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Dynamic Cost-Per-Action Mechanisms and

Applications to Online Advertising

Hamid Nazerzadeh∗ Amin Saberi† Rakesh Vohra‡

July 13, 2007

Abstract

We examine the problem of allocating a resource repeatedly over time amongst a set of
agents. The utility that each agent derives from consumption of the item is private informa-
tion to that agent and, prior to consumption may be unknown to that agent. The problem is
motivated by keyword auctions, where the resource to be allocated is a slot on a search page.
We describe a mechanism based on a sampling-based learning algorithm that under suitable as-
sumptions is asymptotically individually rational, asymptotically Bayesian incentive compatible
and asymptotically ex-ante efficient. The mechanism can be interpreted as a cost per action
keyword auction.

1 Introduction

We study the following problem: there are a number of self-interested agents competing for identical
items sold repeatedly at times t = 1, 2, · · · . At each time t, a mechanism allocates the item to one
of the agents. Agents discover their utility for the good only if it is allocated to them. If agent
i receives the good at time t, she realizes utility uit (denominated in money) for and reports (not
necessarily truthfully) the realized utility to the mechanism. Then, the mechanism determines how
much the agent has to pay for receiving the item. We allow the utility of an agent to change over
time.

For this environment we are interested in auction mechanisms which have the following four
properties.

1. The mechanism is individually rational in each period.

2. Agents have an incentive to truthfully report their realized utilities.

3. The efficiency (and revenue) is, in an appropriate sense, not too small compared to a second
price auction.
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4. The correctness of the mechanism does not depend on an a-priori knowledge of the distribution
of the uit’s. This feature is motivated by the Wilson doctrine ([21]).

The precise manner in which these properties are formalized is described in section 2.
Each mechanism in the class we investigate is associated with a sampling-based learning algo-

rithm. The learning algorithm is used to estimate the expected utility of the agents, and consists of
two alternating phases: explore and exploitation. During an explore phase, the item is allocated for
free to a randomly chosen agent. During an exploitation phase, the mechanism allocates the item
to the agent with the highest estimated expected utility. After each allocation, the agent who has
received the item reports its realized utility. Subsequently, the mechanism updates the estimate of
utilities and determines the payment.

Since there is uncertainty about the utilities, it is possible that in some periods the item is
allocated to an agent who does not have the highest utility in that period. Hence, the natural
second-highest price payment rule would violates individual rationality. If the mechanism does not
charge an agent because her reported utility after the allocation is low, it gives her an incentive
to shade her reported utility down. Our mechanism solves these problems by using an adaptive,
cumulative pricing scheme.

We give sufficient conditions on the underlying learning algorithm that ensure that the cor-
responding mechanism has the four desired properties. In particular, we identify simple mecha-
nisms that have the desired properties for the case when the uit’s are independent and identically-
distributed random variables or where their expected values evolve like independent reflected Brow-
nian motions. In these cases the mechanism is actually ex-post individually rational.

In the next section, we will motivate our work in the context of online advertising. However,
the motivation for our mechanism is not limited to such applications.

1.1 Keyword auctions

Each keyword query in a search engine returns a page containing links relevant to the query and an
ordered list of paid advertisements called sponsored links. For instance, if a seller of novelty gifts
buys the word gift, each time a user performs a search on this word, a link to the novelty seller will
appear on the search results page. When the user clicks on that link, she is sent to the relevant
advertiser’s web page. The advertiser then pays the search engine for sending the user to its web
page. This is called ‘cost-per-click’ (CPC) pricing.

The price an advertiser pays is determined by a generalized second price (GSP) auction. Ad-
vertisers submit bids that represent the CPC they are prepared to pay. The highest bidder wins
the top slot, the second highest bidder the second slot and so on. The advertiser in position n pays
a price per click one cent higher than the bid of the advertiser in position (n + 1).1

CPC is considered more attractive than the cost-per-impression (CPM) charging scheme used
in traditional media (e.g., magazines and television) or banner advertising. In CPM an advertiser
is charged based on the (estimated) number of people exposed to the ad.

CPC’s chief drawback is its vulnerability to click-fraud. Click fraud refers to clicks generated
by someone or something with no genuine interest in the advertisement. Such clicks can be gen-
erated by the publisher of the content who has an interest in receiving a share of the revenue of
the advertisement or by a rival who wishes to increase the cost of advertising for the advertiser.

1 The payments are adjusted by fudge factors that account for the relevance of ads.
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Click-fraud is considered by many experts to be the biggest challenge facing the online advertising
industry[12, 8, 20, 18].

A natural solution for the problem of click fraud is to charge advertisers according to Cost-Per-
Action or Cost-Per-Acquisition (CPA). Instead of paying per click, the advertiser pays only when
a user takes a specific action (eg downloads software) or completes a transaction. The relevant
set of actions is chosen by the advertiser in advance. Several Companies like Advertising.com,
Turn.com, and Snap.com sell advertising in this way. Google and eBay have begun to sell some of
their advertising space via CPA 2.

If an action is defined as a sale, then CPA makes generating a fraudulent action a more costly
enterprise, but not impossible. One could use a stolen credit card number for example. On the
flip side, CPA increases the incentives for the advertiser to under report the number of actions
that have taken place so as to reduce her payments. This can be mitigated, but not entirely, by
requiring the advertiser to install software that will monitor actions that take place on their web
site. Still, even moderately sophisticated advertisers can find a way to manipulate the software if
they find it sufficiently profitable.

The main difference between an auction where payments depend on CPC and one where they
depend on CPA is that a click can be observed by both the advertiser and the search engine but
only the advertiser can observe the action of the user and she can hide it from the search engine.
It is this difference that motivates the present paper.

In our setting, the item being allocated is a search query for a keyword. An advertiser obtains
a payoff when the user clicks on her advertisement and takes a specific action. Since the payoff is
uncertain, she cannot know what it will be unless her ad is displayed. For simplicity of exposition
only, we assume one keyword and one advertisement slot. In section 6 we outline how to extend
our results to the case where more than one advertisement can be displayed for each query.

1.2 Related Work

Here we summarize some of the mostly closest results from dynamic mechanism design literature
(for a comprehensive survey see [19]).

First, in a finitely repeated version of the environment considered here, Athey and Segal [2]
construct an efficient, budget balanced, direct revelation mechanism where truthful revelation in
each period is Bayesian incentive compatible. The mechanism for multiple periods is obtained by
backward induction and an iterative re-balancing of the payments, to achieve a budget balance.
Bapna and Weber [4] consider the infinite horizon version of [2]. They describe a class of mech-
anisms based on the Gittins index (see [9]) and give necessary and sufficient conditions for such
mechanisms to be incentive compatible. Bergemann and Välimäki [5] propose an incentive com-
patible generalization of the Vickrey-Clark-Groves mechanism based on the marginal contribution
of each agent for this environment. Recently, Cavallo et. al [7] extend the result when the size of
the population changes over time. All these mechanisms need the exact solution of the underlying
optimization problems, and therefore require complete information about the prior of the utilities of
the agents; also, they do not apply when the evolution of the utilities of the agents is not stationary
over time. This violates the last of our desiderata.

In the context of sponsored search, attention has focused on ways of estimating click through

2CPA auctions have other advantages like simplifying the bidding language or lowering the barrier to entry for
advertisers. For a detailed discussion of the pluses and minuses of CPA auctions see [16].
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rates. The obvious way to estimate click through rates would be to sample by assigning an advertiser
to a slot independent of their bid just so as to collect data. This reduces revenue and can encourage
bidders to shade their bids down. Gonen and Pavlov [10] give a mechanism which learns the click-
through rates via optimal sampling and show that truthful bidding is, with high probability, a
(weakly) dominant strategy in this mechanism. In [14, 11] and [13] the vulnerability of various
procedures for estimating click through rates is examined. Immorlica et. al. [13], in particular,
identify a class of click through learning algorithms in which fraudulent clicks can not increase the
expected payment per impression by more than o(1). In all of these papers, unlike ours, the utilities
of agents are assumed fixed over time.

2 Definitions and Notation

Suppose n agents competing in each period for a single item. The item is sold repeatedly at time
t = 1, 2, · · · . Denote by uit the nonnegative utility of agent i for the item at time t. Utilities are
denominated in a common monetary scale.

The utilities of agents may evolve over time according to a stochastic process. We assume that
for i 6= j, the evolution of uit and ujt are independent stochastic processes. We also define µit =
E[uit|ui1, · · · , ui,t−1]. Throughout this paper, expectations are taken conditioned on the complete
history. For simplicity of notation, we now omit those terms that denote such a conditioning. With
notational convention, it follows, for example, that E[uit] = E[µit]. Here the second expectation is
taken over all possible histories.

Let M be a mechanism used to sell the items. At each time, M allocates the item to one of
the agents. Let i be the agent who has received the item at time t. Define xit to be the indicator
variable of allocation of the item to i at time t. After the allocation, agent i observes her utility,
uit, and then reports rit, as her utility for the item, to the mechanism. Note that we do not require
an agent know its utility for possessing the item in advance of acquiring it. The mechanism then
determines the payment, denoted by pit.

Definition 1 An agent i is truthful if rit = uit, for all time xit = 1, t > 0.

Our goal is to design a mechanism which has the following properties:

Individual Rationality: A mechanism is ex-post individually rational if for any time T > 0 and
any agent 1 ≤ i ≤ n, the total payment of agent i does not exceed the sum of her reports:

T∑

t=1

xitrit − pit > 0.

M is asymptotically ex-ante individually rational if:

lim inf
T→∞

E[
T∑

t=1

xitµit − pit] ≥ 0.

Asymptotic Incentive Compatibility: This property implies that truthfulness defines an asymp-
totic Bayesian Nash equilibrium. Consider agent i and suppose all agents except i are truthful.
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Let Ui(T ) be the expected total profit of agent i, if agent i is truthful between time 1 and
T . Also, let Ũi(T ) be the maximum of expected profit of agent i under any other strategy.
Asymptotic incentive compatibility requires that

Ũi(T )− Ui(T ) = o(Ui(T )).

Ex-ante Efficient: Call a mechanism that allocates at each time t (and for each history) the
item to an agent in arg maxi µit ex-ante efficient. If each agent i knew µit for all t, such an
allocation could be achieved in an an incentive compatible way. Have each i report a value
of µit, give the item to any agent in arg maxi µit and charge them the second highest µit. Let
γt be the second highest µit at time t > 0. Then, the expected revenue of this second price
mechanism is equal to E[

∑T
t=1 γt].

We will measure how close M comes to being ex-ante efficient by comparing its expected
revenue the expected revenue of the second price mechanism just described. Let R(T ) be the
expected revenue of mechanism M between time 1 and T when the agents are truthful, i.e.
R(T ) = E[

∑T
t=1

∑n
i=1 pit].

Then, M is ex-ante efficient if

E[
T∑

t=1

γt]−R(T ) = o(R(T )).

3 Proposed Mechanism

The mechanism we propose is built around a learning algorithm that estimates the expected utility
of the agents. We refrain from an explicit description of the learning algorithm. Rather, we describe
sufficient conditions for the learning algorithm that ensure that the resulting mechanism has the
three properties we seek (see section 3.1). In section 4 and 5 we give two examples of environments
where learning algorithms satisfying these sufficient conditions exist.

The mechanism consists of two phases: explore and exploit. During the explore phase, with
probability η(t), η : N → [0, 1], the item is allocated for free to a randomly chosen agent. During
the exploit phase, the mechanism allocates the item to the agent with the highest estimated expected
utility. Afterwards, the agent reports her utility to the mechanism and the mechanism determines
the payment. The mechanism is give in Figure 1. We first formalize our assumptions about the
learning algorithm and then we discuss the payment scheme.

The learning algorithm, samples uit’s at rate η(t) and based on the history of the reports of
agent i, returns an estimate of µit. Let µ̂it(T ) be the estimate of the algorithm for µit conditional
on the history of the reports up to time T . The history of the reports of agent i up to time T is
the sequence of the reported values and times of observation of uit up to but not including time
T . Note that we allow T > t. Thus, information at time T > t can be used to revise an estimate
of µit made at some earlier time. We assume that increasing the number of samples only increases
the accuracy of the estimations, i.e. for any truthful agent i, and times T1 ≤ T2:

E[|µ̂it(T1)− µit|] ≥ E[|µ̂it(T2)− µit|]. (1)

In the inequality above, and in the rest of the paper, the expectations of µ̂it are taken over the
evolution of uit’s and the random choices of the mechanism. Recall that for simplicity of notation,
we omit the terms denoting conditional expectations.
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For t = 1, 2, . . .

With probability η(t), explore:

Randomly allocate the item to an agent i, 1 ≤ i ≤ n.

pit ← 0

With probability 1− η(t), exploit:

Randomly allocate the item to an agent i ∈ argmaxi{µ̂it(t)}.

pit ←
∑t−1

k=1 yik min{γ̂k(t), µ̂ik(k)} −∑t−1
k=1 pik

rit ← the report of agent i.

pjt ← 0, j 6= i

Figure 1: MechanismM

To describe the payments recall that γt is the second highest µit and let γ̂t(T ) = maxj 6=i{µ̂jt(T )},
where i is the agent who received the item at time t. We define yit to be the indicator variable of
the allocation of the item to agent i during an exploit phase. The payment of agent i at time t,
denoted pit, is determined so that:

t∑

k=1

pik =
t−1∑

k=1

yik min{γ̂k(t), µ̂ik(k)}.

An agent only pays for items that are allocated to him during the exploit phase, up to but
not including time t. At time t, the payment of agent i for the item she received at time k < t
is min{γ̂k(t), µ̂ik(k)}. Since the learning algorithm’s estimates of the utility of the agent become
more precise over time, our cumulative payment scheme allows one to correct for errors in the past.
Furthermore, because of the estimation errors, it is possible that the mechanism allocates an item
to an agent who is not the one with the highest expected utility. By taking the minimum of γ̂k(t)
and µ̂ik(k) we avoid overcharging an agent and therefore remove any incentives for an agent to
shade down her reported utility.

3.1 Sufficient Conditions

We start with a condition that guarantees asymptotic ex-ante individual rationality and asymptotic
incentive compatibility. Let ∆t = maxi{|µ̂it(t)− µit|}.

Theorem 1 If for the learning algorithm:

(C1) E[µiT +
T−1∑

t=1

∆t] = o(E[
T∑

t=1

η(t)µit]), ∀ 1 ≤ i ≤ n

then mechanism M is asymptotically ex-ante individually rational and incentive compatible.
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We outline the proof first. As we prove in Lemma 2, by condition (C1), the expected profit of a
truthful agent up to time T is Ω(E[

∑T
t=1 η(t)µit]). This implies asymptotic individual rationality.

Also, observe that the expected total error in the estimates of the payments up to time T − 1 is
bounded by O(E[

∑T−1
t=1 ∆t]). A non-truthful agent may exploit the gap between the estimated and

the actual expected utilities to increase her profit. However, this profit cannot exceed the total
error. Also, if i received the item at time t, she would not pay for it before the next time she gets
the item during the exploit phase. The utility of this item, contributes tohers profit up to time T .
Condition (C1) implies that the expected profit of an agent cannot be increased by more than a
o(1) factor.

Lemma 2 If condition (C1) holds, then the expected profit of a truthful agent i up to time T under
M, Ui(T ), is at least:

(
1

n
− o(1))E[

T∑

t=1

η(t)µit].

Proof : The items that agent i receives during the explore phase are free. The expected
total utility of i for these items up to time T is 1

nE[
∑T

t=1 η(t)µit]. Let CT = {t < T |yit =
1, if i is truthful} be the subset of periods within an exploit phase.

Ui(T ) = E[
T∑

t=1

xituit − pit]

= E[
∑

t/∈CT

xituit] + E[
∑

t∈CT

(uit − pit)]

=
1

n
E[

T∑

t=1

η(t)µit] + E[
∑

t∈CT

(µit −min{γ̂t(T ), µ̂it(t)})] (2)

For t ∈ CT :

E[(µit −min{γ̂t(T ), µ̂it(t)})I(t ∈ CT )] ≥ E[(µit − µ̂it(t))I(t ∈ CT )]

≥ −E[|µit − µ̂it(t)|]
≥ −E[∆t]

Substituting into inequality (2), by condition (C1):

Ui(T ) ≥ 1

n
E[

T∑

t=1

η(t)µit]− E[
T−1∑

t=1

∆t] =
1

n
E[

T∑

t=1

η(t)µit]− o(E[
T∑

t=1

η(t)µit]) (3)

�

Proof of Theorem 1: Lemma 2 yields asymptotic ex-ante individual rationality. We show
that truthfulness is asymptotically a best response when all other agents are truthful. Fix an
agent i intending to deviate and let S be the strategy she deviates to. Fixing the evolution of all
ujt’s, 1 ≤ j ≤ n, and all random choices of the mechanism, i.e. the steps in the explore phase
and the randomly chosen agents, let DT be the times that i receives the item under strategy
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S during the exploit phase, i.e. DT = {t < T |yit = 1, if the strategy of i is S}. Similarly, let
CT = {t < T |yit = 1, if i is truthful} be the set of times that i would receive the item during the
exploit phase if she is truthful up to T . Also, let µ̂′

it, and γ̂′
t correspond to the estimates of the

mechanism when the strategy of i is S. We first compute the expected profit of i, under strategy
S, during the exploit phase:

E[
T∑

t=1

yituit − pit] = E[
∑

t∈DT

µit −min{γ̂′
t(T ), µ̂′

it(t)}] + E[yiT µiT ]

= E[
∑

t∈DT \CT

µit −min{γ̂′
t(T ), µ̂′

it(t)}] +

E[
∑

t∈DT∩CT

µit −min{γ̂′
t(T ), µ̂′

it(t)}] +

E[yiT µiT ] (4)

For time t ≥ 1, we examine two cases:

1. If t ∈ DT∩CT , then agent i, in expectation, cannot decrease the “current price”, min{γ̂′
t(T ), µ̂′

it(t)},
by more than O(∆t):

min{γ̂′
t(T ), µ̂′

it(t)} ≥ min{γ̂′
t(T ), γ̂′

t(t)}
≥ γt −max{γt − γ̂′

t(T ), γt − γ̂′
t(t)}

≥ γt − (γt − γ̂′
t(T ))+ − (γt − γ̂′

t(t))
+

where (z)+ = max{z, 0}. Recall that γ̂′
t(T ) = maxj 6=i{µ̂′

it(T )} and all other agent are truthful.
Hence, taking expectation from both sides, by (1):

E[min{γ̂′
t(T ), µ̂′

it(t)}I(t ∈ DT ∩ CT )] ≥ E[(γt − (γt − γ̂′
t(T ))+ − (γt − γ̂′

t(t))
+)I(t ∈ DT ∩ CT )]

≥ E[γtI(t ∈ DT ∩ CT )]− E[2∆t] (5)

2. If t ∈ DT \ CT , agent i cannot increase her “expected profit”, µit − min{γ̂′
t(T ), µ̂′

it(t)}, by
more than O(∆t):

µit −min{γ̂′
t(T ), µ̂′

it(t)} ≤ µit −min{γ̂′
t(T ), γ̂′

t(t)}
≤ (µit − µ̂it(t)) + (µ̂it(t)− γt) + max{γt − γ̂′

t(T ), γt − γ̂′
t(t)}

≤ 2∆t + (γt − γ̂′
t(T ))+ + (γt − γ̂′

t(t))
+

Taking expectation from both sides, by (1):

E[(µit −min{γ̂′
t(T ), µ̂′

it(t)})I(t ∈ DT − CT )] ≤ E[2∆tI(t ∈ DT − CT )]

+E[((γt − γ̂′
t(T ))+ + (γt − γ̂′

t(t))
+)I(t ∈ DT − CT )]

≤ E[4∆t] (6)

Substituting inequalities (5) and (6) into (4):

E[
T∑

t=1

yituit − pit] ≤ E[
T−1∑

t=1

6∆t] + E[yiT µiT ] + E[
∑

t∈DT∩CT

µit − γt]

≤ E[
T−1∑

t=1

6∆t] + E[yiT µiT ] + E[
∑

t∈CT

µit − γt]− E[
∑

t∈CT \DT

µit − γt] (7)
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For t ∈ CT , since µ̂it(t) ≥ γ̂t(t), we have:

E[γt − µit] ≤ E[2∆t]

Substituting into (7):

E[
T∑

t=1

yituit − pit] ≤ 8E[
T−1∑

t=1

∆t] + E[yiT µiT ] + E[
∑

t∈CT

µit − γt]

= 8E[
T−1∑

t=1

∆t] + E[yiT µiT ] + E[
∑

t∈CT

µit − γ̂t(T )] + E[
∑

t∈CT

γ̂t(T )− γt]

≤ 10E[
T−1∑

t=1

∆t] + E[yiT µiT ] + E[
∑

t∈CT

µit − γ̂t(T )] (8)

≤ O(E[
T−1∑

t=1

∆t] + E[yiT µiT ]) + E[
∑

t∈CT

µit −min{γ̂t(T ), µ̂it(t)}]

≤ o(E[
T∑

t=1

η(t)µit]) + E[
∑

t∈CT

µit −min{γ̂t(T ), µ̂it(t)}]

Inequality (8) is derived by (1), and the last inequality follows by (C1). The expected utility
of the truthful strategy and S during the explore phase is equal. Therefore, by Lemma 2, the
mechanism is asymptotically incentive compatible. �

Let R(T ) be the expected revenue of mechanismM between time 1 and T when all agents are
truthful. Recall that the mechanism is asymptotically ex-ante efficient if

E[
T∑

t=1

γt]−R(T ) = o(R(T )).

Theorem 3 If for the learning algorithm:

(C2) E[γT +
T−1∑

t=1

(∆t + η(t)γt)] = o(E[
T∑

t=1

γt])

then, M is asymptotically ex-ante efficient.

Proof : There are three reasons why M may fail to be ex-ante efficient. First, during the
explore phase when the item is allocated at random. The loss in potential revenue is approximately
E[

∑T
t=1 η(t)µit]. Second the error in estimation can lower payments and this loss is bounded by

O(E[
∑T−1

t=1 ∆t]). Third, the payment for an item received at time T is received after time T .
Now,

R(T ) = E[
T∑

t=1

n∑

i=1

pit] = E[
T−1∑

t=1

n∑

i=1

yit min{γ̂t(T ), µ̂it(t)}].
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When all the agents are truthful, for i, yit = 1:

γt −min{γ̂t(T ), µ̂it(t)} ≤ γt −min{γ̂t(T ), γ̂t(t)} ≤ γt − γ̂t(t) ≤ ∆.

Therefore:

R(T ) ≥ E[
T−1∑

t=1

n∑

i=1

yit(γt −∆t)] (9)

= E[
T−1∑

t=1

(1− η(t))(γt −∆t)] (10)

≥ E[

T∑

t=1

γt]− E[γT +

T−1∑

t=1

∆(t) + η(t)γt]

= (1− o(1))E[
T∑

t=1

γt]

Inequality (9) captures the estimation error. Inequality (10) is derived by the revenue loss during
the explore phase, note that the explore phase is independent of the evolution of the utilities. The
last inequality is followed by condition (C2). �

3.2 Allowing agents to bid

In mechanism M no agent explicitly bids for an item. Whether an agent receives an item or
not depends on the history of their reported utilities and the estimates that M forms from them.
This may be advantageous when the bidders themselves are unaware of what their utilities will be.
However, when agents may posses a better estimate of their utilities we would like to make use of
that. For this reason we describe how to modifyM so as to allow agents to bid for an item.

If time t occurs during an exploit phase let Bt be the set of the agents who bid at this time.
The mechanism bids on the behalf of all agent i /∈ Bt. Denote by bit the bid of agent i ∈ Bt for the
item at time t. The modification of M sets bit = µ̂it(t), for i /∈ B. Then, the item is allocated at
random to one of the agents in arg maxi bit.

If i is the agent who received the item at time t, let A = {bjt|j ∈ Bt} ∪ {µjt|, j /∈ Bt}. Define γt

as the second highest value in A. Let γ̂t(T ) to be equal to maxj 6=i bjk. The payment of agent i will
be

pit ←
t−1∑

k=1

yik min{γ̂k(t), bik} −
t−1∑

k=1

pik.

To incorporate the fact that bidders can bid for an item, we must modify the definition of
truthfulness.

Definition 2 Agent i is truthful if:

1. rit = uit, for all time xit = 1, t ≥ 1.

2. If i bids at time t, then E[|bit − µit|] ≤ E[|µ̂it − µit|].
Note that item 2 does not require that agent i bid their actual utility only that their bid be

closer to the mark than the estimate. With this modification in definition, Theorems 1 and 3
continue to hold.
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4 Independent and Identically-distributed Utilities

In this section, we assume that for each i, uit’s are independent and identically-distributed random
variables. For simplicity, we define µi = E[uit], t > 0. Without loss of generality, we also assume
0 < µi ≤ 1.

In this environment the learning algorithm we use is an ε-greedy algorithm for the multi-armed
bandit problem.3 Let nit =

∑t−1
k=1 xit. For ǫ ∈ (0, 1), we define:

ηǫ(t) = min{1, nt−ǫ ln1+ǫ t}

µ̂it(T ) =

{
(
∑T−1

k=1 xikrik)/niT , niT > 0

0, niT = 0

Call the mechanism based on this learning algorithmMǫ(iid).

Lemma 4 If all agents are truthful, then, under Mǫ(iid)

E[∆t] = O(
1√
t1−ǫ

).

Proof : We prove the lemma by showing that for any agent i,

Pr[|µi − µ̂it(t)| ≥
1√
t1−ǫ

µi] = o(
1

tc
),∀c > 0.

First, we estimate E[nit]. There exists a constant d such that:

E[nit] ≥
t−1∑

k=1

ηǫ(k)

n
=

t−1∑

k=1

min{ 1
n

, k−ǫ ln1+ǫ k} >
1

d
t1−ǫ ln1+ǫ t

By the Chernoff-Hoeffding bound, Pr[nit ≤ E[nit]
2 ] ≤ e

−t1−ǫ
ln

1+ǫ t
8d .

Inequality (1) and the Chernoff-Hoeffding bound imply:

Pr[|µi − µ̂it(t)| ≥
1√
t1−ǫ

µi] = Pr[|µi − µ̂it(t)| ≥
1√
t1−ǫ

µi ∧ nit ≥
E[nit]

2
]

+ Pr[|µi − µ̂it(t)| ≥
1√
t1−ǫ

µi ∧ nit <
E[nit]

2
]

≤ 2e
− 1

t1−ǫ
t1−ǫ

ln
1+ǫ t µi

2d + e
−t1−ǫ

ln
1+ǫ t

8d

= o(
1

tc
),∀c > 0

Therefore, with probability 1− o(1
t ), for all agents, ∆t ≤ 1√

t1−ǫ
. Since the maximum value of uit is

1, E[∆t] = O( 1√
t1−ǫ

). �

Next, we show thatMǫ(iid) satisfies a stronger notion of individual rationality. Mǫ(iid) satisfies
ex-post individual rationality if for any agent i, and for all T ≥ 1:

T∑

t=1

pit ≤
T∑

t=1

xitrit.

3 See [3] for a similar algorithm.
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Theorem 5 Mǫ(iid) is ex-post individually rational. Also, for 0 ≤ ǫ ≤ 1
3 , Mǫ(iid) is asymptoti-

cally incentive compatible and ex-ante efficient.

Proof : We first prove ex-post individual rationality:

T∑

t=1

pit =
T−1∑

t=1

yit min{γ̂t(T ), µ̂it(t)}

≤
T−1∑

t=1

yitγ̂t(T )

≤
T−1∑

t=1

yitµ̂iT (T )

≤ nitµ̂iT (T )

=
T−1∑

t=1

xitrit

The third inequality follows because the item is allocated to i at time T which implies µ̂it(T ) ≥
γ̂t(T ). We complete the proof by showing that conditions (C1) and (C2) hold. By lemma 4, for
ǫ ≤ 1

3 :

E[µi +
T−1∑

t=1

∆t] = O(T
1+ǫ
2 ) = o(T 1−ǫ ln1+ǫ T ) = O(

T∑

t=1

ηǫ(t)µi).

Therefore, (C1) holds. The revenue from charging the second highest µit in each period up to time
T is Tγt. For any ǫ > 0, E[1 +

∑T−1
t=1 ∆t + ηt] = o(T ) which implies (C2). �

5 Brownian Motion

In this section, we assume for each i, 1 ≤ i ≤ n, the evolution of µit is a reflected Brownian
motion with mean zero and variance σ2

i ; the reflection barrier is 0. In addition, we assume µi0 = 0,
and σ2

i ≤ σ2, for some constant σ. The mechanism observes the values of µit at discrete times
t = 1, 2, · · · .

In this environment our learning algorithm estimates the reflected Brownian motion using a
mean zero martingale. Define lit as the last time before t that the item is allocated to i. If i has
not been allocated an item yet, lit is zero (recall µi0 = 0).

ηǫ(t) = min{1, nt−ǫ ln2+2ǫ t} (11)

µ̂it(T ) =





rili,t+1
t < T

rilit t = T

rili,T+1
t > T

(12)

Call this mechanismMǫ(B). It is not difficult to verify that the results in this section hold as long

as the expected value of the error of these estimates at time t is o(t
1

6 ). However, for simplicity, we
assume that the advertiser reports the exact value of µit.

We recall some well-known properties of reflected Brownian motions (see [6]).
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Proposition 6 Let [Wt, t ≥ 0] be a reflected Brownian motion with mean zero and variance σ2;
the reflection barrier is 0. Assume the value of Wt at time t is equal to y:

E[y] = θ(
√

tσ2) (13)

For T > 0, let z = Wt+T . For the probability density function of z − y we have:

Pr[(z − y) ∈ dx] ≤
√

2

πTσ2
e

−x2

2Tσ2 (14)

Pr[|z − y| ≥ x] ≤
√

8Tσ2

π

1

x
e

−x2

2Tσ2 (15)

E[|z − y|I(|z − y| ≥ x)] ≤
√

8Tσ2

π
e

−x2

2Tσ2 (16)

Corollary 7 The expected value of the maximum of µiT , 1 ≤ i ≤ n, is θ(
√

T ).

Note that in the corollary above n and σ are constant.

Lemma 8 Suppose under Mǫ(B) all agents are truthful until time T , then, E[∆T ] = O(T
ǫ
2 ).

Proof : Define Xit = |µi,T −µi,T−t|. We first prove Pr[Xit > T
ǫ
2 ] = o( 1

T c ),∀c > 0. There exists a
constant Td such that for any time T ≥ Td, the probability that i has not been randomly allocated
the item in the last t < Td step is at most:

Pr[T − liT > t] < (1− T−ǫ ln2+2ǫ T )t ≤ e
−t ln

2+2ǫ T
Tǫ . (17)

Let t = 1
ln1+ǫ T

T ǫ. By equation (15) and (17),

Pr[Xit > T
ǫ
2 ] = Pr[Xit > T

ǫ
2 ∧ T − liT ≤ t]

+ Pr[Xit > T
ǫ
2 ∧ T − liT > t]

= o(
1

T c
),∀c > 0.

Hence, with high probability, for all the n agents, Xit ≤ T
ǫ
2 . If for some of the agents Xit ≥ T

ǫ
2 ,

then, by Corollary 7, the expected value of the maximum of µit over these agent is θ(
√

T ). Therefore,
E[maxi{Xit}] = O(T

ǫ
2 ). The lemma follows because E[∆T ] ≤ E[maxi{Xit}]. �

Theorem 9 Mǫ(B) is ex- post individually rational. Also, for 0 ≤ ǫ ≤ 1
3 ,Mǫ(B) is asymptotically

incentive compatible and ex-ante efficient.

Proof : To prove ex-post individual rationality observe that

T∑

t=1

pit =

T−1∑

t=1

yit min{γ̂t(T ), µ̂it(t)} ≤
T−1∑

t=1

yitµ̂it(t) =

T−1∑

t=1

yitrilit ≤
T∑

t=1

xitrit.
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We complete the proof by showing the conditions (C1) and (C2) hold. By (13), the expected utility

of each agent at time t from random exploration is θ(
√

tσ2t−ǫ ln1+ǫ t) = θ(t
1

2
−ǫ ln1+ǫ t). Therefore,

the expected utility up to time T from random exploration is θ(T
3

2
−ǫ ln1+ǫ T ). By Lemma (8):

E[µiT +
T−1∑

t=1

∆t] = O(T 1+ ǫ
2 ).

For ǫ ≤ 1
3 , 3

2 − ǫ ≥ 1 + ǫ
2 this yields Condition(C1).

By Corollary 7, the expected value of γT is θ(
√

T ). Therefore, for any ǫ > 0,

E[
T∑

t=1

γt] = θ(T
3

2 ) = ω(T
3

2
−ǫ ln1+ǫ t + T 1+ ǫ

2 )

By condition (C2), Mǫ(B) is asymptoticly ex-ante efficient. �

To apply this model to sponsored search we treat each item as a bundle of search queries. Each
time step is defined by the arrival of m queries. The mechanism allocates all m queries to an
advertiser and after that, the advertiser reports the average utility for these queries. The payment
pit is now the price per item, i.e. the advertiser pays mpit for the bundle of queries. The value of
m is chosen such that µit can be estimated with high accuracy.

6 Discussion and Open Problems

In this section we discuss some extensions of the mechanisms.

Multiple Slots To modifyM so that it can accommodate multiple slots we borrow from Gonen
and Pavlov [10], who assume there exist a set of conditional distributions which determine the
conditional probability that the ad in slot j1 is clicked conditional on the ad in slot j2 being clicked.
During the exploit phase,M allocates the slots to the advertisers with the highest expected utility,
and the prices are determined according to Holmstrom’s lemma ([17], see also [1]) The estimates
of the utilities are updated based on the reports, using the conditional distribution.

Delayed Reports In some applications, the value of receiving the item is realized at some later
date. For example, a user clicks on an ad and visits the website of the advertiser. A couple of
days later, she returns to the website and completes a transaction. It is not difficult to adjust the
mechanism to accommodate this setting by allowing the advertiser to report with a delay or change
her report later.

Creating Multiple Identities When a new advertiser joins the system, in order to learn her
utility value our mechanism gives it a few items for free in the explore phase. Therefore our
mechanism is vulnerable to advertisers who can create several identities and join the system.

It is not clear whether creating a new identity is cheap in our context because the traffic
generated by advertising should eventually be routed to a legitimate business. Still, one way to
avoid this problem is to charge users without a reliable history using CPC.

Acknowledgment. We would like to thank Arash Asadpour, Peter Glynn, Ashish Goel, Ramesh
Johari, and Thomas Weber for fruitful discussions.
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