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Abstract
The situation awareness, especially for collaborative robots, plays a crucial role when humans and machines work together in
a human-centered, dynamic environment. Only when the humans understands how well the robot is aware of its environment
can they build trust and delegate tasks that the robot can complete successfully. However, the state of situation awareness has
not yet been described for collaborative robots. Furthermore, the improvement of situation awareness is now only described for
humans but not for robots. In this paper, the authors propose a metric to measure the state of situation awareness. Furthermore,
the models are adapted to the collaborative robot domain to systematically improve the situation awareness. The proposed
metric and the improvement process of the situation awareness are evaluated using the mobile robot platform Robotino. The
authors conduct extensive experiments and present the results in this paper to evaluate the effectiveness of the proposed
approach. The results are compared with the existing research on the situation awareness, highlighting the advantages of our
approach.Therefore, the approach is expected to significantly improve the performance of cobots in human–robot collaboration
and enhance the communication and understanding between humans and machines.

Keywords Situation awareness · Intelligent Digital Twin · Collaboration · Metrics

Introduction

Close cooperation between humans and collaborative robots
(cobots) is envisioned to make future production particu-
larly efficient by combining the strengths of humans and
machines and compensating for their weaknesses. To achieve
this, cobotsmustmaster complex problems in changing envi-
ronments. Accordingly, the models need to be constantly
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updated. In this way, the cobot must learn to reassess situa-
tions and constantly adapt behavior. A summary of the key
considerations in the acquisition and deployment of cobots is
proposed inCohen et al. (2022). However, this change has the
potential for misunderstanding with the worker with whom
the robot interacts. In fact, the main issue of the cobot is the
human factors, as the cobot considers threemain dimensions:
robot features, modern production systems characteristics,
and human factors (Faccio et al., 2022). On the other hand,
the lack of predictability of the cobot’s actions, and the doubt
whether the cobot understands the current situation correctly
and acts responsibly can be a source of psychological stress
for the operator. When discussing human-machine collab-
oration, the human feeling towards the automation system
must be considered (Azni Jafar et al., 2014). The concept
of Operator 4.0 (Romero et al., 2016) focuses on supporting
the human operators with the enabling technologies (Rup-
pert et al., 2018). The Cognitive Operator 4.0 proposes a
deep perception, awareness, and understanding between both
collaborative agents (Thorvald et al., 2021). To this end, a
connecting link is required: situation awareness. While the
situation awareness of the human operator has been studied
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(Endsley, 1995a), there is no equivalent concept for cobots.
Therefore, cobot situation awareness may be the next essen-
tial element of human–robot collaboration.

To build the situation awareness for cobots, the first chal-
lenge is to measure it. In a dynamic environment, situations
change quickly and the system needs to adapt. Just as humans
have to act more carefully in new environments because they
do not fully understand what is going on, cobots should do
the same. But how will the cobot know that an environment
is actually new? How will the cobot know how much its
situation awareness has decreased and therefore how cau-
tious it should act? There are approaches to improve models
by parameter optimization (El Ouanjli et al., 2022), support
vector regression (Xie et al., 2018), and so on. There are
approaches using transfer learning to bridge the simulation-
to-reality gap (Collins et al., 2020). There are also anomaly
detection approaches that indicate when a system does not
behave as the model predicts it Lindemann et al. (2021).
However, none of these approaches provide a metric that
measures howwell the system understands the situation. The
ability of the robot to reflect on its own understanding is key
to the human operator building trust in the cobot and moving
towards theCognitiveOperator 4.0. This leads to the research
question:

RQ1: How can situation awareness be measured for
cobots?

The next problem is about communicating this informa-
tion. The upcoming technologies heavily rely on models
and the capability of making sense of them. On top of
this, the cobot needs to communicate these insights to the
worker to create mutual understanding. This is particularly
challenging because computer systems perceive the environ-
ment differently than humans and sometimes draw different
conclusions. This is because both sensory and cognitive
capabilities differ between humans and robots. A virtual rep-
resentation is required to let the human workers dive into
the insights the robot generates. This information must be
provided in a human-understandable way to move from a
system-centristic view to a human-centristic view. The latter
challenge is formulated as part of the Operator 4.0 (Löcklin
et al., 2021) and leads to the second research question:

RQ2: How can the state of the situation awareness be
communicated to a human worker using the intelligent Dig-
ital Twin?

Having measured the situation awareness, the next step
is to optimize for it. In this way, the cobot does not only
adapt its behavior but also provides resilience. The Euro-
pean Union (EU) announced the 5th Industrial Revolution
(Breque et al.), 2021) to respond to the current issues of the
manufacturing and the supply chain as Industry 5.0 defines
three main pillars: (i) Sustainability, (ii) Resilience, and (iii)
Human-centricity (European Commission, 2021). Operator
5.0 (Romero&Stahre, 2021) aims to solve the last two issues.

The existing approaches are capable of optimizing dedicated
models or sets ofmodelswhich they are engineered for. How-
ever, to the best of the authors’ knowledge, a process that
autonomously detects when an adaptation is required and
efficiently corrects themodel pattern in parallelwith the oper-
ation and in a context-dependent manner does not yet exist.
Although studied for the human worker (Endsley, 1995a),
the process of increasing situational awareness has not yet
been applied to cobots, leading to the following question:

RQ3: How can a cobot undergo the situation awareness
process of increasing situation awareness?

To answer these research questions, the Digital Twin (DT)
concept is a valuable foundation (Pairet et al., 2019). As
the need for human-machine collaboration is particularly
important in the aerospace domain, NASA launched the DT
concept in 2012, defined as the “virtual representation of
a physical asset” (Ashtari Talkhestani et al., 2018). In the
context of this work, this virtual representation includes the
modeling of the system’s environment. Since its initiation
in 2012, the concept of DT has evolved. The quality of the
virtual representation depends directly on the quality of the
models. However, the question of where to start and end
modelling is still debated. According to West and Black-
burn (2018), this quality of models competes with effort. On
the one hand, it is impractical or at least uneconomical to
model every detail. On the other hand, outdated or inaccu-
rate models can lead to misinterpretation of a situation and
thus to suboptimal or even dangerous patterns of action. This
is where the DT needs intelligence to manage and commu-
nicate its models autonomously. To this end, the intelligent
DT (iDT) Ashtari Talkhestani et al. (2018) extends the con-
cept of the DT to include aspects of intelligence such as
data analysis and reasoning. Situation consciousness, specifi-
cally environmental and self-consciousness, comes into play.
Situation-consciousness represents the level of understand-
ing and therefore the quality of awareness.

Consequently, a high situation consciousness correlates
with the recognition of model boundaries, the synchrony
of virtual and physical worlds (for humans, this is the
gap between imagination and reality), and the identifica-
tion and characterization of perturbation events. This work
contributes to building situation consciousness with the fol-
lowing main contributions:

• The proposed metric allows for the measurement of sit-
uation awareness in the case of cobots. In this way, the
cobot can reflect on its behavior depending on how famil-
iar it is with the current situation. To this end, the need
for changes in models can be uncovered at run-time.

• Based on the defined indicators, situation awareness can
be improved using the developed iDT. This improvement
process provides resilience and is sample efficient com-
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pared to traditional reinforcement learning approaches,
requiring only 10% of samples for training.

• The developed framework using the iDT demonstrates
efficient communication between humans and robots. In
this way, the approach contributes to more trust and effi-
ciency in human–cobot collaboration. In particular, it
supports dynamic risk and reliability assessment, as the
reason for the changes are quantified in the consciousness
metric and the changes are limited to edge cases, where
the active models reach their limit.

The remainder of this article is organized as follows: The
paper continues with the related works (“Related works”
section). After that, the authors introduce the situation
consciousness to answer the first research question (“Situa-
tion-consciousness: the measurement of situation awareness
for cobot” section). “The process of improving situational
awareness” section details the process of situation conscious-
ness building. The subsequent “Experiments and results”
section exemplarily shows the application of the situation
consciousness and its improvement with experiments. The
paper closes with some conclusions and future works (“Con-
clusions and future Work” section).

Related works

A Humanities Perspective on Consciousness and Awareness.
Consciousness is heavily discussed in the humanities such as
neuroscience and psychology (Solms, 1997) as it describes
the degree of understanding of what is happening to and
around an individual. It is a way of assessing the state of
awareness. For humans, there are different approaches to
measuring consciousness (Irvine, 2013). Roughly speaking,
the methods for determining the consciousness of the human
group are either to ask the respondent to describe what he
or she experienced (subjective method) or to measure neu-
ral activity in the brain (objective method). Unfortunately,
these measurement methods need to be modified. To the
best of the authors’ knowledge, there is no measurement of
situation consciousness for the technical domain. However,
researchers have studied situation awareness in the technical
domain since the 1990s.

Situation Awareness and its Measurement in the Techni-
cal Domain. In the well-cited work by White (1991), the
author locates the situation assessment in level 2 of the Joint
Directors of Labs (JDL) sensor fusion model. In this level,
“knowledge about objects, their characteristics, their rela-
tionships to each other, and their cross force relations are
aggregated to understand the current situation” (Salerno,
2008). In the same period, Endsley introduced a theory of
situation awareness for dynamic systems. In her studies, End-
sley focuses on the awareness of the worker, not of the robot

(Wickens, 2008). She established a three-step process to
define the situation awareness: Perception, Comprehension,
and Projection (Endsley, 1995b). Various methods of mea-
suring human situation awareness are presented in Endsley
(1995a). Unfortunately, these techniques, which range from
indirect measures such as performance measures to subjec-
tive ones such as questionnaires, these techniques are hardly
applicable to robots (Dahn et al., 2018). In the period from
2018 to 2022, selecting the first 100 hits of the 481 pub-
lications listed in the Web of Science under the query of
“title contains situation awareness”, only five contribution
papers in the English language are related to the awareness
of technical systems. To this end, the authors agree with the
finding of Dahn et al. (2018) that many approaches use the
term situation awareness without giving a definition. Among
the five contribution papers, Burova (2021) argues for the
use of small and fast ontologies for fast decision-making to
gain situational awareness from ontologies in real-time. The
authors take up the idea of a set of small meta-models tomea-
sure the quality of the context. D’Aniello et al. (2018)modify
Endsley’s scheme for seamless learning. In their attempt to
understand the quality of the learned concepts, they describe
a metric for the quality of context awareness, which is an
important aspect of situation awareness. The authors extend
this idea by using an adapted Levenshtein distance instead
of simply counting the number of elements. Blasch et al.
(2019) discusses information fusion with deep multimodal
image fusion according to the JDL scheme and metrics to
measure the fusion quality. They argue that different metrics
need to be combined to describe situation awareness qual-
ity. Yusuf and Baber (2022) apply the distributed situation
awareness model to teams of both human and robots. They
use Bayesian belief networks under limited information to
achieve situation awareness by focusing on perception and
projection. They describe a “relevance metric” that measures
the accuracy of projection of a subset of agents, and a “tran-
sition metric” that measures the quality of a predicted value.
However, the metrics of both approaches are specific for the
respective deep learning approach and do not apply to cobots.

In the service domain, Sirithunge et al. (2019) proposes
an auto-regressive model to recognize the level of interest
in interacting with the robot. Focusing on the human–robot
interaction, the situation awareness reflects the emotional
state of the human working with it. Therefore, they define
the user’s level of interest to characterize the situation. The
authors take up the idea of including both physical and non-
physical aspects. However, the question of how to build an
expectation of the human’s intention not the focus of this
paper. The work of Dahn et al. (2018) comes closest to this
work. They transfer the concept of situation awareness to
autonomous agents and propose to measure situation aware-
ness in terms of its opposite, surprise. The authors of this
paper pick up this idea in the measurement of consistency
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and the measurement of coverage. Moreover, Dahn et al.
(2018) follow the same approach to formally define the situ-
ation awareness to derive a protocol to improve it. However,
from the authors’ point of view, context and the situation
differ. In conclusion, the context awareness and the situation
awareness are different.

Furthermore, the concept of Dahn et al. (2018) builds on
aspects, which they define as rules formulated in simple log-
ical expressions that describe the environment. In contrast,
the authors use states to describe the environment. This type
of modeling allows for more convenient inclusion of uncer-
tainties such as tolerances. Furthermore, the authors disagree
with the statement that situation awareness is a binary prop-
erty. If situation awareness is below 100%, the authors agree
that the system may fail surprisingly since the one missing
aspect makes the difference. Often, missing a relevant aspect
will lead to a non-optimal but usable solution. For this rea-
son, it makes sense to reason about the state of awareness.
Moreover, it is easier to improve a continuous quantity than
a binary one. Finally, the framework of Dahn et al. (2018)
does not say whether a system is situation-aware, but rather
that it is not. It is limited to surprise, but does not consider
parameters like precision and uncertainties in information
processing. The DT and its simulation gap focus as a step
towards real-world problems.

The DT and the Simulation Gap. Driven by the idea
of fully simulatable aerospace missions, NASA started the
vision of the DT in 2012 (Glaessgen & Stargel, 2012).
The first approach painted the DT equipped with a set
of models that cover every detail of the system. How-
ever, this approach showed several drawbacks rendering this
approach unrealistic or at least uneconomic (West & Black-
burn, 2018). Consequently, the survey on the DT (Löcklin
et al., 2020) hardly found full-featured DTs. Nevertheless,
this field progresses a lot, just with an adapted strategy. Oper-
ational simulation becomes one core characteristic of the DT.
The synchronization characteristic emphasizes the reality-to-
simulation transfer, keeping the cyber-world consistent with
the physical asset (Ashtari Talkhestani et al., 2018, 2019).
In addition, the author’s previous work showed how to bring
real-time information, such as data from real-time locating
systems, to the simulation and the DT (Ruppert & Abonyi,
2020). More recent work considers intelligence integration
into the DT (Jazdi et al., 2021). Waving away the claim of
modeling the asset perfectly accurately, the research on the
simulation gap (Mouret & Chatzilygeroudis, 2017) comes
into touch with the DT research. It also implies that the sit-
uation awareness is at stake and cannot be assumed without
further measures. Approaches exist that tune the simulator
to narrow the simulation-to-reality gap (Collins et al., 2020),
but do not yet solve the problem entirely. Following a dif-
ferent approach to bridge the simulation-to-reality gap, Zhao
et al. (2020) identifies the key aspects: system identification,

domain randomization, domain adaption, and learning under
disturbances. The core difference of the DT compared to the
former pure simulation is the direction of the transfer. Instead
of transferring a build simulation to reality, the DT runs
operational simulations that have to be adapted to the per-
ceived real-world. To this end, Müller et al. (2022) proposes
a method to close the reality-to-simulation gap. However, it
does not tackle the question of situation awareness and situ-
ation consciousness.

In summary, the measurement of consciousness has been
applied to humans but has yet to be adapted to cobots. Specifi-
cally, themetrics need to be adapted for the cobot application.
In the literature, the term “situation awareness” is often used
without a precise definition. There are a some very spe-
cific approaches tomeasure situational awareness for specific
algorithms—more as a benchmark. This type of situational
awareness is not suitable for improving collaboration. Fur-
thermore, situation awareness in the literature is limited to
simple binary logic expressions. A summary of the related
works with the sources (src.), the relevance and the novelty
is presented in Table 1. To fill this gap, the authors propose a
novel approach to improve the situation awareness of cobots
for better human–robot collaboration. Using the concept of
perception, comprehension, and projection the cobots learn
to adapt like the human awareness process. This way, the
authors contribute to a human-centric perspective. By giv-
ing a precise definition of situation awareness, the authors
generalize the concept of situation awareness to cobot sys-
tems away from an algorithm-specific quantity. The concept
is extended to a continuous three-dimensional metric that
directly measures situation awareness. To improve situation
awareness, this work targets the reality-to-simulation trans-
fer. This is the opposite transfer direction compared to most
approaches in the literature. Using the situation awareness
metric as a guide, the approach automatically determines
whether the original model is (in)valid based on the knowl-
edge of the situation. Therefore, the adaptation is much
more sample efficient compared to conventional model tun-
ing approaches.

Situation-consciousness: themeasurement
of situation awareness for cobot

The term awareness is studied for automation systems, e.g.
in context-awareness (Kulkarni & Rodd, 2020), situation
awareness (Endsley, 1995b, 1996; Rizzi et al., 2017) and
risk-awareness (Zhang et al., 2022). Endsley defines situ-
ation awareness as: “the perception of the elements in the
environment within a volume of time and space, the compre-
hension of their meaning and the projection of their status
in the near future” (Endsley, 1995b). It should be noted that
Endsley defined the situation awareness with human factors
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Table 1 Summary of the related
works

Src. Relevance Novelty of this paper

Cohen et al. (2022) Significant
considerations
related to cobot
acquisition and
deployment

Metric to measure understanding of situation

Thorvald et al. (2021),
Faccio et al. (2022),
Romero and Stahre
(2021), Ruppert and
Abonyi (2020), and
Endsley (1995a, b)

Deep perception,
awareness and
understanding of
human awareness
and human factors

Translation to cobot domain

El Ouanjli et al. (2022), Xie
et al. (2018), Collins et al.
(2020), and Lindemann et
al. (2021)

Detection of
anomalies and
model adaption

Samples reduction, insert situational knowledge

Ashtari Talkhestani et al.
(2018), West and
Blackburn (2018), and
Pairet et al. (2019)

Digital Twin
provides model
management and
synchronization

Add model selection and parameter adaption

Dahn et al. (2018), Endsley
(1995a, b), Irvine (2013),
White (1991), Wickens
(2008), and Salerno
(2008)

Measure
consciousness and
build awareness for
humans

Adapt approaches for cobots

Burova (2021) Context-awareness
based on structural
models

Extend approach for data processing models

Yusuf and Baber (2022) Bayesian belief
networks under
limited
information for
perception and
projection

Add comprehension step

Dahn et al. (2018) Measure situation-
awareness by
surprise as a binary
quantity

Extend metric to continuous quantity and
differentiate the model types

inmind. For this reason, themeasurementmethods described
in Wickens (2008) do not apply.

Nevertheless, this definition itself applies to cobots.
Breaking down this definition connects the context of the
terms (environment, time and space, meaning) with the situ-
ation and the prediction. According to Dey, the context C is
“any information that can be used to characterize the situa-
tion of an entity” (Dey, 2001). In this case, the entity is the
cobot, and “any information” can be understood as a set of
pieces of information. What remains undefined at this point
is the term of the situation. The part “can be used” refers to
relevance defined by Dahn et al. (2018). According to Salfin-
ger, the situation corresponds “to a particular state of affairs
in the observed environment” (Salfinger, 2020). However,
instead of talking about several situations at the same time,
the authors follow (Salerno, 2008), who sees the situation
not only as a state, but rather as a set of states. Further-

more, the authors follow (Wickens, 2008), where the time
and the place are also considered important to characterize
a situation. However, Dahn et al. (2018) points out that the
definitions fall short of several steps by not providing a clear
guideline on which to base an implementation. They also do
not answer the question of how an agent can achieve context
or situation awareness. Therefore, the authors propose for-
malized definitions for situation awareness and related terms.

Formalized definitions

In this section the authors puzzle together the core of the
definitions from the literature and formalize them mathe-
matically to make them applicable to the cobots. The first
important term is context.

Context. The context C depicts a set of objects Ok =
{O1, O2, . . . , ON }, N ∈ N around the cobot and their rele-
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vant relations Rk = {Rk
i j }, where Rk

i j describes the relation
between the i th and j th objects at the kth point in time and
i, j = 1, . . . , N : Ck = 〈Ok, Rk〉.

As Burova (2021) and Yujian and Bo (2007) point out,
the context modeling relies on small meta-models to be fast
enough for real-time applications. For the same reason, the
system focuses only on the relevant objects and relations.
Relevance depends onwhether a piece of information (object
or relation) contributes to current decision making. It is time-
dependant since an object may be irrelevant at time k, but get
relevant at k + 1.

Unfortunately, in real robotic systems, there is no ground
truth about the context. Instead, the system must infer
the objects Ok present based on its measurements Mk =
{M1, M2, . . . , MK }, K ∈ N and reason about the relevance.
Ameasured value is an output of a sensor ormodel at a certain
time k, e.g., a camera image or a laser scan. It is a challenge
to extract the context from the measurements. The capability
of mastering this challenge is context awareness.

Context Awareness. Context awareness is the ability to
derive the context from the measurements. Mathematically
speaking, context awareness is a function that maps the mea-
surements to the context.

fca : Mk → Ck . (1)

A proposal for discovering the objects and their relations
using small metamodels is described in “The process of
improving situational awareness” section. In addition, the
objects are related to another important term, the situation.
The situation essentially describes the state of the objects.

Situation. A situation S is the set of states of the con-
text objects Sk = {X0,X1, . . . ,XN }. Unlike the context,
the situation does not refer to a specific entity. Therefore,
the system itself is part of the situation. Let Xs be the sys-
tem’s state vector and XO,i the state vector of the i th object.
Then the situation S is the set of the system or object states:
Sk = {Xs,XO,1, . . . ,XO,N }. The situation is relative to
a point in time k. The relation to the space is relative to
the objects in the environment and part of the state vectors.
Respectively, situation awareness is defined.

Situation Awareness. According to Endsley’s definition,
situation awareness includes perception, comprehension, and
projection. It is a function that maps from a set of measure-
ments Mk and the current situation Sk to the context Ck and
the future situation Sk+h :

fsa :
(
Mk

Sk

)
→

(
Ck

Sk+h

)
. (2)

In this equation, the perception maps a set of measure-
ments Mk to a set of objects Ok = {O1, O2, . . . , ON }. The
comprehension connects the objects Ok with relations Rk .

Fig. 1 Architecture of cobot adapted from Zilly (2023)

Perception and comprehension together form the contextCk .
The projection refers to the prediction of the states of the
objects in the environment in the near future using the present
data. These states of the objects correspond to the definition
of the situation Sk . The near future is modeled with the pre-
diction horizon h ∈ N0. In conclusion, situation awareness is
about building an expectation about the environment and its
future state. If a strong deviation to this expectation occurs,
this is a disruptive event.

Event andDisruptive Event. An event is anything that hap-
pens, especially something important or unusual. An event
becomes disruptive when it causes the system or environ-
ment to deviate strongly from the modeled behavior and is
relevant to the system.

Cobots’models contributing to situation awareness

Depending on the specific application, the cobots’ mod-
els change. Nevertheless, there are some types of models
that relate to the basic architecture of cobots. To discuss
these models, we first introduce the cobot’s architecture. The
architecture is a modified version of the BOSCH automated
driving architecture (Zilly, 2023), visualised in Fig.1.

Automated driving and cobots differ only in their sensors
and actuators. This fact is reflected by the cobot’s architec-
ture, a modified version of the BOSCH automated driving
architecture (Zilly, 2023), visualised in Fig.1. Both use
SLAM, perception, and prediction to plan routing, motion,
and vehicle control, with sensor fusion models processing
data in the monitoring step. The SLAM algorithm provides
a map, which is enriched with state information of objects
in the perception step. The prediction step provides future
states of the environment, resulting in an extendedmap in the
form of structural models. Behavioral models contain system
goals, routing strategies, and trajectory planning rules, and
describe the behavior of other robots and humans usingmeta-
models. However, these models cannot be automatically
adapted. Two types of models are subject to the adapta-
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tion process: data processing models, which are checked for
consistency, and structural models, which are checked for
completeness. Reliability and robustness issues affect both
types of models, leading to novel metrics for situation aware-
ness proposed in the next section.

The novel metrics of situation awareness

Broadly speaking, the quality of situation awareness is about
rarely being surprised by perturbing events. In addition, the
system should be aware of the uncertainties by estimating
the size of the gap between reality and simulation. For this
purpose, it is less important how the individual deviation will
turn out, but rather to be able to predict in which range the
spreadwill lie. Thus, the assessment of situation awareness is
characterized by model consistency, context awareness, and
model coverage. Together they make up consciousness.

As defined above, context awareness denotes the ability
to correctly infer the contextCk from the measurements Mk .
Consequently, the estimated context Ĉk should be as close
as possible to the actual context Ck . However, due to inac-
curacies in the sensors or the models, a gap in the sense of
completeness and correctness may occur between the esti-
mate and the ground truth. Examples of a gap would be a
misclassification of an object. The gap EC between the esti-
mated contents can be described as

EC = 1 − ‖Ĉk ∩ Ck‖L
‖Ĉk ∪ Ck‖L

, (3)

where Ĉk∩Ck represents the subgraphs of the estimated con-
text and the actual context, which are identical, and Ĉk ∪Ck

represents the joint graphs. As a distance metric, the authors
propose to adapt the Levenshtein distance (Yujian & Bo,
2007) for graphs, which counts the changes required to trans-
form one graph into the other. To normalize the quality to
a value between zero and one, the authors introduce the
reference value EC,re f . This value represents the expected
deviations and must be defined by the user’s experience.

Context Awareness Quality (QCA). The QCA measures
the similarity of the true context with the estimated one and
is modeled as:

QCA =
{
1 − EC

EC,re f
, if EC ≤ EC,re f ,

0, otherwise .
(4)

Theway QCA is constructedmodels the uncertainty of the
structural models in comparing the two graphs: the assumed
context graph and the context graph that combines the pos-
sible other context graphs with lower probability. Measuring
the similarity of these two graphs articulates the system’s
confidence in its context perception, which correlates with
the model’s reliability.

The second quality metric measures consistency. Incon-
sistencies can occur when different sensors or models infer
non-identical states of the situation. A classic example would
be redundant sensors that differ in their results or a gap
between prediction and measurement.

The degree of consistency is measured by the weighted
deviation of each information source from the estimated true
value. Following the context awareness quality scheme, the
error vector of the system state is ECon,i = ‖X̂−X‖, where
X̂ represents the estimated true state and X represents the
output of a certain measurement or model. Again, the metric
is normalized to a reference error vector ECon,re f determined
from experience.

Degree of Consistency (DoC). The degree of consistency
measures the similarity of all different information sources
representing the same quantity of the situation’s state vectors.
Let ECon = (ECon,1, ECon,2, . . . , ECon,N ) be the vector that
summarizes all i discrepancies in the state vectors Xi . Then
the DoC-related quality is modeled as follows:

QDoC =
{
1 − ECon

ECon,re f
, if ECon ≤ ECon,re f ,

0, otherwise.
(5)

The way QDoC is constructed models the uncertainty of
the data processingmodels by comparing different sources of
information (models ormeasurements). In thisway, the confi-
dence of the system in its predictive capabilities is measured,
which correlates with the reliability of the data processing
model.

Finally, the quality of coverage the models provide must
be mathematically defined. Loosely speaking, the coverage
quality represents the certainty of not getting caught by sur-
prise. Surprise is defined in Dahn et al. (2018). Formally, the
coverage describes the absence of disruptive events or the
ability of the system to model possible scenarios correctly. A
scenario si is a sequence of events. Consequently, the model
coverage quality can be described by the probability that the
system correctly assesses the situation and its state. For this
purpose, the measurement of the degree of coverage builds
on the previously defined quality metric of consistency.

Model Coverage Quality (QMC ). The model coverage
quality measures the probability that the currently active set
of models can accurately model the system behavior. Let QC

be the context-modelling quality as defined in Eq. 1, QCon

be the DoC as defined in Eq. 2. Let further si be a randomly
selected, possible scenario. Then the QMC is given by

QMC = P(QCA > 0 ∧ QDoC > 0 | si ). (6)

The proposed approach to determining QMC follows the
frequentist approach of counting the number of different
scenarios between two violations of the criterion QCA >
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0 ∧ QDoC > 0. The consciousness of a cobot is defined for
this purpose.

The way QMC is constructed reflects the generalization
ability. For each exception that is added, the change in QMC

tells about the number of cases covered by it. This is how the
robustness of the active model set is evaluated.

Situation Consciousness. The situation consciousness ζ

describes the level of situation awareness, i.e. the quality of
the function fsa . Let QCA be the context quality as defined
in Eq. 1, QDoC be the DoC as defined in Eq. 2 and QMC be
the coverage quality as defined in Eq. 3. Then, the Situation-
Consciousness is the tuple ζ = 〈QCA, QDoC , QMC 〉. The
situation consciousness represents the level of the ability to
model the system and itself with an acceptable reality-to-
simulation gap (Müller et al., 2022). The next section details
the process developed to improve situation consciousness.

The process of improving situational
awareness

After formally defining consciousness, this section presents
a systematic method for improving awareness.

Adapting models always carries the risk of corrupting the
model, which can have serious consequences. On the other
hand, doing nothingwhenyouknow that amodel’s prediction
is deteriorating is also risky. Simply bringing the system to
a safe state is not a solution either, because it reduces the
reliability of the system toomuch.AsReich andTrapp (2020)
argue, dynamic risk management is needed to dynamically
validate these changes as they occur, in order not to lose too
much reliability or run into unacceptable risks. To this end,
awareness helps as a guiding metric to adapt models only
when urgently needed. This concept selectively changes the
models to keep the validation effort to a minimum. Another
advantage is that fewer samples are needed for adaptation,
since they are difficult to obtain, especially in the corner
cases.

As discussed earlier, awareness is related to conscious-
ness. According to Endsley (1995b), the awareness of
automated systems follows a three-step process: Perception,
Comprehension, and Projection. However, this process is
focused on the human operator. Table 2 maps the human
situation awareness process to cobot situation awareness.

This adapted framework manifests itself in the structure
visualized in Fig. 2. The first step in this process is to mea-
sure the DoC, which is done in the Perception Step. In this
step, the iDT combines and compares the real-world (asset)
data and the cyber-world estimates. As a result, the iDT esti-
mates the true state, the error, and thus the QDoC . It passes
this result to the Comprehension Step. The Comprehension
Step combines the context estimation from the virtual world
and the context recognition on the real world data to provide

Table 2 Adapted situation awareness for mobile robots

Steps Interpretation for cobot

Perception Perceive deviations from forecast

Perceive deviations between models

Perceive disruptive events

Comprehension Anomaly detection

Retrieve the context around the system

Characterize disruptive events

Projection Synchronize model and asset

Predict future situation

further quality estimates, namely the context quality and the
coveragequality. From this understanding, the iDTconcludes
the Projection Step. In this step, a machine learning model
generates a correction model. This correction model is later
tested on collected real-world data to validate its generaliza-
tion to previously observed situations. In the virtual world,
the iDT predicts the situation Sk+h , which serves as a witness
to validate the quality of the updated model.

In this way, the knowledge grows with the experience the
iDT gains during operation, adapting the DT to its deployed
environment. The following subsections describe this situa-
tion awareness process in detail.

Perception

The uses the perception step to observe itself interacting with
the environment (Fig. 3). The key to this step is to build an
expectation of the situation Ŝ, i.e. the state vectors X̂i , and
compare it to the available information. However, as Mouret
and Chatzilygeroudis (2017) shows, synthetic data from sim-
ulators differ significantly from real process data. In general,
models simplify reality and therefore must first be made
comparable by design. On the other hand, real-world data
must first be cleaned to reduce the complexity of the relevant
aspects. To this end, the iDT performs data acquisition, pre-
processing and transfer steps. It distinguishes between two
domains: the cyber and the physical world.

In the cyber domain, the simulation environment produces
synthetic data. Typically, this data represents a subset of the
total space of possibilities in which the system operates. It
is very specific to the case being simulated. To make the
data more general, noise and contamination effects can be
added. Moreover, the iDT extends the covered exploiting
domain randomization to prepare the system for real world
data. Concrete approaches to how this works are proposed
in Tobin et al. (2017). The result of this domain randomiza-
tion is synthetic features that need to be unified to match the
process features. It should be noted that the algorithms in the
simulation domain may differ from those in physical space.
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Fig. 2 Situation awareness scheme building consciousness

Fig. 3 The perception step

The Simulation-to-RealityWrapper takes care of this task.
It puts the detection layer on a higher level and facilitates the
comparison. An example is the object recognition domain.
In this domain, the identified label and the confusion matrix
to other labels should be considered. However, reducing this
matrix to the 5–10 most relevant misclassifications and com-
paring them between the cbyer world and reality is more
feasible than comparing the features used by the object detec-
tors. In the physical world, the sensor captures the process
data of the object. Since real-world data problems are the
opposite of synthetic data, DT aims to cleanse the data.

To do this, the DT uses sensor fusion and noise reduction
techniques to pre-process the data. For example, the mul-
tiple measurements from a LiDAR sensor suggest different
positions in space. Using Kalman filter-based simultaneous
localization and mapping (SLAM), the DTmerges these val-

ues into a single feature: the most likely position on the map.
Based on the process features, the Reality-to-Simulation
Wrapper further abstracts away the channel-specific aspects.
Using LiDAR as an example, the position information is
provided relative to the robot’s position. Suppose the map
predicts where to find amoving object to be compared. In this
case, the Reality-to-SimulationWrapper has to transform the
detected objects to themap to compare the simulated position
of the object with the real one.

By performing these three steps, estimating the actual
value with the value available in the model or sensor can
be applied to models in general, as long as a set of compara-
ble features can be extracted. In the case of physical models,
physical state variables such as position, velocity, and orien-
tation can be compared. In the case of contextual models, for
example, degrees ofmembership can be used. In addition, the
perception can be extended by external feedback, e.g. from
a worker. This corresponds to an extension of the vector K j

or Sr , j . Having perceived the environment, the next step is to
make sense of these perceptions. Since the monitoring step
makes the different models comparable in the state vectors
X j and Skr , j , the DT computes QDoC . This step is described
in the next subsection.

Comprehension

The comprehension step analyzes the statistical properties of
the perceptions, classifies the context, and analyzes the cov-
erage quality of the iDT. Figure 4 visualizes this step. The
process starts to distinguish the normal (QDoC > 0) and the
abnormal data (QDoC = 0) using anomaly detection. In this
paper, the anomaly detection is limited to the DoC for the
next step. Since QDoC = 0 already defines that the models
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Fig. 4 The comprehension step

Fig. 5 Context recognition

are inadequate to describe the scenario, this quantity is a nat-
ural measure of anomalies. Lindemann et al. (2021) provide
a comprehensive survey for an exhaustive view of anomaly
detection. In a sense, the sophisticatedmethods allow to com-
pare different time steps in parallel to identify more types of
anomalies. After analyzing the data for anomalies, context
comes into focus. Whether an anomaly is detected or not, the
iDT relies on either the virtual or physical world. Because an
anomaly indicates that the models (i.e., the virtual world) are
not sufficiently accurate, the iDT relies on real-world data to
perform context recognition.

Figure 5 visualizes the process of context recognition.
Context recognition is based on a set of small metamodels
as proposed by Burova (2021) and Yujian and Bo (2007).
From the metamodel, the relational mapping gets informa-
tion about what to look for in the sensor data. Examples
of contextual information are links between obstacles, as
table feet are linked to their table top. The subsequent Model
Matching takes the relations and search patterns from the
metamodels to check which metamodel to instantiate to cre-
ate a set of models. In this way, relation mapping determines
the relationships between the recognized objects. The cycle

of improving the metamodel is excluded from the scope of
this work and will be left for future work.

Using the context recognition described above, the iDT
estimates the impact of disruptive events. However, this
method can only detect correlations, not causality. Another
instance must validate the observation to cover causality.

In the case of normal data, the available models prove to
be usable. Since the predictions fit, the estimated context is
close to the estimated one. The iDT analyzes the frequently
occurring patterns associatedwith a specific context. Further-
more, the iDT estimates the probability of certain objects or
conditions (represented in situation S) occurring in a given
context. In this way, the estimate of the ground truth situation
S is complemented by elements with a very high probability
of being present in the current situation. Similarly, discarded
objects close to the detection threshold can be considered
in S. In addition, engineering knowledge flows into the esti-
mated situation and the assumed ground truth. For example,
the table top is hard to detect for a 2D laser scanner. However,
if the legs of the table are a certain distance apart, the robot
can infer that this should be a table. From this data, the current
context reveals that there is another object, a tabletop, which
is invisible to the senses. After analyzing the context in this
way, the system has both variables available and therefore
calculates the context quality. In the event of an anomaly, the
DT relies on real-world data to rebuild the context model.
Based on the context model, the situation is identified. This
is part of context mining.

Situation Identification. Based on the context model, the
situation is identified. For this reason, the current state of
the objects is estimated. In this respect, both pattern recogni-
tion and regression algorithms are used. When an anomaly is
detected (QDoC = 0), the anomaly must be categorized by
searching for similar situations with clustering algorithms. A
distance criterion is certainly available for this purpose. The
consistency error ECon is a rough distance metric, where a
similarly high error is expected for similar situations. An
example of anomaly categorization is published in Müller et
al. (2022). Independent of whether there is an anomaly or
not patterns of the context may be used to identify similar
situations. As a suggestion, the graph similarity of the con-
text model might server as a further feature and based on
the metamodels even more features might be extracted. The
detailed similarity metric and features to identify the situa-
tion are a design choice. The authors decided to attach these
features and the parameters to estimate in order to form the
object’s state to the object properties. Having an increasing
data set of context features associated with object’s state, the
identification of the set of the object’s states, i.e. the situation
identification increases in precision. However, more research
has to be conducted in order to come up with automated
feature extraction and labelling for situation identification.
Given the labelled data set, clustering identifies different

123



Journal of Intelligent Manufacturing (2024) 35:2045–2063 2055

modes of the object and regression algorithms estimate the
current state and may predict future ones.

In the subsequent coverage analysis, the system checks
whether a similar case has already occurred. The coverage
quality estimate changes only if the current situation is new to
the system. For abnormal data, the system cannot measure or
predict the environment correctly, which causes the coverage
quality estimate to decrease. For normal data, the coverage
quality increases.

Based on these analyses, the iDT predicts the future devel-
opment of the situation. As a result, the comprehension step
provides context and coverage quality. This step is described
in the next section.

Projection

The final step of the situation awareness scheme is projec-
tion. In this step (see Fig. 6), the future situation Sk+h is
predicted based on an updated version of the models. To
update the model, the iDT creates a data-driven correction
model that depends on the context. For this purpose, the Data
Selector selects the samples from the real data based on their
similarity to the current context. The context error (Eq. 3)
serves as a distance metric. Based on this training data, a
machine learning algorithm creates a mapping that takes the
output of the original model and modifies it to get closer
to the actual value. Machine learning algorithms, especially
regression algorithms, provide a correction model for both
regression testing and predicting the future situation. dis-
turbing events limit the space in which the correction model
is valid. Aniculaesei et al. (2018) call this scenario space a
dependability cage. As the sample size increases, the agents
learn how to compensate for the event characteristics and the
error between predicted and actual states. A new correction
model emerges. Once the model converges, the additional
samples for the same context expand the dependability cages.

With increasing samples, the iDT gains confidence in the
context in which the updated models are appropriate. Typi-
cally, the updated models are run in parallel with the existing
models in a test phase. In this test phase, regression tests are
performed. Once the iDT is confident in the quality of the
model, it releases the sandboxed models and puts them into
production mode. In case of unintended behavior, the model
contains a link to the old model as a fallback plan. After the
models have been updated and approved, the prediction of
the future situation takes place. To do this, the iDT first syn-
chronizes the models with the asset. During synchronization,
all situation states in the models are set to their most likely
values. These updated states are fed into the prediction mod-
ule. Based on the updated states and models, the prediction
module predicts the future situation Sk+h .

Finally, the iDT communicates the system’s state aware-
ness to the user. This step is described in the next section.

Fig. 6 The projection step

Communicating awareness using intelligent Digital
Twin

The communication of situational awareness includes the
visualization of the models. The iDT shows the running
simulation processes based on real-time data exchange. For
example, the map and the simulated movement of the cobot
are shown together with incoming camera images in real
time. Tablets can be used as a front to display the visual-
ization. This allows the worker to inspect and analyze the
cobot’s awareness. If less detail is required, a dashboard dis-
plays the previously introduced metrics of coverage quality
and DoC, and allows for the review of specific consistency
errors.

Experiments and results

To study situational consciousness, a cyber–physical model
factory with a mobile robot platform of the type Robotino
3 Premium from Festo, an automated warehouse, and four
workstations is considered. The Robotino serves as a col-
laborative robot and is focused on this work. The mobile
robot uses a laser scanner for SLAM. Specifically, the Adap-
tive Monte Carlo Localization (AMCL) algorithm is used. A
monocular camera supports object recognition and visualizes
the environment. For the communication interface, a Robot
Operating System (ROS) node runs on the robot, providing
a service-oriented interface. A PC running Lubuntu 20.04
wirelessly controls the Robotino through this ROS node. It
mimics a cloud server and is equipped with an i9 processor
and NVIDIA P620 graphics card. The simulation environ-
ment is based on Gazebo 10. It is complemented by grid
maps generated by the laser scanner and machine learning
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Fig. 7 Visualization of the cobot and its iDT

models. The visualization is done with the RviZ framework
and the algorithms are implemented in C/C++ and Python 3.

Figure 7 illustrates Robtinowithin the cyber–physical fac-
tory and its iDT. An iDT is set up for the Robotino. The
robot’s iDT manages safe navigation in the factory, but also
an office environment using a probabilistic roadmap planner
as a global planner. The robot works closely with human
workers, providing tools and workpieces. When working
closely with robots, the worker must understand the robot’s
situational consciousness. For this purpose, the authors take
the continuous example of the correct movement and posi-
tioning of the robot in simulation and reality. This example
is deliberately chosen to illustrate the idea. More complex
examples, namely an object recognition ontology and a
human motion model, complement the continuous example.

This scenario is intended to show the evolution of the
robot’s consciousness. During its journey, the robot perceives
objects such as workstations and elements of the office envi-
ronment such as tables. The experiments follow the structure
of the previous section to evaluate the process of developing
consciousness and its communication with humans.

An important task of the iDT is to communicate themobile
robot’s knowledge about its environment. In particular, the
human operator needs to know when the system perceives

the environment differently than the operator would expect.
In this context, the visualization of the iDT is crucial. Fig-
ure 7 (left-bottom) illustrates the perception of the iDT. The
laser scanner detects I-shaped tables. The robot maps it to
a table by pattern recognition, which the iDT represents as
bounding boxes that the robot is not allowed to enter. The
robot’s perception is structured in several views, which the
worker selects in the toolbar on the left. The map shows the
current laser scanner measurement, the direction of move-
ment, and the associated grid maps that mark the forbidden
areas. The terminal on the bottom right gives feedback about
the running scripts.

In this section, the results of the experiments are discussed
according to the previously detailed process steps. The calcu-
lation of the DoC for positioning is described in ”Perception”
section and the comprehension step for anomaly detection in
”Comprehension” section. Finally, the results of the projec-
tion step are described in ”Projection” section.

Perception

The perception step shows the calculation of the DoC for the
positioning. It also evaluates the position of obstacles on the
map. Besides the obstacles, the position of the humanworker
has to be estimated. The experiment is limited to these three
aspects to keep it simple. Considering the close cooperation
with the human worker, the reference error ECon,re f is set to
a maximum gap between simulation and reality of 2cm. The
indoor positioning system tracks human motion. To reflect
the inherent position uncertainty, the reference error ECon,re f

is set to 75cm.
In the simulation, the robot’s position computation uses a

simple physics model, assuming that the velocity controller
is always on and therefore s(t) = s0 + v(t) · t . However,
there are two nonlinearities in the motion of an autonomous
mobile robot that the models do not take into account. This
leads to poor model quality, which is detected and quanti-
fied in this step. As a reference, the laser scanner evaluates
the position from several data points referenced to known
objects. By transforming the SLAM position into the sim-
ulation coordinates, the simulated and measured positions
become comparable. Figure 8 shows the results without com-
pensation. On average, every third position value exceeds
the reference error ECon,re f (marked in red). Whenever this
happens, the system resets the simulated position to the mea-
sured value, resulting in frequent synchronizations.Although
the synchronizations have been so frequent, deviations above
2 · ECon,re f occur. This causes the autonomous mobile robot
to “jump” in the simulation environment. As expected, the
initial model quality is rather poor. Figure 9 shows the cal-
culated QDoC .

Similar to the data processing model of the robot’s move-
ment, the human’s movement is estimated. We consider a
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Fig. 8 Deviation of the position before compensation and error refer-
ence

Fig. 9 Degree of Consistency before the compensation. Mean =
35.5%

movement pattern of a human searching for something, e.g.
a specific document, etc. For this purpose, the speed and
direction of the human’s movement is low-pass filtered and
based on this information, the next position is estimated. The
model assumes that the humanwill most likely continue with
his speed and direction. This assumption is often violated,
especially with respect to direction, resulting in significant
deviations. The prediction result versus the actual position is
visualized in Fig. 10. Correspondingly, the estimation for a
time horizon of 3 s has a consistency quality as visualized in
Fig. 11 with an average of 32.3%.

Comprehension

The comprehension step begins with anomaly detection. An
anomaly is detected whenever QDoC = 0. As visualized in
Fig. 9, this happens 34 times in the uncompensated dataset.

For this reason, the authors extend the examplewith object
detection and context mining. The map in Fig. 12 shows the
result as provided by the SLAM algorithm. It is annotated
with the context models associated with each object. Due to
the simplicity of the models, they are not hard-coded into
the system. Instead, the appropriate models are loaded based
on a mapping table. As visualized in Fig. 12 (right), object
detection identifies additional closed regions based on the
mapping table in Fig. 13. This mapping table uses the context
of the detected objects to each other for object identification
and representation in the grid map.

Fig. 10 Human movement model with horizon 1 s

Fig. 11 Human Model. QDoC for prediction horizon 3s

As Fig. 13 shows, the laser scanner perceives the table
legs as a single object at a certain distance (relation). In this
way, the detection is invariant to rotation. Furthermore, this
representation allows the calculation of the context quality.
Things are simple as long as all feet are correctly detected.
However, if only three of the four feet are recognized, the
table will not make it into the estimated context Ĉk , but into
the reference contextCk . In the red circle, the algorithm does
not estimate a table, but there is a high probability that it could
be a table.Only three out of four feet are correctly recognized.
They are tables, but they blend into the background.

In summary, the object detection correctly detects four
out of six objects (dashed green). For the two tables, one
table with food is missing. As a consequence, using the Lev-
enshtein distance, 2 close To-relationships and 1 O-shape
object must be added. In addition, the detector misses that
the objects form a table of shape V-shape. There are 2 objects
and 4 relations missing for each missed table. There are 19
objects and 36 relations, where 16 objects and 28 relations
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Fig. 12 Object recognition based on context models

Fig. 13 Object detection rule table

Fig. 14 Estimated coverage quality over samples without adaptation.
Mean = 66%

are correctly detected and do not need to be changed. For sim-
plicity, each operation is counted equally (i.e., add-relation
or add-object). The context error is therefore calculated
according to (3): ECon = 1 − (16+28)

(19+36) = 0.20. The refer-
ence is ECon,re f = 1, which results in a context quality of
QCA = 1 − 0.20 = 80.0%.

If the data is classified as abnormal, data mining is per-
formed on real data. For example, using the camera as an

Fig. 15 Estimated coverage quality and velocity over samples for
human model

additional source of information, the previously misclassi-
fied tables (marked in red) become observable. With this
information, the algorithm learns that multiple tables in a
row and tables too close to the wall characterize the misclas-
sifications. This shows the limitations of laser scanner based
object recognition. In this research area, Sahlab et al. (2021)
proposes more sophisticated methods to extract contextual
features.

The next step is to compute the coverage quality. As a
naive approach, each scenario is re-classified, resulting in a
coverage quality as shown in Fig. 14. The estimated coverage
quality is simply calculated as the ratio of covered cases to
the total number of cases. The coverage estimate converges
to QMC = 66.0%.

As for themobile robotmotionmodel, themodel coverage
quality is also calculated for the human motion model. In
contrast to the overall estimation, we are now interested in a
limited history of 10 samples. The corresponding diagram is
shown in Fig. 15. The velocity plot below shows that QMC is
inversely correlated with velocity. Values above 0.45 m s−1

are associated with an anomaly.
In summary, the direction of human motion is difficult

to predict. However, in a stochastic sense, the position of
the human can be assigned to a certain area with a well
predictable probability. This is the purpose of the coverage
quality metric. The cobot adapts its path planning strategy
accordingly.

Projection

The projection step starts with the collection of samples asso-
ciated with the respective context. This training data is used
to train a machine learning regression. The results of the
authors’ algorithm are compared with the classical offline
reinforcement learning algorithm. The parameters of this
reinforcement learning algorithm are given in Table 3.

The reinforcement learning algorithm compares the posi-
tion value of themodel before and after synchronization. The
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Table 3 Baseline Reinforcement Learning Algorithm

Parameter Value

Algorithm class State–Action–Reward–State–Action

Used Training Samples 8327

Available input Continuous value

Delayed reward

Multi-action

Assumptions Only longitudinal control

Action space [0 cm s−1:1 cm s−1:20 cm s−1]

Reward R(x) =
{

+1 if x < 1 cm

−5, otherwise

End of an episode x > 2 cm or

Rotational deviation > 0.01 rad

Fig. 16 Mapping of old velocity to actual one using reinforcement
learning

improved model is not applied directly, but runs in parallel
with the original model until it is considered stable. As a
result, the reinforcement learning algorithm comes up with a
mapping table that maps the original velocity (“old action”)
to the better fitting velocity (“new action”). The mapping
from old to new action is visualized in Fig. 16.

This experiment shows that the resulting model is too
simple. In addition, the graph shows velocity saturation
at 16 cm s−1. The physical controller seems to have a
limit at this value instead of the assumed 20 cm s−1. This
behavior could be a friction that is using up the control
reserves. The nonlinearity is validated at the physical plant.
As a result, the initial situation awareness ζunadapted =
〈QCA, QDoC , QMC 〉 = 〈80.0%, 35.5%, 66.0%〉 is rather
low.Applying this compensation showsa significant improve-
ment in the model. The number of deviations was reduced
from 33 to 10, about a third compared to the old model, and
the magnitude of the deviation was also reduced. Therefore,
using the reinforcement learning agent, the situation aware-
ness increased to ζbenchmark = 〈80.0%, 42.3%, 91.3%〉.

This confirms the validity of the metrics, as the improvement
of the models is as expected.

Unlike the robot motion model, the human motion model
cannot be further optimized. This is due to the fact that
there is no correlation between the previous movement vec-
tor and the future one. While the amount of movement is
quite predictable—leading to QMC in Fig. 15—the direction
is completely random. Since no other information is avail-
able, the adaptation will not improve the results. Therefore,
the human motion model is sent to a human to improve the
model. To do this, the algorithm exposes the limitations of
the model itself. Nevertheless, the model still provides a ben-
efit, since QDoC can be interpreted as a circular area around
the estimated position, where QMC gives the certainty of the
human being within that area. Exemplarily, in the range of
k ∈ [292, 583], the estimated probability of the human being
within the radius of 0.75cm around the estimate is between
60 and 100%.

However, with respect to the mobile robot’s motion
model, the optimization succeeds efficiently. In contrast to
the state-of-the-art algorithm, the authors provide the algo-
rithm described in ”The process of improving situational
awareness” section. Unlike the reinforcement learning agent,
which requires 8327 training samples, the proposed algo-
rithm uses only 500 samples. Therefore, the training samples
are different. However, since the samples come from the
same process, this influence should be rather small. The
analysis step, specifically the context analysis and anomaly
detection, provides samples to the regression algorithm. The
synchronization process takes the measurements from the
laser scanner and processes them into position information
using the SLAM algorithm. The synchronization module
then compares this position with the simulated position. For
each target value, the error between simulation and reality
is calculated and the ratio between normal (QDoC > 0) and
abnormal data (QDoC = 0) is calculated. The ratio is then
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Fig. 17 Clusters of abnormal–normal ratio

Fig. 18 Position Error before (blue) and after (red) adaption for v >

16 cm s−1 (Color figure online)

clustered as shown in Fig. 17. The dashed blue cluster con-
tains the samples with a low proportion of outliers, which
means that the underlying model is basically correct. The
red cluster contains the samples with a high proportion of
outliers, which means that the model needs to be improved.

From this clustering, the system learns that the values
< 13 cm s−1 match quite well, while the values above have a
significant error. This results in two regions: the linear region
[6 . . . 16] and the saturation region> 16 cm s−1. The velocity
values of 14 cm s−1 and 15 cm s−1 show unusual behavior,
which will be discussed later in this section. Therefore, no
changes will be made to the linear part, while the regression
algorithm will try to reduce the introduced error for the other
parts. Figure 18 shows the result of the vanilla simulation
(blue dashed) and the adjusted simulation (red) in compari-
son. In this range the consistency quality increases to 58.8%.
As shown in Fig. 19, there are no significant changes in the
linear region, as themodel alreadyworks well for this region.
The position error for the velocity values of 14 cm s−1 and
15 cm s−1 is visualized in Fig. 20. As can be seen from the
graph, it works partially with a very low error rate, but in
some cases (right part) the error rate increases even higher
than in the original version. This leads to an increase of the
consistency quality to only 51.8%. Taking all cases together,
the results improve to QDoC = 59.0%.

As with the reinforcement learning agent, the quality
of coverage increases even more. Obviously, the benefit is
highest in the saturation region. The quality of coverage

Fig. 19 Position error before (blue) and after (red) adjustment for v <

13 cm s−1 (Color figure online)

Fig. 20 Position error before (blue) and after (red) adjustment for
exceptions (Color figure online)

increases to 93.2%. In the case of the exceptions, the cover-
age quality increases to 91.3%. Consequently, the coverage
quality in the updated scenario reaches QMC = 93.2%. If
we compare the quality metrics before and after the situa-
tion awareness process, we see a clear improvement. The
situation awareness process improves the situation aware-
ness to ζadapted = 〈80.0%, 59.0%, 93.2%〉. At this point,
there is no change in context quality, since the context detec-
tion reference value does not trigger an adaptation process.
The authors leave the improvement of the context quality
for future work. In conclusion, the proposed method shows
similar and slightly better performance. The difference in
consistency quality varies the most, since the new algorithm
does not use quantization. Since the regression is not bound to
a specific quantization, it is better in this example. However,
the main strength of the proposed approach is not mainly
the accuracy, but the required number of samples. In con-
trast to the RL agent, the approach consumes only about 500
samples.

Discussion

The proposed metric can be used in the iDT to communi-
cate situation awareness. The iDT handles the simulations
and real-time communication through the sensors and visu-
alization devices. With the management board, these metrics
provide a high-level indicator of the cobots’ understanding
of the current situation. If necessary, the iDT allows more
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Table 4 Summary of results without (baseline) and with improvement cycle

Metric Baseline (%) Our approach (%)

QCA 80.0 80.0

QDoC 35.5 59.0

QMC 66.0 93.2

Table 5 Summary of results of model improvement with traditional reinforcement learning (baseline) and with our approach

Metric Baseline Our approach

Improvement of QMC 25.3% 27.2%

Training Samples 8327 500

Required re-validation of model 100% 63.6%

detailed analysis in real time, checking the models or sig-
nals in question. In this way, the approach enables more
efficient communication with the human operator. Follow-
ing the three-step process of situation awareness, a scheme
for improving situation awareness was proposed and evalu-
ated using the example of the positioning of the mobile robot
platform Robotino. The experiment shows that the quality
metric is applicable to the robotic system and qualitatively
represents the state of situation awareness. Furthermore,
the situation awareness improvement process increased the
QDoC from 35.5% to 59.0% and the coverage quality (QMC )
from 66.0% to 93.2% as shown in Table 4. In summary, the
system covered 25% more cases than before, while reducing
the gap between reality and simulation. Moreover, as shown
in Table 5, the improvement is achieved with way less train-
ing samples and less re-validation effort. The improvement
process for the context quality is left for future work.

Conclusions and future work

Situational consciousness can be measured by situation con-
sciousness. Situation consciousness is a quality metric that
includes three components: Context Quality, Degree of Con-
sistency, and Coverage Quality. Together, the tuple describes
the state of situation awareness. The degree of situation
awareness is crucial for smooth cooperation between humans
and machines. Only if the human understands how well the
robot is aware of its environment, can thehumanworker adapt
her behavior appropriately, such asmoving in the other direc-
tion, preparing for the approach, or moving away from the
robot. This paper introduces the measurement of situation
awareness for the domain of collaborative robots based on
the iDT.

Speaking of future work, situation identification may be
generalized by automatically learn the states of the environ-
ment’s objects. Moreover, human emotions can be integrated

into situation awareness considerations. Kansei Robotics can
help adapt robots to human-centered manufacturing. The
Kansei factor could effectively maintain a comfortable state
thanks to the emotional synchronization in human–robot
interaction (Hashimoto, 2006). It could enrich the context
with a non-physical state of the human-model object.Design-
ing cobots with a human-centered approach, taking into
account the unique characteristics of machines and tech-
nology, can help to further improve the situation awareness
of cobots and enhance communication and understanding
between humans and machines. To this end, a more effi-
cient metamodel development cycle is enabled, which could
be another research direction to investigate. Furthermore,
the knowledge of situation awareness allows to improve the
cobot’s decisions based on the situation and the environ-
ment. To this end, risk estimation of the robot’s behavior
can be performed in real time, taking into account the
measured uncertainty that the cobot is currently dealing
with. Moreover, collaborative task-sharing research bene-
fits from formalized and improved situation awareness. It
is worth investigating how the proposed approach can itera-
tively increase the recognition of safety-relevant predictions.
This approach can also improve communication between
machines and humans, leading to greater safety and more
efficient collaboration.
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