
that it takes to reach a steady state is the same as when the initial distribution is as
portrayed in Figure 1.
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The assumption that the regions are identical is the last assumption that we might
consider revoking. Suppose that in selecting the region to which to move, randomness
is replaced by a “convention:” the individual who assesses the prospect of having the
same rank in different regions chooses to move to the region with the lowest label,
namely he prefers residing in A1 over A2, in A2 over A3, and so on, as long as the
rank that he will obtain is the same. In the example of four “far-sighted” individuals
and three regions, A, B , and C, while individuals 4 and 1 do not move, individual 3
will be known to move to region B . Aware of the convention that leads individual 3 to
move to region B , individual 2 will move to region C. In such a case, a steady-state
distribution will be reached in one time period with, to recapitulate, individual 3
residing in region B , and individual 2 residing in region C. In general, for any
number of individuals and regions, “far-sighted” individuals will reach a steady-state
distribution in one time period because from the very beginning they will be able to
predict where everyone else will end up residing, so they can choose their optimal
region right at the outset.

In the case of four “near-sighted” individuals and three regions, in time period 1
individuals 3, 2, and 1 will move to region B (according to the “convention” they
will prefer it to region C), leaving individual 4 in region 1. Then, in time period 2,
individuals 2 and 1 will move to region C (while individuals 4 and 3 do not move),
and in time period 3 individual 1 will move to region A. Then, the “near-sighted”
dynamics reaches a steady state {{4,1}, {3}, {2}} after three time periods. In general,
for any number of individuals n and any number of regions k, in time period l < n−1
individuals n,n − 1, . . . , n − l + 1 remain in the regions in which they currently
reside, while individuals n − l, n − l − 1, . . . ,1 move to the next region in a circular
order . . . → A1 → A2 → . . . → Ak → A1 → . . . . Therefore, the steady state will be
reached after n − 1 time periods, when individual 1 ceases to move.

A “convention” scenario is not, however, in the spirit of our perception that regions
are identical in all relevant respects, and are equally close by or are equally distant so
that none can be prioritized.

5. Concluding remarks

We can think of three interesting ways to obtain additional insights from our analysis.
First, we have an input into migration theory. Replacing move with migrate and

mobility trajectory with migration trajectory takes us to a theory of rank-seeking
migration when the region of choice is one of many. As already shown a long time
ago (Stark, 1993), the motives for migration are not only cardinal; they are ordinal
too: comparisons with others influence location choices. Rank-seeking belongs to the
ordinal category. The approach undertaken in this paper is to develop a pure theory
(improvement of rank is all that matters), as doing this serves to flesh out key features.
In less abstract settings, a utility representation will incorporate terms of both types,
say income and rank, allowing for tradeoffs and different weighing across individuals
and cultures.7

7Starting with Stark and Taylor (1991) all the way through to Kafle et al. (2020), a large number of
empirical studies have shown that relative deprivation, defined as the aggregate of the income excesses that
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Second, suppose that we were to define an index of ordinal inequality, an “ordinal
Gini coefficient” of sorts, and endow that index with maximal and minimal values.
For example, if there are three individuals and three regions, and when, to begin
with, the three individuals are in the same region, then the negative of the sum of the
levels of their rank deprivation is (−3). This sum can be normalized as value 1 of the
index of ordinal inequality. When the individuals reach the steady-state distribution
in which they reside one individual per region, then rank deprivation, and thereby the
value of the index of ordinal inequality, are nil. These two numbers are, respectively,
the maximal and the minimal values of that ordinal inequality index. When there
are more individuals than regions, we have shown that the steady state obtained at
which the individuals are arranged evenly or evenly but for one between the regions
confers the highest level of social welfare. This level of social welfare is the flip
side of the minimal level of the inequality index - it yields the lowest achievable
level of ordinal inequality. The route from initial maximal inequality to steady-state
minimal inequality is not monotonic (there can be intervening time periods in which
ordinal inequality increases), but the final state always yields the lowest inequality.
For students of inequality, an appealing feature of the dynamics of our analysis is that
the sum total of the behavior of the individuals yields not only the maximal level of
social welfare but also the minimal level of rank inequality.

A third interesting way of obtaining additional insight from our analysis would
be to use it “upside down;” in a way, we could learn about the capacity of
people’s brains by watching where their legs take them: in order to differentiate
between “near-sightedness” and “far-sightedness,” we do not need to detect neural
responses using functional magnetic resonance imaging (fMRI). Instead, we can
look at the steady-state distribution of the individuals between regions. Because
the patterns of the equilibria distributions differ, we can draw on the one-to-one
relationship between a pattern and the type of “sightedness” to form judgment about
the individuals’ mental capacities. To illustrate, recalling the simple case of four
individuals and three regions, if we observe a steady-state distribution in which
individual 1 resides in region B or in region C (for example, {{4}, {3}, {2,1}}), then
we will infer “near-sightedness;” and if we observe a steady-state distribution such
that individual 1 resides in region A (for example, {{4,1}, {3}, {2}}), then we will
infer “far-sightedness.”

individuals experience within their reference group divided by the size of the group, exerts an independent
and significant impact on their migration from the reference group. This empirical record can serve as a
constructive hint that a novel theory of migration as rank-seeking behavior could successfully be taken
to the data. A bridge between the theory and an empirical implementation is not difficult to construct.
For example: an individual likes absolute income and dislikes rank deprivation, and assigns to these two
terms in his utility function the weights of α and −(1 − α), respectively, where α ∈ (0,1). Thus, the
individual’s utility function can be represented by u(x,RD) = αx − (1 − α)RD, where x denotes the
individual’s income, and RD denotes his rank deprivation. One testable hypothesis will be that the higher
the (absolute value of the) weight accorded to RD, the closer will be the observed steady-state distribution
to the steady-state distribution predicted by the theory.
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Appendix: Proofs of Claims 1, 2, and 3

Proof of Claim 1. For ease of reference, we replicate here the claim.

Claim 1. Let there be n ≥ 4 “near-sighted” individuals, and let there be k ≥ 3
regions. Then a steady state is reached. In the steady state, the difference between the
numbers of individuals in the regions is at most one. The biggest (maximal) number

of time periods that it takes to reach a steady state is

⌊
k − 1

k
n

⌋
.

Prior to presenting the proof itself, we introduce two definitions, present an
example, and state and prove a supportive lemma.

Definition A1. Let n ≥ 4, k ≥ 3 and (Tm)
∞
m=0 be a “near-sighted” mobility trajectory.

We say that individual i is settled in time period m if for each individual j ≥ i there
exists α(j) ∈ {1,2, . . . , k} such that j ∈ Xt

α(j)
for t ≥ m. We then denote the smallest

number m such that individual i is settled in time period m by st(i), and we say that
individual i becomes settled in time period st(i).

It may seem that individual i is settled when he no longer moves, namely in
time period m for which there exists α ∈ {1,2, . . . , k} such that i ∈ Xt

α
for t ≥ m,

regardless of the behavior of any other individual. However, as long as all the
individuals who are initially ranked higher than individual i keep moving, individual i
cannot be sure about his rank and, thus, whether or not he finds it desirable to move,
meaning that he cannot as yet be settled. We illustrate this observation with the help
of Figure A1.

Figure A1. “Near-sighted” individuals: A “near-sighted” trajectory for n = 6 and k = 3 (the path taken
until the individuals reach their steady-state regions).

By Definition A1, in the trajectory depicted in Figure A1, individual 1 is not yet
settled in time period 1, even though subsequently he does not move away from the
region to which he moved in time period 1. The reason is that while he will not be
moving himself, he needs to pay attention to the mobility behavior of individual 2
who has not as yet ceased moving. It is still possible that in time period 2 individual 2
will move to region B , which will prompt individual 1 to move again. Only in time
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period 2 when individual 2 is settled in region A can individual 1 be confident that
he will not need to move further and, thus, we will be able to say that he is settled. In
this case then, st(1) = 2.

Definition A2. For m ≥ 0, we denote by ST(m) the set of individuals who are settled
in time period m, and we denote by STm the number of individuals who are settled in
time period m, namely:

ST(m) ≡ {i ∈ {1,2, . . . , n} : st(i) ≤ m}

and8

STm ≡ |ST(m)|.

Naturally, when j > i and i ∈ ST(m), then j ∈ ST(m). Consequently,

ST(m) ≡ {n − STm + 1, n − STm + 2, . . . , n}.

Thus, a trajectory reaches a steady state in m time periods when m is the smallest
number such that STm = n.

Example A1

In the trajectory depicted in Figure A1: st(6) = 0, st(5) = st(4) = st(3) = 1, and
st(2) = st(1) = 2. Thus: ST(0) = {6} and ST0 = 1; ST(1) = {3,4,5,6} and ST1 = 4;
and ST(m) = {1,2,3,4,5,6} and STm = 6 for m ≥ 2. We see that this trajectory
reaches a steady state in two time periods because m = 2 is the smallest number for
which STm = 6.

The following lemma lists properties of the sequences (ST(m))
∞
m=0 and (STm)

∞
m=0.

Lemma A1. Let n ≥ 4, k ≥ 3 and (Tm)
∞
m=0 be a “near-sighted” mobility trajectory,

a0 = ST0 and am = STm − STm−1 for m ≥ 1 (namely am is the number of individuals
who become settled in time period m). Then:

(i) ST(0) = {n}.
(ii) If STm < n, then STm+1 > STm.

(iii) |ST(m) X Xm
α
| − |ST(m) X Xm

β
| ≤ 1 for every α,β ∈ {1,2, . . . , k} and every

m ≥ 0.

(iv) If STm /= n, then STm is not a multiple of k for any m ≥ 0.

(v) If STm−1 < n, then

m + 1 +
⌊

m

k − 1

⌋
≤ STm. (1)

8|X| denotes the number of elements in a set X.
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Proof. We prove separately each of the five parts of the lemma.

(i) Naturally, individual n never moves because he already occupies rank 1 in
region A1, so n ∈ ST(0). All the other individuals move in the first time period
because rank 1 in regions A2,A3, . . . ,Ak is vacant while their rank in A1 is lower
than 1. Thus, if j /= n, then j /∈ ST(0). Therefore, ST(0) = {n}.
(ii) By definition, ST(m) ⊂ ST(m + 1) (and STm+1 ≥ STm), so we only need to show
that ST(m) /= ST(m + 1) (and, thus, STm+1 /= STm).

We assume that STm = l < n. Then individual n − l /∈ ST(m). However, all the
individuals numbered higher than n − l are settled in time period m, so that in time
period m + 1 individual n − l chooses the region where he is ranked highest and
moves there. After that, he cannot improve his rank by moving further, so he is settled
in time period m + 1, namely n − l ∈ ST(m + 1). Hence, ST(m) /= ST(m + 1), and
STm < STm+1.
(iii) We assume, by contradiction, that there exist m ≥ 0 and regions
α,β ∈ {1,2, . . . , k} such that

|ST(m)XXm

α
| − |ST(m)XXm

β
| > 1.

Let x = min(ST(m)XXm
α
) and |ST(m)XXm

β
| = l. In particular, R(x,Xm

α
) ≥ l + 2.

Moreover, x ∈ ST(m), thus x > j for every j ∈ Xm
β�ST(m), so that

R(x,Xm
β
Y {x}) ≤ l + 1. Therefore, x will gain rank by moving from region α to

region β in time period m + 1, which contradicts the presumption that x ∈ ST(m).
Thus, assuming that |ST(m)XXm

α
| − |ST(m)XXm

β
| > 1 is false.

(iv) We assume, again by contradiction, that STm /= n and STm = kl for some
l ∈ N. Then ST(m) = {n − kl + 1, . . . , n}. By the preceding part (iii) of this lemma
|ST(m) X Xm

1 | = |ST(m) X Xm
2 | = . . . = |ST(m) X Xm

k
| = l. Thus, if p = n − 3l,

then R(p,XM
1 Y {p}) = R(p,XM

2 Y {p}) = . . . = R(p,XM
k
Y {p}) = l + 1 for every

M ≥ m. Therefore, no matter in which of the regions A1,A2, . . . ,Ak individual p is
located in time period m, he will have no incentive to move away from that region.
Moreover, all the individuals who are numbered higher than p belong to ST(m), thus
also p ∈ ST(m), which contradicts the assumption STm = kl. Therefore, STm is not a
multiple of k.
(v) By definition, STm = ∑m

i=0 ai for m ≥ 0. We assume that m ≥ 0 is such that
STm−1 < n. By part (i) of the lemma, a0 = 1. By part (ii) of the lemma, (ST i )

m

i=0

is an increasing sequence of integers, thus ai ≥ 1 for m ≥ 1. We assume that there
exists i ≥ 0 such that ai+1 = ai+2 = . . . = ai+k−1 = 1. Then, ST i ,ST i+1, . . . ,ST i+k−1

are k consecutive integers, so one of them is a multiple of k, which contradicts point
(iv) of the lemma. Therefore, for i ≥ 0, among k − 1 consecutive elements of the
sequence (ai+1, ai+2, . . . , ai+k−1) there exists at least one which is not smaller than 2.

Thus, at least

⌊
m

k − 1

⌋
elements of the sequence (ai)

m

i=0 are not smaller than 2, and

the remainder elements are not smaller than 1 (by point (ii) of the lemma). Therefore:

STm =
m∑

i=0

ai ≥
(

m + 1 −
⌊

m

k − 1

⌋)
· 1 +

⌊
m

k − 1

⌋
· 2 = m + 1 +

⌊
m

k − 1

⌋
.

Q.E.D.
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Proof of Claim 1. The fact that a steady state is reached is an immediate
consequence of parts (i) and (ii) of Lemma A1, of ST0 = 1, and of the attribute that
the sequence (STm)

∞
m=0 is strictly increasing as long as its elements are smaller than n.

Also, the elements of (STm)
∞
m=0 are integers, thus STm ≥ m + 1 as long as STm−1 < n.

Therefore, STn−1 = n, namely all the individuals are settled after at most n − 1 time
periods, so a steady state is reached.

The fact that in a steady state the difference between the numbers of
individuals in the regions is at most one follows immediately from part (iii) of
Lemma A1: if a steady state (X1,X2, . . . ,Xk) is reached in time period m, then
(X1,X2, . . . ,Xk) = (Xm

1 ,Xm
2 , . . . ,Xm

k
), and ST(m) = {1,2, . . . , n}. In particular,

Xm
i
X ST(m) = Xm

i
for i = 1,2, . . . , k. Thus, and by part (iii) of Lemma A1,

|Xα| − |Xβ | = |Xm
α
| − |Xm

β
| = |ST(m) X Xm

α
| − |ST(m) X Xm

β
| ≤ 1 for every

α,β ∈ {1,2, . . . , k}.
We next attend to the third component of the claim, namely to the maximal number

of time periods that it takes to reach a steady state. We need to show that there is no

“near-sighted” mobility trajectory that requires more than

⌊
k − 1

k
n

⌋
time periods to

reach a steady state.
To this aim, we assume the contrary. We know that each trajectory reaches a steady

state, so there exists m >

⌊
k − 1

k
n

⌋
(and m >

k − 1

k
n, because m is an integer) such

that STm−1 < n and STm = n. However, by part (v) of Lemma A1,9

STm ≥ m + 1 +
⌊

m

k − 1

⌋
=

⌊
km

k − 1

⌋
+ 1 ≥ 	n
 + 1 = n + 1.

Therefore, by contradiction, there exists no “near-sighted” mobility trajectory that

requires more than

⌊
k − 1

k
n

⌋
time periods to reach a steady state.

It remains to be shown that the upper bound of the number of time periods that

are needed to reach a steady state cannot be bigger than

⌊
k − 1

k
n

⌋
. To this end,

following the approach and logic of the heuristic proof in the main text, we construct
a “near-sighted” mobility trajectory

(
T̂m

)∞
m=0

which reaches a steady state in exactly⌊
k − 1

k
n

⌋
time periods.

Prior to the said construction, we configure a cyclical ordering of the regions:
. . . → A1 → A2 → . . . → Ak → A1 → . . . . The basic rule of mobility for

(
T̂m

)∞
m=0

is
as follows. In every time period, in accordance with the notion of “near-sighted”

9The first equality in the next line holds because there exist q, r ∈ N such that r ≤ k − 2 and

m = (k − 1)q + r , and then m +
⌊

m

k − 1

⌋
= (k − 1)q + r + q = kq + r = k(k − 1)q + (k − 1)r

k − 1

=
⌊

k(k − 1)q + (k − 1)r

k − 1
+ r

k − 1

⌋
=

⌊
km

k − 1

⌋
.



A pure theory of population distribution when preferences are ordinal 337

mobility, as many individuals as possible move from the most populous region,
denoted by α, to the adjacent region on the right of region α in this cyclical order,
denoted by α + 1. We chart the mobility path governed by this rule.10

In time period 1, individual n who has nothing to gain from moving, stays in
region A1, whereas all the other individuals who seek to obtain a higher rank move
to region A2.

In time period 2, individuals n − 2, n − 3, n − 4, . . . ,1 move to region A3, so
that in this time period the distribution of the individuals is n in region A1, n − 1 in
region A2, and the remainder of the individuals are in region A3.

In general, in each time period m such that 1 ≤ m < min{k,n}, one individual
(n − m + 1) stays in region Am while individuals n − m,n − 3, n − 4, . . . ,1 move to
region Am+1.

If n ≤ k, then in time period n−1, which is when individual 1 moves to region An,
all the individuals are distributed between the regions such that every individual has
rank 1. A steady-state distribution is reached in n − 1 time periods. The number
n − 1 is derived from the fact that one individual stops moving in every time period,
individual n never moves, and a steady state is reached as soon as all the individuals

cease moving. Moreover, n >
k − 1

k
n ≥

⌊
k − 1

k
n

⌋
≥

⌊
n − 1

n
n

⌋
= n − 1, thus n − 1

is the largest integer that is not bigger than

⌊
k − 1

k
n

⌋
, namely

⌊
k − 1

k
n

⌋
= n−1, and

a steady state is reached in

⌊
k − 1

k
n

⌋
time periods. In conclusion, the upper bound

of the number of time periods that are needed to reach a steady state cannot be bigger

than

⌊
k − 1

k
n

⌋
for n ≤ k.

If n ≥ k + 1, then before time period k, in each of regions A1,A2, . . . ,Ak−1 there
is one individual who is not moving any more, and individuals n− k +1, n− k, . . . ,1
are in region Ak . In time period k, two individuals, n − k + 1 and n − k, elect
to stay in region Ak and they will not move again, while the remainder of the
individuals from region Ak move to region A1. Then, in each time period m such
that k + 1 ≤ m < min{2k − 1, n − 2}, one individual (n − m) stays in region Am−1,
while individuals n − m − 1, n − 3, n − 4, . . . ,1 move to region Am.

If k + 1 ≤ n ≤ 2k, then in time period n − 2, which is when individual 1 moves
for the last time, all the individuals are distributed between the regions such that
every individual i ≥ n − k + 1 has rank 1, and each individual i ≤ n − k has
rank 2. A steady-state distribution is reached in n − 2 time periods. The number
n − 2 is derived from the fact that one individual ceases moving in every time
period other than k = 1 + (k − 1), in time period k two individuals cease moving,

and individual n never moves. Moreover,
n − 1

n
>

k − 1

k
>

n − 2

n
, therefore,

10In conjunction with the remainder of this proof, it can be helpful to consult the example in Figure 1,
presented at the end of Sub-section 2.3 of the main text.
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n − 1 >
k − 1

k
n ≥

⌊
k − 1

k
n

⌋
≥

⌊
n − 2

n
n

⌋
= n − 2, thus, n − 2 is the largest integer

that is not bigger than

⌊
k − 1

k
n

⌋
, namely

⌊
k − 1

k
n

⌋
= n − 2, and a steady state is

reached in

⌊
k − 1

k
n

⌋
time periods. In conclusion, the upper bound of the number of

time periods that are needed to reach a steady state cannot be bigger than

⌊
k − 1

k
n

⌋

for k + 1 ≤ n ≤ 2k.
If n ≥ 2k, then before time period 2k − 1, two individuals who are not

moving any more reside in each of the regions other than Ak−1, and individuals
n−2k +1, n−2k, . . . ,1 reside in region Ak−1. In time period 2k −1 two individuals,
n−2k +1 and n−2k, elect to stay in region Ak−1 and they will not move any further,
while the remainder of the individuals from region Ak−1 move to region Ak .

In general, in each time period m such that m = 1 + q(k − 1) for some q ∈ N+,
two individuals (n − qk + 1 and n − qk) cease moving while individuals numbered
lower than n − qk move to the next region in the cyclical ordering. In each time
period m such that 2 + q(k − 1) ≤ m < min{1 + (q + 1)(k − 1), n − (q + 1)}, one
individual (n − m − q + 1) ceases moving, having been located in some region α,
while individuals numbered lower than n − m − q + 1 move to region α + 1.

Therefore, if qk + 1 ≤ n ≤ (q + 1)k for some q ∈ N+, then in time period
n − (q + 1), which is when individual 1 moves for the last time, all the individuals
are distributed between the regions such that the rank of individual i in his region

is

⌊
n − i

k

⌋
+ 1. A steady-state distribution is reached in n − (q + 1) time periods.

The number n− (q + 1) is derived from the fact that one individual ceases moving in
every time period other than m = 1 + l(k − 1) for l = 1,2, . . . , q , in q time periods
of the form m = 1 + l(k − 1) for l = 1,2, . . . , q two individuals stop moving, and
individual n never moves. Moreover,

n − q

n
≥ q(k − 1) + 1

qk + 1
>

k − 1

k
= (q + 1)(k − 1)

(q + 1)k
≥ n − (q + 1)

n
,

therefore, n − q >
k − 1

k
n ≥

⌊
k − 1

k
n

⌋
≥

⌊
n − (q + 1)

n
n

⌋
= n − (q + 1), thus,

n − (q + 1) is the largest integer that is not bigger than

⌊
k − 1

k
n

⌋
, namely

⌊
k − 1

k
n

⌋
= n − (q + 1), and a steady state is reached in

⌊
k − 1

k
n

⌋
time periods.

In conclusion, the upper bound of the number of time periods that are needed to

reach a steady state in the general case cannot be bigger than

⌊
k − 1

k
n

⌋
. Q.E.D.

Proof of Claim 2. For ease of reference, we replicate here the claim.
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Claim 2. Let there be n ≥ 4 individuals who are “far-sighted,” and let there be
k ≥ 3 regions. Then a steady state is reached as follows. Individuals n − kl for any
l ∈ N do not move, while all the other individuals move. These other individuals are
distributed between regions A2,A3, . . . ,Ak in such a way that each of the individuals
n − kl − (k − 1), n − kl − (k − 2) up to n − kl − 1 ends up in a different region. This
steady state is obtained after no more than k − 1 time periods. In the steady state, the
difference between the numbers of individuals in the regions is at most one.

Proof of Claim 2. To recall, the “fortune” of any individual does not depend on
the location of individuals who occupy lower rungs in the incomes hierarchy. The
mobility decision taken by individual n − 1 depends only on the mobility decision
taken by individual n, the mobility decision taken by individual n − 2 depends only
on the mobility decisions taken by individuals n and n − 1, and so on.

In the first period, individual n − 1 moves from region A1 to one of the regions
A2,A3, . . . ,Ak and never moves again. Individual n − 2 moves either to the same
region as individual n − 1 or to one of the other regions, as he does not know to
which region individual n − 1 chose to move. In the second time period, individual
n − 2 moves away if he had chosen the same region as individual n − 1 in the
first time period, or he stays in the region he resides in if he had chosen any other
region in the first time period. We can similarly analyze the behavior of individuals
n−3, n−4, . . . , n− (k −1), and conclude that after no more than k −1 time periods,
each of them will reside in one of the regions A2,A3, . . . ,Ak . Therefore, we know that
individual n − k stays in region A1 because in all other regions there will eventually
be one individual ahead of him, so being the second in region A1 cannot be improved
upon by moving to any of the other regions.

The reasoning for individuals n − kl, n − (kl + 1), . . . , n − (kl + k − 1) for any
l ∈ N is similar: individual n − kl stays in region A1 because his rank there is l + 1,
and because in any of the other regions there will eventually be l individuals ahead of
him, so he has nothing to gain from moving. Individual n − (kl + 1) moves and stays
in the region that he chose in the first time period. Individual n − (kl + 2) moves in
the first time period and either stays or moves in the second time period (depending
on whether he chose the same region that n − (kl + 1) chose in the first time period),
and so on. The steady-state distribution is reached in just one time period if, for every
l ≥ 0, individuals n − kl, n − (kl + 1), . . . , n − (kl + k − 1) have chosen different
regions, and it is reached in up to k − 1 time periods otherwise.

If n = kq for some q ∈ N, then in the steady state the number of individuals in all
k regions is the same (namely, q); the regions are equally populated. If n = kq + r for
some q, r ∈ N and 1 ≤ r ≤ k − 1, then there are k + 1 individuals in region A1 and in
(r − 1) regions among A2,A3, . . . ,Ak , and k individuals in the rest of these regions
(namely, (k − r) of them). Q.E.D.

Proof of Claim 3. For ease of reference, we replicate here the claim.

Claim 3. The objective of bringing social welfare under ordinal preferences
(rankings) to a maximum is achieved upon any distribution of the individuals in which
they are arranged evenly or evenly but for one between the regions. Both steady-state
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outcomes (for “near-sighted” individuals and for “far-sighted” individuals) yield the
social optimum.

Proof of Claim 3. There exist finitely many distributions, thus there exists at
least one distribution for which the maximal social welfare is achieved. As before,
we let n ≥ 4 be the number of the individuals, and we let A1,A2, . . . ,Ak be the
names of the k regions. We recall from Sub-section 2.3 that (X1,X2, . . . ,Xk) is a
distribution if X1,X2, . . . ,Xk are the sets of individuals who reside, respectively,
in regions A1,A2, . . . ,Ak . We denote the level of social welfare that corresponds
to such a distribution by s(X1,X2, . . . ,Xk). In addition, we denote |Xj | = aj for
j ∈ {1,2, . . . , k}, where |S| is the number of elements in a set S. The sum of the

ranks of the aj individuals in Xj is 1+2+ . . .+aj = aj (aj + 1)

2
for j ∈ {1,2, . . . , k}.

Therefore, the corresponding level of social welfare is

s(X1,X2, . . . ,Xk) = −
k∑

j=1

aj (aj + 1)

2
= −1

2

k∑

j=1

(a2
j
+ aj ).

First, we show that any distribution in which the individuals are not arranged
evenly or evenly but for one between the regions does not maximize social welfare.
We assume that (X1,X2, . . . ,Xk) is a distribution in which the individuals are
not distributed evenly or evenly but for one between the regions. Without loss of
generality, we assume that a1 ≥ a2 ≥ . . . ≥ ak . Then, a1 − 1 > ak (because otherwise,
the individuals will be distributed evenly or evenly but for one between the regions).

Let i ∈ X1. We consider the distribution (X1�{i},X2, . . . ,Xk Y {i}), namely we
modify (X1,X2, . . . ,Xk) by moving individual i from region A1 to region Ak . Then
the level of social welfare for distribution (X1�{i},X2, . . . ,Xk Y {i}) is:

s(X1�{i},X2, . . . ,Xk Y {i}) = −1

2

[
(a1 − 1)a1 +

k−1∑

j=2

(a2
j
+ aj ) + (ak + 1)(ak + 2)

]

= −1

2

(
k−1∑

j=2

(a2
j
+ aj ) + a2

1 + a2
k
− a1 + 3ak + 2

)

> −1

2

(
k∑

j=1

a2
j
+

k−1∑

j=2

aj − a1 + 2(a1 − 1) + ak + 2

)

= −1

2

k∑

j=1

(a2
j + aj ) = s(X1,X2, . . . ,Xk).

Therefore, s(X1,X2, . . . ,Xk) is not a maximal value of social welfare and,
consequently, if (X1,X2, . . . ,Xk) is a distribution such that the individuals are not
distributed evenly or evenly but for one between the regions, then that distribution
does not maximize social welfare.

Second, we show that every distribution (X1,X2, . . . ,Xk) in which the individuals
are arranged evenly or evenly but for one yields the same level of social welfare. To
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this end, we assume that (X1,X2, . . . ,Xk) is a distribution in which the individuals
are arranged evenly or evenly but for one between the regions.

There exists a unique pair (q, r) ∈ N+ such that n = kq + r and r ≤ k − 1. Then
there are q + 1 individuals in r regions and q individuals in k − r regions (otherwise
the individuals are not distributed evenly or evenly but for one). Therefore:

s(X1,X2, . . . ,Xk) = −1

2

k∑

j=1

(a2
j
+ aj ) = − r

2
(q2 + 3q + 2) − k − r

2
(q2 + q).

In particular, when the individuals are distributed evenly or evenly but for one
between the regions, the value of the social welfare function depends only on the
numbers k, r and q . In turn, the values of r and q depend only on the number of
individuals n, and on the number of regions k. In conclusion: for fixed n and k,
every distribution in which the individuals are arranged evenly or evenly but for one
between regions yields the same level of social welfare. Simultaneously, the yielded
social welfare has to be maximal because no distribution in which the individuals
are not arranged evenly or evenly but for one between regions can maximize social
welfare. From Claims 1 and 2 we know that all the steady-state distributions are
among the socially optimal distributions. Q.E.D.
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