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Abstract
Reducing material waste and computation time are primary objectives in cutting and packing problems (C&P). A solution to
the C&P problem consists of many steps, including the grouping of items to be nested and the arrangement of the grouped
items on a large object. Current algorithms use meta-heuristics to solve the arrangement problem directly without explicitly
addressing the grouping problem. In this paper, we propose a new pipeline for the nesting problem that starts with grouping
the items to be nested and then arranging them on large objects. To this end, we introduce and motivate a new concept,
namely the Geometrical Compatibility Index (GCI). Items with higher GCI should be clustered together. Since no labels
exist for GCIs, we propose to model GCIs as bidirectional weighted edges of a graph that we call geometrical relationship
graph (GRG). We propose a novel reinforcement-learning-based framework, which consists of two graph neural networks
trained in an actor-critic-like fashion to learn GCIs. Then, to group the items into clusters, we model the GRG as a capacitated
vehicle routing problem graph and solve it using meta-heuristics. Experiments conducted on a private dataset with regularly
and irregularly shaped items show that the proposed algorithm can achieve a significant reduction in computation time (30%
to 48%) compared to an open-source nesting software while attaining similar trim loss on regular items and a threefold
improvement in trim loss on irregular items.

Keywords Reinforcement learning · Graph neural networks · Cutting and packing · Nesting · Geometrical compatibility ·
Geometrical relationship graph · Grouping for nesting
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Introduction

The cutting and packing problems (in short C&P problems)
are related to many areas of the operations research and
they have been extensively studied for decades. The C&P
problems have been referred to, in literature, with different
terminologies over the past decades (Arenales et al., 1999;
Dyckhoff, 1990; Wäscher et al., 2007). For example, a C&P
problem was denoted by the layout design problem in Cagan
et al. (2002), while it was called the spatial configuration
problem inMichalek et al. (2002). Further examples of termi-
nologies and variants of the C&P problems are cutting stock
or trim loss problem, bin or strip packing problem, vehicle,
pallet or container loading problem, nesting problem, knap-
sack problem, etc. C&P problems arise in many industries,
including the wood industry, glass industry, paper industry,
sheet metal cutting, ship building, garment manufacturing,
shoe manufacturing, and furniture making.

The C&P problems are NP-hard problems with an iden-
tical common logical structure which can be described as
follows. The inputs are two groups of geometrical data ele-
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ments, namely a set of large objects, and a set of small items.
The aim is then to select a set of small items, group them into
one or more subsets, and finally pack each of the resulting
subsets on a corresponding large object, in a pattern (a.k.a.
layout), while satisfying some geometric conditions (Faina,
2020). The first geometric condition to be satisfied is that the
small items of each subset must be laid entirely within the
large object. The second geometric condition is that all small
items lying on the same large object must not overlap. The
residual unused areas on the layout, remaining uncovered by
a small item, are usually treated as wasted material which
is interchangeable with the term “trim loss”. The objectives
of the C&P problem are to reduce this waste to maximize
material utilization and reduce computation time. Reducing
the trim loss can be very beneficial from the economic point
of view in very large-scale productions such as sheet metal,
wood, and textile production as it can result in savings of
material and consequently in reduction of production costs.

In general, a solution to a C&P problem may consist of
using a set of some or all large objects, and a set of some
or all small items depending on the problem’s objective and
constraints. Considering the broad constraints, a formal for-
mulation of five sub-problems can be derived (Wäscher et
al., 2007):

1. Large object selection problem: selecting the large
objects on which the small items should be packed or
cut.

2. Small items selection problem: selecting the small items
to be packed or cut.

3. Groupingproblem: grouping the selected small items into
subsets.

4. Allocation problem: assigning the subsets of the small
items to the large objects.

5. Layout problem: arranging the small items on each of
the selected large objects, by first finding the order of the
small items and then by placing them on the large object
with respect to the geometric conditions.

In almost all of the C&P industries, the small items to be
packed are provided by customers and hence the second sub-
problem is disregarded. If similar or identical large objects
are to be used, the first and fourth sub-problems will be
dropped. Therefore, the C&P problem is practically reduced
to only the third and fifth sub-problems, i.e., grouping the
parts to be nested into clusters and finding a layout for each
cluster by arranging its small items on a large object.

Inmost of the C&P industries, the C&P process is referred
to as the nesting process. The small items are also usually
called parts and the large objects are called sheets. The latter
terms, i.e., nesting, parts, and sheets, will be henceforth used
in this paper.

(a) Eleven Geometrically
Compatible Parts

(b) Twelve Geometrically In-
compatible Parts

Fig. 1 We estimate geometrical compatibility indices (GCI) with our
model and choose two sets of parts with the same total area: left, eleven
parts with high compatibility indices and right, twelve parts with low
indices. The highly compatible parts result in reduced trim loss

Over the past decades, the fifth sub-problem, the “layout
problem”, has been mostly addressed (Furini & Malaguti,
2013; Kundu et al., 2019; Labib & Assadi, 2007; Rakotoni-
rainy & van Vuuren, 2020; Zhang et al., 2016), where it
is assumed that only one sheet is used for all of the parts,
and hence no clustering of parts is needed. In contrast, the
third sub-problem, the “grouping problem”, has often been
ignored. The current existing nesting softwares known to us
solve the grouping problem implicitly as a part of the layout
problem.

In this paper, we hypothesize that a new nesting pipeline,
where the grouping problem is directly solved before the
layout problem, will positively impact both material utiliza-
tion and computation time. The positive impact of this new
nesting pipeline on material utilization is intuitively alleged
(Fig. 1), as the material waste will be low when the clustered
parts already fit together geometrically (i.e., the grouping
problem) before placing them on the sheet (i.e., the layout
problem).Moreover, by solving the grouping problem before
the layout problem, the new nesting pipeline shortens the lay-
out problem’s computation time because the meta-heuristics
of the layout problem will handle a smaller number of parts
per cluster.

Therefore, in this work, we suggest solving the grouping
problem explicitly with a learning-based approach. To the
best of our knowledge, this learning-based approach is the
first approach to solve the grouping problem explicitly in the
scope of nesting. The layout problem will be addressed in a
follow-up work and is out of the scope of this paper.

Despite its material-saving and time-saving potential, the
realization of the new nesting pipeline is complex. The chal-
lenges are the absence of a definitemathematical formulation
of the grouping problem, the entanglement of the grouping
and layout problems, and the difficulty of instinctively under-
standing the geometrical compatibility between the parts.
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Accordingly, we start by differentiating between the Geo-
metrical Compatibility Index (GCI) concept and the contour
similarity concept, a closely related concept in the field of
C&P, in section “Related works”. We also give a background
about the algorithms used by our approach in the same sec-
tion. Then, in section “Problem formulation”, we draft a
mathematical formulation of the grouping problem. In light
of this formulation, we exhibit the entanglement intricacy
between the grouping and layout problems in section “Moti-
vation to the proposed approach”, motivate the proposed new
nesting pipeline, introduce the two new concepts [i.e., GCI
andGeometrical RelationshipGraph (GRG)], and deduce the
learning paradigm. Next, we formally define the GRG and
GCI concepts in section “Definitions: GRGandGCI”. In sec-
tion “Methodology”, we concretely explain our framework.
After that, we conduct multiple experiments to showcase the
effectiveness of our approach on a large real-world private
dataset in section “Experiments and results”. Finally, we con-
clude our work in section “Conclusion” and suggest further
future research directions.

To summarize, our main contributions in this paper are as
follows:

1. We propose a new pipeline for nesting, which begins by
solving the grouping problem before the layout problem.

2. We define two new concepts, namely the Geometrical
Relationship Graph (GRG) and Geometrical Compati-
bility Index (GCI), which will allow solving the grouping
problem.

3. To estimate the GCI, we propose a novel reinforcement
learning-based framework that deploys twoGraphNeural
Networks (GNNs) in an actor-critic-like fashion.

4. We suggest to group the parts based on the GCI by solv-
ing the GRG as a Capacitated Vehicle Routing Problem
(CVRP) using meta-heuristics.

5. We demonstrate that our model can train on more than
2, 000 parts with irregular shapes. We report results on
two test splits fromaprivate dataset from real-world sheet
metal production. Results show that our best model can
achieve a considerable improvement (30% to 48%) in
computation time, a 70% reduction in material waste on
one test split, and a comparable trim loss on the other test
split.

Related works

As the grouping problem has not been explicitly addressed
before, there is no prior work relating to it. This section,
therefore, distinguishes the GCI from the contour similarity
concept used in the field of C&P. We also briefly describe
relevant works in other fields that are used in our method-

ology, like graph neural networks, CVRP, and actor-critic
reinforcement learning.

Contour similarity

To increase the compactness and reduce the scrap while solv-
ing the layout problem, the contour similarity concept was
introduced in the literature on the 2D-bin packing problem
(Guo et al., 2020; Yang et al., 2022). The contour similar-
ity aims to match the new parts with the sheet’s unoccupied
closed polygons having a similar contour.

The concept of geometrical compatibility differs from the
contour similarity concept in the following: (1) Contour sim-
ilarity is a specific case from the geometrical compatibility;
if two parts are geometrically compatible, they will be nested
together on the same sheet, but they will not necessarily
be adjacent on the sheet, as would be the case for contour
similarity. (2) Contour similarity is computed pair-wise and
would be time exhausting if computed for all possible pairs
inside a group of parts. On the other hand, GCI is computed
graph-wise and considers relationships between all parts at
once in the GRG. For instance, in Yang et al. (2022), contour
similarity was calculated using an iteration-based algorithm,
the longest similarity subsequence, which at its best has a
time complexity of O( j · l), where j and l are the lengths of
the two input sequences. GCI is estimated using a learning-
based algorithm with a O(1) time complexity at inference
time. (3) Lastly, contour similarity targets the layout prob-
lem, unlike GCI, which focuses on the grouping problem.

Graph neural networks (GNNs)

There exist three typical classification tasks in a graph: node
classification, edge classification, as well as joint node and
edge classification. The classification task is either based
on node features only [e.g., GraphSAGE (Liu et al., 2022)
and DeepWalk (Perozzi et al., 2014)] or on both node and
edge features [e.g., EGNN (Kim et al., 2019)]. Graph Con-
volutional Neural Network (GCNConv) is a convolutional
operator first introduced in Kipf and Welling (2017). The
majority of GNN models share a largely universal architec-
ture that is based on using a message passing function to
aggregate information from neighbor nodes into the current
node. Themainmessage passing function used in the forward
path of the GCNConv is given by

X′ = D̂
−1/2

ÂD̂
−1/2

X�, (1)

where

Â = A + I. (2)
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In Eq. (1), A is the adjacencymatrix of the input graph rep-
resentingwhich nodes are connected together. The adjacency
matrix would be a matrix of ones if the input graph is a fully
connected graph, which applies to the GRG. Â represents the
adjacency matrix with self-loops inserted, i.e., each node is
connected to itself which is depicted by the identity matrix
I. The adjacency matrix is also known as the edge weights
matrix when it contains values that indicate how closely con-
nected the nodes are to one another rather than only values
that indicate the nodes’ connectivity (zeros and ones). D̂ is
the diagonal node degree matrix, where the diagonal element
corresponds to the number of edges connected to the node,
namely, D̂i i = ∑N

j=1 Âi j . Furthermore, X denotes a matrix
of node feature vectors, � is the trainable weight matrix for
the GCNConv layer, and X′ is the weighted aggregation of
the features of the neighbor nodes.

The architecture of our framework’s learning agent deploys
GNNs, specifically the GCNConv, to estimate the GCIs.

CVRP

The capacitated vehicle routing problem (CVRP) is an NP-
hard optimization problem used in supply chainmanagement
to design an optimal route for a fleet of vehicles with uniform
capacities serving customers with known demands for a sin-
gle commodity under three constraints. The three constraints
are minimizing the global distance between customers, min-
imizing the number of vehicles needed to serve them all,
and ensuring that each vehicle does not exceed its capacity.
The CVRP has been extensively studied in literature through
many heuristics and meta-heuristic algorithms surveyed in
Kumar and Panneerselvam (2012).

In our suggested framework, after estimating the GCIs,
the GRG is considered as CVRP and is solved using a meta-
heuristics-based solver.

Actor-critic reinforcement learning

Reinforcement learning (RL) is a decision-making frame-
work where an agent represents the solver of the problem,
and an environment represents the problem to be solved. At
each state of solving the problem, the agent interacts with the
environment by selecting an action to be applied. By apply-
ing the action, the environment updates its state and returns
the new state and a scalar reward evaluating the quality of
the taken action. In any state, the agent selects the action by
following a policy. The agent’s goal is to optimize its policy
by maximizing the total accumulated reward, also called the
return. To decide on actions to be taken in future states, the
agent indirectly uses past experiences by building an esti-
mation function of the return called the value function. One
widely used agent’s paradigm is the actor-critic paradigm
(Grondman et al., 2012), where the actor tries to optimize

the policy, and the critic tries to optimize the value function.
The central concept behind all the actor-critic algorithms is
that the value function estimated and optimized by the critic
is used to guide the actor’s policy to the improvement direc-
tion of performance.

The learning agent’s paradigm in our framework is con-
ceptually similar to the actor-critic idea.

Problem formulation

In this section, we formally define the grouping problem.We
assume there are N parts, {part1, . . . , partN }, to be nested
on K sheets. For partn , where n ∈ {1, . . . , N }, we denote its
area by an and its geometry information by gn . The geometry
information encodes the inner and outer contours of each
part. In this work, we consider that gn is a vector in latent
space, Rd , where d is the dimension of the latent space. For
a sheet k ∈ {1, . . . , K }, the sheet’s area is denoted by sk . We
seek to find xkn ∈ {0, 1}, which denotes whether partn will
be assigned to sheet k. Parts that are assigned to the same
sheet are grouped together. The optimization problem can be
formulated as follows:

arg min
xkn

K∑

k=1

[

Area(BBk) −
N∑

n=1

xknan

]

(3a)

s.t.
K∑

k=1

xkn = 1,∀ n ∈ {1, . . . , N } (3b)

N∑

n=1

xknan ≤ sk,∀ k ∈ {1, . . . , K } (3c)

N∑

n=1

xknan +
(
1 − xkm

)
am > sk,

∀
{
xkm, am

}
∈

{ {
xki , ai

}
| i ∈ {1, . . . , N }, xki = 0

}

∀ k ∈ {1, . . . , K } (3d)

BBk is the rectangular bounding box enclosing all the
parts nested on sheet k. BBk is first calculated by solving
the layout problem for sheet k, i.e., after nesting all parts that
have xkn = 1 on sheet k. Equation (3a) denotes finding xkn that
minimizes the material waste, Area(BBk)−∑N

n=1 x
k
nan , on

each sheet. The constraint (3b) states that each part must be
assigned to one and only one sheet. The second constraint
(3c) states that the total area of all nested parts on sheet k
must not exceed the sheet’s area, sk . The final constraint (3d)
imposes that each sheet kmust be used to itsmaximumcapac-
ity such that it is not possible to add anymore part, partm with
xkm = 0, to the sheet without exceeding its capacity.
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This optimizationproblem is ill-definedbecause Area(BBk)

is an unknown non-linear function, F , of the nested parts’
geometry and areas. It can be expressed as:

Area(BBk) = F
(
g1x

k
1 , g2x

k
2 , . . . , gN x

k
N ,

a1x
k
1 , a2x

k
2 , . . . , aN x

k
N

)
(4)

A solution to the grouping problem consists of finding
a mapping function π , which maps the parts’ geometrical
information gn , parts’ areas an , and the areas of the sheets sk
to the coefficients xkn , which determine the groups.

Motivation to the proposed approach

Tofind a solution to the grouping problem,we seek to approx-
imate the mapping

π : {an, gn}Nn=1

⋃
{sk}Kk=1 �→

{
xkn

}K ,N

k,n=1
. (5)

This mapping is hard to estimate as it implies optimizing
the objective function (3a) under the constraints (3b)–(3d)
without any insight into the non-linear function Area(BBk)

or its relationship to the nested parts’ geometry (Eq. (4)).
The BBk term in Eq. (3a) unveils the entanglement of the
layout problem in the grouping problem; only after solving
the layout problem for sheet k, BBk and Area(BBk) can be
calculated.

To disentangle the grouping problem from the layout
problem, we propose to break this mapping down into two
mappings by introducing an intermediary value that can be
learned from the data and can then act as a criterion for
optimizing the grouping. The proposed breakdown and inter-
mediary value pave the way for a new formulation of the
objective function that does not include Area(BBk) as will
be shown in section “Mapping from GCIs to groups”. For
the intermediary value, we define a new concept, the Geo-
metrical Compatibility Index (GCI). The mapping π can be
expressed as π = π2 ◦ π1. The first function in the proposed
solution, π1, tries to estimate the GCIs between all the parts
given their geometrical information, {gn}Nn=1. The set of all
estimated GCIs is expressed as {GC In,m}, where n and m
are two different parts. The second function, π2, estimates
the coefficients xkn given the GCIs. For instance, parts with
high GCIs should be grouped together, while parts that have
low GCIs should belong to different groups. In short, the
mapping functions can be expressed as:

π2 ◦ π1 :{an, gn}Nn=1

⋃
{sk}Kk=1 �→ {xkn }K ,N

k,n=1 (6a)

π1 :{gn}Nn=1 �→ {GC In,m}N ,N
n,m=1 (6b)

π2 :{GC In,m}N ,N
n,m=1

⋃
{an}Nn=1

⋃
{sk}Kk=1

�→ {xkn }K ,N
k,n=1 (6c)

In the following two subsections, we motivate the pro-
posed solution to estimate the mapping functions, π1 and π2.
Then, we motivate the proposed learning approach in sec-
tion “Learning paradigm”.

Mapping from parts to GCIs

The goal of the mapping function π1 is to estimate a quan-
titative criterion to cluster the parts. We hypothesize that
geometrical compatibility between parts is a reasonable
choice for the grouping criteria.

SinceGCI is an abstract concept, wemotivate it by the fol-
lowing simple example before providing its formal definition
in section “Definitions: GRG and GCI”.

To show how the selection of geometrically compatible
parts can lead to more material savings, we show three dif-
ferent simple parts (square, triangle, and circle) in Fig. 2. In
the example, we used the grey canvas to represent a square
sheet of area 22,500 mm2, on which we want to nest the
parts. We also assume two previously nested parts (Fig. 2a)
shown in green and blue with 2812.5mm2 and 7225mm2

areas, respectively. The resulting free area of the sheet is
then 12,462.5 mm2, which theoretically is more than suf-
ficient to nest another two orange triangular parts with the
same dimensions as the green one. By trying to nest two new
orange triangles, it becomes obvious that a single one would
not fit on the sheet with this layout. The only option that
would allow placing a new orange triangle is to change the
layout by moving the blue square a bit down (Fig. 2b). This,
however, also prevents the placement of a second orange
triangle, albeit the fact that theoretically the available area
on the grey sheet is still enough to accommodate it. On the
other hand, a red circle with a radius of 30mm and an area
of 2827.43mm2, i.e., almost the same area as the green and
orange triangles, would fit perfectly on the sheetwithout even
changing the layout. Furthermore, it leaves room for a second
red circle to be nested (Fig. 2c). Consequently, we would say
that the orange triangle is geometrically less compatible with
the blue square and the green triangle than the red circle.

The red circle instead has higher geometric compatibility
with the nested parts and therefore leftmore space for another
red circle. This subsequently has increased area utilization
and reduced material waste. Quantitatively, the wasted area
for nesting only a single orange triangle is 9650mm2, while
the wasted area for nesting two red circles is 6807.6mm2.
Hence, higher geometrical compatibility saves more area for
new parts to be nested and reduces trim loss.

As shown in the example above, the GCI estimation prob-
lem cannot be just estimated in a pairwise manner, without
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(a) Sheet before
nesting

(b) Nesting one ad-
ditional triangular
part

(c) Nesting two cir-
cular parts

Fig. 2 Demonstration of the geometrical compatibility between differ-
ent parts

observing other parts in a group. To estimate GCIs between
all parts, we choose tomodel the parts as nodes in a fully con-
nected bidirectional weighted graph and GCIs as weighted
edges between the nodes. We refer to this graph as the Geo-
metrical Relationship Graph (GRG), and we use a GNN to
estimate the weights of its edges.

Mapping from GCIs to groups

After estimating the GCIs, we propose to use them as a cri-
terion for the grouping. The mapping π2 can be seen as a
solution to another optimization problem, which seeks to
find out what are the optimal sets of parts that should be cho-
sen together to achieve the maximum GCI sum for different
sheets. The objective function of this optimization problem
can be expressed as

arg min
GC I

K∑

k=1

N∑

m=1

N∑

n=1

(1 − GC In,m)xkn x
k
m . (7)

This new formulation, while satisfying the constraints
in (3b)–(3d), is analogous to a typical Capacitated Vehicle
Routing Problem (CVRP) formulation. This new objec-
tive function does not depend on the unknown function
Area(BBk), unlike the initial one of Eq. (3a), but rather on
the GCIs estimated by π1. To solve for π2, we use meta-
heuristics instead of exact methods to find a good solution in
an acceptable time.

Learning paradigm

From section “Mapping from parts to GCIs”, it is clear that
the GCI cannot be concretely estimated in a defined way
before solving the layout problem. Moreover, it is not possi-
ble to get labels for theGCIs, because theGCIs between parts
change whenever the grouping strategy changes. It is also
very computationally expensive to use a brute-force approach
and try out all grouping permutations to generate GCI labels
for supervised learning. For this, we propose to learn the
GCIs by maximizing a reward function from a nesting envi-

ronment using RL. The reward function R is chosen to be
the ratio between the area of the parts of a group and the area
of the bounding box enclosing them on the sheet k, and it is
computed for each group of parts using

Rk =
∑N

n=1 x
k
nan

Area(BBk)
. (8)

Definitions: GRG and GCI

In this section, we give formal definitions for GCI and GRG.

Definition 1 (GRG) The GRG is a fully connected, bidirec-
tional weighted graph representing the parts to be nested
along with their geometrical relationships.

• Graph: GRG depicts the parts to be nested as nodes
in the space and their geometrical relationships as the
edges connecting them. GRG has nodes vn ∈ V =
{v1, . . . , vN } where each node is represented by a geo-
metrical information vector gn ∈ R

d (details can be
found in section “Input encoding”).

• Fully connected weighted graph: To outline all of the
geometrical relationships between the parts, all the nodes
of theGRGare connected to each other and to themselves
by an edge enm ∈ E ∀ vn, vm ∈ V . GRG defines the
affinity of the geometrical relationship between two parts
vn and vm by a weight wnm ∈ [0, 1] assigned to their
connecting edge enm .

• Bidirectional graph: In the example of section “Mapping
from parts to GCIs”, nesting the triangular part (green)
before the square part had a high geometrical compati-
bility. However, nesting the triangular part (orange) after
the square part had a low geometrical compatibility. This
means that the order of nesting the parts affects their
geometrical suitability, which is represented by directed
edges between nodes in the GRG, i.e., wnm 	= wmn .

Definition 2 (GCI) The GCI is a scalar variable with fixed
bounds that is computed graph-wise rather than pair-wise.
Its value is the weight wnm of the edge enm in the GRG,
i.e., wnm = GC In,m ∈ [0, 1]. It denotes the geometrical
relationship between two parts in the sense of their geomet-
rical compatibility, not their area compatibility, to be nested
together on the same sheet.

• Scalar variable with fixed bounds: To have a concrete
view of the substantial effect of the GCI on nesting, the
GCI is designed to be a scalar value ranging from zero to
one. A GCI of zero means no geometrical compatibility
whilst a GCI of one is the highest compatibility index.
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• Computed graph-wise rather than pair-wise: The GCI
cannot be determined by geometrically evaluating the fit-
ness of eachpair of parts together (the green triangle looks
compatible with the blue square in Fig. 2a but the orange
triangle is barely compatible with the same rectangle in
Fig. 2b), but rather by nesting all the parts of the GRG
graph/sub-graph on a sheet and evaluating the resulting
layout. Since there is no explicit calculation method for
the GCI, it is instead inferred via machine learning.

• Denotes geometrical compatibility not area compatibil-
ity: Two different nodes that are area-wise compatible
with a third node, i.e., their sum of areas would fit on a
sheet, not necessarily need to have the same GCI with
this node in the GRG. This is the case of the orange tri-
angle and the red circle and their compatibility with the
blue square in Fig. 2.

Methodology

In this section, we present the proposed approach for solving
the grouping problem. First, we present an overview of the
different components of our approach, then we present the
parts encoding, the architectures of the actor-like and critic-
like modules, and the learning routine.

Overview of the proposed approach

Our approach consists of finding the mappings π1 and π2.
The proposed framework consists of four components:

1. Input encoder: It takes as input a part, partn , and generates
as output the part’s geometrical information vector gn .

2. Actor-critic-like agent: It represents the first policy π1

mapping from parts to GCIs. It consists of two modules,
namely, the actor-like module and the critic-like module.
The input of this component is the set {g1, . . . , gN } and
its output is the GRG, where the parts are the nodes and
the weights of the edges are the GCIs. During the training
phase, it learns the values of the GCIs, which improve the
quality of the nesting, with the help of the reward signal
providedby thenesting environment in anRL framework.
During the inference phase, i.e., the actual nesting, only
the actor-like module is used to predict the values of the
GCIs to build the GRG.

3. CVRP solver: It represents the second policy π2 map-
ping from GCIs to groups. This component considers
the GRG, built by the previous component, as a CVRP
problem and solves it using meta-heuristics. Its input is
the GRG and it outputs sub-graphs of the GRG as routes.
Each resultingGRGsub-graph represents a groupof parts
to be nested together on the same sheet.

Fig. 3 A flowchart summarizing our proposed methodology: the
autoencoder is pre-trained separately and generates the parts encod-
ing gn . Then, an actor-critic-like agent learns to generate GCIs, which
are passed to a CVRP solver to group the parts. A nesting environment
evaluates how well the groups will be nested and returns a reward to the
agent. During inference, the critic-like module in the agent is omitted
and only the actor-like module is used

4. Nesting environment: It solves the layout problem for
the parts of each GRG sub-graph, and returns the reward
of Equation (8) to the actor-critic-like agent during the
training phase. During inference, it only solves the layout
problem for each group of parts without returning any
reward.

Figure3 exhibits a block diagram of the four components
constituting our methodology. In sections “Input encoding”
and “Actor-critic-like architecture”, the first and second com-
ponentswill be explained in detail, respectively. The third and
fourth components will be explained in the learning routine
of the last subsection as they cannot be explained alone.

Input encoding

The input to our algorithm is the set of parts to be nested
{part1, . . . , partN }, where each part is described by its area
and its geometrical shape. To alleviate the task of the first
policy, π1, we encode the geometrical shape of each part,
described as a rasterized image, into a geometrical informa-
tion vector. Inspired by representation learning, the encoder
of an autoencoder is employed in a pre-processing step
to encode the rasterized image of each part into a vec-
tor gn ∈ R

d , where we use d = 256 throughout this
paper. An encoding of the parts facilitates the GCI learn-
ing task and reduces the required computation resources
thanks to the reduced dimensionality. The encoded geomet-
rical information vector gn of partn will be further used as
the GRG node’s features in section “Actor-critic-like archi-
tecture”. A customized autoencoder based on the inception
network (Szegedy et al., 2015) was trained on a different
dataset of more than 10, 000 rasterized parts including some
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(a) Single part reconstruction

(b) Layout reconstruction

Fig. 4 Autoencoder reconstruction results on unseen new images: left,
the rasterized images of a single part (a) and a layout (b) and right, the
reconstructed images after encoding

layout images. To evaluate the encoding generalization on
new images, the autoencoder has been tested on unseen new
images of single parts (Fig. 4a) and layouts (Fig. 4b).

Actor-critic-like architecture

Motivated by the “learning with a critic” concept (Widrow et
al., 1973), which incited Sutton, Barto, and Anderson (Barto
et al., 1983) to outline the fundamental concepts of all the
modern actor-critic algorithms in the RL field, our model
consists of two modules: actor-like and critic-like modules
(Fig. 5).

Critic-like module

In the critic-like module, the nodes of a sub-graph of the
GRG are passed through two consecutive GCNConv layers
to perform message passing between the nodes. The ratio-
nale for using a sub-graph rather than the entire GRG will
become clear in the “Data Collection” step of Sect. 6.4. Both
GCNConv layers take initially a random edgeweights matrix
representing theGCIs. The output of the firstGCNConv layer
is then provided as input to the secondGCNConv layer. Theo-
retically speaking, in Eq. (2), the matrix of node geometrical
information vectors [g1, . . . , gN ] of the input graph repre-
sents the X , while the edge weights represent the Â matrix
and are learnable parameters.

To guide the improvement of the actor-like module, the
final GCNConv layer’s outputs are averaged to a single value
estimating the environment’s reward. This value is compared
to the ground-truth reward signal coming from the environ-
ment using a L1 loss function. The L1 loss is further used in
backpropagation with Stochastic Gradient Descent (SGD) to
update the parameters of the two GCNConv layers and the
edge weights matrix. Each parameter of this edge weights
matrix stands for a GCI between its connecting nodes (i.e.,
parts).

Actor-like module

The actor-likemodule consists of oneGCNConv layer,which
takes the nodes of the GRG as input and an adjacency matrix
of ones (as it is assumed that all nodes are connected). The
goal of the actor-like module is to learn a forward map-
ping between the input graph nodes and the edge weights,
Âestimate, which is a matrix of dimensions N × N , where
N is the number of the nodes in the graph. After updating
the edge weights of the critic-like module, the L2 loss func-
tion is computed between the output of the actor-like module
Âestimate and the edge weights Â learned by the critic-like
module. The parameters of the actor-like module’s GCN-
Conv layer are then updated via stochastic gradient descent.
In summary, the actor-like module learns an edge-labeling
task.

It might be mistakenly thought that the critic-like module
has achieved the whole task by learning the edge weights,
and the actor-like module is redundant. Practically speaking,
this is partially true. The critic-like module learns the GCIs
by backpropagating on the learnable parameters of the edge
weights matrix. However, the critic-like module maps the
input nodes and theGCIs to a reward function and only learns
the GCIs by backpropagation, which is impossible at test
time.

In simple words, we can say that the critic-like module
has no memory for learned knowledge. The role of the actor-
like module is to generalize the knowledge learned by the
critic-like module.

Actor-critic-like vs. actor-critic
The actor-critic and actor-critic-like paradigms agree on the
concept but differ in its implementation. The critic in the
actor-critic paradigm implicitly improves the actor, by insin-
uating the direction of actions update from an evaluation
signal (e.g., v − value, q − value, a − value or return). On
the other hand, the critic-like in the actor-critic-like paradigm
explicitly learns the good actions by directly estimating the
reward signal and teaching the actor those actions. The actor
and critic have “act then get criticized” dynamics: the actor
takes action first and then the critic evaluates its perfor-
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Fig. 5 Block diagram of actor-critic-like modules, the data collection
and the update steps in the learning routine

mance. The dynamics between the actor-like and critic-like
are rather “get criticized and then learn”: the critic-like learns
an explicit action by evaluating it, and then the actor-like
learns this action.

Learning routine

The GCIs of the GRG could only be learned by nesting the
parts of the GRG on sheets and evaluating the quality of
the layouts in an RL framework. In this section, the GCI’s,
and accordingly, the GRG’s learning procedure (Alg. 1) is
explained in detail.

Initialization of the environment

The first step is to initialize a nesting environment. In the RL
context, the action space consists of all the sets of parts that
could be nested together on the same sheet, i.e., each action
is a sub-graph of the GRG. The state space includes only
the initial state, which is the set of all parts in the GRG. In
other words, there exists only one state, which is the whole
GRG graph, and each action is a sub-graph of the GRG that
the agent believes that its parts will geometrically fit together
on the same sheet. The environment takes a sub-graph, nests
its parts on the same sheet, and returns the quality of the
resulting layout (Eq. (8)) as a “reward” to the agent.

Initialization of a replay buffer

Tostore the experiences collected from the agent and environ-
ment interactions, a replay buffer is initialized for the GRG.
Each entry of the replay buffer is a pair consisting of a binary
mask and a reward. The mask filters out all the GRG’s parts
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Fig. 6 Analogy between GRG and CVRP

that are not included in the sub-graph. The replay buffer has
a limited capacity and once it is full the newest experience
replaces the oldest one. This allows an off-policy training
since experiences collected fromold policies are used to learn
a new one.

Data collection

In the data collection step (Fig. 5), the GCIs, between all
parts of the GRG, are inferred from the actor-like module.
TheGRG is then regarded and solved as a CVRP.We draw an
analogy between CVRP and GRG: the reciprocal of the GCI
values, i.e., 1−GC I , in GRG are analogous to the distances
between the customers in CVRP. Both need to be minimized.
On the other hand, the areas of the parts inGRG, are similar to
the capacities of the customers in CVRP. Both need to meet
capacity constraints. Finally, the available empty sheets to
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GRG 1
GRG 2

GRG 3

Large GRG

Sub-graph 1
Sub-graph 2

Depot 
Empty Sheets

Fig. 7 Demonstration of a large GRG, GRG, and sub-graphs of a single
GRG: each large GRG is divided into η GRGs. Each GRG is further
divided into sub-graphs, using the CVRP solver, where each sub-graph
represents a group of parts that will be nested together on the same sheet

nest the sub-graphs of the GRG correspond to the available
vehicles in its CVRP counterpart. A visual demonstration of
this analogy is provided in Fig. 6. Out of the several meta-
heuristic algorithms that handle the CVRP, we used Google
OR-Tools (Perron and Furnon) to solve the GRG into sub-
graphs. Each sub-graph is then passed to the environment to
be nested on the same sheet and a reward is returned. The
mask of the sub-graph and the reward are then stored in the
replay buffer.

Update step

To update the actor-like and critic-like modules, we sample
a random batch of experiences from the replay buffer. The
mask of each element in this batch is used to recover the
sub-graph and the reward is used to compute the L1 loss and
update the critic-like module. After the update of the critic-
like module, the whole GRG is used by the actor-like module
to estimate the GCIs. Those GCIs are again compared to the
edge weights matrix learned by the critic-like module, in an
L2 loss function, to update the actor-like module (Fig. 5).
Note that the critic-like module has learned the GCIs of the
whole GRG by only using sub-graphs from the GRG. This
design choice is motivated by the fact that the geometrical
compatibility should only be evaluated for clusters of parts
to be nested through the reward signal. Hence, by evaluating
the quality of many sub-graphs, the critic-like can infer the
geometrical compatibility between all the parts of the GRG.
Nevertheless, the critic-like module is a transductive model
that cannot generalize its learned knowledge of edge weights
to unseen GRGs. On the other hand, the actor-like module is
an inductive model that can easily predict the GCIs of newly
encountered GRGs.

Extension to large GRGs

To limit the computation resources, the GRG is restricted
to comprise at most N parts. To extend the model on larger

datasets that contain M parts with M > N , we divide the
large GRG into η = ⌈M

N

⌉
GRGs of N parts each (Fig. 7).

In the training phase, the above-described learning process
(Alg. 1) will then be applied to each of the η GRGs. At the
start of training for each GRG, a new replay buffer and an
edge weights matrix for the critic-like module are initialized.
The edgeweightsmatrix of the critic-likemodule is randomly
initialized only for the first GRG. However, for all the fol-
lowing ones, it is initialized with the previously learned edge
weights matrix. This could be thought of as a simple form of
transfer learning. In the inference phase, only the actor-like
model is used to estimate the GCIs of the GRGs.

Algorithm 1 GCI Learning Routine
1: Initialize a nesting environment
2: Divide the large GRG into η GRGs of N parts each
3: for n ← 1 to η do
4: Initialize a replay buffer Bn and Ân

5: for i ← 1 to I training steps do
6: collect data from GRGn

7: store the data in Bn

8: sample a random batch from Bn

9: do an update step
10: end for
11: end for

Experiments and results

We perform multiple experiments to showcase the effective-
ness of our model. In section “Effect of different reward
functions on the model generalization”, we study the effect
of different choices for the reward functions for a single GRG
with N = 500. Next, in section “Comparison of GRG with
open-sourceNesting software”,we compare the performance
of the proposed model to an open-source nesting software.

Nesting environment

For our experiments, we developed a dummy environment
that does not solve the layout problem but rather considers
only the parts’ areas to calculate the reward of the current
nested parts. There are several reasons behind the choice of
a dummy environment. First, real nesting environments are
very slow for solving the layout problem compared to the
GNNs and will increase their training time drastically by
increasing the data collection time. Second, a dummy envi-
ronment can be considered as a more general and abstract
case of a real nesting environment as the proposed algo-
rithm is not limited to a specific layout-solver algorithm.
This design choice constitutes a proof of concept of the GCI
and GRG ideas.
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(a) Before preprocessing (b) After preprocessing

Fig. 8 An example part from our dataset

Realizing the reward function (Eq. (8)) in the dummy
environment is impossible since this reward is a function of
Area(BBK ), which is a non-linear function of the geome-
tries and the areas of the nested parts (Equation (4)) that can
only be calculated after solving the layout problem. How-
ever, in the dummy environment, the layout problem is not
solved and the bounding box area cannot be computed. To
approximately simulate the non-linearity of the reward in (8),
we designed the reward function of the dummy environment
to be a non-linear function F of the utilization ratio U . For
each subgraph (group of parts) formed by the CVRP to be
nested on sheet k with area sk , the utilization ratio Uk and
the reward Rk are calculated according to

Uk =
∑N

n=1 x
k
nan

sk
,

Rk = F (Uk) .

For the selection ofF , the effects of three different non-linear
functions have been examined in section “Effect of different
reward functions on the model generalization”.

Dataset

Typical nesting datasets are not suitable for the grouping
problem because they were originally designed to solve the
layout problem. They feature a small number of different
parts (typically around 20) and a single sheet. For this rea-
son, we evaluate our model using a private dataset with a
large number of parts that cannot fit on a single sheet. Our
dataset consists of 2500 CAD files representing different
irregular complex geometrical parts from sheet metal pro-
duction (Fig. 8a). The parts used are to be nested on sheets
of size 3000 mm × 3000 mm. The CAD files of the parts
are translated into Scalable Vector Graphics (SVG) format.
To capture the difference in dimensions between parts, the
canvas is set as a constant frame of reference. Each part is
placed at the top left corner of the canvas and is rasterized
into a 128×128 pixels binary image as shown in Fig. 8b. We

divide our dataset into a training set (2000 parts) and a test set
of 500 parts. Two test splits are further selected from the test
set and used to evaluate the models. Test Split 1 contains 113
parts with regular shapes, while Test Split 2 contains 124
parts with irregular shapes. Regular shapes contain mostly
straight lines and smooth curves. On the other hand, irregu-
lar shapes have more complex concave and convex curves.
The test splits were selected based on manual inspection. All
the parts in the test splits are different from each other and
from the training split.

CVRP solver

For optimizing Eq. (7) and solving the GRG into sub-graphs
using CVRP, we use the specialized library from Google
OR-Tools (Perron and Furnon) for vehicle routing. This tool
uses local search and meta-heuristics on top of a constraint
programming solver to solve different variants of the vehicle
routing problem including CVRP. The Google OR-Tools’
vehicle routing library implements a two-step solution,where
the first solution is an initial solution based on heuristics
and is further improved by local search meta-heuristics in
the second step. We use the automatic settings to select the
best first solution strategy and to let the solver select the
best local search meta-heuristics to guide the search. The
meta-heuristics among which the solver is selecting include
greedy descent, guided local search, simulated annealing,
tabu search, and generic tabu search.

Effect of different reward functions on themodel
generalization

In this set of experiments, we select only 500 parts from
the training set to train the models, which can be grouped
into one GRG.We experiment with three different non-linear
functions F for the reward calculation to test the gener-
alization ability of the proposed model. We train the first
model using a sinusoidal function of the utilization ratio as
follows:Rk = sin ((Uk − 0.5) · π). The range of the utiliza-
tion is set to [−0.5, 0.5] to make the reward range between
[−1, 1]. The second model uses a sigmoid function for the
reward. This reward is also non-linear and represents a differ-
ent challenge to the agent. The reward function is expressed
as follows: Rk = 1

1+e−Uk
. In this case, the range of the

reward is [0, 1]. In the thirdmodel, we use the hyperbolic tan-
gent function of the utilization ratio to calculate the reward.
The reward function in this case is expressed as follows:

Rk = tanh (Uk) = eUk−e−Uk

eUk+e−Uk
. The non-linear tanh function

limits the range of the reward in this case between [−1, 1].
Model a In this model, the reward function is a non-linear

sinusoidal function. Figure9b shows the edge weights error
L2 during the 500 training steps under the Sinusoidal reward
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function. It can be noted that L2 loss converges quickly to
a relatively small value. Figure9a shows the reward loss L1

which exhibits the same convergence behavior.
Model b In this model, we use a sigmoid reward function.

Figure9d shows the edge weights error L2 during the 500
training steps. Similar to model a, the L2 loss and L1 loss
converge quickly (see Fig. 9c).

Model c In this model, we use a tanh reward function.
Figure9e and f show the quick convergence of the reward
loss L1 and the edge weights loss L2 during the 500 training
steps, respectively.

We show the estimated GCI for Models a, b, and c on test
split 1 in Fig. 10a, c, and e, and on test split 2 in Fig. 10b,
d, and f, respectively. Qualitatively, we can see that, for the
same test split, the graphs are similar with few exceptions.
The slight differences between the colors of the edges, i.e.,
the values of the GCIs, can be attributed to the different non-
linearities used in the reward function. The values of theGCIs
cannot be intuitively interpreted since they are computed in
a graph-wise, not a pair-wise manner. The qualitative simi-
larities between the graphs make it difficult to decide which
model is better. For this reason, we compare the performance
of the three models quantitatively in the following subsec-
tion.

Comparison of GRGwith open-source nesting
software

To the best of our knowledge, the nesting sub-problem of
grouping the parts to be nested into clusters before doing the
nesting itself has never been handled before by any nesting
software. Almost all of the current nesting softwares are try-
ing to solve two other nesting sub-problems, namely finding
the best order of the parts to nest, and selecting the angle and
xy-position of each part on the sheet, i.e., the nesting/packing
itself. After selecting the nesting order of the parts, usually
through meta-heuristics, and during packing the parts on the
sheet, the parts that donot fit on the current sheet are placedon
a new one. That’s how the clustering sub-problem is solved
in the nesting software without taking into consideration the
suitability of the parts to be nested together.

To get an impression of how our approach compares
to other existing frameworks, we conducted an experi-
ment to compare the performance of our framework to
the performance of an open-source nesting software called
DeepNestPort. DeepNestPort is substantially a port of a
browser-based vector nesting tool called SVGNest to handle
different input/output image formats. We choose DeepNest-
Port as a baseline to compare with for three reasons: (1) it’s
an open-source software, which makes it easily accessible
for research purposes, (2) SVGNest/DeepNestPort claims to
have a similar performance to commercial softwares, and
(3) other learning frameworks that solve the layout problem,

(a) Reward loss: Model a (b) Edge weight loss: Model a

(c) Reward loss: Model b (d) Edge weight loss: Model b
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Fig. 9 Results of updating the actor-like and critic-like modules for
Models a, b, and c: left, the L1 loss function between the reward esti-
mated by the critic-like module and the ground-truth reward signal
coming from the environment, and right, the L2 loss function between
the output of the actor-like module Âestimate and the edge weights Â
learned by the critic-like module

operate only on a smaller number of regular parts and are not
suitable to operate on a large number of regular and irregular
parts. It should be noted that we used only a simple dummy
environment throughout the training of our model, which we
expect to affect the results negatively. Training with one of
the existing nesting softwares as an environment would be
impossible, as they are very slow and therefore not suitable
for RL training, which needs huge amounts of samples to
learn from.

Baseline andmodels

In this experiment, we first give all parts in each test split
to the DeepNestPort framework to nest. The performance of
this experiment is considered the baseline. Then, we report
the performance of six models: Models a, b, and c trained
twice, on 500 parts and 2000 parts. We trained Models a,
b, and c using the same reward functions of section “Effect
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Table 1 Comparison between
GRG and DeepNestPort

Experiments Training Test Split 1 Test Split 2

T (s) WM (%) T (s) WM (%)

Deep Nest Port NA 600 13 761 20

Model a 500 parts 300 15 610 12

Model b 285 18 521 19

Model c 290 19 490 17

Model a 2000 parts 317 16 498 7

Model b 353 18 498 20

Model c 340 20 498 16

Average 314.2 17.7 519.2 15.2

Test Split 1 contains regular parts, while Test Split 2 contains irregular parts. Best numbers are marked in
bold. Models a, b, and c have the same architecture but were trained with three different non-linear reward
functions: sinusoidal, sigmoid, and tanh, respectively

Fig. 10 Visualization of the estimated GCIs for three different non-
linear functions F and on two different test splits. The nodes of each
graph represent some of the parts clustered together in each test split.
Beside each node stands the geometrical shape of the corresponding
part visualized in red. The colored edges between the nodes show the
parts’ geometrical relationships, where the colors describe the values
of the GCIs according to the color bars (Color figure online)

of different reward functions on the model generalization”,
namely, sinusoidal, sigmoid, and tanh, respectively. For each
model, we estimate the GCI values of the parts and split them
with CVRP. Then, we nest each group of parts, correspond-
ing to a specific route from the CVRP problem on a sheet
using DeepNestPort. The main difference is that DeepNest-
Port assigns the parts to each sheet on its own, while in our
case, the parts are assigned according to their GCIs.

Metrics

We evaluate the performance of our model using two met-
rics: time (T) and trim loss expressed as the percentage of
wasted material (WM). Time (in seconds) is calculated by
measuring the computation time of all used sheets after the
proposed grouping operation. Wasted material (expressed as
a percentage) is the ratio of the sum of wasted areas in all
used sheets over the total area of the sheets. The wasted area
of a sheet is considered as only the unused area inside the
rectangular bounding box enclosing all the parts nested on a
sheet. The unenclosed area could be reused to nest new parts.
Therefore it is not considered scrap.

Results and discussion

The results are reported in Table 1. In the case of using Deep-
NestPort, a total number of four and two sheets each of the
dimension 3000 mm × 3000 mm were needed to nest the
required 113 and 124 parts of test split 1 and 2, respectively.
Test splits 1 and 2 were nested in an average time of 600 s
and 761 s and the material wasted percentage, in this case,
was 13% and 20% of the total area of the used sheets, respec-
tively. In the case of usingGCIs, a total number of four sheets
was suggested for test split 1 and two sheets for test split 2.
The layouts visualization is shown in Appendix: Qualitative
results, For each experiment, each layout shows a group of
parts that have been selected to be nested together. For exper-
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iments that are using the GCIs to group the parts, the set of
all layouts represents the full solution of the CVRP solver
for its respective GRG.

From the table, we first notice that Model a generalizes
better than Models b and c in all combinations. This shows
empirically that the sinusoidal reward is better suited than
the sigmoid and the tanh rewards. Second, all the models
achieve better than the baseline on test split 2, with Model a
resulting in only 7% material waste, almost 3 times less than
DeepNestPort, when trained on 2000 parts. Models b and c
still achieve a considerable reduction when trained only on
500 parts. The difference in the two results can be explained
away by the number of parts during training. The three mod-
els however experience a slight degradation in performance
on test split 1. We hypothesize that this effect could be mit-
igated by designing a more realistic nesting environment or
tuning the choice of the reward function.

Overall, the framework consistently achieves a lower
computation time than the classical nesting approach in all
combinations. The computation time is reduced on average
by 48% on test split 1 and by 30% on test split 2. The longer
time in test split 2 is attributed to the irregular shapes of
the parts. This stems from the fact that solving the group-
ing problem implicitly during the layout problem results in a
large number of combinations that the nesting environment
should consider. In contrast, the proposed pipeline divides
the parts to be nested into small groups with more compati-
ble parts, which in turn can be nested directly on the sheets
in fewer combinations.

Limitations

One limitationof thiswork is that nonesting environmentwas
used during the training. However, this is a promising result,
because the model can achieve a considerable reduction in
time and waste material on irregular parts. We believe that
the use of a realistic nesting environment during the training
will further reduce material waste. However, the design of
such an environment is out of the scope of this paper and is
considered in future works.

Another limitation of the proposed framework is that the
use of meta-heuristics to solve the CVRP problem might
lead to sub-optimal results or even no results at all in an
acceptable time frame.We plan to address this issue in future
works by replacing meta-heuristics with a plug-and-play
learning-based approach, e.g. Nazari et al. (2018). Overall,
these results validate our hypothesis that a different pipeline
design (where the grouping problem is solved before the lay-
out problem) can significantly speed up the nesting process
and reduce the scrap produced.

Conclusion

In this work, we revisit the conventional nesting pipeline by
directly solving the grouping problem of parts before the
arrangement problem. To achieve this, we introduced and
formally defined two new concepts, namely GRG and GCI.
We proposed anRL-based framework to estimate theGCIs of
parts in an unsupervised way. The framework consists of two
GNNs trained in an actor-critic-like fashion, where the actor
estimates theGCIs and the critic judges their quality byfitting
the reward function of a nesting environment. The proposed
framework was tested on three dummy environments with
different non-linear reward functions. A comparison with
an open-source nesting software was conducted to show-
case the performance of the proposed grouping and nesting
pipeline. We demonstrate the effectiveness of the framework
by achieving a three-fold improvement in the waste material
on a test split with irregular shapes and a 30% improvement
in computation time. Similarly, the model achieves a 48%
reduction in time with a minimal sacrifice in waste mate-
rial on another test split with regular parts. In future works,
we plan on completing the pipeline by developing a smart
nesting algorithm for the layout problem.
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(a) DeepNestPort

(b) Model a trained with 500 parts

(c) Model a trained with 2000 parts

(d) Model b trained with 500 parts

(e) Model b trained with 2000 parts

Fig. 11 Nesting layouts for experiments in section “Comparison of GRG with open-source Nesting software” on Test Split 1 (regular shapes)
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(a) Model c trained with 500 parts

(b) Model c trained with 2000 parts

Fig. 12 Nesting layouts for experiments in section “Comparison of GRG with open-source Nesting software” on Test Split 1 (regular shapes)

Fig. 13 Nesting layouts for
experiments in section
“Comparison of GRG with
open-source Nesting software”
on Test Split 2 (irregular shapes)

(c) DeepNestPort (d) Model a trained with 500 parts

(e) Model a trained with 2000 parts (f) Model b trained with 500 parts

(g) Model b trained with 2000 parts (h) Model c trained with 500 parts

(i) Model c trained with 2000 parts

123



Journal of Intelligent Manufacturing (2024) 35:2811–2827 2827

References

Arenales,M.,Morabito,R.,&Yanasse,H. (1999). Special issue:Cutting
and packing problems. Pesquisa Operacional, 19, 107–299.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike
adaptive elements that can solve difficult learning control prob-
lems. IEEE Transactions on Systems, Man, and Cybernetics, 5,
834–846.

Cagan, J., Shimada, K., & Yin, S. (2002). A survey of computational
approaches to three-dimensional layout problems. Computer-
Aided Design, 34, 597–611.

Dyckhoff,H. (1990).A typologyof cutting andpackingproblems.Euro-
pean Journal of Operational Research, 44, 145–159.

Faina, L. (2020). A survey on the cutting and packing problems. Bol-
lettino dell’Unione Matematica Italiana, 13, 567–572.

Furini, F., &Malaguti, E. (2013). Models for the two-dimensional two-
stage cutting stock problem with multiple stock size. Computers
& Operations Research, 40, 1953–1962.

Grondman, I., Busoniu, L., Lopes, G. A. D., & Babuska, R. (2012).
A survey of actor-critic reinforcement learning: Standard and nat-
ural policy gradients. IEEE Transactions on Systems, Man, and
Cybernetics, 42, 1291–1307.

Guo, B., Hu, J.,Wu, F., & Peng, Q. (2020). Automatic layout of 2D free-
form shapes based on geometric similarity feature searching and
fuzzy matching. Journal of Manufacturing Systems, 56, 37–49.

Kim, J., Kim, T., Kim, S., & Yoo, C. D. (2019). Edge-labeling graph
neural network for few-shot learning. In: Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR),
(pp. 11–20).

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with
graph convolutional networks. In:Proceedings of the international
conference on learning representations (ICLR).

Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle
routing problem and its variants. Intelligent Information Manage-
ment, 4, 66–74.

Kundu, O., Dutta, S., & Kumar, S. (2019). Deep-pack: A vision-based
2Donline bin packing algorithmwith deep reinforcement learning.
In: Proceedings of the IEEE international conference on robot and
human interactive communication (RO-MAN), pp. 1–7.

Labib, R., & Assadi, R. (2007). Modified multi-layered perceptron
applied to packing and covering problems. Neural Computing and
Applications, 16, 173–186.

Liu, J., Ong, G. P., & Chen, X. (2022). Graphsage-based traffic speed
forecasting for segment network with sparse data. IEEE Transac-
tions on Intelligent Transportation Systems, 23, 1755–1766.

Michalek, J., Choudhary, R., & Papalambros, P. (2002). Architectural
layout design optimization. Engineering Optimization, 34, 461–
484.

Nazari, M., Oroojlooy, A., Snyder, L., & Takac M. (2018). Reinforce-
ment learning for solving the vehicle routing problem. Advances
in Neural Information Processing Systems

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learn-
ing of social representations. In:Proceedings of the ACMSIGKDD
international conference on knowledge discovery and data mining
(KDD), (pp. 701–710).

Perron, L., & Furnon, V. Or-tools. Google. https://developers.google.
com/optimization/

Rakotonirainy, R.G.,& vanVuuren, J. H. (2020). Improvedmetaheuris-
tics for the two-dimensional strip packing problem. Applied Soft
Computing, 92, 106268.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper
with convolutions. In:Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), (pp. 1–9)

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved
typology of cutting and packing problems. European Journal of
Operational Research, 183, 1109–1130.

Widrow,B., Gupta, N.K.,&Maitra, S. (1973). Punish/reward: Learning
with a critic in adaptive threshold systems. IEEE Transactions on
Systems, Man, and Cybernetics, 5, 455–465.

Yang, Y., Liu, B., Li, H., Li, X., Wang, G., & Li, S. (2022). A nesting
optimization method based on digital contour similarity matching
for additive manufacturing. Journal of Intelligent Manufacturing,
34, 1–23.

Zhang, D., Shi, L., Leung, S. C. H., &Wu, T. (2016). A priority heuristic
for the guillotine rectangular packing problem. Information Pro-
cessing Letters, 116, 15–21.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://developers.google.com/optimization/
https://developers.google.com/optimization/

	Smart nesting: estimating geometrical compatibility in the nesting problem using graph neural networks
	Abstract
	Introduction
	Related works
	Contour similarity
	Graph neural networks (GNNs)
	CVRP
	Actor-critic reinforcement learning

	Problem formulation
	Motivation to the proposed approach
	Mapping from parts to GCIs
	Mapping from GCIs to groups
	Learning paradigm

	Definitions: GRG and GCI
	Methodology
	Overview of the proposed approach
	Input encoding
	Actor-critic-like architecture
	Critic-like module
	Actor-like module
	Actor-critic-like vs. actor-critic

	Learning routine
	Initialization of the environment
	Initialization of a replay buffer
	Data collection
	Update step
	Extension to large GRGs


	Experiments and results
	Nesting environment
	Dataset
	CVRP solver
	Effect of different reward functions on the model generalization
	Comparison of GRG with open-source nesting software
	Baseline and models
	Metrics


	Results and discussion
	Limitations
	Conclusion
	Appendix: Qualitative results
	References




