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Abstract

We examine how cybercrime impacts victims’ risk-taking and returns. The results from our
difference-in-differences analysis of a sample of victim and matched non-victim investors on
the Ethereum blockchain are in line with prospect theory and suggests that victims increase
their long-term total risk-taking after losing part of their wealth, leading to lower risk-adjusted
returns in the post-cybercrime period. Victims’ long-term total risk-taking increases because
they increase diversifiable risk due to victims’ post-cybercrime withdrawal from altcoins. At
the same time, the reduction in risk-adjusted returns correlates with increased trading activity
and churn, due plausibly to managing cybercrime exposure. In the cross-section of Ethereum
addresses, we show that the most affluent victims take a systematic approach to restore their
pre-cybercrime wealth level, while the least affluent victims turn into gamblers. Finally, a
parsimonious forensic model explains a good part of the addresses’ probability of being involved
in cybercrime, on both the victim and the cybercriminal side.
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1 Introduction

Public attention to the price of Bitcoin and the increasing popularity of token-funded startups

have attracted investors to crypto markets, yet the new opportunities also come with significant

risks. In addition to classic blockchain scams, in which fraudsters exchange tokens for cash and

then disappear with the money, there is also cybercrime such as online shopping fraud in which

cryptocurrencies are used as a means of payment. Together, these crypto-related scams have

been on the rise, with $1 out of every $4 reported lost to fraud between 2021 and 2022 being

stolen in cryptocurrency (Federal Trade Commission, 2022).1 While many recent studies have

focused on the type and severity of illegal activities through cryptocurrency (e.g., pump-and-dump

schemes in Hamrick et al., 2018; Gandal et al., 2018; Li et al., 2021b; Dhawan and Putnin, š, 2023);

Drobetz et al., 2024; token-based Ponzi schemes in Securities and Exchange Commission, 2013;

Bartoletti et al., 2020; moral hazard in signaling ICO venture quality in Momtaz, 2021b; general

vulnerabilities in smart contracts as a source of cyberattacks in Kalra et al., 2018; Luu et al.,

2016; Dhanani and Hausman, 2022; Harvey et al., 2021; cybercrimes linked to terrorist activities

in Amiram et al., 2022; Cong et al., 2022; Karapapas et al., 2020; and various other types of fraud

associated with cryptocurrencies in Hornuf et al., 2022; Trozze et al., 2022), relatively little is

known about how investors react to such fraud in the crypto market. Understanding this question

is important from a regulatory standpoint for investor protection. Moreover, as more traditional

financial institutions are providing services on public blockchains, on-chain fraud can spill over to

traditional financial markets (Cumming et al., 2025b).2 The granularity of address-level transaction

data from the Ethereum blockchain provides an interesting experimental setting to track and test

investor responses to various types of cybercrime, which can shed light beyond the crypto sphere.

In this study, we investigate whether and how the experience of crypto-related cybercrime

affects investor risk-taking and returns. The investor response to fraud is not obvious ex ante.

While prospect theory suggests investors may take more risks to recover losses (Kahneman and
1Foley et al. (2019) document that 26% of all Bitcoin users and 46% of Bitcoin transactions are related to

illegal activity. Makarov and Schoar (2021) report a smaller figure of 3%, and this difference is driven by including
exchange-related volume and different classifications of participants.

2For example, private equity firm KKR tokenized part of its $4 billion Health Care Strate-
gic Growth Fund II to the Avalanche blockchain, which allowed retail investors to engage in the
fund. See https://www.forbes.com/sites/michaeldelcastillo/2022/09/24/kkr-blockchain-access-to-4-billion-fund-
opens-door-to-crypto-investors/?sh=555c3ef84fce (retrieved July 25, 2023).
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Tversky, 1979; Thaler and Johnson, 1990), losses due to fraud can also erode trust, potentially

making investors more risk-averse, divesting from riskier assets (Giannetti and Wang, 2016; Gurun

et al., 2018). Thus, the impact of cybercrime on investors’ behavior remains uncertain.

Our study is among the first to explore primary blockchain data from Ethereum to study

investors’ responses to on-chain market misconduct and fraud. To test our research question, we

implemented a pre- versus post-cybercrime comparison of victim addresses and matched non-victim

addresses with the instant at which a cybercrime became public knowledge as the event date.

Methodologically, this involves three preparatory steps. First, for the purpose of identifying

cybercrimes on Ethereum as such, we rely on crowd-reported incidents of alleged scams on Ether-

scan, cooperating with market experts from ScamAlert to validate reported scams. Although we

verified with external experts each individual cybercrime, we did not always have the exact date on

which a cybercrime was publicly identified. Thus, to determine the precise event timing of when a

cybercrime became public knowledge, we manually researched social media for the first mention of a

certain activity being a scam. Second, given the high dimensionality and imbalance of our primary

ledger data, we implemented a Euclidean distance approach to pair victim addresses with matching

non-victim/non-cybercriminal addresses to ensure that our difference-in-differences approach cor-

rectly identifies average treatment effects. Third, for each address on the Ethereum blockchain, we

estimated Liu et al.’s (2022) three-factor crypto-asset pricing model in order to characterize victim

and matching non-victim addresses by risk-taking levels and risk-adjusted returns (i.e., alphas).

We find that victims’ raw returns (i.e., non-risk-adjusted returns) increase after a cybercrime.

We follow Barber and Odean (2000) in measuring gross monthly raw returns as the change in

address-level token prices at the end of the month relative to the beginning-of-month prices for all

tokens held at the beginning of the month. By implication, Barber and Odean (2000) monthly raw

returns only account for the behavioral effect of cybercrime on returns, not for the misappropriated

funds due to the cybercrime per se.

Although victims’ raw returns increase after a cybercrime, their risk-adjusted returns decrease

statistically and economically significantly. We regress address-level alphas from Liu et al.’s (2022)

three-factor crypto-asset pricing model in a difference-in-differences model and find highly signifi-

cant marginal effects, suggesting that victims’ alphas respond significantly negatively to cybercrime.

In terms of economic magnitude, we find that victims’ risk-adjusted returns in the post-cybercrime
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period decreased by 55.2 to 96.4% relative to matched non-victims. Therefore, while cybercrime vic-

tims’ raw returns respond positively to cybercrime, their risk-adjusted returns respond negatively,

indicating that victims may increase their risk-taking levels after being scammed.

Consistent with our conjecture that the discrepancy between positive raw and negative risk-

adjusted returns for cybercrime victims can be explained by higher post-cybercrime risk-taking, we

confirm that total risk-taking increases in the long term. The average treatment effect of cybercrime

on victims’ total risk-taking twelve months after the event is in the 5.7 to 8.1 percentage-point range.

It should be noted, however, that cybercrime victims’ total risk-taking level reduces in the short

term (i.e., three to six months after the cybercrime), increases in the medium term (i.e., six to

twelve months after the cybercrime), and then remains permanently at a level that is higher than

the initial risk-taking level in the long term (i.e., after twelve months). This result is consistent with

recent literature showing that investor behavior, such as risk appetite, can change over time and

that the level of risk—such as the level of risk of falling victim to cybercrime—is itself a determinant

of such changes (Dicle, 2019).

Further, we conduct a risk decomposition and split total address-level risk-taking into diver-

sifiable and non-diversifiable risk-taking levels per address. Interestingly, we find that the post-

cybercrime response of victims in terms of total risk-taking is mostly driven by changes in their

diversifiable risk-taking, both in terms of economic magnitude and the time structure of the treat-

ment effects (i.e., lower risk-taking in the short term and higher risk-taking in the long term). As

for non-diversifiable risk-taking, we report average treatment effects of cybercrime that constantly

decrease in the post-cybercrime period, reaching a permanent level that is between 0.8% and 4.6%

lower than the initial pre-cybercrime level after twelve months. Taken together, the negative average

treatment effect of cybercrime on victims’ risk-adjusted returns is driven by increased diversifiable

risk-taking, while non-diversifiable risk-taking reduces.

We also examine the heterogeneous responses of victims to different cybercrime categories.

Post-cybercrime blockchain address-level risk-adjusted returns and risk-taking critically depend on

the type of cybercrime a victim fell for. Fake token scams, darkweb activity, and sextortion have a

positive effect on victims’ post-event alphas for risk-adjusted returns, while Ponzi schemes, phishing

scams, investment scams, hacks, and exploits have a negative effect. Meanwhile, Ponzi schemes,

events on the darkweb, and sextortion increase victims’ total risk-taking levels, while giveaways,
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investment scams, hacks, and exploits reduce them. By far the economically most significant

increase in total risk-taking occurs after darkweb-related scams, when victims double their total

risk-taking. In contrast, the economically most significant reduction in total risk-taking occurs

after investment scams, when victims reduce their total risk-taking by more than half.

Given the overarching result that victims of cybercrime increase total risk-taking and thereby

reducing their risk-adjusted returns, we next explore potential mechanisms that help explain the

finding. The evidence from triple difference models suggests two behavioral explanations for how

cybercrime changes victims’ risk–return trade-off. First, victims of cybercrime significantly increase

their trading activity and churn rate, which loads significantly negatively on the alpha-related triple

difference estimator. This suggests that higher trading activity reduces risk-adjusted returns, which

is in line with the evidence by Odean and Barber (1999) for traditional finance and Sokolov (2021)

for decentralized finance. Second, address-level token diversification and ownership of different

token categories (including altcoins and stablecoins) load positively on risk-adjusted returns and

non-diversifiable risk and negatively on diversifiable risk. Overall, the collective evidence indicates

that the increase in diversifiable risk, which reduces risk-adjusted returns, is largely caused by

victims divesting altcoins.

Additionally, we investigate heterogeneous treatment effects for Ethereum addresses of various

wealth levels (i.e., comparing the top 10% to the bottom 10% in terms of pre-cybercrime address

balance). We document that the least affluent Ethereum addresses’ risk-adjusted returns decrease

more than those of the most affluent addresses. Again, the discrepancy in responses of cybercrime

victims of differential wealth can be explained by their responses in risk-taking levels. The least

affluent addresses dramatically increase their total risk-taking relative to the most affluent addresses

following a cybercrime. However, the least affluent only increase their address-level diversifiable risk

relative to the most affluent, while they decrease their non-diversifiable risk-taking. Our evidence

suggests that the least affluent victims respond to cybercrime by becoming gamblers, while the

most affluent victims respond to cybercrime in a more systematic way in order to restore their

pre-cybercrime wealth level.

We also formulate a graph convolutional network (GCN) that serves the purpose of ex-ante

detection of cybercriminal addresses on the Ethereum blockchain. Specifically, we use a heteroge-

neous graph structure, where both addresses and transactions are considered as nodes rather than
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edges in order to effectively represent the Ethereum network, and we train the model on numerous

dynamic on-chain characteristics, motivated by the preceding results from our linear models. Our

GCN model correctly predicts cybercriminals with an accuracy of 72.5%, suggesting that almost 3

out of 4 cybercriminals are correctly detected as such based solely on publicly available ledger data

even before committing a cybercrime. Our model also correctly predicts non-cybercriminal wallets

with an accuracy of 71.1%, and our model’s F1 score is 0.70. The results illustrate that on-chain

transaction behavior can be used to inform the ex-ante detection of illicit activity on the Ethereum

blockchain. As such, our results yield novel insights to protect investors through private platforms

or governmental supervisory bodies.

In what follows, we describe our data, show aggregate statistics for cybercrime on the Ethereum

blockchain, derive our cybercrime taxonomy, and develop empirical predictions in Section 2. Sec-

tion 3 introduces our empirical design, including our difference-in-differences model and matching

method. Section 4 discusses our results, and Section 5 concludes.

2 Data and Empirical Predictions

2.1 Transaction-Level Data

A novelty of our empirical setting is the granularity of transaction-level data to identify victims who

interacted with cybercriminals, a level of detail so far rarely examined on the Ethereum blockchain.

Notable exceptions of studies using extensive on-chain data are Easley et al. (2019), Foley et al.

(2019), Sokolov (2021), and Hoang and Baur (2022); however, all of these investigate transactions

on the Bitcoin blockchain. Unlike Bitcoin, the Ethereum blockchain acts not only as a payment

network but also as the basis for numerous decentralized applications (dApps), facilitating a more

diverse range of financial activities. It is thus not surprising that the Ethereum blockchain hosts

a broader range of cybercrimes. In the following section, we describe our method of identifying

cybercriminals and victims, leading to our comprehensive taxonomy of cybercrime on the Ethereum

blockchain.
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2.1.1 Identifying Cybercriminals

To identify the extent of fraud on the Ethereum blockchain, we acquired a list of blockchain ad-

dresses of cybercriminals from Etherscan and ScamAlert. Etherscan, a block explorer and analytics

platform for Ethereum, assigns public name tags and labels to addresses that are of public interest.

Any address associated with fraudulent activities has a brief warning message attached, providing

investors with details of the purported scam. We include in our list of cybercriminals all blockchain

addresses that Etherscan labeled as exploit, hack, heist, phish, Ponzi scheme, and/or scam.

In the next step, we cross-validate the list of blockchain addresses of cybercriminals with pro-

prietary data from ScamAlert, which is operated by WhaleAlert, a blockchain analytics engine that

tracks the activities of cybercriminals. Users can submit scam reports to and request address and

website verifications from ScamAlert. They maintain a team of blockchain crime experts who col-

laborate closely with law enforcement agencies and consumer protection initiatives, such as the

FBI’s Internet Crime Complaint Center (IC3) (www.ic3.gov), to detect and monitor crypto-related

crime more effectively and analyze this information in real time.3 The list includes detailed infor-

mation about each scam, such as the type of scam, total earnings per address, payments received,

and the date of the first scam report. The list of cybercriminal blockchain addresses includes 5,644

unique addresses.

We chose ScamAlert over other sources, such as the California Department of Financial Protec-

tion and Innovation’s (DFPI) Crypto Scam Tracker,4 because of its global coverage and specialized

focus on Ethereum scams. While the DFPI’s tracker is valuable, it primarily focuses on scams

affecting consumers within California, limiting its applicability for a global analysis of cybercrime

on the Ethereum blockchain. ScamAlert aggregates data from users worldwide, offering a more

comprehensive and timely dataset. ScamAlert also maintains an extensive database of Ethereum

scam addresses, updated regularly, making it an ideal resource for analyzing cybercrime patterns

on the Ethereum blockchain.
3ScamAlert (https://scam-alert.io) is affiliated with WhaleAlert (https://whale-alert.io/index.html), a blockchain

analytics engine. WhaleAlert, headquartered in the Netherlands, specializes in tracking and analyzing a vast number
of blockchain transactions daily. It is particularly recognized for reporting significant and noteworthy transactions
in real time. With a following on X (formerly known as Twitter) of over 2.3 million, WhaleAlert frequently tracks
large blockchain transaction movements, including those related to major scams. This connection underscores the
reliability and relevance of the data provided by ScamAlert for our research purposes. For more information, visit
https://scam-alert.io/.

4https://dfpi.ca.gov/consumers/crypto/crypto-scam-tracker/
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To identify the event date for each scam, we first use the data provided by ScamAlert, which

includes when the scam was first reported. Because ScamAlert provides real-time updates and

anyone can search for an address to check whether it is related to a scam, this offers a reliable way

to verify the event dates used in our study. To ensure accuracy and enhance our data’s reliability, we

conduct additional cross-checks by manually searching for related posts on social media platforms

such as Twitter and Reddit. This method helps us corroborate the dates and ascertain when the

events became widely known to the public.

For scams not listed in the ScamAlert database, we rely on the earliest relevant posts on Twitter,

Reddit, and other social media platforms to understand when the incident first came to public

attention. Our study relies on the assumption that the event date corresponds to the point when

the scam became known to the victims. These platforms are primary hubs for cryptocurrency

discussions and are often the first places where new scams are reported by the community. We

used specific keywords related to each incident (e.g., scam name, wallet addresses, relevant hashtags)

and sorted posts chronologically to identify the earliest mentions.

In cases where ambiguity remained, we extended our search to include other platforms such as

cryptocurrency forums (e.g., Ethereum Stack Exchange), blockchain news websites (e.g., CoinDesk,

CoinTelegraph), and official statements from affected projects or exchanges.

We acknowledge that this process is more likely to identify larger-scale crimes, as these are the

events that tend to generate discussion on social media platforms. As a result, smaller-scale crimes

for which we were unable to ascertain the event date via social media have not been included in

our dataset. Consequently, this method may indeed underrepresent smaller-scale crimes, which are

less likely to be discussed extensively in such public forums. This approach, while limiting the

scope to more prominent incidents, ensures a higher likelihood that victims are aware of the scam,

contrasting with smaller-scale crimes that might go unnoticed by the victims.

It should be noted that it is difficult to clearly distinguish between a failed project, which may

collapse due to various non-fraudulent reasons, and an outright scam. In our study, we acknowledge

this complexity and adopt a conservative approach in our classification. We only categorize a project

as fraudulent if our collaborator, ScamAlert, has verified evidence supporting this classification.
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2.1.2 Identifying Cybercrime Victims

As a public blockchain, Ethereum stores all transaction records on its distributed ledger, which

we use as our primary data source for victim address identification. The public transaction data

allows us to observe the transaction history of those who have interacted with and fallen victim to

fraudsters operating on the Ethereum blockchain. Based on the identified and externally verified

cybercriminal blockchain addresses, as described in Section 2.1.1, we extracted a list of addresses

from all transactions on the Ethereum blockchain in which a positive sum of funds was transferred

to cybercriminal addresses, starting with the Ethereum genesis block on July 30, 2015, and ending

on December 31, 2021.

To mitigate the risk of mistakenly identifying cybercriminals as victims, we excluded addresses

repeatedly transacting with cybercriminals since these could potentially be involved in the cyber-

crime themselves. Furthermore, if the list of victim addresses appeared in the Etherscan Public

Name Tags and Labels, we assumed that they belong to public entities and excluded them from our

sample. It is also possible that a user falls victim to multiple crimes. Including these cases in our

sample could be problematic since any exposure to any cybercrime prior to the event date could

have altered the behavior. Therefore, we only focus on wallets that have fallen victim to scams

once.

Importantly, this study relies on the assumption that one wallet address corresponds to one

investor. We acknowledge that this is indeed a simplification of the more complex reality where an

investor may use multiple wallets. However, this assumption is a necessary limitation of our study,

primarily due to the anonymous nature of blockchain transactions.

Our final sample includes 200,865 unique victim addresses. 5

2.1.3 The Evolution of Cybercrime on Ethereum

Figure 1 plots the evolution of cybercrime on the Ethereum blockchain over time. Panel A shows

the dollar value of funds lost due to fraudulent transactions on the Ethereum blockchain over time.
5To effectively implement a difference-in-differences setting, victims of cybercrimes must have interacted with

the fraudsters before the fraud became public so that victim behavior before and after the scam can be compared.
Nonetheless, in our dataset, a non-negligible number of victims initiated transactions with fraudulent accounts even
after public disclosure of the scam, a circumstance which falls outside the scope of suitability for a difference-in-
differences framework, because the victim may have known the fraudster or might have even been part of the scam.
Consequently, these addresses have been removed from our sample.

8



Across the entire time period analyzed, the median value of funds lost due to fraudulent activities

per address is $506.76. The mean value of funds lost per address is considerably higher at $1,476.64.

This skewness is driven by a number of extremely large losses by some victims.

During bullish phases of the cryptocurrency market, when the value of cryptocurrencies typically

increases significantly, we observe a significant rise in the mean and median values of funds lost

to fraud. Panel B of Figure 1 presents the number of transactions to fraudulent accounts and the

average share of blockchain address balance lost due to scam activities on the Ethereum blockchain.

During phases of relative stability or downturns in the crypto market, the proportion of balance

lost to scams tends to rise. In contrast, during periods of market upswings, the share of balance

lost to scams appears to decrease.

[Place Figure 1 about here.]

2.2 A Taxonomy of Cybercrime on the Ethereum Blockchain

Based on our sample, we derive a taxonomy of 19 unique categories of cybercrime on the Ethereum

blockchain, following and extending Hornuf et al.’s (2022) approach for categorizing fraud in ICOs.

We quantify the total amount of funds transferred from victims to cybercriminals’ addresses and

show that the 5,644 cybercriminals’ addresses received an average of $1.78 million from victims’

blockchain addresses, totaling $1.65 billion. This amount exceeds the self-disclosed figures of stolen

funds reported by victims to the FTC by a factor of almost 16, which highlights the significant

underreporting of cybercrime to regulators.6

Table 1 outlines our taxonomy and describes each fraud category in detail. Ponzi schemes—the

most common scam involving cryptocurrency, accounting for 60% of the aggregate stolen funds on

Ethereum—promise high returns to investors with little or no risk. These scams are not new and

constitute a digital adaptation of fraudulent activities seen in traditional finance (e.g., Hofstetter et

al., 2018). The difference lies in the fact that the digital nature of blockchain technology, combined
6Note that while our data starts with the Ethereum genesis block and runs from July 2015 to December 2021,

the FTC refers to complaints between January 2018 and March 2022. Since not all complaints were received by the
FTC immediately after the fraud, the two observation periods are roughly identical, especially because most of the
fraud only started in 2018. Thus, if anything, we may be slightly underestimating the volume of transfers relative
to the FTC. The different estimates are therefore likely to be due primarily to the fact that the FTC statistics are
based on reports from fraud victims, whereas our data represent an estimate of the total on-chain fraud volume.
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with the anonymity of blockchain addresses and lax regulatory oversight, has largely enhanced the

impact and potential reach of Ponzi schemes. Almost a billion dollars were transferred into on-

chain Ponzi-related accounts. Off-chain transactions and scams are also common in crypto Ponzi

schemes, with the aim of soliciting funds from non-tech-savvy investors. When these off-chain Ponzi

schemes are factored in, the true magnitude of the financial impact is likely even greater. One of

the largest crypto Ponzi schemes, PlusToken, is purported to have defrauded $4 billion in 2019,7 of

which only a small part is recorded on-chain and the larger part happened off-chain in blockchain

addresses of crypto exchanges.

With the rise of cryptocurrency and blockchain technology, new forms of cybercrimes have also

emerged, exploiting the unique characteristics of digital assets. The giveaway scam is one notable

example, representing the second-largest cybercrime, with 18% of the aggregate stolen funds on

Ethereum. It involves the misrepresentation of the identities of reputable companies, exchanges, or

influential individuals. These scams are primarily disseminated via social media platforms and are

structured to mimic authentic promotions by crypto companies or exchanges.8 In some well-known

giveaway scams, the perpetrators imitate the largest cryptocurrency exchange, Binance, in order

to inspire trust among investors.9

Investors are then invited to send a fixed amount of cryptocurrency, usually Bitcoin or Ethereum,

with the promise of high returns or rewards—a sign of an illegitimate operation. Once the investor

transfers the funds, the fraudster does not uphold the initial promise. On-chain transaction data

indicates that giveaway scams resulted in transfers totaling $274 million to addresses associated

with this type of fraud as of the end of December 2021.

Another major scam is exploits, a phenomenon unique to digital systems such as blockchains.

An exploit occurs when an individual or group discovers and takes advantage of a vulnerability

or bug within a system. Unlike a hack, the vulnerability is accidentally left in the code by the

developer. On the blockchain, exploits often involve manipulation of smart contracts. Because they

are automatically executed if certain conditions are met, a small bug or overlooked vulnerability can
7See, e.g., https://www.wsj.com/articles/cryptocurrency-scams-took-in-more-than-4-billion-in-2019-11581184800.
8Legitimate giveaways are often used as marketing tools to enhance brand awareness, facilitate product promo-

tion, and drive user acquisition. They have become a popular method for engaging with potential customers while
simultaneously promoting the products or services. In a legitimate giveaway, the organizer will not ask participants
to send any cryptocurrency and the offerings are typically modest.

9See, for example https://www.binance.com/en/blog/community/know-your-scam-protect-yourself-from-
binance-imposter-scams-8186206274508844717, retrieved July 31, 2023.
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result in significant financial losses if exploited by malicious actors. A notable example is the DAO

exploit in 2016, where an attacker exploited a code vulnerability of a decentralized autonomous

organization on the Ethereum blockchain, resulting in a loss of about $50 million (Dhanani and

Hausman, 2022), underscoring the potential magnitude and sophistication of blockchain exploits.

Rug pulls and exit scams are types of fraudulent activities that have specifically emerged with

the advent of cryptocurrencies and ICOs. These scams involve the intentional abandonment of a

project after attracting investments, often leading to significant losses for investors. In an exit scam,

the founders or promoters of a blockchain project, after raising funds through an ICO, disappear

with the invested capital. Rug pulls, a relatively newer form of scam, are particularly prevalent

in the decentralized finance (DeFi) sector. Developers abruptly abandon a project and withdraw

the liquidity from decentralized exchanges, causing a significant drop in the value of the project’s

token. The sudden removal of liquidity makes the tokens almost worthless, leaving investors unable

to offload their holdings. In a fake token scam fraudsters pretend to offer well-known tokens by

using similar token names and symbols. Unsuspecting users will exchange funds for worthless

tokens, which have no inherent value and cannot be traded.

[Place Table 1 about here.]

2.3 Empirical Predictions

Prospect theory posits that individuals place greater weight on losses than on an equivalent gain

(Kahneman and Tversky, 1979; Kahneman et al., 1990). Once people are confronted with losses,

they tend to become more risk-seeking to offset the potential losses as long as the losses have not

yet been realized and mentally acknowledged (Thaler and Johnson, 1990). There is also evidence

of such behavior in the financial markets, where traders regularly take above-average risk in the

afternoon in order to recover from losses in the morning (Coval and Shumway, 2005).

Shefrin and Statman (1985) emphasizes that, once the loss is realized (meaning the investor

has sold the losing asset and mentally acknowledged the loss), the psychological pain associated

with the loss is again mitigated. Consequently, investors often return to a more risk-averse stance

because the urgency to recover losses diminishes, and the focus shifts back to preserving capital

and avoiding further losses.
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In our empirical setting, it is unclear whether the information of fraud is immediately evaluated

as a realized loss by investors. Fraudsters often promise recovery of funds and claim that the

situation is only temporary, keeping victims engaged and hopeful. This is especially true for Ponzi

schemes that rely on existing investors not withdrawing their money. Moreover, investors often

still have the hope of getting their money back somehow through legal action. Thus, in line with

prospect theory, investors should become more risk-seeking after experiencing fraud in an attempt

to break even.

However, the recent empirical literature on portfolio formation by private households has arrived

at the opposite results. Investors who are exposed to negative events such as corporate fraud, Ponzi

schemes, or nearby firm bankruptcies in the community can make investors risk-averse via the loss

of trust (Giannetti and Wang, 2016; Gurun et al., 2018; Laudenbach et al., 2021). However, these

results are mostly based on indirect exposure to negative events in the surrounding area rather

than being experienced directly by the investors. Cybercrime victims in our setting experience the

losses themselves. In line with prospect theory, we therefore conjecture:

Hypothesis 1. Victims of fraud become more risk-seeking after the event of fraud.

While prospect theory does not predict changes in returns as a result of increased risk prefer-

ences, the Capital Asset Pricing Model (CAPM) assumes that higher market risks are also associ-

ated with higher expected raw returns (Lintner, 1965; Mossin, 1966; Sharpe, 1964). However, on

a risk-adjusted basis, the returns should be identical for efficient portfolios, regardless of whether

investors take more risks or not. That is, the higher raw returns in neoclassical capital market

theory are only achieved through higher risks. Thus, the risk-adjusted returns remain constant if

the portfolio remains on the efficient frontier.

Empirical evidence also shows that unexpected losses are often associated with higher trans-

action costs and divestment. Coval and Shumway (2005) show that losing traders who become

more risk-seeking often buy securities at higher prices and sell them at lower prices than those that

prevailed previously, which can also have a negative impact on their risk-adjusted returns. In a sim-

ilar vein, Dorfleitner et al. (2023) show that German marketplace lending investors stop investing

in new loans and cease diversifying their portfolio after experiencing a loan default. This behav-

ior can significantly worsen the risk–return profile of their loan portfolios, reducing the expected
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risk-adjusted returns. We therefore conjecture:

Hypothesis 2. Increased risk-taking after falling victim to fraud increase the investor’s raw returns.

Hypothesis 3. After falling victim to fraud, risk-adjusted returns decrease because of higher trans-

action costs and reduced diversification.

3 Empirical Design

This study aims to identify the causal impact of blockchain-related cybercrimes on victims’ in-

vestment behavior. Therefore, we adopt a difference-in-differences approach that consists of a

pre- versus post-cybercrime comparison between victims of cybercrime and a matched sample of

non-victims/non-cybercriminals. To test our hypotheses, our main model investigates investment

behavior, especially risk-taking and returns per address, based on monthly address-level panel data.

We specify the following baseline regression model:

Yi,t = β1 × 1[After cybercrime]i,t + β2 × 1[Cybercrime victim]i,t+

β3 × 1[After cybercrime]i,t × 1[Cybercrime victim]i,t + Ωi,tγ

(1)

where i indexes blockchain addresses and t indexes months, and Yi,t captures measures of risk-

taking such as total risk, diversifiable risk, and non-diversifiable risk, as well as risk-adjusted returns

computed as alphas, which we obtained using the cryptocurrency asset pricing model (Liu et al.,

2022). 1[After cybercrime]i,t denotes an indicator that takes the value of 1 in the month of a

cybercrime and thereafter, 0 otherwise. 1[Cybercrime victim]i,t denotes an indicator that takes

the value of 1 if the focal blockchain address fell victim of a cybercrime and 0 if the blockchain

address belongs to a matched non-victim/non-cybercriminal. Ωi,t represents a matrix of controls

and fixed effects, including blockchain address age, calendar-month × calendar-year fixed effects,

and cybercrime-type fixed effects. Finally, note that we sample only from one-time victims in order

to ensure that the identification of the average treatment effects in our model is not confounded by

overlapping periods with other cybercrime events affecting the blockchain address. In our model,

the average treatment effect is thus measured as the difference-in-differences estimator β3.
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3.1 Matching Cybercrime Victims with Non-Victims

Our study draws on the entire population of Ethereum blockchain transactions, which is high-

dimensional in its scope. Due to the size and complexity of the data, there exists a notable

imbalance whereby the number of non-victims substantially exceeds that of victims.10 In the

context of our study, this high dimensionality combined with the imbalance between victims and

non-victims could lead to significant attenuation bias. To address this issue, we use a Euclidean

distance matching procedure to match each victim’s address (treatment group) to a non-victim/non-

cybercriminal address (control group) that is most similar, according to a multidimensional vector

consisting of blockchain address balance, blockchain address age, trading activity, and address

diversification. The similarity is measured by minimizing the Euclidean distance between these

vectors, based on data from the three months preceding the scam being identified to the public.

This approach allows us to create a balanced representation of the treatment and control groups.

Furthermore, we recognize that the substantial price fluctuations in crypto markets could affect

our nominal variables; hence, we compare investor addresses that entered the market in the same

month, allowing for a more balanced and fair comparison of risk and return developments.

Table 2 shows that the matching of victims and non-victims/non-cybercriminals was successful,

substantially reduced the bias, and draws the sample densities of our treatment and control groups

closer together. The standardized bias for each covariate is calculated as the difference in means

in the treatment and control groups, divided by the standard deviation in the control group. This

value is then represented as a percentage. A lower standardized % bias post-matching indicates

a better balance between the treatment and control groups in terms of that specific covariate.

The matching process led to significant reductions in bias for all variables. That is, our matching

reduced the bias for blockchain address age by 100% (perfect matches), for blockchain address

balance by 81.7% (with the remaining difference being statistically non-significant, with a p-value

of 0.55), for trading activity by 97.8%, and for diversification by 96.6%.

[Place Table 2 about here.]

10In our study, we regard each address as an individual portfolio. One limitation of this approach is that individuals
can create multiple addresses; thus, one address may not fully represent an individual’s portfolio or investment
behavior.
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3.2 Matching Quality and Parallel Trends

As another plausibility check for our matching quality, we look at parallel trends in a non-matched

variable. It would be reassuring if the trends between treatment and control observations are

parallel in a non-matched variable because this would suggest that the matching dimensions also

capture more fundamental and unobserved behavior at the observational level. In particular, we plot

monthly raw returns for victims and matched non-victims/non-cybercriminals in Figure 2. Barber

and Odean (2000) raw returns, as defined in Table A.1, are especially well-suited to illustrate

the matching quality because they do not merely reflect a single trading dimension of victims

and matched non-victims/non-cybercriminals, but rather result from the cumulative investment

decisions of blockchain address owners along all dimensions. Figure 2 shows reconfirming evidence

that our matching was successful. Specifically, we observe parallel and mostly identical trends in

the twelve months leading up to the cybercrime. However, as one would expect, in the month of the

cybercrime trends start to diverge. Victims of cybercrime make investment decisions that increase

their Barber and Odean (2000) raw returns relative to matched non-victims/non-cybercriminals.11

The cumulative effect 12 months after the cybercrime amounts to a positive return differential of

0.3% for victims of cybercrime, which is statistically highly significant.12 That is, in line with

Hypothesis 2, cybercrime impacts victims in a way that is beneficial for their raw returns.

[Place Figure 2 about here.]

3.3 Variable Construction

3.3.1 Outcome Variables: Risk and Risk-Adjusted Return

To test Hypothesis 1, we adopt an empirical approach based on a state-of-the-art asset pricing

model to understand the risk–return dynamics at the level of individual blockchain addresses.

Specifically, we estimate the cryptocurrency three-factor model developed by Liu et al. (2022) as

the basis for constructing risk-related variables. This model was designed to effectively capture the
11We confirm in unreported robustness tests that winsorizing the return data at 0.1, 0.5, and 1% levels does not

materially change the graphical evidence in Figure 2.
12Note that in order not to compare apples to oranges, we consider victims’ pure behavioral response and do not

consider the loss caused by the scam when calculating returns. When we look at fraud losses and behavioral responses
together, we find that over a 12-month period after being defrauded, cybercrime victims perform 10% worse than
non-victims/non-cybercriminals.
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unique risk factors inherent in the cryptocurrency market using trading data from cryptocurrencies

listed on CoinMarketCap. The cryptocurrencies were weighted according to their respective market

capitalizations. The factors employed in our analysis were directly obtained from Liu et al., 2022,13

which is suitable given that we exclusively focus on ERC-20 tokens in our sample, for which price

data were available on CoinMarketCap.14

Returni,t = αi,t + bmkt,i,t × MKT + bsize,i,t × SIZE + bmom,i,t × MOM + ϵi,t (2)

The total risk is quantified as the variance of the return of wallet i in month t, giving a sense

of how much risk the investor is exposed to due to their investment choices. From this, two types

of risk are derived through variance decomposition. The diversifiable risk is determined as the

variance of the error term ϵi,t in the model, representing the wallet-specific idiosyncratic risk. This

represents the portion of risk that could be eliminated through effective portfolio diversification.

High levels of diversifiable risk suggest that the investor is holding a portfolio that is not well-

diversified, indicating a potential lack of risk mitigation strategies. The non-diversifiable risk is

then calculated by subtracting the diversifiable risk from the total risk. This portion of risk is

attributed to factors inherent to the market and is not reducible through diversification. High

levels of non-diversifiable risk imply that the investor is taking positions in higher-risk crypto

market segments. To test Hypothesis 3, we calculate risk-adjusted returns by αi,t, which is the

excess return that is not explained by the market, size, and momentum factors. It essentially
13An objection to our approach of obtaining risk factors from Liu et al. (2022) is that those factors may be

calculated based on a set of cryptocurrencies that differs from the set used in our study. To address this concern, we
compared key characteristics of the sample in Liu et al. (2022) and our sample by year and find that they are relatively
similar in terms of the number of cryptocurrencies available to calculate risk factors and their average annual market
capitalization. Thus, a natural next question is which of the two sets of risk factors should be preferred. Given the
survivorship bias in CoinMarketCap data used in Liu et al. (2022) and our study, the risk factors from Liu et al.
(2022) should be preferred, given that they are based on data obtained in late-2021/early-2022, while we obtained
the data in early-2023. As such, Liu et al.’s (2022) data is a better representation of cryptocurrency risks at the time
of the cybercrimes studied in our article. We thank an anonymous reviewer for pointing this out.

14Given that Ethereum is the largest smart contract blockchain, a significant proportion of the tokens listed on
CoinMarketCap include ERC-20 tokens. As of March 2024, the top 20 tokens listed on CoinMarketCap have a
collective market capitalization of approximately $2.38 trillion. This figure represents around 89% of the total crypto
market. Importantly, 19 out of these 20 tokens are also traded on Ethereum. This includes not only native Ethereum-
based tokens but also ERC-20 wrapped versions of major cryptocurrencies from other blockchains, such as Bitcoin
and Binance coin. Similarly, the top 100 tokens have a market capitalization of $2.58 trillion, representing 96% of the
total market, and most of these tokens can also be found on Ethereum in ERC-20 form. We also identify potential
anomalies or extreme values in our data, and cross-reference the prices of these tokens with other cryptocurrency
price-tracking websites, such as CoinGecko and Coinbase. We have identified 14 such tokens which are then removed
from our sample.
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captures the unique return of the wallet i in excess of what would be predicted by these common

risk factors at time t.

To test Hypothesis 2, the gross monthly portfolio return at the address level is computed

using the beginning-of-day position statements. Following Barber and Odean (2000), we make two

simplifying assumptions. First, we assume that all tokens are bought or sold at the end of the

month. Second, we ignore intra-month trading. By tracking these measures over time, we can infer

changes in an investor’s risk appetite and evaluate how exposure to fraud events impacts portfolio

returns. Table A.1 reports detailed definitions of these variables.

3.3.2 Other Measures of Investor Behavior

To further investigate Hypothesis 3, we also construct investor behavior variables at the address

level using blockchain transaction data. We measure the investment horizon denoted by churn

rate, that is, how frequently an address rotates its positions, and diversification, the number of

unique tokens that an address holds at the end of each month. We also look at trading activity,

which measures the number of transactions per address within a month. Trading activity provides

insights into the investor’s market engagement and potential responsiveness to fraud events.

Using the address-level monthly portfolio compositions, we also quantify the share of different

classes of crypto assets, which measures the proportion of the investor’s total portfolio allocated

to lottery tokens, stablecoins, and altcoins at the end of each month. The share of different classes

of crypto assets offers insights into the change in investment preferences and risk tolerance by

investors with respect to their overall portfolio composition. Arguably, a larger share of Ether in

an address-level portfolio is associated with more fraudulent activity, because scams are typically

conducted in the native currency rather than a specific lottery or altcoin. Therefore, a higher share

of lottery tokens, stablecoins, and altcoins in an address-level portfolio is most likely associated

with less fraud. All variables are defined in Table A.1 in the Appendix.

3.4 Summary Statistics

Table 3 presents summary statistics for blockchain addresses that fell victim to cybercrimes, re-

porting a broad spectrum of address characteristics. An average victimized blockchain address

17



experienced a Barber and Odean (2000) raw return of 13.2% over the entire sample period; the

median figure of 0 indicates that more than half of these addresses realized no or negative re-

turns. Therefore, there are significant differences in investment results across different blockchain

addresses.

Regarding portfolio activity, an average victimized address has a turnover rate of 5.5% and

holds an average of 2.3 tokens. The size of addresses is right-skewed with an average blockchain

address balance of $9,218 and a median value of $16. The age of addresses varied, averaging at

18 months, with a median age of 16 months, indicating that many victims were relatively new to

the Ethereum blockchain. In terms of investment preferences, 14.6% of these addresses invested in

lottery tokens, with an average portfolio share of 4.3%. Stablecoins were less popular, with just

4.8% of addresses investing in them and dedicating an average of 0.6% of their portfolio to this

asset type.

Examining risk measures, the average victim blockchain address assumed a diversifiable risk

of 0.311, a non-diversifiable risk of 0.095, and consequently a total risk of 0.407. Notably, despite

these risks, the alpha value, which measures the blockchain address’s return in excess of its expected

return, averaged at a positive 6.4%. The average loading on the size factor is 0.551, which suggests

that these addresses have a mild sensitivity to changes in the size factor, with a tilt towards larger

cap assets. The average loading on the momentum factor is -0.370, implying that the returns of

these blockchain addresses tend to move in the opposite direction to changes in the momentum

factor. Thus, these blockchain addresses likely hold assets that have recently underperformed in

the market.

[Place Table 3 about here.]

Table 4 presents the summary statistics for a matched sample of victims and non-victims/non-

cybercriminals over the short-term period of three months prior to and after the scam became

public. Victims showed a higher average return in both periods compared to their matched non-

victims/non-cybercriminals. Before the scam became public, victims and non-victims displayed

broadly similar behaviors and characteristics in several aspects. Returns, for example, were similar,

with averages of 9.0% and 8.5% for victims and non-victims/non-cybercriminals, respectively. This

similarity extends to metrics like trading activity and diversification, where both groups had close
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averages. Blockchain address balance, churn rate, and blockchain address age also were generally

similar in the pre-scam phase. The average age at the time of the revelation of scams is identical,

indicating that we compare addresses that entered the market in the same month, which allows us

to account for the effect of macroeconomic trends on our outcome variables.

In the realm of risk factors, there was also a broad similarity between victims and non-

victims/non-cybercriminals during the pre-scam phase. The means for diversifiable risk, non-

diversifiable risk, total risk, market, momentum, size, and alpha were all largely similar between

the treatment and control group. However, there were some minor pre-scam disparities in terms of

excess returns, particularly in terms of investments in lottery tokens, stablecoins, and altcoins.

[Place Table 4 about here.]

Table 5 offers a comprehensive view of the mean and median summary monthly statistics for

victims by the type of scams they fell victim to for the entire sample period. Regarding returns,

victims of Ponzi schemes, hacking, and stolen crypto incidents reported the highest average returns

at 14.5% and 14.3%, respectively, while victims of exploit and hardfork scams showed the lowest

average return at 4.7%.

In terms of churn rate, victims of exploits and hardfork scams had the highest average at 0.401,

while those affected by Ponzi schemes and hacks had the lowest average churn rate, indicating a

lower frequency of switching from one investment to another. Diversification, a measure of the

number of tokens held by an address, is highest on average for victims of fake token sales and

lowest for those affected by Ponzi schemes, hacks, and stolen crypto scams. Victims of exploits

and hardfork scams held the highest average balances at $176,000, while victims of hacks and

stolen crypto scams had the lowest at $684. The average trading activity was highest for victims

of investment scams, while those affected by hacks and stolen crypto scams reported the lowest

average trading activity.

Victims of sextortion and other scams had the oldest accounts; those who fell victim to Ponzi

schemes had the youngest. Interestingly, victims of fake token sales and phishing scams were

the most likely to invest in lottery tokens, with average participation shares of 73% and 67%,

which constitute the highest shares of lottery token investments. Conversely, Ponzi scheme and

hack victims had the lowest involvement in lottery token investments, indicating that they were
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generally less eager to take risky positions. Notably, individuals who fell prey to darkweb, exchange,

or charity scams had a higher likelihood of having stablecoins in their portfolios and allocate a higher

share of their portfolio to stablecoins. Given the nature of these scams, it is possible that these

types of fraudulent activities may frequently involve or target stablecoins.

[Place Table 5 about here.]

4 Results

4.1 Treatment Effects of Cybercrime on Investor Risk-Taking

The graphical evidence in Figure 2 suggests that victims of cybercrime change their investment

behavior in a way that increases their post-cybercrime non-risk-adjusted Barber and Odean (2000)

monthly returns relative to matched non-victims/non-cybercriminals, not accounting for the loss

that results from the scam itself. In this and the following Section 4.2, we study what drives this

investment pattern and whether victims’ post-cybercrime risk-adjusted returns are equally positive.

To test Hypothesis 1, we estimate our main difference-in-differences model, as defined in Equa-

tion 1, with three different dependent variables: total, diversifiable, and non-diversifiable risk-

taking. We also estimate the models for symmetric event windows of 3 and 12 months before and

after the cybercrime event in Tables 6 and 7, respectively, accounting for the dynamic structure of

how victims of cybercrime adjust their risk-taking levels. Figure 3 shows that the 3-month win-

dow is well-suited to capture the short-term response of victims to cybercrime, while the 12-month

window captures a more permanent effect of cybercrime on address-level risk-taking. Finally, we

estimate average treatment effects based on all observations in our sample to quantify the aggregate

impact cybercrime had on users of the Ethereum blockchain. We also estimate heterogeneous treat-

ment effects for individual cybercrime categories to gauge the variance in treatment effects across

different cybercrime types. All our models include granular calendar-month × calendar-year fixed

effects and the model for the average treatment effect estimation also includes cybercrime-type

fixed effects. Note that our analysis for the symmetric 3-month event window draws on more than

4.5 million blockchain address–month observations and the one for the symmetric 12-month event

window draws on more than 7.8 million blockchain address–month observations. Finally, note the
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limitation that we measure treatment effects of cybercrime victimization for on-chain (and not

off-chain) trading behavior.15

The difference-in-differences results for the symmetric 3-month event window in Table 6 show

the effects of cybercrime on blockchain address-level total, diversifiable, and non-diversifiable risk-

taking in Panels A, B, and C, respectively. Again, the first two models estimate average treatment

effects and models (3) to (11) estimate heterogeneous treatment effects.

Comparing the short-term effects for the 3-month event window with the more long-term effects

for the 12-month event window is interesting because prospect theory suggests that investors become

more risk-loving after incurring an unrealized loss, but return to their previous risk aversion after

realizing the loss. During the 3-month event window, investors may not have yet fully realized a

loss caused by fraud, because they think they might get the money back somehow. Thus, they

should seek more risk. In the long-term, however, investors are more likely to mentally process and

realize a loss due to fraud and return to their original risk preferences. Consequently, the identified

effects should reverse.

We find that the average treatment effects in the between-cybercrime model in column (1) are

negative (–0.0157), positive (0.0043), and negative (–0.0200) for the 3-month window in Table 6 and

positive (0.0230), negative (–0.0027), and positive (0.0257) for the 12-month window in Table 7 for

total (Panels A), diversifiable (Panels B), and non-diversifiable risk-taking (Panels C), respectively.

The structure of the average treatment effects is similarly reversed in the within-cybercrime

model in column (2). For brevity, we only provide an overarching comparison of the heterogeneous

treatment effects. A number of cybercrimes entail similar effects over the 3- and 12-month event

windows, although the longer window mostly exhibits stronger effects in terms of both statistical

and economic magnitude. In particular, the effects for Ponzi schemes, hacks, and exploits are

consistent across the event windows. In contrast, several cybercrimes yield either reversed effects

or are non-significant in the shorter event window. These include giveaways, phishing scams,

investment scams, fake token scams, darkweb shop-related cybercrime, and sextortion.

[Place Table 6 about here.]
15While this is admittedly an important limitation to the generalizability of our results, we note that this is not a

limitation specific to our approach, rather it is a restriction to all studies of cryptocurrency investor behavior because
off-chain cryptocurrency exchanges are not disclosing their trading books in a sufficient manner to trace per-address
transactions.
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Table 7 presents the difference-in-differences results for the symmetric 12-month event window

for blockchain address-level total, non-diversifiable, and diversifiable risk-taking in Panels A, B, and

C, respectively. Our first two models estimate average treatment effects. In Panel A (total risk), the

between-cybercrime-type model (i.e., the model without cybercrime-type fixed effects) in the first

column estimates an average treatment effect of 0.023, which is statistically significant at the 0.1%

level. In economic terms, the estimate suggests that, given the full-samples average total risk-taking

of 0.407, victims of any type of cybercrime increase their total risk-taking levels by 5.7% (= 0.023 /

0.407) as a response to the scam event. The average treatment effect in the within-cybercrime-type

model (i.e., the model with cybercrime-type fixed effects) in the second column is only 0.0033;

that is, victims increase their post-cybercrime risk-taking level by 8.1%, although the within-

cybercrime-type effect is statistically non-significant. The non-significant effect on the total risk-

taking level is caused by counteracting effects for non-diversifiable (positive effects) and diversifiable

(negative effects) risk-taking levels in Panels B and C, respectively. Panel B (non-diversifiable

risk) shows that post-cybercrime victims reduce their blockchain address-level non-diversifiable

risk-taking. The highly statistically significant difference-in-differences estimators of –0.0027 and

–0.0142 for the between- and within-cybercrime-type models suggest that victims decrease their

non-diversifiable risk-taking by 0.8% and 4.6%, respectively, given the full-sample non-diversifiable

risk-taking average of 0.311. Panel C (diversifiable risk) shows that post-cybercrime victims increase

their blockchain address-level diversifiable risk-taking in the long term. The highly statistically

significant difference-in-differences estimates of 0.0257 and 0.0175 for the between- and within-

cybercrime-type models suggest that victims increase their diversifiable risk-taking by 27.1% and

18.4%, respectively, given the full-sample diversifiable risk-taking average of 0.095.

While the dynamic pattern of risk-taking is in line with prospect theory for diversifiable risk,

it is not for overall risk and non-diversifiable risk. However, the dynamic pattern might differ for

specific cybercrime types. For example, in Ponzi schemes, fraudsters often promise to refund the

money and claim that the inability to pay back the money is only a temporary situation in order to

keep victims interested and give them hope. Thus, losses are initially not realized by victims and

are only mentally accepted over time. On the other hand, if a wallet is hacked and the money is no

longer there, a victim may immediately perceive that the loss has been realized, which is unlikely to

increase risk appetite in the short term. To test this conjecture, the models in columns (3) to (11)
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contain heterogeneous treatment effects by cybercrime type. Overall, we find that post-cybercrime

blockchain address-level risk-taking critically depends on the type of cybercrime a victim fell for.

Cybercrime categories that lead to an increase in victims’ total risk-taking levels are Ponzi

schemes, events on the darkweb, and sextortion. Ponzi scheme-related cybercrime increases vic-

tims’ total risk-taking levels by 14.8% (= 0.0604 / 0.407), which is associated with a reduction

in non-diversifiable risk-taking and an increase in diversifiable risk-taking of –23.1% (= –0.0219 /

0.095) and 26.4% (= 0.0822 / 0.311), respectively. Darkweb-related cybercrime increases victims’

total risk-taking levels by 114.6% (= 0.4665 / 0.407), which is associated with increases in non-

diversifiable risk-taking and diversifiable risk-taking of 156.9% (= 0.1519 / 0.095) and 101.2% (=

0.3147 / 0.311), respectively. Sextortion-related cybercrime increases victims’ total risk-taking lev-

els by 114.6% (= 0.4665 / 0.407), which is associated with increases in non-diversifiable risk-taking

and diversifiable risk-taking of 64.9% (= 0.0617 / 0.095) and 21.0% (= 0.0653 / 0.311), respectively.

Cybercrime does not alter victims’ total risk-taking levels if the event was a phishing scam

or involved a fake token. At least for phishing scams, the non-significant total risk-taking effect

is statistically non-significant, while the non-diversifiable and diversifiable effects are statistically

significant. Victims of phishing scams increase their non-diversifiable risk-taking level by 162.1%

(= 0.0154 / 0.095), while they reduce their diversifiable risk-taking level by 212.9% (= 0.0662 /

0.311).

Cybercrimes that lead to a reduction in victims’ total risk-taking levels are giveaways, invest-

ment scams, hacks, and exploits. Giveaway-related cybercrime reduces victims’ total risk-taking

levels by –12.2% (= –0.0495 / 0.407), which is associated with an increase in non-diversifiable risk-

taking and a reduction in diversifiable risk-taking of 9.4% (= 0.0089 / 0.095) and –21.3% (= –0.0662

/ 0.311), respectively. Investment scam-related cybercrime reduces victims’ total risk-taking levels

by –58.7% (= –0.239 / 0.407), which is associated with an increase in non-diversifiable risk-taking

and a reduction in diversifiable risk-taking of 29.1% (= 0.0276 / 0.095) and –85.7% (= –0.2666 /

0.311), respectively. Hack-related cybercrime reduces victims’ total risk-taking levels by –52.8%

(= –0.215 / 0.407), which is associated with reductions in non-diversifiable risk-taking and diver-

sifiable risk-taking of –13.7% (= –0.013 / 0.095) and –220.1% (= –0.6846 / 0.311), respectively.

Exploit-related cybercrime reduces victims’ total risk-taking levels by –167.5% (= –0.6818 / 0.407),

which is associated with an increase in non-diversifiable risk-taking and a reduction in diversifiable
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risk-taking of 2.9% (= 0.0028 / 0.095) and 220.1% (= –0.6846 / 0.311), respectively.

[Place Table 7 about here.]

The results from Tables 6 and 7 suggest that post-cybercrime risk-taking changes with time.

This result is consistent with recent literature showing that investor behavior changes over time and

that, for example, the perceived risk of fraud can itself be a determinant of risk-taking by investors

(Dicle, 2019). To shed light on the dynamics of the treatment effects, we plot the difference-

in-difference estimates for total risk, non-diversifiable risk, and diversifiable risk in Panels A, B,

and C of Figure 3. Total and diversifiable risk follow similar trends. Cybercrime slightly reduces

risk-taking along these two dimensions for the first 5 months after the fraud became public, and,

starting in month 6, risk-taking starts to climb back to the pre-cybercrime level, around months

10 to 12. This is consistent with previous research showing that indirect exposure to fraud in a

community makes investors risk averse due to a loss of trust (Giannetti and Wang, 2016; Gurun

et al., 2018) and that negative events in investors’ portfolios lead to lower risk-taking (Laudenbach

et al., 2021; Dorfleitner et al., 2023). Ultimately risk-taking exceeds the pre-fraud level, which has

been normalized in Figure 3 by construction to 0%, and then permanently stays at a constantly

higher level after months 12 to 15. Subsequent risk-taking is consistent with prospect theory, which

assumes that investors take higher risks after an incident of fraud in order to break even. For non-

diversifiable risk, the pattern is somewhat different. Post-cybercrime non-diversifiable risk-taking

decreases constantly over the first 12 months post-event, after which it starts to recover slowly,

though never returning to the pre-cybercrime level over the 24-month observation period.

[Place Figure 3 about here.]

4.2 Treatment Effects of Cybercrime on Risk-Adjusted Returns

The evidence in the preceding section indicates that cybercrime victims, on average, reduce risk-

taking relative to the pre-event level in the first year following the event. A natural next question is

whether and how the adjustment to risk-taking levels is reflected in victims’ risk-adjusted returns.

Panels A and B of Table 8 present the results for the 3- and 12-month event windows, respectively.
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Columns (1) and (2) of Table 8 report the average treatment effects from the difference-in-

differences analyses for blockchain address-level alphas. Note that the results are consistent with

Hypothesis 3 throughout all four model specifications, regardless of whether we look at between-

or within-cybercrime-type models, or the different event windows. The coefficients are all highly

statistically significant and range from –0.0353 (within-cybercrime-type model; 3-month window)

to –0.0617 (between-cybercrime-type model; 12-month window). In economic terms, victims’ risk-

adjusted returns in the post-cybercrime period reduce by 55.2% (= –0.0353 / 0.064) to 96.4% (=

–0.0617 / 0.064) relative to matched non-victims/non-cybercriminals.

The heterogeneous treatment effects analyses by cybercrime type again suggest that victims’

risk-adjusted returns can be both positively and negatively impacted by the various categories

of cybercrime. For the symmetric 12-month event window, cybercrime categories that have a

negative effect on victims’ post-event risk-adjusted returns are Ponzi schemes, phishing scams,

investment scams, hacks, and exploits. Ponzi scheme-related cybercrime increases victims’ risk-

adjusted returns in the post-event period by 124.5% (= –0.0797 / 0.064). Phishing scam-related

cybercrime increases victims’ risk-adjusted returns in the post-event period by 29.1% (= –0.0186

/ 0.064). Investment scam-related cybercrime increases victims’ risk-adjusted returns in the post-

event period by 18.8% (= –0.012 / 0.064). Hack-related cybercrime increases victims’ risk-adjusted

returns in the post-event period by 36.7% (= –0.0235 / 0.064). Exploit-related cybercrime increases

victims’ risk-adjusted returns in the post-event period by 298.6% (= –0.1911 / 0.064).

For the symmetric 12-month event window, cybercrime categories that have a positive effect on

victims’ post-event risk-adjusted returns are fake token scams, darkweb activity, and sextortion.

Fake token-related cybercrime increases victims’ risk-adjusted returns in the post-event period by

26.4% (= 0.0169 / 0.064). Darkweb-related cybercrime increases victims’ risk-adjusted returns in

the post-event period by 45.9% (= 0.0294 / 0.064). Sextortion-related cybercrime increases victims’

risk-adjusted returns in the post-event period by 44.7% (= 0.0286 / 0.064).

Unlike for victims’ post-cybercrime risk-taking levels, the treatment effects on victims’ risk-

adjusted returns is relatively consistent throughout the symmetric 3- and 12-month event windows.

Therefore, we only briefly discuss commonalities and differences at an overarching level, without

going into detail. In general, the 3-month model yields slightly smaller treatment effects than

the 12-month model. This can be explained by the time-series pattern in Figure 4 below, which
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suggests that cybercrime impacts victims’ alphas permanently negatively, with the treatment effect

reaching its peak around month 10 after the cybercrime. A few heterogeneous treatment effects

differ for the two event windows. While investment scams and fake token scams significantly reduce

victims’ alphas over the 12-month window, the treatment effects are statistically non-significant for

the 3-month event window.

[Place Table 8 about here.]

Figure 4 plots the average treatment effects from the difference-in-differences model for the

monthly alphas for the 1- to 24-month post-cybercrime period. That is, we estimate our main

model with alphas as the dependent variable for 24 different event windows. Figure 4 illustrates

that, in line with Hypothesis 3, victims’ post-cybercrime alphas take a strong hit of around –3%

in the month right after the cybercrime and then continue to decline to slightly more than –6% in

month 10, and thereafter remain relatively stable at that level.

[Place Figure 4 about here.]

4.3 Investor Behavior, Risk-Taking, and Returns

Given that the collective evidence so far suggests that, in line with Hypothesis 1, cybercrime victims

increase total risk-taking and, in line with Hypothesis 3, have lower risk-adjusted returns, a natural

next question to investigate is which dimensions of investor behavior help explain these patterns.

To test the channels underlying Hypothesis 3, we simultaneously regress several characteristics of

investor behavior on risk-taking and risk-adjusted returns in a correlational triple differences model.

Specifically, we are interested in the triple interactions of the victim and post-scam indicators with

the measures of risk-taking and risk-adjusted returns. To explain the diverging patterns for risk-

taking and risk-adjusted returns in the period following a cybercrime, we would expect that at least

some investor behavior characteristics load positively for the risk-related triple difference estimates

and negatively for the return-related triple difference estimates, and vice versa. As measures of

investor behavior, we explore blockchain address-level trading activity, churn rate, diversification,

lottery token, stablecoin, and altcoin blockchain address weights, which we define in Section 3.3.
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Table 9 presents the regression results for the 3- and 12-month event windows in Panels A and B,

respectively.

Overall, our results yield three important insights. First, trading-related investor behavior—

that is, trading frequency and investment horizon—appears to be the primary driver of the neg-

ative treatment effects on alphas for victims in the post-cybercrime period. Second, investment

strategy-related investor behavior—that is, reduced diversification and ownership of different token

categories—appears to be the main factor behind the increases in alphas and non-diversifiable risk

and the reduction in diversifiable risk. Third, alpha and risk-taking are explained by these investor

behavior measures with heterogeneous quality. In terms of the adjusted R-squared (for the 12-

month window in Panel B), the altcoin weight (adjusted R-squared of 29.3%) and diversification

(adjusted R-squared of 13.3%) are most meaningful in terms of the variation explained by alpha

and risk-taking in these variables, followed by the lottery token blockchain address weight (adjusted

R-squared of 8.0%), churn rate (adjusted R-squared of 5.3%), stablecoin blockchain address weight

(adjusted R-squared of 2.7%), and trading activity (adjusted R-squared of 0.6%). These findings

are in line with Dorfleitner et al. (2023), who show that marketplace lending investors cease diver-

sifying their loan portfolio after experiencing a loan default and that fraud erodes trust, leading

investors to divest from riskier assets (Giannetti and Wang, 2016; Gurun et al., 2018).

More precisely, Table 9 shows that (i) trading activity loads significantly negatively on alpha

but has no significant relation with diversifiable or non-diversifiable risk-taking, while (ii) churn

rate, our measure of how quickly investors rotate their portfolio, loads significantly negatively on

alpha and diversifiable risk-taking and significantly positively on non-diversifiable risk-taking. Both

results suggest that their risk-adjusted returns are falling as investors trade more after being hit

by a scam. This finding is consistent with findings from Odean and Barber (1999) for traditional

capital markets that investors who trade more tend to underperform. Moreover, (iii) diversification,

(iv) stablecoin blockchain address weight, (v) altcoin blockchain address weight, and (vi) lottery

token blockchain address weight all load significantly positively on alpha and non-diversifiable risk-

taking but significantly negatively on diversifiable risk-taking. The fact that diversification, which

can also be represented by a higher share of lottery tokens, stablecoins, and altcoins, increases

returns and negatively relates to diversifiable risk-taking appears intuitive. The fact that lottery

tokens, stablecoins, and altcoins often represent early investments, especially when compared to
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the native cryptocurrency Ether, and in many cases offer unique DeFi use cases, could explain

excess returns represented by larger alphas. However, the fact that a higher proportion of lottery

tokens, stablecoins, and altcoins is positively associated with undiversifiable risk-taking may be

due to the fact that these tokens are associated with other forms of undiversifiable risk. These

forms of market-wide risk may stem from investors’ doubts about the ability of stablecoin issuers

to maintain a currency peg, which consequently raises doubts about the premise of stablecoins and

blockchain technology in general.16

Two observations support the meaningfulness of our results. First, the positive relation between

alpha and non-diversifiable risk-taking and the negative relation between alpha and diversifiable

risk-taking are consistent with arbitrage pricing theory (Fama and French, 1992, 1993; Roll and

Ross, 1980). Second, although we document a dynamic structure of risk-taking levels on the event

window in the post-cybercrime period, the coefficients in Panel A (3-month window) and Panel

B (12-month window) in Table 9 are largely consistent, suggesting that these investor behaviors

drive alphas and risk-taking independent of the observation period, reflecting some fundamental

associations.

[Place Table 9 about here.]

4.4 Heterogeneous Treatment Effects

4.4.1 Rich versus poor address victims

Do affluent blockchain addresses react differently to cybercrime than non-affluent ones? To address

the question, Figure 5 plots treatment effects for alphas, total risk, diversifiable risk-taking, and

non-diversifiable risk-taking for the top 10% richest and bottom 10% poorest blockchain addresses as

measured by blockchain address balance in the month prior to the focal cybercrime. Poor blockchain

addresses yield significantly lower alphas over the 24 months following the cybercrime. For example,

two years after the cybercrime, blockchain addresses of the richest victims yield an alpha of –4%

relative to non-victim/non-cybercriminal matched control blockchain addresses, while blockchain

addresses of the poorest victims yield an alpha of –5.5% relative to non-victim/non-cybercriminal

matched control blockchain addresses.
16For a comprehensive list of failed stablecoins, see https://chainsec.io/failed-stablecoins/
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The heterogeneous treatment effect on risk-adjusted returns between rich and poor cybercrime

victims can be explained by different levels of risk-taking in the post-scam period. Rich blockchain

addresses take substantially less total risk than poor blockchain addresses, although risk-loading by

rich vs. poor blockchain addresses differs by risk type. That is, rich blockchain addresses take on

less diversifiable risk and more non-diversifiable risk than poor blockchain addresses as a response to

a cybercrime event. Hence, financially vulnerable investors have historically faced a dual burden:

first, losing their funds to scams, and second, compounding their losses further by adopting a

speculative approach after falling victim to the scam. Consequently, the role of regulators and

consumer authorities becomes doubly crucial in combating cryptocurrency scams and protecting

these vulnerable individuals.

[Place Figure 5 about here.]

A concern with the analysis above is that the cybercrime type and the balance of a blockchain

address may be correlated and, hence, any identified treatment effect potentially endogenous. In

unreported results, we compared summary statistics for the average victim’s balance for each cy-

bercrime. The average wallet size of a victim that fell for a hack, steal, or mal-/ransomware

cybercrime is $1,146 (smallest average balance per cybercrime type), the average wallet size of

a Ponzi scheme victim is $5,414, and the average wallet size of a darkweb shop-, charity-, or

exchange-related cybercrime is $6,692, while exploits and hardfork scam victims’ average wallet

size is $108,934 (largest average balance per cybercrime type), investment scam victims’ average

wallet size is $58,300, and sextortion and other cybercrime victims’ average wallet size is $45,526.

Next, we modified our difference-in-differences model by including dummies for the 10% richest

and 10% poorest addresses, and we re-estimated all regressions with the triple difference model in

each cybercrime category. Although we observed heterogeneous treatment effects by cybercrime

type and rich versus poor victims, the evidence is not systematical. Thus, we conclude that the

correlation between address balance and cybercrime types does not confound our inferences from

Figure 5.
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4.4.2 Bull versus bear markets

We also explore heterogeneous treatment effects on cybercrime victims in bear versus bull markets.

To that end, we classify our sample into periods of increasing prices (i.e., bull markets, e.g., between

01/2017 and 01/2018), decreasing prices (i.e., bear markets, e.g., between 02/2018 and 01/2019),

and stagnating prices (i.e., sideways markets, e.g., between 02/2019 and 09/2020), following the

definition in Drobetz et al. (2024). With these market phases in hand, we re-estimate all our results

to contrast full-sample within- and between-cybercrime-type average treatment effects for all our

outcome variables for bear versus bull markets. We focus on the 3-month measurement period

and estimate average treatment effects on total, diversifiable, and non-diversifiable risk-taking, and

risk-adjusted returns. Table 10 shows the results.

First, victims’ total risk-taking reacts to cybercrime events only in bull markets, not in bear

markets, with the effect being mostly driven by diversifiable risk-taking. Plausibly, altcoin prices

are disproportionately low in bear markets, making exiting more costly, which ultimately reduces

the divestment rate and keeps diversifiable risk-taking at the pre-cybercrime level. In contrast,

non-diversifiable risk-taking increases in both bear and bull markets. Second, cybercrime victims

experience positive treatment effects on risk-adjusted returns when they are scammed in bull mar-

kets. These results are robust when also examining a 12-month measurement period.

[Place Table 10 about here.]

4.4.3 Large- versus small-scale scams

Table 1 indicates that some types of cybercrimes affected large groups of victims, while others af-

fected relatively small groups. Here, we explore whether victims that fell for a cybercrime alongside

a larger mass of victims versus in a relatively idiosyncratic manner differ in their trading behaviors

following the cybercrime event. To explore whether treatment effects between those two victim

groups differ, we divided the number of transactions associated with a specific scam by the number

of addresses of scammers in the specific scam category, and then split our sample into the top and

bottom 25% of the distribution in this new variable to measure the relative size of the group that

has been affected by a particular scam. The top 25% subsample corresponds to victims that fell

for a cybercrime as part of a relatively large group of victims, while the bottom 25% subsample
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corresponds to victims that were among a relatively small group of victims. We then rerun all our

main models for risk-taking and risk-adjusted returns. Table 11 shows the results.

First, total risk-taking of victims in a relatively small group decreases, while that of victims

in relatively large victim group increases. Decomposing the differential risk-taking effects, we

find that small-group victims increase non-diversifiable risk and decrease diversifiable risk, while

large-group victims decrease non-diversifiable risk and increase diversifiable risk. These treatment

effects are consistently estimated in our within- and between-cybercrime-type models. Second, risk-

adjusted returns (alphas) do not exhibit different treatment effects for small- versus large-group

victims. Both victim types have lower alphas after a cybercrime event. The treatment effects are

not sensitive to the measurement period and consistently estimated for the reported 3- and the

unreported 12-month horizons.

[Place Table 11 about here.]

4.4.4 Victims with versus without DEX experience

Finally, in unreported results, we explore whether investor sophistication, as proxied by investors’

previous transaction relations with decentralized exchanges (DEXs), moderates our main average

treatment effects of cybercrime on investor risk-taking and returns. To this end, for each address,

we identified all transactions that had a DEX counterparty and defined a DEX dummy for every

Ethereum address that interacted with DEXs at least once (DEX dummy = 1) and those that never

interacted with DEXs (DEX dummy = 0). We use the DEX dummy to split our sample into two

subsamples and re-run our main analyses. First, we find heterogeneous treatment effects between

the DEX- and non-DEX-interacting addresses on risk-adjusted returns (alpha). The impact of

becoming a victim of cybercrime on alpha is significantly negative for both subsamples. Looking

at the within-cybercrime-type model, we find that the negative effects are more pronounced for

the sample without DEX experience, and hence arguably the less-sophisticated group of investors.

As a consequence, the evidence suggests that investor sophistication, as proxied by previous DEX

interactions, mitigates the negative impact of cybercrime victimization on risk-adjusted returns.

Second, we also find heterogeneous treatment effects between the DEX- and non-DEX-interacting

addresses on risk-taking over the 3- and 12-month horizons. The impact of becoming a victim of
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a cybercrime is mixed for both subsamples. For total risk-taking, DEX-interacting addresses show

consistently lower total risk-taking, while DEX-non-interacting addresses do not show a reaction

in the within-cybercrime-type model. Continuing with the within-cybercrime-type model, we find

that DEX-interacting addresses increase their levels of diversifiable risk and reduce their levels of

non-diversifiable risk, whereas we observe diametrically opposed patterns for DEX-non-interacting

addresses, as they reduce diversifiable risk and increase their non-diversifiable risk post-cybercrime.

This is in line with the reasoning that more sophisticated investors are more active investors that

manage their token portfolios post-cybercrime in a way that they divest altcoins that are often ex-

ploited by cybercriminals for attacks, which increases diversifiable risk in those investors’ addresses.

4.5 A Forensic Approach to Cybercriminal Detection

4.5.1 Linear model

Table 12 shows blockchain address characteristics predicting cybercriminals across various crime

categories. First, the age of the blockchain address does not appear to have predictive power with

respect to cybercriminals, while addresses engaged in these illicit activities tend to diversify their

assets. It is technically feasible to transfer ownership of an existing blockchain address, and darkweb

markets may have emerged allowing cybercriminals to impersonate an old blockchain address if they

do not already have one. The diversification might be a direct consequence of the nature of the

crimes committed. If a criminal engages in various types of fraud that yield different types of

tokens, this will naturally lead to a more diversified portfolio relative to those who do not. This

theory could hold particularly true for cases where cybercriminals accept or demand payment in

the victims’ tokens, leading to an assortment of different assets in their portfolios. Moreover, stolen

tokens and hacks, for example, could naturally lead to greater diversification in cybercriminals’

portfolios, while cybercriminals that distribute malware often only accept a few cryptocurrencies.

Lottery token and stablecoin share are both negatively associated with criminals’ blockchain

addresses in all types of cybercrimes. In other words, cybercriminals appear to be highly discrim-

inating in their choice of cryptocurrencies, avoiding both extremes of the spectrum (i.e., highly

regulated stablecoins and overly speculative assets such as lottery tokens). While stablecoins pro-

vide a certain level of predictability due to their regulation and stability, their enhanced traceability

32



and centralization may deter cybercriminals who value anonymity and control. On the other hand,

lottery tokens, often associated with high-risk, high-reward speculative investing, could pose a sig-

nificant risk even for cybercriminals. Despite the potential for high returns, the extreme volatility

and uncertain nature of such assets could lead to substantial losses. Furthermore, the relative lack

of establishment and recognition of these tokens might pose challenges in terms of liquidity and

ease of transaction, making them less suitable for illicit activities.

In contrast to stablecoins and lottery tokens, we find a positive relationship between the share

of altcoins in the criminals’ blockchain addresses and most cybercrime types. Altcoins may offer

a balance between anonymity, risk, and reward that may be appealing to cybercriminals. Unlike

stablecoins, they are typically not as heavily regulated. They are also more established and less

speculative than lottery tokens, reducing the risk of substantial losses due to volatility. Importantly,

the nature of altcoins may provide opportunities for exploitation by cybercriminals. For example,

many startups in the blockchain space often raise funds through ICOs or similar mechanisms,

where they sell tokens to early investors. These tokens can sometimes be obtained in significant

volumes and at lower prices during these initial phases, making them attractive to cybercriminals.

Moreover, although these tokens are not as widely accepted as more established cryptocurrencies,

they often have sufficient liquidity for criminals to convert them into other assets or fiat currency

when needed.

[Place Table 12 about here.]

4.5.2 Non-linear model

We use the insights from our preceding analyses to formulate a graph neural network (GNN)

model that serves the purpose of ex-ante detection of cybercriminal addresses on the Ethereum

blockchain. Cakici et al. (2024) and Momtaz and Urban (2025) demonstrate that machine learning

may outperform traditional approaches to explaining behavior in crypto markets. We augment an

existing fraud-detection GNN model from Kim et al. (2023). Specifically, the model builds on the

idea that blockchain transactions naturally form a graph structure, where addresses are connected

by transactions. Because the graph data does not exist in Euclidean space, it is challenging to

employ existing machine-learning algorithms, and hence we rely on GNNs. Intuitively, a GNN
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learns the representation of a target node by iteratively propagating the neighbor information

for the node, edge, or graph-level prediction. On the Ethereum blockchain, while many other

algorithms use homogeneous graphs where addresses are considered as nodes and transactions are

considered as edges (e.g., Chen et al., 2020, and Li et al., 2021a), we use a heterogeneous graph

(i.e., ATGraph), where transactions are considered as nodes rather than edges in order to effectively

represent the Ethereum network. This means that ATGraph has two types of nodes: account nodes

and transaction nodes. To extract the features from nodes, we follow Kim et al. (2023), who have

used the statistical, topological, and temporal features, including total, minimum, maximum, and

average values for the amount of received and sent assets, number of transactions, lifetime of the

account, and time intervals between transactions. There are 13 features for the account nodes:

in-degree defined as the number of received transactions in this account; out-degree defined as

the number of sent transactions in the account; in-value defined as the sum of the received value;

out-value defined as the sum of the sent value; average in-value defined as the average of the

received value; average out-value defined as the average of the sent value; min in-value defined

as the minimum received value; min out-value defined as the minimum sent value; max in-value

defined as the maximum received value; max out-value defined as the maximum sent value; lifetime

defined as the active time of the account; balance defined as the balance over the lifetime of the

account; and average inter-tx time defined as the average time interval between transactions. For

the transaction nodes, there are two features: the timestamp when a transaction was issued and

the amount of value in the transaction. We have implemented an augmented graph convolutional

network (GCN) using ATGraph twice: once with the features that Kim et al. (2023) used and

another time adding all the characteristics we constructed for our linear empirical analysis above

(i.e., the averages and standard deviations of account balance, diversification, lower-bound return,

upper-bound return, churn rate, trading activity, Barber-Odean return, and account age). For the

hyperparameters, the number of layers is 6, batch size is 128, and the hidden unit is 64. Due to

computational limitations, we selected the scam and non-scam addresses whose involved number

of transactions is less than 200,000. To handle the imbalanced dataset, we assigned appropriate

weights to different classes.

Figure 6 shows the results. Our augmented GCN model correctly predicts cybercriminals in the

test set with an accuracy of 72.5%, suggesting that almost 3 out of 4 cybercriminals are correctly
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detected as such even before committing a cybercrime. Further, our F1 score of 0.70 compares

favorably to that in the Kim et al. (2023) benchmark model of 0.67. Our model also correctly

predicts non-cybercriminal wallets with an accuracy of 71.1%, which compares to the 55.5% of

correctly predicted non-cybercriminal addresses in the benchmark model by Kim et al. (2023),

representing a significant improvement. The improvement in reducing false positives illustrates the

economic significance of the variables tested in the linear models above. The results illustrate that

on-chain transaction behavior can be used to inform the ex-ante detection of illicit activity on the

Ethereum blockchain.17

[Place Figure 6 about here.]

5 Conclusion

This article is among the first to provide a comprehensive analysis of cybercrime on the Ethereum

blockchain. We identify more than 1.78 million transactions that are externally verified to be linked

to cybercrime, corresponding to an aggregate amount of $1.65 billion of funds lost. In a first step,

our analysis shows that fraud reported to the FTC understates the amount of abducted funds

on the Ethereum blockchain by a factor of 16.18 Furthermore, our data enables us to develop a

taxonomy grounded in the economic impact of each cybercrime, yielding 19 overarching categories.

With the data and taxonomy in hand, we develop a causal approach to estimating how cybercrime

impacts victims’ risk-taking, risk-adjusted returns, and investor behavior. Using a difference-in-

differences approach on victim and non-victim/non-cybercriminal matched addresses, we find that

victims increase their overall risk-taking after an incident of fraud, which is generally consistent

with the predictions of prospect theory. Moreover, in line with the CAPM, we find that investors

who take higher market risks after a fraud event also earn higher raw returns. Although neither

prospect theory nor the CAPM provides an unconditional statement on whether higher risk-taking

also affects risk-adjusted returns, it is clear that higher transaction costs and lower diversification
17A replication package for our GCN model of ex-ante cybercrime detection on the Ethereum blockchain is available

at pypi.org.
18Given the heightened exposure of token investors to cybercrime, a growing literature argues that decentralized

finance might benefit from more intermediaries, such as crypto funds, to manage cybercrime risk for individual
investors (Cumming et al., 2025a; Dombrowski et al., 2023; Fisch and Momtaz, 2020; Momtaz, 2024; Zetzsche et al.,
2020).
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generally do not have a positive impact on risk-adjusted returns. We find that, as a result of

increased overall risk-taking, investors earn lower risk-adjusted returns as measured by alphas from

a state-of-the-art crypto factor model. Theses lower risk-adjusted returns can be explained by higher

transaction costs due to fraud victims trading more after the fraud, and lower diversification, for

example, as fraud victims withdraw from stablecoins and altcoins.

We find heterogeneous post-cybercrime risk-taking effects. Although total risk increases, a risk

decomposition leads to higher diversifiable risk-taking and lower non-diversifiable risk-taking at

the address level in the long term. We also evidence time dependencies: diversifiable risk-taking

decreases in the short term and increases permanently in the long term, while non-diversifiable

risk-taking decreases in the short and medium term, but does not return to pre-cybercrime levels

within a 24-month period. We show that various measures for investor behavior, including trading

behavior and investment strategy, explain the differential impact of cybercrime on risk-taking and

risk-adjusted returns. Finally, in post-hoc additional analysis, we show that victim and cybercrime

addresses differ systematically, leading to variation that can be exploited in predictive models to

screen for cybercriminals ex ante.

Certain limitations should be acknowledged to contextualize our findings. First, our focus on

cryptocurrency investors interacting with the Ethereum blockchain means our findings may not be

generalizable to the broader investor population. Cryptocurrency investors may differ systemati-

cally from traditional investors in demographics, risk tolerance, and susceptibility to cybercrime.

Second, our methodology may bias the dataset toward larger, more prominent scams that generate

significant public attention, potentially underrepresenting smaller-scale scams. Third, an evalua-

tion of the relative merits of various investor protection measures (e.g., jurisdiction-level regulations

(Cumming et al., 2025b), protocol-level governance mechanisms (Fuchs and Momtaz, 2024), or rela-

tional trust-based mechanisms (Momtaz, 2021a)) seems to be a promising avenue for future research

to inform policymaking.

Despite these limitations, our study provides important insights into the behavior of cryptocur-

rency investors following exposure to scams. Future research could address these limitations by

incorporating more diverse investor populations, developing methods to detect smaller-scale scams.
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Figure 1: Cybercrime on the Ethereum blockchain

Panel A: Funds transferred to fraudulent accounts per blockchain address, in $

Panel B: Transactions to fraudulent addresses and the share of funds lost due to scams

Note: The first figure shows the interquartile range, mean, and the maximum and minimum amounts
of funds transferred to fraudulent accounts. The second figure shows the cumulative sum of the number
of transactions to fraudulent accounts (left axis) and the share of blockchain address balance lost due
to scams (right axis).
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Figure 2: Parallel trends and treatment effect of cybercrime on victims’ raw returns

Note: This graph plots Barber and Odean (2000) monthly raw returns, as defined in Table A.1, for victims
and matched non-victims for the time period of –12 to +12 months with respect to the focal cybercrime.
Barber and Odean (2000) monthly raw returns only account for the behavioral effect of cybercrime on returns,
not for the abducted funds due to the cybercrime per se. The graph illustrates that victims become better
investors post-cybercrime. However, if one were to account for the nominal value of abducted funds due to
the cybercrime, cybercrime victims have lost 10% of their wealth 12 months after the cybercrime relative
to matched non-victims. Thus, on average, cybercrime victims lose one-tenth of their address-level wealth
in a cybercrime. Note that the plot illustrates nearly perfect parallel trends for the treatment (cybercrime
victims) and control observations (matched non-victims), suggesting the identification of a causal effect of
cybercrime on victim behavior.
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Figure 3: Changes in post-scam blockchain address-level risk-taking (treatment effects) over time

Note: These plots illustrate the time structure of our identified treatment effects for victims’ post-cybercrime risk-taking levels in terms of total risk
(top), diversifiable risk (bottom-left), and non-diversifiable risk (bottom-right). The graphs plot the monthly coefficients from difference-in-differences
models for the post-cybercrime months 1 to 24. Definitions of all variables appear in Table A.1.
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Figure 4: Post-cybercrime evolution of victims’ blockchain address-level risk-adjusted returns

Note: This plot illustrates the time structure of our identified treatment effect for victims’ post-cybercrime
risk-adjusted returns (i.e., alphas from the three-factor model introduced by Liu et al., 2022). The graphs
plot the monthly coefficients from difference-in-differences models for the post-cybercrime months 1 to 24.
Definitions of all variables appear in Table A.1.
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Figure 5: Heterogeneous treatment effects by blockchain address balance

Note: These plots show heterogeneous treatment effects for affluent (top 10% richest addresses by pre-cybercrime balance) and non-affluent (bottom
10% poorest addresses) cybercrime victims. The outcome variables are victims’ risk-adjusted returns (top-left), total risk (top-right), diversifiable
risk (bottom-left), and non-diversifiable risk (bottom-right). The graphs plot the monthly coefficients from difference-in-differences models for the
post-cybercrime months 1 to 24. Definitions of all variables appear in Table A.1.
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Figure 6: Accuracy of a graph neural network model for cybercrime detection

Note: The plot shows the accuracy of a our graph neural network (GNN) model for ex-ante cybercrim-
inal detection on the Ethereum blockchain. We augment the Fraud Detection Graph Neural Network
(FDGNN) model by adding all features that have been shown to be economically meaningful to understand-
ing cybercrime-related activity on the Ethereum blockchain in our study. The F1 score of the augmented
model is around 0.7.
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Table 1: A taxonomy of cybercrime on Ethereum

Scam category Description # addresses # transactions $ received

Ponzi Scheme A type of investment fraud whereby cybercriminals lure investors with purport-
edly high returns with little to no risk. Without real underlying businesses, it
focuses mainly on attracting new investors to make promised payments to existing
investors.

124 1,539,927 989,408,032

Giveaway A scammer poses as a major company, exchange, or celebrity hosting a giveaway
and promises to send back, for instance, double the amount received from the
investor. As one of the most prevalent forms of scam, it is often advertised on
social media platforms.

1,914 18,814 297,119,907

Exploit Instances where an exploiter takes advantage of a vulnerability or bug to cause
unintended or unanticipated behavior to occur.

51 3,099 214,021,559

General Phishing Scam A type of social engineering where a fraudulent message is sent by an attacker
in an attempt to gain access to private data, resulting in stolen funds. When a
scam lacks information on a specific fraud type, it is included in our data set as a
general phishing scam.

2,453 93,558 80,618,544

Hack An attempt to gain access to private data, which can range from stolen private
keys to illegitimate or counterfeit hardware wallets, designed to steal funds.

110 87,247 22,269,413

Exchange Fake cryptocurrency exchanges posing as legitimate exchanges. Trading volumes
on these exchanges are often manipulated to appear credible. Users may be lured
with additional giveaway tokens. Once the money is received by scam exchanges,
users are in many cases burdened with high fees and/or denied crypto withdrawals.

113 10,529 11,092,274

Stolen crypto Instances whereby users had their private key stolen, or their wallets hacked. 279 9,893 9,917,668

Investment Cybercriminals pose as investment managers and contact victims offering crypto
investment products. They often require an upfront fee and may also ask for
private information to get access to the user’s assets.

313 12,515 9,773,136

Rug Pull/Exit Scam/ICO
Scam

Exit scammers are protocol founders or promoters who, during or after an initial
coin offering (ICO), disappear with funds raised by investors. A rug pull is a newer
form of exit scam where developers abandon a project and pull liquidity away from
decentralized exchanges entirely, causing the token value to plummet to zero.

39 798 5,671,271

49



Fake Token Scam Tokens that pose as well-known tokens by using similar token names and symbols.
Unsuspecting users will exchange them using real tokens. These scam tokens
usually have no value and cannot be traded.

35 1,280 2,974,719

Malware A type of phishing scam where malicious software is planted into a device in order
to gain access to the user’s funds.

18 1,320 1,871,751

Fake Token Sale Scam Scams propagated through malicious advertisements that imitate legitimate new
token launches. Scammers may also pose as well-known entities, promoting fake
new token sales tricking investors into purchasing their new fraudulent crypto
tokens.

21 373 956,928

Honeypot An attacker creates a seemingly vulnerable contract to lure users into believing
that the money can be drained if a particular sum of funds are sent to the contract
beforehand. The user’s fund will be trapped, and can only be recovered by the
attacker.

1 2 474,236

Darkweb Shop Darkweb-related activity and/or fake illegal shops designed to steal funds. 13 192 85,625

Charity Crypto projects impersonating charities after major events and asking for dona-
tions using phishing emails and websites.

11 111 79,802

Ransomware A type of phishing scam whereby software is planted on the user’s device in order
to encrypt files. This can compromise crypto private key information as well as
other credentials stored in the network unless a ransom is paid.

7 36 77,836

Hardfork Scam Cybercriminals create a fake network upgrade of major blockchains and ask users
to send respective tokens with the promise of new coins from the alleged new
protocols.

1 36 13,293

Sextortion Cybercriminals evoke fear by threatening victims with sharing their online behav-
iors such as visiting adult websites. Users are coerced into paying a ransom.

4 70 7,475

Other 137 4,181 4,974,454

Total 5,644 1,783,981 1,651,407,924

Note: This table presents 19 cybercrime categories observed on the Ethereum blockchain. The list is derived from two primary sources: Etherscan
and ScamAlert. Etherscan, a block explorer and analytics platform for Ethereum, assigns public name tags and labels to addresses that are of public
interest. Any address associated with fraudulent activities has a brief warning message attached to it, providing investors with details of the purported
scam. All blockchain addresses that Etherscan labeled as exploit, hack, heist, phish, Ponzi scheme, and/or scam are included. The authors have
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reclassified the scams into 19 finer categories based on the detailed information in the warning messages.
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Table 2: Matched variables and matching results

Matching Mean Treated Mean Control % bias % bias reduction

Blockchain address age
Before 7.6929 21.1131 -164.41 -
After 7.6929 7.6929 0.00 1.00

Trading activity
Before 4.2794 0.5966 7.18 -
After 4.2794 4.1992 0.16 97.83

Blockchain address balance
Before 5,712.05 3,271.02 0.66 -
After 5,712.05 5,266.08 0.12 81.73

Diversification
Before 1.6438 1.1025 18.25 -
After 1.6438 1.6254 0.62 96.60

Note: This table presents mean values of matching variables for both the treatment (victims) and
control (non-victims) groups. Each of our 200,865 victims is matched with a non-victim control
with the lowest Euclidean distance score. These scores are determined based on blockchain address
balance, blockchain address age, trading activity, and diversification, using data from the three
months leading up to the public revelation of the scam. Our final sample comprises address–month
observations from both our victim group (200,865) and our non-victim group (200,865). Definitions
of all variables appear in Table A.1.

Note: Standardized % bias for each covariate is calculated as the difference in means in the
treatment and control groups, divided by the standard deviation in the control group. This
value is then represented as a percentage.
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Table 3: Summary statistics for victims of cybercrime (treatment group)

Variable mean stddev min max q1 median q3
return 0.132 0.749 -1 176.271 -0.162 0 0.259
churn rate 0.055 0.358 0 59.656 0 0 0
diversification 2.346 6.408 1 637 1 1 1
blockchain address balance 9,218.949 3,145,094.447 0 2,826,598,945.187 2.52 15.702 75.566
trading activity 4.27 125.818 0 48,091 0 0 0
blockchain address age (month) 18.445 12.99 1 77 8 16 27
lotterytoken investor (dummy) 0.146 0.353 0 1 0 0 0
lotterytoken share 0.043 0.179 0 1 0 0 0
stablecoin investor (dummy) 0.048 0.214 0 1 0 0 0
stablecoin share 0.006 0.065 0 1 0 0 0
altcoin share 0.269 0.427 0 1 0 0 0.762
3-factor model:
diversifiable risk 0.311 0.975 0 211.339 0.175 0.179 0.223
non-diversifiable risk 0.095 0.161 0 38.843 0.081 0.102 0.109
total risk 0.407 1.075 0 214.245 0.273 0.279 0.301
market 3.609 2.355 -5.053 41.774 2.666 3.996 4.484
momentum -0.37 5.999 -21.289 58.54 -4.321 -2.552 0.158
size 0.551 2.178 -32.429 15.428 0.176 0.407 0.64
alpha 0.064 0.103 -0.485 1.335 0.001 0.077 0.132

Note: This table reports summary statistics for victims of all fraud types. Variables are constructed monthly
and our final sample includes address–month observations from 200,865 unique victim addresses. Definitions of
all variables appear in Table A.1.
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Table 4: Summary statistics for victims (treatment group) and non-victims/non-cybercriminals
(matched control group)

(1) (2) (3) (4)
3 months prior 3 months post

Variable Statistics Victims Non-victims Victims Non-victims

Return mean 0.090 0.085 0.214 0.147
(median) (0.000) (0.000) (0.043) (0.064)

Diversification mean 1.644 1.625 2.104 1.663
(median) (1.000) (1.000) (1.000) (1.000)

Blockchain address balance mean 5,712.046 5,266.077 8,178.883 6,686.706
(median) (11.968) (11.796) (11.821) (7.137)

Churn rate mean 0.088 0.09 0.081 0.071
(median) (0.000) (0.000) (0.000) (0.000)

Trading activity mean 4.279 4.199 6.082 1.864
(median) (0.000) (0.000) (0.000) (0.000)

Blockchain address age mean 7.693 7.693 10.345 10.345
(median) (5.000) (5.000) (8.000) (8.000)

Lottery token investor mean 0.107 0.127 0.118 0.127
(median) (0.000) (0.000) (0.000) (0.000)

Lottery token share mean 0.028 0.041 0.034 0.038
(median) (0.000) (0.000) (0.000) (0.000)

Stablecoin investor mean 0.070 0.129 0.075 0.136
(median) (0.000) (0.000) (0.000) (0.000)

Stablecoin share mean 0.009 0.03 0.008 0.023
(median) (0.000) (0.000) (0.000) (0.000)

Altcoin share mean 0.098 0.111 0.225 0.137
(median) (0.000) (0.000) (0.000) (0.000)

3-factor model:

Diversifiable Risk mean 0.105 0.106 0.301 0.218
(median) (0.099) (0.099) (0.176) (0.176)

Non-diversifiable Risk mean 0.199 0.195 0.117 0.108
(median) (0.18) (0.167) (0.114) (0.102)

Total Risk mean 0.305 0.300 0.418 0.325
(median) (0.307) (0.307) (0.293) (0.289)

Market mean 0.106 0.098 0.075 0.076
(median) (0.000) (0.000) (0.088) (0.088)

Momentum mean 2.584 2.464 3.374 3.608
(median) (3.498) (3.122) (4.36) (4.36)

Size mean 2.351 2.223 0.257 -1.179
(median) (0.000) (0.000) (-2.734) (-2.283)

Alpha mean -1.93 -1.773 0.569 -0.104
(median) (0.000) (0.000) (0.601) (0.263)

Note: This table presents the mean and median summary statistics for address–month
observations for victims and matched non-victims for 3 months pre- (columns 1 & 2) and
post-treatment (columns 3 & 4). Definitions of all variables appear in Table A.1.
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Table 5: Summary statistics for victims by scam type

Variable Statistics Ponzi Schemes Giveaways Phishing
Scams

Investment
Scams

Fake Token
Sales

Hack/
Stolencrypto

Exploit/
Hardfork Scams

Darkweb Shop/
Exchange/

Charity

Sextortion
Other

N 3,174,851 149,386 529,074 55,961 21,477 1,807,369 18,849 139,386 63,363

Return Mean 0.145 0.074 0.081 0.115 0.066 0.143 0.047 0.058 0.067
(Median) (0.077) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Churn Rate Mean 0.032 0.141 0.168 0.286 0.25 0.027 0.401 0.266 0.145
(Median) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Diversification Mean 1.459 5.302 8.696 6.095 11.063 1.174 8.129 4.92 6.442
(Median) (1.00) (2.00) (3.00) (1.00) (3.00) (1.00) (1.00) (2.00) (2.00)

Blockchain address Balance Mean 7,082.8 24,254.2 33,635.6 39,536.9 29,149.4 684.6 176,969.9 5,494.3 41,710.9
(Median) (15.404) (105.626) (32.89) (63.112) (156.371) (12.544) (72.779) (133.73) (84.418)

Trading Activity Mean 1.235 28.519 13.967 67.978 12.847 1.002 27.323 11.556 16.671
(Median) (0.00) (0.00) (0.00) (1) (0.00) (0.00) (1.00) (0.00) (0.00)

Blockchain address Age (Month) Mean 14.162 23.511 23.604 15.04 24.621 23.793 15.601 19.206 25.167
(Median) (12.00) (22.00) (22.00) (12.00) (23.00) (24.00) (10.00) (16.00) (24.00)

Lotterytoken Investor (Dummy) Mean 0.063 0.575 0.674 0.43 0.731 0.042 0.575 0.414 0.608
(Median) (0.00) (1.00) (1.00) (0.00) (1.00) (0.00) (1.00) (0.00) (1.00)

Lotterytoken Share Mean 0.016 0.156 0.23 0.116 0.203 0.014 0.133 0.065 0.148
(Median) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Stablecoin Investor (Dummy) Mean 0.038 0.092 0.109 0.3 0.115 0.006 0.421 0.352 0.073
(Median) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Stablecoin Share Mean 0.005 0.01 0.009 0.034 0.011 0.001 0.036 0.039 0.008
(Median) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Altcoin Share Mean 0.045 0.417 0.443 0.277 0.495 0.586 0.296 0.344 0.371
(Median) (0.00) (0.17) (0.298) (0.00) (0.016) (1.00) (0.506) (0.037) (0.069)

Note: This table presents the mean and median summary statistics for address–month observations for victims of various scam types. Definitions of all variables
appear in Table A.1.
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Table 6: Post-scam changes in blockchain address-level risk-taking (treatment effects for victims vs. matched non-victims/non-
cybercriminals), 3-month

Average Treatment Effects Heterogeneous Treatment Effects by Cybercrime Type
All All Ponzi Give- Phishing Investment Fake token Hack Exploit Darkweb Sextortion

scams scams scheme away scam scam shop
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Total Risk
Post-scam 0.0284*** 0.0417 -0.01*** 0.015 -0.004 -0.015 -0.01 0.122*** 0.187** -0.134 -0.056**

(0.002) (0.003) (0.002) (0.018) ( 0.012) (0.033) (0.014) (0.004) (0.066) (0.082) (0.018)

Victim 0.1033*** 0.1165*** -0.014*** 0.071*** 0.13*** 0.217*** 0.035** 0.454*** 0.111⋆ -0.161⋆ -0.046**

(0.002) (0.003) (0.002) (0.014) ( 0.018) (0.067) (0.013) (0.005) (0.043) (0.076) (0.015)

Post-scam × Victim -0.0157*** -0.0421*** 0.021*** -0.028 -0.011 -0.094 0.031 -0.231*** -0.345*** 0.27 0.109***

(0.004) (0.005) (0.004) (0.025) ( 0.024) (0.077) (0.023) (0.008) (0.108) (0.154) (0.029)

Blockchain address age 0.0033*** 0.0035⋆ 0.003*** -0.001 -0.001 -0.002 -0.001⋆ 0.011*** 0.001** 0.004*** 0.003***

(0.000) (0.000) (0.0) (0.001) ( 0.0) (0.001) (0.0) (0.0) (0.0) (0.0) (0.0)
Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.020 0.020 0.003 0.001 0.001 0.0 0.011 0.116 0.006 0.004 0.0
No. obs. 4,540,665 4,540,665 2,462,468 96,288 308,302 57,112 11,745 1,290,330 33,374 190,849 90,197

Panel B: Non-Diversifiable Risk
Post-scam -0.0045*** 0.0005*** 0.001*** -0.001 -0.005*** -0.025*** -0.007 0.008*** -0.011⋆ -0.041*** -0.034***

(0.000) (0.000) (0.000) (0.002) ( 0.001) (0.006) (0.004) (0.001) (0.006) (0.009) (0.006)

Victim 0.0011*** 0.0062*** 0.011*** 0.001 -0.001 0.007 -0.002 -0.0 -0.034*** -0.044*** -0.029***

(0.000) (0.000) (0.000) (0.002) ( 0.002) (0.012) (0.003) (0.001) (0.005) (0.009) (0.006)

Post-scam × Victim 0.0043*** -0.0058*** -0.007*** 0.005 0.01*** 0.027 0.018** -0.014*** 0.031*** 0.081*** 0.067***

(0.001) (0.001) (0.001) (0.003) ( 0.002) (0.014) (0.006) (0.002) (0.009) (0.018) (0.012)

Blockchain address age -0.0003*** 0.0002*** -0.004*** -0.0 -0.001*** -0.0 -0.001*** -0.001*** 0.001*** -0.001*** 0.0
(0.000) (0.000) (0.0) (0.0) ( 0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.007 0.014 0.011 0.028 0.01 0.002 0.05 0.03 0.052 0.028 0.037
No. obs. 4,540,665 4,540,665 2,462,468 96,288 308,302 57,112 11,745 1,290,330 33,374 190,849 90,197

Panel C: Diversifiable Risk
Post-scam 0.0329*** 0.0412*** -0.011*** 0.016 0.002 0.01 -0.002 0.114*** 0.198** -0.094 -0.022

(0.001) (0.003) (0.002) (0.017) ( 0.011) (0.028) (0.012) (0.003) (0.064) (0.073) (0.016)

Victim 0.1022*** 0.1103*** -0.025*** 0.07*** 0.131*** 0.21*** 0.038*** 0.454*** 0.144*** -0.117 -0.017
(0.002) (0.003) (0.002) (0.013) ( 0.017) (0.056) (0.011) (0.004) (0.041) (0.067) (0.012)

Post-scam × Victim –0.0200*** –0.0363*** 0.028*** -0.032 -0.021 -0.121 0.013 -0.217*** -0.376*** 0.189 0.042
(0.004) (0.005) (0.003) (0.023) ( 0.023) (0.064) (0.019) (0.007) (0.104) (0.137) (0.024)

Blockchain address age 0.0037*** 0.0036⋆ 0.004*** -0.0 -0.001 -0.001 0.0 0.01*** 0.002*** 0.003*** 0.003***

(0.000) (0.000) (0.0) (0.001) ( 0.0) (0.001) (0.0) (0.0) (0.0) (0.0) (0.0)
Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.023 0.024 0.004 0.002 0.001 0.0 0.019 0.139 0.011 0.003 0.003
No. obs. 4,540,665 4,540,665 2,462,468 96,288 308,302 57,112 11,745 1,290,330 33,374 190,849 90,197
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Note: These are difference-in-differences regressions to estimate the treatment effects of cybercrime on victim addresses’ risk-taking. The dependent
variables are total, diversifiable, and non-diversifiable risk-taking in Panels A, B, and C, respectively. The independent variables are a post-scam
dummy that takes the value of 1 in the post-scam period, 0 otherwise; a victim dummy that takes a value of 1 for victims and 0 for matched non-
victims, and their interaction term, i.e., the difference-in-differences estimator. We also control for blockchain address age, and include calendar-month
and cybercrime-type fixed effects. The first two columns show the average treatment effects across all cybercrime types, while columns 3 to 11 show
heterogeneous treatment effects for each cybercrime type separately. The regressions are estimated over the symmetric [–3, +3] event window with
respect to the cybercrime month 0. Definitions of all variables appear in Table A.1.
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Table 7: Post-scam changes in blockchain address-level risk-taking (treatment effects for victims vs. matched non-victims/non-
cybercriminals), 12-month

Average Treatment Effects Heterogeneous Treatment Effects by Cybercrime Type
All All Ponzi Give- Phishing Investment Fake token Hack Exploit Darkweb Sextortion

scams scams scheme away scam scam shop
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Total Risk
Post-scam 0.0058*** 0.0158*** –0.0314*** 0.0287*** 0.0130*** 0.0475** 0.0115 0.1109*** 0.3913*** –0.2327*** –0.0617***

(0.001) (0.001) (0.001) (0.012) (0.008) (0.023) (0.009) (0.003) (0.092) (0.052) (0.012)

Victim 0.0871*** 0.0970*** –0.0320*** 0.0787*** 0.1532*** 0.2993*** 0.0555*** 0.4487*** 0.2433*** –0.2592*** –0.0583***

(0.001) (0.001) (0.001) (0.008) (0.010) (0.049) (0.009) (0.003) (0.059) (0.051) (0.009)

Post-scam × Victim 0.0230*** 0.0033 0.0604*** –0.0495*** -0.0508 –0.2390*** –0.0109 –0.2150*** –0.6818*** 0.4665*** 0.1270***

(0.002) (0.003) (0.002) (0.017) (0.0014) (0.064) (0.014) (0.006) (0.150) (0.100) (0.019)

Blockchain address age 0.0031*** 0.0034*** 0.0029*** 0.000*** –6.338e-05 –0.0024*** 3.465e-05 0.0134*** 0.0003*** 0.0033*** 0.0030***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.001 0.018 0.002 0.000 0.001 0.000 0.009 0.117 0.009 0.004 0.001
No. obs. 7,837,125 7,837,125 4,661,547 152,595 520,739 84,237 19,133 1,985,775 35,379 268,411 109,309

Panel B: Non-Diversifiable Risk
Post-scam –0.0019*** 0.0039*** 0.0069*** –0.0032*** –0.0084*** –0.0274** –8.606e-05 0.0082*** 0.0036 –0.0747*** –0.0305***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.004) (0.002) (0.000) (0.005) (0.007) (0.003)

Victim 0.0054*** 0.0112*** 0.0199*** –0.0020** –0.0030*** 0.0082 0.0045** –0.0010** –0.0206*** –0.0815*** –0.0272***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.009) (0.002) (0.000) (0.004) (0.007) (0.003)

Post-scam × Victim –0.0027*** –0.0142*** –0.0219*** 0.0089*** 0.0154*** 0.0276** 0.0035 –0.0130*** 0.0028*** 0.1519*** 0.0617***

(0.000) (0.000) (0.000) (0.002) (0.001) (0.012) (0.003) (0.001) (0.080) (0.013) (0.006)

Blockchain address age –0.0001*** 0.0000*** –2.068e-05*** –0.0005*** –0.0003*** –0.0012*** –0.0008*** 0.0006*** –0.0013*** 0.0002*** 0.0003***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.003 0.008 0.012 0.015 0.005 0.001 0.029 0.020 0.049 0.013 0.033
No. obs. 7,837,125 7,837,125 4,661,547 152,595 520,739 84,237 19,133 1,985,775 35,379 268,411 109,309

Panel C: Diversifiable Risk
Post-scam 0.0077*** 0.0119*** –0.0383*** 0.0319** 0.0214*** 0.0115*** 0.018 0.1027*** 0.3877*** –0.1580*** –0.0312***

(0.001) (0.001) (0.001) (0.011) (0.007) (0.020) (0.008) (0.002) (0.089) (0.046) (0.011)

Victim 0.0817*** 0.0858*** –0.0519*** 0.0807*** 0.1562*** 0.2912 0.0510*** 0.4497*** 0.2639*** –0.1776*** –0.0311***

(0.001) (0.001) (0.001) (0.008) (0.010) (0.041) (0.007) (0.003) (0.057) (0.046) (0.008)

Post-scam × Victim 0.0257*** 0.0175*** 0.0822*** –0.0584*** -0.0662*** –0.2666** –0.0144 –0.2020*** -0.6846*** 0.3147*** 0.0653***

(0.000) (0.002) (0.001) (0.015) (0.014) (0.012) (0.003) (0.005) (0.145) (0.088) (0.017)

Blockchain address age 0.0032*** 0.0034*** 0.0029*** 0.0006 0.0002 –0.0013** 0.0008*** 0.0127*** 0.0017*** 0.0031*** 0.0027***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.021 0.021 0.002 0.001 0.001 0.000 0.018 0.140 0.013 0.003 0.002
No. obs. 7,837,125 7,837,125 4,661,547 152,595 520,739 84,237 19,133 1,985,775 35,379 268,411 109,309
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Note: These are difference-in-differences regressions to estimate the treatment effects of cybercrime on victim addresses’ risk-taking. The dependent
variables are total, diversifiable, and non-diversifiable risk-taking in Panels A, B, and C, respectively. The independent variables are a post-scam
dummy that takes the value of 1 in the post-scam period, 0 otherwise; a victim dummy that takes a value of 1 for victims and 0 for matched non-
victims, and their interaction term, i.e., the difference-in-differences estimator. We also control for blockchain address age, and include calendar-month
and cybercrime-type fixed effects. The first two columns show the average treatment effects across all cybercrime types, while columns 3 to 11 show
heterogeneous treatment effects for each cybercrime type separately. The regressions are estimated over the symmetric [–12, +12] event window with
respect to the cybercrime month 0. Definitions of all variables appear in Table A.1.
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Table 8: Treatment effects of cybercrime on victims’ risk-adjusted returns (alphas)

Average Treatment Effects Heterogeneous Treatment Effects by Cybercrime Type
All All Ponzi Give- Phishing Investment Fake token Hack Exploit Darkweb Sextortion

scams scams scheme away scam scam shop
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Alpha, 3-month event window

Post-scam 0.0156*** 0.0171*** 0.021*** 0.002 0.007*** -0.001 -0.0 0.013*** 0.101*** -0.006 -0.02***

(0.000) (0.000) (0.0) (0.002) ( 0.001) (0.004) (0.005) (0.001) (0.01) (0.005) (0.006)

Victim 0.0148*** 0.0163*** 0.029*** -0.001 -0.001 -0.013*** -0.02*** -0.011*** 0.086*** -0.018*** -0.024***

(0.000) (0.000) (0.0) (0.002) ( 0.001) (0.004) (0.005) (0.0) (0.008) (0.004) (0.006)

Post-scam × Victim –0.0353*** –0.0383*** -0.044*** -0.001 -0.01*** 0.009 0.009 -0.023*** -0.201*** 0.02⋆ 0.039***

(0.000) (0.001) (0.001) (0.003) ( 0.001) (0.006) (0.009) (0.001) (0.017) (0.009) (0.011)

Blockchain address age –0.0032*** –0.0030*** -0.004*** -0.004*** -0.002*** -0.002*** -0.003*** -0.003*** -0.001*** -0.002*** -0.003***

(0.000) (0.000) (0.0) (0.0) ( 0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.185 0.191 0.13 0.051 0.037 0.051 0.102 0.045 0.037 0.132 0.037
No. obs. 4,540,665 4,540,665 2,462,468 96,288 308,302 57,112 11,745 1,290,330 33,374 190,849 90,197

Panel B: Alpha, 12-month event window

Post-scam 0.0214*** 0.0285*** 0.0380*** 0.0014 0.0116*** 0.0104*** –0.0030 0.0130*** 0.0996*** –0.0091** –0.0139***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.003) (0.003) (0.000) (0.011) (0.004) (0.003)

Victim 0.0211*** 0.0282*** 0.0470*** -0.0027** 0.0033*** –0.0044 –0.0250*** –0.0113*** 0.0785*** –0.0240*** –0.0189***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.003) (0.003) (0.000) (0.008) (0.004) (0.003)

Post-scam × Victim –0.0475*** –0.0617*** –0.0797*** 0.0021 –0.0186*** –0.0120** 0.0169*** –0.0235*** –0.1911*** 0.0294*** 0.0286***

(0.000) (0.000) (0.000) (0.002) (0.001) (0.006) (0.005) (0.001) (0.017) (0.007) (0.006)

Blockchain address age –0.0031*** –0.0031*** –0.0039*** –0.0022*** –0.0015*** –0.0024*** –0.0026*** –0.0012*** –0.0018*** –0.0026*** –0.0021***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scam-type FEs ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Adj. R2 0.179 0.184 0.091 0.050 0.034 0.046 0.108 0.049 0.031 0.137 0.036
No. obs. 7,837,125 7,837,125 4,661,547 152,595 520,739 84,237 19,133 1,985,775 35,379 268,411 109,309

Note: These are difference-in-differences regressions to estimate the treatment effects of cybercrime on victims’ risk-adjusted returns. The dependent
variable are address-level alphas estimated from the three-factor crypto-asset pricing model in Liu et al. (2022). Panels A and B show regression
results for the 3- and 12-month symmetric event windows, respectively. The independent variables are a post-scam dummy that takes the value of 1
in the post-scam period, 0 otherwise; a victim dummy that takes a value of 1 for victims and 0 for matched non-victims, and their interaction term,
i.e., the difference-in-differences estimator. We also control for blockchain address age, and include calendar-month and cybercrime-type fixed effects.
The first two columns show the average treatment effects across all cybercrime types, while columns 3 to 11 show heterogeneous treatment effects for
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each cybercrime type separately. Definitions of all variables appear in Table A.1.
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Table 9: Correlations between investor behavior, risk, and return in victims’ post-scam blockchain
addresses

Trading Churn Diversifi- % Stablecoins % Altcoins % Lottery
activity rate cation tokens

(1) (2) (3) (4) (5) (6)

Panel A: 3-month

Alpha × Post-scam × Victim -20.067*** -0.478*** 1.517*** 0.081*** 0.164*** 0.024
(3.543) (0.083) (0.309) (0.005) (0.048) (0.014)

Alpha × Post-scam 4.698*** 0.151⋆ -2.944*** -0.033*** -0.114*** -0.066***

(1.207) (0.068) (0.163) (0.003) (0.02) (0.009)

Alpha × Victim -13.109*** -0.032 -5.912*** -0.129*** -0.421*** 0.029***

(2.259) (0.033) (0.226) (0.004) (0.04) (0.007)

Non-diversifiable risk × Post-scam × Victim 2.142 0.083 0.626 0.083*** 0.149 -0.029
(3.714) (0.088) (0.615) (0.013) (0.113) (0.022)

Non-diversifiable risk × Post-scam -18.331*** -0.028 -1.079*** -0.071*** -0.137*** 0.047**

(2.28) (0.075) (0.318) (0.009) (0.039) (0.016)

Non-diversifiable risk × Victim 4.435⋆ 0.009 1.025⋆ -0.042*** 0.125 -0.003
(1.754) (0.02) (0.421) (0.008) (0.09) (0.011)

Diversifiable risk × Post-scam × Victim 0.097 -0.022⋆ -0.544*** -0.009*** -0.106*** -0.024***

(0.316) (0.009) (0.118) (0.002) (0.022) (0.006)

Diversifiable risk × Post-scam 0.487⋆ 0.024** 0.508*** 0.009*** 0.06*** 0.024***

(0.22) (0.007) (0.096) (0.002) (0.012) (0.006)

Diversifiable risk × Victim 0.216 0.016*** 0.237*** 0.005*** 0.068*** 0.01***

(0.185) (0.005) (0.061) (0.001) (0.018) (0.003)

Post-scam × Victim 6.612*** 0.036*** 0.345*** -0.007*** -0.007⋆ -0.015***

(0.284) (0.002) (0.017) (0.0) (0.003) (0.001)

Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓
Scam type FEs ✓ ✓ ✓ ✓ ✓ ✓

Adj. R2 0.007 0.065 0.128 0.031 0.229 0.066
No. obs. 4,540,665 4,540,665 4,540,665 4,540,665 4,540,665 4,540,665

Panel B: 12-month

Alpha × Post-scam × Victim -20.525*** -0.132*** 3.844*** 0.111*** 0.306*** 0.018
( 2.517) ( 0.033) ( 0.211) ( 0.004) ( 0.032) ( 0.01)

Alpha × Post-scam 2.998*** -0.03 -3.266*** -0.033*** -0.065*** -0.008
( 0.448) ( 0.022) ( 0.097) ( 0.002) ( 0.014) ( 0.006)

Alpha × Victim -11.687*** -0.215*** -7.623*** -0.15*** -0.577*** -0.015***

( 0.878) ( 0.014) ( 0.149) ( 0.003) ( 0.024) ( 0.004)

Non-diversifiable risk × Post-scam × Victim 3.397 0.175*** 0.818 0.123*** 0.507*** 0.104***

( 2.239) ( 0.047) ( 0.457) ( 0.01) ( 0.087) ( 0.02)

Non-diversifiable risk × Post-scam -14.604*** -0.088** -1.745*** -0.101*** -0.465*** -0.055***

( 0.933) ( 0.032) ( 0.243) ( 0.006) ( 0.041) ( 0.014)

Non-diversifiable risk × Victim 1.437** -0.024 1.102*** -0.052*** 0.089 -0.039***

( 0.482) ( 0.013) ( 0.294) ( 0.006) ( 0.059) ( 0.008)

Diversifiable risk : Post-scam × Victim 0.239 -0.022*** -0.624*** -0.014*** -0.142*** -0.04***

( 0.153) ( 0.005) ( 0.077) ( 0.001) ( 0.015) ( 0.005)

Diversifiable risk × Post-scam 0.453*** 0.025*** 0.566*** 0.011*** 0.084*** 0.032***

( 0.087) ( 0.003) ( 0.06) ( 0.001) ( 0.01) ( 0.004)

Diversifiable risk × Victim 0.018 0.013*** 0.269*** 0.006*** 0.078*** 0.017***

( 0.047) ( 0.002) ( 0.037) ( 0.001) ( 0.01) ( 0.002)

Post-scam × Victim 7.368*** 0.057*** 0.386*** -0.004*** 0.0 -0.009***

( 0.27) ( 0.002) ( 0.013) ( 0.0) ( 0.003) ( 0.001)

Calendar-month FEs ✓ ✓ ✓ ✓ ✓ ✓
Scam type FEs ✓ ✓ ✓ ✓ ✓ ✓

Adj. R2 0.006 0.053 0.133 0.027 0.293 0.080
No. obs. 7,837,125 7,837,125 7,837,125 7,837,125 7,837,125 7,837,125
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Note: These are difference-in-differences-in-differences (i.e., triple differences) regressions to explore corre-
lations between various proxies for investor behavior and the estimated treatment effects for risk-adjusted
returns and risk-taking. The dependent variables are trading activity, churn rate, diversification, stablecoin,
altcoin, and lottery token holdings in % in columns 1, 2, 3, 4, 5, and 6, respectively. The independent vari-
ables are our difference-in-differences variables (victim dummy, post-scam dummy, and their interaction),
which are simultaneously interacted with risk-adjusted returns, non-diversifiable risk-taking, and diversifi-
able risk-taking. We also include calendar-month and cybercrime-type fixed effects. The regressions are
estimated over the symmetric [–3, +3] and [–12, +12] event windows with respect to the cybercrime month
0 in Panels A and B, respectively. Definitions of all variables appear in Table A.1.
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Table 10: Treatment effects on victims in bull versus bear markets, 3-month

Bear Market Bull Market

Panel A: Total Risk

Post-scam −0.057*** −0.059* −0.112*** −0.013**

(0.004) (0.004) (0.001) (0.001)
Victim 0.041 0.040 0.234*** 0.334**

(0.004) (0.004) (0.003) (0.003)
Post-scam × Victim 0.088 0.092 0.268*** 0.068

(0.005) (0.005) (0.003) (0.003)
Account age 0.004 0.004 0.020*** 0.024**

(0.001) (0.001) (0.001) (0.001)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 −0.0 −0.003 0.031 0.032
No. obs. 45718 45718 1123429 1123429

Panel B: Non-Diversifiable Risk

Post-scam −0.006*** −0.008** −0.013*** 0.001*

(0.001) (0.002) (0.001) (0.001)
Victim −0.010*** −0.012** −0.019*** −0.005**

(0.001) (0.002) (0.001) (0.001)
Post-scam × Victim 0.010*** 0.013** 0.026*** −0.001

(0.002) (0.003) (0.001) (0.001)
Account age 0.002*** 0.002** 0.001*** 0.002**

(0.001) (0.002) (0.001) (0.001)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 0.007 0.005 0.017 0.029
No. obs. 45718 45718 1123429 1123429

Panel C: Diversifiable Risk

Post-scam −0.051* −0.052* −0.1*** −0.014**

(0.002) (0.002) (0.001) (0.001)
Victim 0.052 0.051 0.253*** 0.339**

(0.002) (0.002) (0.003) (0.003)
Post-scam × Victim 0.078 0.079 0.242*** 0.069**

(0.003) (0.003) (0.002) (0.002)
Account age 0.002*** 0.002** 0.018*** 0.022**

(0.001) (0.002) (0.001) (0.001)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 −0.0 −0.003 0.032 0.034
No. obs. 45718 45718 1123429 1123429

Panel D: Alpha

Post-scam 0.000 0.002 −0.018*** −0.003**

(0.001) (0.001) (0.001) (0.001)
Victim −0.012*** −0.011** −0.033*** −0.019**

(0.001) (0.001) (0.001) (0.001)
Post-scam × Victim 0.003 −0.000 0.035*** 0.005**

(0.002) (0.002) (0.001) (0.001)
Account age −0.001*** −0.001** −0.003*** −0.002**

(0.001) (0.001) (0.001) (0.001)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 0.007 0.007 0.057 0.074
No. obs. 45718 45718 1123429 1123429

Note: These are difference-in-differences regressions to estimate the treatment effects of cybercrime on victim
addresses’ risk-taking and risk-adjusted returns in subsamples of victims that fell for a scam in a bull market
(columns 1 and 2) and a bear market (columns 3 and 4). The dependent variables are total, diversifiable,
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non-diversifiable risk-taking, and alphas in Panels A, B, C, and D, respectively. The independent variables
are a post-scam dummy that takes the value of 1 in the post-scam period, 0 otherwise; a victim dummy
that takes a value of 1 for victims and 0 for matched non-victims, and their interaction term, i.e., the
difference-in-differences estimator. We also control for blockchain address age, and include calendar-month
and cybercrime-type fixed effects. The regressions are estimated over the symmetric [–3, +3] event window
with respect to the cybercrime month 0. Definitions of all variables appear in Table A.1.
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Table 11: Treatment effects for victims in small- versus large-scale cybercrimes, 3-month

Victims in a small group Victims in a large group

Panel A: Total Risk

Post-scam 0.018*** 0.020** −0.011*** −0.012**

(0.001) (0.001) (0.001) (0.001)
Victim 0.202*** 0.206*** −0.007* −0.008**

(0.003) (0.003) (0.002) (0.002)
Post-scam × Victim −0.051*** −0.052** 0.023*** 0.023**

(0.002) (0.002) (0.002) (0.002)
Account age 0.001*** 0.001** 0.003*** 0.003**

(0.000) (0.000) (0.000) (0.000)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 0.005 0.006 0.003 0.003
No. obs. 1314067 1314067 1416688 1416688

Panel B: Non-Diversifiable Risk

Post-scam −0.005*** −0.006** 0.002*** 0.001**

(0.000) (0.000) (0.000) (0.000)
Victim −0.002** −0.003* 0.014*** 0.014**

(0.000) (0.000) (0.000) (0.000)
Post-scam × Victim 0.010*** 0.011** −0.010*** −0.010**

(0.001) (0.001) (0.001) (0.001)
Account age −0.000*** −0.000** −0.000*** −0.000**

(0.000) (0.000) (0.000) (0.000)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 0.012 0.016 0.016 0.018
No. obs. 1314067 1314067 1416688 1416688

Panel C: Diversifiable Risk

Post-scam 0.023** 0.026** −0.013** −0.013**

(0.001) (0.001) (0.001) (0.001)
Victim 0.205*** 0.209*** −0.021*** −0.022**

(0.003) (0.003) (0.002) (0.002)
Post-scam × Victim −0.061*** −0.063** 0.033*** 0.034**

(0.002) (0.002) (0.002) (0.002)
Account age 0.001*** 0.002** 0.004*** 0.004**

(0.000) (0.000) (0.000) (0.000)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 0.006 0.007 0.004 0.004
No. obs. 1314067 1314067 1416688 1416688

Panel D: Alpha

Post-scam 0.008*** 0.009** 0.018** 0.018**

(0.000) (0.000) (0.000) (0.000)
Victim −0.004*** −0.003** 0.027*** 0.027***

(0.000) (0.000) (0.000) (0.000)
Post-scam × Victim −0.013** −0.013** −0.041*** −0.041**

(0.001) (0.001) (0.001) (0.001)
Account age −0.002*** −0.002** −0.004*** −0.004**

(0.000) (0.000) (0.000) (0.000)
Calendar-month FEs Yes Yes Yes Yes
Scam-type FEs No Yes No Yes
Adj. R2 0.044 0.058 0.149 0.149
No. obs. 1314067 1314067 1416688 1416688

Note: These are difference-in-differences regressions to estimate the treatment effects of cybercrime on victim
addresses’ risk-taking and risk-adjusted returns in subsamples of victims that fell for a scam in a relatively
small group (columns 1 and 2) and a relatively large group (columns 3 and 4). The dependent variables
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are total, diversifiable, non-diversifiable risk-taking, and alphas in Panels A, B, C, and D, respectively. The
independent variables are a post-scam dummy that takes the value of 1 in the post-scam period, 0 otherwise;
a victim dummy that takes a value of 1 for victims and 0 for matched non-victims, and their interaction
term, i.e., the difference-in-differences estimator. We also control for blockchain address age, and include
calendar-month and cybercrime-type fixed effects. The regressions are estimated over the symmetric [–3,
+3] event window with respect to the cybercrime month 0. Definitions of all variables appear in Table A.1.
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Table 12: Predictors of cybercriminals

All Ponzi Give- Phishing Investment Fake token Hack Exploit Darkweb Sextortion
Scams scam away scam shop

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Blockchain address age -0.0 0.001⋆ -0.0 0.0 0.0 0.001 -0.0 -0.0 0.001 0.001
(0.0) (0.001) ( 0.0) (0.0) (0.001) (0.001) (0.001) (0.001) (0.001) (0.0)

Diversification 0.007*** 0.01*** 0.002*** 0.008*** 0.012*** 0.017*** 0.005*** 0.009*** 0.012*** 0.017***

(0.0) (0.001) ( 0.001) (0.0) (0.002) (0.005) (0.001) (0.001) (0.001) (0.001)

Lottery token share -0.459*** -0.534*** -0.371*** -0.49*** -0.483*** -0.538*** -0.462*** -0.367*** -0.584*** -0.623***

(0.003) (0.018) ( 0.007) (0.005) (0.014) (0.033) (0.014) (0.03) (0.021) (0.011)

Stablecoin share -0.331*** -0.524*** -0.403*** -0.361*** -0.344*** -0.259*** -0.247*** -0.205*** -0.302*** -0.15***

(0.005) (0.016) ( 0.01) (0.009) (0.014) (0.049) (0.017) (0.058) (0.021) (0.029)

Altcoin share 0.202*** 0.151*** 0.19*** 0.251*** 0.016 -0.135** 0.155*** -0.37*** 0.121*** 0.146***

(0.005) (0.027) ( 0.01) (0.007) (0.024) (0.048) (0.018) (0.032) (0.036) (0.02)

Adj. R2 0.138 0.212 0.081 0.177 0.152 0.156 0.211 0.141 0.187 0.164
No. obs. 82894 3580 24458 34714 6152 1182 4304 878 2498 5128

Note: This table reports regression results examining the characteristics of addresses that belong to cybercriminals (Panel A) and
victims (Panel B). The dependent variable is a dummy variable which takes a value of 1 if the address belongs to a cybercriminal
(victim). Robust standard error in parenthesis. Definitions of all variables appear in Table A.1.
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Table A.1: Variable definitions

Variable Definition
Barber and Odean (2000)
raw return

Gross monthly return on investment using the beginning-of-day position
statements. Following Barber and Odean (2000), all tokens are assumed to
be bought or sold at the end of the month and ignore intra-month trading.
The monthly return on the investor i’s portfolio is calculated as:

returni,t =
∑
j∈Q

wj,tRj,t

where j refers to different tokens in investor i’s portfolio at time t, w refers
to the weight of the $ value for the holdings of token j in the total portfolio
value at the beginning of the month, and R is the gross monthly return of
token j.

Total Risk Total risk refers to the overall variability or volatility of the return for a
specific address i at time t. It encompasses all sources of risk, including
both diversifiable and non-diversifiable components.

Diversifiable Risk Diversifiable risk, also known as idiosyncratic risk, represents the portion of
the total risk of the return that can be eliminated through diversification.
It refers to the risk specific to the address i at time t and is captured by the
variance of ϵi,t in equation (2).

Non-Diversifiable Risk Non-diversifiable risk, also known as systematic risk, is the portion of the
total risk of the return that cannot be eliminated through diversification. It
captures the common risk factors that affect a broad range of addresses and
is measured by subtracting the diversifiable risk from the total risk.

Churn rate We measure investment horizon by calculating for each blockchain address
how frequently the holder’s positions are rotated on all of the portfolio’s
tokens (Gaspar et al., 2005). The churn rate of address i at day t is calculated
as:

churn ratei,t =
∑

j∈Q
|Nj,i,tPj,i,t − Nj,i,t−1Pj,i,t−1 − Nj,i,t−1∆Pj,t|∑

j∈Q

Nj,i,tPj,i,t+Nj,i,t−1Pj,i,t−1
2

where Pj,t and Nj,i,t represent the price and the number of tokens of token
j held by blockchain address i at month t.

Blockchain address balance We measure the balance of each address by summing over the $ value of all
tokens held by a blockchain address:

blockchainaddress balancei,t =
∑
j∈Q

Nj,i,tPj,i,t

where Nj,i,t and Pj,i,t represent the number of tokens and the price of token
j held by address i at month t.

(Continued)
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Table A.1 – Continued
Variable Definition
Diversification Diversification refers to the number of unique tokens held within an address

at the end of each month.

Trading activity Trading activity represents the number of transactions, including purchases
and sales, measured at the end of each month.

Blockchain address age Blockchain address age denotes the duration in months since the address
became active.

Lottery token investor A dummy variable that takes a value of 1 if the investor has made investments
in lottery tokens in that month. Lottery tokens are defined as tokens with
a share price lower than 10 cents.

Lottery token share Lottery token share corresponds to the proportion of the investor’s total
portfolio allocated to lottery tokens at the end of each month.

Stablecoin investor A dummy variable that takes a value of 1 if the investor has made invest-
ments in stablecoins in that month. A token is deemed a stablecoin if it is
designed to maintain a steady value, which can be achieved either by linking
it to a specific commodity or currency, or by regulating its supply through
algorithmic means.

Stablecoin share Stablecoin share represents the percentage of the investor’s total portfolio
consisting of stablecoins at the end of each month.

Altcoin share Altcoin share indicates the proportion of the investor’s total portfolio allo-
cated to altcoins at the end of each month. Altcoins are defined as tokens
issued by start-ups to finance their blockchain projects. Currency tokens
(ETH, WBTC, etc.) or stablecoins are excluded.
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Table A.2: Cybercriminals (all types)

Variable mean stddev min max q1 median q3
return 0.069 0.779 -1 65.6 -0.021 0 0.058
churn rate 0.076 0.38 0 18.151 0 0 0
diversification 4.521 12.431 1 287 1 1 2
blockchain address balance 56,246.866 2,072,803.766 0 229,506,948.254 0 0.29 39.413
trading activity 301.238 16,916.938 0 2,400,319 0 0 0
blockchain address age (month) 19.68 13.757 1 76 7 17 30
lotterytoken investor (dummy) 0.296 0.457 0 1 0 0 1
lotterytoken share 0.109 0.288 0 1 0 0 0
stablecoin investor (dummy) 0.106 0.308 0 1 0 0 0
stablecoin share 0.024 0.138 0 1 0 0 0
altcoin share 0.211 0.388 0 1 0 0 0.082
3-factor model:
diversifiable risk 0.24 0.621 0 12.844 0.023 0.123 0.191
non-diversifiable risk 0.075 0.152 0 3.607 0.004 0.048 0.111
total risk 0.316 0.699 0 16.451 0.053 0.221 0.292
market 2.597 4.751 -23.913 78.281 0.172 1.847 4.151
momentum 1.288 11.782 -145.027 218.3 -1.394 0 0.463
size -0.473 6.888 -158.4 17.035 -0.205 0.006 0.635
alpha 0.023 0.173 -1.156 2.759 -0.016 0 0.053

Note: This table reports summary statistics for cybercriminals of all fraud types. Variables are constructed
monthly and our final sample includes address–month observations from 1,467 unique cybercriminal addresses.
Definitions of all variables appear in Table A.1.
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Table A.3: Non-cybercriminals (all types)

Variable mean stddev min max q1 median q3
return 0.061 0.843 -1 89.998 -0.075 0 0.077
churn rate 0.087 0.586 0 56.487 0 0 0
diversification 2.615 4.825 1 89 1 1 2
blockchain address balance 50,663.996 1,158,625.327 0 83,760,132.375 0 2.252 205.02
trading activity 23.416 1,199.593 0 147,241 0 0 0
blockchain address age (month) 19.682 13.756 1 76 7 17 30
lotterytoken investor (dummy) 0.318 0.466 0 1 0 0 1
lotterytoken share 0.092 0.264 0 1 0 0 0
stablecoin investor (dummy) 0.11 0.313 0 1 0 0 0
stablecoin share 0.016 0.115 0 1 0 0 0
altcoin share 0.208 0.381 0 1 0 0 0.079
3-factor model:
diversifiable risk 0.221 0.653 0 13.644 0.018 0.158 0.202
non-diversifiable risk 0.085 0.137 0 2.287 0.009 0.062 0.114
total risk 0.306 0.713 0 14.066 0.079 0.234 0.299
momentum 0.834 8.988 -79.788 123.634 -1.663 -0.002 0.436
size -0.368 6.606 -138.591 29.716 -0.438 0 0.722
alpha 0.025 0.265 -0.696 7.623 -0.026 0 0.054

Note: This table reports summary statistics for non-cybercriminals of all fraud types. Variables are constructed
monthly and our final sample includes address–month observations from 1,467 unique non-cybercriminal addresses.
Definitions of all variables appear in Table A.1.
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