
Byrne, Thomas; Fekete, Sándor P.; Kalcsics, Jörg; Kleist, Linda

Article  —  Published Version

Competitive location problems: balanced facility location
and the One-Round Manhattan Voronoi Game

Annals of Operations Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Byrne, Thomas; Fekete, Sándor P.; Kalcsics, Jörg; Kleist, Linda (2022) : Competitive
location problems: balanced facility location and the One-Round Manhattan Voronoi Game, Annals
of Operations Research, ISSN 1572-9338, Springer US, New York, NY, Vol. 321, Iss. 1, pp. 79-101,
https://doi.org/10.1007/s10479-022-04976-x

This Version is available at:
https://hdl.handle.net/10419/312305

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10479-022-04976-x%0A
https://hdl.handle.net/10419/312305
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Annals of Operations Research (2023) 321:79–101
https://doi.org/10.1007/s10479-022-04976-x

ORIG INAL RESEARCH

Competitive location problems: balanced facility location
and the One-RoundManhattan Voronoi Game

Thomas Byrne1 · Sándor P. Fekete2 · Jörg Kalcsics3 · Linda Kleist2

Accepted: 29 August 2022 / Published online: 5 December 2022
© The Author(s) 2022

Abstract
We study competitive location problems in a continuous setting, in which facilities have to be
placed in a rectangular domain R of normalized dimensions of 1 and ρ ≥ 1, and distances are
measured according to the Manhattan metric. We show that the family of balanced facility
configurations (in which the Voronoi cells of individual facilities are equalized with respect
to a number of geometric properties) is considerably richer in this metric than for Euclidean
distances. Ourmain result considers theOne-RoundVoronoiGamewithManhattan distances,
in which first playerWhite and then player Black each place n points in R; each player scores
the area for which one of its facilities is closer than the facilities of the opponent. We give a
tight characterization: White has a winning strategy if and only if ρ ≥ n; for all other cases,
we present a winning strategy for Black.

Keywords Facility location · Competitive location · Manhattan distances · Voronoi game ·
Geometric optimization

An extended abstract based on the content of this preprint appears at the International Conference and
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1 Introduction

Problems of optimal location are arguably among themost important in a wide range of areas,
such as economics, engineering, and biology, aswell as inmathematics and computer science.
In recent years, they have gained a tremendous amount of importance through clustering
problems in artificial intelligence. In all scenarios, the task is to choose a set of positions from
a given domain, such that some optimality criteria with respect to the resulting distances to a
set of demand points are satisfied; in a geometric setting, Euclidean or Manhattan distances
are natural choices. Another challenge of facility location problems is that they often happen
in a competitive setting, in which two ormore players contend for the best locations. A change
to competitive, multi-player versions can have a serious impact on the algorithmic difficulty
of optimization problems: for example, the classic Travelling Salesman Problem is NP-hard,
while the competitive two-player variant is even PSPACE-complete (Fekete et al., 2004).

In this paper, we study the two-player One-Round Voronoi Game in which first player
White and then player Black each place n points at once in a rectangle R ⊂ R

2 of normalized
dimensions with height 1 and width ρ ≥ 1. Each player scores the area consisting of the
points that are closer to one of their facilities than to any one of their opponent’s; see Fig. 1
for an example. The goal of each player is to win by obtaining the higher score. If both
players obtain the same score, the game ends in a draw. We note that we are not interested
in the margin by which a player wins in the Voronoi game. This is a crucial difference to the
classical leader-follower problem introduced by von Stackelberg, where each player seeks
to maximize their score (von Stackelberg, 1952; Simaan & Cruz, 1973). We assume that
both players are fully aware of these rules, i.e., they know the parameter n and each other’s
objective before the start of the game.

Exploiting the geometric nature of Voronoi cells, we completely resolve this classic prob-
lem of competitive location theory for the previously open case of Manhattan distances.
Despite the fact that they are frequently studied in location theory and applications (e.g., see
Kolen, 1981; Kusakari & Nishizeki, 1997; Wesolowsky & Love, 1971), Manhattan distances
have received limited attention in a setting in which facilities compete for customers. While
for Euclidean distances a bisector (the set of points that are of equal distance from two facil-
ities) is the boundary of the open Voronoi cells and thus has area zero, Manhattan bisectors
may have positive area, as shown in Fig. 2. This results in the fact that both players may score
strictly less than ρ/2, with the remaining area belonging to neutral zones. A key role for
analysing the game and characterizing winning strategies for the players falls to identifying
balanced configurations. The latter describe a set of points placed in R such that all half cells
of the respective Voronoi cells restricted to R have equal area. A half cell is hereby the part
of the Voronoi cell to the left or right of the vertical line through the point generating the cell

(a) (b) (c)

Fig. 1 Example of a One-Round Manhattan Voronoi Game
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(a) (b) (c)

Fig. 2 Illustration of the three types of bisector

or symmetrically above or below the horizontal line. In a balanced configuration, all Voronoi
cells have equal area, yielding a fair apportionment of the rectangle’s area among the cells,
and each cell generator minimizes the average distance to all points of the cell, meaning their
position is locally optimal within their cell.
Our main results are twofold.

– We show that for location problems with Manhattan distances in the plane, the properties
of fairness and local optimality lead to a geometric condition called balancedness. While
the analogue concept for Euclidean distances in a rectangle implies grid configurations
(Fekete &Meijer, 2005), we demonstrate that there are balanced configurations of much
greater variety.

– We give a full characterization of the One-Round Manhattan Voronoi Game where each
player places n points in a rectangle R with aspect ratio ρ ≥ 1. We show that White has
a winning strategy if and only if ρ ≥ n; for all other cases, Black has a winning strategy.

2 Related work

Our paper relates to previous work in the field of competitive facility location in general and
the Voronoi game in particular, both in a geometric setting.

2.1 Competitive facility location

Scientificwork on facility location can be traced back to the turn of the twentieth century, with
the groundbreaking works of Launhardt (1900) and Weber (1929). Given two raw material
suppliers and a single market, they studied the problem of determining an optimal location
for a new plant. See Wesolowsky (1993) for more details on the history of facility location.
All of these early works dealt with continuous location problems, i.e., the new facilities can
be located anywhere in the plane. Location problems in other domains started to evolve in
the 1960s, most notably on networks (Hakimi, 1964) and discrete location problems (Manne,
1964). While the latter now dominate the literature, planar location problems have received
considerable and ongoing attention in the literature since those early works; see the books of
Drezner (1995), Drezner and Hamacher (2002), and Laporte et al. (2019).

The first discussion of competitive facility location problems is due to Hotelling (1929).
He considered the case of a bounded linear market with uniform demand and two players
who each locate one facility from where a homogeneous commodity with no production
cost is sold at a fixed price of their own choosing. Assuming customers incur transportation
costs that are linear in the distance travelled, it is presumed that customers patronize the
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facility from which they can purchase one unit of the commodity at the lowest price. For this
set-up, Hotelling claimed that there is an equilibrium solution for which both facilities are
located right next to each other in the centre of the line segment, with each player capturing
half of the demand. This was later disputed by d’Aspremont et al. (1979), who proved that
no equilibrium pricing solution exists when players co-locate. However, these issues stem
from the inclusion of the pricing problem within the underlying modelling assumptions;
the principle of minimum differentiation, commonly referred to as Hotelling’s law, holds
within the pure location model. Those interested in a further discussion are encouraged to
read Aydinonat and Köksal (2019) and references therein. Since Hotelling’s seminal work,
numerous other competitive location models have appeared in the literature; we refer the
interested reader to Dasci (2011) and Eiselt et al. (2019).

Drezner (1982) considers a given finite set of customer points in the plane, each with
their own demand. First the leader (player 1) and then the follower (player 2) place a fixed
number of facilities. The market share of a facility is then given by the total demand of all
customers who are closer to this facility than to any of the other facilities; the leader’s facility
is considered to be closer in case of equal distance. Given the facility locations W of the
leader, the follower wants to place his r facilities so as to maximize his total market share.
The leader, in turn, wants to place her p facilities such that her market share is maximal after
the follower places his facilities optimally. Hakimi (1983) called the former the follower’s
or (r |W )-medianoid problem, and the latter the leader’s or (r |p)-centroid problem. For
Euclidean distances, he derived exact polynomial-time algorithms for the (r |1)-centroid
and the (1|W )-medianoid problem. Not much is known about the general version of these
problems. Bhadury et al. (2003) present a heuristic for the (r |p)-centroid problem, in which
the two players alternate in solving a medianoid problem. For the (r |W )-medianoid problem,
the authors propose two heuristics: one based on incrementally solving the (1|W )-medianoid
problem and the other based on placing the follower’s facilities right next to the leader’s
sites. For the Manhattan metric, Infante-Macias and Muñoz-Perez (1995) derive an exact
enumeration algorithm to solve the (r |W )-medianoid problem—albeit in time exponential
in r .

Less is known for geometric location problems for which demand is not discrete, but
uniformly distributed across the plane. In this setting, Averbakh et al. (2015) derive an exact
polynomial-time algorithm for the (1|W )-medianoid problem with Manhattan metric (as
well as for several non-competitive problems), finding an optimal location for an additional
facility in a convex region with n existing facilities. For Euclidean metric, a convex compact
market area, and two players, each placing one facility, Aoyagi and Okabe (1993) prove that
an equilibrium configuration exists if and only if themarket area is point-wise symmetric with
respect to some point in the area; this point is then the optimal location for both facilities.
This is the two-dimensional analogon to Hotelling’s observation for a linear market. For
more than two facilities, however, the equilibrium configurations are markedly different. For
an unbounded plane and an infinite number of facilities (or competing players), Okabe and
Aoyagi (1991) show that the equilibrium configuration forms a regular hexagonal pattern.
For a square market and a finite number of firms, Okabe and Suzuki (1987) show that the
equilibrium state exhibits a honeycomb pattern.

The problem of finding a fair apportionment of the rectangle’s area, i.e., all Voronoi cells
have equal area, has been addressed in Baron et al. (2007) for Euclidean distances. They
consider a unit square with uniformly distributed demand and assume that each demand
point is served by the closest facility, provided this facility is within a predefined radius of
the demand point. The goal is then to locate n facilities in the square such that all facilities face
an equal demand load, the latter being computed as the area served exclusively by the facility.
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The authors propose an iterative procedure utilizingVoronoi diagrams to approximately solve
the problem. Drezner and Suzuki (2009) present an improved gradient search approximation
algorithm for this problem as well as for two new problems. We point out that configurations
obtained by those problems are fair, but not necessarily locally optimal (and therefore not
necessarily balanced).

For urban location problems, the Manhattan metric provides a much better geometric
approximation of the actual travel distances than the Euclidean metric, even if urban road
networks are not all grid-shaped. Moreover, many applications arise from multi-dimensional
data sets with heterogeneous dimensions, where theManhattanmetric is a compelling choice.
While rectilinear problems have been frequently studied in location theory and applica-
tions (e.g., see Kolen, 1981; Kusakari & Nishizeki, 1997; Wesolowsky & Love, 1971), they
have received limited attention in a setting in which facilities compete for customers. For
non-competitive problems with Manhattan distances, Fekete et al. (2005) provide several
algorithmic results, including an NP-hardness proof for the k-median problem of minimiz-
ing the average distance. Along similar lines, Bender et al. (2004) describe the shape of a
region with a desired area that minimizes the normalized Manhattan distance; this charac-
terization is based on a differential equation for which no closed-form solution is known,
highlighting the surprising depth of location problems with Manhattan distances.

2.2 TheVoronoi Game

An important scenario for competitive facility location is the Voronoi Game, first introduced
by Ahn et al. (2004), in which two players, White and Black, take turns placing one facility
at a time in a given playing arena. In the end, each player scores the area consisting of the
points that are strictly closer to one of their facilities than to any one of the opponent’s, i.e.,
the total area of their open Voronoi cells. The goal for each player is to obtain the higher
score. As Teramoto et al. (2006) showed, the problem is PSPACE-complete, even in a discrete
graph setting. There is a considerable amount of other work on variants of the Voronoi game.
Bandyapadhyay et al. (2015) consider the one-round game in trees, providing a polynomial-
time algorithm for the second player. As Fekete andMeijer (2005) have shown, the problem is
NP-hard for polygons with holes, corresponding to a planar graphwith cycles. For a spectrum
of other variants and results, see Banik et al. (2013), Dürr and Thang (2007), Gerbner et al.
(2014), and Kiyomi et al. (2011).

Special attention has been paid to the One-Round Voronoi Game, in which each player
places their n facilities at once, starting withWhite; see Fig. 1 for an example withManhattan
distances and a rectangular arena. During the game, co-location of points is forbidden (or
does not occur in optimal play when breaking ties of equal distances in favour of white).

This Voronoi game—which can also be considered a special case of the (n|n)-centroid
problem—was first studied inCheong et al. (2004). They showed that for Euclidean distances,
the first player, White, can always win when the playing arena consists of a segment, while
the second player, Black, has a winning strategy if the arena is a square and n is sufficiently
large. Fekete and Meijer (2005) refined this by showing that in a rectangle of dimensions
1× ρ with ρ ≥ 1, Black has a winning strategy for n ≥ 3 and ρ < n/

√
2, and for n = 2 and

ρ < 2/
√
3; White wins in all other cases.

Consideration of Manhattan distances leads to a number of important differences. While
for Euclidean distances a bisector (the set of points that are of equal distance from two
facilities) is the boundary of the open Voronoi cells, so its area is zero, Manhattan bisectors
mayhavepositive area, as shown inFig. 2. Thus, owing to the different nature of theManhattan
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metric, both players may dominate strictly less than ρ/2, the remaining area belonging to
neutral zones.

3 Preliminaries

Let P denote a finite set of points in a rectangle R. For two points p1 = (x1, y1) and
p2 = (x2, y2), we define �x (p1, p2) := |x1 − x2| and �y(p1, p2) := |y1 − y2|. Then their
Manhattan distance is given by dM (p1, p2) := �x (p1, p2) + �y(p1, p2).

Defining D(p1, p2) := {p ∈ R | dM (p, p1) < dM (p, p2)} as a set of points that are
closer to p1 than to p2, the Voronoi cell of p in P is

V P (p) :=
⋂

q∈P\{p}
D(p, q).

The Manhattan Voronoi diagram V(P) is the complement of the union of all Voronoi cells
of P . In contrast to the Euclidean case, for which the Voronoi diagram has measure zero and
every Voronoi cell is convex:

– The Manhattan Voronoi diagram may contain neutral zones of positive measure, and
– Manhattan Voronoi cells need not be convex, but they are star-shaped.

Both of these properties can easily be observed when analysing the bisectors. The bisector
of p1 and p2 is the set of all points that are of equal distance from p1 and p2, i.e.,

B(p1, p2) := {q ∈ R | dM (q, p1) = dM (q, p2)}.

There are three types of bisectors, as shown in Fig. 2. Typically, a bisector consists of three
one-dimensional parts, namely two (vertical or horizontal) segments that are connected by a
segment of slope ±1; see Fig. 2a. If �x (p1, p2) = 0 or �y(p1, p2) = 0, then the diagonal
segment shrinks to a point and the bisector consists of a (vertical or horizontal) segment; see
Fig. 2b. However, when�x (p1, p2) = �y(p1, p2), then the bisector B(p1, p2) contains two
regions; see Fig. 2c. We call a bisector of this type degenerate. Further, a non-degenerate
bisector is vertical (horizontal) if it contains vertical (horizontal) segments.

For p = (xp, yp) ∈ P , both the vertical line �v(p) and the horizontal line �h(p) through p
split the Voronoi cell V P (p) into two pieces, which we call half cells. We denote the set of
all half cells of P obtained by vertical lines by H| and those obtained by horizontal lines by
H−. Furthermore, we define H := H| ∪ H− as the set of all half cells of P . Applying both
�v(p) and �h(p) to p yields a subdivision into four quadrants, which we denote by Qi (p),
i ∈ {1, . . . , 4}; see Fig. 3a. Moreover, Ci (p) := V P (p) ∩ Qi (p) is called the i th quarter
cell of p. We also consider the eight regions of every p ∈ P obtained by cutting R along the
lines �v(p), �h(p), and the two diagonal lines of slope ±1 through p. We refer to each such
(open) region as an octant of p denoted by Oi (p) for i ∈ {1, . . . , 8} (see Fig. 3b); a closed
octant is denoted by Oi (p). The area of a subset S of R is denoted by area(S).

For a point p ∈ P , we call the four horizontal and vertical rays rooted at p, contained
within V P (p), the four arms of V P (p) (or of p). Two arms are neighbouring if they appear
consecutively in the cyclic order; otherwise they are opposite. Moreover, we say an arm is
a boundary arm if its end point touches the boundary of R; otherwise it is inner. For later
reference, we note the following.
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(a) (b) (c)

Fig. 3 Illustration of crucial definitions

Observation 1 The following properties hold:

(i) If the bisector B(p, q) is non-degenerate and vertical (horizontal), then it does not inter-
sect both the left and right (top and bottom) half cells of p.

(ii) For every i and every q1, q2 ∈ Oi (p), the bisectors B(p, q1) and B(p, q2) have the same
type (vertical/horizontal).

(iii) A Voronoi cell is contained in the axis-aligned rectangle spanned by its arms.

Proof Properties (i) and (ii) follow immediately from the shape of the bisectors. Property (ii)
implies that aManhattan Voronoi cell consists of four (x- and y-) monotone paths connecting
the tips of its arms. Consequently, each Voronoi cell is contained in the axis-aligned rectangle
spanned by its arms and, thus, property (iii) holds. �	

4 Balanced point sets

In this section, we discuss properties of balanced point sets in theManhattanmetric (Sect. 4.1)
and present families of non-grid balanced point sets showing that they are considerably richer
in the Manhattan metric than in the Euclidean case (Sects. 4.2 and 4.3).

4.1 Properties and characterization

In a competitive setting for facility location, it is a natural fairness property to allocate the
same amount of influence to each facility. A second local optimality property arises from
choosing an efficient location for a facility within its individual Voronoi cell, i.e, a location
that minimizes the average distance to all points. Combining both properties, we say a point
set P in a rectangle R is balanced if the following two conditions are satisfied:

Fairness for all p1, p2 ∈ P , V P (p1) and V P (p2) have the same area.
Local optimality for all p ∈ P , p minimizes the average distance to the points in V P (p).

For Manhattan distances, there is a simple geometric characterization for the local opti-
mality depending on the area of the half and quarter cells; see Fig. 3a.

Lemma 2 A point p minimizes the average Manhattan distance to the points in V P (p) if and
only if either one of the following properties holds:

(i) p is a Manhattan median of V P (p): all four half cells of V P (p) have the same area.
(ii) p satisfies the quarter-cell property: diagonally opposite quarter cells of V P (p) have the

same area.
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Proof For an illustration we refer to Fig. 3a. Let ai denote the area of the quarter cell Ci (p).
First we consider a point p = (xp, yp) that minimizes the average Manhattan distance to all
points in V P (p). Suppose the area of the top half cell exceeds the area of the bottom half cell,
i.e.,a1+a2 > a3+a4. Then, replacing p by p′ = (xp, yp+ε) for an appropriately small ε > 0
reduces the average y-distance and leaves the average x-distance unchanged. This contradicts
the optimality of p. Similarly, we can exclude a1 + a2 < a3 + a4, so a1 + a2 = a3 + a4,
making p a y-median of V P (p). Analogously, we conclude that a1 + a4 = a2 + a3, making
p an x-median of V P (p). This shows that all half cells of V P (p) have the same area, i.e.,
property (i) holds. Moreover, note that the half-cell condition uniquely defines both xp and
yp , so (i) is both necessary and sufficient.

We now show that (i) is equivalent to (ii). By adding the equations

a1 + a2 = a3 + a4

a1 + a4 = a2 + a3

it follows that 2a1 + a2 + a4 = 2a3 + a2 + a4 ⇐⇒ a1 = a3. By subtracting the equations,
we get a2 − a4 = a4 − a2 ⇐⇒ a2 = a4. Hence, the quarter-cell property is fulfilled.

Conversely, a1 = a3 and a2 = a4 imply a1 + a2 = a1 + a4 = a3 + a4 = a2 + a3. �	
Lemma 2 immediately implies the following characterization.

Corollary 3 A point set P in a rectangle R is balanced if and only if all half cells of P have
the same area.

4.2 Atomic non-grid configurations

A simple family of balanced sets arise from regular, a×b grids; see Fig. 3c. In stark contrast
to the Euclidean case, there exist a large variety of other balanced sets: Fig. 4 depicts balanced
point sets for which no cell is a rectangle.

Fig. 4 Non-grid examples of balanced point sets of cardinality 2, 3, 4, and 5
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Lemma 4 The configurationsR2,ρ,R3,R4,R5, depicted in Fig. 4, are balanced. Moreover,
R2,ρ, ρ ∈ [1, 3/2], and R3 are the only balanced non-grid point sets with two and three
points, respectively.

Simple calculations show that the configurations are balanced. In order to prove the unique-
ness, we make use of Lemma 2. While the analysis for n = 2 can be easily conducted
manually, for n = 3 the relative point positions lead to about 20 cases of structurally differ-
ent Voronoi diagrams, which were checked using MATLAB®. In the following, we provide
proof details. Claim 5 in Sect. 4.2.1 establishes uniqueness for n = 2; Claim 6 in Sect. 4.2.2
shows uniqueness for n = 3.

4.2.1 Balanced sets with two points

In the following, we establish uniqueness for n = 2.

Claim 5 For every (1×ρ) rectangle with 1 ≤ ρ ≤ 3/2, there exists (up to reflection) a unique
point set P with |P| = 2 such that P is not a grid and fulfils (P1). The resulting configuration
is R2,ρ as illustrated in Fig. 4.

Moreover, if ρ > 3/2, there exists no such point set.

Proof Let P be a point set in an (h × w) rectangle R consisting of two points p1 = (x1, y1)
and p2 = (x2, y2) which is different from a grid and fulfils (P1). Without loss of generality,
we assume that p2 lies in the top right quadrant of p1 as in Fig. 5. We distinguish two cases
depending on whether or not the vertical and horizontal distances between p1 and p2 are
equal.

Firstly, we consider the case that �x (p1, p2) = �y(p1, p2) =: d . For an illustration,
see Fig. 5a. By (P1) and Lemma 2, diagonally opposite quarter cells have the same area.
Consequently, the second and fourth rectangular quarter cells of p1 and p2 imply that dx1 =
dy1 ⇐⇒ x1 = y1, and d(w − x2) = d(h − y2) ⇐⇒ w − x2 = h − y2. Hence,
w = x1 + d + (w − x2) = y1 + d + (h − y2) = h so it follows that ρ = 1. This yieldsR2,1

as shown in Fig. 4.
Secondly, we consider the case that�x (p1, p2) �= �y(p1, p2).Without loss of generality,

we assume that �x (p1, p2) < �y(p1, p2) as illustrated in Fig. 5b. Thus, B(p1, p2) is
horizontal. By (P1), the bottom half cell of p1 and the top half cell of p2 have an area of
1/4wh each. Because their width is w, it follows that y1 = 1/4h and y2 = 3/4h. By symmetry
of the bisector, it follows that the height of the left half cell of p1 equals the height of the

(a) (b)

Fig. 5 Illustration of the Proof of Claim 5
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right half cell of p2. Because the areas of these half cells are equal, their respective widths
must also agree, i.e., x2 = w − x1. Moreover, the left half cell of p1 has an area of

x1(h/4 + 1/2(h/2 + (x2 − x1)) = x1/2(h + x2 − x1) = x1/2(h + w − 2x1)
!= wh/4

⇐⇒ x1 ∈ {h/2, w/2} .

If x1 = w/2, P is a grid. For x1 = h/2, we obtain the configurationR2,ρ depicted in Fig. 4.
Note that it is necessary that h/2 < w − h/2 ⇐⇒ h < w and (y2 − y1) ≥ (x2 − x1) ⇐⇒
w ≤ 3/2h. This completes the proof of the claim. �	

4.2.2 Balanced sets with three points

In the following, we establish uniqueness for n = 3.

Claim 6 Let P be a point set in a rectangle R such that |P| = 3, P is not a grid, and P
satisfies (P1). Then ρ(R) = 49/36 and (R, P) is the configuration R3.

Proof We denote the height and width of R by h and w respectively, and distinguish four
cases depending on the number of degenerate bisectors of the points in P . We start with the
case of no degenerate bisectors.

No degenerate bisectors Firstly, let us assume that P contains no degenerate bisector. There-
fore, every corner of R is contained in one of the three cells and the cell of one point
p1 = (x1, y1) contains two corners of R; without loss of generality, we assume that p1
contains the two top corners. Then, the top half cell of p1 has width w and an area of
1/6wh by property (P1). Consequently, y1 = 5/6 h. Moreover, the other two points lie in
O6(p1) ∪ O7(p1); otherwise the cell of p1 would not contain both top corners.

Furthermore, at least one other point p2 = (x2, y2) contains a corner of R in its cell,
without loss of generality the bottom left corner of R. This implies that the third point
p3 lies in

⋃
i∈{1,2,3,8} Oi (p2). We distinguish the cases x1 > x2 and x1 ≤ x2 which are

illustrated in Fig. 6a and b respectively. Moreover, the octants of p1 and p2 as well as
the so-called partition line completing the diamond around the rightmost breakpoint of the
bisector between B(p1, p2) (the dashed line in Fig. 6a; see Averbakh et al. (2015) for more
details) subdivide the possible locations of the third point into regions which are illustrated
in Fig. 6. As a result, for every position of p3 within a region, the resulting Voronoi diagram
is structurally identical; see also Fig. 7. Note also that all regions with the same label result
in fully symmetric configurations.

(a) (b)

Fig. 6 Illustration of the cases in the Proof of Claim 6
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(a)

(d)

(g)

(i) (j)

(e) (f)

(h)

(b) (c)

Fig. 7 The ten combinatorially different Voronoi diagrams with no degenerate bisector dependent on the
relative position of the third point p3

For each configuration, we can describe the areas of the quarter cells dependent on the
three point coordinates. Using (P2) and Lemma 2, we obtain a number of equations. Carrying
out the involved calculations by hand is rather tedious, so wemade use ofMATLAB®. It turns
out that there exists a solution if and only if ρ = 49/36, and that R3 is the unique solution.

In the following, we present all combinatorially different Voronoi diagrams of three
points containing one, two, and three degenerate bisectors, respectively. Exploiting (P2)
and Lemma 2, we then obtain a system of equations for each diagram dependent on the
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points’ coordinates. Using MATLAB®, we guarantee that none of the diagrams supports a
balanced set.

One degenerate bisector Secondly, we consider the case that P = {p1, p2, p3} contains
exactly one degenerate bisector. We may assume without loss of generality that p1 has
no degenerate bisector and that �y(p1, p2) exceeds all of �x (p1, p2), �x (p1, p3), and
�y(p1, p3); otherwise we exchange the labels of p2 and p3 or rotate the configuration.
Furthermore, we may assume that p2 lies below p1 and does not lie to the right of p1; see
Fig. 8a.

By assumption, p2 and p3 share a degenerate bisector. Therefore p3 lies on one of the
diagonal lines through p2. Moreover, p3 lies above p2 and not too far to the left and right of
p1, because of our assumption that �y(p1, p2) > �x (p1, p3),�y(p1, p3). As before, the
octants of p1 and p2, as well as the partition line induced by the leftmost breakpoint of the
bisector B(p1, p2) (represented by the dashed segment in Fig. 8a that completes the diamond
about the leftmost breakpoint ofB(p1, p2)), subdivide the location of p3 into seven segments
which are illustrated in Fig. 8a. Placing p3 on different segments results in combinatorially
different Voronoi diagrams which are depicted in Fig. 8.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 8 The seven segments producing Voronoi diagrams with one degenerate bisector
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(a) (b)

Fig. 9 Voronoi diagrams of three points containing two degenerate bisectors

Two degenerate bisectorsWithout loss of generality, wemay assume that p3 has a degenerate
bisector with both p1 and p2. Since B(p1, p2) is non-degenerate, p1 and p2 lie on different
diagonals and we may assume without loss of generality that p3 is the rightmost point of
P and �x (p1, p3) ≥ �x (p1, p2). Consequently, we obtain a configuration as depicted in
Fig. 9a.

Three degenerate bisectors If all three bisectors are degenerate, then the three points lie on a
common diagonal line: consider two points on a line of slope+1. Since the diagonals through
the two points of slope −1 are parallel, the third point must lie on the diagonal of slope +1;
see Fig. 9b. Without loss of generality (allowing for reflection and rotation and renaming the
points) we may assume the illustrated labelling.

In showing that the resulting systems of equations have no solutions, we prove thatR3 is
the unique balanced non-grid configuration with three points. �	

4.3 An infinite family of balanced configurations

Observe thatR2,ρ,R3,R4, andR5 are atomic, i.e., they cannot be decomposed into subcon-
figurations whose union of Voronoi cells is a rectangle. We show how they serve as building
blocks to induce large families of balanced configurations.

Theorem 7 For every integer n ≥ 2, there exists a rectangle R and a set P of n points such
that P is balanced and no Voronoi cell is a rectangle.

Proof For every n = 3k+5�with k, � ∈ {0, 1, . . .}, we construct a configuration by combin-
ing k blocks of R3 and � blocks of R5, as illustrated in Fig. 10a. This yields configurations
with n points in which n = 3k for k ≥ 1, n = 3k + 2 = 3(k − 1) + 5 for k ≥ 1, or
n = 3k + 1 = 3(k − 3) + 10 for k ≥ 3, so we obtain configurations for all n ≥ 8 and
n = 3, 5, 6.

Balanced configurations with n = 2k, k ∈ N, points are obtained by combining k blocks
of R2 as shown in Fig. 10b; alternatively, for the missing cases of n = 2, 4, recall the
configurations in Fig. 4.

Lastly, Fig. 10c depicts a balanced configuration for the case of n = 3k + 1 points by
combining k blocks of R4 with partial overlap. In particular, this contains the last missing
case of n = 7 points. Note that, in contrast to the previous configurations, these configurations
contain degenerate bisectors and neutral regions. (We do not know of examples for n = 7
without degenerate bisectors.) �	
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(a)

(b) (c)

Fig. 10 Illustration of the Proof of Theorem 7

While none of the configurations in Theorem 7 contains a rectangular Voronoi cell, they
containmany immediate repetitions of the same atomic components. In fact, there are arbitrar-
ily large non-repetitive balanced configurations without directly adjacent congruent atomic
subconfigurations.

Theorem 8 There is an injection between the family of 0–1 strings and a family of non-
repetitive balanced configurations without any rectangular Voronoi cells.

Proof For a given 0–1 string S of length s, we use s pairs of blocks R3 and its reflected
versionR′

3 to build a sequence of 2s blocks. As shown in Fig. 11, we insert a blockR5 after
the i th pair if S has a 1 in position i ; otherwise the block sequence remains. �	

5 The One-RoundManhattan Voronoi Game

An instance of the One-Round Manhattan Voronoi Game consists of a rectangle R and the
number n of points to be played by each player. Without loss of generality, R has height 1 and
width ρ ≥ 1. White chooses a setW of n white points in R, followed by Black selecting a set
B of n black points, withW ∩B = ∅. Each player scores the area consisting of the points that
are closer to one of their facilities than to any one of their opponent’s. Hence, if two points

Fig. 11 Illustration of the Proof of Theorem 8. The configuration represents the string 01
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of one player share a degenerate bisector, the possible neutral regions are assigned to this
player. Therefore, by replacing each degenerate bisector between points of one player with a
(w.l.o.g. horizontal) non-degenerate bisector, each player scores the area of its (horizontally
enlarged) Manhattan Voronoi cells. With slight abuse of notation, we denote the resulting
(horizontally enlarged) Voronoi cells of coloured point sets by VW∪B(p) in the same way as
before. The player with the higher score wins, or the game ends in a tie.

For an instance (R, n) and a setW of n white points, a set B of n black points is a winning
set for Black if Black wins the game by playing B; likewise, B is a tie set if the game ends in
a tie. For a given setW of white points, a black point b is a winning point if area(VW∪{b}(b))
exceeds 1/2n · area(R). A white point set W is unbeatable if it does not admit a winning set
for Black, and W is a winning set for White if there exists neither a tie nor a winning set for
Black. If Black or White can always identify a winning set, we say that they have a winning
strategy.

Despite the possible existence of degenerate bisectors for Manhattan distances, we show
that Black has a winning strategy if and only if Black has a winning point. We make use of
the following two lemmas.

Lemma 9 Consider a rectangle R with a set W of white points. Then for every ε > 0 and
every half cell H of W, Black can place a point b such that the area of V W∪{b}(b) ∩ H is at
least (area(H) − ε).

Proof Without loss of generality, we consider the left half cell H of some w ∈ W as in
Fig. 12.

By placing b slightly to the left of w, the bisector B(b, w) is a vertical segment between
b and w. Therefore VW∪{b}(b) contains all points of H to the left of B(b, w). The area
difference between VW∪{b}(b) ∩ H and H is bounded above by the product of the total
length of the top and bottom arm of H and (half) the distance of b and w. Consequently, by
placing b close enough, the difference drops below any fixed ε > 0. �	

In fact, White must play a balanced set; otherwise Black can win.

Lemma 10 Let W be a set of n white points in a rectangle R. If any half cell of W has an
area different from 1/2n · area(R), then Black has a winning strategy.

Proof If not all half cells of W have the same area, then there exists a half cell H with
area(H) > 1/2n · area(R). We assume without loss of generality that H is a half cell of H|;
otherwise we considerH−. Denoting the n largest half cells ofH| by H1, . . . , Hn , it follows
that there exists δ > 0 such that

∑n
i=1 Hi = 1/2 · area(R) + δ.

(a) (b)

Fig. 12 Illustration of the Proof of Lemma 9
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By Lemma 9, Black can place a point bi to capture the area of Hi up to any ε > 0. More
precisely, by choosing ε < δ/n, Lemma 9 guarantees that there exists a placement of n black
points b1, . . . , bn such that

n∑

i=1

area(VW∪B(bi ) ∩ Hi ) ≥
n∑

i=1

(area(Hi ) − ε) = 1

2
area(R) + δ − nε >

1

2
area(R).

Consequently, Black has a winning strategy by placing these points. �	
These insights enable us to prove the main result of this section.

Theorem 11 Black has a winning strategy for a set W of n white points in a rectangle R if
and only if Black has a winning point.

Proof Let B be a winning set for Black. If Black’s winning score with B exceeds 1/2 ·area(R)

then, by the pigeonhole principle, there exists b ∈ B such that its cell VW∪B(b) has an area
exceeding 1/2n · area(R). Since area(VW∪{b}(b)) ≥ area(VW∪B(b)), b is a winning point.
Otherwise Black wins by playing B but scores at most half the area of R. We show that there
exists a winning set for Black which achieves a higher score, enabling us to use the argument
presented above given any winning set.

Claim 12 Let B be a winning set for Black such that Black scores at most 1/2n ·area(R). Then
there is also a winning set B ′ for Black such that Black’s score exceeds 1/2n · area(R).

Proof If Blackwins with B, then Black’s score exceedsWhite’s score.Moreover, since Black
scores at most 1/2n ·area(R), there exist neutral zones and degenerate bisectors between black
and white points.

Consider a white pointw and a black point bwith�x (w, b) = �y(w, b). Black can avoid
this degeneracy by choosing a slightly perturbed location. By moving on either side of the
diagonal line through w and b, Black can win either of the neutral regions’ areas up to any
ε > 0. If the neutral regions are of different sizes, then Black can ensure a net gain. If the
areas are the same, then Black has a net loss of ε > 0. However, since Black wins, they
can allow for some net loss ε > 0. This argument applies even if b contributes to more than
one degeneracy by consideration of the sum of the losses and gains in the resulting cells.
Therefore b can avoid degeneracy by an arbitrarily small net loss. The repeated application
of these perturbations for all of Black’s points shows that Black has a winning set without
forcing neutral regions. Consequently, Black’s score exceeds 1/2n · area(R). �	

Now suppose that there exists a winning point b, i.e., area(VW∪{b}(b)) = 1/2n ·area(R)+δ

for some δ > 0. If n = 1, Black clearly wins with b. If n ≥ 2, Black places n − 1 further
black points: consider wi ∈ W . By Lemma 10, we may assume that each half cell of W has
area 1/2n ·area(R). By Observation 1(i),wi has a half cell Hi that is disjoint from VW∪{b}(b).
By Lemma 9, Black can place a point bi to capture the area of Hi up to every ε > 0.
Choosing ε < δ/n−1 and placing one black point for every n − 1 distinct white point, with
Lemma 9, Black achieves a score of

∑
p∈B area(VW∪B(p)) = (1/2n · area(R) + δ) + (n −

1) (1/2n · area(R) − ε) > 1/2 · area(R). Consequently, Black has a winning strategy. �	

6 Properties of unbeatable sets

In this section, we identify necessary properties of unbeatablewhite sets, for which the game
ends in a tie or White wins. We call a cell a bridge if it has two opposite boundary arms.
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Theorem 13 If W is an unbeatable white point set in a rectangle R, then it fulfils the following
properties:

(P1) The area of every half cell of W is 1/2n · area(R).
(P2) The arms of a non-bridge cell are equally long; the opposite boundary arms of a bridge

cell are of equal length and, if |W | > 1, they are shortest among all arms.

Proof Because W is unbeatable, property (P1) follows immediately from Lemma 10. More-
over, in case |W | = 1, (P1) implies that opposite arms of the unique (bridge) cell have equal
length, i.e., (P2) holds for |W | = 1.

It remains to prove property (P2) for |W | ≥ 2. By Theorem 11, it suffices to identify a
black winning point if (P2) is violated. We start with the following fact.

Claim 14 Let P be a point set containing p = (0, 0) and let P ′ be obtained from P by adding
p′ = (δ, δ) where δ > 0 such that p′ lies within V P (p). Restricted to Q := Q1(p′), the cell
V P ′

(p′) contains all points that are obtained when the boundary of V P (p) ∩ Q is shifted
upwards (rightwards) by δ (if it does not intersect the boundary of R).

Proof To prove this claim, it suffices to consider the individual bisectors of p′ and any other
point q ∈ P ′. Note that all points shaping the cell of p′ in quadrant Q are contained in an
octant Oi (p′) with i ∈ {1, 2, 3, 8}. We show that vertical bisectors move rightwards and
horizontal bisectors move upwards.

For a point q = (x, y) in O2(p′), the part of the bisector B(q, p′) ∩ Q can be obtained
fromB(q, p)∩Q by shifting it upwards by an amount of δ; see also Fig. 13a. In particular, the
initial height of the diagonal segment remains unchanged because its vertical distance to q is
1/2(�y(q, p′)−�x (q, p′)) = 1/2((y−δ)−(x−δ)) = 1/2(y−x) = 1/2(�y(q, p)−�x (q, p)).
Note also that this holds for degenerate bisectors, because only their diagonal segment is
contained in Q.

For a point q = (x, y) in O3(p′) ∩ O2(p), the vertical distance of q to the horizontal
segment of B(q, p) within Q is 1/2(y − x) + x = 1/2(y + x) while vertical distance of q
to the horizontal segment of B(q, p′) is 1/2((y − δ) − (δ − x)) = 1/2(y + x) − δ; see also
Fig. 13b.

For a point q = (x, y) in O3(p′) ∩ O3(p), the vertical distance of q to the horizontal
segment of the bisector within Q is 1/2((y − δ) − (|x | + δ)) = 1/2(y − |x |) − δ for p′ and
1/2(y − |x |) for p; see also Fig. 13c.

Note that for q ∈ O2(p′) ∪ O3(p′), the bisector B(q, p) is horizontal. Consequently,
all shifted segments are horizontal or diagonal. Shifting them rightwards yields a region
contained in V P ′

(p′). By symmetry, all (vertical) bisectors of points within O1(p′)∪O8(p′)
are shifted rightwards. This implies the claim. �	

(a) (b) (c)

Fig. 13 Illustration of Claim 14. If q = (x, y) lies in O2(p
′)∪O3(p

′), the part of the bisectorB(q, p′)within
the first quadrant Q of p′ coincides with B(q, p) ∩ Q shifted upwards by δ
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We use our insight of Claim 14 to show property (P2) in two steps.

Claim 15 Letw ∈ W be a point such that an arm A1 of VW (w) is shorter than a neighbouring
arm A2 and the arm A3 opposite to A1 is inner. Then Black has a winning point.

Proof Without loss of generality, we consider the case that A1 is the bottom arm of VW (w),
A2 its right arm, and w = (0, 0); see Fig. 14b. We denote the length of Ai by |Ai |. Now
we consider Black placing a point b within VW (w) at (δ, δ) for some δ > 0. To ensure that
the cell of b contains almost all of the right half cell of VW (w), we infinitesimally perturb
b rightwards; for ease of notation in the following analysis, we omit the corresponding
infinitesimal terms and assume that the bisector of b and w is vertical. We compare the area
of V (b) := VW∪{b}(b)with the right half cell H ofw. In particular, we show that there exists
δ > 0 such that the area of V (b) exceeds the area of H . Because area(H) = 1/2n · area(R)

by (P1), b is a winning point.
Clearly, all points in H to the right of the (vertical) bisector of b and w are closer to b.

Consequently, when compared to H , the loss of V (b) is upper bounded by δ|A1|+ 1/2δ2; see
also Fig. 14b. ByClaim 14 and the fact that A3 is inner, V (b)∩Q1(p) gains at least δ(|A2|−δ)

when compared to H ∩ Q1(p). When additionally guaranteeing δ < 2/3(|A2| − |A1|), the
gain exceeds the loss and thus b is a winning point. �	

For a cell with two neighbouring inner arms, Claim 15 implies that all its arms have equal
length. Consequently, it only remains to prove (P2) for bridges. With arguments similar to
those proving Claim 15, we obtain the following result. For an illustration, see Fig. 14c.

Claim 16 If there exists a pointw ∈ W such that two opposite arms of VW (w) have different
lengths and a third arm is inner, then Black has a winning point.

Proof Without loss of generality, we consider the case that A1 is the bottom arm, A1 is shorter
than the top arm A3, and the right arm A2 is inner. Analogously to the Proof of Claim 15,
Black places a point b at (δ, δ) for some δ > 0 and chooses the vertical bisector with w.
As above, when compared to the right half cell H of w, the loss of VW∪{b}(b) is bounded
above by δ|A1| + 1/2 δ2. By Claim 14 and the fact that A2 is inner, the gain is bounded
below by δ(|A3| − δ). Guaranteeing δ < 2/3(|A3| − |A1|), the gain exceeds the loss. Thus,
if |A3| > |A1|, Black has a winning point. �	

If |W | > 1, every cell has at least one inner arm. Therefore Claim 16 yields that opposite
boundary arms of a bridge cell have equal length. Moreover, Claim 15 implies that the
remaining arms are not shorter. This proves (P2) for bridges. �	

We now show that unbeatable white sets are grids; in some cases they are even square
grids, i.e., every cell is a square.

(a)

(b) (c)

Fig. 14 Illustration of Claims 15 and 16: the gain and loss of V (b) compared to H
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Lemma 17 Let P be a set of n points in a (1×ρ) rectangle R with ρ ≥ 1 fulfilling properties
(P1) and (P2). Then P is a grid. More precisely, if ρ ≥ n, then P is a 1× n grid; otherwise,
P is a square grid.

Proof We distinguish two cases.
Case 1 ρ ≥ n. By (P1), every half cell has area 1/2n · area(R) = 1/2n · ρ ≥ 1/2. Since the

height of every half cell is bounded by 1, every left and right arm has a length of at least 1/2.
Then, property (P2) implies that each top and bottom arm has length 1/2, i.e., every p ∈ P is
placed on the horizontal centre line of R. Finally, again by (P1), the points must be evenly
spread. Hence, P is a 1 × n grid.

Case 2 ρ < n. We consider the point p whose cell V P (p) contains the top left corner
of R and denote its quarter cells by Ci . Then, C2 is a rectangle. Moreover, V P (p) is not a
bridge; otherwise its left half cell has area at least 1/2 > 1/2n · ρ = 1/2n · area(R). Therefore,
by (P2), all arms of V P (p) have the same length; we denote this length by d . Together with
the fact that C2 and C4 have the same area by (P1) and Lemma 2, it follows that C2 and C4

are squares of side length d .
We consider the right boundary of C4. Since the right arm of V P (p) has length d (and the

boundary continues vertically below), some point q has distance 2d to p and lies in Q1(p).
The set of all these possible point locations forms a segment, which is highlighted in red in
Fig. 15a. Consequently, the left arm of q has length d . By (P2), the top arm of q must also
have length d . Hence, q lies at the grid location illustrated in Fig. 15b. Moreover, it follows
that q is the unique point whose cell shares part of the boundary with C1; otherwise the top
arm of q does not have length d .

By symmetry, a point q ′ lies at a distance 2d below p and distance d to the boundary. Thus,
every quarter cell of V P (p) is a square with edge length d; hence, the arms of all cells have
length at least d . Moreover, the top left quarter cells of V P (q) and V P (q ′) are squares, so
their bottom right quadrants must also be squares. Using this argument iteratively along the
boundary implies that boundary cells are squares. Applying it to the remaining rectangular
hole shows that P is a square grid. �	

We now come to our main result.

Theorem 18 White has a winning strategy for placing n points in a (1 × ρ) rectangle with
ρ ≥ 1 if and only if ρ ≥ n; otherwise Black has a winning strategy. Moreover, if ρ ≥ n, the
unique winning strategy for White is to place a 1 × n grid.

Proof First we show that Black has a winning strategy if ρ < n. Suppose that Black cannot
win. Note that ρ < n implies n ≥ 2. Consequently, by Theorem 13 and Lemma 17, the white

(c)(b)(a)

Fig. 15 Illustration of the Proof of Lemma 17
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point set W is a square a × b grid with a, b ≥ 2, and thus the four cells in the top left corner
induce a 2 × 2 grid. By Theorem 11, it suffices to identify a winning point for Black. Thus,
we show the following:

Claim 19 Black has a winning point in a square 2 × 2 grid.

Proof Suppose the arms of all cells have length d . Then a black point p is a winning point
if its cell has an area exceeding 2d2. With p placed at a distance 3d/2 from the top and left
boundary as depicted in Fig. 16a, the cell of p has an area of 2d2 + d2/4. �	

Secondly, we consider the case ρ ≥ n and show that White has a winning strategy.
Theorem 13 and Lemma 17 imply that White must place its points in a 1× n grid; otherwise
Black can win. We show that Black has no option to beat this placement; i.e., if ρ ≥ n, then:

Claim 20 Black has no winning point and cannot force a tie in a 1 × n grid.

Proof By symmetry, there essentially exist two different placements of a black point b with
respect to a closest white point wb. Without loss of generality, we assume that wb is to the
left and not below b. Let x and y denote the horizontal and vertical distance of b to wb,
respectively. For a unified presentation, we add half of potential neutral zones in case x = y
to the area of the black cell. As a consequence, Black loses if its cells have an area of less
than 1/2 · area(R).

If x > y, the cell of b evaluates to an area of (at most) 1/2n · area(R) − y2. In particular, it
is maximized for y = 0, i.e., when b is placed on the horizontal centre line of R and if there
exist white points to the left and right of b. In this case the cell area is exactly 1/2n · area(R).

If x ≤ y, the cell area of b has an area of (atmost) 1/2n·area(R)−y(w′−h′)−1/4(3y2+x2),
where w′ := w/2n and h′ := h/2 denote the dimensions of the grid cells. Note that w′ ≥ h′
because ρ ≥ n. Consequently, the cell area is maximized for x = 0, y = 0. However, this
placement coincides with the location of a white point and is thus forbidden. Therefore every
valid placement results in a cell area strictly smaller than 1/2n · area(R). Consequently, Black
has no winning point.

Note that the cell area is indeed strictly smaller than the abovementionedmaximum values
if the black point does not have white points on both sides. Therefore the (unique) best
placement of a black point is on the centre line between two white points, as illustrated by
the rightmost black point in Fig. 16b. However, there exist only n−1 distinct positions of this
type; all other placements result in strictly smaller cells. Consequently, Black cannot force a
tie and so loses. �	

This completes the proof of the theorem. �	

(a) (b)

Fig. 16 Illustration of the Proof of Theorem 18
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7 Open problems

There are various directions for future work.
We demonstrated that there is a spectrum of balanced configurations, based on identifying

a number of small atomic (i.e., non-decomposable) configurations that can be concatenated
in a strip-like fashion. Are there further atomic configurations? Is it possible to combine
them into more intricate two-dimensional patterns rather than just putting together identical
strip-based configurations? Beyond that, the biggest challenge is clearly to provide a full
characterization of balanced configurations, with further generalizations to other metrics and
dimensions.

As our main result, we presented a full characterization of the One-Round Voronoi Game
withManhattan distances. Just as for the previously studied Euclidean metric, this still leaves
the multi-round variant as a wide open (and, most probably, quite difficult) problem. Further
interesting problems arise from considering higher-dimensional variants.
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