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Abstract
A standing assumption in the literature on proportional transaction costs is efficient
friction. Together with robust no free lunch with vanishing risk, it rules out strategies
of infinite variation as they usually appear in frictionless markets. In this paper, we
show how the models with and without transaction costs can be unified.

The bid and ask prices of a risky asset are given by càdlàg processes which are
locally bounded from below and may coincide at some points. In a first step, we
show that if the bid–ask model satisfies “no unbounded profit with bounded risk” for
simple strategies, then there exists a semimartingale lying between the bid and ask
price processes.

In a second step, under the additional assumption that the zeros of the bid–ask
spread are either starting points of an excursion away from zero or inner points from
the right, we show that for every bounded predictable strategy specifying the amount
of risky assets, the semimartingale can be used to construct the corresponding self-
financing risk-free position in a consistent way. Finally, the set of most general strate-
gies is introduced, which also provides a new view on the frictionless case.

Keywords Proportional transaction costs · No unbounded profit with bounded risk ·
Strategies of infinite variation · Semimartingales · Stochastic integration
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1 Introduction

In frictionless markets, asset price processes have to be semimartingales unless they
allow an “unbounded profit with bounded risk” (UPBR) with simple strategies (see
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Delbaen and Schachermayer [13]). With semimartingale price processes, the pow-
erful tools of stochastic calculus can be used to construct the gains from dynamic
trading. A trading strategy specifying the amounts of shares an investor holds in her
portfolio is a predictable process that is integrable with respect to the vector-valued
price process. Strategies can be of infinite variation since in the underlying limiting
procedure, one directly considers the (book) profits made rather than the portfolio
rebalancings.

On the other hand, under arbitrarily small transaction costs, also non-semi-
martingales can lead to markets without “approximate arbitrage opportunities”. Gua-
soni [19] and Guasoni et al. [21] derive the sufficient condition of “conditional full
support” of the mid-price process, that is satisfied e.g. by a fractional Brownian mo-
tion, and arbitrarily small constant proportional costs. Guasoni et al. [22] derive a
fundamental theorem of asset pricing for a family of transaction costs models.

Under the assumptions of efficient friction, i.e., nonvanishing bid–ask spreads,
and the existence of a strictly consistent price system, Kabanov and Stricker [28] and
Campi and Schachermayer [4] show for continuous and càdlàg processes, respec-
tively, that a finite credit line implies that the variation of the trading strategies is
bounded in probability. A similar assertion is shown in Guasoni et al. [20] under the
condition of “robust no free lunch with vanishing risk”. An important consequence
for hedging and portfolio optimisation is that the set of portfolios that are attainable
with strategies of finite variation is Fatou-closed. For a detailed discussion, we refer
to the monograph of Kabanov and Safarian [27, Sect. 3.6].

In this paper, we consider càdlàg bid and ask price processes that are not neces-
sarily different. The ask price is bigger than or equal to the bid price. The spread,
which models the transaction costs, can vary in time and can even vanish. The con-
tribution of this paper is twofold. First, we show that if the bid–ask model satisfies
“no unbounded profit with bounded risk” (NUPBR) for simple long-only strategies,
then there exists a semimartingale lying between the bid and ask price processes.
This generalises Delbaen and Schachermayer [13, Theorem 7.2] for the frictionless
case. The proof in [13] is very intuitive. Roughly speaking, it first shows that an ex-
plosion of the quadratic increments of the price process along stopping times would
lead to a UPBR. Then it considers a discrete-time Doob decomposition of the asset
price process and shows that an explosion of the drift part as the mesh of the grid
tends to zero would lead to a UPBR. This already yields that under NUPBR, the asset
price process has to be a good integrator and thus a semimartingale by the Bichteler–
Dellacherie theorem. More recently, Beiglböck et al. [2] provide an alternative proof
of the Bichteler–Dellacherie theorem combining these no-arbitrage arguments with
Komlós-type arguments. Kardaras and Platen [31] follow a quite different approach
that only requires long investments. They construct supermartingale deflators as dual
variables in suitable utility maximisation problems under a variation of NUPBR for
simple long-only strategies. Bálint and Schweizer [1] assume that asset prices are ex-
pressed in a possibly nontradable accounting unit. In their setting, there need not exist
an asset with a strictly positive price process that can be used as a numéraire. They
show that if there exists a portfolio with strictly positive value process, then under a
discounting-invariant form of absence of arbitrage, which generalises the condition
used in Kardaras and Platen [31], the asset prices discounted by the portfolio value
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are semimartingales. Since in transaction costs’ models it is natural to start with the
relative prices of the tradable assets, there is no obvious analogy of discounting by
a portfolio value. In our model, we implicitly assume the existence of an asset with
strictly positive price process that serves as a reference asset.

In the bid–ask model, we consider a Dynkin zero-sum stopping game in which the
lower payoff process is the bid price and the upper payoff process the ask price. The
Doob decomposition of the dynamic value of the discrete-time game along arbitrarily
fine grids is used to identify smart investment opportunities. The crucial point is that
the drift of the Dynkin value can be earned by trading in the bid–ask market. This
we combine with the brilliant idea in Delbaen and Schachermayer [13, Lemma 4.7]
to control the martingale part. We complete the proof by showing that under the as-
sumptions above, the continuous-time Dynkin value must be a local quasimartingale.

In the second part of the paper, we show how a semimartingale between the bid
and ask processes can be used to define the self-financing condition of the model
beyond efficient friction. Without efficient friction, strategies of infinite variation
can make sense since they do not necessarily produce infinite trading costs. This of
course means that we cannot use them as integrators without major hesitation. In the
first step, we only consider bounded amounts of risky assets. Thus the trading gains
charged in the semimartingale are finite. Then we add the costs caused by the fact that
the trades are carried out at the less favorable bid–ask prices. Roughly speaking, if the
spread is away from zero, the costs are a Riemann–Stieltjes integral similarly as in
Guasoni et al. [20]. Then we exhaust the costs when the spread is away from zero. The
crucial point is that these costs are always nonnegative, and the semimartingale gains
are finite. Especially, infinite costs cannot be compensated and lead to ruin. Under
a rather mild additional assumption on the behaviour of the spread at zero (see As-
sumption 3.18), an assumption that goes at least far beyond the frictionless case and
the case of efficient friction, this approach leads to a well-founded self-financing con-
dition. Especially, the self-financing riskless position does not depend on the choice
of the semimartingale we use in the construction (see Corollary 3.22).

A self-financing condition for general strategies has to be justified by suitable
approximations with simple strategies. With transaction costs, this is a delicate issue.
Indeed, under pointwise convergence of the strategies alone, one should not expect
that portfolio processes converge. By the strict Fatou-type inequality (see Guasoni
et al. [20, Theorem A.9 (iv)]), some variation/costs can disappear in the limit. Thus
roughly speaking, we postulate the following: first, the limit strategy is better than all
(almost) pointwise converging simple strategies and second, for each strategy, there
exists a special sequence of approximating simple strategies such that the wealth
processes converge (see Theorem 3.19).

In the second step, we extend the self-financing condition from bounded strategies
to the maximal set of strategies for which it can be defined in a “reasonable” way. In
the special case of a frictionless market, this maximal set coincides with the set of
predictable processes which are integrable with respect to the semimartingale price
process in the classic sense (see e.g. Jacod and Shiryaev [26, Definition III.6.17]).
Thus we also provide a further characterisation of this ubiquitous set.

In no-arbitrage theory, the need for general strategies is already proved in the
special case of frictionless markets. Indeed, Delbaen and Schachermayer [13, Lem-
mas 7.9 and 7.10] provide an example with a bounded asset price process showing
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that no free lunch with vanishing risk (NFLVR) for simple strategies does not im-
ply the existence of an equivalent martingale measure (EMM). Consequently, under
transaction costs, general strategies can become an important tool to guarantee the
existence of a consistent price system (CPS), which plays a similar role as an EMM
in the frictionless theory, under an appropriate no-arbitrage condition. On the other
hand, a CPS in general need not exist even when NFLVR for multivariate portfo-
lio processes is satisfied. This can already be seen in discrete time (see Schacher-
mayer [38, Example 3.1]) with the observation that general strategies as described in
Definition 4.1 coincide with simple strategies if time is discrete.

In a nutshell, we provide a well-founded self-financing condition for models be-
yond efficient friction by relating the original trading gains under transaction costs
with the gains in a fictitious frictionless market defined by a semimartingale and sub-
tracting the appropriate costs. The idea of relating markets under transaction costs
with fictitious frictionless markets is not new. It is already widely used in the theory
of portfolio optimisation. Here, shadow price processes, i.e., fictitious frictionless
pricing systems that lead to the same optimal decisions and trading gains as under
transaction costs, are utilised to determine optimal trading strategies. The existence
of shadow prices and their relationship with a suitable dual problem go back to Cvi-
tanić and Karatzas [7]. In discrete time, Kallsen and Muhle-Karbe [29] show that on
finite probability spaces shadow price processes always exist as long as the original
problem has a solution, and Czichowsky et al. [8] provide counterexamples on infinite
probability spaces. Conditions for the existence of a shadow price process in a semi-
martingale model are established by Czichowsky et al. [12], and starting with Kallsen
and Muhle-Karbe [30], various explicit constructions of shadow price processes
have been given in Black–Scholes-type models. Even in non-semimartingale mod-
els, this dual approach is successfully applied (see e.g. Czichowsky and Schacher-
mayer [10, 11] and Czichowsky et al. [9]) under efficient friction. In the proof of
Theorem 4.5, we provide a direct connection between our work and shadow price
processes for particular optimisation problems.

The paper is organised as follows. In Sect. 2, we show the existence of a semi-
martingale price system (Theorem 2.7). In Sect. 3, we construct the cost process
which allows us to introduce the self-financing condition for bounded strategies,
which is justified by Theorem 3.19 and Corollary 3.22. In Sect. 4, the extension to
unbounded strategies is established (Proposition 4.2). In addition, the special case of
a frictionless market is considered (Proposition 4.3), and the separate convergence
of trading gains and cost terms of the approximating bounded strategies is discussed
(Theorem 4.5). Technical proofs are postponed to Sect. 5 and Appendix A.

2 Existence of a semimartingale price system

Throughout the paper, we fix a terminal time T ∈ R+ and a filtered probability
space (�,F , (Ft )t∈[0,T ],P) satisfying the usual conditions. The predictable
σ -algebra on � × [0, T ] is denoted by P , the set of bounded predictable processes
starting at zero by bP . To simplify the notation, a stopping time τ is allowed to
take the value ∞, but �τ� := {(ω, t) ∈ � × [0, T ] : t = τ(ω)}. Especially, we use
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the notation τA, A ∈ Fτ , for the stopping time that coincides with τ on A and
is infinite otherwise; Varba(X) denotes the pathwise variation of a process X on
the interval [a, b]. A process X is called làglàd if all its paths possess finite left
and right limits (but they can have double jumps). We set �+X := X+ − X and
�X := �−X := X − X−, where Xt+ := lims↓t Xs and Xt− := lims↑t Xs . We use
the notation X∗

t := sups∈[0,t] |Xs | and X∗ := X∗
T . For a random variable Y , we set

Y+ := max(Y,0) and Y− := max(−Y,0). If not stated otherwise, (in)equalities be-
tween stochastic processes are understood “up to evanescence”, i.e., up to a global
P-null set not depending on time. In Sect. 2, apart from (2.4), exceptional P-null sets
only occur at dyadic times, and we dispense with writing “P-a.s.” there.

The financial market consists of one risk-free asset or bank account that does not
pay interest and one risky asset with bid price S and ask price S expressed in units of
the risk-free asset. Throughout the paper, we make the following assumption.

Assumption 2.1 S = (St )t∈[0,T ] and S = (St )t∈[0,T ] are adapted processes with
càdlàg paths. In addition, S ≤ S and S is locally bounded from below.

In this section, we only consider simple trading strategies in the following sense.

Definition 2.2 A simple trading strategy is a stochastic process (ϕt )t∈[0,T ] of the form

ϕ =
n∑

i=1

Zi−11�Ti−1,Ti�,

where n ∈ N, 0 = T0 ≤ T1 ≤ · · · ≤ Tn = T are stopping times and Zi is FTi
-measu-

rable for all i = 0, . . . , n − 1.

The strategy ϕ specifies the amount of risky assets in the portfolio. The next defini-
tion corresponds to the self-financing condition of the model. It specifies the holdings
in the bank account given a simple trading strategy.

Definition 2.3 Let (ϕt )t∈[0,T ] be a simple trading strategy. The corresponding posi-
tion in the bank account (ϕ0

t )t∈[0,T ] is given by

ϕ0
t :=

∑

0≤s<t

(
Ss(�

+ϕs)
− − Ss(�

+ϕs)
+), t ∈ [0, T ]. (2.1)

Definition 2.4 Let (ϕt )t∈[0,T ] be a simple trading strategy. The liquidation value pro-

cess (V
liq
t (ϕ))t∈[0,T ] is given by

V
liq
t (ϕ) := ϕ0

t + (ϕt )
+St − (ϕt )

−St , t ∈ [0, T ].

If ϕ is clear from the context, we write (V
liq
t )t∈[0,T ] instead of (V

liq
t (ϕ))t∈[0,T ].

We adapt the notion of an unbounded profit with bounded risk (UPBR) to the
present setting of simple long-only trading strategies.
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Definition 2.5 We say that (S,S) admits an unbounded profit with bounded risk
(UPBR) for simple long-only strategies if there exists a sequence of simple trading
strategies (ϕn)n∈N with ϕn ≥ 0 such that

(i) V liq(ϕn) ≥ −1 for all n ∈ N.
(ii) The sequence (V

liq
T (ϕn))n∈N is unbounded in probability, i.e.,

lim
m→∞ sup

n∈N
P[V liq

T (ϕn) ≥ m] > 0. (2.2)

If no such sequence exists, we say that the bid–ask process (S,S) satisfies the no un-
bounded profit with bounded risk (NUPBR) condition for simple long-only strategies.

Remark 2.6 The admissibility condition (i) is rather restrictive e.g. compared to Gua-
soni et al. [20, Definition 4.4], which means that the present version of NUPBR is
a weak condition. But for the following first main result of the paper, it is already
sufficient.

Theorem 2.7 Let (S,S) satisfy Assumption 2.1 and the NUPBR condition for simple
long-only strategies. Then there exists a semimartingale S = (St )t∈[0,T ] such that

S ≤ S ≤ S. (2.3)

A semimartingale S satisfying (2.3) is called a semimartingale price system. The
remaining part of this section is devoted to the proof of Theorem 2.7. As a first step,
we show that it is actually sufficient to prove the following seemingly weaker version
of the result.

Theorem 2.8 Suppose that 0 ≤ S ≤ S ≤ 1 and that NUPBR for simple long-only
strategies holds. Then there exists a semimartingale S = (St )t∈[0,T ] such that

S ≤ S ≤ S.

Proposition 2.9 Theorem 2.8 implies Theorem 2.7.

Proof We assume that Theorem 2.8 holds true.
Step 1: Let S be locally bounded from below, S ≤ 1 and (S,S) satisfy NUPBR

for simple long-only strategies. Thus there is an increasing sequence (σn)n∈N of
stopping times with P[σn = ∞] → 1 such that S1{σn>0} ≥ −n on �0, σn� for all
n ∈ N. As (S,S) satisfies NUPBR for simple long-only strategies, the market
((Sσn + n)1{σn>0}/(n + 1), (S

σn + n)1{σn>0}/(n + 1)) satisfies NUPBR for simple
long-only strategies, too. By Theorem 2.8, for each n ∈ N, there is a semimartingale
Sn such that

(Sσn + n)1{σn>0}/(n + 1) ≤ Sn ≤ (S
σn + n)1{σn>0}/(n + 1).

Therefore, the process S :=∑∞
n=1 1�σn−1,σn�((n + 1)Sn − n), with σ0 := 0, lies be-

tween S and S; this S is a local semimartingale and thus a semimartingale. Conse-
quently, Theorem 2.8 holds true under the weaker condition that S is only locally
bounded from below instead of being nonnegative.
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Step 2: Let S be locally bounded from below and (S,S) satisfy NUPBR for sim-
ple long-only strategies. Consider the stopping times τn := inf{t ≥ 0 : St > n} for
all n ∈ N. One has that P[τn = ∞] = P[St ≤ n,∀t ∈ [0, T ]] → 1 as n → ∞. With
short-selling constraints, liquidation value processes that are attainable by trading in
the bid–ask model ((Sτn/n) ∧ 1, (S

τn
/n) ∧ 1) can be dominated by those in (S,S).

Indeed, for t < τn, one has (S
τn

t /n) ∧ 1 = St/n, (S
τn
t /n) ∧ 1 = St/n, and a purchase

at time τn cannot generate a profit in the bid–ask model ((Sτn/n) ∧ 1, (S
τn

/n) ∧ 1).
Thus ((Sτn/n) ∧ 1, (S

τn
/n) ∧ 1) satisfies NUPBR with simple long-only strategies,

and by Step 1 there exist semimartingales Sn with (Sτn/n) ∧ 1 ≤ Sn ≤ (S
τn

/n) ∧ 1
for all n ∈ N. Then S :=∑∞

n=1 1�τn−1,τn�nSn, with τ 0 := 0, shows the assertion. �

For the remainder of the section, we work under the assumptions of Theo-
rem 2.8. More specifically we assume the following.

Assumption 2.10 We assume 0 ≤ S ≤ S ≤ 1 and that (S,S) satisfies NUPBR for
simple long-only strategies for the remainder of the section.

In addition, we set without loss of generality T = 1. We now proceed with the
proof of Theorem 2.8. The candidate for the semimartingale is the value process
of a Dynkin zero-sum stopping game played on the bid and ask prices, i.e., let
S = (St )t∈[0,1] be the right-continuous version of

St = ess sup
τ∈Tt,1

ess inf
σ∈Tt,1

E[Sτ1{τ≤σ } + Sσ1{τ>σ }|Ft ]

= ess inf
σ∈Tt,1

ess sup
τ∈Tt,1

E[Sτ1{τ≤σ } + Sσ1{τ>σ }|Ft ] P-a.s., (2.4)

where Tt,1 is the set of [t,1]-valued stopping times for t ∈ [0,1]. The existence
of such a process and the non-trivial equality in (2.4) is guaranteed by Lepeltier
and Maingueneau [34, Theorems 7 and 9 and Corollary 12]. Obviously, S satisfies
S ≤ S ≤ S. Thus we only have to show that NUPBR for simple long-only trading
strategies implies that S is a semimartingale. We note that all arguments remain valid
for a different terminal value of the game between S1 and S1.

The arguments below also provide a financial interpretation of the value process S

of this Dynkin game. In the special case that the terminal bid and ask prices coincide,
a discrete time approximation of S can be interpreted as a shadow price for a utility
maximisation problem with a risk-neutral investor and the constraint that her dynamic
stock position has to take values in [−1,1]. Put differently, in the bid–ask market, an
investor can earn the same expected profit as via an optimal strategy in the frictionless
market with price process S (besides a finite deviation caused by different liquidation
values).

Definition 2.11 Let X = (Xt )t∈[0,1] be an adapted process such that E[|Xt |] < ∞
for all t ∈ [0,1]. Given a deterministic partition π = {0 = t0 < t1 < · · · < tn = 1} of
[0,1], we define the mean variation of X along π as

MV(X,π) := E

[ ∑

ti∈π\{1}

∣∣E[Xti − Xti+1 |Fti ]
∣∣
]
, (2.5)
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and the mean variation of X as

MV(X) := sup
π

MV(X,π).

Finally, X is called a quasimartingale if MV(X) < ∞.

For notational convenience, we removed the term E[|X1|] that usually appears
on the right-hand side of (2.5). Next, we recall Rao’s theorem (see e.g. Protter [37,
Chap. 3, Theorem 17] or Beiglböck and Siorpaes [3, Theorem 3.1]).

Theorem 2.12 Let X be an adapted right-continuous process. Then X is a quasi-
martingale if and only if X has a decomposition X = Y −Z, where Y and Z are pos-
itive right-continuous supermartingales. In this case, the paths of X are a.s. càdlàg.

Remark 2.13 Usually, Rao’s theorem is formulated for an adapted càdlàg process X.
However, to show that X can be written as the difference of two right-continuous
supermartingales, the existence of the finite left limits of X is not needed (see the
proofs of He et al. [23, Theorem 8.13] or Protter [37, Chap. 3, Theorem 14]). On
the other hand, right-continuous supermartingales possess a.s. finite left limits (see
e.g. Dellacherie and Meyer [14, Theorem VI.3]). This means that the theorem can be
formulated for an a priori only right-continuous quasimartingale that then turns out
to be càdlàg.

If we can show that the right-continuous process S is a local quasimartingale,
Rao’s theorem (in the version of Theorem 2.12) yields that S can locally be written
as the difference of two supermartingales, and it admits a càdlàg modification. Thus S

is a semimartingale by the Doob–Meyer theorem (case without class D) in Protter [37,
Chap. 3, Theorem 16]. Hence we now want to show that S is a local quasimartingale.

For this, we consider a discrete time approximation Sn = (Sn
t )t∈Dn of S on the set

Dn := {0,1/2n, . . . , (2n − 1)/2n,1} of dyadic numbers, defined by Sn
1 := S1 and

Sn
t := min

(
St ,max(St ,E[Sn

t+1/2n |Ft ])
)
, t ∈ Dn, t < 1.

Indeed, it is well known (see e.g. Neveu [36, Proposition VI-6-9]) that

Sn
t = ess sup

τ∈T n
t,1

ess inf
σ∈T n

t,1

E[Sτ1{τ≤σ } + Sσ1{τ>σ }|Ft ]

= ess inf
σ∈T n

t,1

ess sup
τ∈T n

t,1

E[Sτ1{τ≤σ } + Sσ1{τ>σ }|Ft ], t ∈ Dn,

where T n
t,1 denotes the set of all {t, t + 1/2n, . . . ,1}-valued stopping times. The fol-

lowing proposition generalises Kifer [32, Proposition 3.2] from continuous to right-
continuous processes.

Proposition 2.14 Let m ∈ N and t ∈ Dm. Then we have

lim
n→∞Sn

t = St P-a.s.
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Proof Let n ∈ N with n ≥ m and t ∈ Dm. The pair of {t, t + 1/2n, . . . ,1}-valued
stopping times

τn
t := inf{s ≥ t : s ∈ Dn,S

n
s = Ss},

σ n
t := inf{s ≥ t : s ∈ Dn,S

n
s = Ss}

is a Nash equilibrium of the discrete-time game started at time t , i.e.,

E[R(τ,σn
t )|Ft ] ≤ Sn

t ≤ E[R(τn
t , σ )|Ft ] for all τ, σ ∈ T n

t,T , (2.6)

where R(τ,σ ) := Sτ1{τ≤σ } + Sσ1{τ>σ }. This follows from Neveu [36, Proposition
VI-6-9] and its proof with the observation that in finite discrete time, the assertion also
holds for ε = 0 by dominated convergence. We define dn(τ ) := inf{t ≥ τ : t ∈ Dn}
for τ ∈ Tt,T and

ηn(τ)(ω) := sup
s∈(τ (ω),τ (ω)+1/2n)

max
(|Ss(ω) − Sτ (ω)|, |Ss(ω) − Sτ (ω)|), ω ∈ �.

This yields the estimates

R
(
τ, dn(σ )

)− ηn(τ) ≤ R
(
dn(τ ), dn(σ )

)≤ R
(
dn(τ ), σ

)+ ηn(σ ) (2.7)

for all τ, σ ∈ T0,T . Let ε > 0. For the continuous-time game, the pair of stop-
ping times

τ �
t := inf{s ≥ t : Ss ≤ Ss + ε},

σ �
t := inf{s ≥ t : Ss ≥ Ss − ε}

is an ε-Nash equilibrium, i.e.,

E[R(τ,σ �
t )|Ft ] − ε ≤ St ≤ E[R(τ�

t , σ )|Ft ] + ε for all τ, σ ∈ Tt,T . (2.8)

This is shown in Lepeltier and Maingueneau [34, Corollaire 12 and its proof]. Com-
bining the first inequality in (2.6) with τ = dn(τ

�
t ), the first inequality in (2.7) and the

second inequality in (2.8) yields

Sn
t ≥ E

[
R
(
dn(τ

�
t ), σ n

t

)∣∣Ft

]

≥ E[R(τ�
t , σ n

t )|Ft ] −E[ηn(τ
�
t )|Ft ]

≥ St − ε −E[ηn(τ
�
t )|Ft ].

Similarly, applying the second inequality (2.6) with σ = dn(σ
�
t ), the second inequal-

ity in (2.7) and the first inequality in (2.8) yields the corresponding upper estimate on
Sn

t . Putting together, we get

St + ε +E[ηn(σ
�
t )|Ft ] ≥ Sn

t ≥ St − ε −E[ηn(τ
�
t )|Ft ].
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Since ηn(τ
�
t ) → 0 and ηn(σ

�
t ) → 0 a.s. for n → ∞ (by the right-continuity of S and

S), the dominated convergence theorem for conditional expectations implies

St + ε ≥ lim sup
n→∞

Sn
t ≥ lim inf

n→∞ Sn
t ≥ St − ε P-a.s.,

which is the assertion as ε > 0 is arbitrary. �

In the following, we consider the discrete-time Doob decomposition of the pro-
cesses (Sn)n∈N, i.e., we write Sn

t = Sn
0 + Mn

t + An
t with

An
t :=

∑

ti∈Dn,0<ti≤t

E[Sn
ti

− Sn
ti−1

|Fti−1 ], (2.9)

Mn
t :=

∑

ti∈Dn,0<ti≤t

(Sn
ti

− Sn
ti−1

−E[Sn
ti

− Sn
ti−1

|Fti−1])

for t ∈ Dn. In particular, we have

MV(Sn,Dn) := E

[ ∑

ti∈Dn\{1}

∣∣E[Sn
ti+1

− Sn
ti
|Fti ]

∣∣
]

= E

[ ∑

ti∈Dn\{1}
|An

ti+1
− An

ti
|
]
. (2.10)

The following observation is at the core of why our approach works.

Lemma 2.15 Let n ∈N and t ∈ Dn \ {1}. Then we have

{An
t+1/2n − An

t > 0} ⊆ {Sn
t = St },

{An
t+1/2n − An

t < 0} ⊆ {Sn
t = St }.

Proof From the definition (2.9), we get E[Sn
t+1/2n |Ft ] − Sn

t = An
t+1/2n − An

t , which

together with Sn
t = min(St ,max(St ,E[Sn

t+1/2n |Ft ])) yields the assertion. �

We now start to establish a uniform bound on (2.10) (after some stopping).

Lemma 2.16 Let Assumption 2.10 hold. Then the set

{
sup
t∈Dn

|Mn
t | : n ∈N

}

is bounded in probability.

Proof First, we roughly sketch the idea of the proof. If {supt∈Dn
|Mn

t | : n ∈ N} failed
to be bounded in probability, the same would hold in some sense for the sequence
(An)n∈N. Indeed, this is a consequence of Sn = Sn

0 + Mn + An and the fact that
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|Sn| ≤ 1. Keeping Lemma 2.15 in mind, we show that by suitable long-only invest-
ments in the bid–ask market, one can earn the increasing parts of An without suffer-
ing from the decreasing parts. In doing so, we would achieve a UPBR since the gains
from An are of a higher order than the potential losses from the martingale part Mn.
The proof of the latter relies on the brilliant ideas of Delbaen and Schachermayer [13,
Lemma 4.7], which we adapt to the present setting. The present setting is easier than
in [13, Lemma 4.7] since the jumps of Sn are uniformly bounded.

Step 1: Assume that the claim does not hold true, i.e., there are a subsequence
(supt∈Dmn

|Mmn
t |)n∈N and α ∈ (0,1/10) such that

P

[
sup

t∈Dmn

|Mmn
t | ≥ n3

]
> 10α, n ∈N.

In the following, we write (supt∈Dn
|Mn

t |)n∈N instead of (supt∈Dmn
|Mmn

t |)n∈N in or-
der to simplify the notation. For this, it is important to note that from now on, we do
not use properties of Mn that do not hold for Mmn . Let Tn := inf{t ∈ Dn : |Mn

t | ≥ n3}
and define the process (S̃n

t )t∈Dn by S̃n
t := 1

n2 Sn
t∧Tn

. Note that the (discrete-time) Doob

decomposition of S̃n is given by

S̃n
t = S̃n

0 + M̃n
t + Ãn

t = 1

n2
Sn

0 + 1

n2
Mn

t∧Tn
+ 1

n2
An

t∧Tn
, t ∈ Dn,

where (M̃n
t )t∈Dn = ( 1

n2 Mn
t∧Tn

)t∈Dn and (Ãn
t )t∈Dn = ( 1

n2 An
t∧Tn

)t∈Dn are the martin-
gale part and the predictable part, respectively. In addition, we have

P

[
sup
t∈Dn

|M̃n
t | ≥ n

]
> 10α, |S̃n

t − S̃n
t−1/2n | ≤ 1

n2
, t ∈ Dn \ {0}.

Next, we define Tn,0 := 0 and recursively

Tn,i := inf{t ≥ Tn,i−1 : t ∈ Dn, |M̃n
t − M̃n

Tn,i−1
| ≥ 1}, i ∈ N.

Since |An
t − An

t−1/2n | ≤ 1 and thus

|Mn
t − Mn

t−1/2n | ≤ |Sn
t − Sn

t−1/2n | + |An
t − An

t−1/2n | ≤ 2

for all t ∈ Dn \ {0}, we get

|M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1| ≤ 1 + |M̃n
Tn,i∧1 − M̃n

(Tn,i−1/2n)∧1| ≤ 1 + 2/n2 ≤ 3 (2.11)

for all n, i ∈N. Equation (2.11) implies that

P[Tn,i < ∞] > 10α for n ∈ N and i = 0, . . . , kn, (2.12)

where kn := (n − 1)/3� denotes the integer part of (n − 1)/3.
In a next step, we establish a lower bound on (M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)

− in L0(P) for

i = 1, . . . , kn. The martingale property of M̃n together with (2.12) implies that

E
[
(M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)

−]= 1

2
E
[|M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1|

]≥ 1

2
P[Tn,i < ∞] > 5α.
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For Bn,i := {(M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1)
− ≥ 2α}, we get

E
[
(M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)

−1Bn,i

]≥ E
[
(M̃n

Tn,i∧1 − M̃n
Tn,i−1∧1)

−]− 2α > 3α

and thus by (2.11),

P[Bn,i] > α for n ∈ N and i = 0, . . . , kn. (2.13)

We now turn our attention to the increments (Ãn
Tn,i∧1 − Ãn

Tn,i−1∧1)i=1,...,kn for

n ∈N. Since |S̃n
Tn,i∧1 − S̃n

Tn,i−1∧1| ≤ 1/n2, (2.13) implies that

P
[
Ãn

Tn,i∧1 − Ãn
Tn,i−1∧1 ≥ α

]≥ P

[
Ãn

Tn,i∧1 − Ãn
Tn,i−1∧1 ≥ 2α − 1

n2

]
≥ P[Bn,i] > α

for all n ≥ √
α and i = 1, . . . , kn. In particular, if we define (Ã

n,↑
t )t∈Dn by

Ã
n,↑
t :=

∑

ti∈Dn,0<ti≤t

(Ãn
ti

− Ãn
ti−1

)+, t ∈ Dn,

we also get

P[Ãn,↑
Tn,i∧1 − Ã

n,↑
Tn,i−1∧1 ≥ α] > α (2.14)

for all n ≥ 1/
√

α and i = 1, . . . , kn.
Step 2: In the second part of the proof, we construct a UPBR by placing smart

bets on the process (Ã
n,↑
t )t∈Dn . This is similar to the second part of Delbaen and

Schachermayer [13, Lemma 4.7] with the major difference that we cannot invest
directly into Sn, but only in the bid–ask market (S,S). We define two sequences of
Dn ∪ {∞}-valued stopping times (σ n

k )2n

k=1 and (τn
k )2n

k=1 by

σn
1 := inf{t ∈ D∗

n : An
t+1/2n − An

t > 0},
τ n

1 := inf{t > σn
1 : t ∈ D∗

n, An
t+1/2n − An

t < 0}
with D∗

n := Dn \ {1} and recursively

σn
k := inf{t > τn

k−1 : t ∈ D∗
n, An

t+1/2n − An
t > 0},

τ n
k := inf{t > σn

k : t ∈ D∗
n, An

t+1/2n − An
t < 0}

for k = 2,3, . . . ,2n. Next, define a sequence of simple trading strategies (ϕn)n∈N by

ϕn :=
( 2n∑

k=1

1

n2
1�σn

k ,τn
k �

)
1�0,Tn,kn �.

By Lemma 2.15, the strategies ϕn only buy if Sn
t = St and sell if Sn

t = St , despite a
possible liquidation at Tn,kn Together with Sn

ti
− St ≤ 1 for all ti ∈ Dn, t ∈ [0,1], this
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implies that V liq(ϕn) can be bounded from below by

V
liq
t (ϕn) ≥

∑

ti∈Dn,0<ti≤t

ϕn
ti
(Sn

ti
− Sn

ti−1
) − 1

n2

= Ã
n,↑
2nt�/2n∧Tn,kn

+
∑

ti∈Dn,0<ti≤t

ϕn
ti
(Mn

ti
− Mn

ti−1
) − 1

n2

≥
∑

ti∈Dn,0<ti≤t

ϕn
ti
(Mn

ti
− Mn

ti−1
) − 1

n2

=
∑

ti∈Dn,0<ti≤t

(n2ϕn
ti
)(M̃n

ti
− M̃n

ti−1
) − 1

n2
, t ∈ [0,1]. (2.15)

This means that the strategy allows us to invest in Ãn,↑, but we still do not know if
it actually allows a UPBR as we need to get some control on the martingale part in
(2.15). Therefore notice that

∥∥∥∥
∑

ti∈Dn,0<ti≤Tn,kn

(n2ϕn
ti
)(M̃n

ti
− M̃n

ti−1
)

∥∥∥∥
L2(P)

≤ ‖M̃Tn,kn∧1‖L2(P) ≤
√√√√

kn∑

i=1

‖M̃n
Tn,i∧1 − M̃n

Tn,i−1∧1‖2
L2(P)

≤ 3
√

kn.

Thus Doob’s maximal inequality yields
∥∥∥∥ sup

t∈Dn, t≤Tn,kn

∣∣∣∣
∑

ti∈Dn,0<ti≤t

(n2ϕn
ti
)(M̃n

ti
− M̃n

ti−1
)

∣∣∣∣

∥∥∥∥
L2(P)

≤ 6
√

kn.

Consequently, we get the estimate

P

[
inf

t∈[0,Tn,kn∧1]V
liq
t (ϕn) ≤ −k

3/4
n n−1/8 − n−2

]

≤ P

[
sup

t∈Dn, t≤Tn,kn

∣∣∣∣
∑

ti∈Dn,0<ti≤t

(n2ϕn
ti
)(M̃n

ti
− M̃n

ti−1
)

∣∣∣∣≥ k
3/4
n n−1/8

]

≤ 36n1/4

√
kn

(2.16)

by Tschebyscheff’s inequality. Thus let us define the stopping times

Un := inf{t ≥ 0 : V
liq
t (ϕn) ≤ −k

3/4
n n−1/8 − n−2} ∧ Tn,kn ,

which satisfy P[Un < Tn,kn ] ≤ 36n1/4/
√

kn. We now pass to the strategy

ϕ̃n := (kn)
−3/4ϕn1�0,Un�.
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The left and right jumps of V liq(ϕ̃n) are bounded from below by −k
−3/4
n n−2, which

is a direct consequence of 0 ≤ S ≤ S ≤ 1. We obtain

inf
t∈[0,Tn,kn∧1]V

liq
t (ϕ̃n) ≥ −n−1/8 − 2k

−3/4
n n−2 −→ 0 for n → ∞. (2.17)

It remains to show (2.2). First notice that using (2.14) in conjunction with Delbaen
and Schachermayer [13, Corollary A1.3] yields

P

[
Ã

n,↑
Tn,kn∧1 ≥ α2

2

]
>

α

2
.

It follows that

P

[
(kn)

−3/4Ã
n,↑
Tn,kn∧ 2nUn�

2n ∧1
≥ k

1/4
n

α2

2

]
>

α

2
− P[Un < Tn,kn ]

≥ α

2
− 36n1/4

√
kn

. (2.18)

Putting (2.15)–(2.18) together yields that (ϕ̃n)n∈N provides UPBR. �

Lemma 2.17 Let Assumption 2.10 hold. For each ε > 0, there exist a constant C > 0
and a sequence of Dn ∪{∞}-valued stopping times (τn)n∈N such that P[τn < ∞] < ε

and the stopped processes Sn,τn = (Sn
t∧τn

)t∈Dn , An,τn = (At∧τn)t∈Dn satisfy

∑

ti∈Dn\{0}
|An,τn

ti
− A

n,τn
ti−1

| ≤ C

and, consequently,

MV(Sn,τn ,Dn) = E

[ ∑

ti∈Dn\{0}
|An,τn

ti
− A

n,τn
ti−1

|
]

≤ C.

Proof The idea of the proof is akin to the proofs of Proposition 3.1 and Lemma 3.4
in Beiglböck et al. [2]. Thus we only give a sketch of the proof and leave the details
to the reader. We first claim that

{ ∑

ti∈Dn\{0}
(An

ti
− An

ti−1
)+ : n ∈N

}
(2.19)

is bounded in probability. We proceed by contraposition, i.e., we suppose otherwise
and want to show that this leads to a UPBR. Using Lemma 2.15, we can analogously
to the previous proof construct a sequence (ϕn)n∈N of simple trading strategies with
0 ≤ ϕn ≤ 1 such that ϕn invests in

∑
ti∈Dn\{0}(An

ti
− An

ti−1
)+ while only making po-

tential losses in the martingale part Mn and at liquidation. Indeed, similarly as in
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Step 2 of the proof of Lemma 2.16, it can be shown that the associated liquidation
values can be bounded from below by

V
liq
t (ϕn) ≥

∑

ti∈Dn,0<ti≤t

(An
ti

− An
ti−1

)+ +
∑

ti∈Dn,0<ti≤t

ϕn
ti
(Mn

ti
− Mn

ti−1
) − 1. (2.20)

By Lemma 2.16 and some stopping, there is no loss of generality in assuming that
(Mn)n∈N is uniformly bounded. Hence by Doob’s maximal inequality, the pathwise
maxima of the martingale parts in (2.20) are bounded in L2. Thus by further stop-
ping (cf. the arguments used in Beiglböck et al. [2, second half of the proof of
Lemma 3.4]), we may assume that the right-hand side of (2.20) is uniformly bounded
from below. On the other hand, by the assumption on (2.19), for t = 1, the right-hand
side of (2.20) is unbounded in probability from above. Thus the obtained sequence
of strategies yields UPBR with long-only strategies (after multiplying it by a positive
real number such that the right-hand side of (2.20) is bounded from below by −1),
and we arrive at a contradiction. Consequently, (2.19) must be bounded in probabil-
ity. Since the martingale parts are also bounded in probability by Lemma 2.16, the
same holds for {∑ti∈Dn\{0}(An

ti
− An

ti−1
)− : n ∈ N}, and we are done. �

In order to complete the proof of Theorem 2.8, we still need a couple of auxiliary
results which give us some more information about MV(Sn,Dn) in comparison to
MV(Sm,Dm). Given a partition π = {0 = t0 < t1 < · · · < tn = 1} of [0,1] and a
stopping time τ , we use the notation p(τ) := inf{t ∈ π : t ≥ τ }. Recall the following
useful result from Beiglböck and Siorpaes [3, Lemma 3.2].

Lemma 2.18 Let Assumption 2.10 hold. Then

MV(Sp(τ), π) = E

[ ∑

ti∈π\{1}
1{ti<τ }

∣∣E[Sti+1 − Sti |Fti ]
∣∣
]

and |MV(Sp(τ), π) − MV(Sτ ,π)| ≤ 1.

Compared to the frictionless case with Sn = S = S, the analysis is complicated
by the fact that in general Sm

t �= Sn
t for t ∈ Dn. We have, nevertheless, the following

monotonicity result.

Lemma 2.19 Let Assumption 2.10 hold. In addition, let n,m ∈ N with m > n and let
τm be a Dm ∪ {∞}-valued stopping time. For any s ∈ D∗

n = Dn \ {1}, we have

E

[ ∑

ti∈D∗
n,ti≥s

1{ti<τm}
∣∣E[Sn

ti+1
− Sn

ti
|Fti ]

∣∣
∣∣∣∣Fs

]

≤ E

[ ∑

ti∈D∗
m,ti≥s

1{ti<τm}
∣∣E[Sm

ti+1
− Sm

ti
|Fti ]

∣∣
∣∣∣∣Fs

]
+ (2 − |Sn

s − Sm
s |)1{s<τm}.

In particular, for s = 0, this yields

MV(Sn,dn(τm),Dn) ≤ MV(Sm,τm,Dm) + 2.



942 C. Kühn, A. Molitor

In addition, we have

MV(Sm,dn(τ),Dn) ≤ MV(Sm,dm(τ),Dm) + 1 (2.21)

for all [0,1] ∪ {∞}-valued stopping times τ .

Proof Step 1: In a first step, we keep the grid Dn and estimate the term with Sn from
above by that with Sm. Thus we want to show that

E

[ ∑

ti∈D∗
n,ti≥s

1{ti<τm}
∣∣E[Sn

ti+1
− Sn

ti
|Fti ]

∣∣
∣∣∣∣Fs

]

≤ E

[ ∑

ti∈D∗
n,ti≥s

1{ti<τm}
∣∣E[Sm

ti+1
− Sm

ti
|Fti ]

∣∣
∣∣∣∣Fs

]
+ (1 − |Sn

s − Sm
s |)1{s<τm}. (2.22)

We start by showing the one-step estimate

∣∣E[Sn
s+1/2n − Sn

s |Fs]
∣∣

= ∣∣E[Sn
s+1/2n − Sm

s |Fs]
∣∣− |Sn

s − Sm
s |

≤ ∣∣E[Sm
s+1/2n − Sm

s |Fs]
∣∣+E

[|Sm
s+1/2n − Sn

s+1/2n |∣∣Fs

]− |Sn
s − Sm

s | (2.23)

for all s = 1−1/2n,1−2/2n, . . . ,0. The equality in (2.23) can be checked separately
on the Fs -measurable sets B1 := {E[Sn

s+2−n |Fs] > Ss}, B2 := {E[Sn
s+2−n |Fs] < Ss}

and B3 := {Ss ≤ E[Sn
s+2−n |Fs] ≤ Ss}. By the definition of Sn, B1 ⊆ {Sn

s = Ss}. On

the other hand, we have Sm
s ≤ Ss which implies the equality on B1. On the set

B2 ⊆ {Sn
s = Ss}, the situation is symmetric. Finally, on B3 = {Sn

s = E[Sn
s+2−n |Fs]},

the equality is obvious. The inequality in (2.23) follows from Jensen’s inequality for
conditional expectations and the triangle inequality.

Now, we show (2.22) by a backward induction on s = 1 − 1/2n,1 − 2/2n, . . . ,0.
For the initial step s = 1 − 1/2n, we only have to multiply (2.23) for s = 1 − 1/2n by
1{1−2−n<τm} and use that |Sm

1 − Sn
1 | ≤ 1.

Induction step s + 1/2n � s: by the induction hypothesis, one has

E

[ ∑

ti∈D∗
n, ti≥s+1/2n

1{ti<τm}
∣∣E[Sn

ti+1
− Sn

ti
|Fti ]

∣∣
∣∣∣∣Fs

]

≤ E

[ ∑

ti∈D∗
n, ti≥s+1/2n

1{ti<τm}
∣∣E[Sm

ti+1
− Sm

ti
|Fti ]

∣∣
∣∣∣∣Fs

]

+ 1{s<τm}E
[
1 − |Sn

s+1/2n − Sm
s+1/2n |∣∣Fs

]
, (2.24)

where we take on both sides of (2.22) for s + 1/2n the conditional expectation
given Fs and use that {s + 1/2n < τm} ⊆ {s < τm}. Multiplying (2.23) by 1{s<τm}
and adding (2.24) yields (2.22).
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Step 2: We still need to pass from Dn to Dm for the process Sm, i.e., we now want
to show that

E

[ ∑

ti∈D∗
n,ti≥s

1{ti<τm}
∣∣E[Sm

ti+1
− Sm

ti
|Fti ]

∣∣
∣∣∣∣Fs

]

≤ E

[ ∑

ti∈D∗
m,ti≥s

1{ti<τm}
∣∣E[Sm

ti+1
− Sm

ti
|Fti ]

∣∣
∣∣∣∣Fs

]
+ 1{s<τm}. (2.25)

This is less tricky: for τm = 1, it directly follows from the triangle inequality together
with Jensen’s inequality for conditional expectations, and the second summand on
the right-hand side is not needed. However, in the general case, there is the problem
that τm can stop in Dm \ Dn. Thus for every i ∈ {s2n, s2n + 1, . . . ,2n − 1}, we have
to make the calculations

1{i/2n<τm}
∣∣E[Sm

(i+1)/2n − Sm
i/2n |Fi/2n ]∣∣

= 1{i/2n<τm}
∣∣∣∣E
[ (i+1)2m−n−1∑

j=i2m−n

(Sm
(j+1)/2m − Sm

j/2m)

∣∣∣∣Fi/2n

]∣∣∣∣

≤ E

[ (i+1)2m−n−1∑

j=i2m−n

1{j/2m<τm}
∣∣E[Sm

(j+1)/2m − Sm
j/2m |Fj/2m ]∣∣

∣∣∣∣Fi/2n

]

+
∣∣∣∣E
[
1{i/2n<τm}

(i+1)2m−n−1∑

j=i2m−n

1{j/2m≥τm}(Sm
(j+1)/2m − Sm

j/2m)

∣∣∣∣Fi/2n

]∣∣∣∣. (2.26)

For the second summand, we can use the estimate

∣∣∣∣1{i/2n<τm}
(i+1)2m−n−1∑

j=i2m−n

1{j/2m≥τm}(Sm
(j+1)/2m − Sm

j/2m)

∣∣∣∣

=
∣∣∣∣
(i+1)2m−n−1∑

j=i2m−n+1

1{(j−1)/2m<τm≤j/2m}(Sm
(i+1)/2n − Sm

j/2m)

∣∣∣∣

≤
(i+1)2m−n−1∑

j=i2m−n+1

1{(j−1)/2m<τm≤j/2m} ≤ 1{i/2n<τm≤(i+1)/2n}, (2.27)

where we use 0 ≤ Sm
ti

≤ 1 for all ti ∈ Dm. Putting (2.26) and (2.27) together and
summing up over all i, we arrive at (2.25). Together with (2.22), this yields the main
assertion. Inequality (2.21) is just (2.25) for s = 0. �

For the convenience of the reader, we recall the following result from Beiglböck
and Siorpaes [3, Lemma 4.2].
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Lemma 2.20 Assume that (τn)n∈N is a sequence of [0,1]∪{∞}-valued stopping times
such that P[τn = ∞] ≥ 1−ε for some ε > 0 and all n ∈N. Then there exist a stopping
time τ and for each n ∈ N convex weights μn

n, . . . ,μ
n
Nn

, i.e., μn
k ≥ 0, k = n, . . . ,Nn,

and
∑Nn

k=n μn
k = 1, such that P[τ = ∞] ≥ 1 − 3ε and

1�0,τ� ≤ 2
Nn∑

k=n

μn
k1�0,τk�, n ∈N.

We are now in the position to prove Theorem 2.8.

Proof of Theorem 2.8 Let Assumption 2.10 hold. Let ε > 0, (τn)n∈N and C > 0 be as
in Lemma 2.17. In addition, let τ be as in Lemma 2.20. We have

MV(Sn,dn(τ),Dn) = E

[ ∑

ti∈D∗
n

1{ti<τ }
∣∣E[Sn

ti+1
− Sn

ti
|Fti ]

∣∣
]

≤ 2E

[ ∑

ti∈D∗
n

Nn∑

k=n

μn
k1{ti<τk}

∣∣E[Sn
ti+1

− Sn
ti
|Fti ]

∣∣
]

= 2
Nn∑

k=n

μn
kMV(Sn,dn(τk),Dn)

≤ 2
Nn∑

k=n

μn
k

(
MV(Sk,τk ,Dk) + 2

)≤ 2C + 4, n ∈N. (2.28)

Indeed, both equalities hold by Lemma 2.18. The first inequality is due to
Lemma 2.20, and the second follows from Lemma 2.19. The third inequality holds
by Lemma 2.17. Next, let us show that for all n ∈N,

MV(Sdn(τ),Dn) = lim
m→∞ MV(Sm,dn(τ),Dn)

≤ lim sup
m→∞

MV(Sm,dm(τ),Dm) + 1 ≤ 2C + 5,

where S is the value process of the continuous-time game. Indeed, the equality fol-
lows from Proposition 2.14 and the dominated convergence theorem. The first in-
equality is (2.21) and the second follows from (2.28). Together with Lemma 2.18, we
arrive at

MV(Sτ ,Dn) ≤ 2C + 6, n ∈ N. (2.29)

Finally, by the right-continuity of Sτ and (2.29), we get

MV(Sτ ) = lim
n→∞ MV(Sτ ,Dn) ≤ 2C + 6.

Together with P[τ < ∞] ≤ 3ε, this establishes that the right-continuous process S is
a local quasimartingale and thus a semimartingale by Rao’s theorem (in the version
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of Theorem 2.12) and the Doob–Meyer decomposition; see e.g. Protter [37, Chap. 3,
Theorem 16]. �

Proof of Theorem 2.7 Having shown that Theorem 2.8 holds, the assertion follows di-
rectly by Proposition 2.9. �

Remark 2.21 The arguments presented here rely heavily on the two-dimensional set-
ting. However, Theorem 2.7 can be directly applied to a model with a bank account
and finitely many risky assets since in this case it is sufficient to have a semimartin-
gale price system for each risky asset separately (cf. also Delbaen and Schachermayer
[13, Theorem 7.2]). On the other hand, it seems that the approach cannot be adapted
to the general Kabanov model (cf. Kabanov and Safarian [27, Sect. 3.6]) in which
there need not exist a bank account that is involved in every transaction.

3 The self-financing condition

As already discussed in the introduction, we use a semimartingale price system to
define the self-financing condition in the bid–ask model for general strategies. A self-
financing condition can be identified with an operator ϕ �→ (ϕ) that maps each
amount of risky assets to the corresponding position in the riskless bank account (if
the latter exists). Here, we assume that the initial position and the riskless interest
rate are zero. In addition, for the rest of the paper, we assume that there exists a
semimartingale price system S, i.e., S is a semimartingale such that S ≤ S ≤ S. By
Theorem 2.7, this assumption holds under NUPBR for simple long-only strategies. In
the following, S is some arbitrary semimartingale price system. It need not coincide
with the semimartingale price system constructed in Sect. 2. Moreover, the NUPBR
condition for simple long-only strategies need not hold. The aim is to define (ϕ)

as ϕ • S − ϕS − “costs”, where the process ϕ • S denotes the stochastic integral.
At this stage, the process ϕ is bounded (see Sect. 4 for the extension to unbounded
strategies). The costs are caused by the approach that stock positions are evaluated
by S, but trades are carried out at the less favorable bid–ask prices. Since the gains in
the semimartingale S are modelled by a finite-valued stochastic integral, they cannot
compensate infinite costs, and the latter lead to infinite debts in the bank account. The
“costs” that we construct below depend on the choice of the semimartingale price
system S, but the self-financing riskless position (ϕ) does not (see Corollary 3.22).
The latter means that the operator  only depends on (S,S). Moreover, for a simple
trading strategy ϕ, t(ϕ) coincides with ϕ0

t in (2.1).

3.1 Construction of the cost term

We construct the cost associated to a strategy ϕ ∈ bP path by path, i.e., in the fol-
lowing, ω ∈ � is fixed and ϕ,S,S,S are identified with functions of time.

We follow a two-step procedure. First, we calculate the costs on intervals in which
the left limit of the spread is bounded away from zero by means of a modified
Riemann–Stieltjes integral. The integral turns out to always exist (but it can take
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the value +∞). In the second step, we exhaust the set of points with positive spread
by finite unions of such intervals and define the total costs as the supremum of the
costs along these unions. One may see a vague analogy between the second step and
the way a Lebesgue integral is constructed.

This approach leads to a well-founded self-financing condition under the addi-
tional Assumption 3.18 on the behaviour of the spread at zero. Very roughly speak-
ing, there should not occur costs if the investor builds up positions at times the spread
is zero and the positions are already closed before the spread reaches any given posi-
tive value (cf. Example 3.23 for a counterexample). Since for the construction of our
cost process itself, the assumption is not needed, we introduce it later on.

In order to introduce the integral, we need the following notation.

Definition 3.1 Let I = [a, b] ⊆ [0, T ] with a < b.

(i) A collection P = {t0, . . . , tn} of points ti ∈ [a, b] for n ∈ N and i = 0, . . . , n

with a = t0 < t1 < · · · < tn = b is called a partition of I .
(ii) A partition P ′ = {t ′0, . . . , t ′m} with P ′ ⊇ P is called a refinement of P .
(iii) If P , P ′ are two partitions of I , the common refinement P ∪P ′ is the partition

obtained by ordering the points of {t0, . . . , tn} ∪ {t ′0, . . . , t ′m} in increasing order.
(iv) Given a partition P = {t0, . . . , tn} of I , a collection λ = {s1, . . . , sn} of points

si ∈ [ti−1, ti) for i = 1, . . . , n is called a modified intermediate subdivision of P .
(v) Let ϕ ∈ bP , P = {t0, . . . , tn} be a partition of I and λ = {s1, . . . , sn} a modified

intermediate subdivision of P . Then the modified Riemann–Stieltjes sum is defined by

R(ϕ,P,λ) :=
n∑

i=1

(Ssi − Ssi )(ϕti − ϕti−1)
+ +

n∑

i=1

(Ssi − Ssi
)(ϕti − ϕti−1)

−.

Definition 3.2 Let ϕ ∈ bP and I = [a, b] ⊆ [0, T ] with a < b. The cost term of ϕ

on I exists and equals C(ϕ, I) ∈ R+ ∪ {∞} if for all ε > 0, there is a partition Pε of
I such that for all refinements P of Pε and all modified intermediate subdivisions λ

of P , the following is satisfied:

(i) In the case of C(ϕ, I) < ∞, we have |R(ϕ,P,λ) − C(ϕ, I)| < ε.
(ii) In the case of C(ϕ, I) = ∞, we have |R(ϕ,P,λ)| > 1

ε
.

In addition, we set C(ϕ, {a}) := 0 for all a ∈ [0, T ] and C(ϕ,∅) := 0.

The next proposition establishes the existence of the cost term on an interval I

where the spread is bounded away from zero.

Proposition 3.3 Let ϕ ∈ bP and I = [a, b] ⊆ [0, T ] be an interval with a < b such
that inft∈[a,b)(St − St ) > 0. Then the cost term C(ϕ, I) in Definition 3.2 exists and is
unique. In addition, we have

{
C(ϕ, I) < ∞, if Varba(ϕ) < ∞,

C(ϕ, I ) = ∞, if Varba(ϕ) = ∞,

where Varba(ϕ) denotes the pathwise variation of ϕ on the interval [a, b].
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We postpone the technical proof of Proposition 3.3 to Appendix A.

Remark 3.4 First note that a priori ϕ need not be of finite variation. Thus we cannot
decompose the strategy into its increasing part ϕ↑ and decreasing part ϕ↓ to define∫ b

a
(Ss − Ss)dϕ

↑
s + ∫ b

a
(Ss − Ss)dϕ

↓
s =: C(ϕ↑, [a, b]) + C(ϕ↓, [a, b]). Instead, we

consider the increasing and decreasing parts of ϕ along grids and weigh them with
the corresponding prices before passing to the limit.

However, if Varba(ϕ) < ∞, it can be seen by an inspection of the proof of Proposi-
tion 3.3 that C(ϕ↑, [a, b]) + C(ϕ↓, [a, b]) = C(ϕ, [a, b]). In addition, the condition
inft∈[a,b)(St − St ) > 0 can be dropped if Varba(ϕ) < ∞.

Remark 3.5 Definition 3.2 (i) only requires that the cost term exists in the Moore–
Pollard–Stieltjes sense (see e.g. Hildebrandt [24, Sect. 4] and Mikosch and Nor-
vaiša [35, Sect. 2.3]), i.e., as the limit of the net R(ϕ, ·, ·) indexed by the directed
set of tuples (P,λ) with the partial order (P,λ) ≥ (P ′, λ′) if and only if P is a refine-
ment of P ′. This is weaker than the existence in the norm-sense, i.e., as the limit of
the net R(ϕ, ·, ·) indexed by the tuples (P,λ) with the partial order (P,λ) ≥ (P ′, λ′)
if and only if maxi=1,...,n(ti − ti−1) ≤ maxi=1,...,m(t ′i − t ′i−1), that is required for the
usual Riemann–Stieltjes integral with a continuous integrator of finite variation. A
straightforward adaptation of the existence in the norm-sense of the usual Riemann–
Stieltjes integral to the present context would read as follows:

The cost term is said to exist and equal C(ϕ, I) ∈ R+ if for each ε > 0, there is
δ > 0 such that |C(ϕ, I) − R(ϕ,P,λ)| < ε for all partitions P = {t0, . . . , tn} with
maxi=1,...,n(ti − ti−1) < δ and all subdivisions λ = {s1, . . . , sn} with si ∈ [ti−1, ti).

But the following example, similar to Guasoni et al. [20, Example A.3], shows
that C(ϕ, I) in general does not exist in the norm-sense: let T = 2, S −S = 1[1,2] and
ϕ = 1(1,2]. Then if ti = 1 is not included in the partition P , R(ϕ,P,λ) can oscillate
between 0 and 1.

The example shows that the points of common discontinuities of integrator and
integrand are critical to calculate the costs. Thus they have to be included in the
partition, which is guaranteed by the Moore–Pollard–Stieltjes approach.

Remark 3.6 The restriction that the point si of the intermediate subdivision λ must lie
in the interval [ti−1, ti), and not only in [ti−1, ti], has a clear financial interpretation.

If an investor buys ϕs − ϕs− shares at time s, she pays (ϕs − ϕs−)Ss− monetary
units. Consequently, if she updates her position between ti−1 and ti , only the stock
prices on the time interval [ti−1, ti) need to be considered. In the limit, the choice
of the price in [ti−1, ti) does not matter. Indeed, a well-known way to guarantee the
existence of Riemann–Stieltjes integrals in the case of simultaneous jump disconti-
nuities on the same side of integrator and integrand is to exclude the boundary points
(see Hildebrandt [24, Sect. 6]).

Finally, we mention that in the case of Varba(ϕ) < ∞, the integrals are the same
as in Guasoni et al. [20, Sect. A.2]. But besides considering different processes, we
introduce the integrals in a different way.

The next proposition states that the cost term is additive with regard to the under-
lying interval. Its proof is obvious from the definition.
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Proposition 3.7 Let ϕ ∈ bP , I = [a, b] ⊆ [0, T ] such that inft∈[a,b)(St −St ) > 0 and
c ∈ [a, b]. Then we have

C(ϕ, [a, b]) = C(ϕ, [a, c]) + C(ϕ, [c, b]).

Having defined the costs for all intervals I = [a, b] ⊆ [0, T ] which satisfy the
inequality inft∈[a,b)(St − St ) > 0, we now proceed to define the accumulated costs
as a process. To that end, we let

I :=
⎧
⎨

⎩

n⋃

i=1

[ai, bi] :
n ∈ N,

0 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ T ,

inft∈[ai ,bi )(St − St ) > 0, i = 1, . . . , n

⎫
⎬

⎭∪ {∅}. (3.1)

We now extend the cost term to I . Given ϕ ∈ bP and J =⋃n
i=1[ai, bi] ∈ I , we

define the costs along J by

C(ϕ,J ) :=
n∑

i=1

C(ϕ, [ai, bi]), (3.2)

where the cost terms C(ϕ, [ai, bi]) for i = 1, . . . , n are defined in Definition 3.2. By
Proposition 3.7, the right-hand side of (3.2) does not depend on the representation
of J . Thus the cost term C(ϕ,J ) is well defined for all J ∈ I .

Definition 3.8 Let ϕ ∈ bP . Then the cost process (Ct (ϕ))t∈[0,T ] is defined by

Ct(ϕ) := sup
J∈I

C(ϕ,J ∩ [0, t]) ∈ [0,∞], t ∈ [0, T ].

(Note that {0} ∈ I with C(ϕ, {0}) = 0 so that the supremum is nonnegative.) If ϕ is
clear from the context, we also write (Ct )t∈[0,T ] for the cost process associated to ϕ.

Proposition 3.9 Let ϕ ∈ bP . The cost process (Ct (ϕ))t∈[0,T ] is [0,∞]-valued, in-
creasing and consequently làglàd (if finite). In addition, the following assertions
hold:

(i) For any 0 ≤ s ≤ t ≤ T , we have Ct(ϕ) = Cs(ϕ) + supJ∈I C(ϕ,J ∩ [s, t]).
(ii) For any 0 ≤ s ≤ t ≤ T with infu∈[s,t)(Su − Su) > 0, we have

Ct(ϕ) = Cs(ϕ) + C(ϕ, [s, t]).
(iii) For any 0 ≤ s ≤ t ≤ T , we have

Ct(ϕ) ≤ Cs(ϕ) + sup
u∈[s,t)

(Su − Su)Varts (ϕ).

The assertions above follow directly from Definitions 3.2 and 3.8. Thus we leave
the easy proof to the reader.

The next proposition determines sequences of partitions whose corresponding
Riemann–Stieltjes sums converge to the cost term on an interval where the spread is
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bounded away from zero. This will be crucial to show that the cost term is predictable.
For this purpose, recall that the oscillation osc(f, I ) of a function f : [0, T ] → R on
an interval I ⊆ [0, T ] is defined by osc(f, I ) := sup{|f (t) − f (s)| : s, t ∈ I }.

Proposition 3.10 Take ϕ ∈ bP and I = [a, b] ⊆ [0, T ] with a < b and such that
inft∈[a,b)(St − St ) > 0, and let (Pn)n∈N be a refining sequence of partitions of I ,
i.e., Pn = {tn0 , . . . , tnmn

} with a = tn0 < tn1 < · · · < tnmn
= b and Pn+1 ⊇ Pn, such that

(i) lim
n→∞ max

(
sup

i=1,...,mn

osc
(
S − S, [tni−1, t

n
i )
)
, sup
i=1,...,mn

osc
(
S − S, [tni−1, t

n
i )
))= 0.

(ii) lim
n→∞

mn∑

i=1

|ϕtni
− ϕtni−1

| = Varba(ϕ).

Then for any sequence λn = {sn
1 , . . . , sn

mn
} of modified intermediate subdivisions, we

have

R(ϕ,Pn,λn) −→ C(ϕ, [a, b]) as n → ∞.

In addition, a sequence (Pn)n∈N as above always exists.

The proof of Proposition 3.10 is closely related to the proof of Proposition 3.3.
Thus we also postpone it to Appendix A. We now conclude the subsection with a first
approximation result.

Proposition 3.11 Let ϕ,ϕn ∈ bP , n ∈ N, t ∈ [0, T ] and J ∈ I . Then we have the
implication

ϕn → ϕ pointwise =⇒ lim inf
n→∞ C(ϕn, J ∩ [0, t]) ≥ C(ϕ,J ∩ [0, t]). (3.3)

Proof Let ϕn → ϕ pointwise and t ∈ [0, T ]. We start by noting that the claim is trivial
if J = {a} for some a ∈ [0, T ] or if J = ∅.

Step 1. We now treat the special case J = [a, b] ∈ I with a < b. In this case,
we have C(ϕ,J ∩ [0, t]) = C(ϕ, [a, b ∧ t]) and C(ϕn, J ∩ [0, t]) = C(ϕn, [a, b ∧ t])
for all n ∈ N, where we use the convention [c, d] = ∅ if d < c. In addition, by the
preceding observation, we may assume t > a.

We only consider the case C(ϕ, [a, b∧t]) < ∞ since the case C(ϕ, [a, b ∧ t]) = ∞
is analogous. Let ε > 0. There is a partition Pε = {t0, . . . , tm} of [a, b ∧ t] such that

m∑

i=1

inf
s∈[ti−1,ti )

(Ss − Ss)(ϕti − ϕti−1)
+ +

m∑

i=1

inf
s∈[ti−1,ti )

(Ss − Ss)(ϕti − ϕti−1)
−

≥ C(ϕ, [a, b ∧ t]) − ε.

Using the pointwise convergence of (ϕn)n∈N, we can find N ∈ N such that for all
n ≥ N , we have
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m∑

i=1

inf
s∈[ti−1,ti )

(Ss − Ss)(ϕ
n
ti

− ϕn
ti−1

)+ +
m∑

i=1

inf
s∈[ti−1,ti )

(Ss − Ss)(ϕ
n
ti

− ϕn
ti−1

)−

≥ C(ϕ, [a, b ∧ t]) − 2ε. (3.4)

Keeping this in mind, for each n, we choose a partition P n such that for all refine-
ments P of P n and subdivisions λ of P , we have C(ϕn, [a, b∧ t]) ≥ R(ϕn,P,λ)−ε.
Now let Pn := Pε ∪ P n and write Pn = {tn0 , . . . , tnmn

}. Denoting the points of Pn in
between ti−1 and ti by ti−1 = tni1

< tni2
< · · · < tnij

= ti , we have

j∑

k=2

(ϕn
tnik

− ϕn
tnik−1

)+ ≥ (ϕn
ti

− ϕn
ti−1

)+ and
j∑

k=2

(ϕn
tnik

− ϕn
tnik−1

)− ≥ (ϕn
ti

− ϕn
ti−1

)−.

Together with (3.4), this yields

C(ϕn, [a, b ∧ t]) ≥ R(ϕn,Pn,λn) − ε ≥ C(ϕ, [a, b ∧ t]) − 3ε

for all n ≥ N and intermediate subdivisions λn of Pn. Hence we have

lim inf
n→∞ C(ϕn, [a, b ∧ t]) ≥ C(ϕ, [a, b ∧ t]) − 3ε,

which is tantamount to the claim as ε ↓ 0.
Step 2. Finally, let J =⋃m

i=1[ai, bi] ∈ I . Then, using the nonnegativity of the
sequences (C(ϕn, [ai, bi ∧ t]))n∈N for i = 1, . . . ,m, we have

lim inf
n→∞ C(ϕn, J ∩ [0, t]) = lim inf

n→∞

m∑

i=1

C(ϕn, [ai, bi ∧ t])

≥
m∑

i=1

lim inf
n→∞ C(ϕn, [ai, bi ∧ t]).

Thus (3.3) follows from Step 1 and the observation at the start of the proof. �

3.2 The cost term as a stochastic process

Until now we kept ω ∈ � fixed, i.e., the construction up to here is path by path.
To show some measurability properties of the cost term, we now consider it as a
stochastic process.

Proposition 3.12 Let ϕ ∈ bP . The cost process C(ϕ) = (Ct (ϕ))t∈[0,T ] coincides with
a predictable process up to evanescence.

In order to prove Proposition 3.12, we need the following lemma, whose proof
relies on some deep results of Doob [15] and it is postponed to Appendix A.
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Lemma 3.13 Let ϕ ∈ bP and σ ≤ τ be two stopping times such that

inf
σ(ω)≤t<τ(ω)

(
St (ω) − St (ω)

)
> 0 for all ω ∈ �.

Then the process C(ϕ, [σ ∧ · , τ ∧ · ]) coincides with a predictable process up to
evanescence.

We start to prepare the proof of Proposition 3.12 (assuming that Lemma 3.13 holds
true). Let us approximate the supremum in Definition 3.8 in a measurable way. For
this, we define for each n ∈N a sequence of stopping times by τn

0 := 0 and

τn
k :=

{
inf{t ≥ τn

k−1 : St − St ≤ 2−(n+1)}, k odd,

inf{t > τn
k−1 : St − St ≥ 2−n}, k even,

for k ∈N. (3.5)

Note that there are only finitely many τn
k (ω) < ∞ as the process S − S has càdlàg

sample paths, τn
2k < τn

2k+1 on {τn
2k < ∞} and

inf
τn

2k(ω)≤t<τn
2k+1(ω)

(
St (ω) − St (ω)

)≥ 2−(n+1) for k ∈ N0, ω ∈ �.

In particular, this means that the process Cn(ϕ) = (Cn
t (ϕ))t∈[0,T ] given by

Cn
t (ϕ) :=

∞∑

k=0

C(ϕ, [τn
2k ∧ t, τ n

2k+1 ∧ t])

is well defined and coincides with a predictable process up to evanescence for each
n ∈N by Lemma 3.13.

Lemma 3.14 Let ϕ ∈ bP and (Cn(ϕ))n∈N as above. Then Cn(ϕ) → C(ϕ) pointwise.

Proof We write Cn instead of Cn(ϕ) to not overburden the notation. In addition, we
fix (ω, t) ∈ � × [0, T ]. For Ct(ω) < ∞, we claim that for each ε > 0, there is an
N ∈ N such that

Ct(ω) − ε ≤ Cn
t (ω) ≤ Ct(ω) for all n ≥ N. (3.6)

To prove (3.6), note first that Ct(ω) ≥ Cn
t (ω) for all n ∈ N by Definition 3.8. For the

other inequality, let ε > 0 and choose 0 ≤ a1 < b1 ≤ a2 < · · · ≤ am < bm ≤ t such
that infu∈[ai ,bi )(Su(ω) − Su(ω)) > 0 for i = 1, . . . ,m and

Ct(ω) − ε ≤
m∑

i=1

C
(
ϕ(ω), [ai, bi]

)
. (3.7)

Let δ := mini=1,...,m infu∈[ai ,bi )(Su(ω) − Su(ω)) > 0 and choose N ∈ N such that
2−N < δ. Then it follows from the definition of the stopping times (3.5) that

m⋃

i=1

[ai, bi] ⊆
∞⋃

k=0

[τn
2k(ω) ∧ t, τ n

2k+1(ω) ∧ t] for all n ≥ N.
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Combining this with Proposition 3.7 and (3.7), the left inequality in (3.6) is proved.
Of course, for Ct(ω) = ∞, the arguments are completely analogous. We note that by
Proposition 3.9 (i), N could be chosen independently of t if CT (ω) < ∞. �

Proof of Proposition 3.12 Applying Lemma 3.13, we find that Cn coincides with a
predictable process up to evanescence. Together with Lemma 3.14, this yields that
the same holds for C. �

Next, we calculate the cost of an “almost simple” trading strategy (cf. Guasoni et
al. [20] for a detailed discussion).

Definition 3.15 A predictable stochastic process ϕ of finite variation is called an al-
most simple strategy if there is a sequence of stopping times (τn)n≥0 with τn < τn+1
on {τn < ∞} and #{n : τn(ω) < ∞} < ∞ for all ω ∈ � such that

ϕ =
∞∑

n=0

(ϕτn1�τn� + ϕτn+1�τn,τn+1�).

Proposition 3.16 Let ϕ be an almost simple strategy. Then for all t ∈ [0, T ],

Ct(ϕ) =
∞∑

n=0

1{τn≤t}
(
(Sτn− − Sτn−)(ϕτn − ϕτn−)+ + (Sτn− − Sτn−)(ϕτn − ϕτn−)−

)

+
∞∑

n=0

1{τn<t}
(
(Sτn − Sτn)(ϕτn+ − ϕτn)

+ + (Sτn − Sτn
)(ϕτn+ − ϕτn)

−).

Proof For ω ∈ � fixed, there is some n ∈ N0 with τ0(ω) < · · · < τn−1(ω) ≤ T and
τn(ω) = ∞. Now, it is sufficient to consider partitions containing the points τi(ω)− δ

and τi(ω) if (Sτi−(ω) − Sτi−(ω)) ∧ (Sτi−(ω) − Sτi−(ω)) > 0, and the points τi(ω)

and τi(ω) + δ if (Sτi
(ω) − Sτi

(ω)) ∧ (Sτi
(ω) − Sτi

(ω)) > 0 for i = 0, . . . , n − 1 and
δ > 0 small. We leave the details to the reader. �

Finally, we show how a ϕ ∈ bP which incurs finite cost on a stochastic interval
where the spread is bounded away from zero can be approximated by almost simple
strategies on this interval such that the cost terms converge as well.

Proposition 3.17 Let ϕ ∈ bP and σ ≤ τ be two stopping times such that

inf
σ(ω)≤t<τ(ω)

(
St (ω) − St (ω)

)
> 0

for all ω ∈ � and C(ϕ, [σ ∧ T , τ ∧ T ]) < ∞ a.s. Then there exists a uniformly
bounded sequence (ϕn)n∈N such that ϕn1�σ,τ� is almost simple with ϕn

σ = ϕσ on
{σ < ∞} and |ϕ − ϕn| ≤ 1/n on �σ, τ� (up to evanescence) for all n ∈ N, and
such that

sup
t∈[0,T ]

|C(ϕn, [σ ∧ t, τ ∧ t]) − C(ϕ, [σ ∧ t, τ ∧ t])| −→ 0 P-a.s. (3.8)

The proof is postponed to Appendix A.
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3.3 Definition and characterisation

For the remainder of the paper, we make the following assumption on the bid–ask
spread.

Assumption 3.18 For every (ω, t) ∈ � × [0, T ) with St (ω) = St (ω), there exists an
ε > 0 such that either Ss(ω) = Ss(ω) for all s ∈ (t, (t + ε)∧T ) or Ss(ω) > Ss(ω) for
all s ∈ (t, (t + ε) ∧ T ).

Assumption 3.18 means that each zero of the path t �→ St (ω) − St (ω) is either
an inner point from the right of the zero set of S(ω) − S(ω) or a starting point of
an excursion away from zero. This excludes e.g. Brownian behaviour of the spread,
which is exploited in Example 3.23 where we show what can go wrong without this
assumption.

For the rest of the paper, we work with the predictable versions of the cost pro-
cesses (cf. Proposition 3.12) and identify processes that coincide up to evanescence.
Given a semimartingale S, we define the operator  that maps a bounded, predictable
strategy ϕ starting at zero, i.e., ϕ ∈ bP , to the associated [−∞,∞)-valued riskless
position (also starting at zero) by

t(ϕ) := ϕ • St − ϕtSt − Ct(ϕ), t ∈ [0, T ],
which coincides with ϕ • St− − ϕtSt− − Ct(ϕ). Throughout the paper, ϕ • S de-
notes the standard stochastic integral as defined in Jacod and Shiryaev [26, Defi-
nition III.6.17]. If stock positions are evaluated by the semimartingale S, the wealth
process is given by

Vt (ϕ) := ϕ • St − Ct(ϕ) = t(ϕ) + ϕtSt . (3.9)

If there is ambiguity about the semimartingale S used in the construction, we write
CS(ϕ), S(ϕ), V S(ϕ) instead of C(ϕ), (ϕ), V (ϕ).

We still have to introduce a measure that gives some information about the con-
vergence of integrals with respect to S. There exists a probability measure Q ≈ P

such that the semimartingale S possesses a decomposition S = M + A, where M is
a Q-square-integrable martingale and A is a process of Q-integrable variation (see
Dellacherie and Meyer [14, Theorem VII.58]). We introduce the finite measure

μS(B) := EQ[1B
• 〈M,M〉T ] +EQ[1B

• VarT (A)], B ∈P, (3.10)

where 〈M,M〉 denotes the predictable quadratic variation of M (see e.g. Jacod and
Shiryaev [26, Theorem I.4.2]).

The following theorem characterises the process V (ϕ) as the limit of wealth pro-
cesses associated with suitable almost simple strategies. For almost simple strategies,
Proposition 3.16 shows that C is the cost term that one intuitively expects. Thus for
almost simple strategies, V as defined above does not need further justification.



954 C. Kühn, A. Molitor

Theorem 3.19 Let ϕ ∈ bP and let μ be a σ -finite measure on the predictable
σ -algebra with μS � μ.

(i) For all {0,1}-valued nonincreasing predictable processes A and all uniformly
bounded sequences (ϕn)n∈N of predictable processes, we have the implication

ϕn → ϕ pointwise on {S− > S−} ∩ {A = 1}μS-a.e. on {S− = S−} ∩ {A = 1}
=⇒ lim inf

n→∞ V (ϕn) ≤ V (ϕ) on {A = 1} up to evanescence.

(ii) There exists a uniformly bounded sequence (ϕn)n∈N of almost simple strategies
such that

ϕn −→ ϕ pointwise on {S− > S−} ∩ {C(ϕ) < ∞},
μ-a.e. on {S− = S−}∩{C(ϕ) < ∞},

and for all K ∈ N,

sup
t∈[0,T ]

|Vt (ϕ
n) − Vt (ϕ)|1{Ct (ϕ)≤K} −→ 0 in probability for n → ∞.

Remark 3.20 In the special case C(ϕ) < ∞, which is equivalent to V (ϕ) > −∞, set-
ting A = 1 yields the following characterisation of the wealth process of a bounded
strategy: (i) The wealth of the strategy exceeds the limiting wealth of (almost) point-
wise converging simple strategies, and (ii) there exists a special approximating se-
quence such that the wealth processes converge.

On the set {V (ϕ) = −∞} = {C(ϕ) = ∞}, one cannot expect the existence of a se-
quence of simple strategies that converge pointwise to ϕ on {S− > S−}. Nevertheless,
Theorem 3.19 (i) provides a motivation for V (ϕ) = −∞.

For the proof of Corollary 3.22, we need the theorem in this general form, covering
the case of infinite costs, since it is not clear a priori that the latter property does not
depend on the choice of S.

Remark 3.21 In Theorem 3.19 (i), one cannot expect convergence “uniformly in prob-
ability” as in the frictionless case. Indeed, consider S = 1, S = 2 and ϕn = 1�1/n,1�
which converges pointwise to ϕ = 1�0,1�, but V (ϕn) − V (ϕ) = 1�0,1/n�.

Corollary 3.22 Let ϕ ∈ bP . The self-financing condition, i.e., the riskless posi-
tion (ϕ), does not depend on the choice of the semimartingale price system up
to evanescence.

Proof Let ϕ ∈ bP and S, S̃ be semimartingale price systems. Of course, the mea-
sure Q in (3.10) can be chosen jointly for S and S̃, and for ease of notation, without
loss of generality, Q = P. We set μ := μS + μS̃ . Let us fix K ∈N and show that

S̃(ϕ) ≥ S(ϕ) on {CS(ϕ) ≤ K} up to evanescence. (3.11)

Observe that (3.11) for all K ∈ N implies that S̃(ϕ) ≥ S(ϕ) up to evanescence
since S(ϕ) = −∞ on {CS(ϕ) = ∞} = (�×[0, T ]) \∪K∈N{CS(ϕ) ≤ K}. Then the
assertion of the corollary follows by symmetry. Thus it is sufficient to show (3.11).
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For this, let (ϕn)n∈N be a sequence of almost simple strategies satisfying the prop-
erties in Theorem 3.19 (ii) for the semimartingale S and μ given above. According
to Theorem 3.19 (ii), we may suppose that

sup
t∈[0,T ]

|V S
t (ϕn) − V S

t (ϕ)|1{CS
t (ϕ)≤K} −→ 0 P-a.s. (3.12)

by passing to a subsequence. On the other hand, by applying Theorem 3.19 (i) with
respect to the semimartingale S̃ and A := 1{CS(ϕ)≤K}, we get

lim inf
n→∞ V S̃(ϕn) ≤ V S̃(ϕ) on {CS(ϕ) ≤ K} up to evanescence. (3.13)

In addition, Proposition 3.16 and elementary calculations yield the assertion of the
corollary for almost simple strategies, i.e., in view of (3.9),

V S̃(ϕn) = V S(ϕn) + ϕn(S̃ − S), n ∈ N. (3.14)

It remains to analyse (ϕn − ϕ)(S̃ − S), especially on {S− = S−} ∩ {S > S}. If a
sequence of càdlàg processes converges to zero uniformly in probability, the same
holds for the associated jump processes. Thus the choice of μ and the same arguments
as in the proof of Theorem 3.19 (i) yield that in probability for n → ∞,

sup
t∈[0,T ]

|ϕn
t �St − ϕt�St |1{St−−St−=0, CS

t (ϕ)<∞} −→ 0,

sup
t∈[0,T ]

|ϕn
t �S̃t − ϕt�S̃t |1{St−−St−=0, CS

t (ϕ)<∞} −→ 0. (3.15)

By passing to a further subsequence (again denoted by (ϕn)n∈N), we can and do
assume that the convergence in (3.15) holds for P-a.e. ω ∈ �. Thus on the set
{S− = S−,CS(ϕ) < ∞}, we have

ϕn(S̃ − S) = ϕn(S̃− − S−) + ϕn(�S̃ − �S) = ϕn(�S̃ − �S)

which converges to ϕ(�S̃ − �S) = ϕ(S̃ − S) up to evanescence. In addition, Theo-
rem 3.19 (ii) yields ϕn(S̃ − S) → ϕ(S̃ − S) on {S− > S−,CS(ϕ) < ∞}, i.e., we have
ϕn(S̃ − S) → ϕ(S̃ − S) on {CS(ϕ) < ∞} up to evanescence. Combining this with
(3.12)–(3.14) yields

S̃(ϕ) − S(ϕ) = V S̃(ϕ) − ϕS̃ − (V S(ϕ) − ϕS
)

≥ lim inf
n→∞

(
V S̃(ϕn) − V S(ϕn) − ϕn(S̃ − S)

)

= 0 on {CS(ϕ) ≤ K} up to evanescence,

and we are done. We note that the differences above are well defined since S(ϕ)

and V S(ϕ) are finite on {CS(ϕ) ≤ K}. �

The following example shows that our approach does not work without Assump-
tion 3.18.
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Example 3.23 Let S = −|B|+LB and S = |B|+LB , where B is a standard Brownian
motion and LB its local time at zero in the sense of Protter [37, Sect. IV.7]. Consider
the strategy ϕ := 1{S=S}∩(�×(0,T ]) = 1{B=0}∩(�×(0,T ]) and different semimartingale

price systems S = α|B|+LB for α ∈ [−1,1]. By Definition 3.8, we get C(ϕ) = 0. By
[37, Theorem IV.69 and Corollary 3 of Theorem IV.70], we have ϕ • S = (α + 1)LB .
Together this implies (ϕ) = (α + 1)LB −1{B=0}LB . Since LB does not vanish, the
self-financing condition would depend on the choice of α.

Corollary 3.24 Let ϕ ∈ bP and (ϕn)n∈N be uniformly bounded. If ϕn → ϕ pointwise
on {S− > S−} and μS-a.s. on {S− = S−}, then there exists a deterministic subse-
quence (nk)k∈N such that

lim
k→∞

(
V (ϕnk ) − V (ϕ)

)+ = 0 up to evanescence.

Proof The proof of Theorem 3.19 (i) shows that we have ϕn • S → ϕ • S uniformly in
probability. Hence, we can choose a subsequence (nk)k∈N such that ϕnk • S → ϕ • S

up to evanescence. Finally, together with

lim inf
k→∞ C(ϕnk ) ≥ lim inf

n→∞ C(ϕn) ≥ C(ϕ),

the assertion follows. �

4 Extension to unbounded strategies

Let (bP) := {ϕ ∈ bP : (ϕ) > −∞ up to evanescence}. Note that by Corol-
lary 3.22, this set does not depend on the chosen semimartingale price system. In
this section, we want to extend the self-financing condition, i.e., the operator , from
(bP) to a set of predictable strategies as large as possible. To that end, recall that
the space of equivalence classes L of adapted làdlàg processes (identifying processes
that coincide up to evanescence) endowed with the topology of uniform convergence
in probability, which is defined by the quasinorm ‖X‖up = E[supt∈[0,T ] |Xt | ∧ 1],
X ∈ L, is a complete metric space with metric dup(X,Y ) := ‖X −Y‖up for X,Y ∈ L.
Indeed, this is a consequence of the completeness of the space of làdlàg func-
tions (also called regulated functions) equipped with the supremum norm (see e.g.
Fraňková [18, Point 1.8]). In addition, if (Xn)n∈N ⊆ L converges to X ∈ L with re-
gard to dup, we write up-limn→∞ Xn = X. At this step, the restriction from bP to
(bP) is not critical since the latter is sufficiently large to approximate finite portfo-
lio processes, in which we are finally interested, in a reasonable way.

Definition 4.1 Let L denote the subset of real-valued, predictable processes ϕ such
that there exists a sequence (ϕn)n∈N ⊆ (bP) with the following properties:

(i) ϕn → ϕ pointwise on � × [0, T ] and (ϕn)+ ≤ ϕ+, (ϕn)− ≤ ϕ− for all n ∈N.
(ii) There exists a semimartingale S with S ≤ S ≤ S such that

(
V S(ϕn)

)
n∈N = (ϕn • S − CS(ϕn)

)
n∈N
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is Cauchy in (L, dup) and such that for all sequences (ϕ̃n)n∈N ⊆ (bP) satisfying (i),
there exists a deterministic subsequence (nk)k∈N such that

(
V S(ϕ̃nk ) − V S(ϕnk )

)+ −→ 0 as k → ∞, up to evanescence. (4.1)

The requirement (ii) means that in the limit, the approximation with (ϕn)n∈N is
better than all other pointwise approximations (ϕ̃n)n∈N if the stock position is eval-
uated by the same semimartingale. In (4.1), we cannot expect uniform convergence
in time, but exceptional P-nullsets can be chosen independently of time. By Corol-
lary 3.24, we have (bP) ⊆ L.

Proposition 4.2 Let ϕ ∈ L. If (ϕn)n∈N ⊆ (bP) is a sequence satisfying the
requirements of Definition 4.1 for ϕ with respect to a semimartingale S, and
(ϕ̃n)n∈N ⊆ (bP) is another sequence satisfying the same requirements for ϕ with
respect to a semimartingale S̃, then we have

up-lim
n→∞

V S(ϕn) − ϕS = up-lim
n→∞

V S̃(ϕ̃n) − ϕS̃

up to evanescence.

We now can extend the operator  to L by setting

(ϕ) := up-lim
n→∞

V S(ϕn) − ϕS, ϕ ∈ L, (4.2)

where (ϕn)n∈N is any sequence satisfying the requirements of Definition 4.1 with
respect to the semimartingale S. By Proposition 4.2,  is well defined on L, i.e., it
does not depend on the choice of the approximating sequence and the semimartingale.

Proof of Proposition 4.2 Let (ϕn)n∈N and (ϕ̃n)n∈N be sequences that satisfy the as-
sumptions of the proposition. Corollary 3.22 states that the process (ϕ̃n) does not
depend on the semimartingale, i.e., we have

V S(ϕ̃n) − ϕ̃nS = V S̃(ϕ̃n) − ϕ̃nS̃ up to evanescence for all n ∈ N, (4.3)

and thus
(
V S̃(ϕ̃n) − ϕ̃nS̃ − (V S(ϕn) − ϕnS

))+

= (V S(ϕ̃n) − V S(ϕn) + (ϕn − ϕ̃n)S
)+

≤ (V S(ϕ̃n) − V S(ϕn)
)+ + ((ϕn − ϕ̃n)S

)+ (4.4)

up to evanescence for all n ∈N. We have ϕn → ϕ and ϕ̃n → ϕ pointwise as n → ∞.
We may pass to a subsequence such that ((V S(ϕ̃n) − V S(ϕn))+)n∈N converges to
zero pointwise up to evanescence by (4.1). In addition, we may further pass to subse-
quences such that (V S̃(ϕ̃n))n∈N, (V S(ϕn))n∈N converge pointwise up to evanescence.
Thus by symmetry, (4.4) yields the assertion. �
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4.1 Frictionless markets

We now turn towards the frictionless case, i.e., S = S = S, and show that L equals
the set L(S) of S-integrable processes.

Proposition 4.3 Let S = S = S be a semimartingale. Then we have L = L(S) and
(ϕ) = ϕ • S − ϕS for all ϕ ∈ L.

The set L(S) as given in Jacod and Shiryaev [26, Definition III.6.17] was intro-
duced by Jacod [25], but there are equivalent definitions that may look a bit smarter
and that are based on bP ⊆ L(S). For this, recall that the space of equivalence
classes S of semimartingales (identifying processes that coincide up to evanescence)
endowed with the semimartingale topology defined by the metric

dS(X,Y ) := sup
H∈bP, ‖H‖∞≤1

‖H • (X − Y)‖up, X,Y ∈ S,

is a complete metric space by Émery [17, Theorem 1]. The following characterisation
of S-integrability is effectively due to Chou et al. [5].

Note 4.4 Let S be a semimartingale and ϕ a predictable process. The following as-
sertions are equivalent:

(i) ϕ ∈ L(S).
(ii) There exists a sequence (ϕn)n∈N ⊆ bP with ϕn → ϕ pointwise, (ϕn)+ ≤ ϕ+,

(ϕn)− ≤ ϕ− for all n ∈N, and such that (ϕn • S)n∈N is Cauchy in (S, dS).
(iii) For all sequences (ϕn)n∈N ⊆ bP with ϕn → ϕ pointwise and |ϕn| ≤ |ϕ| for

all n ∈ N, the sequence (ϕn • S)n∈N is Cauchy in (S, dS).

In this case, the integral ϕ • S is given by the limit of any such sequence (ϕn • S)n∈N
with regard to dS.

Proof of Note 4.4 Chou et al. [5, first definition] (see also Dellacherie and Meyer [14,
VIII.75]) introduce the special approximating sequence ϕn := ϕ1{|ϕ|≤n} for some
predictable process ϕ. Later on, the only properties of the sequence (ϕn)n∈N they use
is that ϕn ∈ bP for n ∈ N, |ϕn| ≤ |ϕ| for n ∈ N, and ϕn → ϕ pointwise. Thus the
note is just a reformulation of their results; see Chou et al. [5, Properties b), c), d) and
Théorème 1] (see also [14, VIII.74–77]). �

A similar characterisation is provided in Eberlein and Kallsen [16, equation after
(3.35)], by

L(S) = {ϕ predictable : ∃ semimartingale Z such that

(ϕ1{|ϕ|≤n}) • S = 1{|ϕ|≤n} • Z for all n ∈ N}.
It emphasises the maximality of L(S) if one requires that the integral ϕ • S := Z

itself is a semimartingale. By contrast, in our characterisation from Definition 4.1,
the semimartingale property can be seen more as a result since it is stated with the
up-metric and not with the semimartingale metric.
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Proof of Proposition 4.3 L(S) ⊆ L: This follows from (i) ⇒ (ii) ⇒ (iii) in Note 4.4.
L ⊆ L(S): Let ϕ ∈ L. Thus there exists (ϕn)n∈N ⊆ bP satisfying Definition 4.1 (i)

and (ii). In particular, the sequence (V S(ϕn))n∈N = (ϕn • S)n∈N is Cauchy with re-
gard to dup. To show by contradiction that the sequence is also Cauchy in (S, dS),
we assume there exist ε > 0, a sequence (Hn)n∈N of predictable processes with
0 ≤ Hn ≤ 1 for all n ∈ N and a subsequence (mn)n∈N with mn ≥ n such that

P

[((
Hn(ϕn − ϕmn)

) • S
)∗

T
> ε
]

> ε, ∀n ∈N. (4.5)

We note that in (4.5), it is assumed that Hn is [0,1]-valued and not only [−1,1]-valued,
since otherwise it can be decomposed into its positive and its negative part. Next, we
define the strategies ψn := Hnϕn + (1 − Hn)ϕmn ∈ bP for n ∈N and

θn := (1 − Hn)ϕn + Hnϕmn ∈ bP for n ∈N.

The strategies satisfy ψn → ϕ, θn → ϕ pointwise and

(ψn)+ ∨ (θn)+ ≤ ϕ+, (ψn)− ∨ (θn)− ≤ ϕ−,

i.e., they satisfy Definition 4.1 (i).
Consider the two stopping times σn := inf{t ≥ 0 : ψn • St − ϕn • St > ε/2} and

τn := inf{t ≥ 0 : θn • St −ϕn • St > ε/2} for each n ∈N. There is an N ∈ N such that
P[((ϕn − ϕmn) • S)∗T > ε/2] < ε/2 for all n ≥ N , as (ϕn − ϕmn) • S → 0 uniformly
in probability by Definition 4.1 (ii). Thus we have

P[σn∧ τn ≤ T ] ≥ P

[((
Hn(ϕn − ϕmn)

) • S
)∗

T
> ε
]
− P

[(
(ϕn − ϕmn) • S

)∗
T

> ε/2
]

> ε/2, ∀n ≥ N.

Next, we define the adjusted strategies ψ̃n := ψn1�0,σ n� + ϕn1�σn,T � and similarly
θ̃ n := θn1�0,τn� + ϕn1�τn,T � which still satisfy Definition 4.1 (i). Thus together with

P[{ψ̃n • ST − ϕn • ST > ε/2} ∪ {θ̃ n • ST − ϕn • ST > ε/2}]
≥ P[σn ∧ τn ≤ T ] > ε/2

for all n ≥ N , we arrive at a contradiction to (4.1). Thus (ϕn • S)n∈N is Cauchy in
(S, dS) and the assertion follows by (ii) ⇒ (i) in Note 4.4. �

One of the referees raised the following interesting question that can be considered
as a generalisation of Proposition 4.3 to markets with friction. Does ϕ ∈ L imply that
there exists a semimartingale price system S such that ϕ ∈ L(S)? This would mean
that if stock positions are evaluated by S, the trading gains and the cost term of the
approximating bounded strategies converge separately (and not only their sum).

Under additional assumptions, the following theorem gives a positive answer to
this question. Note especially that the considered model is deterministic: see Re-
mark 4.6 below for a discussion.
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Theorem 4.5 Let � = {ω} and S, S be continuous. If ϕ ∈ L, ϕ > 0 on (0, T ] and ϕ is
lower semicontinuous at all t ∈ [0, T ] with St > St , then there exists a semimartin-
gale price system S with ϕ ∈ L(S).

Proof We choose an arbitrary semimartingale price system S̃ (whose existence is
assumed at the beginning of Sect. 3). We note that the semimartingale price system S

with ϕ ∈ L(S) which we construct in this proof depends in general on the choice of S̃.
Step 1: Let us show that

sup
ψ bounded, 0≤ψ≤ϕ

V S̃
T (ψ) < ∞. (4.6)

Assume by contradiction that there exist bounded strategies ψn, n ∈ N, such that
0 ≤ ψn ≤ ϕ and V S̃

T (ψn) → ∞. On the other hand, since ϕ ∈ L and by (4.3), there

exist bounded ϕn, n ∈ N, with 0 ≤ ϕn ≤ ϕ, ϕn → ϕ and V S̃
T (ϕn) → V S̃

T (ϕ) ∈ R. Thus
there is a null sequence (εn)n∈N ⊆ (0,1) such that

V S̃
T

(
εnψ

n + (1 − εn)ϕ
n
)≥ εnV

S̃
T (ψn) + (1 − εn)V

S̃
T (ϕn) −→ ∞,

which is a contradiction to ϕ ∈ L.
Step 2: Next, we show that for each nonnegative bounded function ψ̃ ,

sup
0≤ψ≤ψ̃

V S̃
T (ψ) (4.7)

is attained by a maximiser ψ�. To see this, let (ψn)n∈N be a maximising sequence,
i.e., V S̃

T (ψn) → sup0≤ψ≤ψ̃ V S̃
T (ψ). Since ψn • S̃T ≤ supt∈[0,T ] ψ̃t · VarT (S̃) for all

n ∈ N, the sequence of cost terms (CS̃
T (ψn))n∈N is bounded. In addition, the set

{S > S} can be written as a countable union of closed intervals on which we
have either S̃ ≥ S + 1/3(S − S) or S̃ ≤ S + 2/3(S − S). In the first case, selling
leads to essential costs on such an interval [a, b]. Consequently, one must have
supn∈N Varba(ψ

n) < ∞. Then by the same arguments as in Campi and Schacher-
mayer [4, proof of Proposition 3.4], after passing to convex combinations, we ob-
tain a pointwise limit limn→∞ ψn =: ψ� everywhere on {S > S} and Var(S̃)-a.e. on
{S = S}, which must be a maximiser by Theorem 3.19 (i).

Step 3: We now construct a sequence (ϕ̂n)n∈N such that ϕ̂n is a solution of (4.7)
with ψ̃ = ϕ∧n for all n ∈N and such that for n < m, the strategy ϕ̂m has to “buy/sell”
if ϕ̂n “buys/sells”.

Starting with solutions η̂k of (4.7) with ψ̃ = (ϕ − (k −1))+ ∧1 for each k ∈ N, we
define the strategies ηn,k := (

∑n
�=1 η̂l − (k − 1))+ ∧ 1 for n ∈ N and k ≤ n. We have

n∑

k=1

V S̃
T (ηn,k) = V S̃

T

( n∑

k=1

ηn,k

)
= V S̃

T

( n∑

k=1

η̂k

)
≥

n∑

k=1

V S̃
T (̂ηk).

Indeed, V S̃
T (·) is superadditive, and additive for ηn,k , k = 1, . . . , n. The latter can be

seen by the additivity of the cost term for approximating simple strategies. Together
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with V S̃
T (̂ηk) ≥ V S̃

T (ηn,k) for all k ≤ n, this implies V S̃
T (̂ηk) = V S̃

T (ηn,k) for k ≤ n

and n ∈ N. Defining ηk := limn→∞ ηn,k = (
∑∞

�=1 η̂� − (k − 1))+ ∧ 1, k ∈ N, we
observe that ηk = 0 on {ηk−1 < 1} and ηk ≤ (ϕ − (k − 1)) ∧ 1. In addition, by Theo-
rem 3.19 (i), we have V S̃

T (ηk) ≥ limn→∞ V S̃
T (ηn,k) = V S̃

T (̂ηk), and thus ηk solves the
problem (4.7) with ψ̃ = (ϕ − (k − 1)) ∧ 1. Finally, we set ϕ̂n :=∑n

k=1 ηk , n ∈ N.
Then for an arbitrary strategy ψ with ψ ≤ ϕ ∧ n, the optimality of ηk yields

V S̃
T (ψ) =

n∑

k=1

V S̃
T

((
ψ − (k − 1)

)+ ∧ 1
)

≤
n∑

k=1

V S̃
T (ηk) = V S̃

T (ϕ̂n),

i.e., ϕ̂n solves (4.7) with ψ̃ = ϕ ∧ n.
Step 4: Let (ϕ̂n)n∈N be the sequence of maximisers from the previous step. Since

short positions are forbidden, we can replace ST by S̃T and assume that positions
are sold at T . The goal is to construct a process S such that S is of finite variation,
V S̃

T (ϕ̂n) = ϕ̂n • ST , and ψ • ST ≤ ϕ̂n • ST for all strategies 0 ≤ ψ ≤ ϕ ∧ n, i.e., S is
a shadow price simultaneously for all problems (4.7) with ψ̃ = ϕ ∧ n, n ∈ N. Un-
der Assumption 3.18 and by an exhaustion argument, it is possible to construct S

in the following way. On the frictionless intervals, cf. Lemma 5.2, S is defined as
S = S = S. Now let a be a “buying time” with Sa > Sa , i.e., there exists n ∈ N such
that in any neighborhood of a, there are t1 < t2 with ϕ̂n

t2
> ϕ̂n

t1
. Let b be the next

selling time (defined as infimum over t ≥ a such that for some n ∈ N, in any neigh-
borhood of t , ϕ̂n is not nondecreasing), and d the next buying time after b. In addition,
c is the last selling time before d . We have that a < b ≤ c ≤ d . The strict inequality
is crucial for the exhaustion argument. It holds since by Sa > Sa and the continuity
of the bid–ask prices, any investment needs some time to amortise, and by Step 3,
for any pair of buying and selling times, there is a joint strategy ϕ̂n that realises this
investment. Summing up, all ϕ̂n, n ∈ N, are nondecreasing on (a, b), nonincreasing
on (b, c), and constant on (c, d).

For t ∈ [a, b), we define

τt := inf
{
s ∈ [a, t] : ∃ε > 0 with inf

u∈(s,t+ε)
ϕu > inf

u∈(t,b)
ϕu

}
∧ t

and

St := inf
u∈[τt ,b)

Su ∧ Sb.

The process S can be interpreted as follows: The strategy has to be smaller than the
function ϕ, and there is no selling before b. This induces a maximal number of shares
that can be held at some time t < b. If this number is strictly smaller than ϕt , S is
constant near t . Only at a “bottleneck”, S can increase, in the end up to the level Sb .
For t ∈ [b, c), we define

σt := sup
{
s ∈ [t, c) : inf

u∈(t+ε,s)
ϕu > inf

u∈[b,t]ϕu,∀ε > 0
}

∨ t

and
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St := sup
u∈[b,σt ]

Su. (4.8)

For [c, d), c < d , we make a case distinction. For ϕ̂1 = 0 on (c, d), we define S

on [c, d) as the Snell envelope of the process Lt := St1{t<d} + Sd1{t=d}, t ∈ [c, d],
i.e., St := supu∈[t,d] Lu, t ∈ [c, d). Otherwise, we define St := Sc1{t<τ̃d } +Sd1{t≥τ̃d },
where τ̃d := inf{s ∈ [c, d] : infu∈(s,d) ϕu > infu∈(d,̃b) ϕu} ∧ d with b̃ being the next
selling time after d . By using the maximality and the monotonicity of all ϕ̂n, n ∈ N,
it is easy to check that S must lie in the bid–ask spread.

Now, any excursion of the spread away from zero, cf. Lemma 5.1, can be ex-
hausted by intervals of the form [a, b), [b, c), and [c, d). In the special case that there
is no further buying time, (4.8) is applied to the closed interval from b to the end of
the excursion of the spread away from zero or to T . The resulting process S is càdlàg
and does not depend on the choice of the intervals. Note that Sa > Sa is only needed
to guarantee that b > a.

Step 5: Let us show that S is of finite variation and

ϕ̂n • ST = V S
T (ϕ̂n) = V S̃

T (ϕ̂n), n ∈ N. (4.9)

Let a be a buying time and ã be the time inf{t > a : ϕ̂1
t = 0} truncated at the end of

the excursion. We have that Sa = Sa ≥ S̃a and Sã = Sã ≤ S̃ã , and S is nondecreas-
ing on [a, ã]. From ã up to (and including) the next buying time, S is nonincreas-
ing. This yields VarT (S) ≤ VarT (S̃) < ∞. Finally, by the construction of S, the cost
terms CS(ϕ̂n) vanish for all n ∈ N and thus (4.9) holds. For example, on [a, b) the
process ϕ̂n is nondecreasing and must be constant on {S < S} by optimality.

Step 6: Next, we show that

ψ • ST ≤ ϕ̂n • ST for all n ∈ N and all strategies ψ with 0 ≤ ψ ≤ ϕ ∧ n. (4.10)

Of course, it is sufficient to show this assertion for excursions of the spread away
from zero (cf. again Lemma 5.1).

From now on, we need the assumed lower semicontinuity, i.e.,

ϕt = lim
ε→0

inf
u∈[t−ε,t+ε]ϕu for all t ∈ (0, T ) with St > St . (4.11)

We start with the buying period, i.e., the interval [a, b) (cf. Step 4). For this, we define
ξt := infu∈[t,b) ϕu and claim that

∫

[a,b)

ψt dSt ≤
∫

[a,b)

(ϕt ∧ n)dSt ≤
∫

[a,b)

(ξt ∧ n)dSt ≤
∫

[a,b)

ϕ̂n
t dSt (4.12)

for every strategy ψ with ψ ≤ ϕ ∧ n.
The first inequality is obvious as S is nondecreasing on [a, b). We start by show-

ing the second inequality in (4.12). It follows from (4.11) that (ξt )t∈[a,b) is left-
continuous and the set {t ∈ [a, b) : ξt < ϕt } is open. Hence we find a sequence of
open intervals (uk

1, u
k
2), uk

1 ≤ uk
2, k ∈ N, such that

{t ∈ [a, b) : ξt < ϕt } =
⋃

k∈N
(u1

k, u
2
k). (4.13)
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For all t1, t2 with uk
1 < t1 < t2 < uk

2, we have inft∈[t1,t2](ϕt − ξt ) > 0 and hence
St2 = St1 . This yields Suk

2− = Suk
1

if uk
1 < uk

2. So
∫
[a,b)

(ϕt ∧n)dSt = ∫[a,b)
(ξt ∧n)dSt

follows due to (4.13).
Moving towards the last inequality in (4.12), we exclude the trivial case Sa = Sb .

For a given ε > 0, there is a partition a = t0 < t1 < · · · < tm = b such that

∫

[a,b)

(ξt ∧ n)dSt ≤
m−1∑

i=1

(ξti−1 ∧ n)(Sti − Sti−1)

+ (ξtm−1 ∧ n)(Sb− − Stm−1) + ε (4.14)

by Protter [37, Theorem II.21] and left-continuity of ξ . Next, we define a perturbation
ϕ̂n,p of the optimal strategy ϕ̂n in the bid–ask model, which approximately realises
the gains on the right-hand side of (4.14) on [a, b). Let s := sup{u > a : Su < Sb} ≤ b.
We set ϕ̂n,p = ϕ̂n on [0, a) ∪ [s, T ] and construct ϕ̂n,p on [a, s) by iteratively speci-
fying possible purchases. At time t0 = a, we buy until we reach ϕ̂

n,p
a := ξt0 ∧n ≥ ϕ̂n

a ,
paying the price Sa = Sa per share (time t0 has the special property that it is a “buying
time” in the sense of Step 4). We proceed as follows. If St1 < St2 (which is equivalent
to infu∈[τt1 ,τt2 ) Su < St2 , and in this case, St1 = infu∈[τt1 ,τt2 ) Su), we buy until we reach

ξt1 ∧ n shares at time t�1 := arg minu∈[τt1 ,τt2 ) Su. Then we have St�1
< St2 ≤ Sb , i.e.,

t�1 < s, and since t�1 ≥ τt1 , the constraint ϕ ∧n is also satisfied. This is repeated for the
intervals [τti−1, τti ) for i = 3, . . . ,m. Since purchasing prices are strictly below Sb , in
the bid–ask market, purchases take place on [a, s). We have ϕ̂

n,p
s− ≤ ξs ∧ n = ϕ̂n

s for
s < b, where the equality follows from the optimality of ϕ̂n and (4.11). Finally, the
missing position ϕ̂n

s − ϕ̂
n,p
s− ≥ 0 is purchased at price Ss = Sb if s < b. In the case

s = b, we must have Sb = Sb and need not care about the sign of the missing position.

Hence the optimality of ϕ̂n together with V S̃
T (ϕ̂n)−V S̃

T (ϕ̂n,p) = V S
T (ϕ̂n)−V S

T (ϕ̂n,p)

yields

0 ≤ V S
T (ϕ̂n) − V S

T (ϕ̂n,p) ≤
∫

[a,b)

ϕ̂n
t dSt −

∫

[a,b)

(ξt ∧ n)dSt + ε, (4.15)

where the second inequality uses (4.14) and the fact that ϕ̂n,p does not produce any
costs with respect to S. As ε > 0 is arbitrary, (4.15) implies the last inequality in
(4.12).

It remains to show
∫
B

ψt dSt ≤ ∫
B

ϕ̂n
t dSt for B = [b, c) and B = [c, d), i.e.,

on sets other than [a, b) (cf. Step 4). After a time reversal, the proof for a sell-
ing interval [b, c) is the same as that for a buying interval [a, b). Namely, without
loss of generality, we assume that Sc > Sb and consider an approximation similar
to (4.14) “backward in time” (the last point is b− with Sb− = Sb). Time s from
above is replaced by s̃ := inf{u > b : Su > Sb} ≤ c. From the optimality of ϕ̂n, the
assumption that b is a selling time in the sense of Step 4, and (4.11), it follows that
ϕ̂n

b− ≥ infu∈[b,̃s] ϕu ∧n. We leave the details as an exercise for the reader. On intervals
with ϕ̂1 = 0, we use that the Snell envelope is nonincreasing.

Step 7: By ϕ ∈ L and (4.3), we can find a sequence (ϕn)n∈N of strategies with
ϕn → ϕ and 0 ≤ ϕn ≤ ϕ ∧ n such that for all other strategies (ϕ̃n)n∈N with ϕ̃n → ϕ
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and 0 ≤ ϕ̃n ≤ ϕ∧n, one has (V S
T (ϕ̃n)−V S

T (ϕn))+ → 0. Let us show that (ϕn • S)n∈N
must be Cauchy in (S, dS). We first show that

∀ε > 0 ∃K ∈ R+ ∀n ∈ N,∀B ∈ B([0, T ]) : (1{ϕ>K}∩Bϕn) • ST ≤ ε. (4.16)

Indeed, by (4.10), (4.9) and (4.6), we have

(1{ϕ>K}∩Bϕn) • ST ≤ (1{ϕ>K}ϕ̂n) • ST ≤
∞∑

k=1

(
(1{ϕ>K}ηk) • ST

)
< ∞ (4.17)

for all K ∈ R+ and B ∈ B([0, T ]). By (4.17), (1{ϕ>K}ηk) • ST ≤ ηk • ST (which
follows from (4.10)) and dominated convergence, we obtain (4.16). Let us show that

∀ε > 0 ∃K ∈ R+ ∃N ∈N ∀n ≥ N ∀B ∈ B([0, T ]) : (1{ϕ>K}∩Bϕn) • ST ≥ −ε. (4.18)

Assume by contradiction that there exist ε > 0, a subsequence (nk)k∈N and a se-
quence (Bk)k∈N ⊆ B([0, T ]) such that (1{ϕ>k}∩Bk

ϕnk ) • ST < −ε for all k ∈ N. On
the other hand, since dS(1{ϕ>k} • S,0) → 0 for k → ∞, there must exist a sequence
(λk)k∈N ⊆ R+ with λk → ∞ slowly enough such that 1{ϕ>k}∩Bk

(ϕnk ∧λk) • ST → 0
for k → ∞. Thus we have (1{ϕ>k}∩Bk

(ϕnk − λk)
+) • ST < −ε/2 for k large enough.

As in (4.17), we can estimate

(
1[0,T ]\({ϕ>k}∩Bk)(ϕ

nk − λk)
+) • ST = (1{ϕ>λk}\({ϕ>k}∩Bk)(ϕ

nk − λk)
+) • ST

≤
∞∑

�=1

(
(1{ϕ>λk}η�) • ST

)
.

The right-hand side converges to 0 as λk → ∞ for k → ∞. This yields that for k large
enough, we have ((ϕnk −λk)

+) • ST < −ε/4. Since the cost term of ϕnk exceeds that
of ϕnk ∧λk , we arrive at V S

T (ϕnk ) < V S
T (ϕnk ∧λk)− ε/4 for k large enough. This is a

contradiction to the maximality of (ϕn)n∈N stated at the beginning of this step. Thus
(4.18) holds.

Putting (4.16), (4.18), and ϕn → ϕ with ϕn ≤ ϕ for all n ∈ N together, we obtain
that (ϕn • S)n∈N is Cauchy in (S, dS). This implies that ϕ ∈ L(S) (cf. Note 4.4). �

Remark 4.6 The proof demonstrates how the maximality condition in the definition
of L works. For ϕ ∈ L, the maximisation problem (4.6) must be finite, but its solu-
tion ϕ̂ := limn→∞ ϕ̂n can be different from ϕ = limn→∞ ϕn. Also, in the frictionless
shadow price market, ϕ̂n dominates all other strategies that are bounded by ϕ∧n. This
upper bound is key to show that ϕn • S is Cauchy with respect to the semimartingale
topology.

It is an open problem whether the theorem also holds in the general stochastic
case. The construction of the shadow price S is essentially based on the assumptions
that the model is deterministic and ϕ is lower semicontinuous. The latter is needed
since on the intervals with friction, S has its upward movements at the “bottlenecks”
of the constraint ϕ ∧ n.
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Nevertheless, we think that the proof already provides the basic intuition for the
relation between L and L(S) in the general stochastic case. In addition, the sequence
of strategies constructed in Step 3 and the ideas from Step 7 should also be of general
use to solve related problems in a stochastic model. By contrast, the other assump-
tions are less essential. They are made to focus on the main ideas and to avoid further
case distinctions and technicalities.

5 Proof of Theorem 3.19

We start with two lemmas that prepare the proof of Theorem 3.19. In the following,
we set X := S − S with the convention that X0− := 0. Let M be the set of starting
points of excursions of the spread away from zero, i.e.,

M := ({X = 0} ∪ {X− = 0})
∩ {(ω, t) ∈ � × [0, T ) : ∃ε > 0∀s ∈ (t, (t + ε) ∧ T

) : Xs(ω) > 0
}
.

Here, we follow the convention that an excursion also ends (and thus a new excursion
can start) if only the left limit of the spread process is zero. Under the usual conditions
and Assumption 3.18, the process Y := 1{(ω,t)∈�×[0,T ):∃ε>0 ∀s∈(t,(t+ε)∧T ):Xs(ω)>0} is
right-continuous on �×[0, T ) and adapted. The latter uses that for all t ∈ [0, T ) and
ε̃ ∈ (0, T − t), one has

{
ω ∈ � : ∃ε > 0∀s ∈ (t, (t + ε) ∧ T

) : Xs(ω) > 0
}

= � \ {ω ∈ � : ∃ε ∈ (0, ε̃) ∩Q∀s ∈ (t, t + ε) ∩Q : Xs(ω) = 0}.
Thus Y is a progressive process (see e.g. He et al. [23, Theorem 3.11]), which implies
that M is a progressive set. Consequently, {ω ∈ � : τ(ω) < ∞, (ω, τ (ω)) �∈ M} ∈F
if τ is a stopping time.

For a stopping time τ , we define the associated stopping time �(τ) by

�(τ) := inf{t > τ : Xt = 0 or Xt− = 0}.

Lemma 5.1 There exists a sequence (τn
1 )n∈N of stopping times with

P
[{

ω ∈ � : τn
1 (ω) < ∞,

(
ω,τn

1 (ω)
) �∈ M

}]= 0

for all n ∈N, P[τn1
1 = τ

n2
1 < ∞] = 0 for all n1 �= n2 and

{X− > 0} ⊆
⋃

n∈N
�τn

1 ,�(τn
1 )� up to evanescence.

Proof We define a finite measure μ on the predictable σ -algebra by

μ(A) :=
∞∑

k=1

2−k
P[{ω ∈ � : (ω, qk) ∈ A}], A ∈ P,



966 C. Kühn, A. Molitor

where (qk)k∈N is an enumeration of the rational numbers. Let M be the set of pre-
dictable processes of the form 1�τ,�(τ)�, where τ runs through all stopping times
satisfying P[{ω ∈ � : τ(ω) < ∞, (ω, τ (ω)) �∈ M}] = 0. The essential supremum of
M with respect to μ can be written as

esssup M = sup
n∈N

1�τn
1 ,τn

2 � = 1∪n∈N�τn
1 ,τn

2 � μ-a.e.,

where τn
2 := �(τn

1 ). Obviously, we can and do choose the sequence (τn
1 )n∈N such that

P[τn1
1 = τ

n2
1 < ∞] = 0 holds for all n1 �= n2. Then by the definition of M and �, one

has that �τn1
1 , τ

n1
2 �∩ �τn2

1 , τ
n2
2 � = ∅ up to evanescence for all n1 �= n2.

Now consider the random time

σ := inf

{
t ∈ (0, T ] : Xt− > 0 and t �∈

⋃

n∈N
(τn

1 , τ n
2 ]
}
.

Then σ is a stopping time since it can be written as the debut inf{t ∈ (0, T ] : Zt > 0},
where Z := X−(1 −∑∞

n=1 1�τn
1 ,τn

2 �) is a finite-valued predictable process (see e.g.
Cohen and Elliott [6, Theorem 7.3.4]). By the definition of the infimum and �, we
must have Xσ = 0 or Xσ− = 0 on the set {σ < ∞}. Together with Assumption 3.18,
this means that an excursion starts in σ , and �σ,�(σ )� ∩ (∪n∈N�τn

1 , τ n
2 �) = ∅. By the

definition of the essential supremum, one has μ(�σ,�(σ )�) = 0. Since �(σ) > σ on
{σ < ∞}, this is only possible if P[σ < ∞] = 0, and thus,

P

[{
ω ∈ � : ∃t ∈ (0, T ] : Xt−(ω) > 0 and t �∈

⋃

n∈N

(
τn

1 (ω), τn
2 (ω)

]}]= 0. �

Next, we analyse the time the spread spends at zero. Define

M1 :={(ω, t) ∈ � × [0, T ] : t = 0 or ∀ε > 0,∃s ∈ ((t − ε) ∨ 0, t
) : Xs(ω) > 0

}

∩ {X− = 0}

and

M2 := {X− > 0} ∩ {X = 0}.

The optional set M1 ∪ M2 consists of the ending points of an excursion and of their
accumulation points. For a stopping time τ , we define the starting point of the next
excursion after τ by (�(τ))(ω) := inf{t ≥ τ(ω) : (ω, t) ∈ M} for ω ∈ �. Then �(τ)

is the debut of a progressive set and thus a stopping time by [6, Theorem 7.3.4].
Recall the notation τA := 1A + ∞1Ac .

Lemma 5.2 There exists a sequence of stopping times (σ n
1 )n∈N with

P
[{

ω ∈ � : σn
1 (ω) < ∞,

(
ω,σn

1 (ω)
) �∈ M1 ∪ M2

}]= 0
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such that (σ n
1 ){Xσn

1 −=0} is predictable for all n ∈ N, P[σn1
1 = σ

n2
1 < ∞] = 0 for all

n1 �= n2 and

{X− = 0} ⊆
⋃

n∈N

(
�(σ n

1 ){Xσn
1 −=0}�∪ �σn

1 ,�(σn
1 )�
)

up to evanescence (5.1)

for � defined above.

Equation (5.1) can be interpreted as follows. If the spread approaches zero con-
tinuously at some time t , the investment between t− and t already falls into the
“frictionless regime”. On the other hand, if the spread jumps to zero at time t , the
frictionless regime only starts immediately after t (if at all).

Proof of Lemma 5.2 We take the starting points τn
1 of the excursions from Lemma 5.1

and define the measure

μ(A) :=
∞∑

n=1

2−n
P
[{

ω ∈ � : (ω,τn
1 (ω)

) ∈ A
}]+ P[{ω ∈ � : (ω,T ) ∈ A}]

for all A ∈ P . Consider the essential supremum with respect to μ of the set of pre-
dictable processes 1�σ{Xσ−=0}�∪�σ,�(σ)�, where σ runs through the set of stopping
times satisfying P[{ω ∈ � : σ(ω) < ∞, (ω,σ (ω)) �∈ M1 ∪ M2}] = 0 with the fur-
ther constraint that σ{Xσ−=0} is a predictable stopping time. Again, the supremum
can be written as

1∪n∈N(�(σn
1 ){X

σn
1 −=0}�∪�σn

1 ,�(σn
1 )�) μ-a.e.

Consider the random time

σ := inf

{
t ≥ 0 : Xt− = 0 and t �∈

⋃

n∈N

([(σ n
1 ){Xσn

1 −=0}] ∪ (σ n
1 , σ n

2 ])
}
, (5.2)

where σn
2 := �(σn

1 ). Since σ = inf{t ≥ 0 : Zt = 0}, where

Z := X− +
∞∑

n=1

1�(σn
1 ){X

σn
1 −=0}�∪�σn

1 ,σ n
2 �

is predictable, σ is a stopping time (see e.g. [6, Theorem 7.3.4]). In addition, one has

�σ{Xσ−=0}� = �σ � ∩ {X− = 0}

=
(

�0, σ � \
⋃

n∈N

(
�(σ n

1 ){Xσn
1 −=0}�∪ �σn

1 , σ n
2 �
))∩ {X− = 0} ∈ P,

where we use that the infimum in (5.2) must be attained if Xσ− = 0. Thus σ{Xσ−=0}
is a predictable stopping time. Finally, we have that
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P
[{

ω ∈ � : σ(ω) < ∞,
(
ω,σ(ω)

) �∈ M1 ∪ M2
}]= 0.

By the maximality of the supremum, one has μ(�σ{Xσ−=0}�∪ �σ,�(σ)�) = 0. As the
intervals overlap T or some τn

1 (ω) if they are nonempty, we arrive at P[σ < ∞] = 0,
and thus (5.1) holds. �

Note 5.3 For any ϕ ∈ bP and any σ -finite measure μ on P with μS � μ, there exists
a uniformly bounded sequence of simple strategies (ϕn)n∈N with ϕn → ϕ μ-a.e., and
for any such sequence (ϕn)n∈N, one has ϕn • S → ϕ • S uniformly in probability.

Proof The existence of such a sequence with ϕn → ϕ μ-a.e. follows from the approx-
imation theorem for measures (see e.g. Klenke [33, Theorem 1.65 (ii)]). Then the
convergence of the integrals follows for the martingale parts by Jacod and Shiryaev
[26, (3) after Theorem 4.40], and for the finite variation parts by dominated conver-
gence. �

Proof of Theorem 3.19 Obviously, it is sufficient to show the theorem under an equiv-
alent measure Q ≈ P. Hence we assume without loss of generality that P= Q, where
Q is the measure introduced above (3.10).

(i) Let (ϕn)n∈N ⊆ bP satisfy ϕn → ϕ pointwise on {S− > S−, A = 1}. For any
J ∈ I from (3.1), Proposition 3.11 yields that

lim inf
n→∞ C(ϕn, J ∩ [0, t])(ω) ≥ C(ϕ,J ∩ [0, t])(ω) for all (ω, t) ∈ {A = 1}.

It follows that

lim inf
n→∞ Ct(ϕ

n)(ω) ≥ sup
J∈I

C(ϕ,J ∩ [0, t])(ω) = Ct(ϕ)(ω) for all (ω, t) ∈ {A = 1}.

If in addition (ϕn)n∈N is uniformly bounded and

ϕn −→ ϕ μS-a.e. on {S− = S−, A = 1},
we have that

(ϕn1{A=1}) • S −→ (ϕ1{A=1}) • S uniformly in probability (5.3)

(see Note 5.3). Since {A = 1} is a predictable set of interval type, there is an increas-
ing sequence (T m)m∈N of stopping times such that

{A = 1} ∪ (� × {0}) =
⋃

m∈N
�0, T m�

(see e.g. He et al. [23, Theorem 8.18]). For each m ∈ N, we obviously have
(
(1�0,T m�ϕ) • S

)
1�0,T m� = (ϕ • S)T

m

1�0,T m� = (ϕ • S)1�0,T m�.

Letting m → ∞, this yields by Note 5.3 that

(ϕ1{A=1} • S)1{A=1} = (ϕ • S)1{A=1}



Semimartingale price systems 969

up to evanescence, and analogously ((ϕn1{A=1}) • S)1{A=1} = (ϕn • S)1{A=1} up to
evanescence for n ∈N. Thus together with (5.3), we have

lim inf
n→∞ (ϕn • S − ϕ • S)+1{A=1} = 0 up to evanescence.

Putting the cost terms and the trading gains with respect to S together, we arrive at
(i).

(ii) The following analysis is based on the stopping times (τn
1 )n∈N and (σ n

1 )n∈N
from Lemmas 5.1 and 5.2, respectively. We can and do choose (σ n

1 )n∈N such that

P[σn
1 = τm

1 < ∞, Xσ 1
n − > 0] = 0, ∀n,m ∈N. (5.4)

This means that if the spread X only touches zero at a single point and its left limit is
non-zero, the next excursion directly starts without a one-point frictionless regime in
between. For the rest of the proof, we write {Xτ− ∈ B} for the set

{ω ∈ � : ∃t ∈ [0, T ] : τ(ω) = t, Xt−(ω) ∈ B},

where τ is a [0, T ] ∪ {∞}-valued stopping time and B ⊆ R. Let

An := �(τn
1 ){Xτn

1 −>0},�(τn
1 )�∪ �

(
�(τn

1 )
)
{Xτn

1 −>0}∩{X�(τn
1 )−>0}� ∈ P, n ∈ N,

Bn := �(σ n
1 ){Xσn

1 −=0}�∪ �σn
1 ,�(σn

1 )� ∈P, n ∈N,

B̃n := ��(σn
1 ),�

(
�(σn

1 )
)
�∪

�(
�
(
�(σn

1 )
))

X{�(�(σn
1 )))−>0}

�
∈ P, n ∈ N,

and

ϕN := ϕ1∪n=1,...,N (An∪Bn∪B̃n), N ∈N.

Excursions away from zero are either included in some An or in some B̃m with the
frictionless forerunner Bm. In the first case, the spread cannot jump away from zero
since Xτn

1
= 0 on {Xτn

1 − > 0}. In the latter case, the frictionless forerunner avoids

that ϕN produces costs when the spread jumps away from zero, which do not occur
with the strategy ϕ. Namely, at a time the spread jumps away from zero, ϕN either
remains zero or it already coincides with ϕ. Note that the frictionless forerunner may
consist of a single point only. For example, this is the case if the jump time is an
accumulation point of starting/ending points of excursions shortly before.

First, we approximate ϕ by the strategies ϕN .
Step 1: Let E ∈ FT be a set with P[E] = 1 and such that the properties from

Lemmas 5.1 and 5.2 hold for all ω ∈ E. Let us show that ϕN
t (ω) → ϕt (ω) for all

t ∈ [0, T ] and ω ∈ E. By construction of ϕN , we only have to show that for n ∈ N,
the excursion starting in τn

1 (ω) is overlapped by An
ω := {t ∈ [0, T ] : (ω, t) ∈ An},
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the ω-intersection of An, or by some B̃m
ω , m ∈ N. In the case that Xτn

1 (ω)−(ω) > 0,
the excursion is overlapped by An

ω. In the case that Xτn
1 (ω)−(ω) = 0, we have by

Lemma 5.2 that τn
1 (ω) ∈ [σm

1 (ω),�(σm
1 (ω))] for some m ∈N, and thus the excursion

starting in τ 1
n (ω) is overlapped by B̃m

ω . By Note 5.3, it follows that ϕN • S → ϕ • S

uniformly in probability for N → ∞.
Step 2: Without loss of generality, we assume that the bounded process ϕ takes

values in [−1/2,1/2] to get rid of a further constant. Let us show that

sup
t∈[0,T ]

|Ct(ϕ
N) − Ct(ϕ)|1{Ct (ϕ)≤K} −→ 0 as N → ∞,

pointwise on E, for all K ∈ N. (5.5)

From Xτn
1

= 0 on {Xτn
1 − > 0} and Xσn

1
= 0 on {Xσn

1 − > 0}, we conclude that for fixed

ω ∈ E and a ≤ b with infu∈[a,b) Xu(ω) > 0, we either have ϕN
u (ω) = ϕu(ω) for all

u ∈ [a, b] or ϕN
u (ω) = 0 for all u ∈ [a, b]. By the definition of the cost term in (3.2),

this yields C(ϕN, I ∩ [0, t]) ≤ C(ϕ, I ∩ [0, t]) for all I ∈ I , (ω, t) ∈ E × [0, T ], and
thus Ct(ϕ

N) ≤ Ct(ϕ) for all (ω, t) ∈ E × [0, T ]. We define

θm := inf{t ≥ 0 : Ct(ϕ) > m} ∧ T for m ∈N. (5.6)

Due to �−Cθm(ϕ) ≤ supu∈[0,T ] Xu, the paths of the stopped process Cθm
(ϕ) are

bounded. Fix ω ∈ E and ε > 0. For K ∈ N, we set u := θK . Using Proposition 3.7,
we get that C(ϕ, I ∩ [0, u]) = C(ϕ, I ∩ [0, t]) + C(ϕ, I ∩ [t, u]) for all I ∈ I and
t ≤ u. Therefore, together with Proposition 3.9 (i), there exists I ∈ I such that

sup
t∈[0,T ]

(
Ct(ϕ) − C(ϕ, I ∩ [0, t]))1{Ct (ϕ)≤K} ≤ ε.

The set I is overlapped by finitely many ω-intersections of An and Bn ∪ B̃n. Thus
one has I ⊆⋃n≤N(An ∪ Bn ∪ B̃n)ω , i.e., C(ϕN, I ∩ [0, t]) = C(ϕ, I ∩ [0, t]), for N

large enough, and consequently
(
Ct(ϕ) − Ct(ϕ

N)
)
1{Ct (ϕ)≤K}

≤ (C(ϕ, I ∩ [0, t]) − C(ϕN, I ∩ [0, t]))1{Ct (ϕ)≤K} + ε = ε

for all t ∈ [0, T ]. This implies (5.5). Together with Step 1, we have that

ϕN −→ ϕ pointwise up to evanescence and

sup
t∈[0,T ]

|Vt (ϕ
N) − Vt(ϕ)|1{Ct (ϕ)≤K} −→ 0 in probability (5.7)

for N → ∞ and every K ∈N.
Step 3: It remains to approximate the strategies ϕN , N ∈ N, by almost simple

strategies. Since the pointwise convergence that we need on {X− > 0}∩ {C(ϕ) < ∞}
is not metrisable, it is not sufficient to approximate each ϕN separately by a sequence
of almost simple strategies. Recall μS from (3.10) and let μ be a σ -finite measure
on P with μS � μ. We fix some N ∈ N and let ε := 2−N . In the following, we
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construct an almost simple strategy step by step on disjoint stochastic intervals. The
main idea is to approximate the cost term on subintervals of excursions where the
spread is bounded away from zero while controlling the error at the beginning and
the end of the excursions. We start with the construction of an almost simple strategy
on An with n ≤ N . We recall that τn

2 := �(τn
1 ). There exists a stopping time τ

n,N
1

with θN ∧ τn
2 ≥ τ

n,N
1 > τn

1 on {τn
1 < θN } ∩ {Xτn

1 − > 0}, τ
n,N
1 = θN on {θN ≤ τn

1 }
and, for notational convenience, τ

n,N
1 = τn

1 elsewhere such that

P[τn
1 ∧ θN ≤ τ

n,N
1 ≤ τn

1 + ε] = 1, (5.8)

as well as

P
[(

ϕN1�τn
1 ,τ

n,N
1 �

• S
)∗

> ε
]≤ ε,P

[
τn

1 < ∞, |X
τ

n,N
1

− Xτn
1 ∧θN | > ε

]

≤ ε,

P[τn
1 < ∞, C

τ
n,N
1

(ϕN) − Cτn
1 ∧θN (ϕN) > ε] ≤ ε,

where θN is defined in (5.6). This follows from the right-continuity of the processes
(ϕN1�τn

1 ,T �) • S, X and from the definition of the cost process together with Xτn
1

= 0
on {Xτn

1 − > 0}. In addition, since �(τn
2 ){Xτn

2 −=0}� = �τn
1 , τ n

2 � ∩ {X− = 0} ∈ P , the

stopping time (τn
2 ){Xτn

2 −=0} is predictable. Thus by the existence of an announcing

sequence (see e.g. He et al. [23, Theorem 4.34]), there is a stopping time τ
n,N
2 which

satisfies τ
n,N
1 ≤ τ

n,N
2 ≤ τn

2 ∧ θN ,

τ
n,N
2 < τn

2 on {Xτn
2 − = 0, τ

n,N
1 < τn

2 },

P[τn,N
2 < τn

2 ∧ θN − ε] ≤ ε, P[Xτn
2 − > 0, τ

n,N
2 < τn

2 ∧ θN ] ≤ ε,

P

[((
ϕN1�τn,N

2 ,τn
2 ∧θN �∪�(τn

2 ){X
τn
2 −>0, τ

n,N
2 <τn

2 ∧θN }�
) • S

)∗
> ε
]

≤ ε, (5.9)

P[X
τ

n,N
2

> ε, τ
n,N
2 < τn

2 ∧ θN ] ≤ ε and

P[τn
2 < ∞, Cτn

2 ∧θN (ϕN) − C
τ

n,N
2

(ϕN) > ε] ≤ ε.

By Proposition 3.17 applied to the stopping times τ
n,N
1 ≤ τ

n,N
2 , there exists an almost

simple strategy ψ̃N with ψ̃N

τ
n,N
1

= ϕN

τ
n,N
1

,

sup
t∈[τn,N

1 ,τ
n,N
2 ]

|ψ̃N
t − ϕN

t | ≤ ε, (5.10)

P

[
sup

t∈[τn,N
1 ,τ

n,N
2 ]

∣∣Ct(ψ̃
N) − C

τ
n,N
1

(ψ̃N ) − (Ct(ϕ
N) − C

τ
n,N
1

(ϕN)
)∣∣> ε

]
≤ ε,
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and P[(((ψ̃N − ϕN)1�τn,N
1 ,τ

n,N
2 �)

• S)∗ > ε] ≤ ε (the latter also uses Note 5.3). We

define an almost simple strategy by

ψN
t := ψ̃N

t 1(τ
n,N
1 <t≤τ

n,N
2 )

on An. (5.11)

Since ψN can be updated for free at the left endpoint of An, we get for the increments
of the process V (ψN)− V (ϕN) = (ψN − ϕN) • S − (C(ψN)− C(ϕN)) the estimate

P

[
sup

t∈(τn
1 ,τn

2 )∪[(τn
2 ){X

τn
2 −>0}]

∣∣Vt (ψ
N) − Vτn

1
(ψN) − (Vt (ϕ

N) − Vτn
1
(ϕN)

)∣∣

× 1{Ct (ϕ)≤K} > 8ε,

τn
1 < ∞, Xτn

1 − > 0
]

≤ 8ε for all n = 1, . . . ,N,K ≤ N, (5.12)

regardless of how ψN is defined outside of An, especially at time τn
1 . Indeed, in the

worst case, there are 2 error terms on (τn
1 , τ

n,N
1 ], 3 error terms on (τ

n,N
1 , τ

n,N
2 ] and 3

error terms between (τ
n,N
2 , τ n

2 ) ∪ [(τn
2 ){Xτn

2 −>0}].
We proceed with the construction of the almost simple strategy on Bn ∪ B̃n with

n ≤ N . A strategy with support Bn has zero costs, and by Note 5.3, we find an (al-
most) simple strategy ψ̂N with

μ(|ψ̂N − ϕN |1Bn > ε) ≤ ε, (5.13)

P
[
�(σn

1 ) < ∞, |ψ̂N
�(σn

1 )
− ϕN

�(σn
1 )

|X�(σn
1 ) > ε

]≤ ε, (5.14)

and P[(((ψ̂N −ϕN)1Bn) • S)∗ > ε] ≤ ε. After �(σn
1 ), we proceed similarly to (5.11).

Setting τ̃ n
2 := �(�(σn

1 )), there exists a stopping time τ̃
n,N
1 with

τ̃
n,N
1 = θN on {θN ≤ �(σn

1 )},

τ̃
n,N
1 = �(σn

1 ) on {�(σn
1 ) < θN, X�(σn

1 ) > 0} and θN ∧ τ̃ n
2 ≥ τ̃

n,N
1 > �(σn

1 ) on the

set {�(σn
1 ) < θN, X�(σn

1 ) = 0} such that P[�(σn
1 ) ∧ θN ≤ τ̃

n,N
1 ≤ �(σn

1 ) + ε] = 1,

P[(((ϕN − ϕN
�(σn

1 )
)1��(σn

1 ),̃τ
n,N
1 �)

• S)∗ > ε] ≤ ε and

P
[
�(σn

1 ) < ∞, |X
τ̃

n,N
1

− X�(σn
1 )∧θN | > ε

]≤ ε,

P
[
�(σn

1 ) < ∞, C
τ̃

n,N
1

(ϕN) − C�(σn
1 )∧θN (ϕN) > ε

]≤ ε.

The stopping time τ̃
n,N
2 is defined completely analogously to τ

n,N
2 from above. We set

ψN
t := ψ̂N

t 1{t≤�(σn
1 )∧θN } + ψ

N

t 1{̃τn,N
1 <t≤τ̃

n,N
2 } on Bn ∪ B̃n (5.15)
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for some almost simple strategy ψ
N

with ψ
N

τ̃
n,N
1

= ϕN

τ̃
n,N
1

and

sup
t∈[̃τn,N

1 ,̃τ
n,N
2 ]

|ψN

t − ϕN
t | ≤ ε.

As in (5.12), but with the additional error terms on Bn and (5.14) for the case that the
spread jumps away from zero, we get that

P

[
sup
{∣∣Vt (ψ

N) − V 1 − (Vt(ϕ
N) − V 2)∣∣

× 1{Ct (ϕ)≤K} : t ∈ [(σ n
1 ){Xσn

1 −=0}]

∪
(
σn

1 ,�
(
�(σn

1 )
))

∪
[(

�
(
�(σn

1 )
))

{X�(�(σn
1 ))−>0}

]}
> 10ε

]

≤ 10ε for all n = 1, . . . ,N,K ≤ N, (5.16)

where we define V 1 := Vσn
1 −(ψN), V 2 := Vσn

1 −(ϕN) on the set {Xσn
1 − = 0} and

V 1 := Vσn
1
(ψN), V 2 := Vσn

1
(ϕN) on {Xσn

1 − > 0}. By (5.4), An and Bm ∪ B̃m are
disjoint. Thus (5.11) and (5.15) can be used to define an almost simple strategy on
� × [0, T ]:

For n ≤ N , define ψN on
⋃

n≤N(An ∪ Bn ∪ B̃n) as above and set ψN := 0 on
(�×[0, T ])\⋃n≤N(An∪Bn∪B̃n). Due to V0(ψ

N) = V0(ϕ
N) = 0 and the construc-

tion of An and Bn ∪ B̃n, for each (ω, t), (Vt (ψ
N
t )(ω) − Vt (ϕ

N)(ω))1{Ct (ϕ)≤K}(ω)

can be written as a finite sum of increments from (5.12) and (5.16). For this, we
again use that at the right endpoint of An and B̃n, the position can be liquidated with-
out any costs. Summing up the error terms and recalling that ε = 2−N , this yields
P[supt∈[0,T ] |Vt (ψ

N) − Vt(ϕ
N)|1{Ct (ϕ)≤K} > 18N2−N ] ≤ 18N2−N for all N ≥ K .

Together with (5.7), we obtain supt∈[0,T ] |Vt(ψ
N) − Vt (ϕ)|1{Ct (ϕ)≤K} → 0 in proba-

bility for N → ∞ and all K ∈N.
The sequence (ψN)N∈N converges to ϕ μ-a.e. on {X− = 0}∩ {C(ϕ) < ∞} by

(5.13) and (5.15). It remains to show that (ψN)N∈N converges pointwise up to
evanescence to ϕ on the set {X− > 0} ∩ {C(ϕ) < ∞}. Fix (ω, t) ∈ � × [0, T ] with
Xt−(ω) > 0 and Ct(ϕ)(ω) < ∞. There exists an n ∈ N with (ω, t) ∈ An ∪ B̃n by the
arguments in Step 1. Without loss of generality, we can assume (ω, t) ∈ An. One has
τ

n,N
1 (ω) ≤ τn

1 (ω) + 2−N < t for N large enough by (5.8), and as the costs at t are
finite, θN(ω) ≥ t for N large enough.

Case 1: t < τn
2 (ω). By (5.9) and the Borel–Cantelli lemma, we have P[En] = 0,

where En := ⋂
Ñ∈N

⋃
N≥Ñ {τn,N

2 < τn
2 − 2−N }. If ω �∈ En, this implies that

t < τn
2 (ω) − 2−N ≤ τ

n,N
2 (ω) for N large enough and thus |ψN

t (ω) − ϕN
t (ω)| ≤ 2−N

for N large enough by (5.10).
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Case 2: t = τn
2 (ω) and thus Xτn

2 (ω)− > 0. By (5.9) and the Borel–Cantelli lemma,

we have P[Ẽn] = 0, where Ẽn :=⋂Ñ∈N
⋃

N≥Ñ {Xτn
2 − > 0, τ

n,N
2 < τn

2 }. If ω �∈ Ẽn,

this implies that t = τ
n,N
2 (ω) for N large enough. Thus by (5.10) and for N large

enough, we have |ψN
t (ω) − ϕN

t (ω)| ≤ 2−N .
Since ϕN

t (ω) = ϕt (ω) for all N ≥ n, we conclude that the sequence (ψN)N∈N
converges pointwise up to evanescence to ϕ on the set {X− > 0} ∩ {C(ϕ) < ∞}. �

Appendix A: Construction of the cost term: technical proofs

Proof of Propositions 3.3 and 3.10 As the two propositions are interrelated, we give
their proofs together. Recall that the arguments below are path by path, i.e., ω ∈ �

is fixed. The uniqueness of the cost term in Definition 3.2 is straightforward, and its
proof is omitted. We turn towards existence.

Step 1: Let us show that there exists a sequence of partitions satisfying the as-
sumptions (i) and (ii) of Proposition 3.10. For this, let (δn)n∈N, (ηn)n∈N ⊆ (0,∞) be
sequences with δn ↓ 0 and ηn ↓ 0. It follows from a minor adjustment of Mikosch and
Norvaiša [35, Lemma 2.1] that for each n ∈ N, there is a partition Pn = {tn0 , . . . , tnkn

}
of the considered interval I such that

osc
(
S − S, [tni−1, t

n
i )
)
< δn and osc

(
S − S, [tni−1, t

n
i )
)
< δn (A.1)

for i = 1, . . . , kn. By the definition of the oscillation of a function, (A.1) also holds
for every refinement of Pn. Hence Pn can be chosen such that we also have

{∑kn

i=1 |ϕtni
− ϕtni−1

| + ηn ≥ Varba(ϕ), if Varba(ϕ) < ∞,
∑kn

i=1 |ϕtni
− ϕtni−1

| > 1/ηn, if Varba(ϕ) = ∞,
for all n ∈ N. (A.2)

In addition, we can obviously choose the sequence (Pn)n∈N such that it is refining.
This shows that there exists a refining sequence of partitions satisfying assertions (i)
and (ii) of Proposition 3.10.

Step 2: Next, let (Pn)n∈N be a refining sequence of partitions from Step 1, i.e.,
Pn = {tn0 , . . . , tnkn

} satisfies (A.1) and (A.2).

Case 1: Let us first assume Varba(ϕ) < ∞. Let M := supt∈I (St − St ). We claim
that for all subdivisions λ = {s1, . . . , skn} of Pn, all refinements P ′ = {t ′0, . . . , t ′m} of
Pn and all subdivisions λ′ = {s′

1, . . . , s
′
m} of P ′, we have

|R(ϕ,P ′, λ′) − R(ϕ,Pn,λ)| ≤ ηnM + δnVarba(ϕ). (A.3)

The key estimate to derive (A.3) is
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∣∣∣∣(Ssi − Ssi )(ϕtni
− ϕtni−1

)+ −
ni∑

k=1

(Ss′
ik

− Ss′
ik

)(ϕt ′ik
− ϕt ′ik−1

)+
∣∣∣∣

≤
∣∣∣∣(Ssi − Ssi )

(
(ϕtni

− ϕtni−1
)+ −

ni∑

k=1

(ϕt ′ik
− ϕt ′ik−1

)+
)∣∣∣∣

+
∣∣∣∣

ni∑

k=1

(
(Ss′

ik

− Ss′
ik

) − (Ssi − Ssi )
)
(ϕt ′ik

− ϕt ′ik−1
)+
∣∣∣∣

≤ M

( ni∑

k=1

(ϕt ′ik
− ϕt ′ik−1

)+ − (ϕtni
− ϕtni−1

)+
)

+ δn

ni∑

k=1

(ϕt ′ik
− ϕt ′ik−1

)+,

where i ∈ {1, . . . , kn} and the points t ′i1, . . . , t
′
ini

denote the elements of the partition

P ′ with tni−1 = t ′i1 < · · · < t ′ini
= tni .

Now let (λn)n∈N be arbitrary modified intermediate subdivisions of (Pn)n∈N.
Then, as the sequence (Pn)n∈N is refining, (A.3) yields

sup
m≥n

|R(ϕ,Pm,λm) − R(ϕ,Pn,λn)| ≤ ηnM + δnVarba(ϕ).

Thus the sequence (R(ϕ,Pn,λn))n∈N is Cauchy in R+ and C := lim
n→∞R(ϕ,Pn,λn)

exists. It remains to show that C satisfies Definition 3.2 (i). Therefore, let ε > 0
and choose n ∈ N such that ηnM + δnVarba(ϕ) < ε/2 and |C − R(ϕ,Pn,λn)| < ε/2.
Together with (A.3), this implies that for all refinements P ′ of Pn and subdivisions λ′
of P ′, we have

|C − R(ϕ,P ′, λ′)| ≤ |C − R(ϕ,Pn,λn)| + |R(ϕ,Pn,λn) − R(ϕ,P ′, λ′)| < ε.

Thus C satisfies Definition 3.2 (i).
Case 2: We now treat the case Varba(ϕ) = ∞. We have to show that the cost term

exists and C(ϕ, I) = ∞. Recall that we assume δ := inft∈[a,b)(St − St ) > 0. We
define a sequence (σk)k≥0 by σ0 = a and

σk :=
{

inf{t ≥ σk−1 : St ≤ St + δ/3} ∧ b, k odd,

inf{t ≥ σk−1 : St ≥ St − δ/3} ∧ b, k even.

As S, S and S are càdlàg, we have σk = b for k large enough. Hence, let K ∈ N

denote the smallest number such that σK = b. In addition, note that we also have
σ0 ≤ σ1 < σ2 < · · · < σK = b, and by construction,

inf
t∈[σ2k,σ2k+1)

(St − St ) ≥ δ/3 and inf
t∈[σ2k+1,σ2(k+1))

(St − St ) ≥ δ/3, k ∈ N0. (A.4)

Recall that Varba(ϕ) = ∞ implies that
∑kn

i=1 |ϕtni
− ϕtni−1

| → ∞ as n → ∞ by (A.2).
Since K < ∞ and ϕ is bounded, this implies that for at least one k ∈ {0,1, . . . ,K − 1},
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we have
∑

tni−1,t
n
i ∈Pn

tni−1,t
n
i ∈[σk,σk+1]

|ϕtni
− ϕtni−1

| −→ ∞ as n → ∞,

which again by the boundedness of ϕ implies that

∑

tni−1,t
n
i ∈Pn

tni−1,t
n
i ∈[σk,σk+1]

(ϕtni
− ϕtni−1

)+ −→ ∞ as n → ∞,

∑

tni−1,t
n
i ∈Pn

tni−1,t
n
i ∈[σk,σk+1]

(ϕtni
− ϕtni−1

)− −→ ∞ as n → ∞. (A.5)

By (A.4), this implies that R(ϕ,Pn,λn) → ∞ as n → ∞ for arbitrary subdivisions
λn of Pn. Since the sums in (A.5) get even bigger if the Pn are replaced by refining
partitions, the cost term C(ϕ, I) exists and is infinity. �

We now turn to the proof of Lemma 3.13. It relies on the following concept and
result of Doob [15].

Definition A.1 Let ϕ be a stochastic process. A sequence (Tn)n∈N of predictable stop-
ping times is called a predictable separability set for ϕ if for each ω ∈ �, the set
{Tn(ω) : n ∈N} contains 0 and is dense in [0, T ] and

{(
t, ϕt (ω)

) : t ∈ [0, T ]}= {(Tn(ω),ϕTn(ω)(ω)
) : n ∈ N

}
, (A.6)

i.e., the graph of the sample function t �→ ϕt (ω) is the closure of the graph restricted
to the set {Tn(ω) : n ∈ N}. A stochastic process ϕ having a predictable separability
set is called predictably separable.

We recall Doob [15, Theorem 5.2]:

Theorem A.2 A predictable process coincides with some predictably separable pre-
dictable process up to evanescence.

Proof of Lemma 3.13 By Theorem A.2, we have to show that for a predictably sepa-
rable predictable process ϕ, the process C(ϕ, [σ ∧ · , τ ∧ · ]) is predictable.

By (A.6), we can find a sequence of finite sequences of (not necessarily pre-
dictable) stopping times σ = T n

0 ≤ T n
1 ≤ · · · ≤ T n

mn
= τ such that

mn∑

i=1

|ϕT n
i ∧t − ϕT n

i−1∧t | −→ Varτ∧t
σ∧t (ϕ) pointwise for n → ∞, t ∈ [0, T ].
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Next, we define for each n ∈N and i ∈ {1, . . . ,mn} a sequence (V
n,i
� )�∈N0 of stopping

times by V
n,i
0 := T n

i−1 and recursively

V
n,i
� := inf

{
t > V

n,i
�−1 : |St − St − (S

V
n,i
�−1

− S
V

n,i
�−1

)| > 1

2n
or

|St − St − (S
V

n,i
�−1

− S
V

n,i
�−1

)| > 1

2n

}
∧ T n

i .

This leads to the sequence of random partitions P n :=⋃k≤n

⋃
i=1,...,mk

⋃
�∈N0

{V k,i
� },

n ∈ N, which is for each ω refining. Note that for ω and n fixed, Pn is finite. Rear-
ranging the resulting stopping times in increasing order yields a refining sequence
of increasing stopping times (νn

k )k∈N0 , n ∈ N, such that #{k : νn
k (ω) < ∞} < ∞ for

all n ∈ N, Varτ∧t
σ∧t (ϕ) = lim

n→∞
∑∞

k=1 |ϕνn
k ∧t − ϕνn

k−1∧t | for all t ∈ [0, T ], and such that

max(osc(S − S, [νn
k , νn

k+1)),osc(S − S, [νn
k , νn

k+1))) ≤ 1/n for all k ∈ N0 and n ∈ N.
In particular, this means that for each ω ∈ {σ < τ } and t ∈ [0, T ], the sequence of par-
titions (Pn(ω))n∈N defined by Pn(ω) := {νn

k (ω) ∧ t : k ∈N} satisfies the assumptions
of Proposition 3.10. Hence Proposition 3.10 together with C(ϕ, [σ ∧ · , τ ∧ · ]) = 0
on {σ = τ } implies that the sequence of predictable processes

∞∑

k=1

(Sνn
k−1

− Sνn
k−1

)(ϕνn
k ∧· − ϕνn

k−1∧·)+ +
∞∑

k=1

(Sνn
k−1

− Sνn
k−1

)(ϕνn
k ∧· − ϕνn

k−1∧·)−,

n ∈N, converges pointwise to C(ϕ, [σ ∧ · , τ ∧ · ]), which yields the assertion. �

Proof of Proposition 3.17 In the following, we can and do assume with no loss of gen-
erality that σ and τ are [0, T ]-valued stopping times. In addition, by Proposition 3.3,
we have Varτσ (ϕ) < ∞ a.s. and thus without loss of generality also for all paths. This
implies that the paths of ϕ are làglàd on �σ, τ�.

Step 1. We start by constructing an approximating sequence of almost simple
strategies (ϕn)n∈N as in Guasoni et al. [20]. For this, we define

T n
0 := σ, T n

k := inf{t ∈ (T n
k−1, τ ] : |ϕt − ϕT n

k−1+| ≥ 1/n}, k ∈N,

which are obviously stopping times. In addition, we have T n
k−1 < T n

k on {T n
k−1 < ∞}

and #{k : T n
k (ω) ≤ τ(ω)} < ∞ for all ω ∈ � as Varτσ (ϕ) < ∞. One has to distinguish

between a portfolio adjustment at T n
k and at T n

k +. For this, we introduce further
stopping times, namely

πn
0 := σ, πn

k := (T n
k ){|ϕT n

k
−ϕT n

k−1+|≥1/n}, k ∈ N

and note that πn
k is a predictable stopping time for all k ∈ N. Indeed, for k ≥ 1 we

have

�πn
k � = �0, T n

k � ∩ {(ω, t) : Yt (ω) ≥ 1/n} ∈P
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since the process Yt := |ϕt − ϕT n
k−1+|1�T n

k−1,τ� is predictable. We define (ϕn)n∈N by

ϕn :=
∞∑

k=0

(ϕπn
k
1�πn

k � + ϕT n
k +1�T n

k ,T n
k+1�\�πn

k+1�
),

which satisfies ϕn
σ = ϕσ and ϕn1�σ,τ� is predictable and consequently almost simple.

In addition, the construction ensures that |ϕn − ϕ| ≤ 1/n on �σ, τ�.
Step 2: Let us show that supt∈[σ,τ ] |Vartσ (ϕn) − Vartσ (ϕ)| → 0 pointwise. We fix

ω ∈ � and ε > 0 and take a partition P = {t0, . . . , tm} such that

Varτσ (ϕ)(ω) ≤
m∑

i=1

|ϕti (ω) − ϕti−1(ω)| + ε.

This yields

Vartσ (ϕ)(ω) ≤
m∑

i=1

|ϕti∧t (ω) − ϕti−1∧t (ω)| + ε, ∀t ∈ [σ(ω), τ (ω)].

Recall from Step 1 that ϕn(ω) → ϕ(ω) uniformly in time on [σ(ω), τ (ω)]. Thus we
may choose N ∈N large enough such that we have |ϕn

t (ω)−ϕt (ω)| ≤ ε/(2m) for all
t ∈ [σ(ω), τ (ω)] and n ≥ N . Therefore, we get

Vartσ (ϕ)(ω) − Vartσ (ϕn)(ω) ≤
m∑

i=1

|ϕti∧t (ω) − ϕti−1∧t (ω)| + ε − Vartσ (ϕn)(ω)

≤
m∑

i=1

|ϕn
ti∧t (ω) − ϕn

ti−1∧t (ω)| + 2ε − Vartσ (ϕn)(ω)

≤ 2ε

for all t ∈ [σ(ω), τ (ω)]. Together with Vartσ (ϕ)(ω) ≥ Vartσ (ϕn)(ω), we have proved
the claim.

Step 3: Let us show that (3.8) holds. We again argue path by path, i.e., ω ∈ �

is fixed without explicitly mentioning it. The jumps of the cost term on [σ, τ ] are
given by

�Ct(ϕ) = lim
s↑t

C(ϕ, [s, t])

= (St− − St−)(�ϕt )
+ + (St− − St−)(�ϕt )

−, t ∈ (σ, τ ],
�+Ct(ϕ) = lim

s↓t
C(ϕ, [t, s])

= (St − St )(�
+ϕt )

+ + (St − St )(�
+ϕt )

−, t ∈ [σ, τ).

For k ∈N, we use the notation C(ϕ, (T n
k−1, T

n
k ]) := C(ϕ, [T n

k−1, T
n
k ]) − �+CT n

k−1
(ϕ)

and C(ϕ, (T n
k−1, T

n
k )) := C(ϕ, (T n

k−1, T
n
k ]) − �CT n

k
(ϕ), where it is tacitly assumed
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that T n
k ≤ τ . In particular, this means that for ϕn, we have

C
(
ϕn, (T n

k−1, T
n
k ])= (ST n

k − −ST n
k −)(ϕn

T n
k

−ϕn
T n

k −)+ +(ST n
k − −ST n

k −)(ϕn
T n

k
−ϕn

T n
k −)−

as C(ϕn, (T n
k−1, T

n
k )) = 0 according to Proposition 3.16. We now want to get an esti-

mate for
∣∣∣C
(
ϕn, (T n

k−1, T
n
k ])+ �+CT n

k
(ϕn) −

(
C
(
ϕ, (T n

k−1, T
n
k ])+ �+CT n

k
(ϕ)
)∣∣∣ (A.7)

(this means that we move forward from T n
k−1+ to T n

k + and tacitly assume T n
k < τ ).

We start by establishing a strong bound on the difference (A.7) that only holds if
the prices do not vary too much between T n

k−1 and T n
k . To formalise this, we take

δ > 0, which will be specified later, and define (ρm)m≥0 by ρ0 := σ and

ρm := inf{t ∈ (ρm−1, τ ] : |St − St − (Sρm−1 − Sρm−1)| > δ or

|St − St − (Sρm−1 − Sρm−1
)| > δ}.

We claim that on {ρm−1 ≤ T n
k−1 < T n

k < ρm} for some m ≥ 1, we have for k ≥ 1 that

∣∣∣C
(
ϕn, (T n

k−1, T
n
k ])+ �+CT n

k
(ϕn) −

(
C
(
ϕ, (T n

k−1, T
n
k ])+ �+CT n

k
(ϕ)
)∣∣∣

≤ (Var
T n

k +
T n

k−1+(ϕ) − Var
T n

k +
T n

k−1+(ϕn)
)

sup
t∈[0,T ]

(St − St ) + 2δVar
T n

k +
T n

k−1+(ϕ). (A.8)

Indeed, in a related model with artificial times for T n
k−1+ and T n

k + (that we do not
write down), the cost term of ϕn is a modified Riemann–Stieltjes sum from Def-
inition 3.1(v), and the cost term of ϕ is the limit in R of such sums with refined
partitions. Since the oscillation of the processes S − S and S − S on [ρm−1, ρm) is
bounded by 2δ, (A.8) is just an application of (A.3) with δn = 2δ.

We still need a bound for (A.7) for the general case when prices can vary by more
than 2δ between T n

k−1 and T n
k . Fortunately, a weaker bound is sufficient here, namely

∣∣∣C
(
ϕn, (T n

k−1, T
n
k ])+ �+CT n

k
(ϕn) −

(
C
(
ϕ, (T n

k−1, T
n
k ])+ �+CT n

k
(ϕ)
)∣∣∣

≤
(

Var
T n

k +
T n

k−1+(ϕ) − Var
T n

k +
T n

k−1+(ϕn) + 1

n

)
sup

t∈[0,T ]
(St − St ), k ≥ 1. (A.9)

It is sufficient to show (A.9) for the very special case that ϕT n
k

= ϕT n
k−1+ + 1/n and

ϕT n
k + = ϕT n

k
. In this case, one has Var

T n
k +

T n
k−1+(ϕn) = 1/n and the estimation is obvious

(cf. Proposition 3.9 (iii)). If (A.9) holds for this case, it also holds in general since by
the construction of ϕn, overshoots of ϕT n

k−1+ + 1/n and jumps between T n
k and T n

k +
effect both the two cost processes and the two variation processes in the same way. In

addition, by (A.9) and Var
T n

k −
T n

k−1+(ϕn) = 0, we obtain the estimate, for t ∈ (T n
k−1, T

n
k ],
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∣∣C
(
ϕn, (T n

k−1, t]
)− C

(
ϕ, (T n

k−1, t]
)∣∣

≤
(

Vart
T n

k−1+(ϕ) − Vart
T n

k−1+(ϕn) + 1

n

)
sup

u∈[0,T ]
(Su − Su). (A.10)

Step 4: We complete the proof by putting the different estimates together. Let
a(δ) := #{m : ρm ≤ τ } and note that a(δ) < ∞ (recall that ω ∈ � is fixed). Next,
note that we have �+Cσ (ϕn) = �+Cσ (ϕ) by construction of ϕn. For t ∈ [σ, τ ], let
Kn := #{k : T n

k < t}. By Proposition 3.9 (ii), we have

∣∣C
(
ϕn, [σ, t])− C

(
ϕ, [σ, t])∣∣≤

Kn∑

k=1

∣∣C
(
ϕn, (T n

k−1, T
n
k ])− C

(
ϕ, (T n

k−1, T
n
k ])

+ (�+CT n
k
(ϕn) − �+CT n

k
(ϕ)
)
1{T n

k <t}
∣∣

+ ∣∣C(ϕn, (T n
Kn

, t])− C
(
ϕ, (T n

Kn
, t])∣∣. (A.11)

To the last summand, we apply the estimate (A.10). The estimate (A.9) is ap-
plied to all k = 1, . . . ,Kn such that there is at least one m = 1, . . . , a(δ) with
T n

k−1 < ρm ≤ T n
k , and for all other k, we use the stronger estimate (A.8). Plugging

this into (A.11) and adding up the variation terms along time, we arrive at
∣∣C
(
ϕn, [σ, t])− C

(
ϕ, [σ, t])∣∣

≤
(

Vartσ (ϕ) − Vartσ (ϕn) + a(δ)

n

)
sup

u∈[0,T ]
(Su − Su) + 2δVartσ (ϕ)

≤
(

sup
u∈[σ,τ ]

(Varuσ (ϕ) − Varuσ (ϕn)) + a(δ)

n

)
sup

u∈[0,T ]
(Su − Su) + 2δVarτσ (ϕ) (A.12)

for all t ∈ [σ, τ ]. Given ε > 0, we first choose δ < ε/(4Varτσ (ϕ)). Then by a(δ) < ∞
and Step 2, we find N ∈ N such that for n ≥ N , the first summand in the last line
of (A.12) is smaller than ε/2. This yields supt∈[σ,τ ] |C(ϕn, [σ, t]) − C(ϕ, [σ, t])| < ε

for n ≥ N , and we are done. �
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