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Polygenic prediction of occupational status 
GWAS elucidates genetic and environmental 
interplay in intergenerational transmission, 
careers and health in UK Biobank
 

Evelina T. Akimova    1,2,10 , Tobias Wolfram    3,10 , Xuejie Ding2,4,5, 
Felix C. Tropf    1,6,7,11 & Melinda C. Mills2,8,9,11

Socioeconomic status (SES) impacts health and life-course outcomes. 
This genome-wide association study (GWAS) of sociologically informed 
occupational status measures (ISEI, SIOPS, CAMSIS) using the UK Biobank 
(N = 273,157) identified 106 independent single-nucleotide polymorphisms 
of which 8 are novel to the study of SES. Genetic correlations with 
educational attainment (rg = 0.96–0.97) and income (rg = 0.81–0.91) point 
to a common genetic factor for SES. We observed a 54–57% reduction in 
within-family predictions compared with population-based predictions, 
attributed to indirect parental effects (22–27% attenuation) and assortative 
mating (21–27%) following our calculations. Using polygenic scores 
from population predictions of 5–10% (incremental R2 = 0.023–0.097 
across different approaches and occupational status measures), we 
showed that (1) cognitive and non-cognitive traits, including scholastic 
and occupational motivation and aspiration, link polygenic scores to 
occupational status and (2) 62% of t he i nt ergenerational transmission 
of occupational status cannot be ascribed to genetic inheritance of 
common variants but other factors such as family environments. Finally, 
links between genetics, occupation, career trajectory and health are 
interrelated with parental occupational status.

Socioeconomic status (SES) stratifies society, with deep impacts on 
wealth1, health2, family and life course3. Various disciplines, including 
economics, demography, public health and sociology, have opera-
tionalized this multidimensional construct, focusing on the ‘big three’ 
indicators: educational attainment, income, earnings and wealth, and 
occupational status. Here we conduct a genome-wide association study 
(GWAS) on sociologically informed occupational status measures. 
We exploit our findings to advance understanding and quantitative 
modelling of status attainment processes across the life course and 
their complex relationship with health.

The deeply engrained intergenerational transmission of SES and 
inequalities across generations4,5 has motivated social and medical 
scientists to consider whether genetics plays a role in SES6–8 and, more 
recently, SES-related stratification and non-genetic inheritance, which 
biases genetic effects on a phenotype9,10. So far, the focus has primarily 
been on educational attainment11,12 and income13, with less attention to 
the heritability of occupational status. However, family studies indicate 
moderate heritability of occupational status comparable to other SES 
measures in the range of 0.30–0.40 (refs. 14–18). Molecular genetic 
research on SES proxies has focused on educational attainment6,7,19–21 
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broad categories of the UK Standard Occupational Classification (SOC) 
and an SNP heritability of 0.085 (ref. 27). Since occupation in the UK 
Biobank is richly measured using 353 categories, we go beyond the 
existing GWAS by drawing from decades of sociological theory and 
measurement of occupational stratification. Sociological measures 
are preferable since purely skill-based measures suffer from inconsist-
ent operationalization and lack theoretical and substantive thinking 
about the underlying mechanisms of status attainment, ignoring, for 
example, social prestige and other status factors1 (Box 1).

Sociologists consider occupation as the primary social and eco-
nomic role held by most adults outside their immediate family or 
household, often even as ‘the single most important dimension in 
social interaction’ (p. 203)28. It is a long-term stable indicator of an 

and income22,23, neglecting occupational status. SES measures are 
important since they introduce gene–environment correlations which 
affect GWAS results24 and influence the patterns of genetic correla-
tions of mental health traits25. This calls for a more nuanced and holis-
tic understanding of SES that goes beyond educational attainment 
and income. While SES measures are intertwined, the dimensions are 
clearly analytically and empirically distinct26, and individuals may, 
for example, trade off income for other types of status, in particular 
occupations. Educational attainment may therefore not necessarily 
translate into economic success.

We extend previous work of a GWAS on broadly skill-based occu-
pational groups using the UK Biobank, which identified 30 independ-
ent single-nucleotide polymorphisms (SNPs) associated with 9 very 

BOX 1

Ethical considerations of this study
The study of genetics and its relationship with social status has 
a complex and fraught history, with some researchers using 
biological factors to discriminate and reinforce inequalities. Early 
nineteenth-century work98 and other contemporary studies linked 
biology to the study of intelligence, criminality and status, which led 
to contentious debates on the motivation, validity and implications 
of their findings99–101. Later studies, such as on ‘Social Mobility’102, 
have been critiqued for assuming causality from correlations103. 
Furthermore, works such as ‘The Bell Curve’104 by Herrnstein and 
Murray revisited these earlier debates, suggesting a biological basis 
for societal stratification, inferring that social policy interventions 
would be futile.

It is important to recognize that these studies have contributed 
to an aversion, anger and even fear of studying genetics in social 
stratification research99,105. Our Frequently Asked Questions 
(FAQs) (Supplementary Information Section 1) offers an accessible 
explanation of what our study does and, importantly, does not, find 
and how it can be applied. Just as one would never use a single 
variable to predict a complex trait, it would be obviously incorrect to 
use the polygenic score alone to predict a complex outcome such 
as occupational status106. Our results show exactly the opposite 
and highlight the need for including family, environment and 
socioeconomic factors. We also explicitly distance our research 
from studies that are overtly classist and/or racist and reinforce 
inequalities, confuse structural inequality with biology or draw overly 
simplistic policy implications. We pursue a more complex biosocial 
understanding of occupational stratification, intergenerational 
transmission, gene–environment correlation and uncovering the role 
that socioeconomic status plays in genetic estimates.

In a 2023 consensus report from the Hastings Center107, a group 
of bioethicists and researchers in the field of social and behavioural 
genomics emphasized the risks and need for responsible conduct in 
studies examining the genetics of social and behavioural phenotypes. 
The risks of introducing genomics in the study of occupational status 
for individuals could be self-fatalism or self-stigmatization (that is, 
believing their occupational status is fixed or inevitable or they are 
less capable). Or, if not managed or communicated properly, there 
are risks of potential discrimination against individuals (for example, 
in employment, insurance, criminal justice), stigmatization of others 
or against entire groups, with potential for harmful or inequitably 
distributed policies. Another risk is that genetics distracts and 
channels resources away from more effective ways of addressing 
social stratification. Despite clear messaging, an additional risk 

is that some may not take the time to read our paper or careful 
communications. It could be misunderstood as genetic determinism 
by uninformed critics or conversely, falsely used to justify and 
reinforce existing inequalities as inevitable, incorrectly claiming that 
any social interventions are ineffective105.

Although our analysis was conducted before the Hastings 
Center Report design guidelines, our work mostly adheres to 
relevant guidelines. We provide a comprehensive explanation 
of the definition and measurement of our key phenotypes, used 
an adequately powered sample, replicated out of sample, used 
within-family estimates and transparently discuss and even highlight 
observed reductions in effect sizes (responsible conduct). We did 
not follow the Hastings Center Report guidelines to engage with 
stakeholders because we deemed relevant stakeholders difficult to 
define given our large sample of employed persons. However, we 
developed an extensive FAQs along with a ‘key-points’ section and 
are transparent in our use of the ‘genetic ancestry’ term, consulting 
the NASEM report (responsible communications)108. We also neither 
attempt to nor endorse comparison of individuals across contentious 
socially constructed groups, such as by race or ethnicity, nor do 
we compare genetic ancestral groups that could be conflated 
with racial or ethnic categories. Our GWAS focuses exclusively 
on a population of British-European genetic ancestry, limiting the 
generalizability of the results to that population alone. We note that 
a high concentration of research in this ancestry group remains a 
general shortcoming of contemporary genetic research, with 72% of 
genetic discoveries covering just three countries (the United States, 
the United Kingdom and Iceland)81,82. We encourage inclusion of 
diverse populations into genetic research across multiple domains 
including ancestry, socioeconomic backgrounds, geography, 
age and beyond. We also note that the dataset we use is affected 
by participation bias109,80 (see discussion, FAQ in Supplementary 
Information Section 1). Our encouragement for diversity should not 
be interpreted as an endorsement of studies aimed at comparing 
different ancestral groups, but rather understanding the unique 
genetic and environmental interplay within each group rather 
than drawing comparisons between them, in line with the NASEM 
framework108.

Alongside the accurate scientific interpretation of our research, 
we advocate for open discussion on the importance of the role that 
socioeconomic status plays in patterning other genetic outcomes 
that engages scholars from a wide array of intellectual backgrounds 
and diversity in viewpoints.

http://www.nature.com/nathumbehav
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individual’s social position in society alongside income, consump-
tion, division of labour and social reproduction1. Adequately measur-
ing occupational status is complex, with generations of sociologists 
dedicated to mapping this complex qualitative trait on a continuous 
scale29. The three conceptual approaches to measuring occupational 
status consider either socioeconomic differences between occupa-
tions, inter-occupational social interaction, or ascribed prestige of 
different jobs30.

In our analyses, we focus on three different measures of occu-
pational status, championed by different theoretical traditions in 
sociology. First, the International Socioeconomic Index (ISEI)31, is a 
status measure constructed from scaling weights that maximize the 
(indirect) influence of education on income through occupation. Sec-
ond, the Standard International Occupational Prestige Scale (SIOPS)28, 
is a prestige-based measure based on public opinion surveys where a 
representative population is tasked with ranking occupations by their 
relative social standing. Third, the Cambridge Social Interaction and 
Stratification Scale (CAMSIS)1, measures the distance between occupa-
tions on the basis of the frequency of social interactions between them 
(operationalized as husband-and-wife combinations). This measure is 
based on the notion that differential association is a function of social 
stratification, with partners and friends more likely to be selected from 
within the same group. Although these measures are championed by 
different theoretical traditions in sociology, empirically they have 
substantial but not perfect correlations32, alluding to an underlying 
latent factor of occupational status.

The current study investigates molecular genetic associations 
with ISEI, SIOPS and CAMSIS. Analyses were conducted on 273,157 
(130,952 males and 142,205 females) individuals in the UK Biobank33, 
identifying 106 independent SNPs, and replicated in the UK’s National 
Child Development Study (NCDS; N = 4,899; 2,525 females and 2,374 
males). Genomic structural equation modelling (GSEM)34 suggests 
a general genetic factor across all SES measures of occupational sta-
tus, income and education. An overview of the study is provided in 
Extended Data Fig. 1.

The integration of molecular genetics into such a core topic of 
social science research promises a richer understanding of the role of 

the biological and social factors as well as the improvement of quanti-
tative modelling and understanding of social processes of attainment 
status transmission. We thus utilize our GWAS discovery results for 
various sociogenomic investigations. While there is limited research 
that has identified a potential biological basis from GWAS findings for 
complex behavioural traits19,35, there has been some progress towards 
understanding potential pathways. This is particularly in psychiatric 
and addiction-related phenotypes and type 2 diabetes36–38. Accordingly, 
we investigated how social and psychological mechanisms play a role 
in the genetics of occupational status, including childhood career 
aspirations, non-cognitive39 and cognitive traits27. We then examined 
to what extent polygenic scores (PGSs) for occupational status predict 
the phenotype within and between families, their genetic penetrance of 
careers across the life course and the role common genetic variants play 
as a confounder of the intergenerational transmission of occupational 
status. Additional analyses explore the complex relationship between 
occupational status and health outcomes and how parental occupa-
tional status confounds the genetic prediction of general health. Our 
findings are conclusive that ignoring genetic data in parent–offspring 
SES transmission and quantitative stratification research in general 
leads to biased results in non-experimental studies, while the interplay 
between genes and the environment remains complex.

Results
Heritability, discovery and genetic links among SES measures
The main analyses were conducted on individuals from the UK Biobank 
on the three phenotypic measures of occupational status: CAMSIS 
(N = 273,157), SIOPS (N = 271,769) and ISEI (N = 271,769; Methods). Link-
age disequilibrium score regression (LDSC)-based SNP heritability 
(h2

SNP)40 was significantly different from zero for all occupational meas-
ures, and ~50% larger for CAMSIS (h2

SNP = 0.145 , s.e. = 0.0066) com-
pared with SIOPS (h2

SNP = 0.105, s.e. = 0.0052) and ISEI (h2
SNP = 0.109, 

s.e. = 0.0056, see Fig. 1). This is within the range of h2
SNP for other status 

measures estimated in the UK Biobank (Methods), such as education 
(h2

SNP = 0.153, s.e. = 0.0056) and income (h2
SNP = 0.092, s.e. = 0.0041), 

and for CAMSIS nearly twice as high as for previously reported occu-
pational measures27. Genome-based restricted maximum likelihood 
(GREML) analyses confirmed these results (Supplementary Table 1).

The GWASs identified 106 independent SNPs for CAMSIS, includ-
ing 56 also found for ISEI and 51 for SIOPS on the basis of an R2 threshold 
of 0.1 and a window size of 1,000 kb (see Fig. 2 Manhattan plot), one of 
which (only significant for CAMSIS) was found on the X chromosome. 
We identified 11,206 SNPs in LD with our autosomal lead SNPs (Meth-
ods) and conducted an exhaustive phenome-wide association study 
(PheWAS) using the GWAS catalogue and the IEU OpenGWAS Project 
database. While we observe a substantial overlap with other socioeco-
nomic status-related traits, 8 of our variants (rs12137794, rs17498867, 
rs10172968, rs7670291, rs26955, rs2279686, rs72744938, rs62058104) 
have not yet been linked to any status-related trait. For three variants 
(rs7670291, rs26955, rs72744938) not even suggestive associations 
(P < 5 × 10−6) with status traits are discernible. For two of these, we find 
strong links to platelet count. A full list of all implicated phenotypes 
is provided in Supplementary Table B8. The only non-autosomal hit 
(rs146852038) has previously been linked to the age of first sexual 
intercourse and educational attainment41.

We then replicated these hits using the National Child Develop-
ment Study (NCDS), an ongoing study of a British birth cohort born 
in 1958 (Methods). This dataset was chosen because it is a similar UK 
cohort, important since previous research demonstrated genetic 
variation by country and birth cohort for complex behavioural pheno-
types42. Despite the notable disparity in sample size, with 4,899 indi-
viduals in the NCDS compared with ~273,157 in our discovery sample, 
our results surpassed the expected sign concordance and achieved a 
higher than anticipated number of significant hits at P = 0.05 (Supple-
mentary Information Section 7.4). This replication result underscores 
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Fig. 1 | Comparison of SNP-heritability estimates of occupational status 
measures vs income and education. LD score-based SNP-heritability estimates 
of occupational status measures CAMSIS (N = 273,157), SIOPS (N = 271,769) and 
ISEI (N = 271,769) compared to income (N = 353,673) and education (N = 404,420). 
Each bar is a single estimate of SNP heritability and each error bar indicates the 
s.e. of the estimate (95% confidence intervals (CIs) are presented).
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the robustness of our findings, even when subjected to smaller-sample 
constraints.

To investigate the functional implications of the genetic variants 
associated with occupational status, we performed gene-based and 
gene-set analyses using multivariate analysis of genomic annotation 
(MAGMA; Methods)43. We observe that genes implicated by our SNPs 
are expressed in the brain, including the pituitary gland. No other tissue 
showed significant enrichment for gene expression.

We also jointly analysed the highly correlated occupational status 
measures together with income and education to increase statistical 
power using multitrait analysis of GWAS44 (MTAG; Methods) result-
ing in 731, 646 and 653 variants passing the significance threshold for 
CAMSIS, ISEI and SIOPS, respectively.

Genetic correlations (Fig. 3, lower triangle) between the three 
measures were close to 1 and thus stronger than the phenotypic cor-
relations (upper triangle), ranging between 0.80 and 0.90. The genetic 
correlations with educational attainment and household income were 
almost twice as high (0.81–0.97) as their phenotypic counterparts 
(0.32–0.44). Considering these high genetic correlations, it is unsur-
prising that we found strong evidence for a common genetic factor 
of occupational status using genomic structural equation modelling 
(GSEM)34, with high loadings for all three measures (standardized 
path coefficients of 0.99, 0.99 and 0.99, for CAMSIS, ISEI and SIOPS, 
respectively; Supplementary Information Section 11). We furthermore 
provide evidence for a common genetic factor of SES including income 
and education (see Supplementary Fig. 6).

Polygenic prediction
We assessed the out-of-sample predictive performance of the PGSs 
using two data sources. The first sample comprised a subset of siblings 
from the UK Biobank, for which we conducted an additional GWAS 
excluding individuals from the discovery analysis. The second sample 
consisted of the aforementioned NCDS.

MTAG-based out-of-sample predictions, which incorporate occu-
pational status measures with household income and educational 

attainment, were slightly higher in the NCDS compared with the UK 
Biobank, with an incremental R2 of 0.097 (s.e. = 0.0035) in NCDS across 
all observations (0.075, s.e. = 0.00287 in the UK Biobank) for CAMSIS, 
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Fig. 2 | Manhattan plot of the GWASs for occupational status measures. Manhattan plot with autosomal SNP position on the x axis and the logarithm of the P value on 
the y axis of the GWASs for occupational status measures CAMSIS (N = 273,157), ISEI (N = 271,769) and SIOPS (N = 271,769).
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0.065 (s.e. = 0.0032; 0.054, s.e. = 0.0025 in the UK Biobank) for ISEI 
and 0.067 (s.e. = 0.0031; 0.053, s.e. = 0.00248 in the UK Biobank) 
for SIOPS (Fig. 4). As expected, polygenic scores based on PRSice2 
and SBayesR weights have smaller but comparable incremental 
R2 values in both UK data sets across all measures of occupational  
scores (Fig. 4).

The longitudinal data in the NCDS reveal changes in the PGS effects 
across the life course or career trajectories, respectively. First, we 
were able to examine PGS prediction of occupational status across the 
life course at ages 33, 42, 46, 50 and 55 (Supplementary Information  
Section 13).

By leveraging the NCDS activity calendar data, we delineated 
comprehensive career trajectories over 30 years, from the onset of 
participants’ professional lives. When stratified by PGS quintiles, 
parental SES and sex, these trajectories revealed a notable interplay 
between polygenic scores and social factors (Fig. 5). Individuals who 
started their careers in the lower end of occupational status scores 
but ranked high in the PGS consistently advanced in their careers 
over the years. Conversely, those who initially held higher occupa-
tional status but had lower PGSs exhibited a steady decline in their 
professional trajectories, as measured by occupational status scores 
(Supplementary Fig. 12). While our focus is on CAMSIS, similar pat-
terns were evident for SIOPS and ISEI, underscoring the consistency 
of our findings (Supplementary Figs. 13 and 14). These results further 
highlight the importance of understanding how and why societal 
structures and factors correlate with genotypes and jointly predict  
career trajectories.

Disentangling direct, indirect and demographic effects
GWAS population estimates include a combination of direct effects 
(inherited genetic variation) and indirect effects or gene–environment 
correlations and can be further influenced by assortative mating. We 
conducted multiple analyses to better understand the relative impor-
tance of these dimensions in relation to our estimates (Supplementary 
Information Section 12)45,46.

First, we investigated the predictive performance of our scores 
between more than 29,500 siblings in the UK Biobank, a common 
design to identify direct genetic effects. Notably, traits related to 
socioeconomic status or other non-clinical outcomes tend to exhibit 
considerable within-family effect reductions45, potentially affecting 

their practical utility47. Our analysis supports these previous studies, 
showing a reduction in effects for occupational status measures of 
more than 50% in total, with results for other SES measures (education 
and income) in a similar range (see Fig. 6 for the ratio of population and 
within-family models and Methods).

This discrepancy between the unrelated population and 
within-family estimate can be attributed to indirect family effects or 
assortative mating. Indirect effects include the (heritable) social trans-
mission of economic resources, and cultural and social capital, as well 
as social-psychological factors such as parental expectations, which 
represent passive gene–environment correlation. To quantify the role 
of indirect effects, we use two research designs. First, we adjust the 
best-performing PGS prediction in the NCDS for parental SES (meas-
ured as parental occupational status at age 11). Second, we conduct an 
adoption prediction study. In an adoption design, children are raised 
by non-biological parents, thereby providing a unique opportunity to 
examine the influence of genetic factors while minimizing the effects 
of passive gene–environment correlation. We re-ran our GWAS for 
occupational status, while excluding the set of 3,414 respondents 
of British-European genetic ancestry in the UK Biobank that stated 
that they were adopted and for which occupational information was 
available. Results from both designs are remarkably similar, with the 
parental SES showing an effect attrition of 21% for all three measures, 
and the adoptee prediction resulting in an effect reduction of 23%, 22% 
and 27% for CAMSIS, ISEI and SIOPS, respectively. Notably, our results 
concur with ref. 48, where the extent of attenuation for cognitive and 
non-cognitive skills was considerably smaller in an adoption compared 
with a sibling design.

The observed remaining discrepancy between the population 
estimate controlling for indirect effects and within-family estimates 
could be attributed to attrition in the within-family design due to 
assortative mating, which attenuates the within-family effect. Recent 
findings by economic historians have demonstrated strong partner 
matching on occupational status within the United Kingdom dating 
back to at least the 1750s49. By employing a method first proposed by 
ref. 6, we demonstrate that, even in the absence of indirect effects, 
within-family effects are plausibly anticipated to be attenuated by 
21–27% (Supplementary Information Section 12). We find further 
support for attenuation by directly analysing the spousal PGS cor-
relation, which substantially exceed what could be expected from 
simple phenotypical assortment (Supplementary Information Section 
12). Accordingly, it closes the observed gap between both estimates. 
Under the assumption of additive effect reduction due to assortative 
mating and indirect effects, all three methods consistently estimate 
the proportion of direct population effects to be within the range of 
73–79%. This convergence of findings underscores the importance of 
accounting for biases related to partner matching when examining the 
role of genetic factors in occupational status. It furthermore motivates 
the inclusion of parental SES for robustness in the application of PGS 
analyses downstream of the population GWAS.

Social mechanisms linking genetics and occupational status
A pertinent question to consider is which traits serve as mediators 
of the association between an individual’s genome and occupational 
status. Evidence from twin studies indicates that both cognitive and 
non-cognitive traits play a mediating role in the relationship between 
genetic and social outcomes50.

Building on previous behavioural phenotype GWASs and 
the literature41, we identified five traits that are potential media-
tors of the general genetic factor of SES: cognitive performance6, 
attention-deficit/hyperactivity disorder (ADHD; as a proxy for behav-
ioural disinhibition)51, openness to experience52, risk tolerance53 and 
neuroticism54. In a multivariate genetic regression model (Supple-
mentary Information Section 11.3), overall, we can explain 70% of the 
genetic association with occupational status. Among these mediators, 
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the associations are generally similar for all three measures of occupa-
tional status. Of these, the strongest effects are observed for cognitive 
performance. However, when we introduce ADHD and openness to 
experience into the models, these associations are slightly reduced. 
The importance of ADHD is increased by the introduction of risk toler-
ance. In contrast to ADHD and neuroticism, risk tolerance positively 
correlates with the SES factor, when controlling for the other potential 
mediators (see Supplementary Tables 3–5).

In the NCDS data, we tested the mediating effects of adolescent 
phenotypic measures of cognitive ability, externalizing behaviour, 
internalizing behaviour, scholastic motivation, occupational aspi-
ration and subjective health for the occupational status PGS (Fig. 7, 
Methods and Supplementary Information Section 15). Depending on 
the career stage of the respondents indicated by NCDS waves, these 
variables explained 56–74% of the link between our PGSs and occupa-
tional status (Fig. 7). As expected, cognitive ability was the main media-
tor, explaining 33–51% of the association depending on respondents’ 
age. Scholastic motivation explained between 8–11%, occupational 
aspiration 7–11% and other non-cognitive traits up to 5%. The over-
all mediation by subjective health was minimal. Effect reductions 

are proportional when adjusting for parental SES to control for pas-
sive gene–environment correlation or indirect effects, respectively  
(Supplementary Information Section 11.3).

Intergenerational transmission
Given that parental status is strongly associated with their offspring’s 
status, the study of intergenerational status transmission has a long 
tradition, often focusing on educational attainment55,56. In the NCDS 
data, the phenotypic correlation between paternal occupation at age 
11 and offspring occupational status at various ages for all three meas-
ures was substantial (~0.30). Including a PGS to control for genetic 
inheritance and identify social effects reduced the intergenerational 
correlation of occupational status by 11%. However, this is probably an 
underestimation given the power limitations of GWAS in capturing full 
SNP heritability. Rescaling the results to estimated SNP heritability57, up 
to 38% of the intergenerational correlation is due to common genetic 
inheritance; 62% is due to other factors, which include social inherit-
ance and possibly the effects of rare genetic variants58 not captured by 
SNP-heritability estimates (see also Fig. 8 and Supplementary Informa-
tion Section 16 for estimates by age).
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Genetic confounding between occupational status and health
Occupational status is correlated with various health outcomes and 
higher-SES individuals typically live longer and are in better health2. 
It is essential to understand to what extent this association between 
occupational status and health is a causal one to, for example, design 
effective health intervention strategies. The observed association 
could partly be driven by endogeneity since individuals with better 
health also potentially secure better jobs or have higher performance 
at work. Controlling for genetic associations reduces biases arising 
from genetic endogeneity also in regard to potential direct pleiotropic 
effects59. We therefore investigate to what extent the occupational 
status PGS confounds the observed relationship between occupational 
status and general health as well as mental health in the NCDS data (see 
Supplementary Tables 14 and 16 for regression estimates). Similar to 
the intergenerational transmission of status, we find significant genetic 
confounding in the observed relationship.

To better understand the degree to which the genotypic effect of 
occupational status on general and mental health might incorporate 
indirect effects, we analysed the health of the respondents on the basis 
of their occupational status PGSs with and without parental occupa-
tional status at age 11 as a control variable. In accordance with previous 
results, we found that taking parental occupational status into account 
reduced the PGS prediction of general health on average across ages 
and outcomes by 19.5% and of mental health by 23.7%, demonstrating 
the importance of considering parental SES indicators for the genetic 
study of offspring’s health outcomes (see Supplementary Tables 15 
and 17).

Discussion
Analysing data from 273,157 individuals from the UK Biobank, we 
identified 106 independent SNPs associated with occupational status 
measures, 8 of which have not been previously reported in related SES 
GWASs. Our study provides PGSs that are associated with occupational 
status in two samples of individuals of European ancestry in the United 
Kingdom, with an out-of-sample prediction of 5–8% depending on 
the status measure and up to 9% depending on career stage. Genetic 

associations derived from CAMSIS were ~50% larger than for SIOPS and 
ISEI and twice as high as measures applied previously27. This is likely 
since SIOPS and ISEI are based on multicountry data from the 1970s 
and 1980s, and CAMSIS was constructed within the United Kingdom 
where our sample is located. CAMSIS conceptually focuses on social 
interactions, in contrast to, for example, purely skill-based measures. 
A potential reason for this observation may be genetic selection into 
interaction networks of friends60,61. A particular feature of CAMSIS is 
the inclusion of spousal networks. As Fisher stated, referring to past 
historical periods and particular contexts: “[P]revailing opinion, mutual 
interest and the opportunities for social intercourse, have proved them-
selves sufficient, in all civilized societies, to lay on the great majority 
of marriages the restriction that the parties shall be of approximately 
equal social class”62. Evidence for genetic assortative mating has been 
demonstrated for political views63 and educational attainment64,65, 
supporting strong phenotypic evidence of assortative mating by SES, 
race/ethnicity and religion, also showing that this has evolved with 
demographic change66. The heritability of CAMSIS might partly cap-
ture effects of assortative mating on the phenotype of the individual. 
However, high genetic correlations between CAMSIS, SIOPS and ISEI 
may point to the benefits of a more granular and exact measure of 
the same latent phenotype in CAMSIS and construction of measures 
within similar populations42. We also provide the R package ‘ukbjobs’ 
to equip researchers using the UK Biobank to employ more-standard, 
well-defined sociologically informed measures67.

Our study not only demonstrates the genetic interdependence of 
occupational status measures, but also reveals a strong genetic cor-
relation between educational attainment, income and occupational 
status, identifying a common genetic factor of SES. Notably, genetic 
correlations among SES indicators surpass phenotypic correlations by 
a factor of two to three. This outcome represents an outlier from the 
conjecture of ref. 68, which states that phenotypic correlations can 
serve as proxies for genetic correlations—a notion that finds empirical 
support in both animals and humans69,70.

The deviation might have several reasons, including trade-offs 
between investments into different dimensions of SES. Higher educa-
tion does not always guarantee high income or occupational status, 
since labour market conditions, personal networks, ethnicity and 
gender can influence career trajectories5. Higher occupational status 
does not always bring a high income or demand high education, and 
may vary across cultures and social contexts71. Certain genetic traits 
may be associated with individuals achieving higher levels in particular 
areas through a mechanism known as vertical pleiotropy (that is, medi-
ated pleiotropy)23. For instance, genetic factors correlate with cogni-
tive abilities, personality traits and mental health, which may, in turn, 
impact educational attainment, income and occupational status. Envi-
ronmental factors such as family background, social norms, cultural 
expectations and chance also shape SES. Environmental differences 
in individual cases can lead to more heterogeneity and thus weaker 
phenotypic correlations, and subsequently have a completely differ-
ent causal pathway in influencing health and behavioural outcomes.

We have shown that the prediction attrition within families is in 
part due to indirect genetic effects or genetic nurture, respectively, 
which also consistently contribute to the latent factor for constructed 
SES measures. Moreover, a mounting body of evidence suggests that 
strong assortative mating on this latent factor has been present for 
multiple generations49,72. Notably, a higher spousal correlation has 
been observed for the genetic predictor of educational attainment 
than for the actual phenotype64,73. This phenomenon may partially 
account for why genetic variants display a stronger predictive power 
for occupational status between families, as opposed to within families 
where the variation in these variants is more limited.

We integrated the polygenic signal for occupational status into 
occupational mobility and social stratification research and vice 
versa, with crucial implications on both sides. First, intergenerational 
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mobility in social status is of great interest, not only for social scien-
tists, but also policymakers, public health and epidemiology and is 
related to questions of equality of opportunity and societies’ degree of 
openness5,18,74. Next to cognitive skills, we showed that also scholastic 
motivation, occupational aspiration, personality traits and behavioural 
disinhibition (proxied by ADHD) mediate the association between 
genetics and occupational status. It is also vital to note that around 
one-third of the polygenic signal remains unexplained in each of our 
approaches, although it is likely that this is at least in part a result of the 
incomplete overlap of mediating variables between both analyses. We 
need further investigations to better understand the role of genetics 
in status inheritance and evaluate the interpretation of heritability as 
a pure merit measure in the context of questions addressing equality 
of opportunity.

Second, there are important considerations related to the inter-
generational transmission of SES. It has been a common assumption in 
heritability studies of educational attainment that genetic influences 
are stable in absolute terms, while environmentally driven inequalities 

tend to reduce with lower intergenerational correlations8. Extrapolat-
ing results from PGSs, we show that the intergenerational correlation 
for occupational status is up to 38% due to genetic inheritance—this 
is even stronger than for educational attainment55,56. This suggests 
that social stratification researchers need to adjust their sole focus on 
intergenerational correlations to also explicitly consider gene–envi-
ronment correlation in statistical modelling. We note that the applied 
extrapolation assumes SNP-heritability levels but could still represent 
an underestimation since PGSs have a lower prediction compared with 
SNP heritability. However, the latter is still smaller than the heritability 
estimated from twin models; hence, SNP heritability as measured 
here remains conservative compared with previous studies55. The 
discrepancy between SNP and twin heritability might be due to rare 
genetic variants, higher environmental homogeneity within families 
and nonlinear genetic effects42,75.

Third, we highlight questions about the causality of the relation-
ship between health and occupational status and SES in general2. It is 
plausible to assume that higher status causally leads to better health, 
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for example, due to a higher living standard, nutrition and better  
knowledge about and access to health care systems, among others2. 
At the same time (heritable) poor health might force an individual into 
a lower-status occupation, or genetics might have direct pleiotropic 
effects on education and health or related factors, leading to an overes-
timation of a direct, phenotypic causal effect. The question of causality, 
however, is paramount for designing targeted policy interventions, 
and genetic confounding needs to be considered. It is also relevant 
to quantify their potential impact and clarify claims in social mobility 
research regarding genetically driven, health-related confounders. 
We show that the association between occupational status and health 
is up to 25% confounded by common genetic effects and therefore 
substantially upward biased when genetic factors are not considered.

Fourth, combining theoretical, measurement and modelling per-
spectives of the social sciences and genetics is not only important for 
the interpretation of status in social science theory and modelling, 
but also for genetic research75. First, the discovery of indirect paren-
tal effects unravelled the importance of social influences correlated 
with genotypes in the discovery of genetic effects on education9. 
We show that controlling for parental occupational status strongly 
reduces genetic prediction of the occupational status PGS with gen-
eral and mental health. While genetic prediction based on our PGSs 
on health is comparably small (1%) and confounding effects may not 

entirely generalize to other regions of the genome important for health  
outcomes, further investigation is required to understand whether and 
how parental SES measures should be integrated in population GWAS 
studies. Second, the continued use of the measures that have a strong 
theoretical, conceptual and measurement basis, such as occupational 
status in social stratification research, underlines the importance of 
precision phenotypes. Contrary to a previous GWAS that relied solely 
on a skill-based minimal occupational classification27, our occupational 
status phenotypes, which have been developed by sociologists over 
decades, doubled the heritability using CAMSIS, increased SNP discov-
ery by more than threefold and also provides a consistently meaning-
ful interpretation of the outcome variable. This also emphasizes the 
genetic relevance of socially theorized measures and of social factors 
included in them, such as potential interaction or social prestige.

Finally, our findings embrace an interdisciplinary perspective 
when studying social stratification, mobility and status transmission. 
By further studying the underlying latent factor of individual socio-
economic status indicators, we can foster a better understanding 
of the genetic correlates of socioeconomic status and its broader 
implications for society. It is imperative to comprehend the role 
of indirect effects and passive gene–environment correlations 
in this puzzle, as well as the causes and consequences of assorta-
tive mating on these relationships. The dynamic nature of the 
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intergenerational transmission of socioeconomic status would be best 
served by a more comprehensive and rigorous social, historical and  
genetic approach.

Our study also has its limitations. The UK Biobank represents 
only 5.5% of the approached target population and over-represents 
individuals with lower mental health problems, BMI, non-smokers, 
with higher education and from less-economically deprived areas45,76–79. 
Consequently, participation bias affects the UK Biobank, limiting its 
generalizability and introducing the potential that observed genetic 
associations may be influenced by the characteristics of the subset of 
individuals who chose to participate in the UK Biobank80. We do show 
how our measures of occupational status differ from UK census data 
(Supplementary Information Section 6). We can expect environmental 
heterogeneity across different populations to challenge our findings. 
Accordingly, we use the NCDS sample, another UK dataset with differ-
ent potential selection biases, to strengthen our analytic approach. 
While PGS predictions are nearly identical in our two British-European 
genetic ancestry populations, previous research has demonstrated that 
for educational attainment, only 50% of genetic effects are universal 
across seven Western populations42. Population genetic heterogeneity 
also limits the scope of this study beyond UK residents, since similar to 
the majority of GWAS so far, we focus on European-ancestry individuals 
in a Western country81,82. The integration of other ancestries, temporal, 
geographical and more diverse socioeconomic contexts is the future. 
The reduction of PGS prediction within families also emphasizes the 
relevance of recent initiatives for discovery designs using family data 
and to further study the role of assortative mating for within-family 
effect reduction45. It is particularly important since parental genetic 
factors could influence their children’s occupational status through 
non-genetic mechanisms, and these effects might not be adequately 
captured when considering only the child’s PGS. Therefore, we rec-
ognize the importance of including both parents’ PGSs as control 
variables to estimate genetic confounding effects, but this was not pos-
sible using the current data. This underscores the need for additional 
research with multigenerational genetic and social survey data. Despite 
these limitations, the current study offers many new insights into the 
interplay between genetics and occupational status scores along with 
socioeconomic status.

Methods
This Article has Supplementary Information with details about data 
and methods and additional detailed analyses. Extended Data Fig. 1 
also provides an overview. We have also built the R package ‘ukbjobs’ 
that allows researchers to construct CAMSIS, ISEI and SIOPS occupa-
tional scores directly from the UK Biobank data (https://github.com/
tobiaswolfram/ukbjobs).

Ethics approval
This research was conducted using the UK Biobank under application 
32696 and NCDS under application GDAC_2021_16_TROPF, with ethics 
approval from the University of Oxford under application SOC_R2_001_
C1A_21_60. Both the UK Biobank and NCDS applications were specific 
to the scope of this paper. For the UK Biobank approval, we received 
approval for a scope extension to ensure transparency, allowing us to 
expand from our focus on non-standard occupations to also include 
occupational status. Here we specified that our plan was “to perform 
GWAS analysis using employment histories from the UK Biobank to 
construct sociologically informed measures of occupational status”. 
We specified that we would construct sociologically informed meas-
ures of occupational status (CAMSIS, SIOPS and ISEI) for our GWAS and 
noted that the analysis would be accompanied by NCDS genetic and 
phenotypic data. For the NCDS application, we specified not only the 
information mentioned above but also the set of polygenic prediction 
analyses. We also preregistered our analysis plan (https://osf.io/djbr2/), 
which was updated for replication (https://osf.io/x6va5).

UK Biobank
For both the discovery and prediction of occupational status measures, 
education and income, we used data from the UK Biobank. The UK 
Biobank is a large-scale biomedical database and research resource 
containing in-depth genetic and health information from 502,655 
individuals recruited between 2006 and 2010. The database is globally 
accessible to approved researchers. Details of the UK Biobank genotyp-
ing procedure can be found elsewhere83. After phenotype selection and 
genetic quality control (performed in PLINK v.1.9, v.2), we conducted 
our analyses on 273,157 individuals (130,952 males, 142,205 females).

NCDS
As a second, longitudinal UK prediction sample, we used the NCDS fol-
lowing 17,000 children born in Great Britain in 1 week in 1958. NCDS has 
been designed to examine the social and obstetric factors associated 
with stillbirth and death in early infancy. Overall, there were ten waves 
available (birth: 1958, age 7: 1965, age 11: 1969, age 16: 1974, age 23: 1981, 
age 33: 1991, age 42: 2000, age 46: 2004, age 50: 2008 and age 55: 2013).

Phenotyping
‘Socioeconomic differences’-based indices measure the ‘attributes of 
occupations that convert a person’s main resource (education) into a 
person’s main reward (income)’31. The most commonly used measure 
is occupational prestige, termed the International Socioeconomic 
Index (ISEI)31, which is constructed from scaling weights that maximize 
the (indirect) influence of education on income through occupation.

Other prestige-based measures are the result of public opinion 
surveys in which representative samples of the population are tasked 
with ranking occupations by their relative social standing. Emerging 
at a similar time as socioeconomic indices84, Treiman85 demonstrated 
that prestige-based measures were surprisingly constant over time 
and cultures, consolidating their use in social scientific research. 
The Standard International Occupational Prestige Scale (SIOPS or 
Treiman-prestige)28 remains another commonly used metric in this 
tradition.

Lastly, occupational status indicators derived from ‘social interac-
tion’ focus on the heterogeneity of associations between occupants of 
different jobs, following the tradition of refs. 86,87. They are based on 
the idea that differential association is a function of social stratifica-
tion since members of a group are more likely to interact within that 
group than with out-group members. Thus, acquaintances, friends 
and spouses are much more likely to be selected from within the same 
group than from outside. A group of Cambridge sociologists reversed 
this approach to measure social structure on the basis of interactions. 
The Cambridge Social Interaction and Stratification Scale (CAMSIS) 
measures the distance between occupations on the basis of the fre-
quency of social interactions (operationalized as husband-and-wife 
combinations) between them1.

Information on occupational status scales was merged to the occu-
pational classification scheme utilized in the UK Biobank (the Standard 
Occupational Code version 2000 (SOC2000))88. CAMSIS-based status 
could be directly merged using the data available in ref. 89. ISEI and 
SIOPS (as provided by the R package ‘strat’, R software v.4.2.0, v.4.1.2)90, 
however, use the less granular ISCO-88 scale, so a mapping from ISCO 
to SOC was employed91. If multiple job codes for a respondent were 
available, the most recent job was used.

‘Income’ was measured similarly as in ref. 23 using a coarse, 
5-level ordinal household income variable. Educational attainment 
was defined as years of education and coded according to the scheme 
provided in ref. 6.

The prestige of ‘current’ or ‘most recent occupation’ is treated as 
a continuous measure. In the initial discovery analysis using the UK 
Biobank, respondents were asked to provide job titles for the current 
or the most recent job held. The job information was coded using the 
four-digit UK SOC2000. We built a procedure to link the UK SOC2000 
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to ISCO-88(COM) and then derive ISEI and SIOPS from ISCO-88(COM). 
All phenotypes were inverse-normal rank transformed before analysis. 
In the NCDS, the SOC2000 code of the respondent’s occupation (as well 
as their father’s when they were 11 years old), is also available, thus the 
same procedure was applied.

In the NCDS, we looked at ‘health’ measured at ages 23, 33, 42, 
46, 50 and 55. Participants were asked to rate their general health on 
a scale from 1 (excellent) to 4 (poor) (age 23 and 33), 1 (excellent) to 5 
(very poor) (age 42) and 1 (excellent) to 5 (poor) (age 46, 50 and 55).

For each time point, the outcome was treated as metric and stand-
ardized to have a mean of zero and a standard deviation of 1. We then 
regressed it on the CAMSIS, ISEI and SIOPS PGSs, respectively, while 
controlling for sex and 10 principal components to correct for popula-
tion stratification.

Discovery
An analysis plan was preregistered and uploaded in February 2021 
(https://osf.io/329pr/) and updated in February 2023 (https://osf.io/
x6va5). All calculations were based on mixed-model association tests 
as implemented in the programme FastGWA92, with association test-
ing based on v.3 imputed data. Following the preposted open science 
analysis plan in each regression, the following covariates were included: 
the first 10 genomic principal components, age at assessment and age2, 
UK Biobank (UKB) assessment centre at recruitment, sex and genotyp-
ing array (BiLEVE or Axiom) on the sample of British-European genetic 
ancestry. Chromosomes were analysed separately. To speed up the cal-
culation of summary statistics, a minimum minor allele frequency (MAF) 
filter of 0.01 was imposed, leaving 10.2 million SNPs for the analysis. We 
supplemented our autosomal analyses with association analyses of 
SNPs on the X chromosome in a joint association analysis of both sexes.

PheWAS
All 1,000 genome SNPs in linkage disequilibrium (R2 > 0.6 for European 
ancestry) with the 106 independent SNPs were identified using FUMA93. 
For these 11,206 SNPs, 1,005,470 phenotypical associations reaching 
at least suggestive significance (P < 5 × 106) in the GWAS catalogue and 
the IEU OpenGWAS project were collected94. All variants with at least 
one genome-wide significant link to a trait associated with education, 
income or any other socioeconomic outcome were removed, leav-
ing 8 hits (rs12137794, rs17498867, rs10172968, rs7670291, rs26955, 
rs2279686, rs72744938, rs62058104) that have not yet been linked 
to any SES-related trait. For three variants (rs7670291, rs26955, 
rs72744938), not even suggestive associations (P > 5 × 10−6) were found.

Univariate LDSC
Univariate LDSC regression was performed on the summary statistics 
from the GWAS to quantify the degree to which population stratifica-
tion influenced the results and to estimate heritability (performed in 
Python v.3.8.4, v.3.9.15). For this, GWA test statistics were regressed 
onto the LD score of each SNP. LD scores were used with European 
genetic ancestry individuals and weights were downloaded from 
https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v. 
SNPs were included if they had a MAF of >0.01 and an imputation qual-
ity score of >0.9 and were available in the LD score file. Intercepts for 
all three occupational status measures were close to 1 (CAMSIS: 1.1193, 
s.e. = 0.013; SIOPS: 1.0845, s.e. = 0.011; ISEI: 1.0993, s.e. = 0.0125).

MAGMA
To investigate the functional implications of the genetic variants associ-
ated with occupational status, we performed gene-based and gene-set 
analyses using MAGMA43. We used FUMA93 to annotate, prioritize, 
visualize and interpret GWAS results, to run MAGMA on our summary 
statistics and to map SNPs to genes. We tested whether the genes 
prioritized by FUMA were enriched for expression in 30 general tissue 
types (GTEx v.8) and 53 specific tissue types (GTEx v.8) using MAGMA’s 

gene-set analysis. We observed a strong expression in all brain tissues 
compared with other tissues. No other tissue showed significant enrich-
ment for gene expression.

MTAG
MTAG (in Python v.2.7)44 was used to meta-analyse all three occupa-
tional status measures with a secondary GWAS on household income 
in UKB and a secondary GWAS on educational attainment in UKB 
(for the validation subsample of siblings in UKB) or the third GWAS 
meta-analysis for education6 excluding 23andMe participants as well as 
the NCDS cohort (for the validation using the NCDS data). This allowed 
us to leverage the high genetic correlations between the occupational 
status measures and income/education (see above) to increase power 
and detect variants, and improve prediction as outlined above and in 
Supplementary Information Section 10.

GSEM
We used the infrastructure provided by the GenomicSEM package34 to 
compute LDSC-based genetic covariances and correlations between 
our occupational status measures and education and income. SNPs 
were included using similar criteria as specified for univariate LDSC. 
Covariance structures between the three measures of occupational 
status were used as input in a genomic structural equation model to 
analyse their loading on a joint factor of occupational status (Sup-
plementary Information Section 11.1) We furthermore applied a mul-
tivariate genetic regression model to the genetic covariance matrix of 
each of our occupational status measures and cognitive performance, 
ADHD, openness to experience, risk tolerance and neuroticism (Sup-
plementary Information Section 11.3).

Prediction analyses
Overall, we constructed three types of polygenic scores for each pheno-
type (Supplementary Information Section 10): (1) Pruning and thresh-
olding using PRSice95, (2) SBayesR96 and (3) MTAG + SBayesR. In our 
prediction analyses, we residualized for sex, age (only in UKB) and 10 
principal components before calculating the R2. For the within-family 
analysis in UK Biobank, we identified a sample of siblings and computed 
family-fixed-effects regressions with both polygenic scores as well as 
phenotypes standardized beforehand, and interpreted the change in 
coefficients (Supplementary Information Section 12).

Mediation analyses
NCDS respondents were asked at age 11 about the type of job they would 
like to do in the future. We coded these jobs to SOC2000, constructed 
their occupational status and ran mediation models in lavaan in R 
(v.4.2.0, v.4.1.2)97 to quantify the share of the association between PGS 
and occupational status that can be attributed to occupational aspira-
tions. We tested a comprehensive multiple mediation model, introduc-
ing cognitive ability, internalizing behaviour, scholastic motivation and 
externalizing behaviour as additional mediators (Supplementary Fig. 8).

Confounding analyses
Within NCDS, information on the paternal occupation at age 12 was 
used to estimate the correlation between paternal and offspring occu-
pational status at various ages for all three measures. We combined 
the approach of scaling the variance explained by polygenic scores, 
outlined in ref. 57, and integrated it into a mediation model to test which 
share of the intergenerational correlation for each of the three metrics 
was confounded by the corresponding polygenic score if we assumed 
that it only explained the amount of variance in our prediction analysis 
or the full SNP heritability (Supplementary Information Section 14).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
The GWAS summary statistics generated in this study are available 
on the GWAS catalogue website (https://www.ebi.ac.uk/gwas/) under 
accession codes GCST90446160, GCST90446162 and GCST90446163. 
Access to the UK Biobank is available through: http://www.ukbiobank.
ac.uk. Access to The National Child Development Study (NCDS) is 
available through: https://cls.ucl.ac.uk/data-access-training/. PheWAS 
analysis was performed using the IEU OpenGWAS project data available 
at: https://gwas.mrcieu.ac.uk. LDSC regression analysis was performed 
by using LD scores and weights available at: https://utexas.app.box.
com/s/vkd36n197m8klbaio3yzoxsee6sxo11v. Analysis of the repre-
sentativity of the UK Biobank with the Office of National Statistics 
(ONS) data was performed using publicly available ONS data which can 
be accessed at: https://www.ons.gov.uk/employmentandlabourmar-
ket/peopleinwork/employmentandemployeetypes/datasets/employ-
mentbyoccupationemp04. Source data are provided with this paper.

Code availability
The R package ‘ukbjobs’ is available at https://github.com/tobiaswolf-
ram/ukbjobs, https://doi.org/10.5281/zenodo.10061205. The package 
allows researchers to construct CAMSIS, ISEI and SIOPS occupational 
scores directly from the UK Biobank data. No other custom code was 
used; all analyses and modelling were performed using standard soft-
ware as described in Methods and in Supplementary Information.
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