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Abstract
The main challenge in empirical asset pricing is forecasting the future value of assets 
traded in financial markets with a high level of accuracy. Because machine learn-
ing methods can model relationships between explanatory and dependent variables 
based on complex, non-linear, and/or non-parametric structures, it is not surprising 
that machine learning approaches have shown promising forecasting results and sig-
nificantly outperform traditional regression methods. Corresponding results were 
achieved for CAT bond premia forecasts in the primary market. However, since sec-
ondary market data sets have a panel data structure, it is unclear whether the results 
of primary market studies can be applied to the secondary market. Against this back-
ground, this study aims to build the first out-of-sample forecasting model for CAT 
bond premia in the secondary market, comparing different modeling approaches. 
We apply random forest and neural networks as representatives of machine learn-
ing methods and linear regression based on a comprehensive data set of CAT bond 
issues and across various forecasting settings and show that random forest forecasts 
are significantly more precise. Because the lack of transparency of machine learn-
ing methods may limit their applicability, especially for institutional investors, we 
show ways to identify important variables in the context of random forest price 
forecasting.

Keywords Forecasting · Machine learning · Linear regression · CAT bond 
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1 Introduction

In the context of asset price forecasting, machine learning approaches have recently 
shown promising results, significantly outperforming the forecasting capabilities 
of traditional regression methods (Bianchi et al. 2021; Gu et al. 2020). While most 
studies focus on the stock market, there are only few papers that analyze bonds. 
Bianchi et al. (2021) compared different forecasting models to predict future bond 
excess returns. They showed that neural networks outperform penalized regression 
models as well as different regression tree models. Götze et al. (2020) and Makariou 
et al. (2021) forecast catastrophe (CAT) bond primary market premia and both show 
that random forests outperform linear regression models. In addition, Götze et  al. 
(2020) established a neural network model, which was also outperformed by the ran-
dom forest model in terms of forecasting accuracy. Compared to the primary market, 
a greater amount of information and possible explanatory determinants are avail-
able in the secondary market, such as the historical change in premia represented 
by momentum variables. In such an environment, it is unclear whether the results 
of the primary market studies are transferable to the secondary market. Against this 
background, the first objective of this study is to analyze price forecasting accuracies 
of traditional linear regression and selected machine learning methods in the CAT 
bond secondary market. In addition, this study contributes to the existing literature 
by providing the first out-of-sample prediction model for the CAT bond secondary 
market.

Although machine learning methods are possibly superior to linear regression in 
modeling complex relationships, a major advantage of traditional linear regression 
over advanced machine learning methods lies in its transparency regarding the func-
tional relationships between the (dependent) price variable and independent vari-
ables. Especially in the context of institutional investors or issuers, the transparency 
of the applied methods is of particular importance because of the regulatory require-
ments.1 Machine learning methods are often referred to as black boxes, which would 
contradict this requirement. In addition, especially in the field of machine learning, 
program codes (e.g., in R), which are made available on the internet by the pro-
gramming community, are used. To check the implemented methods for plausibil-
ity, it must be clarified whether the variable selection made by the model appears 
plausible. Specifically, it is necessary to clarify which independent variables are of 
particular importance in forecasting the price variable, so that it is clear on which 
variables the forecast is based. Consequently, the second objective of this study is 
to determine the possibility of identifying relevant price influencing variables when 
applying machine learning methods.

1 For example, the European Insurance and Occupational Pensions Authority (EIOPA) motivates insur-
ance firms to “strive to use explainable AI models” (European Insurance and Occupational Pensions 
Authority 2021, p. 8). For the banking sector, the Basel Committee on Banking Supervision emphasizes 
that risk management decisions that are “based entirely on the output of complex quantitative analysis 
(“black boxes”) may not result in effective and prudent decision-making” (Basel Committee on Banking 
Supervision 2013, p. 11).
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In the present study, we consider the CAT bond secondary market, analyze the 
forecasting performance of random forests and artificial neural networks as relevant 
representatives of machine learning methods, and compare them with the perfor-
mance of traditional linear regression. CAT bonds can be regarded as capital market-
based reinsurance against natural disasters and represent an alternative to traditional 
reinsurance. The CAT bond market has increased continuously since its inception 
in the 1990s. Therefore, CAT bond pricing has become an important topic in the 
literature on insurance and asset pricing. The literature consists of a wide range of 
models that examine the relationships between CAT bond premia and relevant influ-
encing factors based on traditional regression methods in the primary market (Lane 
2000; Wang 2000, 2004; Galeotti et  al. 2013; Braun 2016; Trottier et  al. 2018). 
The only studies that compare traditional regression models and advanced machine 
learning methods (also related to the primary market) are Götze et  al. (2020) and 
Makariou et  al. (2021). However, compared with the primary market, CAT bond 
secondary market premia display significantly smaller uncertainty in the sense of 
conditional variance (given the available price information of the previous points in 
time).2 Consequently, besides the availability of more information due to the panel 
data structure compared to the primary market, the secondary market for CAT bonds 
is a low uncertainty environment for which it is still unclear whether the forecasting 
quality of machine learning methods exceeds the forecasting quality of traditional 
linear regression. In this respect, the CAT bond secondary market seems to provide 
an unexplored environment to study the forecasting performance of the procedures.

The literature on the relevant factors influencing CAT bond premia in the second-
ary market is based on traditional linear regressions. Gürtler et al. (2016) conduct 
the first study in the secondary market of CAT bonds and show that their premia 
depend on different bond-specific and macroeconomic factors. Herrmann and Hib-
beln (2021, 2022) examine the influence of seasonality and liquidity and Götze and 
Gürtler (2020) investigate the impact of sponsor characteristics on CAT bond premia 
in the secondary market. However, the identification and plausibility of the factors 
influencing CAT bond premia within the framework of machine learning methods 
are missing for both the secondary and primary markets, making these methods 
unsuitable so far, at least for the institutional sector, due to the lack of transparency.

Our study is based on a data set comprising all public CAT bond issues conducted 
in the period between November 1997 and March 2018. The dependent variable is 
the monthly secondary market price from Aon Benfield between December 2000 
and March 2018. The data set is completed using CAT-bond-specific, sponsor-spe-
cific, and macroeconomic data. Furthermore, we use the monthly arrival frequencies 
for US hurricanes and European winter storms to design a measure of seasonality in 
the CAT bond market. On this basis, we develop the above-mentioned forecasting 

2 The conditional variance of the present secondary market data set amounts to 0.0109, whereas the 
(conditional) variance of CAT bond premia in the primary market data set of Götze et  al. (2020) is 
0.0507. This result is also intuitively understandable, as at the time of issue no historical CAT bond price 
information is available, which entails a higher degree of uncertainty. Against this background, the con-
ditional variance of primary market premia corresponds to unconditional variance.



1632 T. Götze et al.

1 3

models for CAT bond premia in the secondary market, which we test using a rolling 
sample forecast.

The results show that random forest outperforms linear regression and artificial 
neural network in terms of the sum of squared errors (SSE). This result is confirmed 
by the Diebold–Mariano (DM) test, in which the difference in performance accu-
racy is statistically significant. Because we are concerned with the applicability of 
the best performing method, we pursue the second objective of the study only with 
the random forest method. Fortunately, approaches to detect variable importance 
already exist for the random forest. In our study, we used the “number of trees meas-
ure” and “node impurity decrease” to determine the importance of the explanatory 
variables for CAT bond premia. To compare these results with the results of a linear 
regression, we additionally developed a possibility to identify significant variables 
within the rolling sample architecture of the study. It turns out that the most impor-
tant variables for the random forest essentially correspond to the significant vari-
ables of the linear regression. In this way, even the effect directions of the important 
variables can be identified via the linear regression coefficients.

The remainder of this paper is organized as follows. Section 2 describes the data 
set, including the sample selection approach, variables, and descriptive statistics. In 
Sect. 3, we describe the model framework and introduce the modeling approaches 
used. Section 4 presents the empirical analysis and out-of-sample results for the sec-
ondary market. In addition, we provide insights into the determination of the rel-
evant explanatory variables in the random forest and present which variables are 
important in the specific case of the CAT bond secondary market. Section 5 con-
cludes the paper.

2  Data

This section describes the data used to develop the CAT bond secondary market 
forecasting model. First, we describe the sample selection procedure. Second, the 
variables used in the empirical analysis are introduced. Third, descriptive statistics 
of the data are presented.

2.1  Sample selection

The initial data set is based on 617 CAT bonds traded in the secondary market 
and issued between November 1997 and March 2018. The dependent variable in 
our analysis corresponds to CAT bonds’ secondary market premia, defined as yield 
spread over LIBOR, on a monthly basis which are available since December 2000. 
CAT bond-specific explanatory variables such as expected losses and issue volumes 
and terms are obtained from Aon Benfield3. Data on trigger mechanisms, insured 

3 Aon is a reinsurance intermediary and capital advisor. It releases reviews of Insurance-linked Securi-
ties annually. See https:// www. aon. com/ reins urance/ thoug htlea dersh ip/ defau lt.

https://www.aon.com/reinsurance/thoughtleadership/default
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peril types and locations are obtained from the Artemis Deal Directory4 and Aon 
Benfield. Data on the bonds’ sponsor are provided by Lane Financial LLC5 and 
macroeconomic data are extracted from Bloomberg and Thomson Reuters.

To prepare the data set for subsequent analyses, all observations with missing or 
implausible data are excluded. The price of bonds that were labeled “distressed” fol-
low the loss-estimation process, because a triggering event and most likely a default 
has occurred. Therefore, these bonds are excluded from the data set as of the point 
in time they became distressed. Furthermore, the analysis is restricted to CAT bonds 
with a time to maturity of at least half a year. The remaining data set consists of 537 
bonds with 11,970 observations of premia.

2.2  Variables

The set of variables included in the forecasting models is based on Braun (2016), 
Gürtler et al. (2016), Götze and Gürtler (2020) and Herrmann and Hibbeln (2022, 
2021). We introduce bond-specific, sponsor-specific, macroeconomic, and seasonal 
variables, as described below.

2.2.1  Bond‑specific variables

We include several bond-specific variables. Studies conducted on the primary mar-
ket have shown, that the Expected Loss (EL) is the most influential determinant of 
the CAT bond premium (Galeotti et al. 2013; Braun 2016; Gürtler et al. 2016; Trot-
tier et al. 2018). The EL of a CAT bond is calculated by a third-party risk modeling 
firm, e.g. AIR Worldwide6, as the average loss investors can expect over a given 
time period, divided by the amount of capital invested. In addition to the EL, we 
incorporate the Spread at Issue and the variables Bond Issue Volume and Total Issue 
Volume, which represents the natural logarithm of a bond’s issue volume or the total 
issue volume of all CAT bonds at the time of observation, respectively, and serve as 
a proxy for bond liquidity. A dummy variable Trigger Indemnity takes the value of 
one if the bond’s trigger type is indemnity, and zero otherwise. The variable Matu-
rity captures the impact of a bond’s time to maturity at issuance on premia. Simi-
larly, TTM measures the bond’s (remaining) time to maturity at the time of obser-
vation. To reflect the complexity of a CAT bond, we include the variables No. of 
Locations and No. of Perils to account for the number of different insured locations 
and the number of insured perils, respectively. In addition, we establish a series of 
dummy variables for different bond rating categories, peril types, and peril locations. 

4 Artemis is a media service for news, analysis and data covering alternative risk transfer, Insurance-
linked Securities as CAT bonds and non-traditional reinsurance. Detailed information can be found on 
https:// www. artem is. bm/.
5 Lane Financial LLC is a consulting firm with focus on the intersection of finance and reinsurance. It 
publishes reports on insurance and capital market developments, incorporating CAT bond information. 
For further information see http:// lanefi nanc ialllc. com/.
6 More information available on: https:// www. air- world wide. com/.

https://www.artemis.bm/
http://lanefinancialllc.com/
https://www.air-worldwide.com/


1634 T. Götze et al.

1 3

Following Gu et al. (2020), we incorporate a momentum factor. Momentum meas-
ures the velocity of price changes and is calculated by using the price differences for 
a fixed time window, as follows:

where yit is the CAT bond premium of bond i at time t. Specifically, the j-month 
Momentum is positive if the premium of a CAT bond at time t is higher than its 
premium j months ago. Analogously, a decrease in the premium from time t − j to t 
leads to a negative momentum value. We consider 1-month, 2-month, 3-month, and 
4-month momentums.

2.2.2  Sponsor‑specific variables

Present studies show that sponsor characteristics influence CAT bond secondary 
market premia (Götze and Gürtler 2018, 2020). Consequently, we use the following 
sponsor-specific variables: Sponsor Diversification, defined as the number of differ-
ent combinations of peril types and locations insured by CAT bonds of the same 
sponsor at the observed time and Sponsor Tenure, which describes the tenure of a 
sponsor (calculated as the difference between the point in time of the first occurrence 
of the sponsor and the respective observation point in time) and serves as a measure 
of the sponsor’s experience. The impact of sponsor type on premia is modeled by 
introducing dummy variables for the sponsor types of Reinsurer, Insurer, and Other. 
The dummy variable Sponsor Rating NIG takes the value of one for non-investment 
grade rated sponsors and zero for sponsors with an investment grade rating. Further-
more, we introduce two dummy variables Positive Rating Event and Negative Rating 
Event based on the sponsor ratings and their placement on the watch list. The vari-
able Positive Rating Event takes a value of one, if (a) the sponsor is upgraded, (b) 
the sponsor is placed on the watch list for an upgrade, or (c) the sponsor is removed 
from the watch list for downgrade, and zero otherwise. The definition of Negative 
Rating Event is analogous.

2.2.3  Macroeconomic variables

Macroeconomic variables are used to consider overall market development in our 
models. CAT bonds are a potential substitute for traditional reinsurance, suggesting 
that the prices for these two types of risk transfer instruments show some co-move-
ment (Braun 2016; Gürtler et al. 2016). Therefore, we incorporate the annual rela-
tive change in the Guy Carpenter Global Property Catastrophe Rate-on-Line Rein-
surance Price Index (Reins. Index), as described in more detail by Carpenter (2012). 
We use the change in the price index as a proxy for the reinsurance price cycle. We 
also include Corporate Credit Spread (Corp. Spread), which is based on the credit 
spread of US corporate bonds of different rating classes and maturities between one 
and three years, obtained from the Bank of America Merrill Lynch. The variable 
Corp. Spread is constructed by matching the spreads with bonds in an identical 

(1)j-month Momentumit = yit − yit−j,
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rating class.7 Furthermore, we observe the volume-weighted mark-to-market price 
(weighted price) of outstanding CAT bonds on the secondary market. We then deter-
mine the relative change in that price on a monthly basis and label our variable CAT 
Bond Index, which indicates the investor demand for CAT bonds. By including the 
Reinsurance Index and the CAT Bond Index, the impact of regulatory changes that 
may affect the relative attractiveness of CAT bonds is accounted in our models, as 
both variables are substitutes for risk transfer. In addition, both measures reflect the 
sponsors’ costs of alternative capital resources, reflecting the current market envi-
ronment. Finally, we include the monthly returns on the S&P 500 to consider equity 
market development.

2.2.4  Seasonality

For the valuation of CAT bonds insuring hurricanes and winter storms, it is relevant 
to know how many hurricane or storm seasons fall in the time until maturity of the 
bond (see e.g. Götze and Gürtler (2020) and Herrmann and Hibbeln (2021)). This 
seasonality effect is particularly relevant for CAT bonds insuring US hurricanes 
and European winter storms. Furthermore, bonds that approach maturity, bonds 
with higher ELs, and single-peril bonds are more strongly influenced by seasonality. 
Thus, we construct two seasonality variables, considering these aspects. Analogous 
to Herrmann and Hibbeln (2021), we calculate two different seasonal EL variables 
for CAT bonds exposed to U.S. hurricanes and European winter storms, respec-
tively. To construct the seasonality measure, we use data on the monthly arrival fre-
quencies of U.S. hurricanes and European winter storms provided by AIR. The sea-
sonally adjusted EL is then calculated based on the initial EL of bond i and monthly 
arrival frequencies8 of catastrophic events aPeril

t′
 as follows:

Equation (2) is calculated separately for the US Hurricane and European Winter 
Storm perils. TTMi,t describes the maturity term of bond i in years. Ti refers to the 
maturity date of bond i. The indicator function I[0,1](Perili) takes a value of one if 
the CAT bond insures against the respective peril (US hurricane or European winter 
storm), and zero otherwise, implying that if a bond does not insure US hurricanes or 
European winter storms, both seasonal EL variables take a value of zero.

(2)ELPeril
i,t

= I[0,1](Perili) ⋅ ELi ⋅
1

TTMi,t

⋅

Ti∑

t�=t

aPeril
t�

7 This matching procedure is difficult for CAT bonds in our sample without rating, since a suitable cor-
porate bond index that could be assigned to those bonds cannot be determined intuitively. Thus, we fol-
low Götze and Gürtler (2018), who suggest that the risk characteristics of CAT bonds without a rat-
ing resemble those of “B”-rated bonds. Hence, the spreads of “B” corporate bonds are matched to CAT 
bonds without a rating.
8 According to Herrmann and Hibbeln (2022), we use the distribution of arrival frequencies for US Hur-
ricanes and European Winter Storms modeled by AIR. In this way, each calendar month is assigned a 
number that describes the relative proportion of arrival frequency during a calendar year.
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2.3  Descriptive statistics

Table 1 presents the descriptive statistics of the dependent and explanatory variables 
used in the analysis. All time-invariant variables (EL, Spread at Issue, No. of Per-
ils, No. of Locations, Bond Issue Volume, Maturity, Sponsor type, and the dummy 
variables for Peril types and locations, bond rating classes, Multiperil, and Trigger 
Indemnity are reported at the issue level, whereas time-variant variables (seasonal 
ELs, Total Issue Volume, Sponsor Tenure, Sponsor Diversification, TTM, Momen-
tum variables, the dummy variables for Sponsor Rating NIG, Positive Rating Events 
and Negative Rating Event, S&P 500, Corp. Spread, Reins. Index, CAT Bond Index) 
are reported at the observation level. The mean of the premium is 6.74% , which is 
almost three times greater than the mean of the EL. A bond has an average issue 
volume of USD 130.69 million and an average maturity of about three years. On 
average, a CAT bond insures 2 perils and 1.46 locations. Approximately 35% of 
CAT bonds in our data set contain an indemnity trigger. Most bonds insure perils 
such as Earthquakes (EQ) and Hurricanes (HU). The most prevalent peril location 
is North America (NA). The sponsor type is Reinsurer for 52% of the bonds, whereas 
the sponsor type is Insurer for 44% of the bonds. Approximately 43% of the CAT 
bonds have a “BB” rating. The sponsors in the data set have a mean Tenure of about 
nine years and their mean Diversification is 3.77 peril/location combinations. It is 
also noticeable that the EL variables and the Spread at Issue show a high correlation 
with the premium, which may indicate some relevance of the variables in explaining 
the premium.

3  Model description

In this section, we explain how the forecast quality of the models is determined and 
how the specific models are implemented. First, we briefly introduce the model 
framework. Next, we introduce the models used. In this context, we also explain 
how the required hyperparameters for the respective models are selected.

3.1  Model framework

As explained in the introduction, we consider the CAT bond secondary market 
because, unlike the primary market, it is subject to much less uncertainty in terms 
of lower conditional variance. Additionally, the secondary market data set exhibits a 
much larger sample size than the primary market data set and allows us to include 
additional explanatory variables that potentially affect the performance of the fore-
casting models.

All considered models are fitted in-sample and then tested on an out-of-sample 
period. We fit and test all models in 16 different settings (in-sample/out-of-sample 
period length combinations) that differ in terms of the length of the in-sample period 
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(one, two, three, or four years) and the length of the out-of-sample period (one, two, 
three, or four months). After each forecast, we shift each data sample by the length 
of the out-of-sample period.9

Both the in-sample model fit and the out-of-sample forecasting performance are 
based on the SSE, which is defined as follows (López et al. 2022, p. 400):10

where m is the number of observations in the considered data set, yi denotes the 
observed premium of CAT bond i in the data set, and ŷi stands for the estimated pre-
mium of bond i.

Because we want to contrast the results of the present secondary market study 
to the primary market study of Götze et  al. (2020), the same forecasting methods 
(linear regression, random forest, and neural network) are used and examined with 
respect to their forecasting performance. In the following subsections, we briefly 
introduce the three price forecasting methods.

3.2  Linear regression model

Empirical models used to forecast the future price of financial assets are mainly 
based on linear regression models (Campbell and Thompson 2007; Rapach et  al. 
2010; Thornton and Valente 2012). An advantage of linear regression models is that 
the economic relationships between the dependent and explanatory variables are 
easy to interpret, which enables the modeler to identify the causes of poor model 
performance. This advantage is also exploited in CAT bond literature, as it relies 
predominantly on linear regression models (Lane 2000; Wang 2000, 2004; Gale-
otti et al. 2013; Braun 2016; Gürtler et al. 2016). We consider the following linear 
regression model for the forecast of premia yi,t+1 in the secondary market:11

for CAT bonds j = 1,… , n and different points in time t = 1,… , T  . The vector 
Vj refers to bond-specific variables that are time-invariant, such as the number of 
insured peril types. Vectors Wj,t and Zj,t+1 comprise variables that vary by bond and 
time. Specifically, Zj,t+1 contains information on time t + 1 , which is already known 
at time t, for example seasonality, while Wj,t+1 refers to time-variant variables, the 
values of which are not known at time t, such as macroeconomic variables. For 
this reason, we must draw on Wj,t for the prediction of yj,t+1 . The latter procedure is 

(3)SSE =

m∑

i=1

(yi − ŷi)
2,

(4)yj,t+1 = �j + �� ⋅ Vj + � � ⋅Wj,t + �� ⋅ Zj,t+1 + uj,t+1

9 The procedure is inspired by Carayannopoulos et al. (2018) and Gu et al. (2020).
10 In many studies, the root mean square error (RMSE) is used as an error measure. Due to the relation-
ship RMSE =

√
SSE∕m , all results of the present study also apply to the RMSE. We present the RMSE 

results for the out-of-sample predictions in addition to the SSE results in Table 3.
11 In the following, v′ characterizes the transpose of a vector v. � , � , and � denote the coefficient vectors 
belonging to the regression.
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Table 1  Summary statistics: CAT-bond-specific, sponsor-specific and macroeconomic variables

Obs Mean Std.dev. Min. Max. Corr.

Dependent variable
 Premium (in %) 11,970 6.74 4.79 – 3.92 47.40 1.00

CAT-bond-specific variables
 EL (in %) 537 2.35 2.33 0.00 14.75 0.74
  ELUSHU (in %) 11,970 1.59 2.27 0.00 28.39 0.72
  ELEUwind (in %) 11,970 0.61 1.68 0.00 25.84 0.41
 Spread at issue (in %) 537 7.52 4.98 0.41 39.25 0.82
 No. of Perils 537 1.98 1.52 1.00 8.00 0.16
 No. of Locations 537 1.46 0.89 0.00 4.00 0.27
 Multiperil 537 0.50 0.50 0.00 1.00 0.29
 Bond Issue Volume (log) 537 4.46 0.99 0.59 7.31 – 0.17
 Total Issue Volume (log) 11,970 9.20 0.66 7.35 10.07 – 0.00
 Maturity (in years) 537 3.09 0.99 0.93 10.00 – 0.23
 TTM (in years) 11,970 1.83 0.89 0.50 6.39 – 0.07
 Trigger Indemnity 537 0.35 0.48 0.00 1.00 – 0.05

Peril type
 Earthquake 537 0.63 0.48 0.00 1.00 0.09
 Hurricane 537 0.64 0.48 0.00 1.00 0.20
 Wind 537 0.40 0.49 0.00 1.00 0.12
 Other 537 0.04 0.20 0.00 1.00 – 0.02

Peril location
 Europe 537 0.25 0.43 0.00 1.00 0.06
 Japan 537 0.17 0.37 0.00 1.00 – 0.01
 North America 537 0.79 0.41 0.00 1.00 0.28
 Latin America 537 0.06 0.23 0.00 1.00 0.02
 Asia/Australia 537 0.04 0.19 0.00 1.00 0.03
 Other 537 0.00 0.06 0.00 1.00 – 0.01
 Rating AA 537 0.01 0.09 0.00 1.00 – 0.05
 Rating A 537 0.01 0.10 0.00 1.00 – 0.10
 Rating BBB 537 0.04 0.19 0.00 1.00 – 0.17
 Rating BB 537 0.43 0.50 0.00 1.00 – 0.26
 Rating B 537 0.22 0.41 0.00 1.00 0.32
 No rating 537 0.30 0.46 0.00 1.00 0.11
 1-month Momentum (in %) 11,970 – 0.03 1.04 – 26.01 33.37 0.15
 2-months Momentum (in %) 11,970 – 0.06 1.37 – 26.59 33.27 0.17
 3-months Momentum (in %) 11,970 – 0.09 1.57 – 26.06 33.38 0.18
 4-months Momentum (in %) 11,970 – 0.11 1.73 – 26.04 33.65 0.19

Sponsor-specific variables
 Sponsor Tenure (in years) 11,970 9.22 5.75 0.41 23.75 0.02
 Sponsor Diversification 11,970 3.77 2.55 0.00 11.00 0.25

Sponsor type
 Reinsurer 537 0.52 0.50 0.00 1.00 0.14
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necessary because a forecast at time t for a variable realization at time t + 1 may, of 
course, rely only on information available at time t.

We estimate the linear regression model using the pooled least-squares method. 
Because this method is standard in economic studies and is intended to serve as a 
benchmark, we do not discuss this method in more detail. The machine learning 
methods used are presented in more detail in the following subsections.

3.3  Random forest model

Götze et al. (2020) and Makariou et al. (2021) show that the random forest method 
represents an adequate approach to forecast CAT bond premia in the primary mar-
ket. This approach has also been proven to be a good forecasting model for other 
asset classes (see e.g. Khandani et al. (2010), Mullainathan and Spiess (2017), Gu 
et  al. (2020), Bianchi et  al. (2021)). The following brief description of the ran-
dom forest algorithm, which goes back to Breiman (2001), should provide a better 
understanding.

With the dependent and independent variables described in Subsection 3.2, we 
consider the panel data set {(yj,t+1,V �

j
,W �

j,t
, Z�

j,t+1
)|j = 1,… , n;t = 1,… , T;j exists at 

t + 1} . We divide this set into an in-sample data set SIS , which covers the points in 
time t = 1,… , t∗ and an out-of-sample data set SOOS , which refers to the points in 
time t = t∗ + 1,… , T  . Consequently, the in-sample data set consists of k1 ≤ n ⋅ t∗ 
elements and the out-of-sample data set of k2 ≤ n ⋅ (T − t∗) elements.12 With p as 

The statistics for variables that vary over time are reported at observation level. For variables that are 
constant over time, the statistics are reported at issue level. The last column includes the correlation val-
ues between the respective variable and the CAT bond premium

Table 1  (continued)

Obs Mean Std.dev. Min. Max. Corr.

 Insurer 537 0.44 0.50 0.00 1.00 – 0.09
 Sponsor Rating NIG 11,970 0.16 0.36 0.00 1.00 0.01
 Positive Rating Event 11,970 0.03 0.17 0.00 1.00 0.01
 Negative Rating Event 11,970 0.03 0.16 0.00 1.00 0.03

Macroeconomic variables
 Reins. Index (in %) 11,970 – 0.02 0.11 – 0.11 0.37 0.15
 S&P 500 (in %) 11,970 0.01 0.04 – 0.20 0.12 – 0.03
 Corp. Spread (in %) 11,970 0.05 0.03 0.00 0.20 0.37
 CAT Bond Index (in %) 11,970 – 0.00 0.01 – 0.10 0.02 – 0.00

12 Since the lifetimes of the n CAT bonds do not necessarily cover the entire in-sample period and 
out-of-sample period, the numbers k1 and k2 will typically fall below the maximum numbers n ⋅ t∗ and 
n ⋅ (T − t∗) , respectively.



1640 T. Götze et al.

1 3

the dimension of the vector (V �
j
,W �

j,t
, Z�

j,t+1
) (for arbitrary given j and t) the two sub-

sets can be characterized as follows:13

On this basis, the random forest algorithm is divided into five steps:
Step 1: Selection of a randomly chosen subset14 {(yi, x1i,… , xpi)|i = 1,… ,m} 

from the in-sample data set.
Step 2: For further procedure, we imagine a tree with a node at the top, from 

which two edges start, which in turn end at nodes. This node-edge sequences con-
tinue downwards. At the top node (the root node), a pre-specified “number of split 
variables” is selected from the available independent variables x1,… , xp . For sim-
plicity, we consider the choice of two split variables x1 and x2 . For variable x1 , a 
split threshold c is specified, and the data set is split as follows: the data subset 
SA = {(yi, x1i,… , xpi)|x1i > c} (with cardinality mA ) is considered on “edge A” and 
the data subset SB = {(yi, x1i,… , xpi)|x1i ≤ c} (with cardinality mB ) is considered 
on “edge B”. For the edges the following averages are taken as predictions of the 
dependent variable:

Subsequently, the errors of the two predictions are determined as the respective SSE 
and the sum of the two errors leads to the “total node error”:

Because this procedure can be performed for an arbitrary threshold c ∈ ℝ , we can 
also determine the optimal split threshold c∗

1
 leading to the minimum nodal error:

The same procedure is performed for x2 as the split variable, resulting in an optimal 
split threshold c∗

2
 . Without loss of generality let SSE1c∗

1

≤ SSE2c∗
2

 , then x1 is the opti-
mal split variable that leads to the smallest SSE with optimal threshold c∗

1
 . Thus, x1 

becomes the split variable at this node and the edges A∗ and B∗ split the initial data 
set into data subsets SA∗ = {(yi, x1i,… , xpi)|x1i > c∗

1
} and 

SB∗ = {(yi, x1i,… , xpi)|x1i ≤ c∗
1
} (see Fig. 1).

(5)
SIS = {(yi, x1i,… , xpi)|i = 1,… , k1}, SOOS = {(yi, x1i,… , xpi))|i = k1 + 1,… , k1 + k2}.

(6)ȳ
(A)

1c
=

1

mA

m∑

i=1
x1i>c

yi, ȳ
(B)

1c
=

1

mB

m∑

i=1
x1i≤c

yi.

(7)SSE1c = SSE
(A)

1c
+ SSE

(B)

1c
=

m∑

i=1
x1i>c

(yi − ȳ
(A)

1c
)2 +

m∑

i=1
x1i≤c

(yi − ȳ
(B)

1c
)2.

(8)c∗
1
= argmin

c∈ℝ
(SSE1c).

13 In the following, (x1,… , xp) stands for the vector of independent variables and i character-
izes a renumbering of the existing combinations (j, t + 1) ∈ {1,… , n} × {1,… , t∗} (in-sample) or 
(j, t + 1) ∈ {1,… , n} × {t∗ + 1,… ,T} (out-of sample).
14 Without loss of generality, we consider the first m ≤ k1 elements of the in-sample data set without 
renumbering of the indices.
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Step 3: The procedure in Step 2 is applied to the two subsets, resulting in further 
edge splits at both edge end nodes. However, in these cases other split variables can 
be chosen randomly (e.g. x3 and x6 as in Fig. 1), since only the “number of split vari-
ables” and not the specific variable selection is given. This procedure is terminated 
for each end node if either no more splits are performed or the cardinality of a data 
subset falls below a prespecified minimum m∗ (the so-called node size).15 Thus, each 
resulting end node of the tree “comprises” a data subset with cardinality not lower 
than m∗ . The arithmetic mean of the remaining (in-sample) values yi at the corre-
sponding end node represents the premium forecast for all CAT bonds satisfying the 
respective “splitting path”.

Step 4: As a result of Step 3, the decision tree is used for out-of-sample predic-
tion, i.e. the forecast of yi given an out-of-sample realization Xi = (x1i,… , xpi) of the 
independent variables vector ( i = k1 + 1,… , k1 + k2).16 Specifically, we follow the 
“splitting path” that this vector satisfies. The premium forecast ŷ(tree no.)

i
 at the corre-

sponding end node (see Step 3) represents the forecast for yi (see Fig. 2).
Step 5: The entire procedure (Steps 1–4) is repeated for a given number D of 

decision trees (the so-called number of trees), resulting in a forecast for each tree. 
Finally, the forecast of the random forest method is the arithmetic mean of all tree 
forecasts (see Fig. 2).

Because each of the decision trees used in the algorithm is based on a random selec-
tion of the data subset and split variables, the trees should be essentially “uncorre-
lated”. Therefore, in the context of the random forest method, trees are also referred 
to as decorrelated trees. In summary, based on many randomly chosen in-sample 
data subsets, the random forest method determines the “best” partitioning of the data 
subsets in the sense that each subset prediction for y leads to minimal error.

Hyperparameter choice for random forest model

During the description of the procedure it became clear that several parameters 
(number of split variables, node size, and number of trees) must be specified. These 
parameters are called hyperparameters and must be chosen optimally with regard 
to the forecast accuracy. Some parameters are chosen from the literature, and the 
other parameters are optimized on the respective in-sample data set. To determine 
the optimal hyperparameter setting (in the so-called tuning process), the three 
hyperparameters are varied in the random forest procedure to determine the param-
eter setting that minimizes the forecasting error SSE. In the following, we briefly 
describe the literature recommendations and tuning methods used for hyperparam-
eter selection.

15 An alternative termination criterion to node size is the maximum depth of a tree, i.e., the maximum 
length of an edge sequence. However, this criterion is not used in the present study.
16 However, the procedure is not limited to out-of-sample predictions, but can also be used to check esti-
mation accuracy on the in-sample data set ( i = 1,… , k1).
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Number of trees

We varied the number of trees in the grid {2, 10, 50, 100, 300, 500, 700} . While the 
numbers 50, 100, 300, 500, and 700 do not imply significant differences in SSE, a num-
ber of only 2 or 10 trees leads to a significantly higher SSE. For reasons of comparabil-
ity to the study of Götze et al. (2020), we set the number of trees to 300 for each model.

Node size

As previously mentioned, node size is a termination criterion of the random forest 
algorithm. Obviously, a higher value for the node size leads to smaller trees and 
consequently, a faster termination of the algorithm. For regression problems (i.e., 
a continuous dependent variable y), the recommended node size value is five (Brei-
man 2001), which we use in our analysis.

Number of split variables

The number of split variables is the most important hyperparameter for random forest 
because it strongly affects its performance (Berk 2008). A common approach for tun-
ing hyperparameters is k-fold cross-validation. This method simulates forecast accuracy 
measurements within the in-sample data set. For this purpose, the in-sample data set is 
divided into k subsets, of which the union of k − 1 parts serves as the training data set 
and the remaining part serves as the test data set. Based on the training data set, the ran-
dom forest model is applied with a specific hyperparameter realization, and the SSE of 
the resulting forecast in the test data set is determined. This procedure is repeated with 
the other k − 1 possible test data subsets and the average SSE of the resulting k forecasts 
is determined. Finally, by varying the hyperparameter, the parameter value that leads to 
the minimum average SSE can be determined. A disadvantage of cross-validation for 
time series data is the destruction of the time structure by swapping the training and test 
data sets, which partially leads to the prediction of past data using future data. There-
fore, traditional cross-validation is unsuitable for time-series data.

We apply a cross-validation approach adjusted to time series and propsed by 
Hyndman (2014). This approach avoids using future observations to make past pre-
dictions by considering the time structure when splitting the data into training and 
test data sets. Specifically, in the present study, each training data set consists of 
100 observations, and the test data set consists of 42 subsequent observations that 
approximately corresponds to a 70:30-split ratio. After determining the test SSE, 
the test-training data sample is shifted by the length of the training data set and the 
procedure is repeated. As in the general k-fold cross-validation procedure, the opti-
mal hyperparameter value is determined by the variation in the parameter “number 
of splits”. The variation follows a “grid search,” where the number of splits passes 
through all numbers between 1 and p − pconst.17

17 In the present study, we consider p = 41 variables, and pconst stands for the number of constant vari-
ables that have the same realization for all bonds in the respective subset. These variables are not deleted 
from the entire data set because they are constant only for the respective subset, not for the entire data 
set.
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Table 2 presents a summary of the hyperparameter values selected in this study.

3.4  Neural network model

Neural networks have produced good forecasting results for various asset classes 
(Khandani et al. 2010; Mullainathan and Spiess 2017; Gu et al. 2020). In contrast, 
neural networks showed worse forecasting performance in predicting premia for 
CAT bonds in the primary market (see Götze et al. (2020)). For better understand-
ing, we first describe the main elements of the neural network method.18

Analogous to the presentation of the random forest model, we consider the in-sample 
data set with k1 observations Xi = (yi, x1i,… , xpi) (i = 1,… , k1) containing the depend-
ent variable y and independent variables x1,..., xp . As in a linear regression, a class of 
functions f (X,�) is considered, which depends on the parameter matrix � . This param-
eter matrix is determined such that f (X,�) optimally approximates the dependent vari-
able y. More precisely, the neural network model consists of the following elements.

�-layer neural network
An �-layer neural network is a function f ∶ ℝ

p
→ ℝ

q , which is a composition of 
� functions fj (j = 1,… ,�) , where p is the dimension of the input X = (x1,… , xp) 
(the independent variables) and q is the dimension of the output y:19

In this context, fj ∶ ℝ
pj−1 → ℝ

pj denotes the so-called j-th layer, where pj−1 is the input 
dimension of layer j and pj is the corresponding output dimension for all j = 1,… ,� 
implying p0 = p and p

�
= q . Further, f

�
 stands for the output layer, whose applica-

tion to the rest of the function chain leads to the output, that is, the estimation of y. 
Since the outputs of the “inner” functions f1,..., f�−1 are not visible, these functions 
are called hidden layers. The number � − 1 of hidden layers (or the so-called depth � 
of the “deep” neural network) and the dimensions pj of the layer output (the so-called 
width of the layer) are hyperparameters that have to be prespecified.

Design of the layer functions

The layers are transformed affine functions of the form fj(Xj) = gj(�0j + Bj ⋅ Xj) 
with Xj ∈ ℝ

pj−1 the layer input, �0j ∈ ℝ
pj a constant vector (so-called bias) and 

Bj ∈ ℝ
pj×pj−1 a matrix of coefficients (so-called weights). gj ∶ ℝ → ℝ is a continu-

ous, monotonically increasing function called the activation function. This function 
is applied element-wise to the output vector of the affine function. Typical activation 
functions are the logistic function, the hyperbolic tangent function, and the rectified 
linear unit (ReLU) function.20.

f = f
𝓁
◦...◦f2◦f1, i.e. f (X) = f

𝓁
(...(f2(f1(X)))...) for X = (x1, ..., xp).

18 The following description is a function-oriented representation of a neural network that is inspired by 
Goodfellow et al. (2016), chapter 6.
19 In the present study, we obviously have q = 1.
20 The name “activation function” becomes clear when considering the ReLU function f (z) = max{0, z} , 
according to which exceeding a threshold value leads to the “activation” of value z. In addition, it should 
be noted that the neural network model is equivalent to simple linear regression for linear activation func-
tions. In this respect, a non-linear activation function is necessary to consider non-linearities in the model.
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Connection to a neural network

From the composition of several functions it is not immediately comprehensible why 
this should be an (artificial) neural network. In this context, the vector of each layer 
can be considered as a collection of neurons. Each vector component can be inter-
preted as a neuron in the sense that it receives inputs from other neurons, weights 
these inputs, determines an activation value, and passes this on as an output to other 
neurons. In the present case, information flows are always passed in one direction 
(i.e., from layer j − 1 to layer j), and the resulting network is called a feedforward 
neural network. A visualization of such a network is shown in Fig. 3.

Fig. 1  Construction of a decision tree

Fig. 2  Decision trees forecasts and random forest forecast

Fig. 3  The j-th layer in a neural network
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Forecast procedure with a neural network
First, we select the in-sample data set {(yi, x1i,… , xpi)|i = 1,… , k1} . For a randomly 
given set of parameters �0j and Bj (j = 1,… ,�) the forecast of yi is determined as 
ŷi = f

�
(...(f2(f1(x1i,… , xpi))) for all i = 1,… , k1 . As with the random forest method, 

we assess the forecast error based on the SSE,

Subsequently, the parameter set �0j and Bj (j = 1,… ,�) is adjusted to lead to the 
minimum prediction error:

The minimum (10) is typically determined numerically. In this context, the gradient-
descent procedure is a common numerical method. The necessary computation of 
the gradients is usually performed using the so-called backpropagation algorithm.21 
To determine the minimum �∗ based on a starting matrix �0 , the gradient descent 
method generates a sequence of points �j according to the iteration rule

where ∇SSENN(�j) stands for the gradient of the error function and �j is a prespec-
ified step size, the so-called learning rate. In this way, the parameter matrix � is 
adjusted in the direction of the steepest descent of the error function. A termination 
condition for the iteration is a gradient lower than a prespecified threshold (i.e., the 
gradient is nearly zero).

Finally, we apply the optimally tuned function f (X,�∗) to predict yi given an out-of-
sample realization Xi = (x1i,… , xpi) ( i ∈ {k1 + 1,… , k1 + k2} ) of the independent 
variables vector according to ŷi = f (Xi,�

∗).

Hyperparameter choice for the neural network model

In the following, we provide an overview of the hyperparameters introduced above 
that must be determined for a neural network and explain how we specify their 
respective values. The parameters to be tuned include the number of hidden layers, 
width of each hidden layer, learning rate, and gradient threshold. Furthermore, the 
activation function must be specified.

Error threshold

As mentioned above, the gradient descent method requires a threshold below which 
the gradient leads to termination of the gradient descent procedure. On the one hand, a 

(9)SSENN =

k1∑

i=1

(yi − ŷi)
2.

(10)

𝔹
∗ = (�∗

01
,B∗

1
,… , �∗

0�
,B∗

�
) = arg min

�0j ∈ ℝ
pj ,

Bj ∈ ℝ
pj ×ℝ

pj−1 ,

j = 1,… ,�

(SSENN).

(11)�j+1 = �j + �j ⋅ ∇SSENN(�j),

21 More information on the backpropagation algorithm can be obtained from Rumelhart et al. (1986).
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low threshold value should be chosen so that the prediction errors are as small as pos-
sible. On the other hand, a low threshold value increases the running time of the neural 
network algorithm tremendously. In summary, the error threshold must be carefully 
selected considering two conflicting objectives, and depends on the dependent vari-
able of the study. Since the CAT bond premium is a relative variable that should be 
predicted as accurately as possible (in a tolerable time), we choose a threshold of 10−4.

Number and width of hidden layers

With respect to the running time, we abstain from tuning the number of hid-
den layers and use three hidden layers throughout all time periods of our roll-
ing sample approach. This choice of three hidden layers has achieved good 
results in several studies (Shen et  al. 2021; Gu et  al. 2020). In contrast, to tune 
the width of each hidden layer (based on the respective in-sample data set), 
we use a grid search approach in which we pass through all width combinations 
(i, j, l) ∈ {1, 4,… , 34} × {1, 4,… , 28} × {1, 4,… , 16} for all three hidden layers.

Activation function

In the present approach, we use the logistic function g(x) = 1∕(1 + e−x) as the acti-
vation function, which is common and recommended (Hastie et al. 2017, p. 392).

Training algorithm and learning rate

The choice of a constant learning rate �j as described in the basic version of the gradi-
ent descent method often leads to a poor convergence to the minimum. Against this 
background, we use a variation of the basic version, the so-called resilient backpropa-
gation of (Riedmiller and Rprop 1994). In this variant, the learning rate is dynamically 
adjusted for each dimension via an iterative procedure. For the iterations, two initial 
learning rates are randomly chosen. In the next iteration step, the preceding learning 
rate is multiplied by a high factor a or a low factor b depending on the sign of the 
gradient. Furthermore, to limit the resulting learning rate, an upper bound �max and a 
lower bound �min are given. Thus, instead of a constant learning rate as a hyperparam-
eter, resilient backpropagation requires the specification of the learning rate factors a 
and b and the learning rate limits �max and �min . In the present study, we use the default 
parameters of (Fritsch et al. 2019): a = 1.2 , b = 0.5 , �min = 10−6 , and �max = 0.1.

A summary of the selected hyperparameter values for both the random forest and 
neural network is presented in Table 2.

4  Empirical analysis

4.1  Out‑of‑sample results and performance evaluation

This section presents the results of the empirical analysis. For the secondary market 
data set, Table 3 shows the performance of the linear regression, random forest, and 



1647

1 3

Forecasting accuracy of machine learning and linear regression:…

Ta
bl

e 
2 

 S
el

ec
tio

n 
of

 h
yp

er
pa

ra
m

et
er

 v
al

ue
s f

or
 ra

nd
om

 fo
re

st 
an

d 
ne

ur
al

 n
et

w
or

k 
m

od
el

Pa
ne

l A

R
an

do
m

 fo
re

st
: n

um
be

r 
of

 sp
lit

 v
ar

ia
bl

es
 G

rid
: {
1
,
2
,
…

,
p
−
p
co
n
st
}

O
O

S 
pe

rio
ds

IS
 p

er
io

ds

1 
ye

ar
2 

ye
ar

s
3 

ye
ar

s
4 

ye
ar

s

1 
m

on
th

8
14

14
14

36
36

35
36

2 
m

on
th

s
3

11
17

18
38

37
38

38
3 

m
on

th
s

8
15

14
15

37
40

38
38

4 
m

on
th

s
8

11
16

15
37

36
38

36

R
an

do
m

 fo
re

st
: n

um
be

r 
of

 tr
ee

s G
rid

: {
2,

 1
0,

 5
0,

 1
00

, 3
00

, 5
00

, 7
00

}

C
ho

se
n 

va
lu

e:
 3

00

N
eu

ra
l n

et
w

or
k:

 n
um

be
r 

of
 n

eu
ro

ns
 p

er
 h

id
de

n 
la

ye
r 

G
rid

s f
or

 th
e 

th
re

e 
hi

dd
en

 la
ye

rs
: {

1,
 4

,..
., 

34
},

 {
1,

 4
,..

., 
28

},
 {

1,
 4

,..
., 

16
}

1 
m

on
th

1,
 1

, 1
1,

 1
, 1

7,
 4

, 1
13

, 4
, 1

34
, 2

8,
 1

6
34

, 2
8,

 1
3

34
, 2

8,
 1

0
34

, 2
8,

 1
0

2 
m

on
th

s
1,

 1
, 1

1,
 1

, 1
7,

 1
, 1

7,
 4

, 1
34

, 2
8,

 1
6

34
, 2

8,
 1

3
34

, 2
8,

 1
6

34
, 2

8,
 1

0
3 

m
on

th
s

1,
 1

, 1
1,

 1
, 1

1,
 4

, 1
19

, 4
, 1

34
, 2

8,
 1

6
34

, 2
8,

 1
3

34
, 2

8,
 7

34
, 2

8,
 7

4 
m

on
th

s
1,

 1
, 1

1,
 1

, 1
10

, 4
, 1

19
, 4

, 1
34

, 2
8,

 1
6

34
, 2

8,
 1

3
34

, 2
8,

 7
34

, 2
8,

 7



1648 T. Götze et al.

1 3

Th
is

 ta
bl

e 
pr

es
en

ts
 a

n 
ov

er
vi

ew
 o

ve
r t

he
 c

ho
se

n 
hy

pe
rp

ar
am

et
er

 v
al

ue
s 

fo
r t

he
 ra

nd
om

 fo
re

st 
(R

F)
 a

nd
 th

e 
ne

ur
al

 n
et

w
or

k 
(N

N
). 

Pa
ne

l A
 g

iv
es

 a
n 

ov
er

vi
ew

 o
f t

he
 tu

ne
d 

hy
pe

rp
ar

am
et

er
 v

al
ue

s 
fo

r 
th

e 
se

co
nd

ar
y 

m
ar

ke
t d

at
a 

se
t a

nd
 P

an
el

 B
 s

ho
w

s 
th

os
e 

hy
pe

rp
ar

am
et

er
 v

al
ue

s 
th

at
 a

re
 c

ho
se

n 
fro

m
 th

e 
lit

er
at

ur
e.

 T
he

 h
yp

er
pa

ra
m

et
er

s 
ar

e 
tu

ne
d 

fo
r e

ve
ry

 in
-s

am
pl

e/
ou

t-o
f-

sa
m

pl
e 

pe
rio

d 
le

ng
th

 c
om

bi
na

tio
n.

 T
he

re
fo

re
, t

he
 ta

bl
e 

pr
es

en
ts

 th
e 

m
in

im
um

 (fi
rs

t l
in

e)
 a

nd
 th

e 
m

ax
im

um
 (s

ec
on

d 
lin

e)
 o

f t
he

 c
ho

se
n 

hy
pe

rp
ar

am
et

er
 v

al
ue

s

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Pa
ne

l B

H
yp

er
pa

ra
m

et
er

H
yp

er
pa

ra
m

et
er

 v
al

ue

R
an

do
m

 fo
re

st
N

od
e 

si
ze

5
N

eu
ra

l n
et

w
or

k
Er

ro
r t

hr
es

ho
ld

1
0
−
4

A
ct

iv
at

io
n 

fu
nc

tio
n

lo
gi

sti
c 

fu
nc

tio
n

Tr
ai

ni
ng

 a
lg

or
ith

m
rp

ro
p+

N
um

be
r o

f h
id

de
n 

la
ye

rs
3



1649

1 3

Forecasting accuracy of machine learning and linear regression:…

Ta
bl

e 
3 

 O
ut

-o
f-

sa
m

pl
e 

pe
rfo

rm
an

ce
 o

n 
th

e 
se

co
nd

ar
y 

m
ar

ke
t d

at
a 

se
t

Th
is

 ta
bl

e 
re

po
rts

 th
e 

SS
E 

of
 th

e 
ou

t-o
f-

sa
m

pl
e 

es
tim

at
io

n 
fo

r t
he

 li
ne

ar
 re

gr
es

si
on

 m
od

el
 (L

R
), 

ra
nd

om
 fo

re
st 

(R
F)

, a
nd

 n
eu

ra
l n

et
w

or
k 

(N
N

). 
Th

e 
RM

SE
 is

 p
re

se
nt

ed
 in

 
pa

re
nt

he
se

s. 
Th

e 
re

su
lts

 a
cr

os
s a

ll 
ro

lli
ng

 sa
m

pl
e 

pe
rio

ds
 a

re
 p

re
se

nt
ed

O
O

S 
pe

rio
ds

IS
 p

er
io

ds

1 
ye

ar
2 

ye
ar

s
3 

ye
ar

s
4 

ye
ar

s

LR
R

F
N

N
LR

R
F

N
N

LR
R

F
N

N
LR

R
F

N
N

M
ea

n 
SS

E 
(R

M
SE

) i
n 1

0
−
2

1 
m

on
th

2.
19

1.
33

11
.7

6
2.

68
1.

36
6.

15
2.

59
1.

51
9.

01
2.

76
1.

57
4.

28
(1

.5
7)

(1
.1

8)
(2

.7
0)

(1
.7

6)
(1

.1
9)

(2
.4

8)
(1

.8
3)

(1
.2

7)
(2

.6
8)

(1
.9

1)
(1

.3
0)

(1
.6

6)
2 

m
on

th
s

4.
78

3.
24

21
.0

3
6.

38
3.

25
17

.4
2

5.
52

3.
62

13
.9

1
5.

80
3.

75
15

.4
9

(1
.7

0)
(1

.3
6)

(2
.9

9)
(1

.9
1)

(1
.3

6)
(3

.0
3)

(1
.9

1)
(1

.4
7)

(2
.7

5)
(1

.9
8)

(1
.5

0)
(3

.0
1)

3 
m

on
th

s
7.

51
4.

94
41

.7
3

7.
08

4.
83

22
.4

0
8.

07
5.

37
64

.2
1

8.
57

5.
63

23
.5

3
(1

.8
1)

(1
.4

3)
(3

.3
9)

(1
.7

8)
(1

.4
2)

(3
.0

2)
(1

.9
2)

(1
.5

2)
(3

.8
9)

(2
.0

0)
(1

.5
6)

(3
.1

5)
4 

m
on

th
s

10
.6

7
7.

67
63

.7
9

10
.0

0
7.

30
38

.1
6

12
.1

6
8.

64
43

.7
6

12
.3

1
8.

99
42

.5
6

(1
.8

6)
(1

.5
7)

(3
.8

9)
(1

.8
0)

(1
.5

1)
(3

.3
6)

(2
.0

3)
(1

.7
0)

(3
.5

5)
(2

.0
7)

(1
.7

4)
(3

.6
0)



1650 T. Götze et al.

1 3

neural network models in the out-of-sample forecast measured by the mean SSE.22 
The first row (column) reports the in-sample (out-of-sample) periods of the rolling 
sample analysis.

The results show that for the linear regression model, the combination of a one 
year in-sample period and a one month out-of-sample period yields the best fore-
casting result in terms of a mean SSE of 0.0219. The mean SSE increases with an 
increase in the out-of-sample period, which is not surprising as the uncertainty in 
the data also increases when extending the out-of-sample period. The mean SSE also 
increases when extending the in-sample period, which is possibly due to the fact, 
that less recent information (in the extended in-sample period), on average, provides 
less accurate estimates of future prices (in the out-of-sample period).

In terms of mean forecasting performance, the random forest dominates the linear 
regression and neural network for each combination of in-sample and out-of-sample 
period lengths. Similar to the linear regression, the random forest also exhibits the 
lowest mean SSE of 0.0133 for the one-year in-sample/one-month out-of-sample 
forecasting constellation, and the SSE tends to increase with an increase in the in-
sample period and out-of-sample period.

Interestingly, the neural network behaves differently from the other two methods. 
The results show that for the neural network model, the combination of a four-year 
in-sample period and a one-month out-of-sample period yields the best forecasting 
result with a mean SSE of 0.0428. However, the mean SSE of the neural network 
does not exhibit a regular pattern when the in-sample period is increased. Conse-
quently, the results do not allow any conclusions in terms of neural networks per-
forming better with more input data. The results show that in all in-sample/out-of-
sample period length combinations, neural networks perform worse than random 
forest and linear regression in terms of mean SSE.

To assess the statistical significance of the performance differences, we follow 
Bianchi et al. (2021) and additionally consider the p-value of the one-sided DM test 
(Diebold and Mariano 1995) with the Harvey-Leybourne-Newbold correction (Har-
vey et al. 1997). Under the assumption that the random forest outperforms the linear 
regression model, we test the null hypothesis of no performance differences against 
the alternative hypothesis that random forest forecasts are more accurate than linear 
regression forecasts.23 We calculate the DM test for every in-sample/out-of-sample 
combination, defining h as the forecasting horizon in months and receiving multi-
ple test statistics for longer out-of-sample periods. For the respective in-sample/out-
of-sample combinations, we obtain p-values for the DM statistics and calculate the 
median over these p-values to present the results in Table 4.

The null hypothesis is rejected at the 5% level for 22 (out of 40) in-sample/out-
of-sample period length combinations and even for 35 periods at the 10% level. 
The p-values tend to increase with longer forecasting horizons h for the different 

22 In-sample results are available from the authors and can be provided upon request.
23 We also applied a DM test with the alternative hypothesis that the random forest outperforms the neu-
ral network. The DM test results in p-values below 0.05, strengthening the results shown in Table 3 that 
the random forest outperforms the neural network significantly.
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in-sample/out-of-sample period length combinations, which suggests that random 
forest forecasts are more susceptible to increasing the forecasting horizon than linear 
regression forecasts. Thus, the DM test results are in line with the SSEs in Table 3, 
which also indicate decreasing performance differences with increasing out-of-
sample periods. Overall, the results show that the random forest forecasts not only 
appear to be more accurate in terms of mean SSE, but also significantly outperform 
the linear regression forecasts.

As a recommendation for action in the context of forecasting CAT bond premia, 
it can be stated that, regardless of the considered market environment, the random 
forest method provides the significantly best forecasting results. To be able to use 
the “forecast winner” random forest in (institutional) practice, it still needs to be 
clarified how a certain transparency of the procedure can be achieved. This is the 
subject of the following subsection.

4.2  Variable importance

As mentioned in the introduction, a central point of criticism of machine learning 
methods is the black-box nature, which contradicts usual transparency requirements 
that, e.g., regulators are demanding for institutional investors. To achieve transpar-
ency and interpretability of the random forest results, we use the available variable 
importance measures to describe the determinants of CAT bond premia identified by 
the random forest model. To assess the results, we compare the identified important 
variables with the variables that are significant (at the upper quartile) in the linear 
regression model.

Specifically, we determine two measures of variable importance for each random 
forest model. First, we consider the number of trees measure, which describes the 
total number of trees in which a split occurs on a certain variable (Paluszynska et al. 

Table 4  Significance of 
Performance Differences 
between the Random Forest and 
Linear Regression Model on the 
Secondary Market Dataset

This table reports the median p-value of the DM test with the alter-
native hypothesis that random forest model outperforms the linear 
regression model

OOS periods IS periods

1 year 2 years 3 years 4 years

1 month (h = 1) 0.0446 0.0169 0.0159 0.0145
2 months (h = 1) 0.0336 0.0154 0.0167 0.0167
2 months (h = 2) 0.0902 0.0434 0.0334 0.0599
3 months (h = 1) 0.0368 0.0077 0.0079 0.0087
3 months (h = 2) 0.0995 0.0440 0.0275 0.0367
3 months (h = 3) 0.2194 0.1280 0.1368 0.0839
4 months (h = 1) 0.0258 0.0183 0.0191 0.0169
4 months (h = 2) 0.0817 0.0726 0.0334 0.0531
4 months (h = 3) 0.0927 0.1135 0.0813 0.0643
4 months (h = 4) 0.1312 0.0689 0.0819 0.0940
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2020).24 Thus, a higher number of trees measure implies higher importance of a 
variable. Second, we analyze the node impurity decrease, which describes the total 
decrease in node impurity from splitting on a certain variable, averaged over all trees 
of the random forest. In this study, the decrease in node impurity is measured based 
on the difference between the SSE before and after splitting on a certain variable. A 
higher impurity decrease can be interpreted as a higher importance of the respective 
variable as it indicates a higher contribution to reducing SSE.

To interpret the variable importance results, both the number of trees measure 
and node impurity decrease are averaged for each in-sample/out-of-sample period 
length combination. The results can be seen in Figs. 4 and 5. In addition, to analyze 
variable importance from the linear regression results, we calculate the upper quar-
tile of p-values for each variable and every in-sample/out-of-sample period length 
combination. The corresponding results are shown in Fig. 6.25

Figure 4 shows the results based on the number of trees measure. The literature 
does not provide a clear recommendation regarding when a variable can be con-
sidered important in terms of the number of trees measure relative to the number 
of trees built for training. However, for each forecast combination, we observe a 
certain group of variables that is used in (almost) every tree, before the number of 
trees measure decreases continuously across the variables that appear to be less rel-
evant for the premium forecast. Because the literature does not specify a threshold 
for the number of trees measure above which a variable is considered important, 
we set a threshold of 292.5 out of 300 trees (i.e., 97.5 %) for this study. For the 
one-year in-sample period, the bond-specific variables Time to Maturity, Maturity, 
EL, both seasonal EL variables, Spread at Issue, all four Momentum variables, Bond 
Issue Volume, Total Issue Volume, Sponsor Tenure, and the macroeconomic vari-
ables Corporate Spread, CAT Bond Index, and S&P 500 exhibit a high importance 
in terms of the number of trees measure. These results complement existing stud-
ies using linear regression, showing that EL is the most influential variable in CAT 
bond premia (Galeotti et al. 2013; Gürtler et al. 2016; Trottier et al. 2018). Addition-
ally, the high variable importance of the seasonality measures supports the linear 
regression results of Herrmann and Hibbeln (2021). The importance of the macro-
economic variables is in line with the results of Braun (2016), Gürtler et al. (2016), 
Götze et  al. (2020). For the 2 year in-sample period, Fig.  4 shows that the Rein-
surance Index and Sponsor Diversification have high variable importance, which is 
consistent with results of Götze and Gürtler (2018, 2020). Neither the three- nor the 
four-year in-sample periods produce substantially new results. A minor difference 
compared to the shorter in-sample periods can be seen in the fact that the variables 
Number of Perils and Earthquake are considered as important for longer in-sample 

24 To avoid confusion with the number of trees in the random forest, we always refer to the number of 
trees measure in the context of variable importance.
25 We only provide variable importance results for one month out-of-sample periods because the variable 
importance is measured on the fitted in-sample model and does not depend on the out-of-sample horizon. 
However, note that the in-sample periods slightly differ based on the respectively out-of-sample period, 
due to our rolling sample forecasting approach where each data sample is moved forward by the length 
of the out-of-sample data. The remaining plots are available from the authors and can be provided upon 
request.
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periods. This is because trees become larger with larger in-sample periods, which in 
turn leads to an increase in the number of trees measure for almost all variables. For 
the variables Number of Perils and Earthquake, this increase results in exceeding 
the threshold of 292.5.

Figure 5 shows the results based on the node impurity decrease measure. This 
confirms the results of the number of trees measure. In particular, the Spread at 
Issue, EL, and ELUSHU exhibit high importance. Although the literature does not 
indicate a threshold for the node impurity decrease that constitutes an important 

Fig. 4  Number of trees measure. This figure shows the importance of the variables using the number of 
trees measure. A value of 300 implies the considered variable is used as splitting criterion in every tree
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variable, we can use the ranking based on this measure to assess the variables’ rela-
tive importance. After the three aforementioned variables, Fig. 5 shows a large gap 
in the decrease in node impurity. However, the importance ranking of the following 
variables is consistent across all considered in-sample periods: Corporate Spread, 
ELEUWind , 4-month Momentum, Reins. Index, TTM, and Sponsor Tenure. Therefore, 
these variables can be considered important for CAT bond premium forecasts. Addi-
tionally, they largely correspond to those that are already identified as important by 
the number of trees measure.

The variable importance resulting from the linear regression model are shown 
in Fig. 6. In this context, the importance of a variable is measured by the upper 
quartile of its p-values of the respective in-sample/out-of-sample period length 
combination.26 Accordingly, Fig. (a) shows that 5 variables are significant (with 
p ≤ 0.05 ). The number of significant variables increases with the length of 
the out-of-sample data set. In Fig. (d), 14 variables are significant. The linear 

Fig. 5  Node impurity decrease measure. This figure shows the importance of the variables using the 
node purity measure. A high value indicates higher importance of a variable

26 Due to the rolling-sample architecture, there are many p-values for each variable. Thus, the upper 
quartile of the resulting p-values is only one way to bundle them into one measure. Of course, alterna-
tives such as the median would also be conceivable here.
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regression detects the highly significant variables that are already reported by the 
importance measures of the random forest (e.g., Spead at Issue, 4-month Momen-
tum, ELUSHU , EL). Interestingly, the regions Japan, North America, and Europe 
appear among the most relevant influences obtained from the linear regression 
model, but do not show high relevance referring to the random forests’ variable 
importance measures. However, because the random forest predicts CAT bond 
premia more precise than linear regression, we place greater confidence in the 
variable selection by the random forest than by linear regression. In this way, the 
variable importance results complement the previous regression-based literature.

However, it can also be noted that the identified variables of highest signifi-
cance (e.g., Spread at Issue, EL, seasonal ELs, Reins. Index) are consistent with 
the results of previous linear regression studies as well as with the most impor-
tant variables identified by random forest. Moreover, our analyses show that 
the included momentum variables are determinants of the CAT bond secondary 

Fig. 6  Linear regression p-values. This figure shows the importance of the variables evaluating their sig-
nificance in terms of the p-value. In contrast to the node impurity decrease measure, a low p-value indi-
cates high importance of a variable
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market. In this context, an interesting finding is that the 4-month Momentum vari-
able shows the greatest influence among all momentum variables in terms of all 
three variable importance measures. It might be interesting for further studies to 
analyze the impact of these variables in more detail.

Altogether, the variable importance results shown in Figs. 4 and 5 indicate that 
the random forest models not only achieve precise forecasting results, but also 
that the most relevant out-of-sample predictors of CAT bond secondary market 
premia are in line with the variables identified using linear regressions and, more-
over, even reveal new relationships.

A disadvantage of the importance measures is the lack of possibility to meas-
ure the direction of variable influences. At least for the variables identified as 
relevant in both the random forest and the linear regression, we examine the 
effect direction using the regression coefficients. However, due to the rolling sam-
ple architecture of the study, a large number of coefficients are available for the 
respective variables. Against this background, we examined the distribution of 
positive or negative influences of the relevant variables in Table 5.

Specifically, for each relevant variable, we reported the proportion of models 
in which the respective variable has the corresponding sign among the models 
in which that variable is significant. E.g., the Spread at Issue and the 4-Month 
Momentum have positive regression coefficients in every model in which they 
are significant. This means, a higher Spread at Issue (4-month Momentum) cor-
responds to a higher CAT bond premium.

5  Conclusion

On the one hand, recent studies have shown that advanced machine learning 
methods turn out to be particularly successful in predicting asset prices. On the 
other hand, traditional linear regression is easier to interpret than most machine 
learning methods, which is an important property since regulatory requirements 
imply transparency. Therefore, the motivation of the present study was to inves-
tigate the forecasting accuracy of such methods and to determine the possibility 
of identifying explanatory determinants when applying machine learning meth-
ods. Specifically, we analyzed the secondary market for CAT bonds, for which 
a large number of influencing variables exists that can be taken into account in 
price forecasting using machine learning methods. For example, random forest 
has already produced promising results in the literature for price forecasting in 
the CAT bond primary market. Because the secondary market has additional 
explanatory determinants compared to the primary market (such as the historical 
price change of premia), the results from the primary market cannot simply be 
transferred to the secondary market.

For this purpose, three different forecasting approaches were compared. As 
representatives of advanced machine learning methods, the random forest and 
artificial neural network models were implemented and contrasted with tradi-
tional linear regression. Based on the mean SSE (and mean RMSE), the random 
forest model provides better forecasting performance than the linear regression 
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and neural network approaches. In addition, the DM test indicates that the outper-
formance of the random forest model is significant.

However, even if the random forest leads to better forecasting results than 
linear regression, it is particularly relevant for institutional investors that the 
forecasting method used has transparency with regard to the relevant influenc-
ing parameters of the model. Because this form of transparency is a considerable 
advantage of linear regression, it remained to be determined how to identify the 
influencing parameters in a random forest model.

Table 5  Direction of the 
variables’ influences

This table presents an overview over the direction of the influence of 
variables that are significant and important in the sense of the num-
ber of tree measure. “Direction” indicates the sign of the regression 
coefficient. “Proportion” indicates the proportion of the models with 
the respective sign

Variable Direction Proportion (in %)

A: 1 month OOS, 1 year IS
 Spread at issue + 100.00
 4-month momentum + 100.00
 EL(US HU) + 96.71
 EL + 91.03

B: 1 month OOS, 2 years IS
 Spread at issue + 100.00
 4-month momentum + 100.00
 EL (US HU) + 96.03
 EL + 94.44
 Reins. Index + 87.25

C: 1 month OOS, 3 years IS
 Spread at issue + 100.00
 4-month momentum + 100.00
 EL (US HU) + 96.79
 Reins. Index + 94.12
 EL + 91.41
 Corp. spread + 81.95

D: 1 month OOS, 4 years IS
 EL (UH HU) + 100.00
 Reins. Index + 100.00
 Sponsor tenure – 100.00
 Spread at issue + 100.00
 4-month momentum + 100.00
 EL + 95.97
 Corp. spread + 87.86
 TTM + 68.70
 Earthquake + 60.63
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Based on the number of trees measure and node impurity decrease, we find the 
highest relevance of the variables Spread at Issue, EL, and ELUSHU , which seems 
plausible against the background of previous (regression) studies. We addition-
ally contrasted these “relevance results” for the random forest with the “signifi-
cance results” of the linear regression, for which the variables with the highest 
relevance are confirmed. Based on the regression results, we were additionally 
able to identify the direction of effect of the most important variables.

In summary, the present study contributes to the asset pricing literature by show-
ing that the use of machine learning methods can lead to significantly higher fore-
casting accuracy of CAT bond premia. Consequently, the application of random 
forest can be useful to practitioners involved with the trading of CAT bonds in the 
secondary market. Through improved price forecasting, investors identify overval-
ued and undervalued securities, which in turn leads to better buy and sell decisions. 
The additional ability to identify the effect direction of important variables on CAT 
bond pricing also allows investors to pay particular attention to these variables.

In addition to decision support, the findings contribute to the general understand-
ing of the price determinants of CAT bonds in the secondary market.
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