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Abstract

Floods portray a severe problem in the riverine areas of West Africa while more frequent
and intense heavy precipitation events are projected under climatic change scenarios.
Already, floods cause manifold impacts, leaving the population to cope with the finan-
cial impacts of floods through their own means. As formal risk transfer mechanisms (e.g.,
insurance) are not yet widely available to the population, efforts to increase their acces-
sibility are being intensified. However, studies assessing flood insurance demand currently
mostly focus on regions with more established markets. Also, they are majorly applying
conventional statistical modeling approaches that consider only a small number of param-
eters. Contrarily, this study aims to provide an approach for assessing flood insurance
in a context of low previous exposure to such products, to allow for a better considera-
tion of the research context. Therefore, a parameter selection framework is provided and
machine learning and deep learning models are applied to selected parameters from an
existing household survey data set. In addition, the deep learning sequential neural net-
works outperformed all machine learning models achieving an accuracy between 93.5—
100% depending on the loss function and optimizer used. The risk to be covered, insurance
perception, no access to any source, access to support from community solidarity funds,
access to governmental support, or drawing upon own resources for financial coping, finan-
cial recovery time, lack of means and prioritizing more essential needs emerged as impor-
tant model parameters in researching insurance demand. Future roll-out campaigns could
consider the parameters pointed out by this study.

Keywords Floods - Machine learning - Deep learning - Willingness to insure - Togo -
Benin

Introduction

Over the past decades, there have been observations of an increasing trend of hydrological

extremes (i.e. maximum peak discharge) in West Africa, leading to an increase of disas-
trous flood events in areas located in proximity to large rivers (Ranasinghe et al. 2021).

Extended author information available on the last page of the article
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Moreover, while overall precipitation is projected to decrease in West Africa, heavy pre-
cipitation events are expected to occur more frequently and intensively according to sce-
narios considering medium to high emission levels, which leads to accumulated hydro-
climatic stress through drought and flood events in the region (Trisos et al. 2022; Giorgi
et al. 2019). Already, floods cause a wide variety of impacts in West Africa, such as dam-
aged buildings, disruption of livelihoods, damaged goods, fatalities, displacement, sick-
ness and spreading of diseases, damaged infrastructure and crop damage (Wagner et al.
2021; Afriyie et al. 2018; Brisibe and Pepple 2018; Addo and Danso 2017; Ahadzie et al.
2016; Enete et al. 2016; Adewole et al. 2015; Adelekan and Fregene 2015; Codjoe et al.
2014). With regards to the financial implications of flood impacts in the Lower Mono River
Basin (LMRB) in particular, it was found that floods regularly affect households financially
through agricultural (lost investments through loss and destruction of crops and planta-
tions, loss of livestock), material (repair and replacement cost for damage or destruction of
residential houses and personal material belongings), health (sickness and subsequent pay-
ment for medical care), and commercial/trade impacts (lost income from damaged stored
products for sale, lack of market access, and affected marketplaces) (Wagner et al. 2022).
While mutual support among affected households, especially in the phases of response and
reconstruction (especially hosting flood victims and helping neighbors to rebuild) (Lamond
et al. 2019; Amoako et al. 2019; Ahadzie et al. 2016; Codjoe and Issah 2016; Adelekan and
Asiyanbi 2016), seems to be very prevalent in the West African region, there appears to be
a lack of risk transfer instruments that are designed to address the financial consequences
of floods (Wagner et al. 2021). Thus, people in the region frequently resort to informal
mechanisms that are not originally designated for alleviating the diverse financial implica-
tions of flood impacts, which sets households back in their financial achievements (Wagner
et al. 2022; Boubacar et al. 2017; Addo and Danso 2017).

Moreover, the frequency and severity of flood impact levels in the LMRB require more
concerted risk reduction activities before establishing risk transfer mechanisms, such as
insurance, that enable spreading the risk of financial losses across a larger pool of benefi-
ciaries (Wagner et al. 2022). Also, whether insurance is an appropriate risk management
tool in developing economies or not remains a contested issue (Pill 2022; Mechler and
Deubelli 2021; Dehm 2020; Linnerooth-Bayer et al. 2019; Schifer et al. 2019; Gewirtzman
et al. 2018). While there are increased efforts to raise insurance penetration and insurance
coverage against climate-related extreme events in developing economies (InsuResilience
Global Partnership 2021), insurance protection against flood impacts remains difficult to
be established, even globally (Léger 2022; Flood Resilience Initiative 2020; Lloyd’s 2018).
In addition, much of the research on the uptake of or willingness to pay for flood insurance
focusses on the Asian, North American and European region, in which the establishment
of flood insurance in the market and familiarity with such products are very different from
the West African region. Aside from a few studies (Berg et al. 2022; Oduniyi et al. 2020;
Navrud and Vondolia 2020; Adzawla et al. 2019), this topic has not been widely researched
in the African context. Also, insurance penetration on the African continent in general
is only half of the global average while also the average premiums per person are eleven
times lower (Bagus et al. 2020). Thus, to better inform future roll-out campaigns of flood
insurance products it is important to research the parameters that are associated with insur-
ance take-up in settings where a large number of people at risk have not yet been insurance
customers, such as the LMRB.

Most studies researching the willingness to insure (WTI) against floods/willingness to
pay (WTP) rely on parameter selection directly based on literature and subsequently apply
regression methods (Netusil et al. 2021; Robinson and Botzen 2019; Reynaud et al. 2018;
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Fahad and Jing 2018; Turner et al. 2014; Botzen et al. 2013, Botzen and van den Bergh
2012), that usually only consider a low number of parameters. Contrarily, it presents a
challenge to derive such parameters from a considerable body of studies for the West Afri-
can region, due to the limited number of available publications from this area. Thus, estab-
lished frameworks or reasons for parameter inclusion from other contexts might not be the
best fitting for this research context. To address this gap, this study investigates the follow-
ing central research question: Which parameters influence the decision-making process of
households to take up a potential insurance product against flood damages in a setting with
low previous exposure to such products, such as the LMRB?

Constrained by the limited literature base for the West African region, this study ini-
tially reviews literature on WTI against floods/WTP for flood insurance on a global scale.
Based on this body of literature, a framework is developed that summarizes six thematic
areas of parameters (subjective perception of flood risk, objective flood risk, interactions
with insurance institutions, Interaction with other institutions & social environment, attrib-
utes of HH/individuals, assets to be potentially insured) to guide which factors are influen-
tial on the demand for insurance in the research setting. To structure the parameter selec-
tion, feature columns for the entire data set were initially assessed for the entire data set.
Then, the remaining parameters were categorized into the six thematic areas of the frame-
work. Moreover, the grouped parameters were assessed through pairplots and a heatmap
correlation matrix. As a final step of verification, crosstabs were used for assessing the cor-
relation between the parameters and the output value. This data-driven parameter selection
approach is deemed suitable for this study due to researching a context in which people
at risk have not been widely exposed to insurance products. Subsequently, on the basis of
the selected parameters, machine learning and deep learning models are trained that serve
in explaining the observed demand for a potential flood insurance product in the research
area.

Background
Insurance and Risk Transfer for Floods in Togo and Benin

Currently, insurance products against the impacts of floods are not widely offered on
a household level in Togo and Benin. The insurance industry is mostly centered around
motorcycle/car insurance and less on natural hazards (Meton 2019). In addition, there are
efforts in Benin to establish health insurance in pilot communities free of charge for its
beneficiaries in the first three years (Government of the Republic of Benin 2021). With
regards to floods, calls for a feasibility assessment of a flood insurance system through a
national insurance fund are even dating back to at least 2011, as stated in a post-disaster
needs assessment of the 2010 floods (Government of the Republic of Benin 2011). Also,
the Togolese government expressed a strong interest in feasibility studies of an agricul-
tural insurance system within its National Adaptation Plan (Government of the Republic
of Togo 2017). In addition, in 2018 Togo was chosen by the pan-African risk pool mecha-
nism African Risk Capacity (ARC) to serve as a pilot country for the implementation of a
flood insurance scheme (Akoda 2018). However, no information on its current status could
be found, and the most recent available report for the Togolese Republic only contains
information for the event of drought (African Risk Capacity 2021b), similarly for Benin
(African Risk Capacity 2021a). Moreover, the Beninese government also stated a practical
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absence of an insurance system for climate-related impacts, such as floods, droughts, wind
storms, or heat waves, despite their potentially high impact on the country’s gross domestic
product (Government of the Republic of Benin 2020). Regarding the LMRB in particular,
a recent study points out a strong need for risk-reducing flood adaptation measures and
that a conventional, market-based flood insurance approach could be impractical due to the
high severity and frequency levels of reported flood impacts from a household perspective
(Wagner et al. 2022). As a consequence, this study aims to show relevant insights into the
potential flood insurance market, for the case that risk-reducing flood adaptation measures
are successfully implemented in the LMRB. Moreover, the research provides insight for
insurers to see if they could help to opening a market for themselves by contributing to
investing into flood adaptation measures in the area. Finally, this research could benefit
the previously mentioned endeavors of establishing flood insurance that are already taking
place and support their potential rollout campaigns.

Studies Researching the Demand for Flood Insurance

Various studies on the demand for insurance and their influential factors have been pub-
lished in the past years under the fields of willingness to pay (WTP) or willingness to
insure (WTI). Whereas the former stride is mainly focusing on calculating a premium
that potential insurance clients are willing to pay, the latter usually researches the general
interest level among targeted groups. The latter aspect also portrays the main focus of this
study. However, only a small number has researched the influential factors on demand
for flood insurance in the African context (Berg et al. 2022; Oduniyi et al. 2020; Navrud
and Vondolia 2020; Adzawla et al. 2019). The major share of studies from that stride of
research focused on the Asian (Hossain et al. 2022, Senapati 2020a, b, Liu et al. 2019,
Dewi et al. 2018, Reynaud et al. 2018, Sidi et al. 2018, Fahad and Jing 2018, Arshad et al.
2016, Ren and Wang 2016, Abbas et al. 2015, Aliagha et al. 2015, Aliagha et al. 2014,
Turner et al. 2014, Hung 2009), North American (Darlington and Yiannakoulias 2022;
Huang and Lubell 2022; Netusil et al. 2021; Thistlethwaite et al. 2020; Atreya et al. 2015;
Oulahen 2015; Kousky 2011; Browne and Hoyt 2000) or European contexts (Osberghaus
and Reif 2021; Robinson and Botzen 2020, 2019; Botzen et al. 2013; Seifert et al. 2013,
Botzen and van den Bergh 2012) — areas in which flood insurance systems and insurance
in general are more widely established. In studies from this stride of research, the influen-
tial factors mentioned have often been grouped into different categories to provide better
orientation for researchers in the selection of relevant parameters (summarized in Table 1).
For example, Seifert et al. (2013) state the influence of perceptions of flood risks (subjec-
tive views), experiences with flood impacts (objective views) as well as factors relating to
interactions with disaster assistance from institutions (humanitarian/public compensation).
Similarly, Netusil et al. (2021) also point out the importance of factors expressing subjec-
tive and objective views on flood risk, while adding the characteristics of residential houses
(assets) and demographic characteristics of the respondents (attributes of HH/individual).
Aliagha et al. (2014) as well raise the influence of objective and subjective views on flood
risk and socio-economic/demographic factors. To achieve its objective, this study compiles
further influential factors from further WTP/WTI studies from a global scope/various geo-
graphical contexts and grouped them as well into distinct categories while drawing upon
and complementing the suggested categories from the previously mentioned studies. In
that way, a framework to support the selection of influential factors was created for this
study (Fig. 1).
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Insurance demand

‘ Factors related to ‘

M v N

N N
e B e

Interaction Interaction Attributes
with with other (of Potential
insurance institutions household assets to
institutions & social or be insured
environment individual)

“Subjective” “Objective”
perception Flood Risk

of flood risk

Fig.1 Factors mentioned in literature about influential factors of insurance demand; own figure, grouping
of thematic areas based on (Netusil et al. 2021; Aliagha et al. 2014; Seifert et al. 2013)

In the studies reviewed, generally there are two major strides of influential factors that
can be identified with regards to flood risk. On the one hand, there are studies that empha-
size the importance of flood risk-related parameters from a “subjective” perspective, such
as flood risk perception (Hossain et al. 2022, Reynaud et al. 2018, Oulahen 2015, Seifert
et al. 2013, Botzen and van den Bergh 2012, Hung 2009), (recently) experienced flood
events and impacts (Osberghaus and Reif 2021; Senapati 2020a; Liu et al. 2019; Adzawla
et al. 2019; Fahad and Jing 2018; Ren and Wang 2016; Atreya et al. 2015; Aliagha et al.
2014; Turner et al. 2014; Hung 2009; Browne and Hoyt 2000), perception on climate
change (Adzawla et al. 2019; Oulahen 2015, Botzen and van den Bergh 2012), aware-
ness (Senapati 2020b), anticipated worry and regret about uninsured losses (Robinson
and Botzen 2020, 2019), and the observation of other’s losses (Turner et al. 2014). On the
other hand, there are studies that point out the significance of flood risk-related parameters
from an “objective” perspective, such as the externally defined level of flood risk (Huang
and Lubell 2022; Netusil et al. 2021; Kousky 2011), proximity to rivers (Sidi et al. 2018,
Botzen and van den Bergh 2012, Kousky 2011), living in a low lying area (Botzen and
van den Bergh 2012), house elevation (Aliagha et al. 2015), experienced flood impacts
(Hossain et al. 2022, Osberghaus and Reif 2021, Paopid et al. 2020, Senapati 2020a, Liu
et al. 2019, Fahad and Jing 2018, Reynaud et al. 2018, Arshad et al. 2016, Oulahen 2015,
Atreya et al. 2015, Turner et al. 2014, Seifert et al. 2013, Hung 2009, Browne and Hoyt
2000), flood depth and duration (Paopid et al. 2020, Aliagha et al. 2015), presence of other
risk-reduction measures/levee protection (Hossain et al. 2022; Thistlethwaite et al. 2020;
Kousky 2011).

Also, there is a body of literature that presents the significance of parameters that relate
to experiences that people at risk have made with institutions/actors that are potentially
involved in post-disaster compensation (such as insurance companies, NGOs, governmen-
tal agencies or family/friends). Relevant factors that relate to experiences made with insur-
ance in particular include the price of insurance (Navrud and Vondolia 2020; Reynaud
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et al. 2018; Browne and Hoyt 2000), multi-year insurance policies/billing frequency (Rey-
naud et al. 2018; Botzen et al. 2013), the amount offered in the insurance contract (Sena-
pati 2020a; Reynaud et al. 2018), trust in insurers (Sidi et al. 2018; Reynaud et al. 2018;
Aliagha et al. 2014), types of risk covered (Reynaud et al. 2018), previous insurance pur-
chase (Senapati 2020a), insurance provider (Reynaud et al. 2018), perception of effective-
ness of insurance (Abbas et al. 2015), and awareness of insurance (understanding) (Odun-
iyi et al. 2020; Senapati 2020b). Also, there are parameters that relate to the “wider” social
environment and its role in flood risk management such as the perceived responsibility for
preventing damage (Oulahen 2015), humanitarian/public compensation (Seifert et al. 2013,
Botzen and van den Bergh 2012), flood risk communication (Botzen et al. 2013), flood
prediction (warning) (Sidi et al. 2018), access to information and extension services (Hos-
sain et al. 2022; Adzawla et al. 2019), membership in farmer’s groups (Hossain et al. 2022;
Adzawla et al. 2019), perception towards government effort in handling flood (Sidi et al.
2018), risk sharing between agents (Berg et al. 2022), and social influence (Lo 2013).

In addition, there are various studies that emphasize the influence of attributes of house-
holds/individuals as well as potential assets to be insured. Examples of the former include
income (Dewi et al. 2018, Sidi et al. 2018; Arshad et al. 2016; Ren and Wang 2016; Alia-
gha et al. 2015, 2014; Abbas et al. 2015; Kousky 2011; Hung 2009; Browne and Hoyt
2000), education (Oduniyi et al. 2020; Adzawla et al. 2019; Sidi et al. 2018; Atreya et al.
2015), age (Oduniyi et al. 2020; Atreya et al. 2015; Abbas et al. 2015), ethnicity (Atreya
et al. 2015), attitudes towards risk taking (e.g., risk averse) (Hossain et al. 2022; Rey-
naud et al. 2018, Botzen and van den Bergh 2012), internal locus of control (Robinson
and Botzen 2020), ability to pay (Fahad and Jing 2018; Arshad et al. 2016), alternative
income sources (non-agricultural) (Hossain et al. 2022; Adzawla et al. 2019; Abbas et al.
2015), preference uncertainty (Hung 2009), conservatism (Hung 2009), farmer’s experi-
ence (Oduniyi et al. 2020), marital status (Oduniyi et al. 2020), HH dependents (Oduniyi
et al. 2020), remittances (Adzawla et al. 2019), and having the location of the house in an
affluent area (Adzawla et al. 2019). Studies that mention the latter are pointing out house
price/dwelling value (Darlington and Yiannakoulias 2022, Paopid et al. 2020, Kousky
2011), amount of land owned (Kousky 2011), land status (ownership) (Dewi et al. 2018,
Abbas et al. 2015), farm typology (Fahad and Jing 2018; Arshad et al. 2016), cultivated
land size (Senapati 2020a), farm size (Dewi et al. 2018), seed prices (Senapati 2020a), fer-
tilizer prices (Senapati 2020a), expenditure of farmer (Dewi et al. 2018), house conditions
(Hung 2009), and commercial production (Adzawla et al. 2019).

Most studies researching the willingness to insure (WTI) against floods/willingness
to pay (WTP) rely on parameter selection directly based on literature and subsequently
apply regression methods, such as least-squares-, logit-, linear-, and Tobit-models
(Netusil et al. 2021; Robinson and Botzen 2019; Reynaud et al. 2018; Fahad and Jing
2018; Turner et al. 2014; Botzen et al. 2013, Botzen and van den Bergh 2012). None-
theless, the application of those methods will not allow for analyzing a larger amount
of parameters, and mean using a simplistic model, implying the use of several hypoth-
eses and with high uncertainties. Regarding the lack of studies and lack of widespread
previous exposure to such products in the West African context, a synthesis of factors
based on studies from various regions will assist in the selection of parameters that
could prove to be influential in assessing a household’s interest level in a potential
insurance product. To structure the parameter selection, feature columns for the entire
data set were initially assessed for the entire data set. Then, the remaining parame-
ters were categorized into the six thematic areas of the framework (Fig. 1). Moreo-
ver, the grouped parameters were assessed through pairplots and a heatmap correlation
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matrix. As a final step of verification, crosstabs were used for assessing the correlation
between the parameters and the output value. As a subsequent step, machine learn-
ing and a deep learning models on neural networks were trained on the basis of the
selected parameters that serves in predicting the demand for a potential flood insurance
product in the LMRB.

The aim of this research is to deliver a basis in case decision makers decide to
launch a roll out concept of a flood insurance product in this area where insurance
penetration is still very low. Moreover, this study also aims to generate an approach
that is applicable to research the demand for insurance in other contexts and regions.
The approach can serve as a framework for follow-up studies assessing the willing-
ness to insure in contexts that have not yet been exposed much to insurance before and

beyond Therefore this study assesses the questlon of whj_c_h_p_aj;am_e_t_e_ts_mﬂu_en_c_e_th_e

Methods: Data Collection and Analysis
Data Collection: Household Survey

The data collection process for this study comprised of a household survey carried out
in 2021 in the period of March—April. Data was collected by approaching the LMRB
based on selected villages located in a low, medium or high flood risk zone. Those
flood risk zones were distinguished by criteria of their distance to the river as well as
elevation levels. Out of those flood risk zones, 24 villages were selected based on lev-
els of flood-affectedness mentioned in media or situational assessment reports (Fig. 2).

The selection of households within the selected villages took place by drawing a
censored proportional sample (11.2%) from each village. The interviewers selected the
households randomly by starting out from a centrally located and easily identifiable
point in the village and then select houses along a randomly selected walking direc-
tion at a randomly selected interval (Levy and Lemeshow 2008). The interviewers then
repeated the process, as soon as they arrived at the end of the village. The data collec-
tion took place in the scope of the joint research project CLIMAFRI in which several
project partners surveyed households. The questionnaire yielded a data set containing
more than 400 parameters from 744 households with data, among others, on house-
hold characteristics and assets, experiences with floods, flood risk perception, flood
impacts, financial coping mechanisms, experience with and perception of insurance,
willingness to buy of a potential product. A summary of the basic household char-
actersistics is provided in Table 2. This data set provided a highly suitable basis to
carry out the data-driven analysis approach of this study, applying machine and deep
learning methods that consider a wider range of parameters than conventional statisti-
cal modeling approaches. Moreover, the research area proved to be highly suitable to
research the demand for insurance in a setting with low previous exposure to insurance
products. Only 2.3% among the interviewed population had any form of insurance at
the time of data collection and 1.1% had insurance previously yet terminated it before
the data collection.
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Research area
Selected villages
® High risk
Medium risk
® Low risk
[ Lower Mono River Basin
[ Nagbeto reservoir
— Tributaries
= Mono River
[ Benin
[ Togo

ata sources: DIVA-GIS (2019), GAD
rojection: ESPG: 4326 - WGS 84

T =TT

(2019), MEDDPN (2019)

Fig.2 Location of research area and selected villages

Data Analysis

The aim of this study is to predict the level of interest of an interviewee being
inclined to purchase a potential flood insurance product. As illustrated in Fig. 3, the
target classes of the generated models are divided into five different responses (very
likely, likely, indifferent, unlikely, very unlikely). The respondents of the question-
naire expressed a higher level of interest within the Togolese subset as compared to the
Beninese subset.

Usually, WTP/WTI studies look at the amount of money that respondents would
be willing to spend on/the general level of interest in buying one specific insurance
type. This study differs slightly by asking for the level of interest in flood insurance,
while leaving it up to the respondent to choose one of four different forms of coverage
(agricultural, material, health, and commercial impacts from floods) in a hypothetical
policy. Due the current absence and hypothetical nature of flood risk-related insurance
products in the research area this study refrained from researching a monetary value
in order to better avoid generating false expectations among the interviewees. In that
sense this study is aiming at solve a classification and not a regression problem. In
addition, this study aims at providing helpful information for shaping a potential flood
risk insurance product for the LMRB in case it will be pursued at some point. All
analyses were performed in Python.
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300 285

250
200

150 111

96
100 %
50
50 34 33

11 17 17
. | ] ] —

Very likely Likely Indifferent Unlikely Very unlikely

mTogo (n=496) Benin (n=248)

Fig. 3 Distribution of responses within outcome variable (likelihood of purchase of a potential flood insur-
ance product)

Data Preparation and Variable Selection

Initially, data had to be separated into categorical and numerical parameters while clean-
ing the data and removing NaN (Not a Number) values. The latter was necessary since
the presence of NaN values will stop the calculation of fitting the model if not removed,
but will also generate NaN values after calculation. For the creation of the model, one-hot
encoding was used for the categorical parameters (transformation into binary 0—1 param-
eters) and standard scaling for the numerical data (discarding mean and scaling according
to variance of the unit) to be able to create a processor for the model.

The process of parameter selection is illustrated in Fig. 4. In order to begin the ini-
tial selection of relevant parameters, feature columns were assessed based on the p-value
and (Spearman) correlation value to uncover the relationships between parameters. This
steps allowed for a reduction of the initially more than 400 parameters to around 100. The
remaining parameters were then grouped by topic into the six areas of the framework pre-
sented in Fig. 1. Then, pair plots (showcasing pairwise bivariate distributions) and a (Pear-
son) correlation heat map were generated to further facilitate the selection of influential
parameters. Based on the heat map correlation matrix, it was decided to use the parameters
with low correlation values while disregarding the others, as the high correlation param-
eters can be connected and related in two ways: if the values of correlation are higher
than+ 0.5, then these parameters are directly correlated and if less than -0.5 then they are
inversely correlated, which means if one parameter tends to increase, then the connected
one decrease for negative values while it increases for positive values. For additional veri-
fication, cross-tabulations that illustrate the correlations between the parameters and the
output parameter were used before further steps were conducted in the analysis. Moreover,
it allowed for deciding which parameters to retain or drop.

Comparison of Machine Learning Models
Machine learning models were tested by using the Scikit-learn sklearn package. For all
models, the data was split into training (67%) and test data (33%). The first model was

the multinomial logistic regression model, and is considered a supervised learning tech-
nique. This technique serves to predict if an object belongs to a certain class by providing
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Assessment of feature columns for the parameters of
the entire survey data set (based on p-value &
Spearman correlation)

Categorization of remaining parameters into the six
thematic areas of the framework

Assessment of grouped parameters through pairplots
(pairwise bivariate distributions) and a heatmap
correlation matrix (Pearson correlation value)

Second step of verification through crosstabs that
assessed the correlations between the parameters and
the output variable

Final set of 38 parameters (incl. one output parameter)

Fig.4 Selection process of the final set of model parameters

a probability on a range between 0 and 1 (James et al. 2021). Furthermore, the Histogram-
based Gradient Boosting classifier model was applied, which considers gradient values
obtained by prior update steps from moving into the steepest direction of descent (Feng
et al. 2018). Also hyperparameter tuning and gridsearch were applied to this classifier,
which however did not lead to a satisfactory improvement of the model accuracy. Finally,
additional machine learning tests were applied by using decision trees, a method drawing
upon the Gini-Index (James et al. 2021). In addition, bagging was applied to the decision
trees to lower the variance in the prediction function, as well a random forest model, draw-
ing upon an assembly of various decision trees (Hastie et al. 2009).

Deep Learning Model (Sequential Neural Network)

In order to attempt achieving better results than the ones obtained from more conven-
tional machine learning approaches (see 3.2.2), this study added a deep learning (DL)
model (sequential neural network model) to the analysis using both the TensorFlow and
Keras packages. Sequential models are part of artificial neural networks, which usu-
ally consist of several layers (input layer, hidden layers, and output layer) that each are
equipped with several nodes/neurons, containing activation functions, that are con-
nected through weighted connections between the layers (Jung 2022; James et al. 2021).
In general, a sequential model processes the inputted data in a one-directional, linear
sequence from the input layer, passing through the hidden layers, and arriving at the out-
put layer (Chollet 2021). Usually, DL approaches are chosen in cases where extremely
large data sets are processed and when the possibility to interpret the model does not
play and important role (James et al. 2021). Still, this study applied this approach to
clarify if a DL model would improve the accuracy of prediction. With regards to the
large amount of categorical data, that were encoded, it also helped to consider a larger
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amount of available data. To analyze numerical and categorical features in a combined
manner in this DL model, feature columns were defined by using a Dense Features layer
and using it as an input into the Keras model. The sequential model built for this study
uses the Relu (Rectified Linear Unit) activation function for the input layer, not allow-
ing activation of the neuron if input values are below 0 (James et al. 2021), and a Soft-
max function for the output layer, which is best suited if a categorical output is desired
(Klimo et al. 2021). Each neuron of the input layer receives a variable of the dataset and
passes that information to another neuron, which leads to a higher number of neurons
with a higher number of variables. This model contains 256 neurons. Besides, the Soft-
max layer must have the same number of nodes as the output layer, which is five in the
case of this model (Fig. 5). The activation layer is actually the nonlinear function and
it transforms the values of the first hidden layer into weighted sums to the next layer. In
addition, the Adam as optimizer with a cross entropy and 200 epochs was applied for
fitting the model. To compare this model, a second DL model was generated contain-
ing 50 neurons, the he_uniform function as kernel initializer, drawing samples from a
truncated normal distribution centred on 0 and the stochastic gradient descent (SGD)
optimizer.

Sequential models bear the disadvantage that they only allow to provide input into
the model only once at the beginning, in contrast to functional models in which lay-
ers can be connected to one another in a multi-directional way, allowing for feed-back
loops (Chollet 2021). Yet, sequential models still better allow for a consideration of
a large number of input parameters in comparison to a conventional regression model
approaches, as currently widely used in the field of WTP/WTI. In addition, in compari-
son to conventional ML approaches a neural network can learn from the data in a better
and more complex way and even work with unstructured data (Janiesch et al. 2021)
and thus better reflect the research context. This consideration was of high importance
to this research project to not directly infer findings and assumptions from studies in
regions with more established insurance markets. Instead this study wants to consider a
wider range of parameters to better represent the interest levels of a population that has
not been widely exposed to the usage of such products before.

hidden

\\ very likely
N A

I SIS likely
N7 N7
IR

ESDRIN . SSTAN indifferent
N AR

CAPERN (MR

Z SO unlikely

very unlikely

Softmax
Fig.5 Application of Softmax on the DL model output layer
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Results

Selected Relevant Parameters According to Pairplots, Correlation Matrix and Cross
Tabs

For parameter selection, feature columns for the entire data set were initially assessed for
the entire data set. Then, the remaining parameters were categorized into the six thematic
areas of the framework (Fig. 1). Moreover, the grouped parameters were assessed through
pairplots and a heatmap correlation matrix. As a final step of verification, crosstabs were
used for assessing the correlation between the parameters and the output value. The rel-
evant parameters reflected all six thematic areas of the presented framework on influential
factors on insurance demand. As visualized in Table 1, parameters on potential assets to be
covered were only sparsely represented in this data set, which can be seen as the reason for
them only appearing once in the final selected set of parameters.

Finally, 38 parameters (including one output parameter) make up the final set of selected
parameters (Table 3). The selected parameters of the model covered the following catego-
ries of parameters from the framework: Perception on climate change; Flood risk percep-
tion; Experienced flood impacts; (Externally defined) level of flood risk; Awareness of
insurance (understanding); Trust in insurers; Perception of effectiveness of insurance; Pre-
vious insurance purchase; Insurance provider; Types of risk covered; Perceived responsi-
bility for preventing damage; Humanitarian/public compensation; Membership in farmer’s
groups; Risk sharing between agents; Income; Marital status; Ability to pay; Preference
uncertainty; Land status (ownership).

Model Accuracies

All models were applied to three separate data sets each, namely one overall data set con-
taining submissions from both Togo and Benin (n=744) as well as two subsets from Togo
(n=496) and Benin (n=248) exclusively. Initially, six machine learning models were run
on the data sets and compared by their model accuracy. The applied model types for the
classification are logistic regression, a histogram-based gradient boosting classifier, an
optimized histogram-based gradient boosting classifier, decision trees, a bagging trees clas-
sifier, and a random forest classifier. Moreover, a sequential neural network was applied to
the data sets to compare if a DL. model would yield higher accuracies than the conventional
ML models.

As illustrated in Table 4, almost all models (except for the optimized histogram-based
gradient boosting classifier) returned the highest accuracies for the Togo subset. The logis-
tic regression classifier returned an accuracy of 54.0% (stdv=0.029) for the combined data
set, 48.0% (stdv=0.0042) for the Benin subset, and 61.7% (stdv =0.049) for the Togo sub-
set. Overall, this classifier therefore ranked among the ones with the weakest performances
of the conventional ML models. The histogram-based gradient boosting classifier achieved
64.0% (stdv=0.00) for the combined data set, 55.5% (stdv=0.00) for the Benin subset,
and 65.3% (stdv=0.00) for the Togo subset. Thus, it ranked among the better perform-
ing conventional ML models, especially for the combined data set and the Benin subset.
The model was even improved further through hyperparameter tuning and applying grid
search. The model then achieved 67.0% (stdv=0.00) accuracy for the combined data set,
58% percent (stdv=0.00) for the Benin subset, which were the highest for all conventional
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ML models, and 69% (stdv=0.00) for the Togo subset. Moreover, a decision tree clas-
sifier was applied, which merely reached 43.7% (p=0.034) for the combined data set,
47.6% (stdv=0.051) for the Benin subset, and 53.4% (stdv =0.049) for the Togo subset. As
a consequence, this classifier achieved the lowest accuracies among all conventional ML
models. However, it was improved by applying bagging to then reach 61.2% (stdv=0.043)
for the combined data set, 55.2% (stdv=0.035), and even 70.4% (stdv=0.041) for the
Togo subset. Finally, as the last conventional ML model, a random forest classifier was
applied achieving 63.6% (stdv=0.035) for the combined data set, 58.5% (stdv=0.048) for
the Benin subset, and even 71.6% (stdv=0.051) for the Togo subset. These results clearly
show that the datasets of Togo rendered the highest accuracies. The latter is due to the fact
that there is higher correlation in the answers provided by respondents in Togo.

Since the accuracies of the conventional ML models did not yield higher accuracies
(over 75-80%), two sequential neural networks from the realm of DL were applied as a
comparison. The first sequential neural network model returned 100.0% of accuracy for the
combined data set, as well as for the Benin and Togo subsets. As a consequence, it yielded
the best performance by far in comparison to the applied conventional ML models. This
finding emerged somewhat surprising, since deep learning is rather recommended for data
sets that are much larger than the survey data set. The second model however exhibited a
slightly lower accuracy with 93.5% for the combined data set, 97.6% for the Benin subset
and 95.12% for the Togo subset. A more detailed overview on the loss, precision, F1 score
and recall are provided in Annex 1 as well as a confusion matrix in Annex 2 in the supple-
mentary information to this article.

Contribution of Parameters to Predicting Likelihoods of Insurance Purchase
in the Deep Learning Model

For the sequential neural network model an overview of the most important parameters
based on the feature importance value was generated (Fig. 6). The feature importance value
expresses the level of influence of a parameter on the output variable of the model (likeli-
hood of insurance purchase). When identifying the most important features, a subset of
relevant features can be selected for use in building a model. Therefore, the dimensionality
is reduced as well as noise in the data. Moreover, the model interpretability is improved in
that way. The selection of feature importance furthermore assists in reducing the number
of parameters, therefore reducing the data and decreasing the time needed to obtain the
results. The feature importance values were generated for the combined data set of both
countries, as well as for the Togo and Benin subsets. In general, it can be observed that the
feature importance varies in parts to a large extent across the parameters for the individual
data sets.

With regards to the parameter categories outlined by the framework presented in the
study, interaction-related parameters were the most important category of parameters by
far. Important parameters related to the thematic area of interaction with insurance institu-
tions were the desired risk (agricultural, material, health, or commercial impacts) to be
covered in potential flood insurance product (Togo). Also, the degree to which insurance
was perceived as an instrument only suited for the needs of wealthy people (all) exhibited
a high feature importance. In addition, parameters relating the interaction with other insti-
tutions and the social environment emerged as the thematic area with the most numerous
important values. Feature importance was high when a household had no access to any
source mentioned in the questionnaire for financial coping in case of experiencing flood
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impacts (all, Togo). In addition, important parameters were if a household had access
to support from community solidarity funds in case of experiencing flood impacts (all),
a household drawing upon their own resources to cope financially in case of experienc-
ing flood impacts (all), and a household having access to governmental support in case of
experiencing flood impacts (all).

Moreover, three further parameters achieved a high feature importance. From the
parameter category of flood risk and thematic area of “objective” flood risk the financial
recovery time from commercial impacts (Benin) appeared as important. Finally, from the
parameter category attributes and the thematic area of attributes of HH/individuals impor-
tant parameters were if a household has not bought any insurance before due to lack of
means (all, Togo), and the fear that an insurance purchase will affect the ability to cover
more essential needs of the household (Togo).

Discussion

This study has enabled the consideration of a large number of parameters to research
the demand for a potential flood insurance product in an area with low previous insur-
ance exposure. To achieve this, it drew upon a data set considering manifold aspects on
the household level from the areas of household characteristics and assets, experiences
with floods, flood risk perception, flood impacts, financial coping mechanisms, experience
with and perception of insurance, willingness to buy of a potential product. The identi-
fied parameters identified as highly important for the most accurate model type (sequen-
tial neural network model) resonate with the results of other studies. The parameters if a
household has not bought any insurance before due to lack of means, and the fear that an
insurance purchase will affect more essential needs of the household to be covered relate to
the general aspect of the ability to pay, as also raised by Fahad and Jing (2018) and Arshad
et al. (2016). Moreover, the findings that it was important if a household had no access to
any source mentioned in the questionnaire, access to support from community solidarity
funds, or drawing upon their own resources to cope financially in case of experiencing
flood impacts, reflects the importance of risk-sharing between agents, as also pointed out
by Berg et al. (2022). The aspect of having access to governmental support, was previ-
ously mentioned as humanitarian/public compensation by Seifert et al. (2013) and Botzen
and van den Bergh (2012), the risk type covered by insurance by Reynaud et al. (2018),
and the perception of insurance as being suited for one’s needs was also raised in similar
manner as the perception of effectiveness of insurance by Abbas et al. (2015). Finally, the
parameter describing the financial recovery time from commercial flood impacts broadly
relates to the aspect of experienced flood impacts, which has been found to be influential
by a wide range of authors (Hossain et al. 2022, Osberghaus and Reif 2021, Paopid et al.
2020, Senapati 2020a, Liu et al. 2019, Fahad and Jing 2018, Reynaud et al. 2018, Arshad
et al. 2016, Oulahen 2015, Atreya et al. 2015, Turner et al. 2014, Seifert et al. 2013, Hung
2009, Browne and Hoyt 2000). While those parameters have already been pointed out pre-
viously in other research contexts, this study was able to achieve a summary of parameters
that could also be tested to be influential in further contexts with low previous exposure to
insurance products. Also, the results indicate that interaction-related parameters play a very
important role in this context.

In the field of researching the demand for flood insurance ML/DL models have not yet
been applied. Even research that addresses the demand for other types of insurance is only
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recently picking up the use of such models. As some of the previously published studies
Wanyan et al. (2022) researched the effect of air pollution on the decision to buy health
insurance coupled with a deep learning method (artificial neural networks). Also, Fuino
et al. (2022) used models that combine conventional statistical modeling with machine
learning approaches to assess customer profiles and highlight variables that are influential
to their level of interest for long-term care insurance. Finally, Nguyen et al. (2022) com-
pared several ML models for a case study in Vietnam and found that especially the cubist,
random forest, and support vector machines models were best suited to predict the WTP for
insurance for shrimp farming. Similarly, it could be of high relevance to further explore the
use of ML/DL models in predicting the WTP for flood insurance addressing a regression
problem to predict the monetary value of a potential product drawing upon the framework
of parameters suggested by this study. Especially in a context where people have mostly
not been insurance customers before, those methods enable researchers and practitioners to
better pay attention to the research context without transferring a too narrow set of assump-
tions from other geographical research settings. In that way, the method can rather learn
from the data and adjust the model to the context. Concerning Flood Risk Management in
the West African context, the need for a better involvement of the targeted communities in
decision-making and the design of risk-reducing measures, including insurance, has been
pointed out before (Parkoo et al. 2022; Wagner et al. 2021).

Regarding the globally increasing problem of climate change, a large portion of peo-
ple at risk in least-developed economies has no insurance coverage against weather-related
hazardous events (InsuResilience Global Partnership 2021). In order to scale up efforts of
making insurance coverage more suitable and accessible to such groups, shedding more
light on their preferences and demands will help to make more meaningful progress in
this area. Without such mechanisms, vulnerable communities are left too often to address
the losses and damages from climate-related events, such as floods by drawing upon their
own means (Amaechina et al. 2022; Wagner et al. 2022). On the one hand, it has to be
borne in mind that (market-based) risk transfer instruments such as insurance are seen to
be generally well-suited to address hazardous sudden-onset events, such as floods (Mechler
and Deubelli 2021). On the other hand, a point of critique of insurance in the context of
climate-related losses and damages is that due to the increase in severity and frequency
of both slow- and sudden onset events as well as of impacts that span beyond the eco-
nomic dimension the usefulness of current insurance approaches is limited (Nordlander
et al. 2020). While this critique holds true it has to be borne in mind that insurance is best
used in a combined and integrated manner with other risk management measures and not
as a stand-alone tool (Schifer et al. 2019). Nevertheless, it will be important to address
concerns of affordability and climate justice, which could be addressed by providing subsi-
dies to lower the premiums for an insurance product addressing flood impacts (Linnerooth-
Bayer et al. 2019).

This study bears its limitations. In order to contribute even further to researching the
preferences and demands of vulnerable populations with regard to insurance mecha-
nisms, further studies could research the WTP for a potential flood insurance product in
the LMRB with ML/DL models, when more concrete forms of potential flood insurance
schemes have been elaborated. In that way, coverage could eventually be raised even faster
and the amount of potential subsides could be determined in a better way. Moreover, future
studies could better consider parameters describing potential assets to be insured, which
were not extensively represented in the data set used for this study. It could also be worth
conducting studies drawing upon the framework presented in this study to already guide
the data collection process and ensure coverage of all dimensions potentially relevant to
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flood insurance demand. Finally, the authors encourage future studies to try out additional
ML models that were not yet used in this study for comparison as well as to try out other
DL models, e.g. functional models.

Conclusion

This study presents a novel approach to research the demand for a potential flood insur-
ance product by applying ML/DL models to a large number of relevant parameters. This
approach was found to be especially useful for research contexts, in which people have not
yet been widely exposed to insurance products. In particular, the results especially high-
lighted the importance of the parameters of the desired risk to be covered, perception of
insurance, having no access to any source, access to support from community solidarity
funds, access to governmental support, or drawing upon their own resources to cope finan-
cially, the financial recovery time (commercial impacts), no previous insurance purchase
due to lack of means and the prioritization of more essential needs over purchasing insur-
ance. In addition, the framework on relevant thematic areas of parameters provided by this
study can be a useful basis for follow-up studies, using similar data-driven approaches.
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