
Zietsch, Jakob; Kulaga, Rafal; Held, Harald; Herrmann, Christoph; Thiede, Sebastian

Article — Published Version

Multi-layer edge resource placement optimization for
factories

Journal of Intelligent Manufacturing

Provided in Cooperation with:
Springer Nature

Suggested Citation: Zietsch, Jakob; Kulaga, Rafal; Held, Harald; Herrmann, Christoph; Thiede,
Sebastian (2023) : Multi-layer edge resource placement optimization for factories, Journal of
Intelligent Manufacturing, ISSN 1572-8145, Springer US, New York, NY, Vol. 35, Iss. 2, pp. 825-840,
https://doi.org/10.1007/s10845-022-02071-3

This Version is available at:
https://hdl.handle.net/10419/312298

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10845-022-02071-3%0A
https://hdl.handle.net/10419/312298
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Intelligent Manufacturing (2024) 35:825–840
https://doi.org/10.1007/s10845-022-02071-3

Multi-layer edge resource placement optimization for factories

Jakob Zietsch1 · Rafal Kulaga2 · Harald Held2 · Christoph Herrmann1 · Sebastian Thiede3

Received: 29 June 2022 / Accepted: 24 December 2022 / Published online: 28 January 2023
© The Author(s) 2023

Abstract
Introducing distributed computing paradigms to the manufacturing domain increases the difficulty of designing and planning
an appropriate IT infrastructure. This paper proposes a model and solution approach addressing the conjoint application and
IT resource placement problem in a factory context. Instead of aiming to create an exact model, resource requirements and
capabilities are simplified, focusing on usability in the planning and design phase for industrial use cases. Three objective
functions are implemented: minimizing overall cost, environmental impact, and the number of devices. The implications of
edge and fog computing are considered in a multi-layer model by introducing five resource placement levels ranging from
on-device, within the production system, within the production section, within the factory (on-premise), to the cloud (off-
premise). The model is implemented using the open-source modeling language Pyomo. The solver SCIP is used to solve the
NP-hard integer programming problem. For the evaluation of the optimization implementation a benchmark is created using
a sample set of scenarios varying the number of possible placement locations, applications, and the distribution of assigned
edge recommendations. The resulting execution times demonstrate the viability of the proposed approach for small (100
applications; 100 locations) and large (1000 applications, 1000 scenarios) instances. A case study for a section of a factory
producing electronic components demonstrates the practical application of the proposed approach.

Keywords Edge computing · Resource placement · IT infrastructure optimization · Application allocation

B Jakob Zietsch
j.zietsch@tu-braunschweig.de

Rafal Kulaga
rafal.kulaga@tum.de

Harald Held
harald.held@siemens.com

Christoph Herrmann
c.herrmann@tu-braunschweig.de

Sebastian Thiede
s.thiede@utwente.nl

1 Chair of Sustainable Manufacturing and Life Cycle
Engineering, Institute of Machine Tools and Production
Technology, Technische Universität Braunschweig,
Brunswick, Germany

2 Corporate Technology, Siemens AG, Munich, Germany

3 Chair of Manufacturing Systems, Department of Design,
Production and Management, University of Twente,
Enschede, The Netherlands

Introduction

The transformation process towards edge-driven smart man-
ufacturing is still in its infancy, facingmany challenges (Basir
et al., 2019). The introduction of distributed computing
paradigms conflictswith the prevailing legacy systemshistor-
ically dominated by Operational Technology (OT). Devices
like Programmable Logic Controllers (PLCs) are embedded
in a strict hierarchy, often referred to as the automation pyra-
mid, with data and information mostly traveling northbound
and aggregated on the higher levels (Vogel-Heuser et al.,
2015). The design maxims were availability and reliability,
and the computation capacitywas planned to allow the execu-
tion of the predefined automation tasks at any given moment
following strict cycle times. While both design maxims are
still crucial, the transition to smart manufacturing systems
requires adaptability and flexibility (Brettel et al., 2016). A
suitable IT infrastructure providing sufficient computational
capacity in the right place enables a successful transition to
modern cyber-physical production systems (CPPS).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-022-02071-3&domain=pdf
http://orcid.org/0000-0002-1616-1752

826 Journal of Intelligent Manufacturing (2024) 35:825–840

Upgrading an IT infrastructure is a resource-intensive pro-
cess and should be critically assessed (Hertel & Wiesent,
2013). Purchasing or leasing an IT resource can be a signif-
icant investment considering the scale of an entire factory.
Additionally, each IT resource affects the overall environ-
mental impact of the factory due to the energy consumption
of each IT resource during production, use, and recycling
(Hischier et al., 2015). Hence, when striving towards smart
and sustainable manufacturing, the cost and environmental
impact of each IT resource should be considered (Thiede,
2021). These two aspects depend primarily on the hardware
specifications, like processing power, memory, or storage,
often referred to as the capacity of an IT resource. Consider-
ing the capacity in an early planning and design stage ensures
an adequate resource selection before installation, avoiding
costly change and transformation processes.

However, ensuring sufficient capacity at the right places
within a highly interconnected factory network where all
devices can communicate with one another poses a signif-
icant challenge to an IT infrastructure designer and planner.
Three questions are in the center of the planning problem
illustrated in Fig. 1:

– What kind of IT resources should be selected?
– Where should these IT resources be installed (verti-
cal/horizontal dimension)?

– Which applications should be deployed on which level?

The vertical dimension refers to how these IT resources
are integrated into the network topology of the factory. The
placement level is essential due to the influence of the net-
work, e.g., bandwidth limitation or network delay. Cloud
computing providers offer to provide the required capacity

dynamically; however, when considering the vast amount of
production data on the scale of a factory aggregating raw data
streams in a central location is time and cost-intensive and,
therefore, often not feasible, compare (Mourtzis et al., 2016).
Furthermore, the network load can negatively influence the
communication delay added with each network hop, which
is a disadvantage of centralized computing paradigms (Basir
et al., 2019). Furthermore, the potentially varying delays are
a challenge for traditional automation applications, which
often have real-time execution requirements that need to be
guaranteed for the safe and reliable operation of the produc-
tion systems (Vogel-Heuser et al., 2015). Additionally, in the
context of smart factories, running the analytical processing
in (near) real-time becomes increasingly important (Trinks
& Felden, 2018), paving the way for, e.g., real-time task pro-
cessing for spinning cyber-physical production systems (Yin
et al., 2020).

Distributed computing paradigms enable the handling
of large quantities of data and reduce the network delay
through the decentralization of data processing instead of
central aggregation (Qi & Tao, 2019; Trinks & Felden, 2018;
Ismail et al., 2015). The data is processed at the network’s
edge, hence the paradigm’s name: edge computing. The
term fog computing is another form of distributed comput-
ing paradigm originating from the perspective of a network
provider and is often used interchangeably with edge com-
puting (Aazam et al., 2018; Hong & Varghese, 2019). We
consider fog computing a middle layer between edge and
cloud, representing more powerful computational entities
like a server cluster or an on-premise cloud. Edge com-
puting platforms will allow applications to be deployed on
any resource with computing and communication capabil-

Fig. 1 Resource placement
problem in edge-cloud
continuum from Zietsch et al.
(2020)

Cloud

Where and how many?
(Horizontal dimension)

On which level?
(Vertical dimension)

Potential IT resource
placement location

Data prosumers
e.g. machines, sensors

Network node
(switch/router)

Exemplary
data/action flow

Network connection
(cable/wireless)

Off-premise

On-premise

Edge

Fog

What kind of IT resource?

A B C

Cost

Environmental
rating
Performance
rating

Resource
type

123

Journal of Intelligent Manufacturing (2024) 35:825–840 827

ities (Noghabi et al., 2020), increasing the flexibility and
agility of the entire factory network (Chen et al., 2018).

This paper proposes an approach, a model, and an imple-
mentation to address the multi-layer IT resource placement
problem for factories. The structure of the paper is as follows.
First, the relation between the proposed work and previous
publications is clarified. Second, the proposed model and the
framework in which it is embedded are described. Third, the
implementation is evaluated by simulating 16 test scenar-
ios ranging from small to large scale. Fourth, the proposed
work is applied in a case study. Finally, the experiences and
limitations of the proposed multi-layer model are discussed,
concluding this work.

Related work

Yousefpour et al. (2019) identified the planning and design
of networks incorporating the distributed edge and fog com-
puting paradigms as an essential topic with limited available
publications compared to, e.g., resource management, provi-
sioning, and operation. More recent literature reviews like
Hong and Varghese (2019), Ghobaei-Arani et al. (2020),
Kumar et al. (2022) reveal a further increase in interest
in dynamic resource provisioning or application allocation.
However, the lack of publications addressing the physical
placement of IT resources, especially in amanufacturing con-
text, persists.

There are various approaches outside of smart factories
addressing the placement of IT resource in other contexts
like mobile edge computing (Zhang et al., 2019; Wang et al.,
2019), smart cities (Xu et al., 2016; Yin et al., 2017), vehic-
ular networks (Guo et al., 2016; Mao et al., 2022). These
contributions have in common that the network stretches over
large areas, necessitating the geographical distance of nodes
and users. The distance is either represented by a constraint
or integrated into the target functions, which is necessary
due to physical limitations, e.g., the range of a cell phone
tower, the induced latency, or the added installation cost for
additional cabling [compare Guo et al. (2016)]. Although the
specific placement of IT resources in the factory (horizontal
dimension) is of significant relevance, the geographical dis-
tance is of reduced importance since the areas that need to be
covered and the movement of clients are more manageable
compared to, e.g., vehicular networks.

Yin et al. (2017) propose a decision support framework for
the provisioning of edge servers for online service providers
optimizing the construction cost and bandwidth prices. The
decision to place an additional edge server depends strongly
on the number of users.

Lin and Yang (2018) establish an integer programming
model for the cost-efficient deployment of a fog computing

system at a logistics center populatedwithAutomaticGuided
Vehicles (AGVs), the IoT devices with resource demand. A
meta-heuristic algorithm incorporating the discrete monkey
algorithm is applied to determine the placement of gateway,
fog devices, and edge devices, minimizing the overall instal-
lation cost. The focus on AGVs allowed the simplification
of the resource demand such that an edge device can only
support a set amount of AGVs with the fog devices and
gateways following the same logic. However, the focus is
a significant limitation when considering the heterogeneity
of applications.

Jiang et al. (2021) introduce a k-means clustering algo-
rithm for the deployment of edge computing nodes in
the context of smart manufacturing. The proposed algo-
rithm balances the network delay and computing resources
deployment cost while considering the impact of spatial
device distribution, device function, and computing capacity.
Instead of offering a prior investigation and planning process,
the algorithm focuses more on the possible node deployment
during operation.

In summary, the previous research contributions do not
address the planning phase of an IT infrastructure in the
context of manufacturing. Although there are various exam-
ples of optimization algorithm implementations, they often
require the availability of highly detailed information, which
is challenging to provide when considering the required
collaboration of multiple planning departments and the
uncertainty involved in the planning phase. Primarily when
considering that the deployment or placement of applica-
tions (sometimes called tasks) is often determined through
minimizing or constraining latency as one of the essential
advantages of edge/fog computing. Latency as a constraint
in today’s factory is highly relevant, e.g., time-sensitive
automation tasks, but challenging to determine for other IoT
solutions which might have other requirements like connec-
tivity, data sensitivity, or data encapsulation.

For this work, the application deployment restrictions
within a factory are consolidated in a so-called edge level that
combines distance, latency, bandwidth, and data ownership
in one value. Summarizing the latency requirements of the
applications in the new edge level constraint allows omitting
a latency-related term from the target function commonly
part of similar models like the ones presented Lin and Yang
(2018) orWang et al. (2019). The consolidation simplifies the
modeling for the practitioner of themulti-layer edge resource
placement problem and the execution of multiple optimiza-
tions in a reasonable time frame. The edge level was first
introduced in Zietsch et al. (2019) simplifying the vertical
application placement within the edge-cloud continuum by
allowing a streamlinedmodeling approach.Thenovel aspects
and differences of this work can be summarized as follows:

123

828 Journal of Intelligent Manufacturing (2024) 35:825–840

– Targeting the factory environment shifting the focus from
large amounts ofmoving clients (users) to fewer butmore
critical data sources modeling physical as well as logical
placement constraints

– Focusing on the planning and re-planning phase for an
IT infrastructure for the green field as well as brownfield
applications

– Solving the NP-hard optimization challenge using MILP
(Mixed integer linear programming) in a reasonable
amount of time by utilizing the edge level as a constraint
for a vertical application and resource placement

Multilayer model for resource placement

Methodology

In contrast to related publications regarding the optimized
placement of IT resources in a manufacturing environment,
the initialization of the developed model is embedded in
a framework that enables an efficient determination of the
required inputs. The framework’s structure with its four
process steps is illustrated in Fig. 2. Following these steps
requires the availability of information about the production
environment, applications, and IT resources, oftenmandating
a high level of abstraction and deliberate simplification, lim-
iting its application scope and the subsequent optimization to
areas for which said information is obtainable (Zietsch et al.,
2020). Even though it is possible to utilize the model disjoint
from the framework, the concept of a predetermined edge

level that constrains the application placement is an integral
part of the optimization.

In the first step (1), experts from varying domains drive
the initial modeling procedure. Software experts model the
applications that can be deployed in the manufacturing envi-
ronment. These applications, or apps in short, process data of
specific types and sources, e.g., calculating and visualizing
the Overall Equipment Efficiency (OEE), perform complex
analytics to estimate the remaining useful lifetime ofmachin-
ery, or provide advanced control functions. From an abstract
point of view, an application is, therefore, something that
takes data as input and outputs the results of specific com-
putational tasks. Each application has resource requirements
like CPU, RAM, and bandwidth and might be subject to spe-
cific demands like latency, data volume, or autonomy. The
resource requirements determine which kind of IT resources
shall be placed. These IT resources are modeled by a domain
expert and added to a resource catalog accessible by the opti-
mization algorithm.

In the second step (2), an expert selects apps from the
application catalog intended to be deployed. Then, the expert
attaches the App to a data producer since it is assumed to
require a data stream from one or many data producers; in
other words, the expert specifies the application’s input val-
ues. Finally, a facility expert independently models these
data producers as part of the factory structure. The fac-
tory is divided into factory buildings and systems containing
multiple data producers. These elements can be considered
potential locations for an IT resource, like an edge device or
any appropriate computational device.

Model
applications

Attach apps to
data prosumers

Model factory
structure

Model data
prosumer in

factory

Calculate edge
level score (0-4)

for each app

Transform layout
into tree
structure

Edge
Level

Run optimizationModel
resources

Domain expert executes step
manually (tool supported)

0

1

2

3

4

APP

Application
catalogue

Factory model

R

Resource
catalogue

Application
deployment

model

Multilayer resource
placement model

Process step is done
automatically

Possible deployment location
APP attached to data prosumer

Optimal solution

4

31 2

Processes can be
executed independently

Modelled
IT resource

Modelled
application

Modelled
data prosumer

0 24

Fig. 2 Framework proposed in Zietsch et al. (2020) leading to the optimization execution

123

Journal of Intelligent Manufacturing (2024) 35:825–840 829

In the third step (3), the information about the specific
demands enables an automatic calculation of an edge-level
score ranging from zero to four. The score reflects a deploy-
ment recommendation for an application for the five levels
in the edge-cloud continuum ranging from on-device-edge,
edge, fog, cloudlet, or cloud level proposed in Zietsch et al.
(2020). The calculation of a deployment restriction before
the optimization execution is an essential difference com-
pared to other optimization approaches found in the literature
(compare Sect. 2). For brevity’s sake, the specificities of the
edge level calculation are not part of this work; please refer
to Zietsch et al. (2020). The 2D factory structure is trans-
formed into a tree structure with the cloud (level 0) at the top
and the data producers at the bottom (level 4). All applica-
tions attached to data producers have an assigned edge level
ranging from zero to four, restricting their placement in the
tree.

In the fourth step (4), the optimization is executed with
three distinct objectives: cost minimization, environmental
impactminimization, or a combination of the two. Themodel
containing the constraints and objectives is described in the
following subsection.

Model

Sets and parameters

The hierarchical 2D factory layout, translated into a tree
structure, captures the relational links between the locations.

As illustrated in Fig. 3, each location (l) can be viewed
as a slot where a resource (r) can be placed in order to
complete computation tasks (Apps). A set of m locations
L = {l1, l2, . . . , lm} comprises all tree nodes ranging from
the cloud (level 0) to the on-device edge (level 4). Parameter
εl ∈ [0, 1, 2, 3, 4] stores information about the tree level of
each location l.

The lowest layer extends the tree by a set of n appli-
cations A = {a1, a2, . . . , an} connected with appropriate
location nodes. A performance requirement τ

Per f ormance
a

describes each application a, memory requirement τMemory
a ,

and bandwidth requirement τ Bandwidth
a . In addition, each

application has an assigned edge level restricting its place-
ment, εl ∈ [0, 1, 2, 3, 4] stores information about the tree
level of each location a.

Resources required to accommodate the Apps are gath-
ered in a set R = {r1, r2, . . . , rK }, where K denotes the
total number of resource types (including different cloud ser-
vices). Similar to the applications, each resource is denoted
by a series of parameters. A resource’s performance, mem-
ory, and bandwidth capacity are described by ρ

Per f ormance
r ,

ρ
Memory
r , and ρBandwidth

r . Furthermore, installation and

usage of a resource result in capital expenditure ρ
CapEx
r ,

yearly operational expenditure ρ
OpEx
r , and environmental

impact ρEcoImpact
r .

Fig. 3 Transforming the 2D factory layout into a tree structure

123

830 Journal of Intelligent Manufacturing (2024) 35:825–840

Optimization variables

The solver controls the decision variables ya,r ,l , which
affects two auxiliary functions (cr ,l and κr ,l) that facilitate
the model’s description.

ya,r ,l =

⎧
⎪⎨

⎪⎩

1, if a resource r is allocated at the location

l and runs application a

0, otherwise

(3.1)

cr ,l tracks the number of allocated applications for each
pair of resources and location:

cr ,l =
∑

a∈A

ya,r ,l , ∀r ∈ R, ∀l ∈ L. (3.2)

The auxiliary variable κr ,l maps cr ,l to a binary, which
indicates if at least one application is placed at a specific
location requiring the placement of a specific resource:

κr ,l =
{
1, if cr ,l > 0

0, if cr ,l = 0
, ∀r ∈ R, ∀l ∈ L. (3.3)

Constraints

The following constraints are implemented to enforce com-
pliance of the optimal solution with the requirements.
Additional constraints can be added reflecting additional
requirements like a budget limit, specific operating system,
hardware inputs, and outputs for IT resources.

Resource level constraint restricts the placement of resour
ces at certain positions. For example, cloud service cannot
be placed on a machine or line.

κr ,l ≤ ρResLevel
l,r (r ∈ R, l ∈ L) (3.4)

Allowed positions constraint restricts the placements of
Apps to locations based on the assigned edge level. Each
App, and each location, has a level score assigned to it. An
app can only run on a location with the same or higher score.
For example, if an app has a score of 4, it can run on level 4
(at the tree depth equal to 4) and nowhere else, as there are
no different levels with higher scores. On the contrary, if an
app has a score of 0, it can run on level 0 (cloud level) and
lower levels (section, system, data source). Positions allowed
for each App are encoded in the τ Allowed

a,l variable, and the
optimization constraint is enforced by:

∑

r∈R

ya,r ,l ≤ τ Allowed
a,l (a ∈ A, l ∈ L) (3.5)

No app splitting constraint specifies that an application
cannot be split and distributed to multiple resources. Instead,
each App must be fully deployed and executed on one
resource. This constraint ensures that none of the apps are
skipped and enforces that each application is placed.

∑

r∈R

∑

l∈L
ya,r ,l = 1 (a ∈ A) (3.6)

Fulfill performance demand constraint assures that the
resource selected for each application has a performance
higher than or equal to the app requirement.

∑

r∈R

∑

l∈L
ya,r ,lρ

Per f ormance
r ≥ τ

Per f ormance
a (a ∈ A) (3.7)

Fulfillmemorydemandconstraint assures that the resource
selected for each App has a memory capacity higher than or
equal to the app requirement.

∑

r∈R

∑

l∈L
ya,r ,lρ

Memory
r ≥ τ

Memory
a (a ∈ A) (3.8)

Fulfill bandwidth demand constraint assures that resource
selected for each App has bandwidth capacity higher than or
equal to the app requirement.

∑

r∈R

∑

l∈L
ya,r ,lρ

Bandwidth
r ≥ τ Bandwidth

a (a ∈ A) (3.9)

Resource performance limit constraint assures that total
performance demand caused by theApps (placed at a specific
position) is lower than the performance capacity of a selected
resource.

∑

a∈A

ya,r ,lτ
Per f ormance
a ≤ ρ

Per f ormance
r (r ∈ R, l ∈ L)

(3.10)

Resource memory limit constraint is analogous to the
resource performance limit constraint and ensures that the
memory capacity of a selected resource is not exceeded.

∑

a∈A

ya,r ,lτ
Memory
a ≤ ρ

Memory
r (r ∈ R, l ∈ L) (3.11)

Resource bandwidth limit constraint is analogous to the
resource performance limit constraint and ensures that the
bandwidth capacity of a selected resource is not exceeded.

∑

a∈A

ya,r ,lτ
Bandwidth
a ≤ ρBandwidth

r (r ∈ R, l ∈ L) (3.12)

123

Journal of Intelligent Manufacturing (2024) 35:825–840 831

One resource per location constraint enforces that, atmost,
one resource is placed at each location.

∑

r∈R

κr ,l ≤ 1 (l ∈ L) (3.13)

Objective functions

In the current version of the model, three optimization
objectives are defined to minimize the overall cost (�),
the environmental impact (�), and the number of placed
resources.

However, it is essential to note that the model was
specifically designed to facilitate new objectives. The pre-
viously defined constraints ensure that all applications can
be deployed in the factory, an essential requirement for the
whole model. Each solution the solver finds is viable, and the
objective function allows these solutions to be compared.

In general, any desired goal that can be represented
as a value allowing the solver to minimize or maximize
said value can be added to the model to find the “best”
solution. Examples of additional objectives that use only
previously introduced variables are theminimization of oper-
ational expense (ρOpEx

r), upfront capital expense (ρCapEx
r),

bandwidth consumption (ρBandwidth
r), or maximization of

performance (ρPer f ormance
r).

More complex objectives, like maximizing the overall
availability or flexibility of the resulting IT infrastructure,
can also be added, resulting in the challenge of describing
the desired objective as a function out of the scope of our
work.

Since the resource catalog contains all resource types, it is
necessary to distinguish between a set of resources that can
be placed on-premise, denoted as R′ (a subset of R), and a
cloud service denoted as rc to compute the overall cost and
economic impact.

Overall cost minimization objective aims to minimize
the overall cost of running on-premise resources and cloud
service over a given period (T). A resource placement is
associated with the upfront capital investment (ρCapEx

r) and
operational expense (ρOpEx

r). A significant portion of the
operational expense for the on-premise IT resources is due
to the energy consumption of the resource. However, other
reoccurring costs, e.g., maintenance or licensing, can also be
included. Although there could be upfront capital expendi-
ture for setting up cloud services (rc), they are considered
negligible compared to the operational expenses of the cloud
service (ρOcpEx

rc), which increases with each added App.

min

[∑

r∈R′

∑

l∈L
κr ,lρ

CapEx
r + T

∑

r∈R′

∑

l∈L
κr ,lρ

OpEx
r

+ T
∑

a∈A

∑

l∈L
ya,rc,lρ

OcpEx
rc

]

(3.14)

Environmental impact minimization objective aims to
minimize the overall environmental impact of running on-
premise resources and cloud service over a given period (T).
Each IT resource has an environmental impact. Accurately
quantifying this impact is a significant challenge and contin-
ues to be subject to an ongoing debate about the sustainability
of ICT in manufacturing (Thiede, 2021). The overall CO2

emission during operation per year is used for the model.
The overall CO2 emissions per year (ρEcoImpact

r) can be
calculated using each resource’s energy consumption
(r ∈ R′). The environmental impact of deploying Apps
to the cloud depends on the amount of Apps and a separate
impact factor (ρEcoImpact

rc).

min

[

T

(∑

r∈R′

∑

l∈L
κr ,lρ

EcoImpact
r

+
∑

a∈A

∑

l∈L
ya,rc,lρ

EcoImpact
rc

)]

(3.15)

Theminimization of the number of resources aims tomin-
imize the number of nodes (locations) onwhich resources are
placed, including the cloud service.

min

[∑

r∈R

∑

l∈L
κr ,l

]

(3.16)

Combining multiple objectives

Executing the optimization with one of the above imple-
mented objective functions yields one single optimal solution
mathematically. However, minimizing cost, environmental
impact, or the number of devices might not fulfill the desire
of a user aiming for an optimal solution with contradicting
goals or mandating the satisfaction of additional boundary
conditions. In the model development process, three possible
ways were identified that allow the consideration of poten-
tially opposing objectives like � and � can be achieved:

1. Adapt the resource catalog in such a way that the solver
can only select resources that are in a specific cost or
environmental impact range

2. Add an additional constraint e.g. the overall capital
investment cost must not exceed 10.000 e. The disad-
vantage of an additional constraint is that there might not
exist any feasible solution that the solver can return

3. Addressing multiple objectives simultaneously trans-
forming the problem into a multi-objective problem.

123

832 Journal of Intelligent Manufacturing (2024) 35:825–840

Whereas the first two options are relatively straightforward,
a multi-objective problem can be addressed in various ways.
However, to use the existing solver (SCIP), the two objec-
tives, cost, and environmental impact, are combined by
adding a priority indicator x that signifies the preference of
the user alongside a conversion factor α. The priority indica-
tor x ranges from zero to one. Three distinct values and their
impact are presented as an example in Eq. (3.17).

x =

⎧
⎪⎨

⎪⎩

1 Fully prioritize � disregard �

0.5 � and � are of equal importance

0 Fully prioritize� disregard �

(3.17)

The conversion factor is required since the cost (�) and
environmental impact (�) can have different magnitudes. α
is an additional parameter that the user can set. The resulting
objective function combining � and� is found in Eq. (3.18).

min

[

x

(

T
∑

r∈R

∑

l∈L
κr ,lρ

OpEx
r +

∑

r∈R

∑

l∈L
κr ,lρ

CapEx
r

)

+

(1 − x)αT
∑

r∈R

∑

l∈L
κr ,lρ

EcoImpact
r

]

(3.18)

Since the combination of multiple objective functions is
not in the scope of this work, the value for α was not investi-
gated further. For an initial test, it was calculated by dividing
themean cost andmean the environmental impact of all avail-
able resources in the repository over five years which had
an insignificant effect on the run time of the optimization.
Any objectives can be combined by introducing a priority
indicator alongside a suitable conversion factor. From a fac-
tory planner’s point of view, x can be represented as a slider
whose two ends represent the two different objectives, cost,
and environmental impact, respectively. The practitioners
can experiment with different settings interactively and with
ease.

Implementation in a factory context

Additional parameters and functions are defined to accom-
modate the specificities for optimizing an IT infrastructure
in a factory.

The safety factor β can be set based on the factory’s
requirements. Then, β is applied to the individual resource
requirements to create a safety margin for selecting the
resources.Having a safetymargin is consideredgoodpractice
when planning capacity due to the various factors impacting
an application’s performance requirements, like a software
upgrade, configuration adjustments, and unforeseen software
or hardware interactions. The safety factor can be set to any
value; however, the range from 1.1 - 1.5 is common (Wescott,

2013). The proposed safetymargin is illustrated in Eq. (3.19).

τa,e f f ective = τaβ, β =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 No safety margin

1.2 Small safety margin

1.5 Medium safety margin

2 Large safety margin

(3.19)

In addition, the τ Allowed
a,l is used in the factory context to

offer the user the ability to select andmodify different deploy-
ment strategies. The content of the τ Allowed

a,l matrix encodes
which application can run at which location. The description,
as mentioned earlier, of the “Allowed Positions Constraint”
does not fully explain the rule that controls the construction
of τ Allowed

a,l . The proposed implementation offers three strate-
gies controlling which application is allowed to run at which
location, which is illustrated in Fig. 4:

1. Cloud-Fog-Edge placement strategy means that the App
can only be placed on the node in direct connection with
the App (on-device edge - level 4), the factory level (fog
- level 1), or the cloud (level 0) with the intermediate sys-
tem and section resource locations (level 2 and 3) being
unoccupied. The placement strategy is intended to sim-
plify an edgeor cloud implementation choice. In addition,
the execution time of the optimization is reduced since
the number of possible locations is decreased.

2. Upward path only strategy means that an App can only
run at locations that can be accessed by going through the
tree upwards only, starting from the App assigned to the
factory object. In other words, if an app is not placed at
the initially assigned factory object, a strictly upward path
must exist from the initially assigned factory object to the
newly selected location as long as the level allows it. This
strategy is set as default for all optimizations forming a
compromise of speed and optimization potential

3. Entire Sub-tree strategy allows the placement of an App
on the entire subtree(s) of the node with the lowest level.
This placement means that in the example Fig. 4 A1 can
be placed on any node in the entire tree. The increase
in possible placement locations reduces the optimiza-
tion speed, whichmight be impractical for scenarios with
many applications.

The τ Allowed
a,l (Eq. 3.20) is calculated according to the

selected strategy for all applications before executing the
solver.

τ Allowed
a,l =

{
1, if a is allowed at location l

0, if a is not allowed at location l
(3.20)

123

Journal of Intelligent Manufacturing (2024) 35:825–840 833

Fig. 4 Application placement strategy (cloud-fog-edge, path, and sub-tree) and allowed edge level determine the allowed positions (gray)

Fig. 5 Available placement locations for different resources

Similarly, ρResLevel
l,r has been created to control which

resource type can run at which level. For example, in most
cases, the placement of powerful computational resources
should be kept from the data producer level. Such relations
can be formulated as general rules and used to build matrix
ρResLevel
l,r automatically. What is more, users can manipulate

the matrix manually to add custom changes. For example,
suppose a factory planner knows that one specific system
or location can accommodate a more powerful resource or
cannot accommodate any resource (for example, due to the
lack of the necessary network or electrical infrastructure).
In that case, the location can be deactivated (set to 0) for
all resources. Such an approach of manual manipulation can
also be used for allowed position τ Allowed

a,l .

The resource level parameter ρResLevel
l,r restricts the place-

ment of resources at specific locations by linking the resource
with the location; see Eq. (3.21). The ρResLevel

l,r is calculated
automatically for all resources before executing the solver
using the levelr value defined for each resource and poten-

tial user settings.

ρResLevel
l,r =

{
1, if r is allowed at location l

0, if r is not allowed at location l
(3.21)

The ρResLevel
l,r parameter has two purposes. First, it allows

for avoiding unrealistic scenarios in which, for example, a
cloud resource is placed on-premise or a high-end server
unit is attached directly to a data source. Second, it allows the
integration of existing IT resources already available in the
factory. For example, the practitioner specifies for l10 that the
value of ρResLevel

l,r is 1 for only the existing legacy resource
(r∗), forcing the solver to use only the legacy resource at
this position or none. Another way would be to set the
ρResLevel
l,r for all resources for this location to one and leave it

up to the algorithm to decide if the resource should be utilized
or replaced (compare r∗ at l2).

Implementation and benchmark

The benchmark instances represent factories of different
but realistic sizes. Since the proposed method relies on
mixed-integer linear programming, being NP-hard prob-
lems, solution times for any problem instance size may vary
significantly from one to another. However, the numerical
experiments presented here give an idea of what compu-
tation times a planner could face for the different problem
sizes. However, since the problem of factory planning we
are addressing here is not time-critical, even longer compu-
tation times do not pose an issue.

123

834 Journal of Intelligent Manufacturing (2024) 35:825–840

Implementation

The proposed multi-layer resource placement model is
implemented using the open-source modeling language
Pyomo (Hart et al., 2011). Themodeling language is indepen-
dent of a specific solver. Based on prior experience, the solver
SCIP (Gleixner et al., 2018) was used. The required prepro-
cessing and model preparation are implemented in Python.
The overall execution time of the optimization determines
the usability of the proposed model and implementation for
the planning and design of an IT infrastructure.

A benchmark procedure is designed to record the total
optimization times to assess the optimization implementa-
tion’s applicability to large-scale problems. The benchmark
structure is illustrated in Fig. 6.

The experiment designer sets the sets for locations, appli-
cations, and the number of repetitions. Then, the sets of

locations and applications are combined to create scenar-
ios. The number of scenarios is equal to the application
times location sets. Then, each scenario is repeated accord-
ing to the number of specified loops. Currently, no large-scale
edge implementations could be used as reference scenarios.
Hence, a topology generator is created, enabling the auto-
matic generation of topologies with randomized locations
and applications. Firstly, the factory layout with sections and
systems is created based on the location specification, com-
pare Table 1.

Secondly, the specified amount of factory objects is ran-
domly distributed and attached to the systems. Thirdly,
applications are randomly selected from an application cat-
alog containing 21 applications. The resource requirements
for each application are either low or high. Each applica-
tion consumes generic performance [2/7], memory [0.1/0.5],
and bandwidth [1/50] units. Each of the formed connections

Topology generator

21 Test applications with varying resource requirements
7 sets of 3 with all combinations of high or low
requirements regarding CPU, RAM and bandwidth

Five types of resources are
available:
S, M, L, XL and Cloud

Preprocessing SCIP

Create
factory
layout

Attach
Data Sources

(DSs)

Attach
APPs to DSs

Process
parameters

and constraints
Solve model Optimized

topology

RAPP

Overall optimization time

Constraint time Solution time

Experiment
Designer

Parameters:
Amount of locations
Amount of applications
Number of loops

Benchmarking Implementation

Fig. 6 Structure of the optimization benchmark

Table 1 Benchmark parameters
Experiment parameters Repetitions 100

Location sets 100, 200, 500, 1000

App sets 100, 200, 500, 1000

Edge Level 0 1 2 3 4

Distribution (weight) 0.4 0.3 0.2 0.1 0.1

Optimization parameters Time period 5 years

Objective Minimize cost

Placement strategy Upward path

Optimization configuration Modeling language Pyomo

Solver SCIP version 7.0.1

Termination: Time limit 10 h

Termination: Gap limit 0.01

Benchmark PC CPU Intel i7-6700 CPU @ 3.40 GHz

RAM 36 GB

OS Ubuntu 20.04

123

Journal of Intelligent Manufacturing (2024) 35:825–840 835

Table 2 Available resources for
the optimization

Resources S M L XL Cloud

Performance unit 5 50 500 1000 ∞
Memory unit 1 5 20 70 ∞
Bandwidth limitation 100 100 1000 1000 10,000

CapEx (e) 50 500 2000 7000 0

OpEx (e/a) 500 1000 2000 4000 0.1

Environmental impact (tCO2/a) 5 15 25 30 0.1

Fig. 7 Distribution of optimal cost for the 16 scenarios

Fig. 8 Mean constraint building time for the 16 scenarios

of factory object and App is assigned an edge level. The
assigned level is based on a predefined distribution func-
tion indicated in Table 1 that slightly favors level three or
lower, assuming that Apps are less likely to be bound to the
factory object location. The resource catalog contains five
resource types; see Table 2. Similar to Lin and Yang (2018),
generic units for performance (1–1000), memory (1–70), and
bandwidth (100–1000) are specified. Cost is split in capital
expenditure (e) and operational expenditure (e per annum),
and the environmental impact is defined through tons of CO2

per annum. These values, including the values for a cloud
implementation, are a grave simplification deemed neces-
sary to estimate resource capabilities in a planning phase.
For the benchmark, the resource and application catalog are
stored locally in JSON files in order to be independent of any
specific database implementation potentially influencing the
benchmark.

After the topology creation, the resulting scenario is
transferred to the optimization procedure consisting of the
preprocessing script initializing the model and the solver.
Both the constraint building and the solving process of the
model of every execution are timed.

Benchmark results

The benchmark results were obtained using the parameters
presented in Table 1. The docker instance ran for nine days
on a dedicated server executing 100 repetitions of each of the
16 scenarios (4 location sets × 4 application sets). The opti-
mizations and timings results are presented as standard box
plots. The circles found in the graphs represent the outliers.

The optimized cost distribution of the 16 scenarios
depicted in Fig. 7 illustrates the overall cost’s dependence on
the initial topology. The initial topology’s significant effect
underlines the importance of embedding the optimization in a
framework that allows a transparent assessment of the overall
factory topology before an optimization run.

123

836 Journal of Intelligent Manufacturing (2024) 35:825–840

Fig. 9 Total optimization time (Includes constraint preprocessing and solving) for the 16 scenarios

Even though the constraint building times seen inFig. 8 are
increasing significantly with the number of possible combi-
nations, their increase seems relatively linear. The constraint
building times do not cause a bottleneck in the implementa-
tion, even for large-scale implementations.

Analyzing the benchmark timings, especially the total
optimization time in Fig. 9, reveals that optimizingwith SCIP
can also address large-scale placement problems. Even when
placing resources for 1000 Apps on potentially 1000 loca-
tions, the longest total optimization was under 22 min, with
the mean being under 15 min. Small-scale problems with
only 100 Apps and under 500 locations are solved in less
than a minute. The results exceeded the initial expectations.
However, the benchmark results also show that the total opti-
mization time depends on the initial topology, which can be
seen for 1000 Apps in 100 locations. The total optimization
time distribution ranges from 50 minutes to under a minute.
This particular scenario highlights an unfortunate disadvan-
tage of our implementation. Even though the model and the
generated topology are fully transparent, investigating the
sudden rise in solve time bore no conclusive results.

Case study

The benchmarks showed that the total optimization times
achieved by the presented implementation are low enough
to make its application feasible for planning and design use
cases. The case study aims to make the theoretical model
more tangible and assess its application in practice. The case
study’s target is a factory producing electronic components
for factory automation. It is considered a leading example of
digitalization and innovation and is an early adopter of the
Siemens edge computing ecosystem (Beitinger, 2021). The
available IT infrastructure ensures the smooth operation of
the production machines. However, novel applications like
the ones presented in Filz et al. (2020), Schulte et al. (2020),

which aim to improve overall quality control, are under devel-
opment and shall be deployed in a designated area of the
factory. Instead of relying on the existing IT resources, fac-
tory management aims to invest in a new, more distributed
IT infrastructure profiting from the potential benefits of edge
computing.

The factory is modeled following the approach presented
in Sect. 3.1 specifying four sections, eight systems, and 18
data sources each with a unique ID illustrated in Fig. 10.
The unsorted numbering indicates the modeling priorities of
the practitioner, e.g., starting with modeling the data sources
of system 2 in section 3 instead of completing the factory
section by section. When adding the factory and cloud as
resource placement options, the total number of locations is
32. The 2-D representation in Fig. 10 showcases the most
cost-efficient IT topology over a period of five years. Each of
the potential placement location has an ID (number), the col-
ors represent the placed resource type (None to very large),
the shape represent the placement level (on-device to cloud),
and the dotted line shows the data flow indicating a connec-
tion between a data prosumer and an application. E.g., there is
at least one application that consumes data from data source
14, within system three which is moved to the large resource
placed in section two. In total twelve resources (4S, 4M, 4L)
were placed at the locations.

The representation of the use case as graph in Fig. 11 shifts
the focus more in the distribution of applications in the ini-
tial topology prior and after the optimization showcasing the
concrete placement recommendation for both applications
and resources in the factory. The result of the optimization
execution for all three implemented objective functions can
be directly compared with the initial situation in Table 3. The
initial situation represents the not-yet optimized graph pre-
sented in Fig. 11 where each application is attached to its
respective data source.

A default resource (RL) is placed for each occupied loca-
tion, guaranteeing the App’s execution. Coincidentally, both

123

Journal of Intelligent Manufacturing (2024) 35:825–840 837

Flow of data from the
source to the application
on an IT resource

Cloud0

System IT resource3

On-premise cloud1

Section IT resource2

On-device (data
source) IT resource

4

Edge Level
Legend

IT Resources

Small resource ()

Medium resource ()

Large resource ()

Very large resource ()

No resource placed
Section 1

Section 4

Section 2

Section 3

System 8

System 7

System 6

System 4

System 1

System 2

System 3

1 2

3
4

8
15

6

7

14

16 17 18

5 6 987 1

21234

10

1112

13
System 5 5

4

3

Fig. 10 Case study: cost optimized topology

Edge Level 0
Cloud

Edge Level 1
On-premise

Edge Level 2
Section

Edge Level 3
System

Edge Level 4
On-device

Edge Level 0
Cloud

Edge Level 1
On-premise

Edge Level 2
Section

Edge Level 3
System

Edge Level 4
On-device

8 6 7 1 2 4 5

1015 14 16 17 18 5 6 987 1 2 3 4 11 12 13

1 2 3 4

1 2

3

4 5 6 7 8 9

10 11 12 13 14 15

16 17 18 19 20

2122

23

24 25 26

27

8 6 7 1 2 3 4 5

1015 14 16 17 18 5 6 987 1 2 3 4 11 12 13

1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122 23 24 25 26 27

Small resource () Medium resource () Large resource () Very large resource ()No resource placedIT resource types:

3

Initial topology

Optimized topology

Fig. 11 Initial factory graph (top) compared to the optimized graph (bottom)

� and � objectives result in an identical placement rec-
ommendation which is significantly cheaper and has less
environmental impact than the third objective. The total cost
of 80.000 e was significantly lower than the default cost
of 216.000 e for the initial situation where only RL were
placed to ensure the operation and allow for extension. Even
the longest total execution time was below three seconds,

which is negligible compared with the initial modeling effort
demonstrating the presented model’s practical usability and
implementation.

123

838 Journal of Intelligent Manufacturing (2024) 35:825–840

Table 3 Detailed result of the optimization execution

Objectives
Initial situation* Cost Environmental impact Number of nodes

Overall optimization time (s) – 2.7 1.6 1.6

Constraint calculation time (s) – 0.7 0.7 0.5

Solve time (s) – 1.8 0.9 1.1

Number of placed resources 18 12 12 11

Total Cost (e) 216k 80k 80k 147k

Environmental impact (tCO2) 457.2 135 135 429.4

RS 0 4 4 0

Resource RM 0 4 4 0

distribution RL 18 4 4 10

RXL 0 0 0 1

*For the initial situation, a RL is placed on every location with an application. The large resource is chosen to ensure operation

Conclusion

This work presented, implemented, and assessed a novel
modeling approach for the IT resource and application place-
ment problem considering the edge computing paradigm
in the context of manufacturing. Instead of intending to
use other existing resource management modeling and opti-
mization approaches with more modeling parameters, higher
accuracy, and less execution time like the ones surveyed in
Hong and Varghese (2019), our work complements them by
addressing the design and planning phase. TheNP-hard prob-
lem of determining the optimal physical placement, choice
of IT resource type (capacity), and deployment of the given
applications were addressed using mixed-integer linear pro-
gramming (MILP). Using the open-source software package
PYOMO to model the problem and SCIP as the solver mini-
mizing cost, environmental impact, and device count proved
to be an effective combination. The total solve times rang-
ing from a few seconds for a small scale (100 Locations,
100 Applications) to around 15 min for large scale problems
(1000 Locations, 1000 Applications) are unproblematic in
an offline design an planning phase.

As pointed out, our approach does not aim at the opti-
mization of the type and amount of specificmanufacturing IT
applications. However, the systematic procedure combined
with a processable model provides early-stage decision sup-
port for the placement problem of involved IT resources.
Thus, it is a promising approach for manufacturing and tech-
nology, providing companies with more time, cost savings,
and energy-efficient IT architectures. Additionally, from a
more scientific perspective, it gives relevant insights into
boundary conditions and influencing factors on different
target variables. The model is designed to be extendable
enabling the integration of more sophisticated cost, environ-
mental impact, and resource consumption functions.

Data availability can be an issue, especially in the early
planning and design phases and the necessity of an edge-level
value for each application could be considered a limitation
of the proposed modeling approach. However, the approach
is intentionally based on reduced (and thus easier avail-
able) input compared to other, more detailed optimization
frameworks, like iFogSim (Gupta et al., 2017), favoring
applicability in practice over accuracy facilitating reason-
able computing times. Given that the model is designed to
be extended, a wide range of scenarios can be considered,
which may include the consideration of uncertainty for the
input parameters toward themost robust results. In the future,
it would be interesting to investigate and compare different
ways of addressing multi-objective optimization and apply
the approach to an increasing range of factory use cases. At
the same time, a more sophisticated edge level determination
and an optimization of the application selection procedure is
a challenge that can be addressed decoupled from the model
and its current implementation before being incorporated into
one optimization framework.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the

123

Journal of Intelligent Manufacturing (2024) 35:825–840 839

permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying Fog
computing in industrial internet of things and industry 4.0.
IEEE Transactions on Industrial Informatics, 14(10), 4674–4682.
https://doi.org/10.1109/TII.2018.2855198

Basir, R., Qaisar, S., Ali,M., Aldwairi,M., Ashraf,M. I., Mahmood, A.,
& Gidlund, M. (2019). Fog computing enabling industrial Inter-
net of Things: State-of-the-art and research challenges. Sensors,
19(21), 4807. https://doi.org/10.3390/s19214807

Beitinger, G. (2021). Digitalization and automation are the game-
changers. https://ingenuity.siemens.com/2021/03/digitalization-
and-automation-are-the-game-changers/

Brettel, M., Klein, M., & Friederichsen, N. (2016). The relevance of
manufacturing flexibility in the context of Industrie 4.0. Procedia
CIRP, 41, 105–110. https://doi.org/10.1016/j.procir.2015.12.047

Chen, B., Wan, J., Celesti, A., Li, D., Abbas, H., & Zhang, Q. (2018).
Edge computing in IoT-based manufacturing. IEEE Communica-
tions Magazine, 56(9), 103–109. https://doi.org/10.1109/MCOM.
2018.1701231

Filz, M. A., Herrmann, C., & Thiede, S. (2020). Simulation-based
assessment of quality inspection strategies on manufacturing
systems. Procedia CIRP, 93, 777–782. https://doi.org/10.1016/j.
procir.2020.04.069

Ghobaei-Arani, M., Souri, A., & Rahmanian, A. A. (2020). Resource
management approaches in fog computing: A comprehensive
review. Journal of Grid Computing, 18(1), 1–42. https://doi.org/
10.1007/s10723-019-09491-1

Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald,
R.L.,Hendel,G.,Hojny,C.,Koch, T., Lübbecke,M.E.,Maher, S.J.,
Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt,
D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel,
J.M., Walter, M., Wegscheider, F., Witt, J.T., & Witzig, J. (2018).
The SCIP Optimization Suite 6.0. Technical report, Optimization
Online

Guo, P., Lin, B., Li, X., He, R., & Li, S. (2016). Optimal deployment
and dimensioning of fog computing supported vehicular network.
In: 2016 IEEE Trustcom/BigDataSE/ISPA, IEEE, Tianjin, China,
(pp. 2058–2062). https://doi.org/10.1109/TrustCom.2016.0315

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017).
iFogSim: A toolkit for modeling and simulation of resource man-
agement techniques in the Internet of Things, Edge and Fog
computing environments: iFogSim: A toolkit for modeling and
simulation of internet of things. Software: Practice and Experi-
ence, 47(9), 1275–1296. https://doi.org/10.1002/spe.2509

Hart, W. E., Watson, J. P., & Woodruff, D. L. (2011). Pyomo: Model-
ing and solving mathematical programs in Python. Mathematical
Programming Computation, 3(3), 219.

Hertel,M., &Wiesent, J. (2013). Investments in information systems: A
contribution towards sustainability. InformationSystemsFrontiers,
15(5), 815–829. https://doi.org/10.1007/s10796-013-9417-x

Hischier, R., Coroama, V. C., Schien, D., & Ahmadi Achachlouei, M.
(2015). Grey energy and environmental impacts of ICT hardware.
In L. M. Hilty & B. Aebischer (Eds.), ICT innovations for sus-
tainability (pp. 171–189). Springer. https://doi.org/10.1007/978-
3-319-09228-7

Hong, C. H., &Varghese, B. (2019). Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algo-
rithms. ACM Computing Surveys, 52(5), 1–37. https://doi.org/10.
1145/3326066

Ismail, B.I., Mostajeran Goortani, E., Ab Karim, M.B., Ming Tat, W.,
Setapa, S., Luke, J.Y., & Hong Hoe, O. (2015). Evaluation of
Docker as Edge computing platform. In: 2015 IEEE Conference
on Open Systems (ICOS), IEEE, Bandar Melaka, (pp. 130–135).
https://doi.org/10.1109/ICOS.2015.7377291

Jiang,C.,Wan, J.,&Abbas,H. (2021).An edge computing node deploy-
ment method based on improved k-means clustering algorithm for
smart manufacturing. IEEE Systems Journal, 15(2), 2230–2240.
https://doi.org/10.1109/JSYST.2020.2986649

Kumar, D., Baranwal, G.,&Vidyarthi, D. P. (2022). A survey on auction
based approaches for resource allocation and pricing in emerging
edge technologies. Journal of Grid Computing, 20(1), 3. https://
doi.org/10.1007/s10723-021-09593-9

Lin, C. C., & Yang, J. W. (2018). Cost-efficient deployment of fog
computing systems at logistics centers in industry 4.0. IEEETrans-
actions on Industrial Informatics, 14(10), 4603–4611. https://doi.
org/10.1109/TII.2018.2827920

Mao,W., Akgul, O. U.,Mehrabi, A., Cho, B., Xiao, Y., &Ylä-Jääski, A.
(2022). Data-driven capacity planning for vehicular Fog comput-
ing. IEEE Internet of Things Journal, 9(15), 13179–13194. https://
doi.org/10.1109/JIOT.2022.3143872

Mourtzis, D., Vlachou, E., & Milas, N. (2016). Industrial big data as a
result of IoT adoption in manufacturing. Procedia CIRP, 55, 290–
295. https://doi.org/10.1016/j.procir.2016.07.038

Noghabi, S. A., Cox, L., Agarwal, S., & Ananthanarayanan, G. (2020).
The emerging landscape of edge computing. GetMobile: Mobile
Computing and Communications, 23(4), 11–20. https://doi.org/
10.1145/3400713.3400717

Qi, Q., & Tao, F. (2019). A smart manufacturing service system based
on edge computing, fog computing, and cloud computing. IEEE
Access, 7, 86769–86777. https://doi.org/10.1109/ACCESS.2019.
2923610

Schulte, L., Schmitt, J., Meierhofer, F., & Deuse, J. (2020). Optimiz-
ing inspection process severity by machine learning under label
uncertainty. Advances in intelligent systems and computingIn I. L.
Nunes (Ed.), Advances in human factors and systems interaction
(pp. 3–9). Springer. https://doi.org/10.1007/978-3-030-51369-6

Thiede, S. (2021). Digital technologies, methods and tools towards
sustainable manufacturing: Does Industry 4.0 support to reach
environmental targets? Procedia CIRP, 98, 1–6. https://doi.org/
10.1016/j.procir.2021.02.001

Trinks, S., & Felden, C. (2018). Edge Computing architecture to sup-
port Real TimeAnalytic applications :AState-of-the-art within the
application area of Smart Factory and Industry 4.0. In: 2018 IEEE
International Conference on Big Data (Big Data), IEEE, Seat-
tle, WA, USA, (pp. 2930–2939). https://doi.org/10.1109/BigData.
2018.8622649

Vogel-Heuser, B., Fay, A., Schaefer, I., & Tichy, M. (2015). Evolu-
tion of software in automated production systems: Challenges and
research directions. Journal of Systems and Software, 110, 54–84.
https://doi.org/10.1016/j.jss.2015.08.026

Wang, S., Zhao, Y., Xu, J., Yuan, J., & Hsu, C. H. (2019). Edge server
placement in mobile edge computing. Journal of Parallel and Dis-
tributed Computing, 127, 160–168. https://doi.org/10.1016/j.jpdc.
2018.06.008

Wescott, B. (2013). Every Computer Performance Book: How to Avoid
and Solve Performance Problems on the Computers You Work
With. CreateSpace Independent Publishing Platform

Xu, Z., Liang, W., Xu, W., Jia, M., & Guo, S. (2016). Efficient algo-
rithms for capacitated cloudlet placements. IEEE Transactions on
Parallel and Distributed Systems, 27(10), 2866–2880. https://doi.
org/10.1109/TPDS.2015.2510638

Yin, H., Zhang, X., Liu, H., Luo, Y., Tian, C., Zhao, S., & Li, F. (2017).
Edge provisioning with flexible server placement. IEEE Trans-
actions on Parallel and Distributed Systems, 28(4), 1031–1045.
https://doi.org/10.1109/TPDS.2016.2604803

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TII.2018.2855198
https://doi.org/10.3390/s19214807
https://ingenuity.siemens.com/2021/03/digitalization-and-automation-are-the-game-changers/
https://ingenuity.siemens.com/2021/03/digitalization-and-automation-are-the-game-changers/
https://doi.org/10.1016/j.procir.2015.12.047
https://doi.org/10.1109/MCOM.2018.1701231
https://doi.org/10.1109/MCOM.2018.1701231
https://doi.org/10.1016/j.procir.2020.04.069
https://doi.org/10.1016/j.procir.2020.04.069
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1109/TrustCom.2016.0315
https://doi.org/10.1002/spe.2509
https://doi.org/10.1007/s10796-013-9417-x
https://doi.org/10.1007/978-3-319-09228-7
https://doi.org/10.1007/978-3-319-09228-7
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3326066
https://doi.org/10.1109/ICOS.2015.7377291
https://doi.org/10.1109/JSYST.2020.2986649
https://doi.org/10.1007/s10723-021-09593-9
https://doi.org/10.1007/s10723-021-09593-9
https://doi.org/10.1109/TII.2018.2827920
https://doi.org/10.1109/TII.2018.2827920
https://doi.org/10.1109/JIOT.2022.3143872
https://doi.org/10.1109/JIOT.2022.3143872
https://doi.org/10.1016/j.procir.2016.07.038
https://doi.org/10.1145/3400713.3400717
https://doi.org/10.1145/3400713.3400717
https://doi.org/10.1109/ACCESS.2019.2923610
https://doi.org/10.1109/ACCESS.2019.2923610
https://doi.org/10.1007/978-3-030-51369-6
https://doi.org/10.1016/j.procir.2021.02.001
https://doi.org/10.1016/j.procir.2021.02.001
https://doi.org/10.1109/BigData.2018.8622649
https://doi.org/10.1109/BigData.2018.8622649
https://doi.org/10.1016/j.jss.2015.08.026
https://doi.org/10.1016/j.jpdc.2018.06.008
https://doi.org/10.1016/j.jpdc.2018.06.008
https://doi.org/10.1109/TPDS.2015.2510638
https://doi.org/10.1109/TPDS.2015.2510638
https://doi.org/10.1109/TPDS.2016.2604803

840 Journal of Intelligent Manufacturing (2024) 35:825–840

Yin, S., Bao, J., Zhang, J., Li, J., Wang, J., & Huang, X. (2020).
Real-time task processing for spinning cyber-physical production
systems based on edge computing. Journal of IntelligentManufac-
turing, 31(8), 2069–2087. https://doi.org/10.1007/s10845-020-
01553-6

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakan-
lahiji, A., Kong, J., & Jue, J. P. (2019). All one needs to know
about fog computing and related edge computing paradigms: A
complete survey. Journal of Systems Architecture, 98, 289–330.
https://doi.org/10.1016/j.sysarc.2019.02.009

Zhang, D., Haider, F., St-Hilaire, M., & Makaya, C. (2019). Model
and algorithms for the planning of fog computing networks.
IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.
2019.2892940

Zietsch, J., Vogt, M., Lee, B. D., Herrmann, C., & Thiede, S. (2020).
Enabling smart manufacturing through a systematic planning
framework for edge computing. CIRP Journal of Manufacturing
Science and Technology. https://doi.org/10.1016/j.cirpj.2020.06.
010

Zietsch, J., Weinert, N., Herrmann, C., & Thiede, S. (2019). Edge
Computing for the Production Industry A Systematic Approach
to Enable Decision Support and Planning of Edge. In: 2019 IEEE
17th International Conference on Industrial Informatics (INDIN),
IEEE, Helsinki, Finland, (pp. 733–739). https://doi.org/10.1109/
INDIN41052.2019.8972193

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10845-020-01553-6
https://doi.org/10.1007/s10845-020-01553-6
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/JIOT.2019.2892940
https://doi.org/10.1109/JIOT.2019.2892940
https://doi.org/10.1016/j.cirpj.2020.06.010
https://doi.org/10.1016/j.cirpj.2020.06.010
https://doi.org/10.1109/INDIN41052.2019.8972193
https://doi.org/10.1109/INDIN41052.2019.8972193

	Multi-layer edge resource placement optimization for factories
	Abstract
	Introduction
	Related work
	Multilayer model for resource placement
	Methodology
	Model
	Sets and parameters
	Optimization variables
	Constraints
	Objective functions
	Combining multiple objectives

	Implementation in a factory context

	Implementation and benchmark
	Implementation
	Benchmark results

	Case study
	Conclusion
	References

