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Abstract
COVID-19 has affected mortality rates and financial markets worldwide. Against 
this background, we perform a COVID-19 stress test for life insurance, considering 
a joint financial and mortality shock, to evaluate the effectiveness of different risk 
mitigation strategies. Specifically, we conduct a model-based simulation analysis of 
a life insurer selling annuities and term life insurances. The analysis includes stress 
scenarios that are calibrated to observations during the first year of the COVID-19 
pandemic. We also consider new business and study the risk situation under three 
different risk mitigation strategies observed in practice as an immediate response to 
the pandemic: stopping sales, increasing premiums, or adjusting investment strate-
gies. Results show that a life insurer’s risk situation is mainly affected in the short 
term, selling annuities (in addition to term life insurance) immunizes against the 
mortality shock, and the immediate use of risk mitigation strategies can help reduce 
the negative impact.

Keywords Life insurance · Stress test · COVID-19 · Risk mitigation strategies · 
Asset–liability model

JEL Classification G22 · G23 · G32 · J11

1 Introduction

COVID-19 had and will continue to have a major impact on society worldwide. 
Under the backdrop of globalization, the virus spread quickly across countries, 
thereby increasing mortality rates and causing many economic problems, such as 
business interruptions and supply chain issues. The COVID-19 pandemic is thus 

 * Moritz Hanika 
 moritz.hanika@fau.de

1 School of Business, Economics and Society, Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU), Lange Gasse 20, 90403 Nuremberg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13385-023-00371-3&domain=pdf
http://orcid.org/0000-0002-8475-5376


526 M. Hanika 

1 3

notable not only for its impact on human health and mortality [29, 36] but also 
for its economic effects on financial markets [1, 43]. This makes it particularly 
relevant for the life insurance industry, whose core business is to adequately price 
mortality risks and ensure stable returns on assets under management.

Research by a U.S. company that uses data science to predict disease outbreaks 
indicates an increasing frequency of pandemics, revealing a 47–57% chance of a 
COVID-19-like event happening within the next 25 years [30]. Hence, managing 
pandemic shocks is highly relevant for life insurers. Although the previous lit-
erature has examined the general impact of COVID-19 on the insurance industry 
[34], particularly with respect to mortality risk [10, 33, 37] or insurance investing 
[27], academic research that analyzes the impact of the joint financial and mortal-
ity shock caused by COVID-19 on a life insurer’s risk situation in an asset–liabil-
ity-based simulation analysis is still missing. Further, Harris et  al. [22] showed 
that U.S. life insurers only sparingly responded to COVID-19 by removing spe-
cific policies or increasing premiums for newly sold policies for older people. 
However, the effectiveness of these immediate measures has not been analyzed 
in academic research so far. Against this background, we examine the impact of a 
joint financial and mortality shock on a life insurer’s risk situation in a COVID-
19 stress test. Furthermore, we evaluate the effectiveness of different risk mitiga-
tion strategies observed in practice that can be applied on short notice to draw 
conclusions for potential future pandemics. We find that a temporary pandemic 
event such as COVID-19 affects a life insurer’s risk situation, especially in the 
short run, and that the immediate use of risk mitigation strategies can reduce the 
negative impact.

COVID-19 has increased mortality rates differently across population groups, 
with older individuals or those with comorbidities being the most affected [11, 29]. 
Spiegelhalter [38] and Sasson [36] proposed that COVID-19 caused an upward log-
linear shift in mortality rates, affecting older individuals more. Schnürch et al. [37] 
described how to embed this shift in the popular Lee–Carter (LC) mortality model. 
Furthermore, they studied the impact of a COVID-19-like mortality shock on the 
valuation of life insurance products, similar to Carannante et al. [10] who conversely 
used an accelerated mortality model. Carannante et al. [9] examined the profitability 
of variable annuity contracts under a COVID-19-induced mortality shock, similar 
to Cheng [13] who focused on participating life insurance and considered changes 
in policyholders’ surrender behavior. While these existing studies observed only 
a limited impact of mortality shocks on life insurance, they did not consider joint 
financial and mortality shocks. Even before COVID-19, empirical research indicated 
that mortality and financial risks could be correlated [16] and some studies have 
explicitly investigated the consequences for the risk-neutral valuation of life insur-
ance products [2, 17, 23, 28]. In the context of COVID-19, Li et al. [26] used excess 
mortality and interest rate data from the COVID-19 pandemic in the U.S. to cali-
brate a bivariate jump diffusion model for the risk-neutral pricing of mortality bonds 
and observed a high correlation between mortality and interest rates during the pan-
demic. Furthermore, Arık et  al. [3] found only a small relevance of simultaneous 
financial and mortality shocks for the risk-neutral pricing of annuities and buyout 



527

1 3

A COVID‑19 stress test for life insurance: insights into the…

premiums. In contrast to previous studies, we focus on a life insurer’s risk situation 
and the effectiveness of risk mitigation strategies rather than risk-neutral valuation.

Regarding the observed risk mitigation strategies of life insurers as an immediate 
response to COVID-19, Harris et al. [22] observed only a few adjustments to prod-
uct pricing and offerings in the U.S.; these adjustments include slightly increased 
premiums by low-price leaders, increased prices for high-risk groups (e.g., smok-
ers), and removal of specific policies offered to older people from the market. Sim-
ilarly, U.S. life insurers during the Spanish flu of 1918 charged higher prices for 
new policies and gave up business in states with greater exposure to the disease 
[14]. Regarding investment strategies, Berry-Stölzle et  al. [5] observed that U.S. 
life insurers created cash buffers by raising external capital and cutting dividends 
in response to the 2008–2009 financial crisis; the same approach was also observed 
during the COVID-19 pandemic [19]. Another common strategy is to shift assets 
into low-risk investments (e.g., government bonds) to avoid higher volatility caused 
by financial crises [24]. However, investments in bonds are exposed to credit risk, 
which is highly relevant for insurance investments, as downgrades by rating agen-
cies increased during the COVID-19 pandemic [27]. In line with the academic lit-
erature, regulatory stress tests by the European and Occupational Pension Author-
ity (EIOPA) and the Australian Prudential Authority (APRA) showed that reactive 
management actions, such as de-risking of assets or raising capital, can help reduce 
the negative impact of a COVID-19-like stress scenario [18]; the common manage-
ment actions used by insurers are capital raising, reduction of new business volumes, 
and repricing [4].1 Building on these observations, we consider three risk mitigation 
strategies in our stress test: premium increases for new business, age-specific adjust-
ments of product offerings during the pandemic, and changes in the life insurer’s 
investment strategy at the beginning of the pandemic.

For the model framework of our stress test, we build on previous research that 
used asset–liability models to study the effectiveness of natural hedging2 [20, 42] or 
mortality bonds [12, 21] as risk mitigation strategies. In contrast to these studies, we 
consider a joint financial and mortality shock calibrated to COVID-19 and analyze 
the effectiveness of immediate measures rather than risk mitigation strategies that 
had to be initialized in the past. For the mortality model of our simulation analy-
sis, we follow Gatzert and Wesker [20] and use an extension of the LC model pro-
posed by Brouhns et al. [8]. To embed the mortality shock, we employ the approach 
of Schnürch et  al. [37] using mortality data from the first year of the COVID-19 
pandemic. For the asset model, we differentiate between high- and low-risk invest-
ments. Both evolve according to a geometric Brownian motion, and the life insurer 
specifies the portfolio composition (as in Bohnert et al. [7]) making adjustments in 
response to the pandemic outbreak possible. To include financial shocks depend-
ing on the risk levels of investment types, we use financial data from the first year 

1 Note that regulatory stress tests consider joint financial and mortality shocks but apply many simul-
taneous shocks to complex balance sheets relying on standard formulas, rarely consider multi-timestep 
internal models, and most often present results in an accumulated way.
2 The literature on natural hedging shows that selling annuities next to term life insurance is an effective 
tool to hedge against mortality risks and to smooth cash flow structures in general [20, 42].



528 M. Hanika 

1 3

of the COVID-19 pandemic and consider market and credit risks. The life insurer’s 
asset–liability model accounts for regular dividend payments to shareholders and 
new business (term life and annuity). Policies are actuarially calculated with addi-
tional loadings sold to different age groups, allowing the assessment of the effective-
ness of premium increases or age-specific adjustments in product offerings during 
the pandemic.

We run Monte Carlo simulations to analyze the long- and short-term effects of 
individual and joint financial and mortality shocks on a life insurer’s risk situation 
under different product portfolios (term life vs. annuity). Furthermore, we evaluate 
the effectiveness of the three risk mitigation strategies to reduce the negative impact 
of the joint financial and mortality shock for a life insurer particularly focusing on 
term life insurance. Our results show that financial and mortality shocks reinforce 
each other. The stress scenario increases the life insurer’s one-year default prob-
abilities during the pandemic but exerts only a small long-term impact on the life 
insurer’s risk situation. A sufficiently large portion of annuities in the product port-
folio immunizes against the mortality shock but only partially immunizes against 
the financial shock. Furthermore, the risk mitigation strategies reduce the negative 
short-term impacts, with the effectiveness depending on the respective strategies.

The remainder of this paper is organized as follows: Sect. 2 introduces the mortal-
ity and asset models with embedded shock mechanisms along with the life insurer’s 
asset–liability model. Section  3 explains the calibration of the financial and mor-
tality shock based on COVID-19 and the parameters used in the simulation analy-
ses. The numerical results are presented by first examining the long- and short-term 
effects of the (joint) shocks and then analyzing the effectiveness of different risk 
mitigation strategies. Finally, Sect. 4 summarizes the main findings.

2  Model framework

In this section, we describe the model framework used in our simulation analysis to 
study the impact of a joint financial and mortality shock, as exemplified by COVID-
19, on life insurance. We first describe the mortality model with a mortality shock, 
followed by the asset model with a financial shock, and finally, the life insurer’s 
asset–liability model.

2.1  Mortality model with shock

The mortality model describes the development of mortality rates for a given popu-
lation. The mortality rate m(x, t) of an x-year-old person in year t is defined as

where D(x, t) is the death count and E(x, t) is the exposure at risk. Given the mor-
tality rates in Eq.  (1), the corresponding one-year survival probability of an 
x-year-old person in year t can be computed using px(t) = exp (−m(x, t)) , and the 

(1)m(x, t) =
D(x, t)

E(x, t)
,
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one-year death probability is qx(t) = 1 − px(t) [8]. The probability npx(t) that an 
x-year-old person in year t will survive for the next n years can be computed using 
npx(t) =

∏n−1

i=0
px+i(t + i).

Building on Gatzert and Wesker [20], we assume that mortality rates follow the 
LC model [25], i.e.,

with age-specific constants ax and bx , time-varying trend kt , and homoscedastic error 
terms �m

x,t
 with a mean of zero. Although the model in Eq. (2) is underdetermined, 

adding the two constraints

ensures identifiability [25]. Furthermore, we use an extension of the LC model pro-
posed by Brouhns et al. [8], where the death counts D(x, t) are given by a Poisson 
distribution, i.e.,

The unknown parameters ax , bx , and kt are estimated by maximizing the corre-
sponding log-likelihood function

using Newton’s method, where the constraints in Eq.  (3) are applied after each 
update step [8]. To forecast mortality rates beyond the time of observation, the 
estimated parameters kt are used to fit a time series model. Lee and Carter [25] 
employed a simple random walk with drift, i.e.,

where � is a constant drift and �t denotes independent normally distributed random 
variables with a mean of zero and constant volatility �.3

In year t = t̃ , a pandemic event occurs and increases mortality in this specific 
year. To model the mortality shock in year t̃ , we build on the empirical observations 
during COVID-19, showing that the increase is age-specific and can be approxi-
mated by an upward log-linear shift for the 25–84 age group [36, 37]. Therefore, 
following Schnürch et al. [37] we consider the adjusted mortality rate

(2)m(x, t) = exp
(
ax + bx ⋅ kt + �m

x,t

)
,

(3)
∑
x

bx = 1 and
∑
t

kt = 0

D(x, t) ∼ Poisson(E(x, t) ⋅ m̂(x, t)) with m̂(x, t) = exp
(
ax + bx ⋅ kt

)
.

L
(
a
x
, b

x
, k

t

)
=
∑
x,t

(
D(x, t) ⋅

(
a
x
+ b

x
⋅ k

t

)
− E(x, t) ⋅ exp

(
a
x
+ b

x
⋅ k

t

))

(4)kt+1 = � + kt + �t,

(5)mshock(x, t) =

{
(1 + c) ⋅ m(x, t) if t = t̃

m(x, t) else

3 Note that more sophisticated time series models (e.g., ARIMA models) can be considered too [20, 25] 
and that the random walk with drift could be replaced by a Brownian motion with drift in a continuous 
time model [6].
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for a strictly positive constant c. Assuming that m(x, t) and mshock(x, t) follow an LC 
model, Schnürch et al. [37] mathematically proved that the only difference between 
the two LC models is approximately given by an increase in kt̃ without affecting kt 
in other years t ≠ t̃ or the parameters ax and bx . Therefore, we employ a single LC 
model in our stress test, where parameter kt is increased by a strictly positive con-
stant kshock in the year of the pandemic event t̃ , i.e.,

2.2  Asset model with financial shock

The asset model accounts for two types of investments. A high-risk investment S 
represents stocks while a low-risk investment B represents bonds. As in Bohnert 
et al. [7], the asset prices Ii

t
 of both investments i ∈ {S,B} evolve over time t accord-

ing to the geometric Brownian motion, i.e.,

with drifts �i , volatilities �i , and Brownian motions Wi
t
 . The solutions for the sto-

chastic differential equations are given by

with independent standard normally distributed random variables �i
t
 . Therefore, 

investments i ∈ {S,B} yield a continuous one-year return of

To account for credit risk, the investments in bonds are reduced by the portfolio 
loss

with exposure at default EADt , loss given default LGDt , and normalized portfolio 
loss L̃t.4 The normalized portfolio loss is Vasicek distributed, i.e.,

kshock
t

=

{
kt + kshock if t = t̃

kt else
, ashock

x
= ax and bshock

x
= bx.

dIi
t
= �i ⋅ I

i
t
⋅ dt + �i ⋅ I

i
t
⋅ dWi

t

(6)Ii
t
= Ii

t−1
⋅ exp

(
�i −

�2
i

2
+ �i ⋅ �

i
t

)

(7)ri
t
= �i − �2

i
∕2 + �i ⋅ �

i
t
.

(8)Lt = EADt ⋅ LGDt ⋅ L̃t

L̃t = Φ

�√
1 − 𝜌 ⋅ 𝜀L

t
− Φ−1

�
PDt

�
√
𝜌

�
,

4 The normalized portfolio loss L̃
t
 represents the loss of a large homogeneous portfolio consisting of 

N non-recoverable loans with equal values 1∕N and equal default probabilities PD
t
 . Assuming that the 

assets of the borrowing companies are modeled by geometric Brownian motions with equal correlation 
parameters � , the normalized portfolio loss L̃

t
 converges for N → ∞ against the Vasicek distribution [40].
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where Φ denotes the standard normal distribution, PDt denotes the default param-
eters, � denotes the correlation parameter, and �L

t
 denote independent standard nor-

mally distributed random variables.5 The correlations between �S
t
 , �B

t
 , and �L

t
 are 

denoted as �SB , �SL , and �BL , respectively.
To model a financial shock in year t̃ , we consider a price drop in combination 

with increased volatility for both investments i ∈ {S,B} , i.e.,

for strictly positive constants �shock
i

 . Consequently, the asset prices in Eq. (6) become

and the returns in Eq. (7) become

To account for an increased credit risk in year t̃ , we use two different default param-
eters, i.e.,

2.3  Asset–liability model

The asset–liability model of our stress test describes the situation of a life insurer 
who frequently writes new business over a time horizon of T years. Cash flows only 
arise at the beginning of year t denoted by t+ or at the end of the year denoted by 
t− . The life insurer is founded in year 1+ and sells term life insurance contracts with 
death benefit D as well as temporary annuities with annual payments R. Both types 
of contracts have a term of T years. The age x of the purchasing policyholders var-
ies, and the number of contracts sold in year t to policyholders with age x is denoted 
by nD(x, t) for term life insurances and nR(x, t) for annuities.

Term life insurance contracts are sold against annual premiums while annuities 
are sold against single premiums. The premiums are actuarially fair with an addi-
tional loading � and depend on the year of sale and the age of the purchaser, i.e.,

(9)𝜀i
t
=

{
−||𝜀it|| if t = t̃

𝜀i
t

else
and 𝜎i =

{
𝜎i + 𝜎shock

i
if t = t̃

𝜎i else

Ii
t
=

⎧
⎪⎨⎪⎩

Ii
t−1

⋅ exp

�
𝜇i −

(𝜎i+𝜎shock
i )

2

2
−
�
𝜎i + 𝜎shock

i

�
⋅
��𝜀it��

�
if t = t̃

Ii
t−1

⋅ exp
�
𝜇i −

𝜎2
i

2

�
+ 𝜎i ⋅ 𝜀

i
t

else

ri
t
=

{
𝜇i −

(
𝜎i + 𝜎shock

i

)2/
2 −

(
𝜎i + 𝜎shock

i

)
⋅
||𝜀it|| if t = t̃

𝜇i − 𝜎2
i
∕2 + 𝜎i ⋅ 𝜀

i
t

else.

(10)PDt =

{
PDshock if t = t̃

PD else.

5 Note that this approach is motivated in the Capital Requirement Regulation of Basel III (see Regula-
tion (EU) No 575/2013, article 153).
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The corresponding actuarial present values are given by

where v = 1∕
(
1 + rG

)
 denotes the discount factor for some actuarial interest rate rG.

When the life insurer is founded in year 1+ , shareholders make an initial contribu-
tion E0 , and the first contracts are sold, resulting in the insurer’s initial asset volume 
of

For the transition from t+ to t− , the fraction � of assets At+ is invested in stocks, 
and the fraction (1 − �) is invested in bonds. Accounting for the continuous interest 
rates for the stock investments rS

t
 and bond investments rB

t
 (see Eq. (7)), as well as 

the portfolio loss Lt (see Eq. (8)), the adjusted assets are given by

To define contractual payments at the end of the year, let dD(x, �, t) and dR(x, �, t) 
respectively denote the number of deaths in year t of the policyholders who bought 
a term life insurance contract or an annuity at the beginning of year � at age x. Fur-
thermore, let

denote the number of contracts bought in year � by policyholders with age x who are 
still active in t−.6 Given this notation, the adjusted assets in Eq. (13) are reduced by 
contractual payments, and some dividend div7 is paid to shareholders, i.e.,

The assets at the beginning of all years t > 1 are given by

(11)PD(x, t) = (1 + 𝜆) ⋅ D ⋅

T|A(t)
x

ä
(t)

x∶ T
|||

and PR(x, t) = (1 + 𝜆) ⋅ R ⋅ a
(t)

x∶ T
|||
.

(12)
T|A(t)

x
=

T−1∑
k=0

vk+1 ⋅ kpx(t) ⋅ qx+k(t + k), ä
(t)

x∶ T
|||
=

T−1∑
k=0

vk ⋅ kpx(t)

and a
(t)

x∶ T
|||
=

T∑
k=1

vk ⋅ kpx(t),

A1+ = E0 +
∑
x

nD(x, 1) ⋅ PD(x, 1) +
∑
x

nR(x, 1) ⋅ PR(x, 1).

(13)A
adj

t− = � ⋅ At+ ⋅ exp
(
rS
t

)
+
(
(1 − �) ⋅ At+ − Lt

)
⋅ exp

(
rB
t

)
.

n⃗i(x, 𝜏, t) = ni(x, 𝜏) −

t∑
k=𝜏

di(x, 𝜏, k) ∶ i ∈ {D,R}

At− = A
adj

t− − D ⋅

t∑
𝜏=1

∑
x

dD(x, 𝜏, t) − R ⋅

t∑
𝜏=1

∑
x

n⃗R(x, 𝜏, t) − div.

6 For 𝜏 < 1 and t < 𝜏 , we set n⃗
i
(x, 𝜏, t) = 0.

7 The dividend is calculated by r
M
⋅ E0 = (1 − 0.005) ⋅ div + 0.005 ⋅

(
−E0

)
 based on the assumption that 

the shareholders assume a constant one-year default probability of 0.5%, with r
M

 denoting the market rate 
of return [20].
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Using the actuarial notation from Eq. (12), the value of liabilities in year t for a 
single term life insurance policy bought in year � by an x-year-old person is

where 𝜏 = t − 𝜏 denotes the time since the contract was concluded. Similarly, the 
value of liabilities in year t for a single annuity contract bought in year � by an 
x-year-old person is given by

Accounting for all active contracts at the end of year t, the life insurer’s required 
policy reserves can be computed as

To investigate the life insurer’s risk situation, the one-year default probabilities 
DPt and the overall default probability DP over the entire time horizon are consid-
ered. Accordingly, let Ts = inf

{
t = 1, ... , T ∶ At− < PRt−

}
 denote the stopping time 

when the life insurer’s assets drop below the policy reserves for the first time. Then, 
the overall default probability is given by

and the one-year default probabilities are

3  Numerical analysis

This section describes the calibration of the mortality and financial shocks based on 
observations from the first year of the COVID-19 pandemic, along with the param-
eters used in our simulation analysis. Subsequently, the numerical results of the sim-
ulation analysis are presented by first showing the impact of the joint financial and 
mortality shock on the life insurer’s risk situation and then examining the effective-
ness of the different risk mitigation strategies.

A
t+
= A(t−1)− +

t−1∑
𝜏=t−T

∑
x

P
D
(x, 𝜏) ⋅ n⃗

D
(x, 𝜏, t − 1)

+
∑
x

P
D
(x, t) ⋅ n

D
(x, t) +

∑
x

P
R
(x, t) ⋅ n

R
(x, t).

VD(x, 𝜏, t) = D ⋅ T−𝜏|A
(t)

x+𝜏
− PD(x, 𝜏) ⋅ ä

(t)

x+𝜏∶ T−𝜏
|||
,

VR(x, 𝜏, t) = R ⋅ a
(t)

x+𝜏∶ T−𝜏
|||
.

PRt− =

t∑
𝜏=1

∑
x

n⃗D(x, 𝜏, t) ⋅ VD(x, 𝜏, t + 1) +

t∑
𝜏=1

∑
x

n⃗R(x, 𝜏, t) ⋅ VR(x, 𝜏, t + 1).

DP = P
(
Ts ≤ T

)
,

DPt = P
(
At− < PRt− |A𝜏− ≥ PR𝜏− ∀𝜏 < t

)
=

P
(
Ts = t

)

P
(
Ts > t − 1

) .
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3.1  Calibration of mortality and financial shocks

COVID-19 affected mortality rates differently in geographic regions such as the 
EU because of differences in various aspects, such as political decision making or 
healthcare systems [41]. Therefore, we use Germany and Spain, two of the five larg-
est EU countries by population, to calibrate two different and representative mortal-
ity shocks in our stress test. Germany has a particularly low crude mortality rate 
while Spain has a particularly high crude mortality rate caused by COVID-19 [41]. 
For both countries, the parameters of the LC model given in Eq. (2) are estimated 
using mortality data from 1990 to 2019 provided by the Human Mortality Database. 
Age x is restricted to 25–85 years to ensure the adequacy of an upward log-parallel 
shift in mortality, as observed during the COVID-19 pandemic [36, 37].

To forecast mortality rates beyond the year 2019 with the two LC models, we 
use the estimated parameters kt to fit a random walk with drift (see Eq. (4)). Similar 
values are obtained for both countries: �Ger = −1.37 for Germany and �Spa = −1.72 
for Spain, with standard deviations �Ger = 1.57 and �Spa = 2.90 , respectively, for 
the error terms �t . Figure  1 shows the estimated parameters kt for both countries 
along with a specific forecast until the year 2060, with the general trend shifting to 
higher longevity. The estimated parameters ax and bx are shown in the Appendix (see 
Fig. 9). For both countries, ax steadily increases for age x while bx indicates a higher 
sensitivity toward the time trend parameter kt for ages around 30 and 75 years. Only 
for x < 35 years is parameter ax lower for Germany than for Spain; for these ages, 
parameter bx is clearly higher for Spain than for Germany. As a result, we observe 

Fig. 1  Estimated parameters k
t
 for the LC model of Germany (a) and Spain (b) with specific forecast and 

pandemic shock
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higher mortality rates for Germany than for Spain in our model owing to the longev-
ity trend (see also Eq. (2)).8

To include the pandemic shock in year 2020, we replace the parameters k2020 with 
estimates of two additional LC models fitted on mortality data including the year 
2020 [37]. For both countries, a jump in the pandemic year 2020 runs counter to 
the general demographic trend (see Fig. 1). In line with the observations by Villani 
et al. [41], the jump from − 18.23 to − 15.24 

(
kshock = 2.99

)
 for Germany is less pro-

nounced (see Fig. 1a) while the jump from − 27.11 to − 13.63 
(
kshock = 13.48

)
 for 

Spain is more pronounced (see Fig. 1b).
As exemplified by COVID-19, a pandemic event can also influence financial mar-

kets [1, 43]. To calibrate a realistic stress scenario in the stress test, we exemplarily 

Fig. 2  Impact of COVID-19 on European stock and bond markets. Notes: The subfigures b and c show 
the rolling volatility � estimated at an annual level with monthly data of the European stock or bond mar-
ket index

8 Note that this observation is in line with the higher life expectancy in Spain than Germany [32].
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analyze the impact of COVID-19 on the European stock performance index “S&P 
Europe 350” and “S&P Eurozone Sovereign Bond Index”.9 While Fig. 2a shows that 
COVID-19 had a strong impact on the stock market index, with a sharp decline in 
2020, only a small impact can be observed on the bond market index; this result is in 
line with the general observations during financial crises [24]. Furthermore, Fig. 2b, 
c show that COVID-19 increased the stock and bond markets’ volatility at an annual 
level, with the effect being particularly more pronounced for the stock market. 
Building on these empirical observations, we set �shock

S
= 0.10 and �shock

B
= 0.01 in 

Eq. (9) to represent the observed increase in volatility in 2020 (see Fig. 2b, c).
Although investments in bonds are often assumed to be safe havens during finan-

cial crises [24], as supported by the results in Fig.  2, they are exposed to credit 
risk. The large number of downgrades made by financial rating agencies during the 
COVID-19 pandemic suggests that credit risk increased during this period [27]. As 
shown in Fig. 3, the highest number of sovereign bond defaults rated by Moody’s 
occurred in the first year of COVID-19 in 2020. The annual default rate in 2020 was 
4.2% while the average annual default rate between 1983 and 2021 was 0.8%. Build-
ing on this observation, we assume increased portfolio loss Lt̃ in the pandemic year 
by setting PDshock = 4.2% and PD = 0.8% in Eq. (10).

3.2  Input parameters

For the asset–liability model of the life insurer, we use a time horizon of T = 20 
years and a death benefit of D = €100,000, representing the default values for term 
life insurance on Germany’s largest aggregator, www. check 24. de. In this study, we 
assume that starting with year 1 every year, 9000 new term life insurance contracts 

Fig. 3  Moody’s rated sovereign bond defaults since 1983 [31]

9 In contrast to our approach for the mortality shock, we do not differentiate between Germany and 
Spain for the financial shock as the sales area is most often geographically restricted to the country of 
origin; the same does not hold true for financial markets.

https://www.check24.de


537

1 3

A COVID‑19 stress test for life insurance: insights into the…

are sold, split into three batches of size 3000 for the different age groups of x = 30 , 
x = 40 , and x = 50 years,10 i.e.,

We also accept that every year nR temporary annuities with an annual annuity 
payment of R = €6000 are sold to a single age group of x = 65 years. The number 
of annually sold annuities nR is subject to a sensitivity analysis in Sect. 3.3 and then 
hold constant at nR = 50 for the remaining analyses. For the actuarial present val-
ues in Eq. (12), the mortality forecasts of the two fitted LC models (Germany and 
Spain) are utilized. The actuarial interest rate rG is set to 0.25%, representing the 
legal requirement for German life insurers in 2023. We present the results under 
actuarially fair premiums using the premium loading � = 0 . The shareholders’ initial 
contribution E0 is accepted to be 3% of the initially sold contracts’ present value.

To estimate the drift, volatility, and correlation of the stock and bond investment, 
we employ the monthly data of the stock market index “S&P Europe 350” and “S&P 
Eurozone Sovereign Bond Index” from February 2013 to December 2021 and obtain 
�S = 0.095 , �S = 0.142 , �B = 0.033, �B = 0.037 , and �SB = 0.143 . The stock ratio � 
is set to 15%.11 For the market rate of return rM , which is used only to calculate 
dividends in this simulation analysis, we use the same value of 5% as in Gatzert and 
Wesker [20]. For the portfolio loss Lt in Eq. (8), the exposure at default is set as the 
fraction of assets invested in bonds, i.e., EAD

t
= (1 − �) ⋅ A

t+
 . The loss given default 

is set to LGDt = 47% while the correlation parameter is set to � = 0.20.12 Further-
more, we assume no correlation between portfolio loss and investment returns in 
this simulation, i.e., �SL = �BL = 0.

In the following analyses, all numerical results are obtained using Monte Carlo 
simulations with 500,000 sample paths. Depending on the section, calibrated finan-
cial and/or mortality shocks are applied (see Sect. 3.1), where the year of the pan-
demic event is set to the 10th year after the life insurer’s founding, i.e., t̃ = 10 . 
Table 1 summarizes the parameters used in the simulation analysis.

n
D
(x, t) =

{
3000 if x ∈ {30, 40, 50}

0 else.

10 While the number of contracts is chosen to be equal for the different age groups to increase the 
interpretability of the results, the selection of the 30-, 40-, or 50-year-old purchasers is motivated by 
the research showing that the probability of owning term life insurance is highest for the age group of 
50–59 years [39].
11 According to the German Insurance Association, 83.4% of the assets of German life insurers consisted 
of bonds and real estate while shares and participating interest accounted for 14.0% in 2022 (see www. 
gdv. de).
12 The loss given default of 47% derives from an average recovery rate on defaulted sovereign bonds 
over the 1983–2021 period of 53% [31]. Furthermore, inserting the average annual default rate of 0.8% 
over the same period in the standard formula of the Capital Requirement Regulation of Basel III yields 
the correlation parameter of 20% (see Regulation (EU) No 575/2013, article 153).

https://www.gdv.de
https://www.gdv.de
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3.3  Impact of COVID‑19 shock on life insurer’s risk situation

The COVID-19 stress test consists of two parts: the financial shock, which is equal 
for Germany and Spain; and the mortality shock, which is more pronounced for 
Spain than for Germany (see Sect. 3.1). Figure 4a shows the overall default prob-
ability DP over the entire time horizon of T = 20 years when no shock is applied 
depending on the number of annually sold annuities nR for Germany and Spain. As 
separate mortality models are calibrated for both countries, the results differ between 
Germany and Spain even in the absence of the mortality shock. If the life insurer 
sells only term life insurance 

(
nR = 0

)
 , the overall default probabilities DP for Ger-

many and Spain are 12.18 and 14.83%, respectively. Germany’s lower default prob-
ability can be explained by its higher mortality rates (see Sect. 3.1), which result in 
shorter durations until death and thus less volatile cash flows (see also [42]). For 
both countries, the lowest default probability DP can be observed when a small 
amount of nR = 100 annuities is sold every year, in addition to the term life insur-
ance; it then steadily increases for higher numbers of annually sold annuities nR . 
This finding is in line with Gatzert and Wesker [20] and can be explained by the 
smoother and, therefore, less volatile cash flow structures of mixed portfolios con-
sisting of annuities and term life insurances.

Figure 4b shows the absolute increase in DP caused by the mortality and/or finan-
cial shocks in t = 10 . In comparison with that in Germany, the more pronounced 

Table 1  Parameters for analysis

Description Notation Value

Time horizon T 20
Time of the pandemic event t̃ 10
Number of annually sold term life policies n

D
9000

Policyholders’ age groups (term life insurance) x
D

30, 40, 50
Death benefit D 100,000
Number of annually sold annuities n

R
50

Policyholders’ age groups (annuity) x
R

65
Annual annuity R 6000
Premium loading � 0.000
Drift of high-risk investment (stocks) �

S
0.095

Volatility of high-risk investment (stocks) �
S

0.142
Drift of low-risk investment (bonds) �

B
0.033

Volatility of low-risk investment (bonds) �
B

0.037
Correlation between high- and low-risk investment �

SB
0.143

Correlation between portfolio loss and investment return �
SL

; �
BL

0.000
Stock ratio � 0.150
Loss given default LGD 0.470
Default probability parameter of the Vasicek distribution PD 0.008
Correlation parameter of the Vasicek distribution � 0.200
Market rate on return r

M
0.050



539

1 3

A COVID‑19 stress test for life insurance: insights into the…

mortality shock in Spain leads to a higher increase in DP. Meanwhile, the finan-
cial shock increases DP approximately equally for Germany and Spain. For both 
countries, the increase in DP caused by the pure financial shock is greater than that 
caused by the pure mortality shock. Higher numbers of annually sold annuities 
reduce the negative impact of the financial shock until a saturation point of approxi-
mately 3.5 percentage points. However, the mortality shock can be completely 
absorbed by natural hedging [20, 42]. If both shocks are applied simultaneously, the 
increase in DP exceeds the sum of the individual shocks through an additional rein-
forcement effect (see Fig. 4b). The extent of the reinforcement effect decreases as 
the number of annually sold annuities increases, further emphasizing the benefits of 
natural hedging.

These results show that a diversified life insurer is relatively well immunized 
against the pure mortality shock caused by COVID-19 but that natural hedging can-
not mitigate the risks caused by the simultaneous financial shock. As a life insurer’s 

Fig. 4  Default probability DP when no financial or mortality shock is applied (a) and the absolute 
increase in DP caused by the financial and/or mortality shock in year t = 10 (b) depending on the num-
ber of sold annuities n

R
 for Germany and Spain
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product mix cannot be adjusted at short notice and doing so might not even be pos-
sible because of a specific market orientation, the following analyses focus on a life 

Table 2  Default probabilities DP in case of n
R
= 50 for Germany and Spain caused by the financial and/

or mortality shock in t = 10

Notes: The absolute increase is expressed in percentage points (p.p.)

Germany Spain

DP Absolute increase DP Absolute increase

No shock 9.29% 10.12%
Financial shock 15.13% + 5.84 p.p 15.59% + 5.47 p.p
Mortality shock 9.47% + 0.18 p.p 10.88% + 0.76 p.p
Both shocks 16.11% + 6.82 p.p 19.42% + 9.30 p.p

Fig. 5  Absolute increase of one-year default probabilities DP
t
 when the joint financial and mortality 

shock is applied in t = 10 or in t = 10 and t = 11 for Germany (a) and Spain (b)
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insurer with a high share of term life insurance, i.e., we set nR = 50.13 The default 
probabilities for this scenario are listed in Table 2.

To investigate the short- and long-term effects of a COVID-19-like event, we pre-
sent in Fig. 5 the absolute increase of the one-year default probabilities DPt caused 
by the joint financial and mortality shock in t = 10 (filled bars). The years before the 
pandemic outbreak (t < 10) are not displayed as the one-year default probabilities 
are not affected until that point of time. For Germany (Fig. 5a) and Spain (Fig. 5b), 
the highest increase in the one-year default probabilities can be seen right at the 
end of that year. For later years, the increase exponentially decreases and converges 
against zero. The long-term effects result from the life insurer’s reduced equity lead-
ing to higher default probabilities in the subsequent years as reserves must first be 
rebuilt. Although the increase for Spain starts at a higher level (7.90 percentage 
points) than that for Germany (5.44 percentage points), the convergence toward zero 
is similarly fast for both countries, falling below 0.2 percentage points four years 
after the end of the pandemic. As mortality rates are only increased in t = 10 , higher 
payments for term life insurance are limited to this period too, as is the reduction of 
the life insurer’s assets caused by the temporary financial shock. Therefore, the long-
term impact is comparatively small. This result is in line with the findings of Caran-
nante et al. [10], who showed that a temporary mortality shock would have a minor 
impact on life insurance, whereby the required premium increase to compensate an 
accelerated mortality decreases for longer contract terms.

Motivated by previous events such as the 1918 Spanish flu or the 2004 earth-
quake, mortality shocks are usually assumed to be short-term catastrophes that do 
not extend over several years [12, 15]. However, the case of COVID-19 indicates 
that a large-scale pandemic can increase mortality rates in the span of more than 
one year. Therefore, Fig. 5 also shows the impact of a two-year pandemic event in 
our stress test (unfilled bars), where the financial and mortality shocks are applied in 
years t = 10 and t = 11 . In this case the one-year default probabilities first increase 
until the end of t = 11 and then again converge against zero. The higher increase in 
t = 11 may be explained by the life insurer’s already reduced reserves caused by the 
shocks in t = 10 , resulting in a worse financial starting point for the life insurer to 
enter the second year of the pandemic. As the decrease after the end of the two-year 
shock is exponential, as in the case of the one-year shock, the long-term impact for 
life insurance seems negligible even if the pandemic extends over several years.

3.4  Risk mitigation in the event of shocks

In this section, we investigate the effectiveness of different risk mitigation strategies 
to reduce the impact of the joint financial and mortality shock. We restrict our analy-
sis to observed practices that can be applied on short notice, namely, stopping new 
business, increasing premiums, and adjusting investment strategies. Furthermore, 
we build on the results described in the previous section, showing that the impact 
of the shocks is short term regardless of the duration of the pandemic. Thus, we 

13 Note that in this case, the premium volume of annuities is approximately 8.7% (11.2%) of the total 
premium volume in the case of Germany (Spain).
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focus on the joint shock only applied in year t = 10 , with the different risk mitiga-
tion strategies applied directly at the beginning of that year in t = 10+ . Although 
this approach would mean that the life insurer anticipates the pandemic before it 
starts and responds immediately, this point in time serves as a threshold, i.e., a lower 
bound, owing to the used time steps of one year.14

3.4.1  Stopping new business

For the first risk mitigation strategy, we analyze the effectiveness of stopping new 
business for specific age groups during the pandemic. This strategy is motivated by 
the empirical findings of Harris et al. [22], who showed that some U.S. life insurers 
stopped selling specific policies for the oldest age groups in response to COVID-19.

Figure  6 shows the absolute increase in the one-year default probabilities DPt 
caused by the joint financial and mortality shock in t = 10 , when in t = 10+ , the 
term life insurance contracts are sold to all age groups, or only to the age groups 
x = 30 and x = 40 years, or only to the age group x = 30 years, or no term life insur-
ance contracts are sold. The number of sold contracts is 3000 for all age groups and 
remains unchanged for all years before and after t = 10 . The more age groups are 
excluded, the higher the risk reduction as the height of the four consecutive bars 

Fig. 6  Absolute increase in the one-year default probabilities DP
t
 caused by the joint financial and mor-

tality shock in t = 10 for Germany (a) and Spain (b) if term life insurance policies are sold only to spe-
cific age groups in t = 10+

14 Note that similar results regarding the effectiveness of the different risk mitigation strategies are 
obtained when the shocks extend over two consecutive years and the strategies are applied at the begin-
ning of the second year.
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decreases. The largest risk reduction can be observed at the end of the pandemic 
year t = 10 , and it then exponentially decreases over time, analogous to the general 
decline in risk reduction potential. Therefore, the analyzed strategy indeed mitigates 
the increase in the one-year default probabilities caused by the pandemic shock. 
Stopping new business during the pandemic reduces the number of sold contracts 
and, therefore, reduces exposure toward the mortality shock. However, as most con-
tracts are sold before the pandemic and the strategy does not address the financial 
shock, the effectiveness of this strategy is relatively small and offsets only approxi-
mately 14% of the increased one-year default probability in t = 10.

Furthermore, solely excluding the oldest age group, in anticipation of the greater 
increase in mortality for this group, is not optimal. Stopping new business for all 
the three age groups (unfilled bars with dashed lines) is more than three times as 
effective as solely excluding the oldest age group x = 50 (unfilled bars with solid 
lines). Table 3 in the Appendix shows the overall default probability under all pos-
sible combinations of age-specific exclusions for the new term life business in year 
t = 10 . Some benefits are observed with the exclusion of older over younger indi-
viduals. However, a robustness test revealed that these benefits stem from the higher 
premium volumes for the contracts sold to older age groups due to their higher death 
probabilities rather than the greater increase in their mortality rates given the mor-
tality shock in Eq.  (5). When using age-specific death benefits in our simulation 
analysis to ensure that the premium volumes depend only on the number of sold 
contracts, we observe a higher risk reduction for excluding the younger age groups 
than for excluding the older age groups. Specifically, the risk for term life insur-
ance decreases with age as the liability value becomes less volatile owing to the 
shorter duration until death at older ages [42]. Consequently, the general riskiness of 
a life insurance product can play a more important role and should not be neglected 
even if the mortality shock is more pronounced for older people (as in the case of 
COVID-19).

3.4.2  Increasing premiums

For the second risk mitigation strategy, we analyze the effectiveness of increasing 
actuarial fair premiums for contracts sold during the pandemic event by an addi-
tional loading. Therefore, different loadings � for the contracts sold in t = 10+ are 
used in Eq. (11) in the simulation analysis. The premiums before and after t = 10 are 
unchanged, i.e., actuarial fair premiums with � = 0%.

Figure  7 shows the absolute increase in the one-year default probabilities DPt 
caused by the joint financial and mortality shock in t = 10 for different loadings � . 
The loading � = 0% (filled bars) serves as a reference point, where actuarial fair pre-
miums are used during the pandemic. For the loadings 𝜆 > 0% , the increase in the 
one-year default probabilities is reduced with the largest risk reduction at the end 
of the pandemic year in t = 10 . As higher loadings increase the life insurer’s equity 
and thus help to avoid liquidity shortage, this strategy addresses the negative impact 
of the financial and mortality shocks; by contrast, stopping new business during the 
pandemic only addresses the negative impact of the mortality shock on newly sold 
contracts. Hence, using a comparatively small loading of � = 2% for the contracts 
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sold in year t = 10+ reduces the one-year default probabilities more than stopping 
the sale of all term life insurance contracts during the pandemic (see Figs. 6 and 7). 
Moreover, a sufficiently large loading can fully offset the increase in the one-year 
default probabilities DPt . For Germany, the loading of � = 23% completely negates 
the increase in DPt caused by the joint financial and mortality shock in t = 10 for all 
t ≥ 10 (see Fig. 7a).15

This mechanism makes premium increases a hypothetically attractive short-term 
strategy. However, in practice, this strategy carries the risk of losing a leading mar-
ket position to competitors, which can result in a decline in demand in subsequent 
years. This assumption is also supported by Harris et  al. [22], who observed that 
the premium response of U.S. life insurers to COVID-19 was minimal and limited 
to life insurers with a certain price gap toward competitors. Meanwhile, policyhold-
ers might even accept premium increases during a pandemic event because of the 
stronger sensitization toward death and, therefore, a higher willingness to pay for 
term life insurance [35]. Assuming that the premium increase only leads to a decline 
in demand during the period when premiums increase, this condition would techni-
cally result in a combined strategy of stopping new business and increasing premi-
ums, which would (in our simulation) be superior to the sole strategy of stopping 
new business.

Fig. 7  Absolute increase in the one-year default probabilities DP
t
 caused by the joint financial and mor-

tality shock in t = 10 for Germany (a) and Spain (b) if additional loadings � for the contracts sold in 
t = 10+ are used

15 For further information, Table 4 in the Appendix contains values for the overall default probability 
DP under the different loadings used in t+ = 10.
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3.4.3  Adjusting investment strategies

For the third risk mitigation strategy, we analyze the effectiveness of changing the 
investment strategy at the beginning of the pandemic year. We assume that the stock 
ratio � in Eq. (13) is reduced at t = 10+ and remains constant for the remaining time 
horizon to account for the long-term nature of bonds. Higher shares in bonds gener-
ally reduce asset volatility and the exposure toward the volatility shock; this effect is 
less pronounced for bonds than for stocks in our stress test (see Fig. 2b, c). However, 
in our stress test, bond investments are exposed to credit risk, which is increased 
by the financial shock (see Sect. 3.1). Figure 8 shows the absolute increase in the 
one-year default probabilities DPt caused by the joint financial and mortality shock 
in year t = 10 for different adjustments of the stock ratio � in t = 10+ . The stock 
ratio � = 15% (filled bars) serves as a reference point, where the investment strategy 
remains unchanged.

Reducing the stock ratio � at the beginning of the pandemic decreases the absolute 
increase in DPt in t = 10 to a minimum of 3.67 (5.63) percentage points for Germany 
(Spain) if all assets are reallocated to bonds, i.e., � = 0% (see Fig. 8). Thereby, the 
largest step-wise reduction effect of 0.80 (0.96) percentage points for Germany (Spain) 
is obtained with the reduction of � from 15 to 10% while the smallest step-wise risk 
reduction of 0.39 (0.55) percentage points is obtained with the reduction of � from 5 to 
0%. In later years, the one-year default probabilities DPt start to increase again at some 
point t ≥ 11 , which happens earlier and is more pronounced for lower stock ratios 
� . This observation is consistent for both countries, showing that a reduction in the 
stock ratio can have a more pronounced long-term effect than the other two strategies. 

Fig. 8  Absolute increase in the one-year default probabilities DP
t
 caused by the joint financial and mor-

tality shock in t = 10 for Germany (a) and Spain (b) if the stock ratio � is adjusted in t = 10+
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Therefore, adjusting the investment strategy might be less suitable for mitigating the 
negative impact of a short-term pandemic event such as COVID-19. Overall, the strat-
egy seems more effective than stopping new business (see Fig. 6) but is more limited 
than the strategy of increasing premiums (see Fig. 7).16 Furthermore, reallocating all 
assets to bonds may not be worthwhile for shareholder value maximization because of 
the comparably small further risk reduction at the cost of a lower profit potential.

4  Summary

In this study, we examine the effectiveness of different risk mitigation strategies that 
can be applied on short notice during a pandemic on the basis of a COVID-19 stress 
test for life insurance. To the best of our knowledge, this study is the first to use an 
asset–liability model to examine the impact of a joint financial and mortality shock 
caused by COVID-19 on a life insurer offering annuities and term life insurances. 
Mortality rates are modeled by an extension of the LC model, where we use mortal-
ity data from the first year of the COVID-19 pandemic in Germany (smaller shock) 
and Spain (larger shock) to embed realistic mortality shocks. Financial shock dif-
fers between high- and low-risk investments, increases market and credit risks, and 
is calibrated to financial data from the first year of the COVID-19 pandemic. The 
life insurer’s asset–liability model accounts for new business (annuity and term life) 
sold to policyholders of different age groups, actuarial fair premiums, and dividend 
payments to shareholders. First, we use Monte Carlo simulation to analyze the long- 
and short-term effects of the individual and joint shocks on the life insurer’s risk 
situation under different product portfolios (annuity vs. term life). Second, we inves-
tigate the effectiveness of three risk mitigation strategies observed in practice, focus-
ing on a life insurer with a high share of term life insurance. We consider stopping 
new business for certain age groups, increasing premiums during the pandemic, and 
adjusting the investment portfolio at the beginning of the pandemic.

The numerical results of our simulation analysis show that financial and mortality 
shocks can reinforce each other and, therefore, should not be analyzed separately. Prod-
uct diversification, i.e., selling annuities next to term life insurances, can completely 
negate the negative impact of the mortality shock but not that of the financial shock. 
Furthermore, our results indicate that a temporary pandemic event such as COVID-19 
might have only a limited impact on the long-term risk situation of life insurers as the 
increase in one-year default probabilities exponentially decreases immediately after the 
end of the pandemic in our simulation analysis. Stopping new business during the pan-
demic reduces the negative impact of the stress scenario; however, its effectiveness is 
low. Furthermore, we observe that solely excluding policies for older age groups (in 
anticipation of a larger mortality shock at older ages) is not necessarily beneficial as 
older policyholders generally carry lower risks due to their shorter duration until death. 
Premium increases during a pandemic turn out to be a very effective risk mitigation 
strategy in our stress test as it increases the life insurer’s equity, helping to deal with 

16 This is also supported by the values of the overall default probabilities given in Table 5 in the Appen-
dix.
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the financial and mortality shocks. However, in practice, this strategy bears the risk 
of losing market position. Adjusting the investment portfolio at the beginning of the 
pandemic is more effective than stopping sales but leads to more pronounced negative 
long-term effects owing to the long-term nature of bond investments and might be less 
suitable for mitigating the risks of a short-term pandemic event such as COVID-19.

In conclusion, our simulation analysis shows that either the applicability in prac-
tice or the effectiveness of such immediate measures is limited. Therefore, more 
sophisticated risk mitigation strategies, such as reinsurance or alternative risk 
transfer seem unavoidable for life insurers next to product portfolio diversification. 
While investigating these strategies is beyond the scope of the current study, further 
research could analyze their effectiveness under a COVID-19 stress test. Addition-
ally, our findings are limited to the impact of COVID-19 on mortality and insurer 
investment; hence, other aspects such as demand or contract cancellation could 
also be addressed in future research. Our results also rely on the specific impact of 
COVID-19 on mortality and financial markets, and such effect may differ in future 
pandemics. Furthermore, the study does not examine the effectiveness of combining 
different strategies, which might also be interesting to analyze. Although the greatest 
impact of COVID-19 appears to be over, the next pandemic will likely occur sooner 
than expected, and life insurers should be prepared for this situation. Even when 
specific characteristics differ between pandemics, this study provides some general 
insights into what to expect and how to respond as a life insurer.

Appendix

See Fig. 9, Tables 3, 4 and 5.

Fig. 9  Estimated parameters a
x
 and b

x
 of the LC model for Germany and Spain
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Table 3  Overall default probability DP when in year t = 10 , the joint financial and mortality shock is 
applied for Germany and Spain under different numbers of sold contracts in t = 10+

Notes: The number of sold contracts is 3000 for all age groups, and the absolute decrease is expressed in 
percentage points (p.p.)

Number of sold term 
life contracts in t = 10+

Age groups Germany Absolute decrease Spain Absolute decrease

9000 30/40/50 16.11% 19.42%
6000 40/50 16.07% − 0.04 p.p. 19.40% − 0.02 p.p.
6000 30/50 16.04% − 0.07 p.p. 19.25% − 0.17 p.p.
6000 30/40 15.86% − 0.25 p.p. 19.10% − 0.32 p.p.
3000 50 15.97% − 0.14 p.p. 19.15% − 0.27 p.p.
3000 40 15,81% − 0.30 p.p. 18.98% − 0.44 p.p.
3000 30 15.77% − 0.34 p.p. 18.89% − 0.53 p.p.
0 15.16% − 0.95 p.p. 18.12% − 1.30 p.p.

Table 4  Overall default probability DP when in year t = 10 , the joint financial and mortality shock is 
applied for Germany and Spain under different loadings � in t = 10+

Notes: The absolute decrease is expressed in percentage points (p.p.)

Germany Absolute decrease Spain Absolute decrease

� = 0% 16.11% 19.42%
� = 1% 15.45% − 0.66 p.p. 18.69% − 0.73 p.p.
� = 2% 14.83% − 1.28 p.p. 17.99% − 1.43 p.p.
� = 23% 9.04% − 7.07 p.p. 10.38% − 9.04 p.p.

Table 5  Overall default probability DP when in year t = 10 , the joint financial and mortality shock is 
applied for Germany and Spain under different adjusted stock ratios � in t = 10+

Notes: The absolute decrease is expressed in percentage points (p.p.)

Germany Absolute decrease Spain Absolute decrease

� = 15% 16.11% 19.42%
� = 10% 15.29% − 0.82 p.p. 18.49% − 0.93 p.p.
� = 5% 15.03% − 1.08 p.p. 18.11% − 1.31 p.p.
� = 0% 15.48% − 0.63 p.p. 18.48% − 0.94 p.p.
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