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Abstract
Bilinear terms naturally appear inmany optimization problems. Their inherent non-convexity
typically makes them challenging to solve. One approach to tackle this difficulty is to use
bivariate piecewise linear approximations for each variable product, which can be represented
via mixed-integer linear programming (MIP) formulations. Alternatively, one can reformu-
late the variable products as a sum of univariate functions. Each univariate function can again
be approximated by a piecewise linear function and modelled via an MIP formulation. In
the literature, heterogeneous results are reported concerning which approach works better in
practice, but little theoretical analysis is provided. We fill this gap by structurally comparing
bivariate and univariate approximations with respect to two criteria. First, we compare the
number of simplices sufficient for an ε-approximation. We derive upper bounds for univari-
ate approximations and compare them to a lower bound for bivariate approximations. We
prove that for a small prescribed approximation error ε, univariate ε-approximations require
fewer simplices than bivariate ε-approximations. The second criterion is the tightness of the
continuous relaxations (CR) of corresponding sharp MIP formulations. Here, we prove that
the CR of a bivariate MIP formulation describes the convex hull of a variable product, the
so-called McCormick relaxation. In contrast, we show by a volume argument that the CRs
corresponding to univariate approximations are strictly looser. This allows us to explainmany
of the computational effects observed in the literature and to give theoretical evidence on
when to use which kind of approximation.
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1 Introduction

Many real-world optimization problems contain bilinear terms. For example, the modelling
of economic interactions quite often results in products of prices and (production) quantities
in optimizationmodels; see e.g. [11, 18]. Other applications of bilinear programming include
water management [20], gas network optimization [13, 14, 31] or pooling problems [8, 33].
In practice, such bilinear terms of continuous variable products xy are often approximated
by piecewise linear functions, because they can be modelled using mixed-integer linear
formulations; see e.g. [6, 15, 17, 26, 30, 39, 44]. For any pre-specified ε > 0, this can be
done in such a way that the maximum approximation error, given as the maximum absolute
pointwise deviation between the pwl. approximation and the non-linear function, is at most ε
for each term. One straightforward approach is to use mixed-integer programming (MIP)
formulations for bivariate piecewise linear functions that approximate xy; see e.g. [16, 29,
47, 50]. At the same time, it is well known that xy can be reformulated as a sum of univariate
functions using additional variables and constraints. For example, in [3, 28, 38, 49] the authors
suggest to use the substitution xy = p21 − p22 with p1 := 1

2 (x + y) and p2 := 1
2 (x − y). The

monomials p21 and p22 can then be approximated by two univariate piecewise linear functions,
using a separate MIP formulation for each of these functions. This raises the main question
of this article: which approach is more efficient in which situation?

In [36], it is suggested that there is no clear answer as to whether or not to reformulate
products of variables by several univariate functions. This claim is supported by heteroge-
neous computational results from the literature. On the one hand, it is shown in [50] in a small
computational study in the context of planning decentralized energy grids that a bivariate
piecewise linear approximationmay outperform a quadratic univariate formulation on certain
instances. On the other hand, in [1] the authors obtain very good computational results with a
quadratic univariate reformulation. Similarly, [21, 41] report good results for a univariate log-
arithmic reformulation. The authors of the latter articles suspect that this is due to the smaller
number of simplices required by the MIP formulations they use. From the computational
experience in the literature reviewed above, we conclude that the actual choice of univariate
and bivariate piecewise linear functions used to approximate xy is crucial for their respective
performance. From a theoretical point of view, the literature offers much fewer analysis of
the two approaches. Firstly, the best choice of a bivariate piecewise linear approximation—
uniquely determined by the given triangulation of the domain—is not straightforward. In
particular, finding an explicit construction rule for the optimal triangulation (w.r.t. the num-
ber of triangles) of a rectangular domain in order to approximate xy is still an open problem. In
[29], the author gives an implicit construction via a mixed-integer quadratically constrained
quadratic program (MIQCQP). In the univariate case, there exist algorithms that can compute
optimal piecewise linear approximations, for example for continuous functions (see [35]).
However, these algorithms do not provide an algebraic expression of the approximation error.
Further, [21] is the only theoretical analysis on the topic of univariate reformulations we are
aware of. The authors derive an upper bound for the approximation error of a univariate
logarithmic reformulation. They use it to construct ε-approximations that are more compact
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than direct bivariate piecewise linear approximations on problem instances from the field of
paper production. However, as the triangulations are chosen heuristically, their results are
not sufficient to state that in general univariate reformulations require less simplices.

Altogether, there is no rigorous comparison up to now which allows a comparison of
the two approximation approaches with respect to the required number of simplices. Apart
from the mentioned studies, there is—to the best of our knowledge—no theoretical analysis
that would give a recommendation under which circumstances any one of the approaches
is preferable. Furthermore, we are not aware of any works which analyse the continuous
relaxations of the corresponding MIP formulations. A tighter continuous relaxation results
in a tighter root relaxation of the branch-and-bound tree and therefore helps to keep the tree
small. Since the number of simplices determines the number of necessary binary variables,
less simplices directly lead to a smaller branch-and-bound tree.

In this paper, we fill the observed gap in the literature concerning a theoretical comparison
of univariate and bivariate MIP formulations for piecewise linear approximations of xy. We
establish hierarchies among them with respect to the following two criteria:

(i) the number of simplices that are required to guarantee an approximation of xy with a
given accuracy and

(ii) the tightness of the continuous relaxation of anMIP formulation with respect to the graph
of xy in terms of the enclosed volume.

Naturally, both aspects are crucial for the efficient solution of optimization problems con-
taining bilinear terms with branch-and-cut algorithms. In this respect, we will highlight two
important findings. First, we prove that commonly used monomial univariate reformulations
always require fewer simplices than any bivariate approximation, as long as the prescribed
error is small. Second, we show that the continuous relaxations of bivariate approximations
always equal theMcCormick relaxations and are genuinely tighter than the continuous relax-
ations of univariate reformulations. In addition, we derive a hierarchy among the univariate
reformulations with respect to both questions.

The remainder of this paper is structured as follows. In Sect. 2, we introduce the general
notation and concepts that are used throughout the paper. Afterwards, we compare structural
properties of the bivariate and univariate approximations in Sect. 3. In particular, in Sect. 3.1
we compare the number of required simplices, and in Sect. 3.2 the strength of the continuous
relaxations of MIP formulations. In Sect. 3.3, we discuss how these results can be used
for practical applications. We show why approximations with as few simplices as possible
are advantageous for setting up good piecewise linear relaxations of xy and explain how
to convert known cutting planes for quadratic expressions into univariately reformulated
models. Finally, we draw our conclusions in Sect. 4.

2 Piecewise linear functions, approximations andMIP formulations

We start by collecting the relevant background needed for this work. We introduce piecewise
linear functions, discuss their use in approximating non-linear functions and present the
concept of MIP formulations to model piecewise linear functions.

2.1 Piecewise linear functions and approximations

A piecewise linear (pwl.) function is linear on each element of a given domain partition. In
general, it is possible to use any family of polytopes to construct such a partition. However,
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in practice most often triangulations are used, see e.g. [47]. Therefore, we limit ourselves to
pwl. functions over triangulations. This is without loss of generality as a pwl. function defined
on a polytopal partition can always be represented by a pwl. function over a triangulation,
namely by triangulating each polytope.

In the following, we formally introduce the relevant definitions in this context. For the sake
of simplicity, we restrict ourselves to continuous functions over compact domains. Further,
we use the notation V (P) for the vertex set of a polyhedron P ⊂ Rd .

Definition 1 A n-simplex S is the convex hull of n + 1 affinely independent points in Rd .
We call S a full-dimensional simplex if n = d holds.

A triangulation is a partition consisting of full-dimensional simplices as defined next.

Definition 2 A set of full-dimensional simplices T := {S1, . . . , Sk}, with Si ⊂ Rd for i =
1, . . . , k, is called a triangulation of a compact set B ⊆ Rd if both B = ∪k

i=1Si holds and
the intersection of the relative interiors int(Si ), int(S j ) of any two simplices Si , S j ∈ T is
empty, i.e. int(Si ) ∩ int(S j ) = ∅. Further, we denote the set of vertices of a triangulation T
by N (T ) := ∪k

i=1 V (Si ).

Using the above definition of a triangulation, we can define pwl. functions as follows.

Definition 3 Let B ⊂ Rd be a compact set, and let T := {S1, . . . , Sk}, k ∈ N, be a triangula-
tion of B. A continuous function g : B → R is called piecewise linear if there exist vectors
mi ∈ Rd and constants ci ∈ R for i = 1, . . . , k such that

g(x) = m	
i x + ci if x ∈ Si . (1)

In particular, for univariate pwl. functions g : [x, x̄] → R the simplices Si in a triangulation
of [x, x̄] correspond to intervals [xi−1, xi ] with xi−1 < xi , x0 = x > −∞ and xk = x̄ < ∞.

Piecewise linear functions can be used to approximate non-linear functions, as shown in
the next definition.

Definition 4 Let B ⊂ Rd be a compact set, and let T := {S1, . . . , Sk}, k ∈ N, be a trian-
gulation of B. We call a pwl. function g : B → R a pwl. approximation of a continuous
function G : B → R if g(x) = G(x) holds for all x ∈ N (T ).

Note that in this definition of a pwl. approximation, we restrict ourselves to interpolations.
This is partly because some mixed-integer programming models of pwl. functions require
continuity of the approximation, and partly because some of the results from the literature
presented here have been developed specifically for interpolations (cf. [22, 29, 40]). Usually,
the error of a pwl. approximation is measured by the maximum absolute pointwise deviation
between the pwl. approximation itself and the non-linear function to be approximated; see
e.g. [21, 22, 36, 50]. In the following, we also use this definition of the approximation error
and extend it to separable functions by introducing the so-called combined approximation
error. The latter reflects the cancellations between positive and negative local approximation
errors of the individual univariate summands a separable function decomposes into.

Definition 5 Consider a triangulation T of a compact set B ⊂ Rd and let g : B → R be a
pwl. approximation of a continuous function G : B → R w.r.t. T . We call

Eg,G : B → R, Eg,G(x) := g(x) − G(x)

the error function of g w.r.t. G and

εg,G(S) := max
x∈S |Eg,G(x)|
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the approximation error on a simplex S ∈ T . Consequently, we define the approximation
error of g (or, equivalently, of T ) w.r.t. G over the domain B as

εg,G(T ) := max
S∈T εg,G(S).

In the special case thatG(x) = ∑n
i=1 Gi (xi ) is a separable function and g(x) = ∑n

i=1 gi (xi )
is a separable pwl. approximation of G with pwl. approximations gi of Gi , we define the
combined approximation error as

εg,G((Ti )i∈n) := max
x∈B

∣
∣
∣
∣
∣

n∑

i=1

Egi ,Gi (xi )

∣
∣
∣
∣
∣
.

Given some ε > 0, we call g an ε-approximation and T (or (Ti )i∈n) an ε-triangulation (or an
ε-family of triangulations) if the (combined) approximation error is less than or equal to ε.

For our results regarding the approximation error of univariate reformulations of non-linear
functions, we use the following straightforward upper bound for the combined approximation
error of a separable function.

Lemma 1 Consider a compact set B and a separable continuous function G : B ⊂ Rd → R,
G(x) = ∑d

i=1 Gi (xi ). Further, let g : B ⊂ Rd → R, g(x) = ∑d
i=1 gi (xi ) be a separable

pwl. approximation of G where each gi is a pwl. approximation of Gi . Then the combined
approximation error fulfils

εg,G
(
(Ti )i=1,...,d

) ≤ max
x∈B

{
d∑

i=1

max{0, Egi ,Gi (xi )},
∣
∣
∣
∣
∣

d∑

i=1

min{0, Egi ,Gi (xi )}
∣
∣
∣
∣
∣

}

.

2.2 Mixed-integer formulations of pwl. functions

Consider a continuous function G : B → R and its pwl. approximation g : B → R. In the
following, we focus on representations of the graph of g, defined as

gra B̄(g) := {(x, z) ∈ B̄ × R : z = g(x)},
where we allow the restriction of g to a subset B̄ ⊆ B. When solving optimization problems
where g occurs in the objective function or in the constraints, it is impractical to work
with Definition 3 directly. Instead, we need an explicit representation of the “if”-condition in
Eq. (1). Very often this is done by expressing g in terms of gra(g). For example, minimizing
over g is equivalent to minimizing z subject to (x, z) ∈ gra(g). The graph of a pwl. function
can be modelled with the help of additional auxiliary continuous and binary variables as well
as linear constraints (cf. [24–27]).

Definition 6 Let g : B → R be a pwl. function, with B ⊂ Rd . We call the set Mg ⊆
Rd+1 × [0, 1]p × {0, 1}q an MIP formulation of gra(g) if

(x, z) ∈ gra(g) ⇐⇒ ∃(λ, u) ∈ [0, 1]p × {0, 1}q s.t. (x, z, λ, u) ∈ Mg.

Furthermore, we call the polyhedron

C(Mg) := {(x, z, λ, v) ∈ Rd+1 × [0, 1]p × [0, 1]q : ∃(x, z, λ, u) ∈ Mg}
the continuous relaxation (CR) of the MIP formulation Mg and

proj(x,z) C(Mg)
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Table 1 Univariate reformulations of the bivariate product xy

Label Substitution Add. constraints Refs.

Bin1 xy = p21 − p22 p1 = 1
2 (x + y), p2 = 1

2 (x − y) [3, 28, 38, 49]

Bin2 xy = 1
2 (p2 − x2 − y2) p = x + y [1, 36]

Bin3 xy = 1
2 (x2 + y2 − p2) p = x − y [50]

Ln xy = p ln(p) = ln(x) + ln(y) [21–23, 41]

its projected continuous relaxation (PCR), where proj(x,z) C(Mg) is the projection ofC(Mg)

onto the (x, z)-space.

Note that the dimensions p and q of the continuous and the binary auxiliary variables,
respectively, do not necessarily coincide. In [46], several such MIP formulations for the
graph of a pwl. function are presented, e.g. the incremental method or the multiple-choice
method, with their respective sizes stated in Table 1. All MIP formulations mentioned there
have the desirable property to be sharp. In order to define sharpness, we need some more
notation. For this reason, we define the terms convex envelope and concave envelope, which
we use to describe the convex hull of the graph.

Definition 7 Consider a continuous function G : B → R over a compact set B ⊂ Rd . We
define the functions convenvB̄(G) : B̄ → R and caveenvB̄(G) : B̄ → R via

convenvB̄(G)(x) := sup{h(x) | h : B → R convex ∧ h(x) ≤ G(x)∀x ∈ B̄},
caveenvB̄(G)(x) := inf{h(x) | h : B → R concave ∧ h(x) ≥ G(x)∀x ∈ B̄},

as the convex envelope and the concave envelope of G with respect to B̄ ⊂ B.

We have

conv(graB(G)) = {(x, z) ∈ B × R : convenvB(g)(x) ≤ z ≤ caveenvB(g)(x)} (2)

for the convex hull of gra(g). For brevity, we use the notation gra(g) := graB(g),
convenv(g) := convenvB(g) and caveenv(g) := caveenvB(g).

An MIP formulation of a graph is called sharp if its PCR coincides with the convex hull
of the graph.

Definition 8 Let g : B → R be a continuous pwl. function. An MIP formulation Mg of
gra(g) is called sharp if

conv(gra(g)) = proj(x,z) C(Mg).

To obtain a finer measure of the strength of an MIP formulation Mg , we further consider
the volume of its PCR, namely vol(proj(x,z) C(Mg)). The volume of an MIP formula-
tion Mg for a corresponding pwl. function g is minimal if Mg is sharp, i.e. we have
vol(conv(gra(g)) = vol(proj(x,z) C(Mg)). If Mg is not sharp, the volume can be larger.
We say that a MIP formulation is looser or tighter than another if the volume of its PCR
is larger or smaller, respectively. These terms are suitable in the sense that the volume of
the PCR is the integral over the maximum pointwise deviation to gra(g). The volume can
therefore be interpreted as an overall error measure of the continuous relaxation.

123



Journal of Global Optimization (2023) 85:789–819 795

3 Structural properties of univariate and bivariate piecewise linear
approximations

Ourwork focusses on the structural analysis of pwl. approximations of the non-linear function

F : D → R, F(x, y) = xy,

where D := [x, x̄] × [y, ȳ] ⊂ R2 is a box domain with x < x̄ and y < ȳ. It is a straight-
forward idea to approximate F via a bivariate pwl. function f : D → R. Using an MIP
formulation M f , we can then model gra( f ) as

gra( f ) = {(x, y, z) ∈ D × R | (x, y, z, λ, u) ∈ M f } (3)

in order to obtain a mixed-integer linear representation of f .
Alternatively, we can equivalently reformulate F as a sum of univariate functions in order

to approximate F by approximating each individual function in the sum. This reformula-
tion can be done in various ways. Table 1 summarizes—to the best of our knowledge—all
univariate reformulations of F used in the optimization literature. It shows the correspond-
ing variable substitutions, the additionally required constraints as well as bibliographical
references for the use of each reformulations in optimization.

Although we also list the logarithmic reformulation Ln in Table 1, we will not discuss it
further in this work for various reasons. Firstly, the literature reports numerical difficulties in
connection with the use of this reformulation in practice (see [10, 22, 50]), which is plausible
given the asymptotic behavior of the logarithm for inputs close to zero. Secondly, Ln is only
applicable in the case x > 0 and y > 0. Although this condition can always be fulfilled via
a simple bound-shifting trick (see [21]), a shifted approximation does not retain its accuracy
in general, as elementary examples show. Further, the upper bounds on the combined error
of a pwl. approximation based on Ln stated in [21] deteriorate with increasing shift values
as well.

In the following, we exemplarily derive anMIP formulation for a univariate approximation
of gra(F) via reformulation Bin1 from Table 1. First, the graph of F can be stated as

gra(F) =
{

(x, y, p21 − p22) ∈ R3 | p1 = 1

2
(x + y), p2 = 1

2
(x − y), (x, y) ∈ D

}

. (4)

The domains of the additional variables p1 and p2 are consequently given by

D1 := [p
1
, p̄1] :=

[
1

2
(x + y),

1

2
(x̄ + ȳ)

]

⊂ R,

D2 := [p
2
, p̄2] :=

[
1

2
(x − ȳ),

1

2
(x̄ − y)

]

⊂ R.

Now, let f Bin11 : D1 → R and f Bin12 : D2 → R be pwl. approximations of FBin1
1 : D1 → R,

FBin1
1 (p1) = p21 and FBin1

2 : D2 → R, FBin1
2 (p2) = p22 respectively, with corresponding

triangulations T Bin1
1 and T Bin1

2 . We define f Bin1 : D → R via

f Bin1(x, y) = f Bin11 (p1) − f Bin12 (p2),

with p1 = 1

2
(x + y), p2 = 1

2
(x − y).

Further, let MBin1
1 ⊆ D × R × [0, 1]pBin11 × {0, 1}qBin11 and MBin1

2 ⊆ D × R × [0, 1]pBin12 ×
{0, 1}qBin12 be sharp MIP formulations of the graphs gra( f Bin11 ) and gra( f Bin12 ). We can then
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model an approximation of gra(F) as

gra( f Bin1) = {(x, y, z) ∈ D × R | (x, y, z, λ1, u1, λ2, u2) ∈ M f Bin1}, (5)

together with the MIP formulation

M f Bin1 := {(x, y, z, λ1, u1, λ2, u2) ∈ D × R

× [0, 1]pBin11 × {0, 1}qBin11 × [0, 1]pBin12 × {0, 1}qBin12 |
∃(p1, z1, λ1, u1) ∈ MBin1

1 , (p2, z2, λ2, u2) ∈ MBin1
2 s.t.

z = z1 − z2, p1 = 1

2
(x + y), p2 = 1

2
(x − y), (x, y) ∈ D}.

Corresponding MIP formulations for Bin2 and Bin3 are stated in “Appendix A”.
In the remainder of this section, we will compare bivariate MIP formulations for the

approximation of gra(F) as given in (3) to univariate MIP formulations, such as (5), using
two different metrics of efficiency. In Sect. 3.1, we analyse the number of simplices required
in each case to construct an ε-approximation. We will show that using Bin1, Bin2 and Bin3,
we can construct ε-families of triangulations with a smaller number of simplices than needed
for any bivariate ε-triangulation if the prescribed approximation accuracy ε is sufficiently
small. Furthermore, we will prove that a particular equidistant family of triangulations is ε-
optimal for Bin1. In Sect. 3.2, we then investigate the tightness of the continuous relaxations
of univariate and bivariate MIP formulations. On the one hand, we show that the PCR of
any bivariate MIP formulation coincides with the convex hull of gra(F), which is known as
the McCormick relaxation [32]. On the other hand, we show how to compute the PCRs of
the considered univariate MIP formulations and prove that these are indeed weaker relax-
ations of gra(F) than the McCormick relaxation. Moreover, we show that using Bin1 yields
the tightest continuous relaxation among the studied univariate reformulations. Finally, we
indicate in Sect. 3.3 how to use these theoretical results in practice. In particular, we outline
how to overcome the fact that univariate MIP formulations yield weaker continuous relax-
ations by adding the linear inequalities describing the convex hull, which are known as the
McCormick cuts, to the univariateMIP formulations in a reformulated fashion, as done in [1].
Furthermore, we suggest under which circumstances which univariate reformulation should
be chosen.

3.1 Number of simplices

We start our comparison between bivariate and univariate pwl. approximations of the bilinear
function F by considering the size of the resultingMIP formulation. In this respect, the overall
number of binary variables is a crucial factor for the computational complexity of the resulting
optimization problem. This number, however, strongly depends on the specific modelling of
theMIP formulation, see [47]. Thenumber of binary variables canbe reduced significantly, for
example, by a logarithmic encoding of the simplices, compared to a straightforwardmodelling
approach as shown in [29, 48]. Therefore,wewill instead compare pwl. approximations by the
number of simplices required to obtain a prescribed approximation guarantee, which directly
impacts the number of binary variables in any modelling of the arising MIP formulation.

To this end, we introduce the concept of ε-optimal triangulations for the pwl. approxima-
tion of a non-linear function. We use the same definition as in [29, 41] and refer to [5] for
more context on optimal triangulations and possible alternative definitions.
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Definition 9 Let B ⊆ Rd be a compact set, and let g : B → R be a pwl. ε-approximation
of the continuous function G : B → R w.r.t. the underlying ε-triangulation T of B. We say
that T is ε-optimal if |T | is minimal among all ε-triangulations of B.

In the special case that G(x) = ∑n
i=1 Gi (xi ) is a separable function and g(x) =∑n

i=1 gi (xi ) is a pwl. approximation of G, such that each gi is a pwl. approximation of Gi ,
we say that the corresponding family of triangulations (Ti )i=1,...,n is ε-optimal if

∑n
i=1|Ti |

is minimal among all ε-families of triangulations.

It is not obvious how to determine ε-optimal triangulations in general. To the best of our
knowledge, the complexity status of this problem is still open. The only related result we
are aware of is the NP-hardness of finding minimum edge-weighted triangulations, where
the aim is to minimize the sum of the edge weights, see [37]. However, finding an ε-optimal
triangulation corresponds to minimizing the maximum edge weight in the chosen triangu-
lation, as shown in [29]. Thus, we will mostly work with lower and upper bounds on the
required number of simplices for a pwl. approximation. More precisely, we will show that
for a sufficiently small prescribed approximation accuracy ε > 0 we can construct ε-families
of triangulations for Bin1, Bin2 and Bin3, such that the corresponding number of simplices
is smaller than that of any bivariate ε-triangulation.

3.1.1 Univariate pwl. approximations

Wewill nowconsider the constructionof ε-approximations for univariate reformulations of F .
For this purpose, we study equidistant triangulations for pwl. approximations of univariate
quadratic functions. We then prove that a particular family of equidistant triangulations is
ε-optimal for reformulation Bin1. Finally, we derive upper bounds for the size of ε-optimal
triangulations in the reformulations Bin2 and Bin3 by using equidistant triangulations.

Finding ε-triangulations for univariate functions has been extensively covered in the lit-
erature under the term minimax approximation. For an overview, we refer to [35], where the
author also provides an algorithm for finding an ε-optimal piecewise polynomial approxi-
mation of degree n for a given continuous univariate function. In particular, this algorithm
can be used to find pwl. approximations. Another approach can be found in [42]. Here, the
authors present a mixed-integer non-linear optimization program (MINLP) for computing
an ε-optimal continuous pwl. approximation for a given univariate function. However, both
approaches do not provide closed functional relations for the required number of simplices
depending on ε. In contrast, our focus here will be on deriving functional relations for the
number of simplices of ε-families of triangulations in Bin1, Bin2 and Bin3. We start with
a relation for ε-optimal families of triangulations in reformulation Bin1. In order to do so,
we make use of the following lemma about linear approximations of univariate quadratic
functions, which is straightforward to prove via differential calculus.

Lemma 2 Let G : [x, x̄] → R,G(x) = αx2 + βx + γ with α, β, γ ∈ R be a quadratic
function, and let L : [x, x̄] → R be the linear interpolant of G between x and x̄. Then the
maximum approximation error of L w.r.t. G over [x, x̄] is given by

max
x∈[x,x̄]|L(x) − G(x)| = |α| (x̄ − x)2

4
.

It is attained at the centre of the domain, i.e. at x∗ := x+x̄
2 .

The following result extends Lemma 2 to pwl. approximations of univariate quadratic func-
tions. It says that an equidistant placement of vertices minimizes the approximation error.
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Lemma 3 Given G : [x, x̄] → R,G(x) = x2, let T be the triangulation of [x, x̄] formed
by an equidistant placement of the n + 1 vertices x0 := x < . . . < xn := x̄ ∈ R. Fur-
ther, let g : [x, x̄] → R be the pwl. approximation of G w.r.t. T . Then the corresponding
approximation error is given by

εg,G(T ) = (x̄ − x)2

4n2
.

Furthermore, the approximation error of g is minimal among all pwl. approximations of G
over n simplices.

Proof Let the triangulationT := {S0, S1, . . . , Sn−1} be given by the simplices Si := [xi , xi+1]
= [xi , xi + hi ] with respective diameters hi := xi+1 − xi , i = 0, 1, . . . , n − 1. As the
corresponding pwl. approximation g is linear over each Si and coincides with G at the
vertices, its linear segments are given by functions gi : Si → R with

gi (x) = (2xi + hi )x − (x2i + xi hi ).

Lemma 2 states that the approximation error over each simplex Si is attained at the respective
midpoint, with

εg,G(Si ) = 1

4
h2i .

Thus, the approximation error is minimized by an equidistant placement of the vertices, i.e.
for hi := (x̄ − x)/n, i = 0, 1, . . . , n − 1. ��
Note that the approximation error for a univariate quadratic function only depends on the
diameter of the domain and the number of simplices of the triangulation and is thus invariant
under shifts of the domain itself.

We can now prove that particular equidistant families of triangulations are ε-optimal for
reformulation Bin1.

Lemma 4 Let f Bin1 = f Bin11 − f Bin12 be a pwl. approximation of F, with a corresponding
family of triangulations (T Bin1

i )i=1,2 defining f Bin11 and f Bin12 , and let ni := |T Bin1
i |, i = 1, 2.

Then the combined approximation error of (T Bin1
i )i=1,2 is at least

ε̄ := 1

16
(x̄ − x + ȳ − y)2 max

{
1

n21
,
1

n22

}

.

In particular, it is attained if T Bin1
1 and T Bin1

2 are equidistant triangulations.
Conversely, an ε̄-optimal family of triangulations (T Bin1

i )i=1,2 is given by a pair of equidis-
tant triangulations with

|T Bin1
i | =

⌈
x̄ − x + ȳ − y

4
√

ε̄

⌉

, i = 1, 2.

Proof First, note that D1 × D2 is a quadratic box with a width of (x̄ − x + ȳ − y)/2.
Furthermore, the feasible domain of the variable substitution in Bin1, given by

I := {(p1, p2) ∈ D1 × D2 | ∃(x, y) ∈ D : p1 = 0.5(x + y) ∧ p2 = 0.5(x − y)},
is a rhombus inscribed into this box. This situation is depicted in Fig. 1. Let pi,0, . . . , pi,ni
with pi, j < pi, j+1, pi,0 = p

i
and pi,ni = p̄i be the vertices in N (Ti ), with i = 1, 2.W.l.o.g.,
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Fig. 1 Geometric arguments in the proof of Lemma 4

we assume n1 ≤ n2. Further, for any p∗
1 ∈ D1 and p∗

2 ∈ D2, we define the projections of I
onto the coordinate axes as

Ip∗
1
:= {p2 ∈ D2 | ∃(x, y) ∈ D : p∗

1 = 0.5(x + y) ∧ p2 = 0.5(x − y)},
Ip∗

2
:= {p1 ∈ D2 | ∃(x, y) ∈ D : p1 = 0.5(x + y) ∧ p∗

2 = 0.5(x − y)}
respectively. We consider now the following two exhaustive cases 1) and 2):

1) p1,i − p1,i−1 ≤ x̄−x+ȳ−y
2n1

∀i = 1, . . . , n1 ∧ p2, j − p2, j−1 ≤ x̄−x+ȳ−y
2n1

∀ j = 1, . . . , n2:
From this assumption it follows that T1 has to be equidistant. Moreover, we know
from Lemma 3 that ε f Bin11 ,FBin1

1
(T1) = ε̄. By the same arguments, we also know that

ε f Bin12 ,FBin1
2

(T2) ≤ ε̄. Now let p∗
i be the midpoint of an arbitrary interval [p1,i−1, p1,i ].

According to Lemma 2, we have E f Bin11 ,FBin1
1

(p∗
i ) = ε̄. It is obvious by geometric reasoning

that the diameter of the projection Ip∗
1
is longer than (x̄ − x + ȳ − y)/(2n1), see Fig. 1a. As

a result, there must be at least one vertex p2, j contained in Ip∗
1
. As the approximation error

at a vertex is always zero, it follows that the approximation error at (p∗
1 , p2, j ) is

E f Bin11 ,FBin1
1

(p∗
1) + E f Bin12 ,FBin1

2
(p2, j ) = ε̄.

In summary, we have

ε f Bin1,FBin1((Ti )i=1,2) = ε̄.

2) ∃1 ≤ i ≤ n1 : p1,i − p1,i−1 >
x̄−x+ȳ−y

2n1
∨ ∃1 ≤ j ≤ n2 : p2, j − p2, j−1 >

x̄−x+ȳ−y
2n1

:
W.l.o.g., we assume that the interval [p1,i−1, p1,i ] is longer than (x̄−x+ ȳ− y)/(2n1). From
Lemma 3, we know that E f Bin11 ,FBin1

1
(p∗

1) > ε̄, where p∗
1 is the midpoint of [p1,i−1, p1,i ].

Again, by geometric arguments, Ip∗
1
must be longer than (x̄ − x + ȳ − y)/2n1. However,

due to the fact that the approximation error at a vertex is always zero, Ip∗
1
cannot contain

any vertex p2, j ∈ N (T2) as this would imply that we have a point in Ip∗
1
at which the

combined approximation error is greater than ε̄, namely (p∗
1, p2, j ). Consequently, we have

Ip∗
1

⊆ [p2, j−1, p2, j ]. This means that at the midpoint p∗
2 of D2 (which is also the midpoint

of Ip∗
1
), E f Bin12 ,FBin1

2
(p∗

2) > ε̄ holds. Obviously, Ip∗
2

= D1, and therefore D1 cannot contain
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any points with an approximation error of zero, which is a contradiction to the fact that f Bin11
is a pwl. approximation (interpolation). ��

It is not straightforward how to obtain a similar result as Lemma 4 for reformulations Bin2
and Bin3. The difficulty stems from the fact that in these two cases we have to approximate
three functions simultaneously, instead of only two as in Bin1. However, we can still use
equidistant triangulations to determine upper bounds on the number of simplices for Bin2
and Bin3.

Lemma 5 Let f Bin2 = 0.5( f Bin21 − f Bin22 − f Bin23 ) be a pwl. approximation of F as defined
in Appendix A. Then for any ε > 0, there is an ε-family of equidistant triangulations
(T Bin2

i )i=1,2,3 for the individual pwl. approximations f Bin21 , f Bin22 and f Bin23 with respective
sizes

|T Bin2
1 | =

⌈
(x̄ − x) + (ȳ − y)

2
√
2ε

⌉

, |T Bin2
2 | =

⌈
(x̄ − x)

2
√

ε

⌉

and |T Bin2
3 | =

⌈
(ȳ − y)

2
√

ε

⌉

.

Proof To obtain an ε-family of triangulations for Bin2, we use Lemma 3 to construct ε-
triangulations for each of the two concave terms −x2, approximated by − f Bin22 and −y2,
approximated by − f Bin23 , as well as a 2ε-triangulation for the convex term (x + y)2, approx-
imated by f Bin21 . This directly yields the number of simplices stated in the claim. Taking into
account the prefactor of 0.5 in the variable substitution, Lemma 1 then certifies that we have
indeed found an ε-family of triangulations. ��
The same result as above holds for Bin3, as it consists of the same quadratic terms, only
with switched signs. The upper bounds for ε-families of triangulations derived so far are
summarized in Table 2.

If we do not require ε-approximations for each of the terms−x2 (or x2) and−y2 (or y2) in
Bin2 (or Bin3), but rather only require a 2ε-approximation for the combined approximation
of these two functions, we can still apply Lemma 1 to obtain equidistant ε-families of trian-
gulations, and it is possible in many cases to improve the bounds presented in Table 2. We
can determine these improved bounds by solving a mixed-integer quadratically constrained
quadratic program (MIQCQP) as follows.

Remark 1 Let ε > 0 be a prescribed maximum combined error for a pwl. approximation of
F either via Bin2 or Bin3. Then we can compute the minimum possible number of simplices
for any corresponding family of equidistant ε-triangulations as the optimal value n∗ of the
following optimization problem:

n∗ := min
n1,n2,n3

n1 + n2 + n3

s.t.
(x̄ − x)2

4n21
+ (ȳ − y)2

4n22
≤ 2ε,

(x̄ − x + ȳ − y)2

4n23
≤ 2ε,

n1, n2, n3 ∈ N.

(6)

The variables n1, n2 and n3 model the number of simplices used for the triangulations T Bin2
1 ,

T Bin2
2 and T Bin2

3 (or T Bin3
1 , T Bin3

2 and T Bin3
3 ) in the pwl. approximation of the terms −x2,

−y2 and +p2 (or x2, y2 and −p2) respectively, see “Appendix A” for the complete models.
The two inequality constraints of Problem (6) model the max-expression in the upper bound
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Table 2 Upper bounds on the
minimal number of simplices in
an ε-family of triangulations in
Bin1, Bin2 and Bin3. For Bin1,
this is also the size of an
ε-optimal family of triangulations

Reformulation Max. required number of simplices

Bin1

⌈
(x̄−x)+(ȳ−y)

4
√

ε

⌉

+
⌈

(x̄−x)+(ȳ−y)

4
√

ε

⌉

Bin2, Bin3
⌈

(x̄−x)
2
√

ε

⌉
+

⌈
(ȳ−y)

2
√

ε

⌉

+
⌈

(x̄−x)+(ȳ−y)

2
√
2ε

⌉

on the combined approximation error provided by Lemma 1; the respective terms on the
left-hand sides stem from Lemma 3. Note that Problem (6) can be equivalently reformulated
as a non-convex MIQCQP:

n∗ := min
n1,n2,n3,η1,η2

n1 + n2 + n3

s.t. (x̄ − x)2η2 + (ȳ − y)2η1 ≤ 8ε · η1η2,

(x̄ − x + ȳ − y)2 ≤ 8ε · n23,
η1 = n21, η2 = n22,

n1, n2, n3, η1, η2 ∈ N.

with auxiliary variables η1 and η2.

We cannot make a general hierarchical statement among the univariate reformulation Bin1,
Bin2 and Bin3, since we do not know ε-optimal families of triangulations for Bin2 and Bin3.
However, the simple fact that in Bin1 we only approximate two instead of three univariate
functions suggests that ε-optimal families of triangulations for Bin2 and Bin3 consist of more
simplices than those for Bin1.

xxx

3.1.2 Bivariate pwl. approximations

Finding a bivariate ε-optimal triangulation for the approximation of F over a rectangular
domain is still an open problem, see the elaborations in [29] and the references therein.
However, it will be sufficient for us to determine a lower bound on the number of simplices
in an ε-optimal triangulation to see that in essence bivariate pwl. approximations of F require
more simplices than univariate ones. In order to derive this lower bound, we first prove the
following rather general lemma, which has been presented in the dissertation [12] of the
second author. It gives sufficient conditions under which the maximum approximation error
between a non-linear function and its pwl. approximation is attained at a facet of one of the
simplices of the triangulation.

Lemma 6 Let G : B → R be a continuous function over a compact set B ⊂ Rd , and let
g : B → R be a pwl. approximation of G defined by a triangulation T of B. If for each x ∈ B
there is a line Lx ⊆ Rd containing x such that the function G is linear along B ∩ Lx , then
for each simplex S ∈ T there is a point on one of the facets of S where εg,G(S) is attained.

Proof Let S ∈ T , and let gS be the linear approximation ofG over the simplex S. Furthermore,
let x ∈ S be a point in the interior of the simplex S, and let Lx be a line such that G is linear
along S ∩ Lx . Naturally, gS is also linear along S ∩ Lx , which therefore also holds for the
function gS − G. Thus, gS − G attains its minimum on one end point of the line segment
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S ∩ Lx and its maximum on the other end point. Therefore, the error function |gS −G| over
S ∩ Lx attains its maximum, i.e. the maximal approximation error, on one of the facets of S.
As S ∈ T and x ∈ S were chosen arbitrarily, this finishes the proof. ��
With the help of the above lemma, we can now characterize the approximation error of
a bivariate pwl. approximation of F . Note that the following result is well known in the
literature. We show it again in order to demonstrate the utility of Lemma 6 in delivering a
concise proof.

Lemma 7 ([4, 29, 40, 50]) Let f be a pwl. approximation f of F and T its underlying
triangulation of D. Then the approximation error ε f ,F (S) over any simplex S ∈ T is attained
at the centre of one of its facets. Further, if (x0, y0) and (x1, y1) are the endpoints of a facet
over which the approximation error is attained, we have

ε f ,F (S) =
∣
∣
∣
∣E f ,F

(
x1 − x0

2
,
y1 − y0

2

)∣
∣
∣
∣ = 1

4
|(x1 − x0)(y1 − y0)| .

Proof It is obvious that the prerequisites of Lemma 6 apply to F . In particular, for each point
in some simplex S ∈ T , F is linear along each of the two coordinate axes. Consequently, the
approximation error is attained over a facet e of S. We can now parametrize the functions f|e
and F|e, i.e. the restrictions of f and F onto e, using the convex combination of its endpoints
(x0, y0) and (x1, y1). By writing each point (x, y) ∈ e as (x, y) = (x0, y0)+ (1−λ)(x1, y1)
for some λ ∈ [0, 1], we can express f|e, F|e and E f|e,F|e as functions in λ:

f|e(λ) := λ(x1y1 − x0y0) + x0y0,

F|e(λ) := (λ(x1 − x0) + x0)(λ(y1 − y0) + y0),

E f|e,F|e (λ) := F|e(λ) − f|e(λ) − (λ(x1 − x0) + x0)(λ(y1 − y0) + y0)

= (−λ2 + λ)(x1 − x0)(y1 − y0).

Lemma 2 implies that the approximation error, i.e. the maximum of the quadratic error
function E f|e,F|e , has a value of

ε f ,F (S) = |E f|e,F|e (λ
∗)| = 1

4
|(x1 − x0)(y1 − y0)|

and is attained at λ∗ = 0.5, corresponding to the centre of e. ��
Lemma From 7, we can conclude that the (maximum) error of a bivariate pwl. approximation
of F corresponding to a given triangulation of D is always attained at the centre of a facet
of one of its simplices. In [29], the author uses this property to formulate the problem to
find ε-optimal triangulations as an MIQCQP. To the best of our knowledge, this is the only
work considering provably ε-optimal triangulations of the rectangular domain D for the
approximation of F . Unfortunately, due to the size of the resulting optimization model,
this approach is computationally intractable even for small instances. However, in order to
prove that univariate ε-families of triangulations require fewer simplices than any bivariate
ε-triangulation for a sufficiently small approximation error ε, it suffices to derive a suitable
lower bound for the size of an ε-triangulation. The following lemma gives such a lower
bound by using so-called ε-optimal triangles. An ε-optimal triangle satisfies a prescribed
approximation error bound of ε while taking a maximum possible area. The idea of the
following lower bound is to assume that there exists a triangulation consisting exclusively of
ε-optimal triangles.
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Fig. 2 Optimal triangles with an
approximation error of 0.25
which can tile R2

Lemma 8 ([29]) An ε-optimal triangulation T of D for the approximation of F requires at

least
⌈

(x̄−x)(ȳ−y)

2
√
5ε

⌉
simplices.

Proof In [40], the authors show with the help of a version of Lemma 7 that the area of an
ε-optimal triangle is 2

√
5ε. The area of the rectangular domain D is (x̄−x)(ȳ−y). Assuming

that we can triangulate D solely by ε-optimal triangles, we obtain the indicated lower bound.
��

Figure2 shows two different 0.25-optimal triangles as an example. Together they form a
parallelogram. Therefore, copies of the two triangles can be arranged to obtain a triangulation
of the planeR2. However, it is unclear if or how we can use ε-optimal triangles to triangulate
polyhedral domains, such as boxes. The problem with using only ε-optimal triangles is their
orientation in the plane. Since we want to triangulate an axis-parallel box domain, we have
at least four edges that are axis-parallel. However, there is no ε-optimal triangle that has an
axis-parallel edge. If a triangle has at least one axis-parallel edge, its maximal area can be at
most 4ε instead of 2

√
5ε, as shown in [29]. For more information about ε-optimal triangles,

we refer the reader to [4, 40]. For an overview of actual triangulations of box domains to
approximate variable products, see [7].

Furthermore, it is easy to see that the lower bound from Lemma 8 is not always tight.
From Monsky’s Theorem in [34], we know that we cannot triangulate a rectangle with an
odd number of simplices such that all simplices have the same area. As a consequence, at
least for all values of ε for which the lower bound is an odd number, we need at least one
additional simplex than the lower bound suggests.

3.1.3 Comparison of univariate and bivariate approximations

We close Sect. 3.1 by comparing univariate and bivariate approaches with respect to the
required number of simplices. Our main result concerning ε-approximations of F then says
the following: Via the reformulations Bin1, Bin2 and Bin3 we can always obtain ε-families
of triangulations with fewer simplices than any bivariate ε-triangulation, if the approximation
accuracy ε is sufficiently small. This finding is formally stated in Theorem 1.

Theorem 1 For each univariate reformulationBin1,Bin2 andBin3, there exists correspond-
ing thresholds εBin1, εBin2 and εBin3 > 0 such that there are εBin1-, εBin2- and εBin3-families
of triangulations consisting of fewer simplices than those of any bivariate εBin1-, εBin2- and
εBin3-triangulation, respectively.
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Table 3 Comparison of the number of simplices in univariate reformulations and the bivariate lower bound
(D = [0, 2] × [0, 6])
Triangulation ε |T | ε f ,F (T ) Triangulation ε |T | ε f ,F (T )

Bin1 1.00 4 1.0000 Bivariate 1.00 3 –

(equidistant 0.5 6 0.4444 (Lower bound) 0.5 6 –

triangulations) 0.25 8 0.2500 Lemma 8 0.25 11 –

Lemma 4 0.1 14 0.0816 0.1 27 –

0.05 18 0.0494 0.05 54 –

Bin2 1.00 10 0.8889 Bin3 1.00 10 0.8889

(equidistant 0.5 14 0.5000 (equidistant 0.5 14 0.5000

triangulations) 0.25 19 0.2500 triangulations) 0.25 19 0.2500

Remark 1 0.1 31 0.0987 Remark 1 0.1 31 0.0987

0.05 43 0.0473 0.05 43 0.0473

Proof On the one hand, we have established upper bounds on the number of simplices for
univariate ε-families of triangulations stated in Lemmas 4 and 5. For ε-families of triangula-
tions in Bin1, Bin2 and Bin3, these bounds growwithO(1/ε), cf. Table 2. On the other hand,
Lemma 8 gives a lower bound on the number of simplices in any bivariate ε-triangulation.
This lower bound in turn increases with a higher rate in O(1/

√
ε). Therefore, the desired

thresholds εBin1, εBin2 and εBin3 exist. ��
For any given ε, we can compare the bounds stated in Table 2 and Lemma 8 respectively

in order to determine if univariate or bivariate approximation yields smaller triangulations.
To illustrate Theorem 1, we provide some exemplary numerical results for the concrete

domain D = [0, 2]× [0, 6] in Table 3. We list the numbers of simplices in the triangulations
constructed via Lemma 4 for Bin1 and Remark 1 for Bin2 and Bin3 together with the actual
approximation error in the columns entitled |T | and ε f ,F (T ), respectively. For the bivariate
approximation, we list the lower bounds from Lemma 8.

For all approximation accuracies lower than 0.25, the equidistant pair of triangulations in
Bin1 dominates all other triangulations. Further, for the smallest considered approximation
accuracy ε = 0.05, all univariate numbers fall below the bivariate lower bound. In par-
ticular, Bin1 requires three times less simplices than the bivariate lower bound postulates.
This demonstrates the advantage of univariate reformulations for pwl. approximations most
clearly.

3.2 Envelopes and strength of the continuous relaxations

An important property of any MIP formulation is the tightness of its continuous relaxation
(CR), i.e. the set obtained by relaxing the integrality constraints. Very often,MIP formulations
of pwl. functions are used to represent or approximate the non-linear parts of an optimization
problem. The usual solutionmethod is then a branch-and-cut approach, in which a continuous
relaxation of that problem is solved at each node in the branch-and-bound tree to compute
bounds on the objective function value of the optimization problem. In general, a tighter
relaxation is more desirable as it yields a smaller branch-and-bound tree, which in turn
often leads to shorter computation times. Thus, when comparing MIP formulations for the
approximation of gra(F) it is relevant to study the quality of the respective CRs.
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In the following, we compare the bivariate MIP formulation (3) with the univariate MIP
formulations (5), (10) and (12), where the latter two are stated explicitly in “Appendix A”.
Since theseMIP formulations require additional auxiliary variables,we compare the quality of
their respective continuous relaxation based on the volume of their PCRs, i.e. after projection
to the surrounding space of gra(F). This will lead to two main results. Firstly, we show that
the PCR of any bivariate MIP formulation equals conv(gra(F)). Secondly, we show that the
PCRs of univariate MIP formulations are strict relaxations of conv(gra(F)).

3.2.1 Continuous relaxations of bivariate pwl. approximations

According to Definition 8, the PCR of a sharp MIP formulation actually coincides with
the convex hull of the modelled pwl. graph. This means that in this sense, all sharp MIP
formulations of a graph are equivalent. Sharpness is a property many well-known MIP for-
mulations fulfil, such as the convex-combination method, the multiple-choice method and
the incremental method (see [46]).

In the following, we consider sharp MIP formulations M f for gra( f ), where f is a bivari-
ate pwl. approximations of F . For these, we show that the PCR proj(x,y,z)(C(M f )) is not only
independent of the chosen MIP formulation, but also independent of the underlying triangu-
lation that defines f . For this purpose, we first recall some important notions concerning the
convex and the concave envelope of a given function; see [45] for a more extensive treatment
of the subject.

Definition 10 Let B ⊂ Rn be a polytope with vertices V (B). We say that a continuous
function G : B → R has a vertex polyhedral convex envelope if

convenvB(G)(x) = convenvV (B)(G)(x)

holds for every x ∈ B. In this case, we also call the function G itself convex polyhedral.
Analogously, the function G has a vertex polyhedral concave envelope if

caveenvB(G)(x) = caveenvV (B)(G)(x)

holds for every x ∈ B; the function G is then called concave polyhedral.

For functions that are convex or concave polyhedral, we can show that this property also
carries over to their pwl. approximations. This new result allows us to directly give an
algebraic representation of proj(x,z) C(M f ) from the convex and concave envelope of F .

Lemma 9 Let B ⊂ Rn be a polytope and G : B → R be a convex (concave) polyhedral
function. Further, let g be a pwl. approximation of G over B, defined by a triangulation T .
Then convenvB(g) (caveenvB(g)) is convex (concave) polyhedral aswell and convenvB(g) =
convenvB(G) holds.

Proof It suffices to show the statement for the convex polyhedral case as the concave poly-
hedral one is analogous. As g is a pwl. approximation of G, we have g(x) = G(x) for all
x ∈ N (T ). Since V (B) ⊆ N (T ), this implies convenvV (B)(G)(x) = convenvV (B)(g)(x)
for all x ∈ B.

It remains to show that g(x) ≥ convenvV (B)(g)(x) for all x ∈ B. To this end, let x ∈ B,
and let S ∈ T be a simplex with vertices s0, . . . , sn , chosen such that x ∈ S holds. Then there
exist λi ≥ 0, i = 0, . . . , n, such that x = ∑n

i=0 λi si , with
∑n

i=0 λi = 1. Thus, it follows

g(x) =
n∑

i=0

λi G(si ) ≥
n∑

i=0

λi convenvV (B)(G)(si )
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≥ convenvV (B)(G)

(
n∑

i=0

λi si

)

= convenvV (B)(G)(x)

= convenvV (B)(g)(x).

This results in convenvV (B)(g)(x) ≤ convenvB(g)(x). By definition it holds that
convenvV (B)(g)(x) ≥ convenvB(g)(x), which proves the claim that convenvV (B)(g)(x) =
convenvB(g)(x). ��
This leads to the following central result for pwl. approximations f of F . It says that the PCR
of (3) is (i) independent of the actual choice of f and (ii) independent of theMIP formulation
modelling gra( f ) as long as the MIP formulation is sharp.

Theorem 2 Let f be a pwl. approximation of F, and let M f ⊂ R2+1 × [0, 1]p × {0, 1}q be
a sharp MIP formulation for gra( f ). Then we have

proj(x,z) C(M f ) = conv(gra(F)).

Proof In [43, Remark 1.3], it is shown that multi-linear functions on boxes are both convex
and concave polyhedral. Thus, F has a vertex polyhedral convex and concave envelope.
By Lemma 9, every pwl. approximation f of F is also convex and concave polyhedral. In
addition, F(x, y) = f (x, y) = xy holds for all (x, y) ∈ V (D). It follows that

convenv(F) = convenvV (D)(F) = convenvV (D)( f ) = convenv( f )

and

caveenv(F) = caveenvV (D)(F) = caveenvV (D)( f ) = caveenv( f ),

and therefore

conv(gra(F)) = conv(gra( f )).

From the sharpness of M f for gra( f ), we can conclude that

proj(x,z) C(M f ) = conv(gra( f )) = conv(gra(F)),

which completes the proof. ��
From the literature, conv(gra(F)) is known as theMcCormick relaxation of F (cf. [32]).

It is defined by the two functions CL : D → R and CU : D → R with

CL(x, y) := convenv(F)(x, y) = max{yx + x y − x y, ȳx + x̄ y − x̄ ȳ},
CU (x, y) := caveenv(F)(x, y) = min{yx + x̄ y − x̄ y, ȳx + x y − x ȳ}.

The McCormick relaxation is the tightest relaxation of gra(F) that any MIP formulation can
obtain. In the following remark, we discuss how the relaxation of bivariate MIP formulations
can be tightened when additional restrictions are added for x and y.

Remark 2 We consider the special case where D is intersected with a compact set Z ∈ R2.
This might be the case if F occurs as a term in the objective function or a constraint of an
optimization problem. For this case, the set Z canmodel a large variety of possible constraints
involving the variables x and y. We know the following:

conv(graD∩Z ( f )) ⊆ conv(gra( f )) ∩ (Z × R)
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Table 4 Envelopes and PCRs in univariate reformulations Bin1, Bin2 and Bin3

Model Convex envelopes as functions D → R

Bin1 CL
1 (x, y) = 1

4 ((x + y)2 − (x̄ + x − ȳ − y)(x − y) + (x − ȳ)(x̄ − y))

Bin2 CL
2 (x, y) = 1

2 ((x + y)2 − (x̄ + x)x + x̄ x − (ȳ + y)y + ȳ y)

Bin3 CL
3 (x, y) = 1

2 (x2 + y2 − (x̄ + x − ȳ − y)(x − y) + (x − ȳ)(x̄ − y))

Concave envelopes as functions D → R

Bin1 CU
1 (x, y) = 1

4 ((x + y + x̄ + ȳ)(x + y) − (x + y)(x̄ + ȳ) − (x − y)2)

Bin2 CU
2 (x, y) = 1

2 ((x + y + x̄ + ȳ)(x + y) − (x + y)(x̄ + ȳ) − x2 − y2)

Bin3 CU
3 (x, y) = 1

2 ((x + x̄)x − x x̄ + (y + ȳ)y − y ȳ − (x − y)2)

PCRs

Bin1 proj(x,y,z) C(M f Bin1 ) = {(x, y, z) ∈ D × R : CL
1 (x, y) ≤ z ≤ CU

1 (x, y)}
Bin2 proj(x,y,z) C(M f Bin2 ) = {(x, y, z) ∈ D × R : CL

2 (x, y) ≤ z ≤ CU
2 (x, y)}

Bin3 proj(x,y,z) C(M f Bin3 ) = {(x, y, z) ∈ D × R : CL
3 (x, y) ≤ z ≤ CU

3 (x, y)}
= proj(x,z) C(M f ) ∩ (Z × R)

= {(x, z) ∈ Rn+1 : (x, z, λ, u) ∈ C(M f ), x ∈ Z}.
This means that the PCR of M f restricted to D ∩ Z can potentially be tightened by adding
additional constraints. See [2], where the authors consider the set Z := {(x, y) ∈ R2 | xy ≤
u} for some u ∈ R and derive conv(graD∩Z ( f )) by adding additional linear and conic
constraints to conv(gra( f )) ∩ (Z × R).

3.2.2 Continuous relaxations of univariate pwl. approximations

We now turn to the PCRs of sharp univariate MIP formulations as in (5), (10) and (12). We
point out that univariate reformulations are described by separable functions over rectangular
domains. Such functions are known to be sum decomposable; see [45]. This means that the
envelopes of separable functions are determinedby the sumof the envelopes of their univariate
summands; see also [19]. As a consequence of this, the convex and concave envelopes of pwl.
univariate approximations of F , and thus the PCRs of the corresponding MIP formulations,
depend on both the choice of the univariate reformulation and the chosen triangulations
defining the pwl. approximations. The dependency on the triangulations is in contrast to
the result we had in the bivariate case. The consequence is that the tightness of the PCR
is influenced by the approximation error and thus depends on the number and placement
of the vertices of the triangulations. For further details we refer to [9], where the effects of
the approximation error on PCRs are discussed, and neglect the approximation error in the
following. We rather assume that the approximation error is sufficiently small so that it does
not interfere with the comparison of the PCRs. Consequently, we focus on the envelopes that
we obtain from the non-linear univariate reformulations Bin1, Bin2 and Bin3, i.e. (4), (9)
and (11).

Note that each of the univariate reformulation Bin1, Bin2, and Bin3 is a sum of quadratic
functions which are all either convex or concave. The convex (concave) envelope of each
convex (concave) summand is the convex (concave) function itself. In contrast, a convex
(concave) function is vertex polyhedral; its concave (convex) envelope is therefore given
as the linear interpolant which uses the domain bounds as vertices. In Table 4, we list the
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convex and concave envelopes of the pwl. approximations f Bin1 : D → R, f Bin2 : D → R

and f Bin3 : D → R of F that we obtain by exploiting sum decomposability as explained
above.

We emphasize that these envelopes are strict under- resp. overestimators of F and thus
only give a relaxation of conv(gra(F)) in the sense of Eq. (2). Further, we also state the
respective PCRs in Table 4. The following proposition compares the volumes of these PCRs.
It states that among the three univariate reformulations, the PCR proj(x,z) C(M f Bin1) is a
strictly tighter relaxation of gra(F) than proj(x,z) C(M f Bin2) and proj(x,z) C(M f Bin3), which
coincide in terms of volume.

Lemma 10 The volumes V D
Bin1, V

D
Bin2 and V D

Bin3 of the projections proj(x,y,z) C(M f Bin1),
proj(x,y,z) C(M f Bin2) and proj(x,y,z) C(M f Bin3), respectively, form the following hierarchy:

V D
Bin1 < V D

Bin2 = V D
Bin3.

Proof For the volumes of the two projections proj(x,y,z) C(M f Bin2) and proj(x,y,z) C(M f Bin3),
we have

V D
Bin2 := V (proj(x,y,z) C(M f Bin2)) =

∫ ȳ

y

∫ x̄

x
CU
2 (x, y) − CL

2 (x, y) dx dy

=
∫ ȳ

y

∫ x̄

x
CU
3 (x, y) − CL

3 (x, y) dx dy

= V (proj(x,y,z) C(M f Bin3))=:V D
Bin3.

Both volumes of V D
Bin2 and V D

Bin3 are given by

V D
Bin2 = 1

12
(x̄ − x)(ȳ − y)

(
2(x̄ − x)2 + 3(x̄ − x)(ȳ − y) + 2(ȳ − y)2

)
. (7)

The volume of the projection proj(x,y,z) C(M f Bin1) is given as

V D
Bin1 := V (proj(x,y,z) C(M f Bin1)) =

∫ ȳ

y

∫ x̄

x
CU
1 (x, y) − CL

1 (x, y) dx dy

= 1

12
(x̄ − x)(ȳ − y)

(
(x − x) + 3(x2 − x)(ȳ − y) + (ȳ − y)2

)
.

Together with (7), we obtain

V D
Bin2 − V D

Bin1 = V D
Bin3 − V D

Bin1 = 1

12
((x̄ − x)2
︸ ︷︷ ︸

>0

+ (ȳ − y)2
︸ ︷︷ ︸

>0

) > 0,

which completes the proof. ��

3.2.3 Comparison of the univariate and bivariate continuous relaxations

We now compare the PCRs that result from the univariate and bivariate MIP formulations.
The following theorem says that the PCRs of the univariate MIP formulations always yield
looser relaxations of gra(F) than the PCR of a bivariate MIP formulation.

Theorem 3 The PCRs of the MIP formulations in the reformulations Bin1, Bin2 and Bin3
are looser relaxations of gra(F) than the PCR of a bivariate MIP formulation. In particular,
the following applies:
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The volumes V D
Bin1, V

D
Bin2 and V

D
Bin3 of thePCRsproj(x,y,z) C(M f Bin1),proj(x,y,z) C(M f Bin2)

and proj(x,y,z) C(M f Bin3) are larger than the volume V D
McC of the PCR proj(x,y,z) C(M f ).

Proof From Theorem 2, we know that proj(x,y,z) C(M f ) of a bivariate MIP formulation M f

is equivalent to theMcCormick relaxation. The volume of theMcCormick relaxation is given
by

V D
McC :=

∫ ȳ

y

∫ x̄

x
CU (x, y) dx dy −

∫ ȳ

y

∫ x̄

x
CL(x, y) dx dy = 1

6
(x̄ − x)2(ȳ − y)2.

Further, we know from Lemma 10 that Bin1 provides the tightest CR among the univariate
reformulations. It now holds that the difference of these two volumes is always greater than
zero, i.e.

V D
Bin1 − V D

McC = 1

12
((x̄ − x)2
︸ ︷︷ ︸

>0

+ (ȳ − y)2
︸ ︷︷ ︸

>0

+ (x̄ − x)(ȳ − y)
︸ ︷︷ ︸

>0

) > 0.

Thus,

V D
Bin2 = V D

Bin3 > V D
McC .

also holds. ��
To quantify this downside of the univariate MIP formulations, we calculate the ratio between
the volume of their PCRs to the volume of conv(gra(F)). We denote the ratios by

RD
Bin1 := V D

Bin1

V D
McC

= (x̄ − x)2 + (ȳ − y)2

2(x̄ − x)(ȳ − y)
+ 3

2
,

RD
Bin2 := V D

Bin2

V D
McC

= (x̄ − x)2 + (ȳ − y)2

(x̄ − x)(ȳ − y)
+ 3

2
,

RD
Bin3 := V D

Bin3

V D
McC

= (x̄ − x)2 + (ȳ − y)2

(x̄ − x)(ȳ − y)
+ 3

2
.

Obviously, the ratios RD
Bin1, R

D
Bin2 and RD

Bin3 are invariant under axial shifts of the domain D.
This means that the ratios depend only on the length of the axes (x̄− x) and (ȳ− y). In Fig. 3,

we plot RD
Bin1, R

D
Bin2 and RD

Bin3 with respect to the elongation and scaling of the domain by
varying (x̄ − x) and (ȳ − y). In accordance with Theorem 3, Bin1 always yields a better
ratio than either of Bin2 or Bin3. Furthermore, it is noteworthy that the more rectangularly
stretched D is, the worse the ratios of the univariate reformulations become. The ratios start
from 2.5 (Bin1) and 3.5 (Bin2, Bin3) on the quadratic domain D = [0, 1] × [0, 1] and then
increase towards infinity as the domain becomes more rectangular.

To illustrate the shapes of the different PCRs, we have plotted them exemplarily for the
quadratic domain D = [0, 1]×[0, 1] in Fig. 4. Although the volumes V D

Bin2 and V
D
Bin3 are the

same, it can be shown that CL
2 is a tighter convex underestimator for F over D than CL

3 . The
opposite is true for the concave overestimators, where CU

3 is a tighter convex overestimator
than CU

2 . These observations are of particular interest in the context of an optimization
problem. If for example F appears in the objective function of a minimization problem, Bin2
gives a tighter convex underestimator, while Bin3 gives a tighter convex overestimator if F
instead appears in the objective function of a maximization problem. However, this clear
hierarchy does not hold for Bin1, which yields tighter or less tight relaxations than Bin2 or
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Fig. 3 Volume ratios between univariate PCRs and the McCormick relaxation of F(x, y) = xy over D =
[x, x̄] × [y, ȳ]

Bin3 depending on the elongation of the domain and the optimization sense. Formal proofs
of these hierarchical observations are given in Section A.1.

3.3 Discussion and guidelines for practice

In Sect. 3.1, we have shown that univariate MIP formulations are superior to bivariate MIP
formulations when it comes to the size of the underlying triangulation required to attain a
certain high approximation accuracy for F . However, this is in part bought by the fact that
their corresponding PCRs are looser, as we showed in Sect. 3.2. In this section, we discuss
some consequences of these observations for the practical use of pwl. approximations in the
modelling of optimization problems.

On the one hand, a bivariateMIP formulation is favourable if we are interested in obtaining
good dual bounds for a pwl. approximation of a given non-convex MIQCQPs early in the
solutionprocess, for example.This ismainly because in the root node it yields the best possible
linear-programming (LP) bound as its PCR equals the McCormick envelope, independent
of the number of simplices used, as we showed in Theorem 2. In contrast, in Theorem 3 we
have proved that the PCR of any univariate MIP formulation is looser than the bivariate PCR.
Therefore, the initial LP bound at the root node is weaker.

On the other hand, if instead the optimal solution of a high-accuracy MIP approximation
of a certain MIQCQP is required, the results of Sect. 3.1 suggest to pursue a univariate
reformulation scheme, as it requires less simplices to obtain an ε-approximations for some
prescribed guarantee ε. To compensate for the disadvantage of looser PCRs in this case, we
can easily tighten the univariate reformulation by incorporating a univariate variant of the
well-knownMcCormick cuts, which are known to completely describe the convex hull of F .
To this end, we can simply replace the term xy in the corresponding univariate reformulation
of the constraint at hand. We exemplarily state the resulting version of the McCormick cuts
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Fig. 4 PCRs of univariate and bivariate MIP formulations

for the reformulation Bin1, which uses the substitution z = p21 − p22:

z ≥ x y + x y − x y,

z ≥ x̄ y + x ȳ − x̄ ȳ,

z ≤ x̄ y + x y − x̄ y,

z ≤ x y + x ȳ − x ȳ.

(8)

For Bin2 and Bin3, the corresponding McCormick cuts are straightforward to compute as
well. With an increasing prescribed accuracy of a pwl. approximation, a bivariate approach
requires unproportionally more simplices and consequently binary variables. Hence, a uni-
variate reformulation approach together with the addition of the four inequalities (8) quickly
becomes the cheaper alternative in terms of complexity. This recommendation is in line with
the results of [1], where pwl. approximations are utilized to solveMINLPs arising in the con-
text of alternating current optimal power flow. The authors reformulate the bilinear terms in
their original model for the problem by the univariate reformulation Bin2. Additionally, they
add the reformulated McCormick cuts shown in (8). It turns out that the resulting univariate
model is solved much faster than the bivariate one, while the solutions of both models are of
the same approximation quality. To the best of our knowledge, the authors of [1] are the first
who use such a univariate reformulation enhanced with additional cutting planes.
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Although the figures stated in Table 3 suggest that Bin1 compares favourably to Bin2 and
Bin3 in terms of the number of required simplices, the structure of the constraint set of the
considered optimization problem is crucial. If, for instance, bounds for the term x − y are
known a priori, for example inferred from the problem data, using Bin3 can be advantageous
(cf. [50]). The same holds for Bin2, if bounds for the term x + y are available. Moreover,
in case that for a subset x1, x2, . . . , xn of the variables at hand many of the bilinear terms
xi x j with i, j ∈ {1, 2, . . . , n} occur in the constraints of the problem, using Bin2 or Bin3
can again be beneficial. The reason for this is the following general observation. If the same
non-linear function G occurs multiple times in an optimization problem (except for linear
factors), we can replace this function with the same variable g̃ everywhere in the model and
add the constraint g̃ = G only once. This way, we need only one pwl. approximation for
all occurrences of G. Thus, if we reformulate the terms xi x j via Bin2 or Bin3, for each
of the O(n) many quadratic monomials x2i and x2j only one pwl. approximation has to be

constructed. Apart from this, we only need one pwl. approximation for each of the O(n2)-
many p2i, j = (xi +x j )2. In case of Bin1, however, we need two different pwl. approximations

for each of the O(n2)-many p21,i, j, = ( 12 (xi + x j ))2 and p22,i, j = ( 12 (xi − x j ))2.

4 Conclusion and discussion

In this paper, we studied MIP formulations for pwl. approximations of bilinear terms in opti-
mization models. More precisely, we compared MIP formulations for direct bivariate pwl.
approximations of variable products to MIP formulations for pwl. approximations after uni-
variate reformulations with respect to two different metrics of efficiency. First, we proved that
for a sufficiently small prescribed approximation error ε, all considered univariate reformu-
lations allow more compact ε-approximations than any bivariate ε-approximation requires –
as measured by the number of simplices in the underlying triangulation. In this sense, con-
cerning the size of the resulting pwl. approximations, and consequently the required number
of binary variables, our results are a strong indication for using univariate reformulations in
optimization problems. Second, we showed that, in contrast, all univariate reformulations
lead to genuinely weaker continuous relaxations than bivariate MIP formulations. These
two opposing characteristics of the respective MIP formulations explain many of the mixed
computational results found in the literature. Finally, we discussed our theoretical results
with regard to their application in practice. Notably, the looser relaxations of the univariate
reformulation approaches can be improved to equal those of a bivariate pwl. approximation
by adding linear cutting planes, the so-called McCormick cuts. A first algorithmic approach
constructed in this fashion can already be found in the literature ( [1]), reporting very good
computational results for the considered application. In this way, the authors profit from com-
pact MIP formulations as well as from tight relaxations at the same time. Both our theoretical
results and these first empirical evidence indicate that it would be promising to study generic
algorithms for MIQCQPs based on univariate reformulations as part of future research on
the topic.
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Appendix A: MIP formulations

In this part, we derive the MIP formulations of the pwl. approximation in the reformulations
Bin2, Bin3, and Ln. We proceed analogously to reformulation Bin1 in Sect. 3.

We start with reformulation Bin2:

gra(F) = {
(x, y, p2 − x2 − y2) ∈ R3 | p = x + y, (x, y) ∈ D

}
. (9)

Now, let f Bin21 : [x, x̄] → R be a pwl. approximation of x2 with triangulation T Bin2
1 ,

f Bin22 : [y, ȳ] → R a pwl. approximation of y2 with triangulation T Bin2
2 , and f Bin23 : [x +

y, x̄ + ȳ] → R a pwl. approximation of p2 with triangulation T Bin2
3 .

We can model an approximation of gra(F) by f Bin2 : D → R,

f Bin2(x, y) = 1

2
( f Bin23 (p) − f Bin21 (x) − f Bin22 (y)),

p = x + y.

Further, letMBin2
1 ⊆ D×R×[0, 1]pBin21 ×{0, 1}qBin21 ,MBin2

2 ⊆ D×R×[0, 1]pBin22 ×{0, 1}qBin22

and MBin2
3 ⊆ D × R × [0, 1]pBin23 × {0, 1}qBin23 be sharp MIP formulations of the graphs

gra( f Bin21 ), gra( f Bin22 ) and gra( f Bin23 ). We can then model an approximation of gra(F) as:

gra( f Bin2) = {(x, y, z) ∈ R3 | (x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ M f Bin2} (10)

together with the MIP formulation.

M f Bin2 := {(x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ D × R × [0, 1]pBin21 × {0, 1}qBin21

× [0, 1]pBin22 × {0, 1}qBin22 × [0, 1]pBin23 × {0, 1}qBin23 |
(p1, z1, λ1, u1) ∈ MBin2

1 , (p2, z2, λ2, u2) ∈ M2,

(p3, z3, λ3, u3) ∈ MBin2
3 ,

z = 1

2
(z1 − z2 − z3), p = x + y, (x, y) ∈ D}

Next, we apply Bin3:

gra(F) = {
(x, y, x2 + y2 − p2) ∈ R3 | p = x − y, (x, y) ∈ D

}
. (11)
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Now, let f Bin31 : [x, x̄] → R be a pwl. approximation of x2 with triangulation T Bin3
1 ,

f Bin32 : [y, ȳ] → R a pwl. approximation of y2 with triangulation T Bin3
2 , and f Bin33 : [x −

ȳ, x̄ − y] → R a pwl. approximation of p2 with triangulation T Bin3
3 .

We can model an approximation of (4) by f Bin3 : D → R,

f Bin3(x, y) = 1

2
( f Bin31 (x) + f Bin32 (y) − f Bin33 (p)),

p = x − y.

Further, letMBin3
1 ⊆ D×R×[0, 1]pBin31 ×{0, 1}qBin31 ,MBin3

2 ⊆ D×R×[0, 1]pBin32 ×{0, 1}qBin32

and MBin3
3 ⊆ D × R × [0, 1]pBin33 × {0, 1}qBin33 be sharp MIP formulations of the graphs

gra( f Bin31 ), gra( f Bin32 ) and gra( f Bin33 ). We can model an approximation of gra(F) as:

gra( f Bin3) = {(x, y, z) ∈ R3 | (x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ M f Bin3} (12)

together with the MIP formulation.

M f Bin3 := {(x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ D × R × [0, 1]pBin31 × {0, 1}qBin31

× [0, 1]pBin32 × {0, 1}qBin32 × [0, 1]pBin33 × {0, 1}qBin33 |
(p1, z1, λ1, u1) ∈ MBin3

1 , (p2, z2, λ2, u2) ∈ MBin3
2 ,

(p3, z3, λ3, u3) ∈ MBin3
3 ,

z = 1

2
(z1 + z2 − z3), p = x − y, (x, y) ∈ D}

Finally, we apply Ln:

gra(F) = {
(x, y, p) ∈ R3 | ln(p) = ln(x) + ln(y), (x, y) ∈ D

}
.

Now, let f Ln1 : [x, x̄] → R be a pwl. approximation of ln(x) with triangulation T Ln
1 ,

f Ln2 : [y, ȳ] → R apwl. approximationof ln(y)with triangulationT Ln
2 , and f Ln3 : [x y, x̄ ȳ] →

R a pwl. approximation of ln(p) with triangulation T Ln
3 .

We can model an approximation of gra(F) by f Ln : D → R,

f Ln(x, y) = p,

f Ln3 (p) = f Ln1 (x) + f Ln2 (y), (x, y) ∈ D.

Further, let MLn
1 ⊆ D×R×[0, 1]pBin21 ×{0, 1}qBin21 , MLn

2 ⊆ D×R×[0, 1]pBin22 ×{0, 1}qBin22

and MLn
3 ⊆ D × R × [0, 1]pBin23 × {0, 1}qBin23 be sharp MIP formulations of the graphs

gra( f Ln1 ), gra( f Ln2 ) and gra( f Ln3 ). We can model an approximation of gra(F) as:

gra( f Ln) = {(x, y, z) ∈ R3 | (x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ M f Ln}
together with the MIP formulation.

M f Ln := {(x, y, z, λ1, u1, λ2, u2, λ3, u3) ∈ D × R × [0, 1]pLn1 × {0, 1}qLn1 ×
[0, 1]pLn2 × {0, 1}qLn2 × [0, 1]pLn3 × {0, 1}qLn3 |
(p1, z1, λ1, u1) ∈ MLn

1 , (p2, z2, λ2, u2) ∈ MLn
2 ,

(p3, z3, λ3, u3) ∈ MLn
3 , z3 = z1 + z2, (x, y) ∈ D}.
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A.1: A hierarchy of convex underestimators

In the following, we derive a hierarchy for the convex underestimators that result from the
continuous relaxations of the univariate reformulations (see Table 4). The following results
are useful, for example, if F occurs as a term in the objective function to be minimized in
some optimization problem. This is because the choice of convex underestimators determines
the tightness of the resulting continuous relaxation (while the overestimators of F are not
relevant due to the optimization sense).

We start by comparing the convex underestimators CL
1 with CL

3 , belonging to Bin1 and
Bin3 respectively.

Proposition 1 The convex envelopeCL
1 : D → R resulting from the univariate reformulation

Bin1 is a tighter convex underestimator of F over D than the convex envelope CL
3 : D → R

resulting from the univariate reformulation Bin3, i.e. we have

CL
1 (x, y) − CL

3 (x, y) ≥ 0 ∀(x, y) ∈ D,

and there exists a point (x, y) ∈ D with

CL
1 (x, y) − CL

3 (x, y) > 0.

Proof We note that the first condition is equivalent to proving that the optimal objective value
of the maximization problem

max
(x,y)∈D C31(x, y), (13)

with C31 : D → R and

C31(x, y) := 4(CL
3 (x, y) − CL

1 (x, y))

= (x − y)2 − (x̄ + x − ȳ − y)(x − y) + (x − ȳ)(x̄ − y),

is less than or equal to 0, which we do in the following.
In Problem (13), we maximize a univariate convex quadratic function in x − y, which

means that the maximum is attained at one of the two bounds of the domain of x − y over D,
i.e. at either at (x, ȳ) or at (x̄, y). Evaluating C31 at these two points yields

C31(x, ȳ) = (x − ȳ)2 − (x̄ + x − ȳ − y)(x − ȳ) + (x − ȳ)(x̄ − y)

= (x − ȳ)(x − ȳ − x̄ − x + ȳ + y + x̄ − y)

= 0

and

C31(x̄, y) = (x̄ − y)2 − (x̄ + x − ȳ − y)(x̄ − y) + (x − ȳ)(x̄ − y)

= (x̄ − y)(x̄ − y − x̄ − x + ȳ + y + x − ȳ)

= 0

This means that the optimal objective value of Problem (13) is indeed 0. Now consider the
point (x, y). We have

C31(x, y) = (x − y)(x − y − x̄ − x + ȳ + y) + (x − ȳ)(x̄ − y)

= x ȳ + yx̄ − x y − ȳ x̄ = (x̄ − x)(y − ȳ)
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< 0.

Thus, CL
1 is strictly tighter than CL

3 . ��
The same results as above also holds with respect toCL

2 and CL
3 , belonging to Bin2 and Bin3

respectively.

Proposition 2 The convex envelopeCL
2 : D → R resulting from the univariate reformulation

Bin2 is a tighter convex underestimator of F over D than the convex envelope CL
3 (x, y)

resulting from the univariate reformulation Bin3, i.e. we have

CL
2 (x, y) − CL

3 (x, y) ≥ 0 ∀(x, y) ∈ D,

and there exists a point (x, y) ∈ D with

CL
2 (x, y) − CL

3 (x, y) > 0.

Proof Consider the optimization problem

min
(x,y)∈D C23(x, y), (14)

with C23 : D → R and

C23(x, y) := 2(CL
2 (x, y) − CL

3 (x, y))

= 2xy − (ȳ + y)x − (x̄ + x)y + x y + x̄ ȳ.

Problem (14) minimizes a bilinear function over a box. It is obvious that C23 is linear along
both the x-axis and the y-axis, i.e. along the edges of the box. This means that C23 is edge-
concave, and therefore the minimum of C23 over D is attained at one of the vertices VD =
{(x, ȳ), (x̄, y), (x, y), (x̄, ȳ)} of the box. By evaluation, we obtain:

C23(x, ȳ) = 2x ȳ − (ȳ + y)x − (x̄ + x)ȳ + x y + x̄ ȳ

= 2x ȳ − x ȳ − x y − x̄ ȳ − x ȳ + x y + x̄ ȳ

= 0,

C23(x̄, y) = 2x̄ y − (ȳ + y)x̄ − (x̄ + x)y + x y + x̄ ȳ

= 2x̄ y − x̄ ȳ − x̄ y − x̄ y − x y + x y + x̄ ȳ

= 0

and

C23(x, y) = 2x y − (ȳ + y)x − (x̄ + x)y + x y + x̄ ȳ

= x y − x ȳ + x y + x̄ ȳ = (x̄ − x)(ȳ − y)

> 0,

C23(x̄, ȳ) = 2x̄ ȳ − (ȳ + y)x̄ − (x̄ + x)ȳ + x y + x̄ ȳ

= x̄ ȳ − x ȳ − x̄ y + x y = (x̄ − x)(ȳ − y)

> 0,

which proves the claim. ��
Between CL

1 and CL
2 , belonging to Bin1 and Bin2 respectively, CL

2 is the tighter convex
underestimator; however, this only holds over square-shaped domains.
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Proposition 3 The convex envelopeCL
2 : D → R resulting from the univariate reformulation

Bin2 is a tighter convex underestimator of F over D than the convex envelope CL
1 (x, y)

resulting from the univariate reformulation Bin1 if D is a square. In this case, we have

CL
2 (x, y) − CL

1 (x, y) ≥ 0 ∀(x, y) ∈ D,

and there exists a point (x, y) ∈ D with

CL
2 (x, y) − CL

1 (x, y) > 0.

Proof Consider the optimization problem

min
(x,y)∈D C21(x, y), (15)

with C21 : D → R and

C21 := 4(CL
2 − CL

1 ) = (x + y)2 − (x̄ + x + ȳ + y)(x + y) + (x + ȳ)(x̄ + y).

Since we assume that D is a square, we have x̄ − x = ȳ− y and equivalently x̄ + y = x + ȳ.
Therefore, we can simplify the minimization problem (15) to

min
(x,y)∈D −2(x̄ + y)(x + y) + (x̄ + y)2 + (x + y)2.

This means that Problem (15) minimizes a convex quadratic univariate function in x + y.
Using a first-order argument, the minimum is attained at a point (x∗, y∗) ∈ D that fulfils
x∗ + y∗ = x̄+ y. It is straightforward to see thatC21(x∗, y∗) = 0, i.e. the minimum objective
value of Problem (15) is 0.

Finally, we obtain

C21(x, y) = (x + y)2 − 2(x̄ + y)(x + y) + (x̄ + y)2

= (x̄ − x)2 + (2y)2

> 0.

In other words, there exists a point (x, y) ∈ D with CL
2 (x, y) − CL

1 (x, y) > 0. ��
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