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Abstract
Comparative studies investigating the estimation accuracy of statistical methods 
often arrive at different conclusions. Therefore, it remains unclear which method is 
best suited for a particular estimation task. While this problem exists in many areas 
of predictive analytics, it has particular relevance in the banking sector owing to reg-
ulatory requirements regarding transparency and quality of estimation methods. For 
the estimation of the relevant credit risk parameter loss given default (LGD), we find 
that the different results can be attributed to the modality type of the respective LGD 
distribution. Specifically, we use cluster analysis to identify heterogeneities among 
the LGD distributions of loan portfolios of 16 European countries with 32,851 
defaulted loans. The analysis leads to three clusters, whose distributions essentially 
differ in their modality type. For each modality type, we empirically determine the 
accuracy of 20 estimation methods, including traditional regression and advanced 
machine learning. We show that the specific modality type is crucial for the best 
method. The results are not limited to the banking sector, because the present dis-
tribution type-dependent recommendation for method selection, which is based on 
cluster analysis, can also be applied to parameter estimation problems in all areas of 
predictive analytics.

Keywords  Risk Management · Parameter Estimation · LGD Distributions · Machine 
Learning · Global Credit Data

 *	 Marc Gürtler 
	 marc.guertler@tu-bs.de

	 Marvin Zöllner 
	 marvin.zoellner@tu-bs.de

1	 Department of Finance, University of Braunschweig - Institute of Technology, 
Abt‑Jerusalem‑Straße 7, Braunschweig 38106, Germany

http://orcid.org/0000-0002-5056-0124
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-022-00689-6&domain=pdf


252	 M. Gürtler, M. Zöllner 

1 3

1  Introduction

Companies collect and generate large amounts of data, which are analyzed with 
methods of predictive analytics and used for forecasting and estimation pur-
poses to draw conclusions for business decisions. In particular in the context of 
such estimation problems, companies and data scientists have a large number of 
methods at their disposal, ranging from traditional linear regression to advanced 
methods of machine learning. Due to the large number of methods, the question 
immediately arises as to which method should be used for a specific estimation 
problem. Several studies have already dealt with this question, but they come to 
different conclusions.

For example, in a comprehensive study King et al. (1995) apply 16 methods, 
including traditional and advanced methods, to 12 real-world estimation prob-
lems in the fields of image processing, medicine, engineering, and finance. They 
find that there is no consistently superior method and that the respective estima-
tion performance depend critically on the datasets used. More recently, Baumann 
et  al. (2019) perform a detailed comparison of 14 machine learning methods, 
which they analyzed with regard to the estimation accuracy using 20 datasets 
from different fields such as life sciences, physical sciences, engineering, social 
sciences, economics and others. Again, it becomes apparent that the best method 
in each case changes depending on the dataset.

The optimal choice of estimation method is particularly relevant in the banking 
sector. One reason for this is a regulatory requirement as per which banks must 
provide their own estimates of risk parameters when using the internal ratings-
based approach. In addition to the regulatory requirement, accurate predictions 
of risk parameters are relevant for the risk-adjusted pricing of loans. Estima-
tion methods with high predictive accuracy offer banks a competitive advantage, 
whereas weak predictions can lead to adverse selection. In this study, we focus 
on the loss given default (LGD), which is one of three relevant parameters to 
estimate the risk associated with a credit product. Also with regard to LGD, sev-
eral studies exist in the literature examining different methods in terms of their 
estimation accuracy. Because these studies show considerable differences in 
results, it also remains unclear for LGD estimation, which method has the high-
est estimation accuracy. For example, Hurlin et al. (2018) base their analysis on 
defaulted customers in Brazil, finding that the random forest mostly outperforms 
other advanced methods and that the regression tree shows low estimation accu-
racy. Kaposty et al. (2020) arrive at a comparable conclusion. Using a dataset of 
defaulted corporate leases in Germany, they find that more sophisticated methods, 
especially the random forest, lead to remarkable increases in the prediction accu-
racy. In contrast, Yao et al. (2017) examine data on U.K. bank credit cards and 
conclude that a combination of least squares support vector regression and ordi-
nary least squares regression leads to the best out-of-sample estimation accuracy 
compared to 11 alternative (and combined) methods. Similarly, Loterman et  al. 
(2012) compare 24 methods and find that support vector regression and an artifi-
cial neural network perform significantly better than other methods do, including 
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the regression tree. However, in their examination of U.S. revolving credit loans, 
Tobback et al. (2014) find that the forecasting accuracy of support vector regres-
sion is lower than that of a regression tree. Consistent with this finding, Bastos 
(2010), Qi and Zhao (2011), and Hartmann-Wendels et  al. (2014) recommend 
using a regression tree to predict the recovery rates of Portuguese, U.S., and Ger-
man loans, respectively. By using recovery rates of U.S. non-financial corpora-
tions, Altman and Kalotay (2014) show that mixture regressions provide more 
accurate out-of-sample estimates than other regression-based methods. The high 
predictive accuracy of mixture regressions is confirmed by a study of Min et al. 
(2020), who conduct a method comparison (including regression tree and neural 
network) based on recovery rates of small- and medium-sized entities in the U.S. 
More recently, Bellotti et al. (2021) compare different methods for the prediction 
of European non-performing loans and find that rule-based algorithms such as 
cubist regression model, boosted trees, and random forest perform significantly 
better than other approaches. Consequently, most studies show that advanced 
methods have higher estimation accuracies than traditional methods, such as the 
ordinary least squares regression. However, based on a dataset of U.K. defaulted 
credit cards, Bellotti and Crook (2012) find that the ordinary least squares regres-
sion is superior to advanced methods. Similarly, Sopitpongstorn et al. (2021) find 
that advanced methods such as artificial neural network and regression tree show 
lower predictive performance than the (local) logit regression in the prediction of 
loan recovery rates.

In summary, views on how well various LGD estimation methods perform are 
mixed. The different results can be attributed, in particular, to the different countries 
in which the loan portfolios are located (see, e.g., Bastos (2010)). More specifically, 
Grunert and Weber (2009) note that most studies focus on the U.S. banking sec-
tor but there may be national differences in bankruptcy law or the characteristics of 
borrowing companies. In addition, Grippa et al. (2005) and Querci (2005) observe 
differences in LGD characteristics across geographic regions in their investigation of 
Italian accounts. The results indicate that the LGD distributions in credit portfolios 
seem to differ between regions and countries.

It remains unclear which characteristics of an LGD distribution are responsible 
for the different performance results in the literature. Against this background, the 
present study aims to identify the distributional features relevant to the quality of 
LGD estimation methods, and subsequently, determine the methods that have the 
highest estimation accuracy for the relevant distribution types. In this way regula-
tors, for example, obtain simple rules for LGD estimation in the banking environ-
ment without having to rely on the specific loan portfolio of a bank. This is relevant 
insofar as the recently introduced constraints on the use of internal ratings-based 
approach demonstrate that the regulators are basically striving to simplify and stand-
ardize the estimation of credit risks (see Basel Committee on Banking Supervision 
(2016, 2017)).

To this end, we must achieve the following objectives: consider a broad inter-
national loan portfolio; identify heterogeneities among LGD distributions, that is, 
the relevant characteristics and types of distributions; and compare the estimation 
methods individually for each LGD distribution type. To meet the first objective, we 
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base our analysis on an international dataset of European defaulted loans of small 
and medium-sized enterprises (SMEs) from 16 countries, provided by Global Credit 
Data. To comply with the second objective, we investigate the natures of LGD dis-
tributions using cluster analysis. Specifically, we aggregate the LGDs of all loans 
belonging to one country and then cluster the resulting 16 country-specific LGD 
distributions. The cluster analysis leads to three relevant distribution clusters, which 
differ mainly in their modality: a (nearly) symmetric bimodal distribution, an asym-
metric (positively skewed) bimodal distribution, and a (positively skewed) unimodal 
distribution.1 Finally, we apply 20 different estimation methods to the subsamples 
belonging to the respective distribution cluster to achieve the third objective.

The considered methods can be categorized as traditional and advanced meth-
ods. Under the traditional methods, we include ordinary least squares regression, 
ordinary least squares regression with backward elimination, least-angle regression, 
three penalized regressions (ridge, lasso, and elastic net regression), and fractional 
logit regression. As advanced methods, we apply six rule-based algorithms (regres-
sion tree, random forest, gradient boosting, adaptive boosting, conditional inference 
tree and cubist regression model), an artificial neural network, two different types 
of vector regression (support and relevance vector regression), a Gaussian process 
regression, the k-nearest neighbors method, the multivariate adaptive regression 
splines and a finite mixture model.

The quality of the methods undoubtedly depends on the set of variables available 
to explain the LGD. In this context, we use various credit characteristics, such as the 
EAD, the number of collaterals and guarantees, and seniority. We also incorporate 
macroeconomic data, including the return of the STOXX 600 Index, the return of 
the six-month EURIBOR and the gross domestic product (GDP) in Europe. Because 
the literature already provides a good understanding of the determinants of the LGD, 
our initial selection of relevant variables is based on Krüger and Rösch (2017).

We conduct an out-of-sample analysis for each estimation method and each LGD 
distribution type. In summary, for loan portfolios with a symmetric bimodal LGD 
distribution, the random forest offers the highest estimation accuracy. For loan port-
folios with an asymmetric bimodal LGD distribution, the gradient boosting method 
shows the most promising results. For a unimodal LGD distribution, the finite mix-
ture model leads to the best performance. These results clearly show that, on the one 
hand, the specific type of LGD distribution is crucial for the optimal choice of the 
estimation method. On the other hand, the results suggest that the relevant heteroge-
neity among LGD distributions lies in the difference in modality. These results are 
confirmed by a series of robustness checks.

Thus, it seems that the best method depends on the distribution type of the param-
eter to be estimated. This result is of interest for the whole field of predictive analyt-
ics, because a distribution type-dependent recommendation for method selection can 
also be applied to other parameter estimation problems.

1  Most studies only note the bimodality of LGD distributions; see, for example Yashkir and Yashkir 
(2013) and Krüger and Rösch (2017).
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The remainder of this article is structured as follows. Section  2 introduces the 
data, including the descriptive statistics, describes the estimation methods used in 
the comparative analysis, presents the cluster analysis, and identifies the three rele-
vant LGD distribution types. Section 3 contains the comparative analysis for each of 
the three distribution types and the resulting recommendations for LGD estimation. 
In Section 4 several robustness checks are performed. Section 5 concludes the paper.

2 � Data and LGD estimation approach

To conduct the study, we use the database of Global Credit Data2, which contains 
detailed information on loan defaults of 55 banks. In this section, we first introduce 
the data used and provide descriptive statistics. Afterwards, we explain the theo-
retical background of the LGD estimation methods used in the comparative analysis. 
Finally, we describe the cluster analysis and identify heterogeneities among LGD 
distributions.

2.1 � Data description

The analysis is based on a dataset of resolved defaulted loans by SMEs from 16 
European countries. The estimation of the LGD is based on workout recovery rates, 
which are calculated as the difference between all discounted post-default incom-
ing cash flows ( F+ ) and all discounted post-default costs ( C− ), divided by the EAD. 
That is,

Incoming cash flows comprise principal, interest, and post-resolution payments, the 
recorded book value of collateral, received fees, and commissions. Costs include 
legal expenses, administrator and receiver fees, liquidation expenses, and other 
external workout costs. All cash flows are discounted using the three-month EURI-
BOR of the respective default date.

In the following, we briefly describe the restrictions we apply to the raw dataset, 
which comprises 38,166 defaulted loans. The filter rules are based on Gürtler and 
Hibbeln (2013), European Banking Authority (2016), Krüger and Rösch (2017), and 
Betz et al. (2018).

First, we restrict the sample to all defaults since 2000 and do not include defaults 
after 2016. The lower time limit is selected to ensure the consistent default defi-
nition of Basel II and thus prevent biased estimation results. The upper time limit 
is selected for two reasons. In the subsample of recently defaulted loans (with 

(1)LGD = 1 −

∑
F+ −

∑
C−

EAD

2  Global Credit Data supplies the world’s largest database for LGD modeling, and is internationally rec-
ognized as the standard for LGD data collection. See https://​www.​globa​lcred​itdata.​org/ for further infor-
mation.

https://www.globalcreditdata.org/
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completed workout processes), short workout periods are obviously overrepre-
sented. Because, in turn, loans with shorter workout periods tend to be associated 
with lower LGDs, this subsample can lead to a sample selection bias. In addition, 
workout processes of recent defaults are not necessarily completed. By limiting the 
time span of the dataset, we remove 2,177 observations.

Second, cures are not considered, because they do not provide default data with 
actual losses (see Krüger and Rösch (2017)). By excluding cures, we drop 1,147 
observations.

Third, in the Global Credit Data database, the default losses range from zero 
(e.g., for uncalled contingent facilities) to several hundred million euros. To satisfy 
a materiality threshold, we remove loans with an EAD of less than €500. Using this 
threshold, we exclude 978 observations.

Fourth, to correct input errors and to ensure consistent and plausible data, we 
eliminate loans with an abnormally low or high LGD, i.e., smaller than −100% and 
higher than 200%, respectively. We drop 265 observations.

Finally, loans with incomplete observations are excluded. We remove 748 obser-
vations. Overall, a dataset of 32,851 loans remains.

Table 1 presents the descriptive statistics; in particular, it shows the means and 
quantiles of the LGDs of selected loan categories. We separate the loans by the 
availability of guarantees, collateral type, facility type, seniority type, and industry 
type. The table is a further indicator of the plausibility of the dataset. For example, 
the existence of guarantees or securities reduces LGDs. Conversely, non-senior and 
short-term loans lead to higher LGDs. Interestingly, loans from the “finance, insur-
ance, real estate” sector have the lowest LGDs.

In addition to the loan-specific properties, we consider macroeconomics variables 
to improve the prediction of the LGD, as suggested in the literature.3 Therefore, we 
use various macroeconomic control variables. For the overall real and financial envi-
ronment in Europe, we use the return of the STOXX 600 Index. Because Qi and 
Zhao (2011) and Chava et al. (2011) identify the three-month treasury bill as a sig-
nificant variable to consider expectations of future financial conditions in the U.S., 
we use the six-month EURIBOR as a significant driver for LGDs in Europe. Follow-
ing Mora (2015) and Yao et al. (2015), we also use the GDP to measure the market 
value of all final goods and services produced in the considered period in Europe. 
Specifically, we consider a dummy variable that indicates whether the GDP has 
increased from the previous quarter. We also tested other popular macroeconomic 
variables, such as the 10-year euro area yield, unemployment rate, and economic 
sentiment index. However, they were excluded owing to their strong correlations 
with other macroeconomic factors and thus, lower explanatory power.

2.2 � LGD estimation methods

The challenge in LGD estimation lies in providing estimated LGDs that are close 
to and highly correlated with the true LGDs. As such, there is a wide range of 

3  See, for example, Tobback et al. (2014) and Nazemi et al. (2017). New technical standards emphasize 
the importance of using economic factors; see European Banking Authority (2017).
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estimation methods used in the literature. For a comprehensive analysis, all methods 
used in the literature must be included in the comparison. In selecting the proce-
dures, we followed Bellotti et al. (2021) who examined 18 LGD estimation proce-
dures. By considering two further procedures, we finally use 20 different methods, 
categorized as either traditional or advanced methods, as noted in Section 1. In the 
following, we briefly introduce the competing methods (summarized in Table 2) as 
well as the main references in each case.

We use linear regression as the first traditional method because it is usually used 
as a reference method in other LGD studies. For instance, the linear regression has 
been implemented in a comparative context by Loterman et al. (2012) and Krüger 
and Rösch (2017). From a statistical perspective, linear regression has restrictions 
that may make it less suitable for LGD estimation. For this reason, we include other 
traditional methods that address these restrictions.

First, linear regression requires exogenously identifying the best subset of the var-
iables to include in the model. The wrong choice of variables can induce problems 
such as biased regression coefficients (if relevant variables are omitted) or a decrease 
in estimation precision (if irrelevant variables are included in the model). To over-
come the difficulties in variable selection, we use ordinary least squares regression 
with backward elimination and least angle regression. We use backward elimination 
instead of simple forward selection, which has the disadvantage of neglecting vari-
able interactions (see, e.g., Smith (2018)). The purpose of both applied methods is 
to build a multiple regression model that includes a parsimonious set of variables, 
without compromising the estimating ability of the model. The use of variable selec-
tion methods in LGD estimation is proposed, for instance, by Hartmann-Wendels 
et al. (2014) and Ye and Bellotti (2019).

Second, linear regression models that contain multiple variables are susceptible 
to overfitting and may reveal a high variance of the model estimators, which typi-
cally results in a high expected mean squared error (hereafter referred to as “estima-
tion error”). To reduce the parameter variance, we apply penalized regressions (i.e., 
ridge regression, lasso regression and elastic net regression), which introduce con-
straints that limit the model parameters.4 In the LGD estimation, penalized regres-
sions are implemented by Loterman et al. (2012), among others.

Third, the values predicted by linear regression can theoretically range from 
minus infinity to infinity. Because LGDs are restricted by a lower limit (close to 
zero) and an upper limit (close to one), linear regression will not meet this restric-
tion. To consider the LGD boundaries, we use fractional logit regression. Because 
we use data with plausible values out of [0, 1]5, we transform the observed LGD 
using the equation below (as proposed by Krüger and Rösch (2017)) before perform-
ing the fractional logit regression:

4  Note that a lasso regression shrinks some coefficients and sets other coefficients to zero (Tibshirani, 
1996). Thus, it is also a tool for variable selection.
5  LGDs greater than one can occur, for example, owing to administrative, legal, or liquidation expenses 
or financial penalties. LGDs below zero can occur, for example, as a result of high collateral recoveries.
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After the estimation, we re-transform the predicted values to the previous LGD 
scale. Fractional logit regressions are used for LGD estimation by Dermine and 
de Carvalho (2006) and Chava et al. (2011), among others.

In addition to the traditional methods, we use various advanced methods. These 
are assumed to have an improved estimation accuracy because they do not require 
a specific functional form or distribution assumptions (see Nazemi et  al. (2017), 

(2)LGD0,1 =
LGD −min(LGD)

max(LGD) −min(LGD)

Table 1   Descriptive statistics

Note. This table presents the means and quantiles of empirical LGDs (in %) for different loan categories

Quantiles Mean Obs.

0.05 0.25 0.50 0.75 0.95

LGD
overall

−7.92 0.08 5.45 61.36 100.00 28.86 32851
log(EAD) 8.11 10.00 11.36 12.64 14.39 11.33 32851
Number of collaterals 0.00 0.00 1.00 1.00 3.00 1.18 32851
Number of guarantors 0.00 0.00 0.00 0.00 2.00 0.31 32851
LGD conditional to guarantee availability:
No guarantee −7.91 0.08 5.55 65.73 100.00 29.89 28774
Guarantee −7.93 0.04 5.04 33.94 100.00 21.57 4077
LGD conditional to collateral type:
No collateral −2.62 1.88 24.09 98.22 100.00 43.37 9008
Real estate −8.47 −0.55 2.12 26.37 99.45 18.13 7188
Other −9.71 −0.09 4.61 51.09 100.00 25.64 16655
LGD conditional to facility type:
Medium term −3.99 0.25 4.69 48.95 100.00 26.26 19463
Short term −15.54 −0.39 8.30 82.77 100.00 32.72 12658
Other −6.80 0.08 4.43 79.98 100.00 31.35 730
LGD conditional to seniority type:
Pari-passu −8.47 0.01 5.64 60.03 100.00 28.63 27013
Super senior −4.67 0.99 4.10 62.91 100.00 29.04 5301
Non-senior −9.81 0.73 20.65 84.76 100.00 38.40 537
LGD conditional to industry type:
Finance, insurance, real estate −8.74 −0.48 1.95 45.30 100.00 23.18 4726
Agriculture, forestry, fishing, hunting −6.17 −0.66 2.43 66.13 100.61 27.20 1486
Mining −5.52 0.65 1.13 53.88 100.00 26.82 120
Construction −10.42 −0.02 3.54 62.49 100.00 27.74 3720
Manufacturing −10.29 0.01 5.37 64.12 100.00 29.35 4707
Transp., commu.,elec., gas, sani. serv. −6.76 0.61 2.47 51.53 100.00 25.08 2587
Wholesale and retail trade −7.82 0.08 6.28 74.09 100.00 32.42 5483
Services −6.85 0.82 14.41 76.85 100.00 34.12 5877
Other −5.18 0.84 10.27 45.26 100.00 26.64 4145
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Miller and Töws (2018), and Yao et al. (2015)). At the same time, advanced meth-
ods are more prone to overfitting than the traditional methods, which may, in turn, 
lead to inferior estimation accuracy (see Qi and Zhao (2011)). Therefore, hyperpa-
rameter tuning and a good understanding of the methods’ functioning are required 
when using the advanced methods. A description of the methods used in the com-
parative analysis is given below.

As the first advanced methods, we use various rule-based methods because 
they allow nonparametric representations of the relationships between the 
dependent and explanatory variables. The most basic method in this context is 
the regression tree, popularized by Breiman (1984). The method recursively splits 
the data into groups and uses the group averages of the dependent variable as 
its mean prediction. This approach has been applied to LGD estimation by, for 
example, Matuszyk et  al. (2010) and Hurlin et  al. (2018). However, regression 
trees often suffer from variable selection bias (see Strobl 2005), that is, predic-
tor variables with a higher number of possible realizations (and thus, a higher 
number of possible cut points) have a higher probability of being chosen in the 

Table 2   Competing methods

Method Exemplary literature

Ordinary Least Squares (OLS) Qi and Zhao (2011), Krüger and Rösch (2017)
Variable selection methods:
(1)OLS with Backward Elimination (bOLS)

(2) Least Angle Regression (LAR)
Hartmann-Wendels et al. (2014), Ye and Bellotti 

(2019)
Penalized Regressions:
(1) Ridge Regression (RR)

(2) Lasso Regression (LR)

(3) Elastic Regression (ER)

Loterman et al. (2012)

Fractional Logit Regression (FLR) Dermine and de Carvalho (2006), Chava et al. 
(2011)

Regression Tree (RT) Matuszyk et al. (2010), Hurlin et al. (2018)
Conditional Inference Tree (CIT) Hothorn et al. (2006), Bellotti et al. (2021)
Random Forest (RF) Miller and Töws (2018), Hurlin et al. (2018)
Boosting Methods:
(1) Adaptive Boosting (ADA),
(2) Gradient Boosting (GB)

Tanoue and Yamashita (2019)

Cubist Regression Model (CUB) Kuhn and Quinlan (2018), Bellotti et al. (2021)
Artificial Neural Network (ANN) Qi and Zhao (2011), Hurlin et al. (2018)
Support Vector Regression (SVR) Yao et al. (2015, 2017), Nazemi et al. (2017)
Relevance Vector Regression (RVR) Karatzoglou et al. (2004), Bellotti et al. (2021)
Gaussian Process Regression (GAPR) Bellotti et al. (2021)
K-nearest Neighbors (KNN) Yang and Tkachenko (2012), Hartmann-Wendels 

et al. (2014)
Multivariate Adaptive Regression Splines (MARS) Loterman et al. (2012), Bellotti et al. (2021)
Finite Mixture Model (FMM) Krüger and Rösch (2017), Min et al. (2020)
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tree-growing step. Thus, selecting variables with low importance, that is, with 
low information content for predicting the LGD, in this way may lead to worse 
trees with higher estimation errors. To overcome this limitation, we also use a 
conditional inference tree by Hothorn et al. (2006). This algorithm separates the 
variable selection process from the splitting procedure. Moreover, regression 
trees aim to minimize the omitted variable bias, which can be achieved by trees 
that are grown very deep. However, deep-grown trees tend to overfit the training 
data, leading to poor out-of-sample estimation accuracy. To overcome these chal-
lenges, we also use the random forest algorithm by Breiman (2001). It is a boot-
strap aggregation method of de-correlated regression trees that are independently 
built using random subsets of variables and trained on different parts of the same 
training set (see, for example, Hastie et al. (2017, chapter 15). After the random 
forest algorithm has grown an ensemble of regression trees, an average is formed 
over all regression trees to establish the estimation. Because the trees in a ran-
dom forest are de-correlated, the method is less prone to overfitting. By averaging 
across trees, the variance is also reduced, which, in general, leads to a higher esti-
mation accuracy. The use of a random forest for LGD estimation is proposed by, 
for example, Bastos (2014) and Hurlin et al. (2018).

However, in addition to the above-mentioned advantages, the random forest has 
one decisive disadvantage. When learning imbalanced data (e.g., in a loan portfolio, 
where most defaulted credits have LGDs close to zero and fewer loans have LGDs 
close to one), there is a significant probability that the bootstrap samples contain few 
data of the minority class (i.e., loans with LGDs close to one). This results in biased 
trees that perform poorly when estimating the minority class (see Chen and Breiman 
(2004)). Thus, by averaging over all trees, including the biased trees, the estimation 
accuracy of the random forest can be reduced. Therefore, we also apply boosting-
based algorithms, because they focus on incorrectly estimated samples. In a random 
forest, the trees are built in parallel. In boosting, the trees are built sequentially, and 
each tries to reduce the bias of the preceding tree. Therefore, using boosting, we 
build a model in a non-random way that is less susceptible to imbalanced data and 
makes fewer estimation errors as more trees are added.

For boosting, we use two algorithms. First, we use the adaptive boosting method 
of Freund and Schapie (1996), which adapts the trees by differently weighting the 
incorrectly and correctly estimated samples. Second, we use the gradient boosting 
method of Friedman (2001), which fits each new tree to the residual errors made 
by the previous tree. The use of boosting methods for LGD estimation is proposed 
by, for example, Hurlin et al. (2018) and Tanoue and Yamashita (2019). Note that 
the rule-based methods do not require separate and prior variable selection, because 
their strategies automatically rank variables by their contribution to the decrease in 
the estimation error. As an additional rule-based method, we use the cubist regres-
sion model by Quinlan (1993). The algorithm uses two ways for improving a modi-
fied version of regression tree prediction. First, the cubist model uses a boosting-
like framework called “committees” in which iterative model trees are created in 
sequence to correct for estimation errors. Second, it uses a weighted average of near-
est sample neighbors to adjust the predictions.
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Another considered advanced method is an artificial neural network, proposed 
by, for example, Bishop (1995), because it can describe non-relationships in coef-
ficients. Simply put, it is a computational model that consists of several highly 
interconnected processing elements that process information by their dynamic state 
response to external inputs. In particular, we use a multilayer perceptron, which con-
sists of a three-layer network (an input layer, a hidden layer, and an output layer). To 
calculate the artificial neural network, we use a resilient backpropagation algorithm 
that guarantees an approximation of the estimation value through iterative model 
updates (see Hastie et  al. (2017) for a more detailed description of artificial neu-
ral networks). Despite their above-mentioned advantages, artificial neural networks 
have two disadvantages: Owing to their complexity, they are prone to overfitting, 
and thus, require intensive hyperparameter tuning, leading to a greater computa-
tional cost. Artificial neural networks also have been used for LGD estimation by, 
for instance, Qi and Zhao (2011).

Additional advanced methods are two different types of vector regressions. More 
precisely, we consider the support vector regression introduced by Vapnik (1995), 
and the relevance vector regression by Tipping and Smola (2001). Both methods 
extend the linear regression by considering relationships that are not linear in the 
coefficients and are supposed to offer improved accuracy in LGD estimation. The 
idea of vector regressions is to map the data into a higher dimensional space using a 
mapping function before performing the linear regression.6 In the comparative anal-
ysis, we choose a radial-basis function kernel for both methods to map the data into 
a higher dimensional space. Similar to artificial neural networks, vector regressions 
are prone to overfitting, and thus, need extensive computing requirements for hyper-
parameter tuning. Nevertheless, some studies illustrate the good predictive perfor-
mance of vector regressions for LGD estimation (see Yao et  al. (2015, 2017) and 
Nazemi et al. (2017)).

We also apply a Gaussian process regression by Williams and Rasmussen (1996), 
which is already proposed in the context of LGD estimation by, for example, Bel-
lotti et al. (2021), and can be considered as a nonparametric generalization of the 
relevance vector regression. Instead of calculating the probability distribution of the 
coefficients of the regression function, the Gaussian process directly imposes a prior 
(Gaussian) distribution on the functional values. In the present study, we implement 
the Gaussian process by using a radial basis kernel.

Next, we consider the k-nearest neighbors algorithm, owing to its simplicity in 
dealing with nonlinear data. The algorithm uses “variable similarities” to estimate 
the values of any new data point. The new point is assigned a value based on the 
k-nearest points of a neighborhood in the Euclidean space. Because the k-nearest 
neighbors algorithm simply chooses the neighbors based on distance criteria, it is 
highly sensitive to outliers, which can lead to an inferior estimation accuracy. The 
k-nearest neighbors algorithm has been used for LGD estimation by, for instance, 
Yang and Tkachenko (2012) and Hartmann-Wendels et al. (2014).

6  See Cheng et al. (2007) for a more detailed description of relevance vector regressions.
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As an additional nonparametric method, we use multivariate adaptive regres-
sion splines by Friedman (1991), which is an extension of linear regression. In this 
method, the training data are first partitioned into separate piecewise linear seg-
ments (splines) with different gradients. After partitioning, the splines are connected 
smoothly together, resulting in a flexible model that can handle both linear and 
nonlinear relationships between the dependent and independent variables. The use 
of multivariate adaptive regression splines for LGD estimation is proposed by, for 
example, Loterman et al. (2012) and Bellotti et al. (2021).

Finally, we apply a finite mixture model by Leisch (2004) owing to its promising 
results in LGD estimation. The algorithm uses probabilistic clustering and applies 
an individual linear regression model for each cluster (referred to as component). 
The use of the finite mixture model in the LGD estimation is proposed by, for exam-
ple, Krüger and Rösch (2017) and Min et al. (2020).

2.3 � Clustering and LGD distribution analysis

As noted above, the main motivation for this study is based on two findings from 
the literature. First, existing LGD studies identify different LGD estimation meth-
ods as having the highest estimation accuracy. Second, the LGD distributions in 
credit portfolios seem to differ by country. This, in particular, may explain the mixed 
results on the accuracy of LGD estimation methods, as each study uses data of a 
specific country (or region), which have a specific LGD distribution.

Against this background, we identify types of LGD distributions from an interna-
tional portfolio of European loans and compare the estimation quality of the meth-
ods for each type of LGD distribution. Specifically, we identify country-specific 
types of LGD distributions from 16 European countries and apply cluster analysis 
to identify relevant types of distributions. Accordingly, we build country-specific 
subsamples for the respective distribution clusters (in the present subsection). Sub-
sequently, in Section  3, we compare the methods to identify the LGD estimation 
method with the highest accuracy for each subsample. The procedure and the results 
of the cluster analysis are summarized as follows.

For each country in the dataset, we aggregate the LGDs of all defaulted loans 
based on the LGD quantiles in a range from 1% to 100% with a stepwise increase of 
1%. We then cluster the resulting 16 country-specific LGD distributions using the 
agglomerative hierarchical clustering of Ward (1963) and the k-means clustering of 
MacQueen (1967). For both approaches, the Euclidean distance was chosen as the 
distance measure. The final number of clusters is given if the distance between the 
clusters proposed by the algorithm exceeds a predefined threshold value. Thus, both 
approaches lead to the same results where the country-specific LGD distributions 
are assigned to three clusters.7

7  There exists an online appendix for this article. All tables listed in this online appendix are cited 
accordingly below. The dendrogram of the agglomerative hierarchical clustering is shown in Fig. OA.1 
of online appendix.
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The results are shown in Fig.  1. By aggregating the LGDs from the countries 
belonging to cluster 1, we see a (nearly) symmetric bimodal LGD distribution, with 
two extreme events (total losses and total recoveries) being equally likely. If we 
aggregate the LGDs of all loans from countries belonging to the cluster 2, most of 
the LGDs characterize (nearly) total losses or total recoveries, also yielding a strong 
bimodality of the distribution. In contrast to cluster 1, total recoveries in cluster 2 
are more likely than total losses (approximately in the ratio 2:1). More precisely, we 
can identify an asymmetric (positively skewed) bimodal distribution. Finally, if we 
consider the LGDs from the countries in cluster 3, we find a (positively skewed) uni-
modal LGD distribution that differs significantly from the LGD distributions in the 
other two clusters because most of the LGDs characterize total recoveries.

In summary, the cluster analysis identifies heterogeneities among the LGD dis-
tributions that differ particularly in terms of their modality. To examine the quality 
of the clustering result, we apply two different test statistics. Both, the paired t-test 
and the Mann–Whitney U test confirm the dissimilarity among the three resulting 
country distributions.8 Considering the effect of insolvency legislation on LGD, 
the resulting distribution clusters are economically understandable. According to a 
study by the European Commission (2016), the time to resolve insolvency and the 
cost of resolving insolvency is higher in the countries of cluster 1 compared with the 
countries in clusters 2 and 3. Because an increase in both components (ceteris pari-
bus) implies higher LGDs, it is understandable that the share of high LGDs is higher 
in countries of cluster 1 than in countries of clusters 2 and 3. This, in turn, explains 
the second mode ( LGD = 1 ) in the first cluster.

3 � Comparative analysis

In this section, we first introduce the procedure and measures used to compare the 
predictive performances of the LGD methods. Subsequently, we describe the proce-
dure for determining appropriate hyperparameter values for the competing advanced 
methods and present the selected values for these methods in each cluster. Finally, 
we state and discuss the cluster-specific results of the comparative analysis.

3.1 � Model comparison procedure

First, we split the dataset9 into a subsample for training (in-sample calibration) and 
a subsample for testing (out-of-sample estimation), which is a common approach in 
LGD studies (see Gürtler and Hibbeln (2013) or Hartmann-Wendels et al. (2014)). For 
robustness, the results should be independent of the specific split of the dataset into 
training and test data. To achieve this, we split the dataset randomly10 according to 

8  The results are shown in Table OA.1 in online appendix.
9  In the following, the term dataset refers to a dataset of one cluster. Of course, the analysis is conducted 
for each cluster.
10  A random split of a dataset is commonly used for comparing the predictive performance of LGD esti-
mation methods and is applied both by academics and banks (see Hurlin et al. (2018)).
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different split ratios. Specifically, we split the datasets according to a (60/40), (70/30), 
(80/20), and (90/10) training/test split ratio. For each sample split, the LGD estimation 
methods are in-sample calibrated on the training dataset. The calibrated methods are 
applied to the test dataset to estimate out-of-sample LGDs. To measure the estimation 
accuracy, we use three popular out-of-sample criteria (see Hurlin et al. (2018), Krüger 
and Rösch (2017), or Qi and Zhao (2011)): the mean absolute error (MAE), the mean 
squared error (MSE), and the coefficient of determination, which are defined as follows:

where n corresponds to the number of observations in the respective dataset; LGD
i
 

denotes the true LGD value of the ith credit, L̂GD
i,m denotes the corresponding LGD 

estimation using method m, and LGD corresponds to the arithmetic mean of the 
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true LGD values. Finally, the mean of each criteria calculated over all sample splits 
denotes the estimation accuracy of the respective LGD estimation method.

3.2 � Hyperparameter tuning

To provide the best out-of-sample estimation accuracy for each method, it is partially 
necessary to determine a suitable set of hyperparameter values, a process called 
hyperparameter tuning. We determine hyperparameter values for the advanced 
methods, as well as the penalized regressions for each cluster and each sample split, 
using a five-fold cross-validation (see Nazemi et al. (2017) and Hurlin et al. (2018)) 
and a random search algorithm. We use the random search algorithm instead of the 
grid search algorithm because a random search leads to significantly shorter runt-
imes, and delivers accurate results if the number of iterations is sufficiently high (see 
Bergstra and Bengio (2012)). The final choice of hyperparameter values in the tun-
ing process is based on the same criteria used in the model comparison procedure.

The hyperparameter tuning process is based on the respective training subsam-
ples and can be described as follows. We first separate the respective training dataset 
into five subsamples. Of the five subsamples, four are used for (in-sample) calibra-
tion, while the remaining set is used for out-of-sample testing. This procedure is 
carried out five times with a changing test dataset. Within this process, the random 
search algorithm trains the considered LGD estimation method based on 1,000 dif-
ferent hyperparameter settings, where the hyperparameters are chosen randomly 
from a predefined hyperparameter set. The number of hyperparameter settings fol-
lows Bergstra and Bengio (2012). Finally, the random search algorithm chooses the 
hyperparameter values with the highest estimation accuracy (e.g., the smallest MSE 
on the test set). For each estimation method and cluster, the chosen hyperparameters, 
corresponding sets, and final choice of hyperparameter values are given in Table 3. 
For clarity, we limit the presentation of the hyperparameter tuning results in each 
cluster to the (70/30) sample split (with the MSE as evaluation criterion), which is 
often used in other LGD studies (see Qi and Zhao (2011) and Gürtler and Hibbeln 
(2013)).11 Below, we briefly summarize the main results.

First, for the lasso and elastic regressions, we find the same optimal hyperparam-
eter values ( � = 0.001 in cluster 1 and � = 0.0001 in clusters 2 and 3), whereas the 
ridge regression deviates significantly from these values � = 100 in each cluster).

Second, for the rule-based methods, the results are as follows. For the regres-
sion tree, the trees in each cluster are similar in terms of size (6–7), while the tree 
in cluster 2 has a lower minimum “node size” (9 instead of 14 or 17). For the con-
ditional inference tree and random forest, the tuning process shows that the number 
of splitting variables is similar in each cluster. The random forest also builds higher 
tree sizes than those of the regression tree in each cluster (9 instead of 6 or 7) and 

11  The chosen hyperparameter values for the other sample splits ((60/40), (80/20), and (90/10)) and per-
formance measures are available from the authors upon request.
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produces a high number of trees (777–873). Compared with the random forest, both 
boosting methods build smaller trees in each cluster (“tree size” ∈ {4, 5, 6} instead 
of “tree size” = 9 ) and produce distinctly fewer trees (112–168 instead of 777–873). 
For the boosting methods, we use a constant learning rate that corresponds to the 
speed with which the error is corrected from each tree to the next. A high learning 
rate requires a lower number of trees, and, conversely, a low learning rate requires 
a higher number of trees. As we test the number of trees for a predefined set, a 
constant learning rate is appropriate. The trees in the cubist regression model are 
(nearly) similar in clusters 2 and 3, while the first cluster produces a lower number 
of committees (23 instead of 62 and 64).

Third, for the artificial neural network, in each cluster, the second12 hidden layer 
is eliminated and the number of neurons in the first hidden layer varies from five to 
six. In each cluster, the logistic function is preferred as the activation function. As 
a solver for the weight optimization, we use the stochastic gradient-based optimizer 
(with a learning rate of 0.001) proposed by Kingma and Ba (2014) because it is rec-
ommended for large datasets.

Fourth, in the support vector regression, the cost parameter value is the same for 
each cluster, while the number of selected support vectors increases from cluster 1 
to cluster 3. For the relevance vector regression and the Gaussian process regression, 
the inverse kernel width increases from cluster 1 to 3. As a kernel function, we use 
the radial basis function for each of the three last-mentioned methods because of its 
good overall performance for vector machines (see Baesens et al. (2000)).

Fifth, in the k-nearest neighbors method, the number of nearest neighbors in clus-
ter 3 ( k = 11 ) deviates from those of clusters 1 and 2 ( k ∈ {20, 22}).

Sixth, for the multivariate adaptive regression splines, both tuning parameters 
(maximum degree of input parameters and number of terms to retain in the final 
regression function) increase from cluster 1 to cluster 2 and decrease to cluster 3.

Finally, in the finite mixture model, the number of mixture components are iden-
tical in each cluster.

3.3 � Out‑of‑sample results

In this subsection, we present the results of our comparative analysis. Because the 
cluster-specific best estimation methods are identical for all selected performance 
measures, we only present the results based on the MSE and MAE in detail for rea-
sons of clarity.13 Tables 4 and 5 show the out-of-sample estimation accuracies of the 
LGD methods. The resulting MSEs and MAEs are shown separately for the different 
clusters and split ratios. The final assessment of the methods is based on their mean 
MSE and mean MAE, respectively. 

In cluster 1, where the LGDs are symmetrically bimodally distributed, the results 
can be summarized as follows. First, the traditional methods are similar in terms 

12  The number of hidden layers is inspired by Hurlin et al. (2018), who apply networks in LGD estima-
tion with one hidden layer. We consider more than one but not more than two hidden layers because add-
ing further layers leads to considerable long computation times.
13  The results based on R2 are shown in Table OA.4 in online appendix.
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of their mean MSE, with the ordinary least squares regression having the low-
est (0.1331) and the fractional logit regression leading to the highest mean MSE 
(0.1335). In terms of their mean MAEs, the results are comparable with lasso regres-
sion showing the worst performance (0.3278). Second, not all advanced methods 
outperform the traditional methods. In particular, the k-nearest neighbors method 
and the artificial neural network exhibit relatively weak performance, with a mean 
MSE of 0.1431 and 0.1336, respectively. Considering the mean MAE, the neural 
network outperforms the traditional methods, with a mean MAE of 0.3107, and also 
shows better performance compared to other advanced methods such as the Gauss-
ian process regression (0.3192) and the conditional inference tree (0.3160). Again, 
the k-nearest neighbors method performs worst with a mean MAE of 0.3343. Fur-
thermore, the traditional methods have the highest mean MSE and mean MAE for 
the 70/30 sample split, whereas the performance of the rule-based methods improves 
with the size of the training sample. Each model extension of the simple regression 
tree also shows an improvement in MSE and MAE (decrease in MSE and MAE 
by at least 0.0094 and 0.0107, respectively). Finally, the decisive result is that the 
random forest distinctly outperforms the other methods – even in each sample split 
– with a mean MSE of 0.1241 and a mean MAE of 0.3067. Considering the mean 
MSE, it is followed by the gradient boosting method (0.1305) and support vector 
regression (0.1322). For the mean MAE, the cubist regression model (0.3068) and 
the relevance vector regression (0.3095) are the next best methods.

In cluster 2, where the LGDs follow an asymmetric (positively skewed) bimodal 
LGD distribution, the results are slightly different. First, considering the mean MSE, 
all of the traditional LGD estimation methods show lower estimation accuracies 
than in cluster 1. On average, the mean MSE has increased by 0.0041 for the tra-
ditional methods. In contrast, for the advanced methods, the mean MSE increased 
by 0.0014 on average. Considering the mean MAEs, the results are different. Most 
of the methods (except adaptive boosting method and finite mixture model) show 
higher estimation accuracies than in cluster 1. Second, while the fractional logit 
regression performs poorly in cluster 1 for both criteria, it outperforms the other 
traditional methods in cluster 2. Third, most of the advanced methods (except the 
adaptive boosting method) outperform the traditional methods, and the performance 
of each method increases with the size of the training sample. Finally, the gradient 
boosting method shows the lowest MSEs and MAEs for each sample split and leads 
to the lowest mean MSE of 0.1276 and the lowest mean MAE of 0.2712. For the 
mean MSE, it is followed by the random forest (0.1319) and the Gaussian process 
regression (0.1329). For the mean MAE, the cubist regression model and the sup-
port vector regression perform second best and third best, respectively.

In cluster 3, the case of (positively skewed) unimodally distributed LGDs, the 
MSEs of the advanced methods have evidently been reduced by about half, and the 
mean MSE ranges from 0.0455 to 0.0788. In contrast, the traditional methods show 
a reduction in the MSEs of about one third and the mean MSE ranges from 0.0807 
to 0.0840. Obviously, the MAEs show equivalent results. That is, all methods can 
handle unimodal distributions better than bimodal distributions. While the ordinary 
least squares regression proves to be the best of the traditional methods (as in cluster 
1) for the MSEs, it is lasso regression for the MAEs. The artificial neural network 
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and the adaptive boosting method perform worst for both criteria. In accordance 
with clusters 1 and 2, the random forest and the gradient boosting show good per-
formance, while their absolute difference in mean MSE is slightly less than in the 
other two clusters. The decisive result is that the finite mixture model unmistakably 
outperforms the other methods—even in each sample split—with a mean MSE of 
0.0455 and a mean MAE of 0.1480. For the mean MSE, it is followed by the random 
forest (0.0561) and the gradient boosting method (0.0572). For the mean MAE, the 
random forest (0.1488) and the cubist regression model (0.1552) are the next best 
methods.

To exclude the possibility that some superiority may have occurred by chance, 
we also perform a paired t-test in each cluster to compare the mean MSE and 
mean MAE of the five best methods (similar to Yao et al. (2017) and Hurlin et al. 
(2018)).14 The key insights of the pairwise tests are as follows. Considering cluster 
1, the differences in mean MSE between the random forest and the next best meth-
ods are always negative at the 5% significance level. In contrast, the differences in 
the mean MAE are negative at the 10% significance level. That is, the random forest 
shows (marginal) significant superiority. In the context of clusters 2 and 3, the two 
best-performing methods (i.e., the gradient boosting method and the finite mixture 
model) outperform all other models significantly. Precisely, the differences between 
the corresponding mean MSEs and mean MAEs are always negative at the 5% sig-
nificance level.

Broadly, the results indicate that the advanced methods outperform the traditional 
methods overall. However, the relatively weak performance of the artificial neural 
network shows that, even with a systematic choice of hyperparameters, overfitting 
remains a challenging issue when applying advanced methods to an LGD estima-
tion. Further, the level of estimation accuracy is related to the respective LGD dis-
tribution. For bimodal distributions, all methods show considerably worse perfor-
mance than for unimodal distributions. This result is understandable because the 
methods (mostly) correctly estimate a low LGD for a unimodal distribution based 
on the randomly drawn training dataset. In the case of a bimodal distribution with 
two different modes, the estimation is discernibly more difficult. Moreover, the type 
of distribution is crucial for the best-performing method. For symmetrically bimo-
dally distributed LGDs, the random forest implies the highest estimation accuracy 
and the paired t-test shows its significant superiority compared with the other next 
best methods. For the asymmetric bimodal LGD distribution, the gradient boost-
ing method shows the best performance, which is also significant at the 5% level. 
This result is understandable and can be explained as follows. A central difference 
between the random forest and gradient boosting method is the simultaneous or 
iterative construction of individual trees. Because of the high probability of small 
LGDs in the case of asymmetric bimodal distributions, the random forest creates a 
high proportion of trees that belong to low LGDs. Here, the “learning effect” of the 
method is missing because of its simultaneous structure. In contrast, the iterative 

14  Again, the results are shown in detail in Table OA.2 and Table OA.3 in online appendix.
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approach of gradient boosting leads to better identification of high LGDs, even if 
high LGDs only have a small proportion. That is, this method has advantages for 
asymmetrical bimodal distributions. Finally, in the case of a unimodal LGD distri-
bution, the finite mixture model shows the highest estimation accuracy, which is also 
significant compared to the other methods. Because of the simple nature of the dis-
tribution, the finite mixture model can easily identify suitable components for which 
the separate linear regressions then lead to good estimation results. Although some 
other methods also use partitioning strategies, the finite mixture model seems to be 
particularly suitable for unimodal LGD distributions.

4 � Robustness checks

To investigate the robustness of the performance results, we consider four modifica-
tions of the estimation approach: First, we extend the methods by including addi-
tional explanatory variables. Second, we change the clustering procedure by clus-
tering the LGD distributions based on a loan-specific variable rather than country. 
Third, we apply a logarithmic transformation to the positively skewed unimodally 
distributed LGDs to get a more normal-like distribution. Fourth, we change the data-
set and use non-European credit portfolios that are characterized by the same three 
types of LGD distributions.

In each robustness check, we rerun our method comparison procedure, that is, the 
methods are re-calibrated, optimal hyperparameter values are re-determined and the 
out-of-sample model comparisons and significance tests are re-performed. Before 
we present the detailed results, it can already be stated at this point that the best 
methods remain the same for the three distribution types, regardless of the perfor-
mance measure. For this reason, we show only the results based on the mean MSE 
for reasons of clarity.15

4.1 � Inclusion of enterprise‑specific variables

In this subsection, we test how additional explanatory variables affect the estimation 
results. Specifically, we include the following three enterprise-specific (logarithmic) 
variables: the reported sales in the 12-month period before default, the reported 
total assets on default, and the total amount of interest-bearing debt. Because of a 
non-disclosure agreement, this information is not available for all enterprises in the 
credit portfolio. For this reason, the robustness check is based on a reduced (but suf-
ficiently large) dataset of 4,268 defaulted loans. The LGD distributions of the loans 
are still characterized by the three distribution types.16

Table 6 shows the results in terms of the MSEs . It is noteworthy that the estimation 
errors are reduced for each method in each cluster, that is, the newly added variables 

15  The results based on the MAE and R2 are shown in online appendix. The results of the hyperparam-
eter tuning processes and significance tests are available upon request.
16  The descriptive statistics and LGD distributions are shown in Table OA.5 and Fig. OA.2 in online 
appendix.
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seem to be important for the estimation performances of the methods. For this reason, 
we exemplary analyze the variable importance of the random forest for the (nearly) 
symmetric bimodal distribution (cluster 1). The importance score of a variable is com-
puted as the total reduction of the node impurity brought by that variable, averaged over 
all trees in the random forest. In this study, the decrease in node impurity is measured 
based on the difference between the MSE before and after splitting on a certain varia-
ble. The higher the impurity decrease, the higher the importance score of the respective 
variable as it indicates a higher contribution to reducing the MSE.

Figure 2 shows the relative variable importance17 for each variable in the random for-
est. It turns out that the additional three variables (represented by dark bars) have a high 
importance score in the random forest, confirming the relevance of including enterprise-
specific variables in the LGD estimation. However, because the inclusion of additional 
variables usually also carries the risk of overfitting, we would like to point out that such 
an approach does not necessarily lead to better estimation results in other estimation tasks. 

As already mentioned, the main results of this robustness check are similar to those in 
the preceding subsection. First, for bimodal distributions, all methods show worse perfor-
mances than for the unimodal distribution. Second, for symmetrically bimodally distrib-
uted LGDs, the random forest implies the highest estimation accuracy. Third, the gradient 
boosting method shows the best performance for the asymmetric bimodal distribution, 
followed by Gaussian process regression and random forest. Fourth, in the case of a uni-
modal distribution, the finite mixture model turns out to be best. For all best-performing 
methods, the paired t-tests confirm their significant superiorities. Therefore, we confirm 
that the level of estimation accuracy is related to the respective distribution type.

4.2 � Clustering based on loan‑specific variable

A key finding of our study is that the specific modality type of a distribution is crucial 
for the best-performing estimation method. To rule out that the identified heterogeneities 
among the distributions are not caused by the approach of clustering, in this robustness 
check we do not cluster the distributions by country, but by a loan-specific variable. Spe-
cifically, we use the number of collaterals deposited for a loan, which has emerged in the 
literature as one of the most important loan-specific variables for estimating LGDs (see, 
for instance, Dermine and de Carvalho (2006) or Krüger and Rösch (2017)). Moreover, 
the analysis of the variable importance of the random forest in the previous subsection 
also indicates the high relevance of this variable (see Fig. 2).

The clustering strategy is same as in Subsection 2.3: For each number of collat-
eral in the dataset,18 we aggregate the LGDs of all defaulted loans based on the LGD 
quantiles in a range from 1% to 100% with a stepwise increase of 1%. We then clus-
ter the resulting ten loan-specific LGD distributions using the agglomerative hierar-
chical clustering. The results are shown in Fig. 3.19 It turns out that clustering by a 

17  The relative variable importance is calculated by dividing each variable importance score by the sum 
of all variable importance scores.
18  Loans with greater than or equal to ten collaterals are grouped together because there are few loans in 
the dataset that exceed this number of collaterals.
19  The dendrogram of the agglomerative hierarchical clustering is shown in Fig. OA.3 in online appen-
dix.
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loan-specific variable does not lead to any other specific distribution types. Again, 
we find three clusters, whose distributions essentially differ in their modality type.

Table  7 shows the out-of-sample estimation accuracies of the LGD methods. 
Overall, the results are comparable to those from Subsection 3.3 and can be sum-
marized as follows: First, most of the advanced methods outperform the traditional 
methods for the three distribution types. Second, the performance of each method 
increases in each cluster with the size of the training sample. Third, all methods 
deal better with unimodal than with bimodal distributions, confirming that the level 
of estimation accuracy is related to the respective distribution. Finally, the superior 
methods are the same for each cluster, which confirms that the specific distribution 
type is crucial for the best-performing method. 

This robustness check shows that the identified heterogeneities among the distri-
butions even persist when the clustering approach is modified. Of course, it is con-
ceivable that other distributions are relevant in a clustering approach based on other 
variables such as macroeconomic variables. In such a case, the best estimation pro-
cedure must be redetermined.

0.00

log(EAD)
Number of collaterals

log(Entity sales)

STOXX600
log(Entity total debt)

Seniority code (Pari-passu)
log(Entity assets)

Number of guarantors
6-Month EURIBOR

Collateral indicator (Real estate)
Collateral indicator (Y)

Industry (TCEGS)
Industry (FIRE)
Industry (WRT)
Industry (MAN)

Seniority code (Super senior)
Industry (Other)
Industry (CON)

Facility type (Medium term)
Collateral indicator (N)

GDP indicator
Industry (SERV)

Facility type (Short term)
Industry (AFFH)

Facility type (Other)
Guarantee indicator (N)

Seniority code (Non senior)
Guarantee indicator (Y)

Industry (MIN)

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
relative variable importance

Fig. 2   Inclusion of enterprise-specific variables: Node impurity decrease measure in random forest 
(Cluster 1). Note. This figure shows the relative importance of the variables in the random forest using 
the node impurity measure. A high value indicates higher importance of a variable
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4.3 � Logarithmic transformation of the positively skewed unimodally distributed 
LGDs

In this subsection, we apply a logarithmic transformation to the positively skewed 
unimodally distributed LGDs (country-specific LGD distribution; cluster 3), which 
leads to a more normal-like distribution.20 We investigate whether this approach 
leads to improved estimation results or change the conclusions regarding the accura-
cies of the methods.

Table 8 shows the estimation performance of the methods in terms of the MSEs. 
The main results are similar to those for cluster 3 in Subsection 3.3. We find that the 
estimation errors of all methods are reduced due to the simple nature of the normal-
like distribution. In accordance with the previous results, the random forest and the 
gradient boosting show good performance. However, the finite mixture model out-
performs significantly the other methods in each sample split. Therefore, this robust-
ness check provides two new insights: First, transforming the unimodal distribution 
improves the performance of the estimation methods. Second, the finite mixture 
model also seems to be particularly suitable for more normal-like distributions. 

4.4 � Non‑European credit portfolios

In this subsection, we conduct a comparative analysis based on various non-Euro-
pean credit portfolios as a robustness check. Using 6,408 defaulted loans by Latin 
American, North American, and Oceanian SMEs, provided by Global Credit Data, 
we rerun our method comparison procedure. The restrictions we applied to the data 
are the same as those for the European data.21

The LGD distributions of the defaulted loans are shown in Fig. OA.4 in online 
appendix and are characterized by the distribution types identified previously. While 
the LGDs in the Latin American loan and the North American loan portfolios show 
a symmetric or asymmetric (positively skewed) bimodal distribution (clusters 1 and 
2), the Oceanian LGDs are characterized by a (positively skewed) unimodal distri-
bution shape (cluster 3). The LGD estimation methods are evaluated based on their 
out-of-sample performances. Table 9 shows the results in terms of the MSEs.22 The 
main results are similar to those for the clusters in the preceding subsections.

First, for bimodal distributions, all methods show worse performances than for 
the unimodal distribution. Second, for symmetrically bimodally distributed LGDs, 
the random forest implies the highest estimation accuracy. Third, the gradient boost-
ing method shows the best performance for the asymmetric bimodal distribution, 
followed by the random forest and support vector regression. Fourth, in the case 
of a unimodal distribution, the finite mixture model turns out to be best. Therefore, 
we confirm that the level of estimation accuracy is related to the respective LGD 

22  Again we also perform an analysis based on the R2 and MAE. The results are available on request.

20  The descriptive statistics are shown in Table OA.11 in online appendix.
21  The descriptive statistics are shown in Table OA.13 in online appendix.
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distribution type. It is also noteworthy that these results persist even with small loan 
portfolios such as the Latin American or the Oceanian portfolio.

5 � Conclusion

The literature reveals mixed results on how well LGD estimation methods perform 
owing to each study using country-specific credit data that have a specific LGD dis-
tribution. In contrast, we compare various LGD estimation methods for a large class 
of LGD distributions. For a broad international loan portfolio, we first identify rel-
evant types of LGD distributions by using cluster analysis and then compare the 
estimation methods individually for each LGD distribution type.

The cluster analysis leads to three types of distributions, which differ in their modal-
ity. We identify a (nearly) symmetric bimodal distribution, an asymmetric (positively 
skewed) bimodal distribution, and a (positively skewed) unimodal distribution. The esti-
mation accuracies of 20 different methods are tested based on their out-of-sample perfor-
mance, measured using MSE, MAE, and R2 . First, for loan portfolios with a symmetric 
bimodal LGD distribution, the random forest implies the highest estimation accuracy and 
should be preferred to other methods in an LGD estimation. Second, LGD estimations 
for loan portfolios with asymmetrically (positively skewed) bimodally distributed LGDs 
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should be based on the gradient boosting method. Finally, in the case of a unimodal LGD 
distribution, the finite mixture model shows the best performance. The latter results are 
supported by a series of robustness checks.

This study makes two main contributions to the literature on LGD estimation. 
On the one hand, we show that different country-specific LGD distributions can be 
traced to three basic (modality) types, which determine the estimation method to be 
used. On the other hand, we identify methods that perform best, depending on the 
modality of the LGD distribution. These results provide general advice for banking 
practice and regulatory authorities. Instead of an extensive loan portfolio analysis, 
we recommend that only the LGD distribution type needs to be identified to select 
the best-performing estimation method.

Furthermore, our study also has relevance for forecasting and estimation prob-
lems outside the banking area, because the idea of clustering and identifying dif-
ferent parameter distribution types to determine the respective best estimation 
procedure is applicable in all areas of predictive analytics. In this way, we obtain 
a distribution-type-dependent recommendation for method selection. Of course, in 
case of additional identified distribution types, the performance measurement of the 
estimation procedures has to be repeated.
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