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Abstract
The reduction of material defects in the automated fiber placement process is one of the significant factors for manufacturing
large and complex components more efficiently in the future. However, the monitoring of complex manufacturing processes
usually requires complex sensor and computer systems that are often quite sensitive to disturbances and errors. New techniques
such as image segmentation with neural networks provide a new approach to this problem and have the potential to solve
complex processes faster and more robustly. In this study, a system is presented that performs monitoring, inspection and
measurement tasks simultaneously in automated fiber placement processes. The system is based on the SiamMask network
which is used for the automatic image processing. The artificial neural network is trained to recognize individual carbon fiber
tapes and segment them for additional analysis. For the creation of the testing- and training data, an analytical approach is
presented. The post-processing of the object segmentation, which is the primary output of the SiamMask network and the
identification of individual tapes, provides accurate measurements which are demonstrated by an example. We show that
image segmentation with modern approaches like SiamMask offers great potential to handle highly complex engineering
tasks in a faster and more intelligent manner in comparison to conventional methods.

Keywords Automated fiber placement · Artificial neural networks · SiamMask · Process monitoring & Inspection · Image
segmentation

Introduction

Fiber-composite materials are applied in several industrial
applications as they offer components with high specific
strength and stiffness. Automated techniques such as auto-
mated fiber placement (AFP) enable the manufacturing of
large and complex parts, especially in the aerospace indus-
try, such as a fuselage that consists of carbon fiber-reinforced
polymer (CFRP) (Liu et al. 2016). It has been demon-
strated that the AFP process cannot be completely error-free
(Rakhshbahar and Sinapius 2018), especially on double-
curved surfaces. In this process, gaps, in particular, have
a significant effect on material properties. A study by the
American Institute of Aeronautics and Astronautics (AIAA)
has shown that a gap of 0.76 mm can reduce the compressive
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strength of the laminate by up to 27% (Sawicki and Minguet
1998; Heinecke 2019; Ghayour et al. 2020). In this context,
the aerospace industry has rigorous tests and standards for
the inspection of laminates to check for material gaps and
overlaps (Heinecke and Willberg 2019). Continuous quality
control of the laminate during and after production is there-
fore essential.

More than 60% of the total production time is spent on
the inspection and reworking especially for large structures
(Halbritter and Harper 2012; Meister et al. 2020). In this
context, the AFP process in combination with thermoset
materials offers a decisive advantage. Faulty or incom-
plete bonding between the carbon fiber tapes (CFT) can
be reworked substantially easier compared to thermoplastic
material applications.

By monitoring the AFP process, the position and size of
placement effects like gaps can be identified. This informa-
tion can be used to evaluate laminate quality. A new method
allows filling the gaps after its detection simultaneously via
3D printing with continuous carbon fiber (Rakhshbahar and
Sinapius 2018). Common gap detection techniques include
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Fig. 1 AFP inspection method for gap detection based on laser pro-
filometer measurements. A three dimensional profile of the CFT’s can
be created by the recorded profiles in combination with the operation
head position

spectral cameras that can detect different bands of the elec-
tromagnetic spectrum (Soucy 1996).

This type of inspection is very similar to human vision
and depends on the contrast between the faultless and faulty
areas. The evaluation of the image data can be improved by
lighting systems to improve the contrast conditions (Schmitt
et al. 2006). Other methods for gap identification are based
on a measuring technique that determines e.g. 3D profile
measurements with laser profilometers (Nguyen et al. 2012).
The profile sensor can detect the deviation between points to
each other or to a reference inY- andZ-direction.Also, theX-
position canbe determinedbasedon the position of the profile
sensor installed in the robot. Through these data, the position
and size of the defect can be simulated. These methods are
often used for detecting gaps and overlaps. The data can be
used to create an accurate, three-dimensional profile as shown
in Fig. 1.However, this requires the exact alignment of the 3D
laser profilometer to the object of inspection, which can limit
the measurability of complex surface structures (Bahar and
Sinapius 2020). The AFP heads are typically controlled by a
programmable logic controller (PLC). The coupling between
the profile sensor and the PLC as well as the connection with
the robot is complex, especially in real-time .

Also, thermographic systems are often used to detect
defects in fiber-reinforced components (Schmidt et al. 2017)
as shown in Fig. 2. Different methods are used such as optical
heat or cold sources, flash- and halogen lamps, and ultra-
sound or eddy current excitation (Ibarra-Castanedo et al.
2009; Völtzer 2018; Oromiehie et al. 2019). A thermal cam-
era is installed directly after the consolidation roller. The
deposited materials are cooled at room temperature depend-
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Fig. 2 Heat distribution during the layup process based on a numerical
simulation. Individual CFT’s, their beginning and end can be identified
by the temperature gradient. In practice, the CFT’s are determined using
thermal imaging

ing on the thickness. For example, the cooling rate in gaps is
faster than in overlaps. This effect can be used to visualize
and detect a defect. However, a thermographic camera can
only provide qualitative evidence of various defects, but not
quantitative measurements. Optical thermography allows the
detection of a wide range of placement effects but is complex
and expensive.

The spectral camera can also be used for online monitor-
ing. However, a disadvantage of the spectral camera is that
the black prepregs prevent a high visual contrast between a
towing tape and the tool surface, which makes it difficult to
detect defects (Soucy 1996). The use ofmultiple light sources
can increase the detection of defects. However, this method
is limited to the detection of gaps (Tao et al. 2016).

Recent research uses the method of image segmentation
based on laser triangulation sensor depth information (Zam-
bal et al. 2019). Image segmentation belongs to the group
of computer vision and digital image processing. Classical
methods like pixel-thresholding (Sezgin and Sankur 2004;
Wu et al. 1982) or Markov random fields (Pieczynski and
Tebbache 2000; Plath et al. 2009) have been replaced by
newer approaches with artificial neural networks (ANN). In
comparison, ANNs achieve better results and higher accu-
racy in object segmentation. An overview of segmentation
methods with ANN is provided by Minaee (Minaee et al.
2021).

Automatic detection of placement effects is currently the
subject of research, especially in the field of computer vision.
In this context, machine learning and deep learning methods
are becoming increasingly important as they work faster and
more reliable compared to conventional engineering models.
Machine and deep learning methods, therefore, offer great
potential for optimization, as visual and manual inspection
alone can account for more than 20% of production time
(Cemenska et al. 2015). However, the elimination of error
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effects in the manufacturing process without interrupting the
productionprocess is still an openquestion.Acomprehensive
overview of the application ofmachine learning in composite
manufacturing is given in Sacco et al. (2020).

Tendentially more sensors and data are integrated into the
AFP depositing process. However, this requires also interact-
ingmeasuring systems thatmust be combined into a complex
integrated system which in turn may lead to defects in the
composite laminates (Sun et al. 2020).

This study shows a different approach, intending to inves-
tigate a single monitoring and measurement system based
on siamese object tracking (Ondrašovič and Tarábek 2021).
Our method uses camera images as primary data input which
are segmented and classified. Our approach is based on
the SiamMask-Network (Wang et al. 2019; Bertinetto et
al. 2016) which, in contrast, to existing methods, creates
binary segmentation masks. The segmentation performance
of SiamMask allows the calculation of the distance and angle
between the carbon fiber tapes and the detection of overlaps,
gaps, and their size. Here, the monitoring is primarily uti-
lized for machine control by continuously checking the angle
and distance between the CFT’s. From the data, automatic
real-time machine movements can be derived to optimize the
layup quality. The inspection task checks for gaps and over-
laps and thus records the distance between the CFT’s. Based
on this data, decisions can be made whether post-processing
is necessary, e.g. by filling the gaps with 3D printingmethods
to increase the laminate strength. A monitoring and mea-
surement system that collects detailed information about the
position and orientation of eachCFTalso enables the creation
of a digital model of the component. The real-time analysis
of such digital models permits an improvement of the lam-
inate quality and an automated process that can produce a
lighter material (Rakhshbahar and Sinapius 2018; Parmar et
al. 2021).

Appliedmethods

We compared the SiamMask network to an algorithm for
edges detection. Both methods are capable to determine the
distance between two tapes. In both cases, the edge detection
takes place by image analysis. However, while the strictly
mathematical approach for edge detection only detects the
tape borders, SiamMask is able to provide segmentation
masks of both tapes. This segmentation mask can be applied
to create a virtual model of the deposited fibers. In the
first step, the momentary distance between the fibers can
be measured and used to derive machine instructions. This is
possible due to the fast processing of the segmentationmasks
by the SiamMask network. In addition, the large number of
recorded masks provides a model of the fiber layer of a com-
ponent. In the future, a virtual inspection can be carried out on

such amodel. Such an inspection provides information about
the fiber orientation, possible defects in the component and
the determination of the fiber density, since the spacing and
orientation of each individual fiber is known.

The SiamMask network

The architecture of the SiamMask network is built upon two
parallel networks as shown in Fig. 3. One artificial neu-
ral network (ANN) acts as a template- and the other as a
detection-branch (Utkin et al. 2021). The initialization of the
SiamMask networks requires an initial selection of the object
of interest which happens in the first frame of the video. In
the present study, this selection stepwas performedmanually.
Afterwards, the marked image section is fed to the template
branch and serves as a template for processing the remaining
images. The output of the template branch corresponds to an
abstract representation of the object and is used as a template
for searching in the detection branch.

The remaining images are fed individually to the detection
branch as search images. This branch uses a similar struc-
ture and almost identical weights as the template branch
so that a comparable abstraction is performed. By cross-
correlating the outputs of both branches all image sections of
the search image are compared with the template. The result
is an evaluation of the probability where the object of inter-
est can be found in the current image frame. The output of
the SiamMask network consists of the final bounding box, a
score that indicates whether it is an object or the background
of the image, and the final object segmentation.

Automated tape identification with Gaussian-based
detectionmethods

In the task of edge detection in images two general methods
may be distinguished. The first method uses the difference of
Gaussians (DoG) and searches for local minima or maxima.
The secondmethod applies the Laplacian ofGaussian (LOG)
and searches for zero crossings (Marr and Hildreth 1980). A
DoG approach was chosen, since LOG is known to be sen-
sitive to noise (Basu 2002). Another advantage of the Gauss
derivative kernel is that it offers versatile setting options.
Since theCFT has a fixed orientation the direction-dependent
sensitivity of theDoG for edge detection is a particular advan-
tage. The images and the segmentation masks are used as
input to train the SiamMask network.

The presented analytical approach is based on a sliding
window method. Instead of detecting edges at once in the
entire image I (x, y), one image section after the other is
analyzed. Each section S(xh, yw) is defined with a height h
and a widthw. Hence, the pixels of the section S(xh, yw) are
within the range 0 > xh > h and 0 > yw > w. The section
slides from left to right with a distance of one pixel until the
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Fig. 3 The SiamMask architecture consists of two Siamese networks.
Working in parallel, one is acting as template- and the other as detection
branch. The segmentation mask generated by the SiamMask network
provides a virtual model of the deposited fibers. Based on this mask, the
instantaneous distance between the fibers can be measured and used to
derivemachine instructions. Furthermore, the recordedmasks provide a

model of the fiber layer of a component on which virtual inspection can
be conducted. Such an inspection provides i.e. information on the fiber
orientation, possible defects in the component and the determination
of the fiber density, since the distance between the tapes is measurable
(The image is inspired by Wang et al. (2019))

right end of the image is reached. Afterward, the slide starts
again on the left side with a predefined offset. This offset
depends on the number of vertical scans given by N.

The overall sectional gradient was computed and taken as
a metric M in each section. M is the absolute value of the
sum of the sectional derivative computed as

M =
∑

|g′(xh, yw) ◦ S(xh, yw)|. (1)

The sectional derivative is obtained by theHadamard product
of the Gaussian derivative operator g′(x, y) and the image
section S(xh, yw) both with size g′, S ∈ R

h×w. The two-
dimensional Gauss function, shown in Fig. 4 is given by

g(x, y) = A · e−1

2

(
( x

σx
)2+(

y
σy

)2
)

. (2)

Figure 5 shows the operator g′(x, y) obtained by the total
differential of g(x, y), given in Eq. 2, which results in

g′(x, y) = ∂g

∂x
dx + ∂g

∂ y
dy

= −A

(
x

σ 2
x
dx + y

σ 2
y
dy

)
e
−1

2

(
( x

σx
)2+(

y
σy

)2
)

.

(3)

An advantage of the Gaussian derivative operator g′(x, y)
is its versatile filter properties, which can be set through its
parameters. Here A is a constant amplification factor and σx
and σy set the sectional blurring level in x- and y-direction.
The parameters dx and dy, from the total differential, can be
interpreted as sensitivity values, i.e. edges in x-direction will
be detected stronger with a higher dx value and vice versa.
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Fig. 4 The two dimensional Gauss function is the calculation basis for
the creation of the Gauss derivative kernels

In the present case, the edges were expected to be vertical.
Hence a larger dy value is advantageous.

The performance of the segmentation algorithm is tested
based on images taken during the layup process. Figure 6
shows such a record during the layup. The images have a
size of w = 1280 × h = 720 pixels and a sliding section
w = 30× h = 90. With S as a constant, the variance σx , σy

and dx, dy are defined as the follows

σx = h/S (4)

σy = w/S (5)

dx = h (6)

dy = w, (7)
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Fig. 5 Total derivative of the two dimensional Gauss function given
in Eq. 3. This kernel offers versatile filter settings and reliable edge
detection

Fig. 6 The initial images in the grayscale color range had a size of
w = 1280 × h = 720 pixels and were recorded with a macro camera
during the prototype machine operation

leading to the final form of the Gaussian derivative operator:

g′(x, y) = −AS2
( x
h

+ y

w

)
e
− S

2
(
( xh )2+(

y
w

)2
)

. (8)

For the image analysis, the two constants A=1 and S=7 have
been defined. An interval x and y was applied with

[−h/2, h/2] = {x ∈ R
h | − h/2 ≤ x ≤ h/2} (9)

and

[−w/2, w/2] = {y ∈ R
w| − w/2 ≤ y ≤ w/2} (10)

respectively. For each taken image, the edge detection metric
M was computed as shown in Eq. 1. A heat-map from the
image was created by collecting all M which can be seen in
Fig. 7 which depicts the strength of the sectional gradient.

Fig. 7 The sliding window method in combination with the Metric M
provides a clear basis for evaluating the pixel gradients. However, it can
also be seen that small disturbances quickly appear as gradient peaks,
see top right

In general, a higher gradient can be interpreted as an edge.
However, the example of the local peak shown in Fig. 7 (right
top) also demonstrates that a clear edge identification can
be easily polluted by other objects. To create an accurate
segmentation mask for the CFT these data must be filtered
out.

The data is filtered by selecting the peaks for each data
row n in the x-direction, see Fig. 8 (single data row), of the
heat-map in which 0 < n < N . For the selecting process, a
thresholdwas chosenwhich selects only the highest 5%of the
data peaks. The selected peaks are shown in Fig. 8 (selected
peaks), which are then separated during the peak sampling
process. Also, linear regression is applied to all peaks to
obtain a line that represents the tape edges. Finally, a seg-
mentation mask can be obtained by filling the area between
two adjacent lines. This is done by connecting the edges to
a polygon which represents the final segmentation for each
CFT. The average processing time to create a segmentation
mask for each image takes about 5.5 s.

Error cases during tape deposition

Apart from determining the tape distance, the segmentation
mask also allows to determine the deposit position. For each
pixel line, from left to right, it is possible to identify the CFT
edge with a rising- or falling edge detection. Three cases can
be distinguished by the number of determined edges and their
distance, as shown in Fig. 9:

Case 1 Overlap: Number of detected edges = 2, if the dis-
tance between the two edges is smaller than 2 times
the tape width there is an overlap, see Profile 1 in
Fig. 9.
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Fig. 8 A Gauss derivation is performed in combination with a sliding-
windowmethod from the initial image. The peaks of the sum of the slide
derivatives show strong gradients between the slides. These are usually
tape edges. Through these peaks, a segmentation mask is created by
a linear approximation that covers and identifies the CFT. In this way,
outliers are filtered out. The final step consists of filling the area between
two adjacent lines to obtain the final fiber segmentation

Case 2 Fit: Number of detected edges = 2, if the distance
between the two edges is equal 2 times the tape width
there is a good fit, see Profile 2 in Fig. 9.

Case 3 Gap: Number of detected edges = 4, there is a gap
between the tapes, see Profile 1 in Fig. 9. In this case,
the size of the gap must be determined.

To reduce the error-proneness three pixel lines lpx1, lpx2,
lpx3 were selected from each segmentation mask as shown
in Fig. 10. For each line, the edges of the CFTwere computed
with a rising-/falling edge detector. This gives three points
p1...p6 on the inner edge of each tape . Since one can assume
that the CFT has a straight edge in a small area, the three
points of an edge are interpolated linearly. This results in two
lines l1, l2 whose angle and distance can be determined. In the
present experiment, the center of the image is selected as the
measuring axis. Figure 11 shows the real-time measurement
based on the segmentation masks and the two approximated
lines in the inner side of the CFT’s.

Results

The SiamMask network is trained using a series of images
taken during the laying process. The performance and accu-

Case 1:
Overlap

Case 2:
Fit

Case 3:
Gap

Profile 1
Profile 2

Profile 3

mask

CFT

Fig. 9 In the ideal case, the CFT’s lie next to each other without gaps or
overlaps. However, these errors usually occur during the layup process.
With themasks calculated by SiamMask, it is possible to conclude these
3 cases (Profile 1: overlap, Profile 2: ideal fit, and Profile 3: gap). This
is done by determining the number and distance of CFT edges

tape mask left tape mask right

detected tape edges edge regression line

measured tape
distance between
regression lines

μauto

p1

p2

l1 l2

lpx1

lpx2

lpx3

p6

p5

p4p3

Fig. 10 For each CFTmask, three points were determined on the inside
of the edge p1...p6. Through these points, a linear approximation was
calculated. This yields to line l1 for the left tape and line l2 for the right
tape. The center distance of these lines gives the distance of the CFT’s
in themiddle of the image. This approximation reduced the error caused
by the scaling of the segmentation mask

racy of the tape detection and automatic measurement are
then compared to manual measurements.

Training data preparation

For the training of the SiamMask network, a large set of train-
ing data is required. This data consists on one hand of images
that has to be analyzed and on the other hand of segmentation
masks of the CFT that need to be recognized by the network.
The manual preparation of the segmentation masks was not
feasible because of the large dataset. For this purpose, the
Gaussian-Based detection algorithm of Sect. 2.2 and the fol-
lowingmethod for generatingmaskswere applied. Thismade
it possible to create a large number of masks from image cap-
tures during the depositing process in a semi-automatic way.
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Fig. 11 Snapshot of the segmentation mask (red) and video image with
a real-time approximation of the CFT’s inner edges (yellow lines) and
simultaneous measurement

The automatically generated masks were checked manually
as a final step.

Besides a large datasets ANN’s also need a variety of
data with different case scenarios (patterns) to generalize
the problem, i.e. to learn from the data. For this purpose,
a matrix is defined with different CFT layup variants that
occur during normal machine operation as shown in Table 1.
To create the database, 100 video sequences were recorded.
These sequences show a layup process of a fixed length.
Here, the offset do of the CFT’s is categorized to the cen-
ter of the image and the angle α to the image edge. In each
case, the gap ds at the start and the gap de at the end of the
layup process were measured. Each video sequence consists
of approximately 80 single images. In total, 8065 images are
taken during machine operation which can be classified into
the defined patterns.

Network training and automated tape identification

The training took place at the phoenix cluster of the Tech-
nische Universität Braunschweig, equipped with 8x GPU
nodes, each with four NVIDIA Tesla P100 16GB HBM2
GPU’s. SiamMask was trained with the ResNet50 (He et
al. 2016) backbone. To accelerate the training process, pre-
trained weights of the visual object tracking database (VOT)
(Kristan et al. 2016) were applied. The pre-trained backbone
enabled an average training time of less than 16 min for the
complete CFT-dataset. The CFT-dataset contains 8065 pic-
tures with corresponding segmentation masks. As described
in Sect. 2.2, the images and segmentation masks were pro-
cessed in 100 sequences inwhich the sequences were divided
into 20 patterns given in Table 1.

0 2000 4000 6000 8000 10000 12000
epochs

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

lo
ss

Raw data
Interpolation

Fig. 12 The loss L3B shown in Eq. 11 converges after 20 epochs to
about 0.028

0 2000 4000 6000 8000 10000 12000
epochs

0.965

0.970

0.975

0.980

0.985

Io
U

Raw data
Interpolation

Fig. 13 Training curve for the mean intersection over union (IoU) over
20 epochs shows an accuracy convergence of approximately 98% for
the CFT-dataset

The CFT-dataset is split in 70% training- and 30%
validation-data respectively. Here, the 20 sequence pat-
terns for the training and validation data were randomly
distributed. Data augmentation was not required since the
training process achieved sufficient accuracy. After a train-
ing time of 20 epochs, the loss L3B given in Eq. 11 converged
to about 0.028, as shown in Fig. 12.

Each epoch contains 125 iteration steps. The accuracy
shown in Fig 13 reached after convergence approximately
98%. It was measured with the mean intersection over union
(IoU), also known as the Jaccard index. This is a measure of
the correspondence between the segmentation mask created
from SiamMask and the automatically created segmenta-
tion obtained with the Gauss derivation method shown in
Sect. 2.2.

The Loss and metric parameters were adopted fromWang
et al. (2019). Here, a logistic-loss was applied in the calcula-
tion of the segmentation mask-loss Lmask . The optimization
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Table 1 The training data is divided into 20 sequences each representing a variant of the CFT depositing process

do = 0mm do = −2mm do =+2mm do = 0mm do = 0mm
α = 0◦ α = 0◦ α = 0◦ α = −15◦ α = 15◦
Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

ds = −2mm

ds =+3mm
Sequence 6 Sequence 7 Sequence 8 Sequence 9 Sequence 10

ds =+3mm

ds = −2mm
Sequence 11 Sequence 12 Sequence 13 Sequence 14 Sequence 15

ds = 0mm

ds =+1mm
Sequence 16 Sequence 17 Sequence 18 Sequence 19 Sequence 20

ds =+1mm

ds = 0mm

Here the position do and the angle α of the CFT were varied. For each of the 20 sequences, 5 recordings of the same type were made. The training
data set thus consists of 8065 images in total, each with its individual segmentation mask

of this loss function corresponds to logistic regression. A
cross-entropy was applied in the loss definition of the bound-
ingbox Lbox and the score Lscore. The loss function is defined
as

L = λ1 · Lmask + λ2 · Lscore + λ3 · Lbox (11)

with λ1 = 31 and λ2 + λ3 = 1. The adaptive learning rate
was set to a start value of lrs = 0.01 and an end value of
lre = 0.0025.

Real-time segmentation abilities

For the evaluation of the training success, the segmentation
results of a trained and an untrained network are compared.

As shown in Table 2, the trained network achieved an IoU
(Jaccard index) of 98.4% regarding to Fig. 13. In comparison,
an untrained network reached only 87.1% match between
segmentation- and label-mask.

The effect of the training becomes clear when looking at
the segmentation masks shown in Table 3. In the majority
of cases, the untrained network perceives both CFT as one
object. Hence, in the untrained state, the network is not able
to detect CFT’s reliably.

In contrast, the trained network generates relatively accu-
rate segmentationmasks. TheCFT’s are identified as individ-
ual objects, gaps can be determined accurately and an overall
better segmentation is achieved.

The comparison between the input image and the created
object segmentation (in red) is shown in Fig. 14. For the
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Table 2 The network IoU
increased around 9% after
training and it finally achieved a
general correspondence of
object segmentation and label of
over 96%

Weights Frames per second (fps) Intersection over Union (IoU)

Untrained 8.03 0.871

Trained 7.99 0.964

Table 3 The comparison between the training segmentation masks
(left column), the segmentation with an untrained network (middle col-
umn), and a trained network (right column) shows that the training has
achieved a significant quality gain

Labeled mask Untrained seg-
mentation

Trained segmen-
tation

following experiment, the distance of theCFT’s in themiddle
of the image is calculated. This is done by counting the pixels
between the CFT’s and calculating their distance in mm. In
the present study, one pixel has a size of approximatelymp =
0.0172 mm, which is also the smallest measurable quantity.

A closer look at the created segmentationmasks in Table 3
and Figs. 15 and 14 shows that all segmentation masks have
irregular edges. These are expected to have a great influence
on the measuring accuracy. The irregularities are caused by a
scaling process as the network generates the mask as images
with a resolution of 127 × 127 pixels. The segmentation
masks are then scaled to the higher resolution of the ini-
tial image (in the present case to an image of 1280 × 720
pixels).

Optimization of the scaling process could improve mea-
surement results for methods with higher accuracy require-
ments. This can be done either by redrawing the segmentation
mask, e.g. with polygons, or by modifying the backbone
(ResNet50) to achieve higher object segmentation resolution.
Approaches for a higher resolution representation in Siamese
meshes can also be achieved with feature fusion on multiple
layers, which can achieve a better object localization (Zhang
et al. 2020; Zhu et al. 2021).

For a field experiment, the processing rates and the real-
time capability between the network and analytical approach
were compared. To test the practical use of the network, the

Fig. 14 The evaluation of the object segmentation with a trained net-
work allows identification of the CFT and measurement of the distance
in between. Furthermore, multiple gap measurements in one segmen-
tation mask allow an accurate angle determination

excellent performance of a computer cluster was deliberately
omitted. The study was conducted with a standard laptop
without GPU support. The implemented hardware consists
of an i7 Intel of the 8th generation. The results showed that
the network took in average 0.9 second per frame including
the gap measurement. An analysis of the runtime profile of
SiamMask reveals that the program spends about 60% of the
timeon convolution operations. This time canbe significantly
shortened with a GPU or TPU. In contrast, the analytical
approach without gap measurement requires approximately
5.5 second per frame, see Sect. 2.2. This shows that neural
networks offer a feasiblemethod for intelligent and automatic
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Fig. 15 The rescaling process of the segmentation masks causes irreg-
ular (image top) or blurred (image top) edges which has a great impact
on the determination of the gap dimension. This occurs since the mea-
surement accuracy is based on the number of pixels between the CFT
edges. An anti-aliasing technique of the CFT edges could increase the
accuracy of the inspection system. However, this approach goes beyond
the scope of the present study. For comparison, one pixel has a size of
approximatelymp = 0.0172 mmwhich is also the smallest measurable
quantity

data processing.Moreover, in the present case, the SiamMask
network exceeds the analytical mathematical approach by a
80% faster processing time.

Experimental verification of themeasurement
accuracy

The SiamMask network has been modified to process a cam-
era image as direct input. For the experimental evaluation of
the measurement accuracy of the network two CFTs were
scanned with the camera. Here the CFT’S had a larger dis-
tance at the beginning than at the end. At 15 locations the
distance between the CFT’s was measured and automati-
cally computed with the SiamMask network. Here N = 48
individual measurements were made for each location. In
addition to the mean μauto, the standard deviation sd was
also calculated to obtain the measurement uncertainty. For
comparison, the gapbetween the tapesμmanual was alsomea-
suredmanuallywith a caliper gauge. Themaximumaccuracy
for the manual measurement is 0.05 mm. The relative error
εr between manual and automatic measurement is calculated
by

εr = μauto − μmanual

μmanual
. (12)

Table 4 show that this resulted in a maximum error of
0.0806% with an average relative error of 0.0216%. The
best measurement achieved a fit with a relative error of
−0.0018%.

Assuming that all automatic measurements have approx-
imately the same standard deviation, a pooled variance of
0.0422mm is obtained. This indicates that the measurements
with the network have higher accuracy than those with the
caliper.

Table 4 The comparison
between the manual and
automatic measurement shows a
maximum relative error of
0.0806%

μmanual in mm μauto in mm |�| in mm sd εr (%) p value 0-Hyp

0.25 0.256 0.006 0.0481 0.02583 0.46646 1

0.30 0.324 0.024 0.0204 0.08056 0.00000 0

0.50 0.511 0.011 0.0487 0.02167 0.19620 1

0.70 0.666 0.034 0.0385 −0.04792 0.00000 0

0.80 0.798 0.001 0.0519 −0.00182 0.90204 1

1.00 0.974 0.027 0.0248 −0.02687 0.00000 0

1.10 1.104 0.004 0.0180 0.00360 0.11179 1

1.30 1.277 0.022 0.0338 −0.01715 0.00017 0

1.40 1.359 0.041 0.0401 −0.02902 0.00000 0

1.60 1.564 0.035 0.0318 −0.02201 0.00000 0

1.70 1.689 0.011 0.0734 −0.00662 0.20342 1

1.90 1.926 0.026 0.0498 0.01349 0.00170 0

2.15 2.136 0.014 0.0512 −0.00640 0.08122 1

2.30 2.283 0.017 0.0353 −0.00752 0.00153 0

2.40 2.431 0.031 0.0322 0.01285 0.00000 0

The largest deviation of both measurements was 0.0410 mm. Thus the automatic measuring system shows
sufficient accuracy for the production process
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To investigate the statistical relationship between manual
and automatic measurement a one-sided Wilcoxon test was
applied to the difference between μauto − μmanual , denoted
by �.

The 0-hypothesis concerns whether the manual measure-
ments match the automatic measurements from a statistical
point of view.As can be identified inTable 1, the 0-hypothesis
was rejected in several cases when |�| exceeds around
0.017 mm. The rejection of the 0-hypothesis is related to the
lower measurement accuracy of the caliper gauge. Here the
usually p-value limit of 5% was applied. In any case, how-
ever, |δ| is well above the production requirements where just
an accuracy of approximately 0.2–0.3 mm can be achieved.

In summary, the automatic measurement exceeds the
manual measurement in terms of accuracy and is therefore
suitable for the intended AFP production process.

Conclusions and future work

It has been shown that a state of the art object segmentation
networks like SiamMask can track and segment carbon fiber
tapes during the layup process with sufficient accuracy. The
network achieved around 80% faster calculation time, com-
pared to the analytical-mathematical approach presented. Its
performance is strongly hardware-dependent, but image pro-
cessing and gap measurement under one second could be
already achieved with a standard laptop without GPU sup-
port.

However, it is also shown that the accuracy of the gapmea-
surement depends significantly on the segmentation masks
which have currently only a size of 127 × 127 pixels. A
modification of the network architecture, i.e. an increase of
the mask resolution, offers great potential to increase the
measurement precision. An equal image resolution of seg-
mentation mask and input image would be ideal but is at the
expense of computational effort and real-time capability.

In the current setup the total variance, with 0.0422 mm,
of the automatic segmentation measurement is sufficient for
the AFT process and the post-processing with 3D printing
methods. This shows that segmentation methods, based on
artificial neural networks have great potential to significantly
improve complex manufacturing processes.

The present study also shows a method to generate train-
ing and testing data automatically. The generation of that
data is based on recordings of the CFT placement during the
machine operation. Here, it could be shown that the auto-
matically generated data successfully trains the network.
However, the practical application on the machine shows
that complete virtual training can only be applied condition-
ally since errors in the segmentation generation cannot be
excluded. A manual check of the training data is therefore
recommended. Furthermore, segmentation errors can occur

with changing light conditions. These errors can be mini-
mized with larger training data sets .

In the existing network, measurements and inspections
are performed based on the generated image segmentation.
The comparison between the manual inspection, consist-
ing of the gap measurement of two adjacent tapes, and the
automatic evaluation shows that the SiamMask network gen-
erally achieves higher accuracy. The fast response time of the
network enables online inspection, which allows error cor-
rection during tape placement.

Recent developments in Siamese networks also enable
more reliable tracking decisions and the ability to retrace
lost objects (Voigtlaender et al. 2020). It is conceivable to
extend the network to provide quality features, machine con-
trol commands, and measurement values directly from the
neural network without the need for explicit segmentation.
The necessary training data is theoretically already available,
since it is generated during the production process.

Future work can extend the processing of camera data and
also analyze other process data that have an impact on mate-
rial quality, such as melt temperature and feed rate (Brüning
et al. 2017). This multi-causal approach enables a holistic
view of the AFP process and is a step closer to smart manu-
facturing, as themachine can learn optimal process variables.
The advantage of neural networks is that they can be arbi-
trarily extendedwith suitable training data whilemaintaining
the single-system approach.
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