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Abstract
In this contribution, we present a numerical analysis of the continuous stochas-
tic gradient (CSG) method, including applications from topology optimization and
convergence rates. In contrast to standard stochastic gradient optimization schemes,
CSG does not discard old gradient samples from previous iterations. Instead, design
dependent integration weights are calculated to form a convex combination as an
approximation to the true gradient at the current design. As the approximation error
vanishes in the course of the iterations, CSG represents a hybrid approach, starting off
like a purely stochastic method and behaving like a full gradient scheme in the limit. In
this work, the efficiency of CSG is demonstrated for practically relevant applications
from topology optimization. These settings are characterized by both, a large num-
ber of optimization variables and an objective function, whose evaluation requires the
numerical computation of multiple integrals concatenated in a nonlinear fashion. Such
problems could not be solved by any existing optimizationmethod before. Lastly, with
regards to convergence rates, first estimates are provided and confirmed with the help
of numerical experiments.
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1 Introduction

In this paper, we present a numerical analysis of the Continuous Stochastic Gradient
(CSG) method, which was first proposed in [1]. Later, in [2], it was shown that the
error in the CSG gradient and objective function approximation vanishes during the
course of the iterations. This key property of CSG yields strong convergence results
known from classic gradient methods, e.g., convergence of the sequence of iterates
for constant step sizes, which are beyond the scope of standard stochastic approaches
known from literature, like the Stochastic Gradient (SG) method [3], or the Stochastic
Average Gradient (SAG) method [4].

Furthermore, the approximation property of CSG significantly increases the set
of possible applications, allowing for more complex structures in the optimization
problem than the schemes listed before. While CSG was shown to perform better
than various stochastic optimization approaches on academic examples [2], it remains
to see if this is also the case for more involved applications. For this purpose, we
consider several optimization problems arising in the context of optimal nanoparticle
design. These applications focus on optimization with respect to the resulting color
of a particulate product, as it represents one of the most prominent fields of research
within this setting [5–10].

Moreover, all convergence results stated in [2] provide no insight on the rate of
convergence. Since this plays a crucial role for the practicability of CSG, it is of
great importance to further analyze this quantity. In this contribution, we conjecture
estimated convergence rates for the general CSGmethod and verify them numerically.

1.1 Structure of the paper

Section 2 introduces the application from nanoparticle optics, mentioned above. Two
different methods to model the particle, varying greatly in computational effort and
design dimension, are presented. After detailing the setting and challenges in the
low-dimensional optimization problem, we compare the results of the CSGmethod to
different approaches basedon the fmincon algorithmprovidedbyMATLAB(Sect. 2.7).
Later on,we analyze the high-dimensional problem formulation purelywithin theCSG
framework, since a comparisonwith generic deterministic optimization schemes is out
of scope, due to the associated computational complexity.

Afterwards, Sect. 3 shortly covers techniques to estimate the gradient approxima-
tion error during the optimization, before we focus on the convergence rate of CSG
in Sect. 4. While the expected rates stated therein are not proven, we present detailed
numerical examples to solidify our claims. Furthermore, we analyze how the conver-
gence rate depends on the dimension of integration and how to avoid slow convergence,
if the objective function admits additional structure.
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The continuous stochastic gradient method 979

2 Nanoparticle design optimization

Since the design of a nanoparticle, i.e., its shape, size, material distribution, etc.,
heavily impacts its optical properties, the task of optimizing a nanoparticle design
with respect to a specific optical property arises naturally [11]. In this section, we are
interested in using hematite nanoparticles to optimize the color of a paint film [12].
Thus, we start by introducing our main framework for this application.

2.1 Color spaces

First off, we should explain what optimal color means in our setting. There are several
different methods to describe color mathematically, e.g., assigning each color an RGB
representation vector v ∈ R

3, where the three components of v correspond to the red,
green and blue value of the color. In our application, we are interested in the color of
the paint film as it appears to the human eye. Therefore, the underlying color space
should be chosen based on the following property:

If the Euclidean distance between the representation vectors of two colors is
small, the colors should be almost indistinguishable to the human eye.

As it turns out, the RGB color space is a very poor choice with respect to this feature.
Hence, we instead choose the CIELAB color space [13], which was introduced by the
International Commission of Illumination (Commission Internationale de l’Eclairage,
CIE), as it was designed with this exact purpose in mind. The CIELAB representation
of a color consists of three values L, a and b. Here, L corresponds to the lightness
of a color and ranges from 0 (black) to 100 (white). The values of a and b, typically
within the range of ±150, describe the colors position with respect to the opponent
color pairs green-red and blue-yellow. A short overview is given in Fig. 1.

Another color space, which naturally arises from our setting, is the CIE 1931 XYZ
color space [14]. The values of X, Y and Z can be calculated by integrating the
optical properties of a particle over the spectrum of visible light (400–700 nm), which
we denote by �. Each of these integrations is weighted by the corresponding color
matching functions x, y, z : � → R.

Thus, in our application, we will first calculate the CIE 1931 XYZ representation
of the resulting color and then use the (nonlinear) color space transformation � :
R
3 → R

3 with �(X,Y,Z) = (L, a,b)�, to work in the CIELAB color space. For this
transformation, we define a reference white point

⎛
⎝
Xr

Yr

Zr

⎞
⎠ =

⎛
⎝

94.72528492
100

107.13012997

⎞
⎠

and denote the relative XYZ values by

X̃ = X
Xr

, Ỹ = Y
Yr

, and Z̃ = Z
Zr

.
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980 M. Grieshammer et al.

Fig. 1 Resulting color for
various different values of a and
b. Positive values of a result in
red colors, while colors
corresponding to negative values
of a appear green. Similarly,
positive b values yield yellow
colors, while negative b values
shift the color into the blue
spectrum. In this figure, we fixed
L = 50

Utilizing the intended CIE parameters ε = 216
24389 and κ = 24389

27 , the LAB color values
are then given by

L = 116 f (Ỹ) − 16, a = 500
(
f (X̃) − f (Ỹ)

)
and b = 200

(
f (Ỹ) − f (Z̃)

)
,

where f : R → R is defined as

f (t) =
{

3
√
t if t > ε

κt+16
116 otherwise

.

2.2 Mie theory and discrete dipole approximation

Given a nanoparticle shape and material, we can use the time-harmonic Maxwell’s
equations to calculate its optical properties. Specifically, in our setting, we are inter-
ested in the absorption (Abs), scattering (Sca) and geometry factor (Geo) [15, Section
2.8]. These properties describe the interactions of a particle with light and are therefore
dependent not only on the particle’s design, but also its orientation w.r.t. the incoming
lightwave as well as the wavelength of said light. The time required and precision
achieved in their numerical calculation are, of course, dependent on our model of the
nanoparticle and the method used to solve Maxwell’s equations. For our setting, we
choose two different approaches.

On the one hand, we will use the discrete dipole approximation (DDA) [16–18], in
which the particle is discretized into an equidistant grid of dipole cells. Thus, DDA
allows the analysis of arbitrary particle shapes and material distributions. The down-
side lies within the computational complexity of the method, which scales with the
total number of dipoles and therefore grows rapidly when increasing the resolution.
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The continuous stochastic gradient method 981

While the CSG method is still capable of solving the resulting optimization prob-
lem in our experiments, the tremendous computational cost associated to the DDA
approach severely impede a detailed analysis of the problem. Especially, there is no
computationally feasible, generic optimization scheme to compare our results with.
However, we want to note that optimization in the DDA model has already been done
in a slightly simpler setting, where the full integral over�was replaced by summation
over a small number of different wavelengths [19].

On the other hand, Mie theory [20, 21] provides a numerically cheap alternative,
at the price of a more restrictive setting. In Mie theory, one only considers radially
symmetric particles. In this special setting, it is possible to find analytic solutions
based on series expansions to the time-harmonic Maxwell’s equations. Therefore, in
our first approach, we will only consider core-shell particles, as the utilization of Mie
theory allows for a much deeper analysis of the resulting optimization problem and
comparison to deterministic optimization approaches, which rely on discretization of
the integrals.

2.3 Nanoparticles in paint film—Kubelka–Munk theory

As mentioned above, the XYZ color values of the paint film can be calculated by
integration of the corresponding color matching functions x, y, z and the important
optical properties of the nanoparticle. The precisemethod to obtain X, Y and Z is given
by the Kubelka–Munk theory [22], augmented by a Saunderson correction [23]. For a
paint film, in which nanoparticles with design u are oriented in direction ν ∈ S

2, that
is illuminated by light with wavelength λ ∈ �, the resulting color can be expressed
by the K and S value

K (u, λ, ν) = Abs(u, λ, ν) and S(u, λ, ν) = Sca(u, λ, ν)
(
1 − Geo(u, λ, ν)

)

via the reflectance

R∞(u, λ, ν) = 1 + 8

3

K (u, λ, ν)

S(u, λ, ν)
−

√(
8

3

K (u, λ, ν)

S(u, λ, ν)

)2

+ 16

3

K (u, λ, ν)

S(u, λ, ν)
.

Now, X, Y and Z can be obtained by

X(u, ν) =
∫

�

x(λ)
(1 − ρ0 − ρ1)R∞(u, λ, ν) + ρ0

1 − ρ1R∞(u, λ, ν)
dλ,

Y(u, ν) =
∫

�

y(λ)
(1 − ρ0 − ρ1)R∞(u, λ, ν) + ρ0

1 − ρ1R∞(u, λ, ν)
dλ,

Z(u, ν) =
∫

�

z(λ)
(1 − ρ0 − ρ1)R∞(u, λ, ν) + ρ0

1 − ρ1R∞(u, λ, ν)
dλ,

where ρ0 and ρ1 are material parameters. In our setting, which we introduce in the
next section, we have ρ0 = 0.04 and ρ1 = 0.6. Moreover, x , y and z are the color
matching functions, as given in [24].
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982 M. Grieshammer et al.

Fig. 2 Radially symmetric
core-shell nanoparticle. The
inner core (blue) has radius R in
the range of 1–75 nm and
consists of water. The thickness
of the hematite shell (red) is
denoted by d and ranges from 1
to 250nm

2.4 Problem formulation

In our first setting, we consider a radially symmetric core-shell nanoparticle (see
Fig. 2), where the inner core consists ofwater, while the outer shell ismade of hematite.
Thus, the design u consists of the radius R (1–75 nm) of the core and the thickness
d (1–250 nm) of the outer hematite shell, i.e., we have u = (R, d) ∈ U = [1, 75] ×
[1, 250]. Due to the symmetry of the particle, its optical properties do not depend on
the orientation ν ∈ S

2, which is why we omit it in our further analysis of this setting.
As an additional layer of difficulty, we can, in practice, not expect all nanoparticles

present in the paint film to be identical copies of design u. Instead, when trying to
produce nanoparticles of a specific design in large quantities, one usually ends up with
a mixture of particles of different designs, following a certain probability distribution
μu , which is dependent on the intended design u.

We model this aspect by assuming that, given a design u = (R, d), the particles
present in the paint film follow a truncated normal distribution on the space of reason-
able designs R × D = [10−4, 150] × [10−4, 500] centered around u, i.e.,

R̃ ∼ NR(R, 1
10 R) and d̃ ∼ ND (d, 1

10d).

Truncating the normal distribution to the spaceR × D circumvents nonphysical par-
ticles appearing in the design distributions, like designs with negative components.
From a numerical point of view, the impact is negligible, as the combined weight of all
excluded designs is below typical machine precision, since a design component must
deviate from the average by more than 9 standard deviations in order to be rejected.
As the paint film no longer consists of identical particles, the K and S values in the
Kubelka–Munk model need to be replaced by their averaged counterparts

K (u, λ) =
∫∫

R×D
Abs(R̃, d̃, λ)dμu(R̃, d̃)

and

S(u, λ) =
∫∫

R×D
Sca(R̃, d̃, λ)

(
1 − Geo(R̃, d̃, λ)

)
dμu(R̃, d̃),
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The continuous stochastic gradient method 983

before calculating the reflectance R∞(u, λ) and integrating it over �.
The objective in our application is to produce a paint of bright red color. Thus, the

complete optimization problem reads

max
u∈U

1
20 L(u) + 19

20 a(u). (1)

Due to the compactness ofU ,R andD, [2, Assumption 2.2] is obviously satisfied. Fur-
thermore, the mapping from a design u, wavelength λ and orientation ν to the optical
properties Abs, Sca and Geo is smooth [25, Eqs. 1a, 1b, 1c]. Since every admissible
design has a hematite shell of positive thickness, we obtain a lower bound on Abs
and Sca. By definition, the geometry factor is always smaller than 1 in absolute value.
Consequently, R∞ depends smoothly onAbs, Sca andGeo. Now, by construction, R∞
admits values in [0, 1] only. The color matching functions x , y, z are given pointwise
and can thus be interpolated with Lipschitz continuous derivative. As a result, X, Y,
Z are L-smooth function w.r.t. all arguments. Finally, the function f , appearing in the
definition of the color transformation mapping �, is constructed in an L-smooth fash-
ion as well, showing that [2, Assumption 2.3] is satisfied for our setting. By choosing
integration weights presented in [2, Section 3], we can also satisfy [2, Assumption
2.4].

2.5 Challenges

The highly condensed fashion, in which (1) is formulated, may obscure a lot of the
difficulties that arise when trying to solve it. To get a better understanding of the
problem, let us first analyze the abstract structure of the objective function J (u) =
1
20 L(u) + 19

20 a(u):

⎛
⎝
Abs
Sca
Geo

⎞
⎠

integrate
R×D−−−−→

(
K
S

) Kubelka-
Munk−−−−−→ R∞

integrate
�−−−−→

⎛
⎝
X
Y
Z

⎞
⎠

color
transf.�−−−−→

⎛
⎝
L
a
b

⎞
⎠ −→ J (u).

Since calculating J (u) and ∇ J (u) requires integrating the optical properties in multi-
ple dimensions and since evaluating said properties for any combination of R̃, d̃ and
λ requires solving the time-harmonic Maxwell’s equations, standard deterministic
approaches, e.g., full gradient methods, run into a prediscretization problem.

On the one hand, the number of integration points needs to be sufficiently large
for our setting. In Fig. 3, a slice through the objective function for a fixed value of R
and several different amounts of integration points is shown. While we actually do
not care too much about the approximation error resulting from a small number of
integration points, the artificial local maxima introduced into the objective function
by the discretization severely impact the quality of the optimization. In other words,
many solutions to the discretized problem are completely unrelated to solutions to (1).
We want to note that, even though not all of the stationary points in Fig. 3 correspond
to stationary points of (1), the prediscretization still leads to very flat regions in the
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984 M. Grieshammer et al.

Fig. 3 Objective function values
for fixed core radius of 3 nm.
Different graphs correspond to
different discretizations. The
label of a curve shows into how
many points the integrals over
�,R and D have been split,
respectively. Each of the
discretizations introduces
artificial stationary points into
the objective function

objective functions, which hinder the performance of many solvers. In Fig. 4, this
effect is displayed.

On the other hand, the number of integration points is heavily restricted by the
computational cost associated to the evaluation of Abs, Sca and Geo. While medium
resolutions (253 ∼ 15000 points in total) are still numerically tractable for simpleMie
particles, they are outright impossible to achieve in the more general DDA setting,
which we want to consider later. For comparison: The optimization in [19] was carried
out using a discretization consisting of 20 points in total.

We want to emphasize that standard SG-type schemes, or even the Stochastic Com-
position Gradient Descent (SCGD) method [26], which was used for the comparison
for composite objective functions in [2, Section 7.2], are not capable of solving (1).
The reason for this lies in the special structure of J , which consists of several integrals
nested in nonlinear functions.

2.6 Discretization

For the reasonsmentioned above, wewill only compare the results obtained by CSG to
generic deterministic optimization schemes for various choices of discretization. Since
the integration over � admits no special structure, we always choose an equidistant
partition for this dimension of integration. However, for the integration over R × D,
we can use our knowledge of μu to achieve a better approximation to the true integral.
Instead of dividing R × D into an equidistant grid, we utilize the fact that R̃ and d̃
follow truncated one-dimensional normal distributions with parameters independent
from each other. Since, for a normal distribution, 99.7% of all weight is concentrated
in the 3σ -interval around the mean value, we may only discretize this portion of the
full domain in each step.

Moreover, we know the precise density function for both R̃ and d̃ . Thus,
given a design un = (Rn, dn), we will partition

(
Rn − 3

10 Rn, Rn + 3
10 Rn

)
and
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The continuous stochastic gradient method 985

Fig. 4 Flat regions in the discretizted objective functions. The underlying contour plot corresponds to the
discretization of�×R×D into 50×50×50 points. For each figure, the green region consists of all points
at which the Euclidean norm of the gradient of the discretized objective function is smaller than 0.05. The
discretizations of � × R × D are given in the titles, respectively

(
dn − 3

10dn, dn + 3
10dn

)
not into equidistant intervals, but instead in intervals of equal

weight. This procedure is illustrated in Figs. 5 and 6 and produces very good results
even for a small number of sample points.

However, as we have already seen in Fig. 3, even this dedicated discretization
scheme introduces additional propbelms into (1). Furthermore, we want to empha-
size that choosing a reasonable discretization is a challenge of its own. Not only is
there no a priori indication for the general magnitude of the number of points needed,
it is also unclear whether or not one should use the same number of points in each
direction.
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986 M. Grieshammer et al.

Fig. 5 Cumulative density
function for R̃ in the case
R = 80. The six integration
points (red dots) are obtained by
dividing (0, 1) in six intervals of
equal size and calculating the
midpoints of the resulting
preimages (black crosses). Note
that the preimages are first
projected on the 3σ -interval

Fig. 6 Density function for R̃ in
the case R = 80. The red dots
represent the six integration
points as detailed in Fig. 5. By
their special construction, each
shaded region under the curve is
of equal area

2.7 Numerical results

As mentioned above, the restriction to radially symmetric nanoparticles allows us to
apply standard blackbox solvers to (1), in order to have a comparison for the CSG
results. In our case, we chose the fmincon implementation of an interior point algo-
rithm, integrated in MATLAB, as is it an easy-to-use blackbox algorithm that yields
reproducible results.

Specifically, we compared the results of SCIBL-CSG with empirical weights on
R × D and exact hybrid weights on � (cf. [2, Section 3]) to the fmincon results for
three different discretization schemes of � × R × D. Two of these are equal in each
dimension (10× 10× 10 and 7× 7× 7), while the last one is asymmetric (8× 2× 2).
Once again, wewant to stress that finding an appropriate discretization scheme already
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The continuous stochastic gradient method 987

Fig. 7 Median objective
function value of all
optimization runs in which the
final design was closer to the
global maximum of (1) than to
any other stationary point. The
values were obtained using a
discretization into 50 × 50 × 50
points

Fig. 8 The medians presented in
Fig. 7 (solid lines) and the
corresponding quantiles
P0.25,0.75, indicated by the
shaded areas. For better
visibility, the number of
evaluations is scaled
logarithmically and the
discretization 8 × 2 × 2 was
discarded

requires a thorough analysis of (1). The specific choices listed above represent three
of the most promising candidates found during our investigation (Figs. 7, 8).

As we consider this example to be a prototype for more advanced settings from
topology optimization, e.g., switching the setting to the DDAmodel later, we compare
the different approaches with respect to the number of inner gradient evaluations, since
this is by far the most time-consuming step in these cases. To be precise, an evaluation
represents the calculation of Abs, Sca, Geo, ∇ Abs, ∇ Sca and ∇ Geo for a single
(λ, R̃, d̃) ∈ � × R × D. These calculations are based on the MATLAB Mie library
MatScat [27].

Since the produced iterates depend on the initial design, we randomly selected 500
starting points in thewhole design domainU = [1, 75]×[1, 250]. In each optimization
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988 M. Grieshammer et al.

Fig. 9 Iterates of the different optimization approaches for (1) in the whole design domain U = [1, 75] ×
[1, 250]. For fmincon, the discretization of � × R × D is given in the titles, respectively. To measure
the progress, the starting points are also shown. As mentioned above, an evaluation corresponds to the
calculation of Abs, Sca, Geo, ∇ Abs, ∇ Sca and ∇ Geo for one combination (λ, R̃, d̃) ∈ � × R × D.
Again, the underlying contours are obtained by discretizing � × R × R into 50 × 50 × 50 points

123



The continuous stochastic gradient method 989

Fig. 10 Continuation of the results for (1) presented inFig. 9. SinceCSGwas stopped after 5.000 evaluations,
the iterates do not change afterwards, but are still shown as a point of reference. In the last row, final designs
obtained by 7 × 7 × 7 and 8 × 2 × 2, which do not correspond to stationary points of (1), are highlighted
in blue
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990 M. Grieshammer et al.

run, the total number of evaluations was limited to 50.000 for fmincon and to 5.000
for SCIBL-CSG. To obtain an overview of the general performance of the different
approaches, we take snapshots of all iterates after different amounts of evaluations.
The results are given in Figs. 9 and 10 and yield a good impression on how fast each
method tends to find solutions to (1). Note that, for the sake of readability and better
comparison, the final CSG iterates after 5.000 evaluations are shown in all graphs
labeled with a higher number of total evaluations.

By comparing Figs. 9 and 10 with Fig. 4, we observe that the artificial flat regions
discussed earlier indeed slow down the optimization progress for all choices of pre-
discretization. Furthermore, we note that only the highest resolution 10 × 10 × 10
overcomes this approximation error, at the cost of the largest amount of evaluations
needed. In contrast, the resolutions 7 × 7 × 7 and 8 × 2 × 2 converge much faster,
but some of the final designs are no stationary points of (1). Out of the 500 optimiza-
tion runs we performed, 7 × 7 × 7 converged to a wrong design, i.e., artificial local
minimum, 16 times (3.2%). For 8× 2× 2, a wrong design was found in 218 (43.6%)
instances, see Fig. 10.

Lastly, we are interested in the performance of each method with respect to J (un)
over the course of the iterations. Since each local solution to (1) admits a different
objective function value, we focus only on the global maximum. For all approaches,
we selected all runs whose final designs are closer to the global maximum of (1) than
to any other stationary point. The results are shown in Figs. 7 and 8.

2.8 Optimization in the DDAmodel

As a final example from application, we drop the restriction to core shell particles and
consider hematite nanoparticles of arbitrary shape with the DDA model. While the
setting is very similar to the setting analyzed above, there are some minor differences.

First, we slightly change the weights appearing in the objective function:

max
u∈U

1
2 L(u) + 1

2 a(u). (2)

This change was made purely for aesthetics, as the weights in (1) favour radially
symmetric solutions, while (2) admits local solutions with a more interesting design
structure. The set U will be defined later.

Furthermore, we do not assume a particle design distribution anymore, since it
is unclear, how such a general shape distribution should look like. However, as the
particles are no longer radially symmetric, we now have to consider the orientation
of the particle with respect to the incoming light ray instead. Therefore, the K and S
values explained in the introduction of this setting need to be averaged over all possible
orientations, i.e.,

K (u, λ) = 1∣∣S2∣∣
∫∫

S2
Abs(u, λ, ν)dν

123



The continuous stochastic gradient method 991

and

S(u, λ) = 1∣∣S2∣∣
∫∫

S2
Sca(u, λ, ν)

(
1 − Geo(u, λ, ν)

)
dν.

Here, S2 denotes the unit sphere and the particle orientation ν is assumed to be dis-
tributed uniformly random over all possible directions.

The design domain is a ball of 300 nm diameter, discretized into n0 = 65752 dipole
cells. The design u ∈ [ε, 1]n0 =: U gives the relative amount of hematite to water
in each cell, with ε = 10−4. The optical properties of intermediate (grey) material
u(i) ∈ (0, 1) are generated by linear interpolation between the respective properties of
water and hematite. Consequently, each admissible design contains a positive amount
of hematite, resulting in lower bounds for Abs and Sca. As stated in Sect. 2.4, [2,
Assumptions 2.2–2.4] are satisfied, since changing fromMie theory to the DDAmodel
does not interfere with the smoothness of Abs, Sca and Geo w.r.t. (u, λ, ν), see [19,
28].

Generally, one would combine filtering techniques and greyness penalization to
obtain a smooth final design without intermediate material (see, e.g., [29]). However,
we explicitly refrain from doing so to present a clear analysis of the CSG performance,
without interference from secondary layers of smoothing techniques.

Asmentioned above, the change to the DDAmodel significantly increases the com-
putational cost of evaluating Sca, Abs and Geo for a given (u, λ, ν) ∈ U × � × S

2.
Thus, the deterministic approaches used in the previous setting are no longer compu-
tationally feasible.

Fig. 11 Representation of the initial designs (top row). Red boxes correspond to cells consisting purely
of hematite, while grey boxes indicate an artificial intermediate material, consisting of 50% hematite and
50%water. For later references, we denote the initial designs by plate (100%), plate (50%) and screwdriver
(50%), respectively. The different final designs, obtained by 5.000 iterations of SCIBL-CSG with outer
norm (a) are shown in the bottom row. For better visibility, cells with less than 50% hematite are considered
as pure water and left out of the visualization. For each final design, the amount of cells discarded in this
fashion is less than 100 (less than 0.15% of all cells)
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Furthermore, we want to use this example to analyze the impact of the chosen norm
on U × � × S

2, appearing in the nearest neighbor calculation, which was already
mentioned in [2, Section 3.5]. To be precise, calculating the CSG integration weights
requires the definition of an outer norm

∥∥(u∗, λ∗, ν∗)
∥∥
Out = cu‖u∗‖U + cλ‖λ∗‖� + cν‖ν∗‖

S2
,

Fig. 12 Objective function
approximation for the
screwdriver (50%) design. The
blue and orange curve show the
results for CSG with fixed step
size τ = 0 and different
coefficients of the outer norm
‖ · ‖Out . For Monte Carlo, each
inner integral over S2 was
approximated using 40 random
directions. The true objective
function value J∗ ≈ 37.84 is
indicated by the dashed line. The
Monte Carlo results are
truncated for the sake of
readability, as it requires over
8.000 evaluations to reach a
good approximation to J∗

Fig. 13 CSG objective function
approximations during the
optimization process for all
initial designs and choice (a) for
‖ · ‖Out , i.e., cu = 1, cλ = 100
and cν = 100. The dashed lines
indicate the objective function
values of each initial design,
respectively
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where ‖ · ‖U , ‖ · ‖� and ‖ · ‖
S2

denote norms on the corresponding inner spaces and
cu, cλ, cν > 0. In this application, we choose the Euclidean norm ‖ · ‖2 for each inner
space. Additionally, we fix cu = 1, but consider different coefficients cλ and cν .

For the optimization, we consider three different initial designs, which are shown
in Fig. 11, top row. The objective function value as well as the values of L, a and b
for these designs were computed using the CSG method with fixed design, i.e., with
constant step size τ = 0, and verified by Monte Carlo (see, e.g., [30]) integration.
For one of the initial designs, the objective function value approximation of CSG
and Monte Carlo integration with respect to the number of evaluations and different
choices of ‖ · ‖Out is shown in Fig. 12.

Fig. 14 Top left to bottom right: Design evolution during the optimization process for the screwdriver
(50%) initial design and outer norm (a). The design snapshots were taken every 200 iterations. Red boxes
represent design cells consisting of pure hematite. Intermediate material is indicated via a color gradient,
where a cell filled with 50% water and 50% hematite is colored grey. Based on this gradient, depending on
the ratio of hematite and water in a cell, the cell color is shifted to red (more hematite) or blue (more water)
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Fig. 15 Euclidean distance (after
dividing by

√
dim(U) for

scaling) between intermediate
designs and the respective final
design during the SCIBL-CSG
optimization process, carried out
with outer norm (a)

Each design was optimized with SCIBL-CSG, using inexact hybrid weights for the
integration over S2 and exact hybrid weights for the integration over �. For ‖ · ‖Out ,
we considered four different choices of the parameters:

(a) cu = 1, cλ = 100 and cν = 100
(b) cu = 1, cλ = 1 and cν = 1
(c) cu = 1, cλ = 1

100 and cν = 1
(d) cu = 1, cλ = 1

100 and cν = 1
100

The results in case (a) for all three initial designs are presented in Fig. 13 and the
respective design evolution for the initial design screwdriver (50%), shown in Fig. 11
top row, is depicted in Fig. 14. The corresponding final designs, obtained after 5.000
SCIBL-CSG iterations, are presented in Fig. 11, bottom row. As a second measure for
convergence in the design space, the evolution of the norm distance to the respective
final designs are shown in Fig. 15 for all three initial designs.

Comparing Figs. 12 and 13, we notice that CSG, using an appropriate outer norm,
finds an optimized design almost as fast as it computes the objective function value
for a given design. In other words: The full optimization process is only slightly
more expensive that the simple evaluation of a single design. Moreover, CSG finds
an optimal solution to (2) long before the Monte Carlo approximation to the initial
objective function value is converged.

It should, of course, also be noted, that choosing ‖·‖Out should be donewith caution,
as Fig. 16 shows. While case (a) is, to the best of our knowledge, not optimal by any
means, cases (b) and (c) clearly showworse results. Choosing ‖·‖Out extremely poorly,
i.e., case (d), can even have devastating effects on the performance, see Fig. 17.

This, however, could also imply that the performance might be significantly
improved, if problem specific inner and outer norms would be chosen. Especially
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Fig. 16 CSG objective function
value approximation during the
optimization process for the
plate (100%) initial design. The
dashed line shows the inital
objective function value,
whereas the different graphs
correspond to the choices (a), (b)
and (c) for ‖ · ‖Out

Fig. 17 Results for the plate
(100%) initial design presented
in Fig. 16, augmented by the
CSG objective function value
approximation in the case that
‖ · ‖Out was chosen according to
(d)

in even more complex settings, techniques to obtain such norms a priori, or even
during the optimization process itself, represent one of the most important points for
further research.
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3 Online error estimation

Before we go into theoretical details, we first collect a few key properties and results
concerning CSG, which were shown in [2]. In a first simple setting, we consider
optimization problems of the form

min J (u)

s.t. u ∈ U ⊂ R
do for some do ∈ N.

(3)

Additionally, we assume that U is compact, and for some dr ∈ N, there exists an open
an bounded set X ⊂ R

dr and a measure μ with supp(μ) ⊂ X , such that J can be
written as J (u) = ∫

X j(u, x)μ(dx). The detailed set of assumptions is given in [2,
Section 2]. For now, it is only important that ∇1 j : U × X → R

do is bounded and
Lipschitz continuous, i.e., there exist C, L j > 0 with

‖∇1 j(u, x)‖ ≤ C,

‖∇1 j(u1, x1) − ∇1 j(u2, x2)‖ ≤ L j
(‖u1 − u2‖U + ‖x1 − x2‖X

)

for all (u, x), (u1, x1), (u2, x2) ∈ U ×X . Due to the finite dimension of all appearing
spaces, we can choose arbitrary norms on U , X and R

do , and simply denote them by
‖ · ‖U , ‖ · ‖X and ‖ · ‖, respectively, unless specific choices are made in numerical
experiments.

During the optimization process, CSG computes design dependent integration
weights

(
αk

)
k=1...,n (cf. [2, Section 3]) to build an approximation Ĝn to the true

objective function gradient, based on the available samples from previous iterations(∇1 j(uk, xk)
)
k=1,...,n . To be precise, we have

∇ J (u) =
∫
X

∇1 j(u, x)μ(dx) ≈
n∑

k=1

αk∇1 j(uk, xk) =: Ĝn .

It was shown in [2, Lemma 4.6], that

‖∇ J (un) − Ĝn‖ → 0 for n → ∞ almost surely.

Carefully investigating the methods to obtain the integration weights, we observe that

∥∥∥∇ J (un) − Ĝn

∥∥∥ =
∥∥∥∥
∫
X

∇1 j(un, x)μ(dx) − Ĝn

∥∥∥∥

=
∥∥∥∥∥

n∑
i=1

∫
Mi

∇1 j(un, x)μ(dx) −
n∑

i=1

∇1 j(ui , xi )νn(Mi )

∥∥∥∥∥ ,
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where νn denotes the measure associated to one of the measures listed in [2, Section
3.6], depending on the choice of integration weights, and

Mk := {
x ∈ X : ‖un − uk‖U + ‖x − xk‖X

< ‖un − u j‖U + ‖x − x j‖X for all j ∈ {1, . . . , n} \ {k}}.

By construction, Mk contains all points x ∈ X , such that (un, x) is closer to (uk, xk)
than to any other previous point we evaluated ∇1 j at. For exact integration weights,
we have νn = μ and thus

∥∥∥∇ J (un) − Ĝn

∥∥∥ =
∥∥∥∥∥

n∑
i=1

∫
Mi

∇1 j(un, x)μ(dx) −
n∑

i=1

∫
Mi

∇1 j(ui , xi )μ(dx)

∥∥∥∥∥

≤
n∑

i=1

∫
Mi

‖∇1 j(un, x) − ∇1 j(ui , xi )‖μ(dx)

≤
n∑

i=1

∫
Mi

L j ·
(
sup
x∈Mi

Zn(x)

)
μ(dx)

= L j

n∑
i=1

μ(Mi ) sup
x∈Mi

Zn(x)

≤ L j sup
x∈X

Zn(x).

Here, Zn is given by

Zn(x) := min
k∈{1,...,n}

(‖un − uk‖U + ‖x − xk‖X
)
.

In other words, the approximation error can be bounded in terms of the Lipschitz
constant of ∇1 j and the quantity Zn , which relates to the size of Voronoi cells [31]
with positive integration weights.

Both L j and supx∈X Zn(x) can be efficiently approximated during the optimization
process, e.g. by finite differences of the samples

(∇1 j(ui , xi )
)
i=1,...,n and by

sup
x∈X

Zn(x) ≈ max
k=1,...,n

Zn(xk),

yielding an online error estimation. Such an approximation may, for example, be used
in stopping criteria.

4 Convergence rates

Throughout this section, we assume [2, Assumptions 2.1–2.4] to be satisfied. More-
over, for the entire section, let (un)n∈N correspond to the CSG iterates produced for a
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fixed random sequence (xn)n∈N. Then, with probability 1, we have

∥∥Ĝn − ∇ J (un)
∥∥ → 0,

see [2, Lemma 4.6]

4.1 Theoretical background

In the convergence analysis presented in [2], we have already seen that the fashion
in which the gradient approximation Ĝn is calculated in CSG is crucial for ‖Ĝn −
∇ J (un)‖ → 0 and that this property of CSG in turn is the key to all advantages CSG
offers in comparison to classic stochastic optimization methods, like convergence for
constant steps, backtracking, more involved optimization problems, etc.

The price we pay for this feature lies within the dependency of Ĝn on the past
iterates. For comparison, the search direction ĜSG

n in a stochastic gradient descent
method is given by

ĜSG
n = ∇1 j(un, xn).

Thus, it is independent of all previous steps and fulfills

EX
[
ĜSG

n

]
= EX

[∇1 j(un, ·)
] = ∇ J (un),

i.e., it is an unbiased sample of the full gradient. The combination of these properties
allows for a straightforward convergence rate analysis, see, e.g., [32].

In contrast, Ĝn is in generalnot an unbiased approximation to∇ J (un) andmoreover
not independent of

(
ui , xi )i=1,...,n−1. The main problem in finding the convergence

rate of ‖un+1 − un‖U → 0 is, that this quantity depends on the approximation error
‖Ĝn − ∇ J (un)‖, which, as we have seen in Sect. 3, depends on Zn . Since Zn itself is
deeply connected to mink ‖un − uk‖U , we run into a circular argument.

Therefore, up to now,we are not able to prove convergence rates for theCSG iterates.
We can, however, state a prediction to this rate and provide numerical evidence.

Conjecture 4.1 We conjecture that the CSG method, applied to problem (3), using a
constant step size τ < 2

L and empirical integration weights, fulfills

‖un+1 − un‖U = O
(
ln(n) · n− 1

max{2,dr}
)

with probability 1.

To motivate this claim, note that, in the proof of [2, Lemma 4.6], it was shown that
there exists C > 0 such that

∥∥∥Ĝn − ∇ J (un)
∥∥∥ ≤ C

(∫
X

Zn(x)μ(dx) + dW (μn, μ)

)
,
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where dW denotes the Wasserstein distance of the two measures μn and μ. By [33,
Theorem 1], the empirical measure μn satisfies

E
[
dW (μn, μ)

] ≤ C(dr) ·
(∫

X
‖x‖3X μ(dx)

) 1
3 ·

⎧⎪⎪⎨
⎪⎪⎩

1√
n

if dr = 1,
ln(1+n)√

n
if dr = 2,

n
− 1
dr if dr ≥ 3.

This result is the main motivation for Conjecture 4.1. It can be shown that the rate
n−1/dr for dr ≥ 3 is sharp ifμ corresponds to a uniform distribution onX . Thus, in this
case, it is reasonable to assume a uniform distribution also corresponds to the worst-
case rate of

∫
X Zn(s)μ(dx) → 0. Assuming that the difference in designs appearing

in Zn is negligible due to the overall convergence of CSG, we obtain the rate

sup
x∈X

Zn(x) = O
(
ln(n) · n− 1

max{2,dr}
)

.

To see this, we fill X ⊂ R
dr with balls (w.r.t. the norm ‖ · ‖X ) of radius ε > 0

and denote by N (ε) ∈ N the number of cells. Due to the dimension of X , we have
O(

N (ε)
) = ε−dr . Now, to achieve supx∈X Zn(x) < ε, we need each of these cells to

contain at least one of the sample points (xi )i=1,...,n . It is well-known that the expected
number of samples we need to draw for this to happen is given by

N (ε)

N (ε)∑
k=1

1

k
= O

(
−ε−dr ln(ε)

)
,

where we used

n∑
k=1

1

k
= O(

ln(n)
)

for n → ∞.

In other words, the convergence rates of
∫
X Zn(x)μ(dx) → 0 and dW (μn, μ) → 0

are comparable.
Now that we motivated the rates claimed in Conjecture 4.1 for the approximation

error ‖Ĝn − ∇ J (un)‖, we use the following proposition to show that the rates of
‖un+1 − un‖U → 0 can not be worse.

Proposition 4.2 Assume that the approximation error ‖Ĝn − ∇ J (un)‖ satisfies

‖Ĝn − ∇ J (un)‖ = O
(
ln(n) · n− 1

max{2,dr}
)

.

Then, under the assumptions of Conjecture 4.1, it holds

‖un+1 − un‖U = O
(
ln(n) · n− 1

max{2,dr}
)

.
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Proof Assume for contradiction that this is not the case. Thus, there exists N ∈ N

such that

∥∥∥∇ J (un) − Ĝn

∥∥∥ ≤ 1
2

( 1
τ

− L
2

) ‖un+1 − un‖U for all n ≥ N . (4)

By the descent lemma [34, Lemma 5.7], the characteristic property of the projection
operator [34, Theorem 6.41] and the Cauchy-Schwarz inequality, we obtain

J (un+1) − J (un)

≤ ∇ J (un)
�(un+1 − un) + L

2 ‖un+1 − un‖2U
= Ĝ�

n (un+1 − un) + L
2 ‖un+1 − un‖2U +

(
∇ J (un) − Ĝn

)�
(un+1 − un)

≤ ( L
2 − 1

τ

) ‖un+1 − un‖2U +
∥∥∥∇ J (un) − Ĝn

∥∥∥ · ‖un+1 − un‖U

=
(( L

2 − 1
τ

) ‖un+1 − un‖U +
∥∥∥∇ J (un) − Ĝn

∥∥∥
)

‖un+1 − un‖U .

Combining this with (4) gives J (un+1) ≤ J (un) for all n ≥ N , since L
2 < 1

τ
. Thus,

the sequence of objective function values
(
J (un)

)
n∈N is monotonically decreasing for

all n ≥ N . By continuity of J and compactness of U , J is bounded and J (un) → J̄
for some J̄ ∈ R. Therefore,

−∞ < J̄ − J (uN ) =
∞∑

n=N

(
J (un+1 − J (un)

) ≤ 1
2

( L
2 − 1

τ

) ∞∑
n=N

‖un+1 − un‖2U .

Hence, the series

∞∑
n=N

‖un+1 − un‖2U

converges, contradicting ‖un+1 − un‖U �= O
(
ln(n) · n− 1

max{2,dr}
)
. ��

4.2 Numerical verification

Wewant to verify the proclaimed rates numerically. For this purpose, we consider two
optimization problems that can easily be scaled to high dimensions. The first problem
is given by

min
u∈U

1

2

∫
X

∥∥u − x
∥∥2
2dx, (5)
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where X = [− 1
2 ,

1
2

]dr and U = [−5, 5]dr , i.e., U and X have the same dimension.
The second problem,

min
u∈U

1

2

∫ 0.5

−0.5

∥∥u − x · 1do

∥∥2
2dx, (6)

fixes dr = 1, while U = [−5, 5]do . Here, 1do represents the vector (1, 1, . . . , 1)� ∈
R
do . Note that, in both settings, we have L j = 1. Thus, by Sect. 3, we have

∥∥Ĝn − ∇ J (un)
∥∥
2 ≤ sup

x∈X
Zn(x) ≈ max

k=1,...,n
Zn(xk).

The optimal solution to (5) and (6) is given by the zero vector u∗ = 0 ∈ U .
In our analysis, for different values of the dimensions dr, do ∈ N, problems (5)

and (6) were initialized with 500 random starting points. The constant step size of
CSG was chosen as τ = 1

2 . We track ‖un − u∗‖2 and maxk=1,...,n Zn(xk) during the
optimization process and compare the median of the 500 runs to the rates predicted in
Conjecture 4.1. The results can be seen in Figs. 18, 19, 20, and 21. Note that, for the
plots of the predicted rates, we omitted the factor ln(n). Therefore, the corresponding
graphs are straight lines, where the slope − 1

max{2,dr} is equal to the asymptotic slope

100 101 102 103
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10-1

100

101

1
2
3
4
5
10
25
50
100
500

Fig. 18 The bold lines represent the median values of maxk=1,...,n Zn(xk ) for the equidistant prob-
lem (5) with respect to the iteration counter. The different colors indicate the different dimensions

dr ∈ {1, 2, . . . , 500}. The dotted lines correspond to the respective predicted rates n
− 1
max{2,dr} . Since

the predictions for dr = 1 and dr = 2 are equal, only the case dr = 2 is shown
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Fig. 19 Median values of ‖un − u∗‖ in the equidimensional setting (5) for different choices of dr ∈
{1, 2, . . . , 500}. For each dimension, the predicted worst-case asymptotic line n

− 1
max{2,dr} is indicated by

the dotted line. Again, we omit the prediction for dr = 1, since it has the same slope as in the case for
dr = 1

of the predicted rate, since

ln(n) · n− 1
max{2,dr} = O

(
n

− 1
max{2,dr}+ε

)
for all ε > 0.

In the equidimensional, i.e., dim(X ) = dim(U), setting (5), the experimentally
obtained values for Zn almost perfectly match the claimed rates. For ‖un − u∗‖2, the
observed rates also match the predictions for very small and large dimensions. For
dr = 3, 4, 5, the convergence obtained in the experiments was even slightly faster
than predicted. Investigating the results for (6), it is clearly visible that increasing the
design dimension do, while keeping the parameter dimension dr fixed, has no influence
on the obtained rates of convergence, indicating that CSG is able to efficiently handle
large-scale optimization problems.

4.3 Circumventing slow convergence

As we have seen so far, the convergence rate of the CSG method worsens with
increasing dimension of integration dr ∈ N. However, it is possible to circumvent
this behavior, if the problem admits additional structure. Assume that there exist suit-
able X1,X2, μ1, μ2, f1 and f2 such that the objective function appearing in (3) can
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Fig. 20 Results for the median of maxk=1,...,n Zn(xk ) in setting (6) for different dimensions do ∈
{1, 2, . . . , 1000}, indicated by different colors. As we conjectured, the asymptotic slope of all curves is
equal, since dr = 1 is fixed. As a point of reference, we added the graph of n−0.65, represented by the
dotted line
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Fig. 21 Median distance to the optimal solution u∗ during the course of the iterations for do ∈
{1, 2, . . . , 1000}. Again, the asymptotic slope of all curves is equal and we added the line correspond-
ing to n−0.65 for comparison
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be rewritten as

J (u) =
∫
X

j(u, x)μ(dx) =
∫
X1

f1

(
u, x,

∫
X2

f2(u, y)μ2(dy)

)
μ1(dx).

Assume further, that X1,X2, μ1, μ2, f1 and f2 satisfy the corresponding equivalents
of [2, Assumptions 2.1–2.4].

Now,wecan independently calculate integrationweights (βk)k=1,...,n and (αk)k=1,...,n
for the integrals overX1 andX2, respectively. The corresponding CSG approximations
(indicated by hats) are then given by

f (n) :=
∫
X2

f2(u, y)μ2(dy) ≈
n∑

i=1

αi f2(ui , yi ) =: f̂n,

g(n) :=
∫
X2

∇1 f2(u, y)μ2(dy) ≈
n∑

i=1

αi∇1 f2(ui , yi ) =: ĝn,

∇ J (un) ≈
n∑

i=1

βi

(
∇1 f1(ui , xi , f̂i ) + ∇3 f1(ui , xi , f̂i ) · ĝi

)
=: Ĝn .

The same steps as performed in the proof of [2, Lemma 4.6] yield the existence of a
constant C1 > 0, depending only on the Lipschitz constants of ∇ f1 and ∇ f2, such
that

∥∥∥∇ J (un) − Ĝn

∥∥∥
≤ C1

(
dW (μ1, ν

β
n ) + sup

x∈X1

min
k=1,...,n

(‖un − uk‖U+ ‖x − xk‖X1
+ | f̂n − f̂k |

))
. (7)

Here, νβ
n corresponds to themeasure related to the integrationweights (βk)k=1,...,n , see

[2, Assumption 2.4]. Now, denoting by C2 > 0 a constant depending on the Lipschitz
constant L f2 of f2, we decompose the last term:

| f̂n − f̂k |
≤ | f̂n − fn| + | f̂k − fk | + | fn − fk |
≤ | f̂n − fn| + | f̂k − fk | + L f2‖un − uk‖U

≤ C2

(
‖un − uk‖U + sup

y∈X2

min
i=1,...,n

(‖un − ui‖U + ‖y − yi‖X2

)

+ sup
y∈X2

min
i=1,...,k

(‖uk − ui‖U + ‖y − yi‖X2

) + dW (μ2, ν
α
n ) + dW (μ2, ν

α
k )

)

= C2

(
‖un− uk‖U + sup

y∈X2

Zn(y) + sup
y∈X2

Zk(y) + dW (μ2, ν
α
n ) + dW (μ2, ν

α
k )

)
. (8)
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Assuming that the convergence of the sequence (un)n∈N generated by the CSGmethod
implies

O
(
sup
y∈X2

Zn(y)

)
= O

(
sup
y∈X2

Zk(y)

)
and O(

dW (μ2, ν
α
n )

) = O(
dW (μ2, ν

α
k )

)
,

we insert (8) into (7), to obtain

∥∥∇ J (un)−Ĝn‖≤C(C1,C2)
(
dW (μ1, ν

β
n )+dW (μ2, ν

α
n )+ sup

x∈X1

Zn(x)+ sup
y∈X2

Zn(y)
)
.

Therefore, by the same arguments as in Sect. 4.1, we conjecture

∥∥∇ J (un) − Ĝn
∥∥ = O

(
ln(n) · n− 1

max{2,dim(X1),dim(X2)}
)

,

‖un+1 − un‖U = O
(
ln(n) · n− 1

max{2,dim(X1),dim(X2)}
)

.

In conclusion, we conjecture that, assuming the objective function can be rewritten in
terms of nested expectation values

J (u) =
∫
X1

f1

(
u, x1,

∫
X2

f2

(
u, x2,

∫
X3

f3(· · · )μ3(dx3)

)
μ2(dx2)

)
μ1(dx1),

the convergence rate of the CSGmethod depends only on the largest dimension of the
occurring Xi , which may be much lower when compared to dim(X ).

Since this is again a claim and not a rigorous proof, we validate this assumption
numerically. For this, we once more consider (5) and initialize it with 500 random
starting points. This time, however, we utilize the fact that the objective function can
be written as

J (u) = 1

2

∫
X

‖u − x‖22dx = 1

2

∫
X

( dr∑
i=1

(ui − xi )
2
)
dx = 1

2

dr∑
i=1

∫ 1
2

− 1
2

(ui − xi )
2dxi .

Thus, we can group the independent coordinates into subintegrals of arbitrary dimen-
sion, allowing us to study our claim for a large number of different regroupingswithout
having to change the whole problem formulation. The results for several different
decompositions and 500 random starting points in the case dr = 100 are shown in
Fig. 22. The improved rates of convergence are clearly visible, independent onwhether
the subgroup dimensions are equal or not. As claimed above, the highest remaining
dimension of integration determines the overall convergence rate of CSG.
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Fig. 22 Median total error ‖un − u∗‖2 of the CSG iterates for (5), for dr = 100. The integral over

X =
[
− 1

2 , 1
2

]dr
has been decomposed into several integrals of smaller dimension. The labels in the

bottom left give details about the decomposition, e.g., the orange line corresponds to splitting the whole
integral into one integral of dimension 75 and 5 integrals of dimension 5. The dotted line indicates the
expected rate of convergence obtained by the CSG method without splitting up the integral

5 Conclusion and outlook

In this contribution, we presented a numerical analysis of the CSG method. The
practical performance of CSG was tested for two applications from nanoparticle
design optimization with varying computational complexity. For the low-dimensional
problem formulation, CSGwas shown to perform superior when compared to the com-
mercial fmincon blackbox solver. The high-dimensional setting provided an example,
for which classic optimization schemes (stochastic as well as deterministic) from lit-
erature do not provide optimal solutions within reasonable time.

Convergence rates for CSG with constant step size were proposed and analytically
motivated. They were shown to agree with numerically obtained convergence rates in
several different instances. Moreover, in the case that the objective function admits
additional structure, techniques to circumvent slow convergence for high dimensional
integration domains were presented.

While the proposed convergence rates for CSG agree with our experimental results,
it remains an open question if they can be proven rigorously. Furthermore, even though
the choice of ametric for the nearest neighbor approximation in the integrationweights
is irrelevant for the convergence results, a problem specific metric could significantly
improve the performance of CSG by exploiting additional structure, which might be
lost by utilizing an arbitrary metric. How to automatically obtain such a metric during
the optimization process requires further research.
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