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Abstract
It is well known that linear prices supporting a competitive equilibrium exist in the
case of convex markets, however, in the presence of integralities this is open and hard
to decide in general.We present necessary and sufficient conditions for the existence of
such prices for decentralized market problems where market participants have integral
decision variables and their feasible sets are given in complete linear description. We
utilize total unimodularity and the aforementioned conditions to show that such linear
prices exist and present some applications. Furthermore, we compute competitive
equilibria for two classes of decentralized market problems arising in energy markets
and show that competitive equilibria may exist regardless of integralities.

Keywords Mixed-integer programming · Competitive equilibrium · Linear prices ·
Total unimodularity

1 Introduction

In energy markets decentralized market problems are commonly modeled via pro-
ducers who maximize their profit and consumers who maximize their utility (O’Neill
et al. 2005). Furthermore it is assumed that producers and consumers regard prices
as independent of their own choices (Arrow and Debreu 1954). If the markets are
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452 L. Hümbs et al.

convex, i.e., the market participants’ problems are convex and the market clearing
constraint is linear, there are linear prices, meaning uniform and constant per quantity,
leading to a competitive equilibrium, also shown by Arrow and Debreu (1954); Gale
(1955); McKenzie (1959), as the dual variables associated with the market clearing
constraints can be interpreted as market clearing prices (Azizan et al. 2019). In the
case of nonconvexities, however, linear prices may not exist (Wolsey 1981).

Nonconvexities caused by integralities arise in energy markets from, e.g., min-
up/min-down constraints (Lee et al. 2004; Hua and Baldick 2016) or startup
costs (Vyve 2011; Ruiz et al. 2012). A classical example for nonconvexities in energy
markets is given by Scarf (1994). Themarket participants’ problems are oftenmodeled
as mixed-integer problems. In the case that the corresponding linear relaxation does
not solve the mixed-integer problem, linear prices may not exist (O’Neill et al. 2005).

There are various methods for finding prices supporting a competitive equilibrium,
regardless of integralities, via side payments, called uplifts. A standard approach was
introduced in O’Neill et al. (2005) referred to as IP pricing. This approach was intro-
duced using the example of a power market. The main idea of the approach is to pay
not only for the generated output, but also for integral decisions of market participants.
In order to compute prices for those integral decisions, in a first step a mixed-integer
problem minimizing the cost of meeting the demand is solved, and in a second step
the corresponding linear problem with all integral variables fixed to their optimal val-
ues, as computed in the first step. The dual variables corresponding to the additional
equations are interpreted as prices. Because the uplifts of IP pricing can be volatile
and unnecessarily high (Hogan and Ring 2003), a pricing scheme was proposed with
less volatility (Bjørndal and Jörnsten 2010) and with minimal uplifts (Hogan and Ring
2003; Gribik et al. 2007).

In power markets the market clearing is ensured via such side-payments — for
example the New York Independent System Operator also uses mixed-integer pro-
gramming in order to compute unit commitment and economic dispatch and linear
programming to compute prices (New York Independent System Operator 2017).
Likewise theMidwest Independent Transmission SystemOperator uses amodel incor-
porating mixed-integer decision variables such as minimum uptime and minimum
downtime constraints (Carlson et al. 2012).

In the literature the existence ofmarket clearing prices is investigated for the follow-
ing three important special cases of decentralized market problems. In Bikhchandani
and Mamer (1997), where a result regarding the existence of linear prices, supporting
a competitive equilibrium, is introduced for the special case of an exchange economy.
Also inHatfield et al. (2019) the existence of competitive equilibria in trading networks
is being investigated. Here there are buyers and sellers and a certain set of possible
contracts, which these buyers and sellers can concludewith each other. Another special
case is investigated by Bikhchandani et al. (2002) who analyze a package assignment
model with various price functions.

Recently, Harks (2019) has independently shown similar results to ours within a
different context.

In this article, we consider decentralized market problems, where the market par-
ticipants solve mixed-integer linear problems and the coupling condition is linear. So
far, to the best of our knowledge, there has not been established a proposition, stating
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under which necessary and sufficient conditions there exist linear prices leading to a
competitive equilibrium of these problems.We state a sufficient condition under which
linear prices, supporting a competitive equilibrium, exist. The condition is utilized to
show that such prices exist for decentralizedmarket problemswhere themarket partic-
ipants solve integer problems with totally unimodular constraint matrices and integral
right-hand sides. In those decentralized market problems the market participants are
coupled via one variable each. We then give applications for decentralized market
problems fulfilling these properties.

Finallywe give a computational study inwhichwe exemplify that checkingwhether
a competitive equilibrium exists is worthwhile because competitive equilibria may
exist regardless of integralities. Additionally we show that how the decentralized mar-
ket problems are modeled heavily influences the ability to find competitive equilibria.
For the computations we both consider decentralized market problems arising through
min-up/min-down constraints and decentralized market problems arising through
Scarf’s example. These computations to Scarf’s example show that it is useful to
check for the existence of competitive equilibria even though there are integralities in
the market. Furthermore, we show that, in order to check for the existence of compet-
itive equilibria, it is essential to use a certain problem formulation which we discuss
later in the paper. The importance of using this formulation is illustrated by the min-
up/min-down example where we compare two formulations of the arising problems.

2 Existence of linear prices

In this section the main goal is to prove Theorem 1, which states when a solution
to a mixed-integer linear decentralized market problem exists. Furthermore we show
that this Theorem 1 can not be generalized to cover convex mixed-integer nonlinear
decentralized market problems. Let N := {1, . . . , N } be a set of market participants
where each participant n has variables for production, as entries of pn ∈ Z

TI × R
TC .

We denote the dimension of pn with T = TC + TI . Each market participant may have
further auxiliary variables, as entries of xn ∈ Z

m I ×R
mC , for modeling further aspects

besides production. Let m = mC +m I take the dimensions of xn which we suppose to
be independent of n. An example for such variables are the binary variables in (Gribik
et al. 2007, Chapter ‘Electricity Market Model’) which model whether a machine is
turned on or off. Every market participant solves a mixed-integer problem of the form

max
pn ,xn

− cauxn
�xn − cprodn

�
pn + π� pn (1a)

s.t. Aaux
n xn + Aprod

n pn = bn (1b)

xn ∈ Z
m I × R

mC (1c)

pn ∈ Z
TI × R

TC (1d)

xn, pn ≥ 0, (1e)
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454 L. Hümbs et al.

where the auxiliary costs are the entries of cauxn ∈ R
m , variable costs are the entries

of cprodn ∈ R
T and the market prices are the entries of π ∈ R

q . The matrices Aaux
n ∈

R
rn×m , Aprod

n ∈ R
rn×T and the vector bn ∈ R

rn determine the linear constraints of
the problem, where the constraints are given as the complete linear description of the
feasible set. We assume that the constraints are given such that the market participants
are coupled via a linear coupling constraint

N∑

n=1

pn = d. (2)

This constraint ensures that a certain demand d ∈ R
T is met and is called the market

clearing constraint. The formulation of Problem (1) and Eq. (2) is equivalent to the
formulation in Gribik et al. (2007) and similar to O’Neill et al. (2005) where in Eq. (2)
the equality is replaced by an inequality.

Nowwedefine a special case of a competitive equilibriumwith fixed demand,which
is supported by linear prices. This means there are prices that are constant per quantity
and are uniform, i.e., the market prices are the same for all market participants.

Definition 1 (Decentralized market problem (O’Neill et al. 2005)) We define a decen-
tralized market problem as a set N of market participants, where each market
participant n ∈ N solves a mixed-integer problem (1) depending on the market price
π , and the market clearing condition (2).

Thus we define the decentralized market problem as O’Neill et al. (2005) such that
no market participant has the power to influence the other market participants. This is
a common assumption in energy market modeling, see Grimm et al. (2019) within a
model for the European entry exit gas market. In pricing problems for electricity mar-
kets this assumption is often present as well. An overview over such pricing schemes
can be found in (Liberopoulos and Andrianesis 2016). More precisely, O’Neill et al.
(2005) make this assumption when introducing the well-known IP-pricing scheme,
which is adapted by Bjørndal and Jörnsten (2008, 2010) in order generate less volatile
prices. The assumption is also used in the minimum uplift pricing scheme (Hogan and
Ring 2003; Gribik et al. 2007; Hua and Baldick 2016). Additional pricing schemes
are given, e.g., by Ruiz et al. (2012); Araoz and Jörnsten (2011); Vyve (2011). Fur-
thermore Grübel et al. (2021) use this assumption while investigating the existence of
competitive equilibria in gas and power markets.

As we introduced the decentralized market problem we can define a solution to the
problem, i.e., a competitive equilibrium.

Definition 2 (Solution to a decentralized market problem) Given a decentralized
market problem defined by Definition 1, we say there is a solution π̂ ,x̂, p̂ to the
decentralized market problem if and only if there are optimal solutions x̂n, p̂n to all
n ∈ N market participants’ problems (1), which satisfy the coupling constraint (2).We
call a solution π̂ ,x̂, p̂ to the decentralized market problem a competitive equilibrium.

The main differences in the modeling compared to the paper by Bikhchandani and
Mamer (1997) is that they allow only for integral goods and an additional continu-
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Complete linear descriptions for decentralized market problems 455

ous variable which denotes the participants’ wealth. However, in the case of energy
markets divisible goods, i.e., continuous variables, play a role, as exemplified by the
computational study in Sect. 4. Furthermore, they assume the reservation value func-
tions of the participants to be weakly increasing. In our context this would imply
monotonicity of the cost functions. We do not assume this and thus allow for more
freedom in the modeling. This is necessary, e.g., in gas markets to model the cost
of reducing the gas flow from a gas field (Tomasgard et al. 2007). In addition, they
say a solution exists in case demand for all goods does not exceed supply. In our case
demand has to equal supply, which is an assumption we address later on. Additionally,
we assume the demand to be fix and not dependent on the choices of consumers.

For an in-depth discussion of more general decentralized market problems see see
MasCollell, Whinston, and Green (1995, Part 3). The following problem minimizes
the overall cost, while fulfilling the coupling constraint:

min
p,x

N∑

n=1

cauxn
�xn + cprodn

�
pn (3a)

s.t. Aaux
n xn + Aprod

n pn = bn for all n ∈ N (3b)

xn, pn ≥ 0 for all n ∈ N (3c)

xn ∈ Z
m I × R

mC for all n ∈ N (3d)

pn ∈ Z
TI × R

TC for all n ∈ N (3e)
N∑

n=1

pn = d, (3f)

which we call the central planner’s problem.
Recall that we obtain for a general mixed-integer program, e.g., as in (1), the LP-

relaxation by neglecting the integrality conditions of the integer variables. In addition
we say that a MIP is given in complete linear description if for its solution space holds

conv({x ∈ Z
n × R

m | Ax ≤ b}) = {x ∈ R
n+m | Ax ≤ b}.

Note that this implies that the LP-relaxation to a problem given in complete linear
description has a mixed-integer optimal solution if a solution exists.

Furthermore note that for linear problems the dual variables corresponding to an
optimal solution exist (Solodov 2011, Chap. 1).

As the main goal of this chapter is to prove Theorem 1, we introduce two lemmas
which directly prove Theorem 1.

Theorem 1 Assume we are given a decentralized market problem(Definition 1) where
each of the market participants’ problems (1) is given in a complete linear description.
Then this problem has a solution π̂ , x̂, p̂ if and only if there is an optimal solution
x∗, p∗ to the LP-relaxation of the central planner’s problem (3) that satisfies the
integrality condition xn ∈ Z

m I × R
mC , pn ∈ Z

TI × R
TC .

123
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As already mentioned in the introduction, Harks (2019) has shown similar results
independently as part of more general results. More precisely, our Theorem 1 corre-
sponds to Theorem 3.11 in his article. We only refer to this theorem even though the
entire paper byHarks (2019) examinesmore settings and containsmore results because
these are not relevant for the setting that we consider in this paper. There are little dif-
ferences between the theorems from a theoretical standpoint and from a modeling
standpoint. In the following we categorize and specify these differences. Furthermore,
we like to point out that our Theorem 1 can be applied more easily in computations
that arise when checking for the existence of decentralized market problems in energy
markets, which we do in the last section. In addition we show that Theorem 1, in con-
trast to Theorem 3.11 by (Harks 2019), can be directly applied to check the existence
of competitive equilibria in energy markets without reformulations.

One of the differences between the theorems is that Harks (2019) describes the fea-
sible sets as the convex hull of finitely many points, while we use the outer description.
Of course this makes no difference in theory, however, in the case of energy markets
we are usually given the outer description and therefore it makes a difference from the
computational side, as computing the inner description is complex.

Another difference is that formally his results are more general, because we use
linear objective functions, not concave ones as he does. However, in Theorem 3.11
by Harks (2019) the central planner is reformulated as a linear problem using the fact
that minimizing over a concave function yields an optimal solution in a vertex of the
polyhedral feasible set and thus eliminating the nonlinearity.

Furthermore, there are differences that are pure modeling aspects that we address
in the following. We model auxiliary variables explicitly, e.g., for min-up/min-down
constraints. We give the market clearing constraint (3f) in the central planner’s prob-
lem (3) with an equation rather than an inequality. This allows us to directly model
negative market prices without reformulations, which is useful in the context of elec-
tricity markets, because too much energy in electricity grids is harmful and therefore
negative market prices often arise.

Summarized, our Theorem 1— in theory— can be straight forwardly derived from
Theorem 3.11 by Harks (2019). Conversely, when the concave market participants
are linearized in the aforementioned way, the existence of competitive equilibria can
be analogously be checked for the setting in (Harks 2019, Theorem 3.11). Hence,
the differences are the computational tractability and the direct applicability without
reformulations to energy markets.

In addition we like to emphasize that the prerequisite of complete linear description
is crucial for Theorem 1.

The relaxation that we consider concentrates on the feasible sets of the market par-
ticipants. As we consider mixed-integer problems we relax the decentralized market
problems by LP-relaxing the market participants. Thus, as already mentioned in the
introduction O’Neill et al. (2005) state that in case optimal solutions to Problem (3)
and its LP-relaxation coincide there is a solution to the decentralized market prob-
lem (1), i.e., a solution to the relaxed decentralized market problem is a solution to
the decentralized market problem as well. The other direction does not hold, i.e., in
case there is an integrality gap in Problem (3) there might still be a solution to the
decentralized market problem.
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Complete linear descriptions for decentralized market problems 457

This is exemplified in Sect. 4.3 where we also consider decentralized market prob-
lems where the feasible sets of the market participants are not given in complete linear
description. Here simply considering the LP-relaxation to the central planner’s prob-
lem (3) fails to accurately determine whether a solution exists. To be more precise,
in case one is given a decentralized market problem (1) with integrality constraints
but the market participants’ problems (1) are not given in complete linear description
— applying Theorem 1 may indicate that there is no solution even though there is a
solution.

The idea behind the following Lemma 1 is to use the Karush-Kuhn-Tucker systems
to the LP-relaxations of themarket participants’ problemswith the assumption of com-
plete linear description.By stacking theseKKT-systems and adding themarket clearing
constraint the system arises with additional integrality constraints. Solving this system
is equivalent to fulfilling the prerequisites of Definition 2 and therefore is equivalent to
finding a competitive equilibrium. This system is theKKT-system corresponding to the
LP-relaxation of the central planner’s problem with additional integrality constraints.
Thus only an optimalmixed-integer solution to the LP-relaxation of the central planner
solves this system of equations.

Lemma 1 Let the market participants’ problems (1) be given in complete linear
description, then the decentralized market problem has a solution π̂ , x̂, p̂ if and only if

the following system of equations and inequalities has a solution π̄ , x̄, p̄, λprod, μprod,

λaux, μaux.

cprodn + Aprod
n

�
μ
prod
n − λ

prod
n − π = 0 for all n ∈ N (4a)

cauxn + Aaux
n

�
μaux

n − λauxn = 0 for all n ∈ N (4b)

Aaux
n xn + Aprod

n pn = bn for all n ∈ N (4c)

p�
n λ

prod
n = 0 for all n ∈ N (4d)

x�
n λauxn = 0 for all n ∈ N (4e)

xn, pn, λauxn , λ
prod
n ≥ 0 for all n ∈ N (4f)

N∑

n=1

pn = d [−π ] (4g)

xn ∈ Z
m I × R

mC for all n ∈ N (4h)

pn ∈ Z
TI × R

TC for all n ∈ N (4i)

Proof First, we show that the existence of a solution to System (4) implies the
existence of a solution to the decentralized market problem. If there is a solution
π̄ , x̄, p̄, λprod, μprod, λaux, μaux to System (4), then this solution also solves the KKT-
systems corresponding to the market participants’ problems (1), thus x̄, p̄ also is an
optimal solution to the LP-relaxed market participants’ problems (1) and with the
integrality constraints (4h), (4i) it also is a solution to the non-relaxed problems (1).
Furthermore Eq. (4g) in System (4) implies that the coupling condition (2) is fulfilled
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458 L. Hümbs et al.

and therefore π̄ = π̂ , x̄ = x̂, p̄ = p̂ is a solution to the decentralized market prob-
lem. This implies we can directly use the solution to System (4) as a solution to the
decentralized market problem.

Next, we show that the existence of a solution to the decentralized market problem
implies the existence of a solution to System (4). If there is a solution π̂ , x̂, p̂ to the
decentralized market problem then this solution is optimal for the market participants’
problems (1). Because of the complete linear description there are dual variables

μ̂aux
n ,

̂
μ
prod
n , λ̂auxn ,

̂
λ
prod
n such that π̂ , x̂n, p̂n, μ̂aux

n ,
̂
μ
prod
n , λ̂auxn ,

̂
λ
prod
n solves the KKT-

systems to the market participants’ problems (1).
By Definition 2, which defines a solution to a decentralized market problem, this

solution also fulfills the coupling condition (3f) and thus also Eq. (4g). The solution
is mixed-integer because of the feasibility of the market participants’ problems (1)
therefore the integrality constraints (4h), (4i) are also fulfilled. Thus we can set π̄ =
π̂ , x̄ = x̂, p̄ = p̂, μaux = μ̂aux, μprod = μ̂prod, λaux = λ̂aux, λprod = λ̂prod. So here
we can use the solution to the decentralized market problem and compute the dual
variables corresponding to this solution in order to receive a solution to System (4). ��

The intuition behind Lemma 2 is very similar to the proof of Lemma 1 in the sense
that we also show that any solution to the system introduced in the preceding Lemma 1
yields an optimal solution to the LP-relaxed central planner’s problem that fulfills the
integrality condition and vice versa.

Lemma 2 System (4) has a solution π̄ , x̄, p̄, λ
prod
n , μ

prod
n , λauxn , μaux

n if and only if there
is an optimal solution x∗, p∗ to the LP-relaxed central planner’s problem (3) that
fulfills the integrality condition x∗

n ∈ Z
m I × R

mC , p∗
n ∈ Z

TI × R
TC for all n ∈ N .

Proof System (4) is the KKT-system to the central planner’s problem (3) with added

integrality constraints (4h), (4i). This implies that finding a solution π̄ , x̄, p̄, λ
prod
n ,

μ
prod
n , λauxn , μaux

n to the System (4) is equivalent to finding an optimal solution to the
LP-relaxation of the central planner’s problem (3) because solving the KKT-system is
equivalent to finding an optimal solution to the LP-relaxation.With the added integral-
ity constraints (4h), (4i) this implies that if a solution exists for either problem we can
set x̄ = x∗, p̄ = p∗. Therefore the existence of a solution to the decentralized market
problem is equivalent to the existence of an optimal solution to the LP-relaxation of the
central planner’s problem (3) that fulfills the integrality condition xn ∈ Z

m I × R
mC ,

pn ∈ Z
TI ×R

TC . We can thus use the solution to System (4) as a solution to the central
planner’s problem (3) and in order to find a solution to System (4) we need to compute
the duals to the optimal solution x∗, p∗ to the LP-relaxation to the central planner’s
problem (3). ��

Lemma 1 and Lemma 2 then directly prove Theorem 1.
Note that the existence of a solution to the decentralized market problem is com-

pletely independent of the existence of a fractional optimal solution for the LP-relaxed
central planner’s problem. Such a solution is not feasible for the market participants
and thus is not an issue. Also note that the prerequisite of complete linear description
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is only needed to show that the existence of a competitive equilibrium leads to an opti-
mal solution to the LP-relaxed central planner’s problem (3) that fulfills the integrality
constraint.

To show Theorem 1 one can also utilize the minimum uplift scheme: The minimal
uplifts are the duality gap of the Lagrangian relaxation of the coupling condition (Vyve
2011; Gribik et al. 2007; Hua and Baldick 2016; Borokhov 2016) and therefore the
sum of the minimal uplifts is zero if and only if the optimal values of the mixed
integer solution and the LP-relaxation coincide. This follows from the equality of the
Lagrangian dual and the LP-relaxation (Geoffrion 1974).

As mentioned in the beginning of this section we show that Theorem 1 does not
hold in case the market participants are modeled by convex mixed-integer nonlinear
problems. Consider the following example of a decentralized market problem with
two identical producers. The producers’ problems are given as

max
pn ,xn

− 1

2
2p2n + 1pn − 3xn + π pn

s.t. 0 ≤ pn ≤ xn

xn ∈ {0, 1}.

The coupling condition is p1 + p2 = 1, which leads to the following central planner’s
problem

min
pn ,xn

∑

n∈{1,2}

1

2
2p2n − 1pn + 3xn

s.t. 0 ≤ pn ≤ xn for all n ∈ {1, 2}
xn ∈ {0, 1} for all n ∈ {1, 2}
p1 + p2 = 1.

If we set the market price π = 3 then the producers are indifferent between producing
pn = 0 or pn = 1. Therefore this is a market clearing price and a competitive
equilibrium exists. In the central planner’s problem we set w.l.o.g. p1 = 1, p2 =
0, x1 = 1, x2 = 0. This leads to an objective value of 3 and is the optimal value of
the central planner’s MINLP. In the relaxation of the central planner’s problem the
optimal solution is p1 = 0.5, p2 = 0.5, x1 = 0.5, x2 = 0.5 with an objective value
of 2.5, which is less than 3 and therefore an integrality gap exists but a competitive
equilibrium exists regardless of the gap. This implies that Theorem 1 can not be
generalized to includemixed-integer nonlinear problems aswe need the linearity of the
central planner’s problem (3) and therefore we also assume the coupling condition (2)
to be linear.

The problem defined in Bikhchandani and Mamer (1997, Chap. 3) can be seen as
a special case of Problem (3) for an exchange economy. And the problem defined
in Bikhchandani, Ostroy, et al. (2002, Chap. 4) for a package assignment model with
linear prices can also be seen as a special case of Problem (3). The statements on the
existence of competitive equilibria can be transferred like in Theorem 1.
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We utilize Theorem 1 in the next section to show the existence of competitive
equilibria for a special case of decentralized market problems.

3 A special case of decentralizedmarket problems for which
solutions exist

In this chapter we introduce a special case of decentralized market problems. We
utilize total unimodularity to show that there exists a solution for this special case.
First, we introduce an example for such a special case for which a solution exists. This
example utilizes integral flow problems.

Example 1 (Flow) Let the market participants be modeled via integral minimum cost
flow problems. Let the capacities on the arcs be integral. The participants are coupled
via an arc, which is shared among all participants.

The resulting integer problem for market participant n can be written as

min
xn

c�
n xn + πx1n (7a)

s.t. En xn ≤ un (7b)

Mn xn = bn (7c)

xn ≥ 0 (7d)

xn ∈ Z
wn . (7e)

Here Mn ∈ R
vn×wn denotes the incidence matrix of the graph of market participant n,

bn ∈ Z
vn the balance of the nodes, un ∈ Z

wn the capacity on the arcs and x1n ∈ Z the
variable, which pertains to the shared arc. Matrix En ∈ R

wn×wn is the identity matrix.
The coupling condition is

N∑

n=1

x1n = d. (8)

Therefore the capacity on the shared arc is saturated.

In the following we show that the preceding example has a solution.
We consider the special case of decentralized market problems where the market

participants solve integer problems with totally unimodular constraint matrices and
integral right-hand sides. The participants are coupled via one variable each such that
the sum of these variables amounts to an integer. We utilize Theorem 1 to show that
solutions to these decentralized market problems exist. Then we give examples for
decentralized market problems with these properties.

Recall that an m × n integral matrix A is totally unimodular if the determinant of
each square submatrix of A is equal to 0, 1, or −1 (Nemhauser and Wolsey 1988),
and, observe the following well known property of totally unimodular matrices.

Theorem 2 (Ghouila-Houri (1962)) The following statements are equivalent.
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• A ∈ R
m×n is totally unimodular.

• For every J ⊆ N = {1, . . . , n}, there exists a partition J1, J2 of J such that

|
∑

j∈J1

ai j −
∑

j∈J2

ai j | ≤ 1 for i = 1, . . . , m (9)

Utilizing this equivalence we can prove a theorem that leads to the existence of
solutions to the decentralized market problems with the aforementioned properties.
For that we need the following statement.

Lemma 3 The matrix A

A :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 · · · 0 0
0 A2 0 · · · 0 0
0 0 A3 · · · 0 0
...

...
. . .

...

0 0 0 · · · Ap−1 0
0 0 0 · · · 0 Ap

h1 h2 h3 · · · h p−1 h p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ai ∈ R
mi ×ni are totally unimodular matrices and hi ∈ R

ni are row vectors of
the form (1, 0, . . . , 0), is totally unimodular.

Proof We are given a set J of columns of A. We have to show that there exists a
partition J1, J2 of J such that condition (9) holds for all rows i of A. Let ic be the
coupling row in A. Let Jc be the set of all indices j ∈ J such that the entry Aic j = 1.
We start constructing J1 and J2 by inserting the first 
|Jc|/2� indices in Jc into J1 and
the other indices of Jc into J2. Consider the blocks Ak in turn. We have to distinguish
two cases: Either no column of Ak is in Jc, then we can, using Theorem 2, partition the
columns of Ak in J into two sets J k

1 , J k
2 such that condition (9) is satisfied. Otherwise,

exactly one column j of Ak is in Jc. Then j is already either in J1 or J2. We may
assume that it is in J1. Then, again using Theorem 2, partition the columns of Ak in
J into two sets J k

1 , J k
2 such that condition (9) is satisfied and such that the column j

is in J k
1 . In both cases, we can add J k

1 to J1 and J k
2 to J2. As every column occurs in

exactly one of the blocks Ak , this assigns every column to exactly one of the sets J1
or J2.

Now, we consider an arbitrary row i . Every row is either the coupling row or occurs
in exactly one of the blocks Ak . If row i is the coupling row, then condition (9) holds
as the number of ones in J1 and J2 in this row differs by at most one. If row i occurs
in block Ak then the only nonzero entries in condition (9) are the entries in J k

1 and J k
2 .

It follows that condition (9) is satisfied by the construction of J k
1 and J k

2 . ��
Next we show that it is not possible to add another nonzero entry in the coupling

vector h or couple the market participants via more than one variable even if there are
more columns per block than coupled variables, and still guarantee total unimodularity
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of matrix A and thus the existence of a solution to the corresponding decentralized
market problem.

Consider the following three matrices

A1 :=
(
1 −1
1 1

)
, A2 :=

⎛

⎜⎜⎝

1 1 0 0
0 0 −1 1
1 0 1 0
0 1 0 1

⎞

⎟⎟⎠ , A3 :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 −1 −1 1
0 0 0 0 0 0 −1 1
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

all not being totally unimodular, as the first two matrices have a determinant not equal
to −1, 0 or 1 and the third matrix has a submatrix, counting out rows 4, 8, 9, 10 and
columns 3, 4, 7, 8, which is not unimodular.

Thefirstmatrix A1 shows that it is not possible to add another nonzero entry in vector
h , and still guarantee total unimodularity.Matrix A2 lets us infer that it is not possible to
add another coupling condition, and still guarantee total unimodularity. The last matrix
A3 shows that total unimodularity is not preserved by more columns per block than
coupling rows. As mentined above observe that for index sets J ⊆ N = {3, 4, 7, 8}
in rows 4, 8, 9, 10 the conditions of Theorem 2 are the same as for matrix A2. This
implies that, in general, degrees of freedom in the coupling rows do not preserve total
unimodularity. Thus we have shown that we can only guarantee total unimodularity
in the case of at most one coupling row and one nonzero entry per block in this row.

In the following we show an application of Theorem 1. LetN be a set of N market
participants, whose problems are given as Problems (1) where we suppose in addition
that An = (Aaux

n , Aprod
n ) ∈ {0, 1}q×mn is a totally unimodular matrix,bn ∈ Z

p and
a single market price π ∈ R. The coupling condition in this decentralized market
problem is the same Eq. (2) with d ∈ Z.

Theorem 3 Let a decentralized market problem, as described above, be given with
totally unimodular market participants’ problems (1) and coupling constraint (2).
Then there is a solution to this decentralized market problem if there are feasible
solutions for all market participants’ problems (1) that satisfy constraint (2).

Proof The corresponding central planner’s problem has a constraint matrix of the
form A, as defined in Lemma 3, which leads to the feasible set of the central planner’s
problem being an integral polyhedron (Hoffman and Kruskal 1956). This implies that
an integral optimal solution to theLP-relaxation of the central planner’s problemexists,
and therefore by Theorem 1 a solution to the decentralized market problem exists. ��

Next we show that Example 1 has a solution.
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Lemma 4 Problem (7) can be written as

max
pn ,xn

− cauxn
�xn − cprodn

�
pn + π pn (10a)

s.t. Aaux
n xn + Aprod

n pn = bn (10b)

xn ∈ Z
m I (10c)

pn ∈ Z (10d)

xn, pn ≥ 0, (10e)

with the matrix An = (Aaux
n Aprod

n ) being totally unimodular.

Proof The matrix

An :=
(

En En

Mn 0

)

with the first row of An being Aprod
n and the rest of the matrix being Aaux

n is totally
unimodular, as Mn is totally unimodular (Bertsimas and Weismantel 2005), because
it is the incidence matrix of a directed graph for all n ∈ N , and concatenating identity
matrices and totally unimodular matrices preserves total unimodularity (Bertsimas
and Weismantel 2005). ��
Corollary 1 Given a decentralized market problem defined as in Example 1. Then there
is a solution to the decentralized market problem if d ∈ Z and there are feasible flows
for all market participants such that Constraint (8) is fulfilled.

Proof The preceding lemma shows that the market participants’ problems can be
modeled such that the prerequisites of Theorem 3 are fulfilled and thus there is a
solution to the decentralized market problem if there are feasible solutions which
satisfy Constraint (8). ��

The second application to Theorem 3 utilizes an assignment problem.

Example 2 (Assignment) Let the market participants assign jobs to machines. Every
machine has the capacity to accept a certain integral number of jobs and every job
has linear costs. The participants share one machine and therefore the capacity of this
machine is shared across all participants. This machine must operate at full capacity.
Every participant has jn jobs and mn machines.

Fig. 1 Bipartite graph of an
assignment problem

1

2

3

4

5

Machines Jobs
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The market participants’ problems can be modeled as

min
xn

c�
n xn + πx1n (11a)

s.t. Mshared
n xn = 0 (11b)

Mmachines
n xn = bn (11c)

M jobs
n xn = 1 (11d)

xn ≥ 0 (11e)

xn ∈ Z
m . (11f)

Here xn ∈ {0, 1}wn , Mshared
n ∈ {0, 1}1×wn , Mmachines

n ∈ {0, 1}mn×wn , bn ∈ Z
wn ,

M jobs
n ∈ {0, 1} jn×wn , π ∈ R and cn ∈ R

wn . Eq. (11b) models the jobs the shared
machine takes, as x1n , the first entry of xn , equals the number of jobs the shared
machine takes. Constraint (11c) formulates the capacity of jobs the machines can
accept by utilizing the incidence matrix and adding slack variables. Constraint (11d)
ensures all jobs are assigned.

The coupling constraint (12) ensures the shared machine is assigned d ∈ Z jobs.

N∑

n=1

x1n = d (12)

See Fig. 1 for an example of the assignment problem of a player n. Here three jobs
have to be assigned to two machines, where machine one is shared among the players.

This leads to the following integer progam:

min
xn

(0, 2, 1, 3, 1, 4, 0, 0)xn + πx1n (13a)

s.t.
(−1 1 0 0 1 0 0 0

)
xn = 0 (13b)

(
0 1 0 0 1 0 1 0
0 0 1 1 0 1 0 1

)
xn =

(
2
2

)
(13c)

⎛

⎝
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0

⎞

⎠ xn =
⎛

⎝
1
1
1

⎞

⎠ (13d)

xn ≥ 0 (13e)

xn ∈ Z
8 (13f)

In this example Constraint (13b) ensures x1n equals the number of jobs machine one
accepts. Constraint (13c) models that every machine can take at most two jobs, and
Constraint (13d) ensures that every job is done.

Lemma 5 Problem (11) can be written as

max
pn ,xn

− cauxn
�xn − cprodn

�
pn + π pn (14a)
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s.t. Aaux
n xn + Aprod

n pn = bn (14b)

xn ∈ Z
m I (14c)

pn ∈ Z (14d)

xn, pn ≥ 0, (14e)

with the matrix An = (Aaux
n Aprod

n ) being totally unimodular.

Proof The constraint matrices of problems (11) are composed of incidence matrix Mn

of an undirected bipartite graph, unit vectors ei and duplicating the first row mn of
matrix Mn . The matrix can thus be written as

An =
(

mn 0 · · · 0 −1
Mn e1 · · · e1+p 0

)

with

Aaux
n =

(
mn 0 · · · 0
Mn e1 · · · e1+p

)

and

Aprod
n =

(−1
0

)
.

We show that this matrix is totally unimodular.
Matrix Mn is totally unimodular, as incidence matrices of undirected bipartite

graphs are totally unimodular (Korte and Vygen 2012). Matrix Bn =
(

mn

Mn

)
is totally

unimodular, because every partition of J , as in Theorem 2 that is valid for Mn , is also
valid for Bn . Concatenating identity matrices and totally unimodular matrices leads to
a totally unimodular matrix (Bertsimas and Weismantel 2005), thus

(
Bn E

)
is totally

unimodular, where E is an identity matrix. Interchanging two rows or multiplying a
column with −1 preserves total unimodularity (Nemhauser and Wolsey 1988). This
infers that we can move the first column of E to the back and multiply it with −1.
This implies that matrix An is totally unimodular. ��

Corollary 2 Given a decentralized market problem defined by problems (11) and Con-
straint (12). Then there is a solution to the decentralized market problem if the market
participants’ problems (11) have feasible solutions which satisfy Constraint (12).

Proof The preceding lemma shows that the market participants’ problems can be
modeled such that the prerequisites of Theorem 3 are fulfilled and thus there is a
solution to the decentralized market problem if there are feasible solutions which
satisfy Constraint (12). ��
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4 Computational experiments

In this section we apply Theorem 1 to two classes of decentralized market problems
with integralities. We show that solutions to decentralized market problems (Defini-
tion 1) may exist even in the case that the market participants’ problems (1) contain
integrality constraints (1c) and (1d). Further we show that the choice of formulation of
the problems makes a difference. To be more precise, Theorem 1 requires the market
participants’ problems (1) to be given in complete linear description. In case the com-
plete linear description is not used, some solutions to decentralized market problems
may not be found.

The first class is motivated by the classical Scarf’s example (Scarf 1994) which
was adapted by Hogan and Ring (2003). In this class it can be seen that competitive
equilibria often exist even though that may be unexpected — as this implies that an
optimal solution to the central planner’s problem (3) coincides with an optimal solu-
tion to its LP-relaxation. Therefore this implies that checking whether a competitive
equilibrium exists regardless of integralities is worthwhile.

The second class consists of decentralized market problems that contain min-
up/min-down constraints (Rajan and Takriti 2005). Herewe compare two formulations
of the market participants’ problems where one formulation is in complete linear
description and the other is not. The results show that in case the market participants’
problems (1) are not given in complete linear description competitive equilibria may
not be found even though they exist. Thus, we emphasize the importance of using the
complete linear description.

4.1 Computational setup

In order to be able to apply Theorem 1 to check the existence of competitive equilibria
computationally we give the following lemma.

Lemma 6 A decentralized market problem as in Definition 1 where all market par-
ticipants’ problems (1) are given in complete linear description has a solution if and
only if the optimal values of the central planner’s problem (3) and its corresponding
LP-relaxation coincide.

From now on we denote the proportion of the integrality gap with cMIP−cLP

cMIP , where

cMIP is the optimal value of the mixed-integer problem (3) and cLP the optimal value
of its LP-relaxation. In our implementation we assume a competitive equilibrium
exists if the integrality gap proportion is lower than 10−05. The computations are
done on the Woody cluster of the RRZE-HPC Regionales Rechenzentrum Erlangen
(2021) with four Xeon E3-1240 v5 CPUs running with 32 GB of RAM and 3.50
GHz. The optimization problems in the algorithm are solved via Gurobi 9.1 (Gurobi
Optimization 2021) while the algorithm itself is implemented in Python 3.7 and the
random parameters are generated using the random package of Python.
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Table 1 Costs for power plants

Type Variable costs Capacities Startup costs Minimal outputs

Smokestack 3 16 53 0

High tech 2 7 30 0

Med Tech 7 6 0 2

4.2 Scarf’s example

First, we investigate the existence of solutions to the decentralized market problem
posed byScarf (1994)where there are two types of plants one type called “smokestack”
— representing an older type of plant — and a type called “high tech”.

This example is also used in the literature, see O’Neill et al. (2005) while there is a
slightly modified version introduced by Hogan and Ring (2003) where also a so called
“med tech” type of plant was introduced into the example. Here the number of plants
are limited to 6, 5 and 5 for smokestack, high tech and med tech respectively. This
example is also used by Bjørndal and Jörnsten (2008); Azizan et al. (2019).

Then the corresponding central planner’s problem is

min
x,p

3psmoke + 2phigh + 7pmed + 53xsmoke + 30xhigh + 0xmed

s.t. 0 ≤ psmoke ≤ 16xsmoke

0 ≤ phigh ≤ 7xhigh
2xmed ≤ pmed ≤ 6xmed

psmoke + phigh + pmed = d

0 ≤ xsmoke ≤ 6

0 ≤ xhigh ≤ 5

0 ≤ xmed ≤ 5

x ∈ Z
3

p ∈ R
3,

where the production is modeled by p and the investments by x . The demand is
given by d ∈ Z. Here the prerequisite of complete linear description for the market
participants is fulfilled — therefore Lemma 6 can be applied directly.

The maximal production here is 161 units thus we compute solutions to the decen-
tralized market problems with integral demands from 1 to 161 units.

In the decentralized market problems SC arising via Scarf (1994) without limits
on the numbers of plants used and without the med tech type of plants there are 22
solutions while in HR, the setting arising through Hogan and Ring (2003), there are
40 solutions as depicted in Table 2.

As stated in the beginning of the section, there are competitive equilibria, even
though normally one would not expect that, as — in general — it is rare that optimal
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Table 2 Results Scarf’s example: With the number of problems containing solutions and the integrality gap
proportion with standard deviation, percentiles and maximum

# Sol Integrality gap proportion

Mean Std 25% 50% 75% Max

SC 22 0.0307 0.1011 0.0010 0.0026 0.0100 0.8036

HR 40 0.0143 0.0657 0.0002 0.0037 0.0076 0.8036

solutions to mixed-integer problems and optimal solutions to the corresponding LP-
relaxations coincide. However, here this is the case because the market participants’
problems are given in complete linear description and therefore only the market clear-
ing condition (2) prevents the central planner’s problem (3) from being in complete
linear description as well and therefore for these problems the influence of the market
clearing condition is small. In the following example, on the other hand, the influence
of is higher, leading to fewer competitive equilibria. Thus, we could demonstrate our
claim in the beginning of the section that competitive equilibria may exist regardless
of integralities.

4.3 Min-up/min-down constraints

Second,we investigate powermarket problemswithmin-up/min-downconstraints (Lee
et al. 2004; Hua and Baldick 2016), startup costs (Vyve 2011; Ruiz et al. 2012) and
variable costs, whichwere alreadymentioned in the introduction.Herewe demonstrate
that it is important to use the complete linear description of the market participants’
problems. To do this we implement the model introduced by Rajan and Takriti (2005),
which gives a complete linear description for the aforementioned class of problems
and another formulation, which does not give the complete linear description. We
then compare the ability to find competitive equilibria for both models and make clear
that in case the formulation, that is not in complete linear description, is chosen some
decentralized market problems that have a solution might not be identified.

Table 3 Costs for power plants
with cvar variable costs, b upper
bound on production and cstart

startup costs

Type cvar b cstart

Nuclear 5.00 12068.00 423224.76

Lignite new 15.77 9364.40 261266.76

Lignite old 20.58 11528.10 321633.99

Hard coal new 31.29 6769.90 302208.34

Hard coal old 40.86 20104.10 897447.03

Gas CCGT 62.17 5365.30 407494.54

Gasturbine new 117.24 8228.70 196419.07

Gasturbine old 140.68 5313.20 126826.08

Mineral oil new 222.63 831.60 15733.87

Mineral oil old 267.15 2619.10 49553.37
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The parameters are chosen from Table 3 where the data stems from Braun (2020)
and is given in Euro per MWh.

Here the optimization problem for the central planner reads

min
N∑

n=1

T∑

t=1

cvarn pt,n + cstartn vt,n (15a)

s.t.
t∑

i=t−L+1

vi,n ≤ ut,n for all t ∈ [L + 1, T ], n ∈ [1, N ] (15b)

t∑

i=t−l+1

vi,n ≤ 1 − ut,n for all t ∈ [l + 1, T ], n ∈ [1, N ] (15c)

vt,n ≥ ut,n − ut−1,n for all t ∈ [2, T ], n ∈ [1, N ] (15d)

0 ≤ qbnut,n ≤ pt,n ≤ bnut,n for all t ∈ [1, T ], n ∈ [1, N ] (15e)

ut,n − ut−1,n ≤ ui,n for all i ∈ [t + 1,min{t + L, T }], (15f)

t ∈ [2, T ], n ∈ [1, N ]
ut−1,n − ut,n ≤ 1 − ui,n for all i ∈ [t + 1,min{t + l, T }], (15g)

t ∈ [2, T ], n ∈ [1, N ]
N∑

t=1

pt,n = dt for all t ∈ [1, T ] (15h)

vt,n, ut,n ∈ {0, 1} for all t ∈ [1, T ], n ∈ [1, N ], (15i)

where the production bounds are given by bn ∈ R as the upper bound and qbn with
q ∈ [0, 1] the lower bound. Furthermore pt,n ∈ R is the production, vt,n models the
startup of a plant and ut,n models whether a plant is turned on. The minimum uptime
and downtime are L ∈ N and l ∈ N respectively with T ∈ N being the number of
time steps considered. The number of market participants is given by N ∈ N and the
startup costs by cstartn ∈ R. The variable costs are modeled by cvarn ∈ R.

This formulation of min-up/min-down constraints is in complete linear description,
i.e., it is a tight formulation, for the market participants’ problems (Rajan and Takriti
2005). However, omitting Constraints (15b) and (15c) yields an equivalent mixed-
integer problem, but the market participants are not in complete linear description any
more, i.e., it is a loose formulation, and therefore Lemma 6 may not yield a solution
via this problem formulation. We investigate the differences in the following.

Here we present three settings for which we investigate the existence of competitive
equilibria. The parameters chosen are depicted in Table 4.

First, we assume that both the minimum-uptime as the minimum-downtime are set
to 3 hours while we take into account a time-horizon of 24 hours. Furthermore we
compute two models of decentralized market problems where the first one assumes
exactly one power plant of each type is available while the second model is more
modern where neither the old types nor the nuclear power plant are available. We
denote the modern model in complete linear description, with MT and the model that
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Table 4 Parameters in
min-up/min-down: T Number of
time steps, L minimum uptime, l
minimum downtime, q
proportion for lower bound

Setting T L l q

First 24 3 3 0.2

Second 24 3 3 0.3

Third 24 3 7 0.1

Table 5 Results min-up/min-down First setting: With the number of problems containing solutions and
the integrality gap proportion with standard deviation, percentiles, minimum and maximum

Model # Sol Integrality gap proportion

Mean Std Min 25% 50% 75% Max

MT 4 0.0069 0.0052 0.0000 0.0034 0.0061 0.0101 0.0277

ML 4 0.0074 0.0055 0.0000 0.0036 0.0064 0.0104 0.0281

OT 0 0.0165 0.0094 0.0005 0.0088 0.0153 0.0210 0.0435

OL 0 0.0174 0.0100 0.0005 0.0096 0.0158 0.0230 0.0454

is not in complete linear description with ML. The old models are denoted OT and OL
respectively.

For both modern and old models we set the minimal production b to 20% of the
respective maximal capacities and solve 100 decentralized market problems for each
model and each setting First, Second and Third. For each of these problems we
draw randomuniformly distributed floats differing atmost by 20% from the parameters
given in Table 1. The demand is chosen randomly between the minimal production
while operating all plants and the maximal production while operating all plants in
order to ensure feasibility.

We solve 100 decentralizedmarket problems for each setting and here in the First
setting there are four decentralizedmarket problems in MT and ML that have a solution.
On the other hand there are no competitive equilibria in OT and OL. This can be seen
in Table 5. Also Table 5 shows that the lowest proportion of the integrality gaps is at
0.0005, and therefore the setting is close to have a competitive equilibrium.

In case we raise the minimal production capacity to 30% of the maximal production
capacity in the Second setting there is only one decentralized market problem with
a solution in MT and there is no decentralized market problem with a solution in the
old setting OT and OL. However, the solution found in the new setting exemplifies that
using the complete linear description for the market participants is important.

More competitive equilibria exist in the Third case where the minimal production
is set to 10% of the maximal production capacity while the minimal uptime is set to
3 hours and the minimum downtime is set to 7 hours. Here there are 11 decentralized
market problems with solutions in MT and ML while in the old setting there are 7
decentralized market problems with solutions found in OT where only 4 of them are
found in the OL computations.

The statistical data for all three settings shows that the standard deviation is very low
overall, while it still is higher in the oldmodels than in the newmodels. Furthermore the
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Table 6 Results min-up/min-down Second setting: With the number of problems containing solutions
and the integrality gap proportion with standard deviation, percentiles, minimum and maximum

Model # Sol Integrality gap proportion

Mean Std Min 25% 50% 75% Max

MT 1 0.0099 0.0061 0.0000 0.0051 0.0089 0.0134 0.0263

ML 0 0.0109 0.0066 0.0003 0.0056 0.0102 0.0152 0.0273

OT 0 0.0216 0.0115 0.0010 0.0131 0.0199 0.0268 0.0530

OL 0 0.0230 0.0122 0.0010 0.0140 0.0208 0.0295 0.0553

Table 7 Results min-up/min-down Third setting: With the number of problems containing solutions and
the integrality gap proportion with standard deviation, percentiles, minimum and maximum

Model # Sol Integrality gap proportion

Mean Std Min 25% 50% 75% Max

MT 11 0.0021 0.0024 0.0000 0.0003 0.0013 0.0028 0.0107

ML 11 0.0022 0.0027 0.0000 0.0003 0.0014 0.0031 0.0141

OT 7 0.0022 0.0026 0.0000 0.0003 0.0013 0.0027 0.0105

OL 4 0.0037 0.0046 0.0000 0.0006 0.0022 0.0051 0.0266

25% percentile in the first two settings is not close to have a competitive equilibrium.
However in the Third setting for MT, ML, OT, OL the 25% percentile is smaller
than 10−03. Therefore in Third there are a lot of instances very close to having a
competitive equilibrium. Another observation is that in the old models the integrality
gap proportions are higher than in the new models. This is because the startup costs
for the old types of plants are, with the exception of gas plants, a lot higher. Thus, the
integralities make more of a difference in this setting as the corresponding costs are
higher and thus the integrality gap widens.

In the beginning of this sectionwe highlighted the importance of using the complete
linear description for the market participants’ problems (1). This is illustrated by the
preceding computations — some decentralized market problems with competitive
equilibria are found even though we did not use the complete linear descriptions, but
some are not. This implies that in order to ensure that decentralized market problems
with solutions are correctly identified it is thus crucial to use the complete linear
description.

5 Conclusion

In convex markets linear prices, leading to a competitive equilibrium, exist, however,
in markets with nonconvexities such a competitive equilibrium may not exist. For the
case where nonconvexities arise because of integralities, we give sufficient conditions
underwhich a competitive equilibrium, supported by linear prices, exists. The resulting
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Theorem 1 can be used to identify decentralized market problems to which such a
solution exists. As a consequence we show that a competitive equilibrium, supported
by linear prices, exists for a special case of decentralized market problems, where inter
alia the constraintmatrices of themarket participants’ problems are totally unimodular.
We then give examples for decentralized market problems fulfilling the properties
of this special case. Finally, we apply Theorem 1 to decentralized market problems
arising in energy markets. There, first we show that competitive equilibria may exist
in energy markets regardless of integrality constraints even though they do not exist in
general. This can especially be seen in the classical example by Scarf. Therefore this
shows that checking whether a competitive equilibrium exists in decentralized market
problems with integralities may lead to finding competitive equilibria. Second, we
show that it is important to choose the right model, because otherwise only part of
the solutions might be found. This is exemplified by decentralized market problems
arising in energy markets with min-up/min-down constraints where we compare two
problem formulations. One of these formulations is in complete linear description and
the other one is not. Here it can be seen that in case a formulation is chosen that is
not in complete linear description there are some decentralized market problems that
have solution where no competitive equilibrium can be found using this formulation.
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